s390x/kvm: fix and cleanup storing CPU status
[qemu/ar7.git] / target / s390x / kvm.c
blob7f8c6c4993cb09c5ea343bed8b1151e9fac1ebe0
1 /*
2 * QEMU S390x KVM implementation
4 * Copyright (c) 2009 Alexander Graf <agraf@suse.de>
5 * Copyright IBM Corp. 2012
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * Contributions after 2012-10-29 are licensed under the terms of the
18 * GNU GPL, version 2 or (at your option) any later version.
20 * You should have received a copy of the GNU (Lesser) General Public
21 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
24 #include "qemu/osdep.h"
25 #include <sys/ioctl.h>
27 #include <linux/kvm.h>
28 #include <asm/ptrace.h>
30 #include "qemu-common.h"
31 #include "cpu.h"
32 #include "internal.h"
33 #include "kvm_s390x.h"
34 #include "qemu/error-report.h"
35 #include "qemu/timer.h"
36 #include "sysemu/sysemu.h"
37 #include "sysemu/hw_accel.h"
38 #include "hw/hw.h"
39 #include "sysemu/device_tree.h"
40 #include "qapi/qmp/qjson.h"
41 #include "exec/gdbstub.h"
42 #include "exec/address-spaces.h"
43 #include "trace.h"
44 #include "qapi-event.h"
45 #include "hw/s390x/s390-pci-inst.h"
46 #include "hw/s390x/s390-pci-bus.h"
47 #include "hw/s390x/ipl.h"
48 #include "hw/s390x/ebcdic.h"
49 #include "exec/memattrs.h"
50 #include "hw/s390x/s390-virtio-ccw.h"
51 #include "hw/s390x/s390-virtio-hcall.h"
53 #ifndef DEBUG_KVM
54 #define DEBUG_KVM 0
55 #endif
57 #define DPRINTF(fmt, ...) do { \
58 if (DEBUG_KVM) { \
59 fprintf(stderr, fmt, ## __VA_ARGS__); \
60 } \
61 } while (0);
63 #define kvm_vm_check_mem_attr(s, attr) \
64 kvm_vm_check_attr(s, KVM_S390_VM_MEM_CTRL, attr)
66 #define IPA0_DIAG 0x8300
67 #define IPA0_SIGP 0xae00
68 #define IPA0_B2 0xb200
69 #define IPA0_B9 0xb900
70 #define IPA0_EB 0xeb00
71 #define IPA0_E3 0xe300
73 #define PRIV_B2_SCLP_CALL 0x20
74 #define PRIV_B2_CSCH 0x30
75 #define PRIV_B2_HSCH 0x31
76 #define PRIV_B2_MSCH 0x32
77 #define PRIV_B2_SSCH 0x33
78 #define PRIV_B2_STSCH 0x34
79 #define PRIV_B2_TSCH 0x35
80 #define PRIV_B2_TPI 0x36
81 #define PRIV_B2_SAL 0x37
82 #define PRIV_B2_RSCH 0x38
83 #define PRIV_B2_STCRW 0x39
84 #define PRIV_B2_STCPS 0x3a
85 #define PRIV_B2_RCHP 0x3b
86 #define PRIV_B2_SCHM 0x3c
87 #define PRIV_B2_CHSC 0x5f
88 #define PRIV_B2_SIGA 0x74
89 #define PRIV_B2_XSCH 0x76
91 #define PRIV_EB_SQBS 0x8a
92 #define PRIV_EB_PCISTB 0xd0
93 #define PRIV_EB_SIC 0xd1
95 #define PRIV_B9_EQBS 0x9c
96 #define PRIV_B9_CLP 0xa0
97 #define PRIV_B9_PCISTG 0xd0
98 #define PRIV_B9_PCILG 0xd2
99 #define PRIV_B9_RPCIT 0xd3
101 #define PRIV_E3_MPCIFC 0xd0
102 #define PRIV_E3_STPCIFC 0xd4
104 #define DIAG_TIMEREVENT 0x288
105 #define DIAG_IPL 0x308
106 #define DIAG_KVM_HYPERCALL 0x500
107 #define DIAG_KVM_BREAKPOINT 0x501
109 #define ICPT_INSTRUCTION 0x04
110 #define ICPT_PROGRAM 0x08
111 #define ICPT_EXT_INT 0x14
112 #define ICPT_WAITPSW 0x1c
113 #define ICPT_SOFT_INTERCEPT 0x24
114 #define ICPT_CPU_STOP 0x28
115 #define ICPT_OPEREXC 0x2c
116 #define ICPT_IO 0x40
118 #define NR_LOCAL_IRQS 32
120 * Needs to be big enough to contain max_cpus emergency signals
121 * and in addition NR_LOCAL_IRQS interrupts
123 #define VCPU_IRQ_BUF_SIZE (sizeof(struct kvm_s390_irq) * \
124 (max_cpus + NR_LOCAL_IRQS))
126 static CPUWatchpoint hw_watchpoint;
128 * We don't use a list because this structure is also used to transmit the
129 * hardware breakpoints to the kernel.
131 static struct kvm_hw_breakpoint *hw_breakpoints;
132 static int nb_hw_breakpoints;
134 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
135 KVM_CAP_LAST_INFO
138 static QemuMutex qemu_sigp_mutex;
140 static int cap_sync_regs;
141 static int cap_async_pf;
142 static int cap_mem_op;
143 static int cap_s390_irq;
144 static int cap_ri;
145 static int cap_gs;
147 static int active_cmma;
149 static void *legacy_s390_alloc(size_t size, uint64_t *align);
151 static int kvm_s390_query_mem_limit(uint64_t *memory_limit)
153 struct kvm_device_attr attr = {
154 .group = KVM_S390_VM_MEM_CTRL,
155 .attr = KVM_S390_VM_MEM_LIMIT_SIZE,
156 .addr = (uint64_t) memory_limit,
159 return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
162 int kvm_s390_set_mem_limit(uint64_t new_limit, uint64_t *hw_limit)
164 int rc;
166 struct kvm_device_attr attr = {
167 .group = KVM_S390_VM_MEM_CTRL,
168 .attr = KVM_S390_VM_MEM_LIMIT_SIZE,
169 .addr = (uint64_t) &new_limit,
172 if (!kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_LIMIT_SIZE)) {
173 return 0;
176 rc = kvm_s390_query_mem_limit(hw_limit);
177 if (rc) {
178 return rc;
179 } else if (*hw_limit < new_limit) {
180 return -E2BIG;
183 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
186 int kvm_s390_cmma_active(void)
188 return active_cmma;
191 static bool kvm_s390_cmma_available(void)
193 static bool initialized, value;
195 if (!initialized) {
196 initialized = true;
197 value = kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_ENABLE_CMMA) &&
198 kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_CLR_CMMA);
200 return value;
203 void kvm_s390_cmma_reset(void)
205 int rc;
206 struct kvm_device_attr attr = {
207 .group = KVM_S390_VM_MEM_CTRL,
208 .attr = KVM_S390_VM_MEM_CLR_CMMA,
211 if (!kvm_s390_cmma_active()) {
212 return;
215 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
216 trace_kvm_clear_cmma(rc);
219 static void kvm_s390_enable_cmma(void)
221 int rc;
222 struct kvm_device_attr attr = {
223 .group = KVM_S390_VM_MEM_CTRL,
224 .attr = KVM_S390_VM_MEM_ENABLE_CMMA,
227 if (mem_path) {
228 warn_report("CMM will not be enabled because it is not "
229 "compatible with hugetlbfs.");
230 return;
232 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
233 active_cmma = !rc;
234 trace_kvm_enable_cmma(rc);
237 static void kvm_s390_set_attr(uint64_t attr)
239 struct kvm_device_attr attribute = {
240 .group = KVM_S390_VM_CRYPTO,
241 .attr = attr,
244 int ret = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attribute);
246 if (ret) {
247 error_report("Failed to set crypto device attribute %lu: %s",
248 attr, strerror(-ret));
252 static void kvm_s390_init_aes_kw(void)
254 uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_AES_KW;
256 if (object_property_get_bool(OBJECT(qdev_get_machine()), "aes-key-wrap",
257 NULL)) {
258 attr = KVM_S390_VM_CRYPTO_ENABLE_AES_KW;
261 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
262 kvm_s390_set_attr(attr);
266 static void kvm_s390_init_dea_kw(void)
268 uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_DEA_KW;
270 if (object_property_get_bool(OBJECT(qdev_get_machine()), "dea-key-wrap",
271 NULL)) {
272 attr = KVM_S390_VM_CRYPTO_ENABLE_DEA_KW;
275 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
276 kvm_s390_set_attr(attr);
280 void kvm_s390_crypto_reset(void)
282 if (s390_has_feat(S390_FEAT_MSA_EXT_3)) {
283 kvm_s390_init_aes_kw();
284 kvm_s390_init_dea_kw();
288 int kvm_arch_init(MachineState *ms, KVMState *s)
290 MachineClass *mc = MACHINE_GET_CLASS(ms);
292 mc->default_cpu_type = S390_CPU_TYPE_NAME("host");
293 cap_sync_regs = kvm_check_extension(s, KVM_CAP_SYNC_REGS);
294 cap_async_pf = kvm_check_extension(s, KVM_CAP_ASYNC_PF);
295 cap_mem_op = kvm_check_extension(s, KVM_CAP_S390_MEM_OP);
296 cap_s390_irq = kvm_check_extension(s, KVM_CAP_S390_INJECT_IRQ);
298 if (!kvm_check_extension(s, KVM_CAP_S390_GMAP)
299 || !kvm_check_extension(s, KVM_CAP_S390_COW)) {
300 phys_mem_set_alloc(legacy_s390_alloc);
303 kvm_vm_enable_cap(s, KVM_CAP_S390_USER_SIGP, 0);
304 kvm_vm_enable_cap(s, KVM_CAP_S390_VECTOR_REGISTERS, 0);
305 kvm_vm_enable_cap(s, KVM_CAP_S390_USER_STSI, 0);
306 if (ri_allowed()) {
307 if (kvm_vm_enable_cap(s, KVM_CAP_S390_RI, 0) == 0) {
308 cap_ri = 1;
311 if (gs_allowed()) {
312 if (kvm_vm_enable_cap(s, KVM_CAP_S390_GS, 0) == 0) {
313 cap_gs = 1;
318 * The migration interface for ais was introduced with kernel 4.13
319 * but the capability itself had been active since 4.12. As migration
320 * support is considered necessary let's disable ais in the 2.10
321 * machine.
323 /* kvm_vm_enable_cap(s, KVM_CAP_S390_AIS, 0); */
325 qemu_mutex_init(&qemu_sigp_mutex);
327 return 0;
330 int kvm_arch_irqchip_create(MachineState *ms, KVMState *s)
332 return 0;
335 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
337 return cpu->cpu_index;
340 int kvm_arch_init_vcpu(CPUState *cs)
342 S390CPU *cpu = S390_CPU(cs);
343 kvm_s390_set_cpu_state(cpu, cpu->env.cpu_state);
344 cpu->irqstate = g_malloc0(VCPU_IRQ_BUF_SIZE);
345 return 0;
348 void kvm_s390_reset_vcpu(S390CPU *cpu)
350 CPUState *cs = CPU(cpu);
352 /* The initial reset call is needed here to reset in-kernel
353 * vcpu data that we can't access directly from QEMU
354 * (i.e. with older kernels which don't support sync_regs/ONE_REG).
355 * Before this ioctl cpu_synchronize_state() is called in common kvm
356 * code (kvm-all) */
357 if (kvm_vcpu_ioctl(cs, KVM_S390_INITIAL_RESET, NULL)) {
358 error_report("Initial CPU reset failed on CPU %i", cs->cpu_index);
362 static int can_sync_regs(CPUState *cs, int regs)
364 return cap_sync_regs && (cs->kvm_run->kvm_valid_regs & regs) == regs;
367 int kvm_arch_put_registers(CPUState *cs, int level)
369 S390CPU *cpu = S390_CPU(cs);
370 CPUS390XState *env = &cpu->env;
371 struct kvm_sregs sregs;
372 struct kvm_regs regs;
373 struct kvm_fpu fpu = {};
374 int r;
375 int i;
377 /* always save the PSW and the GPRS*/
378 cs->kvm_run->psw_addr = env->psw.addr;
379 cs->kvm_run->psw_mask = env->psw.mask;
381 if (can_sync_regs(cs, KVM_SYNC_GPRS)) {
382 for (i = 0; i < 16; i++) {
383 cs->kvm_run->s.regs.gprs[i] = env->regs[i];
384 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GPRS;
386 } else {
387 for (i = 0; i < 16; i++) {
388 regs.gprs[i] = env->regs[i];
390 r = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
391 if (r < 0) {
392 return r;
396 if (can_sync_regs(cs, KVM_SYNC_VRS)) {
397 for (i = 0; i < 32; i++) {
398 cs->kvm_run->s.regs.vrs[i][0] = env->vregs[i][0].ll;
399 cs->kvm_run->s.regs.vrs[i][1] = env->vregs[i][1].ll;
401 cs->kvm_run->s.regs.fpc = env->fpc;
402 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_VRS;
403 } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) {
404 for (i = 0; i < 16; i++) {
405 cs->kvm_run->s.regs.fprs[i] = get_freg(env, i)->ll;
407 cs->kvm_run->s.regs.fpc = env->fpc;
408 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_FPRS;
409 } else {
410 /* Floating point */
411 for (i = 0; i < 16; i++) {
412 fpu.fprs[i] = get_freg(env, i)->ll;
414 fpu.fpc = env->fpc;
416 r = kvm_vcpu_ioctl(cs, KVM_SET_FPU, &fpu);
417 if (r < 0) {
418 return r;
422 /* Do we need to save more than that? */
423 if (level == KVM_PUT_RUNTIME_STATE) {
424 return 0;
427 if (can_sync_regs(cs, KVM_SYNC_ARCH0)) {
428 cs->kvm_run->s.regs.cputm = env->cputm;
429 cs->kvm_run->s.regs.ckc = env->ckc;
430 cs->kvm_run->s.regs.todpr = env->todpr;
431 cs->kvm_run->s.regs.gbea = env->gbea;
432 cs->kvm_run->s.regs.pp = env->pp;
433 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ARCH0;
434 } else {
436 * These ONE_REGS are not protected by a capability. As they are only
437 * necessary for migration we just trace a possible error, but don't
438 * return with an error return code.
440 kvm_set_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm);
441 kvm_set_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc);
442 kvm_set_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr);
443 kvm_set_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea);
444 kvm_set_one_reg(cs, KVM_REG_S390_PP, &env->pp);
447 if (can_sync_regs(cs, KVM_SYNC_RICCB)) {
448 memcpy(cs->kvm_run->s.regs.riccb, env->riccb, 64);
449 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_RICCB;
452 /* pfault parameters */
453 if (can_sync_regs(cs, KVM_SYNC_PFAULT)) {
454 cs->kvm_run->s.regs.pft = env->pfault_token;
455 cs->kvm_run->s.regs.pfs = env->pfault_select;
456 cs->kvm_run->s.regs.pfc = env->pfault_compare;
457 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PFAULT;
458 } else if (cap_async_pf) {
459 r = kvm_set_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token);
460 if (r < 0) {
461 return r;
463 r = kvm_set_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare);
464 if (r < 0) {
465 return r;
467 r = kvm_set_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select);
468 if (r < 0) {
469 return r;
473 /* access registers and control registers*/
474 if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) {
475 for (i = 0; i < 16; i++) {
476 cs->kvm_run->s.regs.acrs[i] = env->aregs[i];
477 cs->kvm_run->s.regs.crs[i] = env->cregs[i];
479 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ACRS;
480 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_CRS;
481 } else {
482 for (i = 0; i < 16; i++) {
483 sregs.acrs[i] = env->aregs[i];
484 sregs.crs[i] = env->cregs[i];
486 r = kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
487 if (r < 0) {
488 return r;
492 if (can_sync_regs(cs, KVM_SYNC_GSCB)) {
493 memcpy(cs->kvm_run->s.regs.gscb, env->gscb, 32);
494 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GSCB;
497 /* Finally the prefix */
498 if (can_sync_regs(cs, KVM_SYNC_PREFIX)) {
499 cs->kvm_run->s.regs.prefix = env->psa;
500 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PREFIX;
501 } else {
502 /* prefix is only supported via sync regs */
504 return 0;
507 int kvm_arch_get_registers(CPUState *cs)
509 S390CPU *cpu = S390_CPU(cs);
510 CPUS390XState *env = &cpu->env;
511 struct kvm_sregs sregs;
512 struct kvm_regs regs;
513 struct kvm_fpu fpu;
514 int i, r;
516 /* get the PSW */
517 env->psw.addr = cs->kvm_run->psw_addr;
518 env->psw.mask = cs->kvm_run->psw_mask;
520 /* the GPRS */
521 if (can_sync_regs(cs, KVM_SYNC_GPRS)) {
522 for (i = 0; i < 16; i++) {
523 env->regs[i] = cs->kvm_run->s.regs.gprs[i];
525 } else {
526 r = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
527 if (r < 0) {
528 return r;
530 for (i = 0; i < 16; i++) {
531 env->regs[i] = regs.gprs[i];
535 /* The ACRS and CRS */
536 if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) {
537 for (i = 0; i < 16; i++) {
538 env->aregs[i] = cs->kvm_run->s.regs.acrs[i];
539 env->cregs[i] = cs->kvm_run->s.regs.crs[i];
541 } else {
542 r = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
543 if (r < 0) {
544 return r;
546 for (i = 0; i < 16; i++) {
547 env->aregs[i] = sregs.acrs[i];
548 env->cregs[i] = sregs.crs[i];
552 /* Floating point and vector registers */
553 if (can_sync_regs(cs, KVM_SYNC_VRS)) {
554 for (i = 0; i < 32; i++) {
555 env->vregs[i][0].ll = cs->kvm_run->s.regs.vrs[i][0];
556 env->vregs[i][1].ll = cs->kvm_run->s.regs.vrs[i][1];
558 env->fpc = cs->kvm_run->s.regs.fpc;
559 } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) {
560 for (i = 0; i < 16; i++) {
561 get_freg(env, i)->ll = cs->kvm_run->s.regs.fprs[i];
563 env->fpc = cs->kvm_run->s.regs.fpc;
564 } else {
565 r = kvm_vcpu_ioctl(cs, KVM_GET_FPU, &fpu);
566 if (r < 0) {
567 return r;
569 for (i = 0; i < 16; i++) {
570 get_freg(env, i)->ll = fpu.fprs[i];
572 env->fpc = fpu.fpc;
575 /* The prefix */
576 if (can_sync_regs(cs, KVM_SYNC_PREFIX)) {
577 env->psa = cs->kvm_run->s.regs.prefix;
580 if (can_sync_regs(cs, KVM_SYNC_ARCH0)) {
581 env->cputm = cs->kvm_run->s.regs.cputm;
582 env->ckc = cs->kvm_run->s.regs.ckc;
583 env->todpr = cs->kvm_run->s.regs.todpr;
584 env->gbea = cs->kvm_run->s.regs.gbea;
585 env->pp = cs->kvm_run->s.regs.pp;
586 } else {
588 * These ONE_REGS are not protected by a capability. As they are only
589 * necessary for migration we just trace a possible error, but don't
590 * return with an error return code.
592 kvm_get_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm);
593 kvm_get_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc);
594 kvm_get_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr);
595 kvm_get_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea);
596 kvm_get_one_reg(cs, KVM_REG_S390_PP, &env->pp);
599 if (can_sync_regs(cs, KVM_SYNC_RICCB)) {
600 memcpy(env->riccb, cs->kvm_run->s.regs.riccb, 64);
603 if (can_sync_regs(cs, KVM_SYNC_GSCB)) {
604 memcpy(env->gscb, cs->kvm_run->s.regs.gscb, 32);
607 /* pfault parameters */
608 if (can_sync_regs(cs, KVM_SYNC_PFAULT)) {
609 env->pfault_token = cs->kvm_run->s.regs.pft;
610 env->pfault_select = cs->kvm_run->s.regs.pfs;
611 env->pfault_compare = cs->kvm_run->s.regs.pfc;
612 } else if (cap_async_pf) {
613 r = kvm_get_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token);
614 if (r < 0) {
615 return r;
617 r = kvm_get_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare);
618 if (r < 0) {
619 return r;
621 r = kvm_get_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select);
622 if (r < 0) {
623 return r;
627 return 0;
630 int kvm_s390_get_clock(uint8_t *tod_high, uint64_t *tod_low)
632 int r;
633 struct kvm_device_attr attr = {
634 .group = KVM_S390_VM_TOD,
635 .attr = KVM_S390_VM_TOD_LOW,
636 .addr = (uint64_t)tod_low,
639 r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
640 if (r) {
641 return r;
644 attr.attr = KVM_S390_VM_TOD_HIGH;
645 attr.addr = (uint64_t)tod_high;
646 return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
649 int kvm_s390_set_clock(uint8_t *tod_high, uint64_t *tod_low)
651 int r;
653 struct kvm_device_attr attr = {
654 .group = KVM_S390_VM_TOD,
655 .attr = KVM_S390_VM_TOD_LOW,
656 .addr = (uint64_t)tod_low,
659 r = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
660 if (r) {
661 return r;
664 attr.attr = KVM_S390_VM_TOD_HIGH;
665 attr.addr = (uint64_t)tod_high;
666 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
670 * kvm_s390_mem_op:
671 * @addr: the logical start address in guest memory
672 * @ar: the access register number
673 * @hostbuf: buffer in host memory. NULL = do only checks w/o copying
674 * @len: length that should be transferred
675 * @is_write: true = write, false = read
676 * Returns: 0 on success, non-zero if an exception or error occurred
678 * Use KVM ioctl to read/write from/to guest memory. An access exception
679 * is injected into the vCPU in case of translation errors.
681 int kvm_s390_mem_op(S390CPU *cpu, vaddr addr, uint8_t ar, void *hostbuf,
682 int len, bool is_write)
684 struct kvm_s390_mem_op mem_op = {
685 .gaddr = addr,
686 .flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION,
687 .size = len,
688 .op = is_write ? KVM_S390_MEMOP_LOGICAL_WRITE
689 : KVM_S390_MEMOP_LOGICAL_READ,
690 .buf = (uint64_t)hostbuf,
691 .ar = ar,
693 int ret;
695 if (!cap_mem_op) {
696 return -ENOSYS;
698 if (!hostbuf) {
699 mem_op.flags |= KVM_S390_MEMOP_F_CHECK_ONLY;
702 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_S390_MEM_OP, &mem_op);
703 if (ret < 0) {
704 error_printf("KVM_S390_MEM_OP failed: %s\n", strerror(-ret));
706 return ret;
710 * Legacy layout for s390:
711 * Older S390 KVM requires the topmost vma of the RAM to be
712 * smaller than an system defined value, which is at least 256GB.
713 * Larger systems have larger values. We put the guest between
714 * the end of data segment (system break) and this value. We
715 * use 32GB as a base to have enough room for the system break
716 * to grow. We also have to use MAP parameters that avoid
717 * read-only mapping of guest pages.
719 static void *legacy_s390_alloc(size_t size, uint64_t *align)
721 void *mem;
723 mem = mmap((void *) 0x800000000ULL, size,
724 PROT_EXEC|PROT_READ|PROT_WRITE,
725 MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
726 return mem == MAP_FAILED ? NULL : mem;
729 static uint8_t const *sw_bp_inst;
730 static uint8_t sw_bp_ilen;
732 static void determine_sw_breakpoint_instr(void)
734 /* DIAG 501 is used for sw breakpoints with old kernels */
735 static const uint8_t diag_501[] = {0x83, 0x24, 0x05, 0x01};
736 /* Instruction 0x0000 is used for sw breakpoints with recent kernels */
737 static const uint8_t instr_0x0000[] = {0x00, 0x00};
739 if (sw_bp_inst) {
740 return;
742 if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_USER_INSTR0, 0)) {
743 sw_bp_inst = diag_501;
744 sw_bp_ilen = sizeof(diag_501);
745 DPRINTF("KVM: will use 4-byte sw breakpoints.\n");
746 } else {
747 sw_bp_inst = instr_0x0000;
748 sw_bp_ilen = sizeof(instr_0x0000);
749 DPRINTF("KVM: will use 2-byte sw breakpoints.\n");
753 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
755 determine_sw_breakpoint_instr();
757 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
758 sw_bp_ilen, 0) ||
759 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)sw_bp_inst, sw_bp_ilen, 1)) {
760 return -EINVAL;
762 return 0;
765 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
767 uint8_t t[MAX_ILEN];
769 if (cpu_memory_rw_debug(cs, bp->pc, t, sw_bp_ilen, 0)) {
770 return -EINVAL;
771 } else if (memcmp(t, sw_bp_inst, sw_bp_ilen)) {
772 return -EINVAL;
773 } else if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
774 sw_bp_ilen, 1)) {
775 return -EINVAL;
778 return 0;
781 static struct kvm_hw_breakpoint *find_hw_breakpoint(target_ulong addr,
782 int len, int type)
784 int n;
786 for (n = 0; n < nb_hw_breakpoints; n++) {
787 if (hw_breakpoints[n].addr == addr && hw_breakpoints[n].type == type &&
788 (hw_breakpoints[n].len == len || len == -1)) {
789 return &hw_breakpoints[n];
793 return NULL;
796 static int insert_hw_breakpoint(target_ulong addr, int len, int type)
798 int size;
800 if (find_hw_breakpoint(addr, len, type)) {
801 return -EEXIST;
804 size = (nb_hw_breakpoints + 1) * sizeof(struct kvm_hw_breakpoint);
806 if (!hw_breakpoints) {
807 nb_hw_breakpoints = 0;
808 hw_breakpoints = (struct kvm_hw_breakpoint *)g_try_malloc(size);
809 } else {
810 hw_breakpoints =
811 (struct kvm_hw_breakpoint *)g_try_realloc(hw_breakpoints, size);
814 if (!hw_breakpoints) {
815 nb_hw_breakpoints = 0;
816 return -ENOMEM;
819 hw_breakpoints[nb_hw_breakpoints].addr = addr;
820 hw_breakpoints[nb_hw_breakpoints].len = len;
821 hw_breakpoints[nb_hw_breakpoints].type = type;
823 nb_hw_breakpoints++;
825 return 0;
828 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
829 target_ulong len, int type)
831 switch (type) {
832 case GDB_BREAKPOINT_HW:
833 type = KVM_HW_BP;
834 break;
835 case GDB_WATCHPOINT_WRITE:
836 if (len < 1) {
837 return -EINVAL;
839 type = KVM_HW_WP_WRITE;
840 break;
841 default:
842 return -ENOSYS;
844 return insert_hw_breakpoint(addr, len, type);
847 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
848 target_ulong len, int type)
850 int size;
851 struct kvm_hw_breakpoint *bp = find_hw_breakpoint(addr, len, type);
853 if (bp == NULL) {
854 return -ENOENT;
857 nb_hw_breakpoints--;
858 if (nb_hw_breakpoints > 0) {
860 * In order to trim the array, move the last element to the position to
861 * be removed - if necessary.
863 if (bp != &hw_breakpoints[nb_hw_breakpoints]) {
864 *bp = hw_breakpoints[nb_hw_breakpoints];
866 size = nb_hw_breakpoints * sizeof(struct kvm_hw_breakpoint);
867 hw_breakpoints =
868 (struct kvm_hw_breakpoint *)g_realloc(hw_breakpoints, size);
869 } else {
870 g_free(hw_breakpoints);
871 hw_breakpoints = NULL;
874 return 0;
877 void kvm_arch_remove_all_hw_breakpoints(void)
879 nb_hw_breakpoints = 0;
880 g_free(hw_breakpoints);
881 hw_breakpoints = NULL;
884 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
886 int i;
888 if (nb_hw_breakpoints > 0) {
889 dbg->arch.nr_hw_bp = nb_hw_breakpoints;
890 dbg->arch.hw_bp = hw_breakpoints;
892 for (i = 0; i < nb_hw_breakpoints; ++i) {
893 hw_breakpoints[i].phys_addr = s390_cpu_get_phys_addr_debug(cpu,
894 hw_breakpoints[i].addr);
896 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
897 } else {
898 dbg->arch.nr_hw_bp = 0;
899 dbg->arch.hw_bp = NULL;
903 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
907 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
909 return MEMTXATTRS_UNSPECIFIED;
912 int kvm_arch_process_async_events(CPUState *cs)
914 return cs->halted;
917 static int s390_kvm_irq_to_interrupt(struct kvm_s390_irq *irq,
918 struct kvm_s390_interrupt *interrupt)
920 int r = 0;
922 interrupt->type = irq->type;
923 switch (irq->type) {
924 case KVM_S390_INT_VIRTIO:
925 interrupt->parm = irq->u.ext.ext_params;
926 /* fall through */
927 case KVM_S390_INT_PFAULT_INIT:
928 case KVM_S390_INT_PFAULT_DONE:
929 interrupt->parm64 = irq->u.ext.ext_params2;
930 break;
931 case KVM_S390_PROGRAM_INT:
932 interrupt->parm = irq->u.pgm.code;
933 break;
934 case KVM_S390_SIGP_SET_PREFIX:
935 interrupt->parm = irq->u.prefix.address;
936 break;
937 case KVM_S390_INT_SERVICE:
938 interrupt->parm = irq->u.ext.ext_params;
939 break;
940 case KVM_S390_MCHK:
941 interrupt->parm = irq->u.mchk.cr14;
942 interrupt->parm64 = irq->u.mchk.mcic;
943 break;
944 case KVM_S390_INT_EXTERNAL_CALL:
945 interrupt->parm = irq->u.extcall.code;
946 break;
947 case KVM_S390_INT_EMERGENCY:
948 interrupt->parm = irq->u.emerg.code;
949 break;
950 case KVM_S390_SIGP_STOP:
951 case KVM_S390_RESTART:
952 break; /* These types have no parameters */
953 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
954 interrupt->parm = irq->u.io.subchannel_id << 16;
955 interrupt->parm |= irq->u.io.subchannel_nr;
956 interrupt->parm64 = (uint64_t)irq->u.io.io_int_parm << 32;
957 interrupt->parm64 |= irq->u.io.io_int_word;
958 break;
959 default:
960 r = -EINVAL;
961 break;
963 return r;
966 static void inject_vcpu_irq_legacy(CPUState *cs, struct kvm_s390_irq *irq)
968 struct kvm_s390_interrupt kvmint = {};
969 int r;
971 r = s390_kvm_irq_to_interrupt(irq, &kvmint);
972 if (r < 0) {
973 fprintf(stderr, "%s called with bogus interrupt\n", __func__);
974 exit(1);
977 r = kvm_vcpu_ioctl(cs, KVM_S390_INTERRUPT, &kvmint);
978 if (r < 0) {
979 fprintf(stderr, "KVM failed to inject interrupt\n");
980 exit(1);
984 void kvm_s390_vcpu_interrupt(S390CPU *cpu, struct kvm_s390_irq *irq)
986 CPUState *cs = CPU(cpu);
987 int r;
989 if (cap_s390_irq) {
990 r = kvm_vcpu_ioctl(cs, KVM_S390_IRQ, irq);
991 if (!r) {
992 return;
994 error_report("KVM failed to inject interrupt %llx", irq->type);
995 exit(1);
998 inject_vcpu_irq_legacy(cs, irq);
1001 static void __kvm_s390_floating_interrupt(struct kvm_s390_irq *irq)
1003 struct kvm_s390_interrupt kvmint = {};
1004 int r;
1006 r = s390_kvm_irq_to_interrupt(irq, &kvmint);
1007 if (r < 0) {
1008 fprintf(stderr, "%s called with bogus interrupt\n", __func__);
1009 exit(1);
1012 r = kvm_vm_ioctl(kvm_state, KVM_S390_INTERRUPT, &kvmint);
1013 if (r < 0) {
1014 fprintf(stderr, "KVM failed to inject interrupt\n");
1015 exit(1);
1019 void kvm_s390_floating_interrupt(struct kvm_s390_irq *irq)
1021 static bool use_flic = true;
1022 int r;
1024 if (use_flic) {
1025 r = kvm_s390_inject_flic(irq);
1026 if (r == -ENOSYS) {
1027 use_flic = false;
1029 if (!r) {
1030 return;
1033 __kvm_s390_floating_interrupt(irq);
1036 void kvm_s390_service_interrupt(uint32_t parm)
1038 struct kvm_s390_irq irq = {
1039 .type = KVM_S390_INT_SERVICE,
1040 .u.ext.ext_params = parm,
1043 kvm_s390_floating_interrupt(&irq);
1046 void kvm_s390_program_interrupt(S390CPU *cpu, uint16_t code)
1048 struct kvm_s390_irq irq = {
1049 .type = KVM_S390_PROGRAM_INT,
1050 .u.pgm.code = code,
1053 kvm_s390_vcpu_interrupt(cpu, &irq);
1056 void kvm_s390_access_exception(S390CPU *cpu, uint16_t code, uint64_t te_code)
1058 struct kvm_s390_irq irq = {
1059 .type = KVM_S390_PROGRAM_INT,
1060 .u.pgm.code = code,
1061 .u.pgm.trans_exc_code = te_code,
1062 .u.pgm.exc_access_id = te_code & 3,
1065 kvm_s390_vcpu_interrupt(cpu, &irq);
1068 static int kvm_sclp_service_call(S390CPU *cpu, struct kvm_run *run,
1069 uint16_t ipbh0)
1071 CPUS390XState *env = &cpu->env;
1072 uint64_t sccb;
1073 uint32_t code;
1074 int r = 0;
1076 cpu_synchronize_state(CPU(cpu));
1077 sccb = env->regs[ipbh0 & 0xf];
1078 code = env->regs[(ipbh0 & 0xf0) >> 4];
1080 r = sclp_service_call(env, sccb, code);
1081 if (r < 0) {
1082 kvm_s390_program_interrupt(cpu, -r);
1083 } else {
1084 setcc(cpu, r);
1087 return 0;
1090 static int handle_b2(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
1092 CPUS390XState *env = &cpu->env;
1093 int rc = 0;
1094 uint16_t ipbh0 = (run->s390_sieic.ipb & 0xffff0000) >> 16;
1096 cpu_synchronize_state(CPU(cpu));
1098 switch (ipa1) {
1099 case PRIV_B2_XSCH:
1100 ioinst_handle_xsch(cpu, env->regs[1]);
1101 break;
1102 case PRIV_B2_CSCH:
1103 ioinst_handle_csch(cpu, env->regs[1]);
1104 break;
1105 case PRIV_B2_HSCH:
1106 ioinst_handle_hsch(cpu, env->regs[1]);
1107 break;
1108 case PRIV_B2_MSCH:
1109 ioinst_handle_msch(cpu, env->regs[1], run->s390_sieic.ipb);
1110 break;
1111 case PRIV_B2_SSCH:
1112 ioinst_handle_ssch(cpu, env->regs[1], run->s390_sieic.ipb);
1113 break;
1114 case PRIV_B2_STCRW:
1115 ioinst_handle_stcrw(cpu, run->s390_sieic.ipb);
1116 break;
1117 case PRIV_B2_STSCH:
1118 ioinst_handle_stsch(cpu, env->regs[1], run->s390_sieic.ipb);
1119 break;
1120 case PRIV_B2_TSCH:
1121 /* We should only get tsch via KVM_EXIT_S390_TSCH. */
1122 fprintf(stderr, "Spurious tsch intercept\n");
1123 break;
1124 case PRIV_B2_CHSC:
1125 ioinst_handle_chsc(cpu, run->s390_sieic.ipb);
1126 break;
1127 case PRIV_B2_TPI:
1128 /* This should have been handled by kvm already. */
1129 fprintf(stderr, "Spurious tpi intercept\n");
1130 break;
1131 case PRIV_B2_SCHM:
1132 ioinst_handle_schm(cpu, env->regs[1], env->regs[2],
1133 run->s390_sieic.ipb);
1134 break;
1135 case PRIV_B2_RSCH:
1136 ioinst_handle_rsch(cpu, env->regs[1]);
1137 break;
1138 case PRIV_B2_RCHP:
1139 ioinst_handle_rchp(cpu, env->regs[1]);
1140 break;
1141 case PRIV_B2_STCPS:
1142 /* We do not provide this instruction, it is suppressed. */
1143 break;
1144 case PRIV_B2_SAL:
1145 ioinst_handle_sal(cpu, env->regs[1]);
1146 break;
1147 case PRIV_B2_SIGA:
1148 /* Not provided, set CC = 3 for subchannel not operational */
1149 setcc(cpu, 3);
1150 break;
1151 case PRIV_B2_SCLP_CALL:
1152 rc = kvm_sclp_service_call(cpu, run, ipbh0);
1153 break;
1154 default:
1155 rc = -1;
1156 DPRINTF("KVM: unhandled PRIV: 0xb2%x\n", ipa1);
1157 break;
1160 return rc;
1163 static uint64_t get_base_disp_rxy(S390CPU *cpu, struct kvm_run *run,
1164 uint8_t *ar)
1166 CPUS390XState *env = &cpu->env;
1167 uint32_t x2 = (run->s390_sieic.ipa & 0x000f);
1168 uint32_t base2 = run->s390_sieic.ipb >> 28;
1169 uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) +
1170 ((run->s390_sieic.ipb & 0xff00) << 4);
1172 if (disp2 & 0x80000) {
1173 disp2 += 0xfff00000;
1175 if (ar) {
1176 *ar = base2;
1179 return (base2 ? env->regs[base2] : 0) +
1180 (x2 ? env->regs[x2] : 0) + (long)(int)disp2;
1183 static uint64_t get_base_disp_rsy(S390CPU *cpu, struct kvm_run *run,
1184 uint8_t *ar)
1186 CPUS390XState *env = &cpu->env;
1187 uint32_t base2 = run->s390_sieic.ipb >> 28;
1188 uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) +
1189 ((run->s390_sieic.ipb & 0xff00) << 4);
1191 if (disp2 & 0x80000) {
1192 disp2 += 0xfff00000;
1194 if (ar) {
1195 *ar = base2;
1198 return (base2 ? env->regs[base2] : 0) + (long)(int)disp2;
1201 static int kvm_clp_service_call(S390CPU *cpu, struct kvm_run *run)
1203 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1205 if (s390_has_feat(S390_FEAT_ZPCI)) {
1206 return clp_service_call(cpu, r2);
1207 } else {
1208 return -1;
1212 static int kvm_pcilg_service_call(S390CPU *cpu, struct kvm_run *run)
1214 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1215 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1217 if (s390_has_feat(S390_FEAT_ZPCI)) {
1218 return pcilg_service_call(cpu, r1, r2);
1219 } else {
1220 return -1;
1224 static int kvm_pcistg_service_call(S390CPU *cpu, struct kvm_run *run)
1226 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1227 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1229 if (s390_has_feat(S390_FEAT_ZPCI)) {
1230 return pcistg_service_call(cpu, r1, r2);
1231 } else {
1232 return -1;
1236 static int kvm_stpcifc_service_call(S390CPU *cpu, struct kvm_run *run)
1238 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1239 uint64_t fiba;
1240 uint8_t ar;
1242 if (s390_has_feat(S390_FEAT_ZPCI)) {
1243 cpu_synchronize_state(CPU(cpu));
1244 fiba = get_base_disp_rxy(cpu, run, &ar);
1246 return stpcifc_service_call(cpu, r1, fiba, ar);
1247 } else {
1248 return -1;
1252 static int kvm_sic_service_call(S390CPU *cpu, struct kvm_run *run)
1254 CPUS390XState *env = &cpu->env;
1255 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1256 uint8_t r3 = run->s390_sieic.ipa & 0x000f;
1257 uint8_t isc;
1258 uint16_t mode;
1259 int r;
1261 cpu_synchronize_state(CPU(cpu));
1262 mode = env->regs[r1] & 0xffff;
1263 isc = (env->regs[r3] >> 27) & 0x7;
1264 r = css_do_sic(env, isc, mode);
1265 if (r) {
1266 kvm_s390_program_interrupt(cpu, -r);
1269 return 0;
1272 static int kvm_rpcit_service_call(S390CPU *cpu, struct kvm_run *run)
1274 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1275 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1277 if (s390_has_feat(S390_FEAT_ZPCI)) {
1278 return rpcit_service_call(cpu, r1, r2);
1279 } else {
1280 return -1;
1284 static int kvm_pcistb_service_call(S390CPU *cpu, struct kvm_run *run)
1286 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1287 uint8_t r3 = run->s390_sieic.ipa & 0x000f;
1288 uint64_t gaddr;
1289 uint8_t ar;
1291 if (s390_has_feat(S390_FEAT_ZPCI)) {
1292 cpu_synchronize_state(CPU(cpu));
1293 gaddr = get_base_disp_rsy(cpu, run, &ar);
1295 return pcistb_service_call(cpu, r1, r3, gaddr, ar);
1296 } else {
1297 return -1;
1301 static int kvm_mpcifc_service_call(S390CPU *cpu, struct kvm_run *run)
1303 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1304 uint64_t fiba;
1305 uint8_t ar;
1307 if (s390_has_feat(S390_FEAT_ZPCI)) {
1308 cpu_synchronize_state(CPU(cpu));
1309 fiba = get_base_disp_rxy(cpu, run, &ar);
1311 return mpcifc_service_call(cpu, r1, fiba, ar);
1312 } else {
1313 return -1;
1317 static int handle_b9(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
1319 int r = 0;
1321 switch (ipa1) {
1322 case PRIV_B9_CLP:
1323 r = kvm_clp_service_call(cpu, run);
1324 break;
1325 case PRIV_B9_PCISTG:
1326 r = kvm_pcistg_service_call(cpu, run);
1327 break;
1328 case PRIV_B9_PCILG:
1329 r = kvm_pcilg_service_call(cpu, run);
1330 break;
1331 case PRIV_B9_RPCIT:
1332 r = kvm_rpcit_service_call(cpu, run);
1333 break;
1334 case PRIV_B9_EQBS:
1335 /* just inject exception */
1336 r = -1;
1337 break;
1338 default:
1339 r = -1;
1340 DPRINTF("KVM: unhandled PRIV: 0xb9%x\n", ipa1);
1341 break;
1344 return r;
1347 static int handle_eb(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl)
1349 int r = 0;
1351 switch (ipbl) {
1352 case PRIV_EB_PCISTB:
1353 r = kvm_pcistb_service_call(cpu, run);
1354 break;
1355 case PRIV_EB_SIC:
1356 r = kvm_sic_service_call(cpu, run);
1357 break;
1358 case PRIV_EB_SQBS:
1359 /* just inject exception */
1360 r = -1;
1361 break;
1362 default:
1363 r = -1;
1364 DPRINTF("KVM: unhandled PRIV: 0xeb%x\n", ipbl);
1365 break;
1368 return r;
1371 static int handle_e3(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl)
1373 int r = 0;
1375 switch (ipbl) {
1376 case PRIV_E3_MPCIFC:
1377 r = kvm_mpcifc_service_call(cpu, run);
1378 break;
1379 case PRIV_E3_STPCIFC:
1380 r = kvm_stpcifc_service_call(cpu, run);
1381 break;
1382 default:
1383 r = -1;
1384 DPRINTF("KVM: unhandled PRIV: 0xe3%x\n", ipbl);
1385 break;
1388 return r;
1391 static int handle_hypercall(S390CPU *cpu, struct kvm_run *run)
1393 CPUS390XState *env = &cpu->env;
1394 int ret;
1396 cpu_synchronize_state(CPU(cpu));
1397 ret = s390_virtio_hypercall(env);
1398 if (ret == -EINVAL) {
1399 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1400 return 0;
1403 return ret;
1406 static void kvm_handle_diag_288(S390CPU *cpu, struct kvm_run *run)
1408 uint64_t r1, r3;
1409 int rc;
1411 cpu_synchronize_state(CPU(cpu));
1412 r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1413 r3 = run->s390_sieic.ipa & 0x000f;
1414 rc = handle_diag_288(&cpu->env, r1, r3);
1415 if (rc) {
1416 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1420 static void kvm_handle_diag_308(S390CPU *cpu, struct kvm_run *run)
1422 uint64_t r1, r3;
1424 cpu_synchronize_state(CPU(cpu));
1425 r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1426 r3 = run->s390_sieic.ipa & 0x000f;
1427 handle_diag_308(&cpu->env, r1, r3);
1430 static int handle_sw_breakpoint(S390CPU *cpu, struct kvm_run *run)
1432 CPUS390XState *env = &cpu->env;
1433 unsigned long pc;
1435 cpu_synchronize_state(CPU(cpu));
1437 pc = env->psw.addr - sw_bp_ilen;
1438 if (kvm_find_sw_breakpoint(CPU(cpu), pc)) {
1439 env->psw.addr = pc;
1440 return EXCP_DEBUG;
1443 return -ENOENT;
1446 #define DIAG_KVM_CODE_MASK 0x000000000000ffff
1448 static int handle_diag(S390CPU *cpu, struct kvm_run *run, uint32_t ipb)
1450 int r = 0;
1451 uint16_t func_code;
1454 * For any diagnose call we support, bits 48-63 of the resulting
1455 * address specify the function code; the remainder is ignored.
1457 func_code = decode_basedisp_rs(&cpu->env, ipb, NULL) & DIAG_KVM_CODE_MASK;
1458 switch (func_code) {
1459 case DIAG_TIMEREVENT:
1460 kvm_handle_diag_288(cpu, run);
1461 break;
1462 case DIAG_IPL:
1463 kvm_handle_diag_308(cpu, run);
1464 break;
1465 case DIAG_KVM_HYPERCALL:
1466 r = handle_hypercall(cpu, run);
1467 break;
1468 case DIAG_KVM_BREAKPOINT:
1469 r = handle_sw_breakpoint(cpu, run);
1470 break;
1471 default:
1472 DPRINTF("KVM: unknown DIAG: 0x%x\n", func_code);
1473 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1474 break;
1477 return r;
1480 typedef struct SigpInfo {
1481 uint64_t param;
1482 int cc;
1483 uint64_t *status_reg;
1484 } SigpInfo;
1486 static void set_sigp_status(SigpInfo *si, uint64_t status)
1488 *si->status_reg &= 0xffffffff00000000ULL;
1489 *si->status_reg |= status;
1490 si->cc = SIGP_CC_STATUS_STORED;
1493 static void sigp_start(CPUState *cs, run_on_cpu_data arg)
1495 S390CPU *cpu = S390_CPU(cs);
1496 SigpInfo *si = arg.host_ptr;
1498 if (s390_cpu_get_state(cpu) != CPU_STATE_STOPPED) {
1499 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1500 return;
1503 s390_cpu_set_state(CPU_STATE_OPERATING, cpu);
1504 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1507 static void sigp_stop(CPUState *cs, run_on_cpu_data arg)
1509 S390CPU *cpu = S390_CPU(cs);
1510 SigpInfo *si = arg.host_ptr;
1511 struct kvm_s390_irq irq = {
1512 .type = KVM_S390_SIGP_STOP,
1515 if (s390_cpu_get_state(cpu) != CPU_STATE_OPERATING) {
1516 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1517 return;
1520 /* disabled wait - sleeping in user space */
1521 if (cs->halted) {
1522 s390_cpu_set_state(CPU_STATE_STOPPED, cpu);
1523 } else {
1524 /* execute the stop function */
1525 cpu->env.sigp_order = SIGP_STOP;
1526 kvm_s390_vcpu_interrupt(cpu, &irq);
1528 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1531 #define ADTL_GS_OFFSET 1024 /* offset of GS data in adtl save area */
1532 #define ADTL_GS_MIN_SIZE 2048 /* minimal size of adtl save area for GS */
1533 static int do_store_adtl_status(S390CPU *cpu, hwaddr addr, hwaddr len)
1535 hwaddr save = len;
1536 void *mem;
1538 mem = cpu_physical_memory_map(addr, &save, 1);
1539 if (!mem) {
1540 return -EFAULT;
1542 if (save != len) {
1543 cpu_physical_memory_unmap(mem, len, 1, 0);
1544 return -EFAULT;
1547 if (s390_has_feat(S390_FEAT_VECTOR)) {
1548 memcpy(mem, &cpu->env.vregs, 512);
1550 if (s390_has_feat(S390_FEAT_GUARDED_STORAGE) && len >= ADTL_GS_MIN_SIZE) {
1551 memcpy(mem + ADTL_GS_OFFSET, &cpu->env.gscb, 32);
1554 cpu_physical_memory_unmap(mem, len, 1, len);
1556 return 0;
1559 struct sigp_save_area {
1560 uint64_t fprs[16]; /* 0x0000 */
1561 uint64_t grs[16]; /* 0x0080 */
1562 PSW psw; /* 0x0100 */
1563 uint8_t pad_0x0110[0x0118 - 0x0110]; /* 0x0110 */
1564 uint32_t prefix; /* 0x0118 */
1565 uint32_t fpc; /* 0x011c */
1566 uint8_t pad_0x0120[0x0124 - 0x0120]; /* 0x0120 */
1567 uint32_t todpr; /* 0x0124 */
1568 uint64_t cputm; /* 0x0128 */
1569 uint64_t ckc; /* 0x0130 */
1570 uint8_t pad_0x0138[0x0140 - 0x0138]; /* 0x0138 */
1571 uint32_t ars[16]; /* 0x0140 */
1572 uint64_t crs[16]; /* 0x0384 */
1574 QEMU_BUILD_BUG_ON(sizeof(struct sigp_save_area) != 512);
1576 #define KVM_S390_STORE_STATUS_DEF_ADDR offsetof(LowCore, floating_pt_save_area)
1577 static int kvm_s390_store_status(S390CPU *cpu, hwaddr addr, bool store_arch)
1579 static const uint8_t ar_id = 1;
1580 struct sigp_save_area *sa;
1581 hwaddr len = sizeof(*sa);
1582 int i;
1584 sa = cpu_physical_memory_map(addr, &len, 1);
1585 if (!sa) {
1586 return -EFAULT;
1588 if (len != sizeof(*sa)) {
1589 cpu_physical_memory_unmap(sa, len, 1, 0);
1590 return -EFAULT;
1593 if (store_arch) {
1594 cpu_physical_memory_write(offsetof(LowCore, ar_access_id), &ar_id, 1);
1596 for (i = 0; i < 16; ++i) {
1597 sa->fprs[i] = cpu_to_be64(get_freg(&cpu->env, i)->ll);
1599 for (i = 0; i < 16; ++i) {
1600 sa->grs[i] = cpu_to_be64(cpu->env.regs[i]);
1602 sa->psw.addr = cpu_to_be64(cpu->env.psw.addr);
1603 sa->psw.mask = cpu_to_be64(get_psw_mask(&cpu->env));
1604 sa->prefix = cpu_to_be32(cpu->env.psa);
1605 sa->fpc = cpu_to_be32(cpu->env.fpc);
1606 sa->todpr = cpu_to_be32(cpu->env.todpr);
1607 sa->cputm = cpu_to_be64(cpu->env.cputm);
1608 sa->ckc = cpu_to_be64(cpu->env.ckc >> 8);
1609 for (i = 0; i < 16; ++i) {
1610 sa->ars[i] = cpu_to_be32(cpu->env.aregs[i]);
1612 for (i = 0; i < 16; ++i) {
1613 sa->ars[i] = cpu_to_be64(cpu->env.cregs[i]);
1616 cpu_physical_memory_unmap(sa, len, 1, len);
1618 return 0;
1621 static void sigp_stop_and_store_status(CPUState *cs, run_on_cpu_data arg)
1623 S390CPU *cpu = S390_CPU(cs);
1624 SigpInfo *si = arg.host_ptr;
1625 struct kvm_s390_irq irq = {
1626 .type = KVM_S390_SIGP_STOP,
1629 /* disabled wait - sleeping in user space */
1630 if (s390_cpu_get_state(cpu) == CPU_STATE_OPERATING && cs->halted) {
1631 s390_cpu_set_state(CPU_STATE_STOPPED, cpu);
1634 switch (s390_cpu_get_state(cpu)) {
1635 case CPU_STATE_OPERATING:
1636 cpu->env.sigp_order = SIGP_STOP_STORE_STATUS;
1637 kvm_s390_vcpu_interrupt(cpu, &irq);
1638 /* store will be performed when handling the stop intercept */
1639 break;
1640 case CPU_STATE_STOPPED:
1641 /* already stopped, just store the status */
1642 cpu_synchronize_state(cs);
1643 kvm_s390_store_status(cpu, KVM_S390_STORE_STATUS_DEF_ADDR, true);
1644 break;
1646 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1649 static void sigp_store_status_at_address(CPUState *cs, run_on_cpu_data arg)
1651 S390CPU *cpu = S390_CPU(cs);
1652 SigpInfo *si = arg.host_ptr;
1653 uint32_t address = si->param & 0x7ffffe00u;
1655 /* cpu has to be stopped */
1656 if (s390_cpu_get_state(cpu) != CPU_STATE_STOPPED) {
1657 set_sigp_status(si, SIGP_STAT_INCORRECT_STATE);
1658 return;
1661 cpu_synchronize_state(cs);
1663 if (kvm_s390_store_status(cpu, address, false)) {
1664 set_sigp_status(si, SIGP_STAT_INVALID_PARAMETER);
1665 return;
1667 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1670 #define ADTL_SAVE_LC_MASK 0xfUL
1671 static void sigp_store_adtl_status(CPUState *cs, run_on_cpu_data arg)
1673 S390CPU *cpu = S390_CPU(cs);
1674 SigpInfo *si = arg.host_ptr;
1675 uint8_t lc = si->param & ADTL_SAVE_LC_MASK;
1676 hwaddr addr = si->param & ~ADTL_SAVE_LC_MASK;
1677 hwaddr len = 1UL << (lc ? lc : 10);
1679 if (!s390_has_feat(S390_FEAT_VECTOR) &&
1680 !s390_has_feat(S390_FEAT_GUARDED_STORAGE)) {
1681 set_sigp_status(si, SIGP_STAT_INVALID_ORDER);
1682 return;
1685 /* cpu has to be stopped */
1686 if (s390_cpu_get_state(cpu) != CPU_STATE_STOPPED) {
1687 set_sigp_status(si, SIGP_STAT_INCORRECT_STATE);
1688 return;
1691 /* address must be aligned to length */
1692 if (addr & (len - 1)) {
1693 set_sigp_status(si, SIGP_STAT_INVALID_PARAMETER);
1694 return;
1697 /* no GS: only lc == 0 is valid */
1698 if (!s390_has_feat(S390_FEAT_GUARDED_STORAGE) &&
1699 lc != 0) {
1700 set_sigp_status(si, SIGP_STAT_INVALID_PARAMETER);
1701 return;
1704 /* GS: 0, 10, 11, 12 are valid */
1705 if (s390_has_feat(S390_FEAT_GUARDED_STORAGE) &&
1706 lc != 0 &&
1707 lc != 10 &&
1708 lc != 11 &&
1709 lc != 12) {
1710 set_sigp_status(si, SIGP_STAT_INVALID_PARAMETER);
1711 return;
1714 cpu_synchronize_state(cs);
1716 if (do_store_adtl_status(cpu, addr, len)) {
1717 set_sigp_status(si, SIGP_STAT_INVALID_PARAMETER);
1718 return;
1720 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1723 static void sigp_restart(CPUState *cs, run_on_cpu_data arg)
1725 S390CPU *cpu = S390_CPU(cs);
1726 SigpInfo *si = arg.host_ptr;
1727 struct kvm_s390_irq irq = {
1728 .type = KVM_S390_RESTART,
1731 switch (s390_cpu_get_state(cpu)) {
1732 case CPU_STATE_STOPPED:
1733 /* the restart irq has to be delivered prior to any other pending irq */
1734 cpu_synchronize_state(cs);
1735 do_restart_interrupt(&cpu->env);
1736 s390_cpu_set_state(CPU_STATE_OPERATING, cpu);
1737 break;
1738 case CPU_STATE_OPERATING:
1739 kvm_s390_vcpu_interrupt(cpu, &irq);
1740 break;
1742 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1745 int kvm_s390_cpu_restart(S390CPU *cpu)
1747 SigpInfo si = {};
1749 run_on_cpu(CPU(cpu), sigp_restart, RUN_ON_CPU_HOST_PTR(&si));
1750 DPRINTF("DONE: KVM cpu restart: %p\n", &cpu->env);
1751 return 0;
1754 static void sigp_initial_cpu_reset(CPUState *cs, run_on_cpu_data arg)
1756 S390CPU *cpu = S390_CPU(cs);
1757 S390CPUClass *scc = S390_CPU_GET_CLASS(cpu);
1758 SigpInfo *si = arg.host_ptr;
1760 cpu_synchronize_state(cs);
1761 scc->initial_cpu_reset(cs);
1762 cpu_synchronize_post_reset(cs);
1763 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1766 static void sigp_cpu_reset(CPUState *cs, run_on_cpu_data arg)
1768 S390CPU *cpu = S390_CPU(cs);
1769 S390CPUClass *scc = S390_CPU_GET_CLASS(cpu);
1770 SigpInfo *si = arg.host_ptr;
1772 cpu_synchronize_state(cs);
1773 scc->cpu_reset(cs);
1774 cpu_synchronize_post_reset(cs);
1775 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1778 static void sigp_set_prefix(CPUState *cs, run_on_cpu_data arg)
1780 S390CPU *cpu = S390_CPU(cs);
1781 SigpInfo *si = arg.host_ptr;
1782 uint32_t addr = si->param & 0x7fffe000u;
1784 cpu_synchronize_state(cs);
1786 if (!address_space_access_valid(&address_space_memory, addr,
1787 sizeof(struct LowCore), false)) {
1788 set_sigp_status(si, SIGP_STAT_INVALID_PARAMETER);
1789 return;
1792 /* cpu has to be stopped */
1793 if (s390_cpu_get_state(cpu) != CPU_STATE_STOPPED) {
1794 set_sigp_status(si, SIGP_STAT_INCORRECT_STATE);
1795 return;
1798 cpu->env.psa = addr;
1799 cpu_synchronize_post_init(cs);
1800 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED;
1803 static int handle_sigp_single_dst(S390CPU *dst_cpu, uint8_t order,
1804 uint64_t param, uint64_t *status_reg)
1806 SigpInfo si = {
1807 .param = param,
1808 .status_reg = status_reg,
1811 /* cpu available? */
1812 if (dst_cpu == NULL) {
1813 return SIGP_CC_NOT_OPERATIONAL;
1816 /* only resets can break pending orders */
1817 if (dst_cpu->env.sigp_order != 0 &&
1818 order != SIGP_CPU_RESET &&
1819 order != SIGP_INITIAL_CPU_RESET) {
1820 return SIGP_CC_BUSY;
1823 switch (order) {
1824 case SIGP_START:
1825 run_on_cpu(CPU(dst_cpu), sigp_start, RUN_ON_CPU_HOST_PTR(&si));
1826 break;
1827 case SIGP_STOP:
1828 run_on_cpu(CPU(dst_cpu), sigp_stop, RUN_ON_CPU_HOST_PTR(&si));
1829 break;
1830 case SIGP_RESTART:
1831 run_on_cpu(CPU(dst_cpu), sigp_restart, RUN_ON_CPU_HOST_PTR(&si));
1832 break;
1833 case SIGP_STOP_STORE_STATUS:
1834 run_on_cpu(CPU(dst_cpu), sigp_stop_and_store_status, RUN_ON_CPU_HOST_PTR(&si));
1835 break;
1836 case SIGP_STORE_STATUS_ADDR:
1837 run_on_cpu(CPU(dst_cpu), sigp_store_status_at_address, RUN_ON_CPU_HOST_PTR(&si));
1838 break;
1839 case SIGP_STORE_ADTL_STATUS:
1840 run_on_cpu(CPU(dst_cpu), sigp_store_adtl_status, RUN_ON_CPU_HOST_PTR(&si));
1841 break;
1842 case SIGP_SET_PREFIX:
1843 run_on_cpu(CPU(dst_cpu), sigp_set_prefix, RUN_ON_CPU_HOST_PTR(&si));
1844 break;
1845 case SIGP_INITIAL_CPU_RESET:
1846 run_on_cpu(CPU(dst_cpu), sigp_initial_cpu_reset, RUN_ON_CPU_HOST_PTR(&si));
1847 break;
1848 case SIGP_CPU_RESET:
1849 run_on_cpu(CPU(dst_cpu), sigp_cpu_reset, RUN_ON_CPU_HOST_PTR(&si));
1850 break;
1851 default:
1852 DPRINTF("KVM: unknown SIGP: 0x%x\n", order);
1853 set_sigp_status(&si, SIGP_STAT_INVALID_ORDER);
1856 return si.cc;
1859 static int sigp_set_architecture(S390CPU *cpu, uint32_t param,
1860 uint64_t *status_reg)
1862 CPUState *cur_cs;
1863 S390CPU *cur_cpu;
1864 bool all_stopped = true;
1866 CPU_FOREACH(cur_cs) {
1867 cur_cpu = S390_CPU(cur_cs);
1869 if (cur_cpu == cpu) {
1870 continue;
1872 if (s390_cpu_get_state(cur_cpu) != CPU_STATE_STOPPED) {
1873 all_stopped = false;
1877 *status_reg &= 0xffffffff00000000ULL;
1879 /* Reject set arch order, with czam we're always in z/Arch mode. */
1880 *status_reg |= (all_stopped ? SIGP_STAT_INVALID_PARAMETER :
1881 SIGP_STAT_INCORRECT_STATE);
1882 return SIGP_CC_STATUS_STORED;
1885 static int handle_sigp(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
1887 CPUS390XState *env = &cpu->env;
1888 const uint8_t r1 = ipa1 >> 4;
1889 const uint8_t r3 = ipa1 & 0x0f;
1890 int ret;
1891 uint8_t order;
1892 uint64_t *status_reg;
1893 uint64_t param;
1894 S390CPU *dst_cpu = NULL;
1896 cpu_synchronize_state(CPU(cpu));
1898 /* get order code */
1899 order = decode_basedisp_rs(env, run->s390_sieic.ipb, NULL)
1900 & SIGP_ORDER_MASK;
1901 status_reg = &env->regs[r1];
1902 param = (r1 % 2) ? env->regs[r1] : env->regs[r1 + 1];
1904 if (qemu_mutex_trylock(&qemu_sigp_mutex)) {
1905 ret = SIGP_CC_BUSY;
1906 goto out;
1909 switch (order) {
1910 case SIGP_SET_ARCH:
1911 ret = sigp_set_architecture(cpu, param, status_reg);
1912 break;
1913 default:
1914 /* all other sigp orders target a single vcpu */
1915 dst_cpu = s390_cpu_addr2state(env->regs[r3]);
1916 ret = handle_sigp_single_dst(dst_cpu, order, param, status_reg);
1918 qemu_mutex_unlock(&qemu_sigp_mutex);
1920 out:
1921 trace_kvm_sigp_finished(order, CPU(cpu)->cpu_index,
1922 dst_cpu ? CPU(dst_cpu)->cpu_index : -1, ret);
1924 if (ret >= 0) {
1925 setcc(cpu, ret);
1926 return 0;
1929 return ret;
1932 static int handle_instruction(S390CPU *cpu, struct kvm_run *run)
1934 unsigned int ipa0 = (run->s390_sieic.ipa & 0xff00);
1935 uint8_t ipa1 = run->s390_sieic.ipa & 0x00ff;
1936 int r = -1;
1938 DPRINTF("handle_instruction 0x%x 0x%x\n",
1939 run->s390_sieic.ipa, run->s390_sieic.ipb);
1940 switch (ipa0) {
1941 case IPA0_B2:
1942 r = handle_b2(cpu, run, ipa1);
1943 break;
1944 case IPA0_B9:
1945 r = handle_b9(cpu, run, ipa1);
1946 break;
1947 case IPA0_EB:
1948 r = handle_eb(cpu, run, run->s390_sieic.ipb & 0xff);
1949 break;
1950 case IPA0_E3:
1951 r = handle_e3(cpu, run, run->s390_sieic.ipb & 0xff);
1952 break;
1953 case IPA0_DIAG:
1954 r = handle_diag(cpu, run, run->s390_sieic.ipb);
1955 break;
1956 case IPA0_SIGP:
1957 r = handle_sigp(cpu, run, ipa1);
1958 break;
1961 if (r < 0) {
1962 r = 0;
1963 kvm_s390_program_interrupt(cpu, PGM_OPERATION);
1966 return r;
1969 static bool is_special_wait_psw(CPUState *cs)
1971 /* signal quiesce */
1972 return cs->kvm_run->psw_addr == 0xfffUL;
1975 static void unmanageable_intercept(S390CPU *cpu, const char *str, int pswoffset)
1977 CPUState *cs = CPU(cpu);
1979 error_report("Unmanageable %s! CPU%i new PSW: 0x%016lx:%016lx",
1980 str, cs->cpu_index, ldq_phys(cs->as, cpu->env.psa + pswoffset),
1981 ldq_phys(cs->as, cpu->env.psa + pswoffset + 8));
1982 s390_cpu_halt(cpu);
1983 qemu_system_guest_panicked(NULL);
1986 /* try to detect pgm check loops */
1987 static int handle_oper_loop(S390CPU *cpu, struct kvm_run *run)
1989 CPUState *cs = CPU(cpu);
1990 PSW oldpsw, newpsw;
1992 cpu_synchronize_state(cs);
1993 newpsw.mask = ldq_phys(cs->as, cpu->env.psa +
1994 offsetof(LowCore, program_new_psw));
1995 newpsw.addr = ldq_phys(cs->as, cpu->env.psa +
1996 offsetof(LowCore, program_new_psw) + 8);
1997 oldpsw.mask = run->psw_mask;
1998 oldpsw.addr = run->psw_addr;
2000 * Avoid endless loops of operation exceptions, if the pgm new
2001 * PSW will cause a new operation exception.
2002 * The heuristic checks if the pgm new psw is within 6 bytes before
2003 * the faulting psw address (with same DAT, AS settings) and the
2004 * new psw is not a wait psw and the fault was not triggered by
2005 * problem state. In that case go into crashed state.
2008 if (oldpsw.addr - newpsw.addr <= 6 &&
2009 !(newpsw.mask & PSW_MASK_WAIT) &&
2010 !(oldpsw.mask & PSW_MASK_PSTATE) &&
2011 (newpsw.mask & PSW_MASK_ASC) == (oldpsw.mask & PSW_MASK_ASC) &&
2012 (newpsw.mask & PSW_MASK_DAT) == (oldpsw.mask & PSW_MASK_DAT)) {
2013 unmanageable_intercept(cpu, "operation exception loop",
2014 offsetof(LowCore, program_new_psw));
2015 return EXCP_HALTED;
2017 return 0;
2020 static int handle_intercept(S390CPU *cpu)
2022 CPUState *cs = CPU(cpu);
2023 struct kvm_run *run = cs->kvm_run;
2024 int icpt_code = run->s390_sieic.icptcode;
2025 int r = 0;
2027 DPRINTF("intercept: 0x%x (at 0x%lx)\n", icpt_code,
2028 (long)cs->kvm_run->psw_addr);
2029 switch (icpt_code) {
2030 case ICPT_INSTRUCTION:
2031 r = handle_instruction(cpu, run);
2032 break;
2033 case ICPT_PROGRAM:
2034 unmanageable_intercept(cpu, "program interrupt",
2035 offsetof(LowCore, program_new_psw));
2036 r = EXCP_HALTED;
2037 break;
2038 case ICPT_EXT_INT:
2039 unmanageable_intercept(cpu, "external interrupt",
2040 offsetof(LowCore, external_new_psw));
2041 r = EXCP_HALTED;
2042 break;
2043 case ICPT_WAITPSW:
2044 /* disabled wait, since enabled wait is handled in kernel */
2045 cpu_synchronize_state(cs);
2046 if (s390_cpu_halt(cpu) == 0) {
2047 if (is_special_wait_psw(cs)) {
2048 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
2049 } else {
2050 qemu_system_guest_panicked(NULL);
2053 r = EXCP_HALTED;
2054 break;
2055 case ICPT_CPU_STOP:
2056 if (s390_cpu_set_state(CPU_STATE_STOPPED, cpu) == 0) {
2057 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
2059 if (cpu->env.sigp_order == SIGP_STOP_STORE_STATUS) {
2060 kvm_s390_store_status(cpu, KVM_S390_STORE_STATUS_DEF_ADDR,
2061 true);
2063 cpu->env.sigp_order = 0;
2064 r = EXCP_HALTED;
2065 break;
2066 case ICPT_OPEREXC:
2067 /* check for break points */
2068 r = handle_sw_breakpoint(cpu, run);
2069 if (r == -ENOENT) {
2070 /* Then check for potential pgm check loops */
2071 r = handle_oper_loop(cpu, run);
2072 if (r == 0) {
2073 kvm_s390_program_interrupt(cpu, PGM_OPERATION);
2076 break;
2077 case ICPT_SOFT_INTERCEPT:
2078 fprintf(stderr, "KVM unimplemented icpt SOFT\n");
2079 exit(1);
2080 break;
2081 case ICPT_IO:
2082 fprintf(stderr, "KVM unimplemented icpt IO\n");
2083 exit(1);
2084 break;
2085 default:
2086 fprintf(stderr, "Unknown intercept code: %d\n", icpt_code);
2087 exit(1);
2088 break;
2091 return r;
2094 static int handle_tsch(S390CPU *cpu)
2096 CPUState *cs = CPU(cpu);
2097 struct kvm_run *run = cs->kvm_run;
2098 int ret;
2100 cpu_synchronize_state(cs);
2102 ret = ioinst_handle_tsch(cpu, cpu->env.regs[1], run->s390_tsch.ipb);
2103 if (ret < 0) {
2105 * Failure.
2106 * If an I/O interrupt had been dequeued, we have to reinject it.
2108 if (run->s390_tsch.dequeued) {
2109 kvm_s390_io_interrupt(run->s390_tsch.subchannel_id,
2110 run->s390_tsch.subchannel_nr,
2111 run->s390_tsch.io_int_parm,
2112 run->s390_tsch.io_int_word);
2114 ret = 0;
2116 return ret;
2119 static void insert_stsi_3_2_2(S390CPU *cpu, __u64 addr, uint8_t ar)
2121 struct sysib_322 sysib;
2122 int del;
2124 if (s390_cpu_virt_mem_read(cpu, addr, ar, &sysib, sizeof(sysib))) {
2125 return;
2127 /* Shift the stack of Extended Names to prepare for our own data */
2128 memmove(&sysib.ext_names[1], &sysib.ext_names[0],
2129 sizeof(sysib.ext_names[0]) * (sysib.count - 1));
2130 /* First virt level, that doesn't provide Ext Names delimits stack. It is
2131 * assumed it's not capable of managing Extended Names for lower levels.
2133 for (del = 1; del < sysib.count; del++) {
2134 if (!sysib.vm[del].ext_name_encoding || !sysib.ext_names[del][0]) {
2135 break;
2138 if (del < sysib.count) {
2139 memset(sysib.ext_names[del], 0,
2140 sizeof(sysib.ext_names[0]) * (sysib.count - del));
2142 /* Insert short machine name in EBCDIC, padded with blanks */
2143 if (qemu_name) {
2144 memset(sysib.vm[0].name, 0x40, sizeof(sysib.vm[0].name));
2145 ebcdic_put(sysib.vm[0].name, qemu_name, MIN(sizeof(sysib.vm[0].name),
2146 strlen(qemu_name)));
2148 sysib.vm[0].ext_name_encoding = 2; /* 2 = UTF-8 */
2149 memset(sysib.ext_names[0], 0, sizeof(sysib.ext_names[0]));
2150 /* If hypervisor specifies zero Extended Name in STSI322 SYSIB, it's
2151 * considered by s390 as not capable of providing any Extended Name.
2152 * Therefore if no name was specified on qemu invocation, we go with the
2153 * same "KVMguest" default, which KVM has filled into short name field.
2155 if (qemu_name) {
2156 strncpy((char *)sysib.ext_names[0], qemu_name,
2157 sizeof(sysib.ext_names[0]));
2158 } else {
2159 strcpy((char *)sysib.ext_names[0], "KVMguest");
2161 /* Insert UUID */
2162 memcpy(sysib.vm[0].uuid, &qemu_uuid, sizeof(sysib.vm[0].uuid));
2164 s390_cpu_virt_mem_write(cpu, addr, ar, &sysib, sizeof(sysib));
2167 static int handle_stsi(S390CPU *cpu)
2169 CPUState *cs = CPU(cpu);
2170 struct kvm_run *run = cs->kvm_run;
2172 switch (run->s390_stsi.fc) {
2173 case 3:
2174 if (run->s390_stsi.sel1 != 2 || run->s390_stsi.sel2 != 2) {
2175 return 0;
2177 /* Only sysib 3.2.2 needs post-handling for now. */
2178 insert_stsi_3_2_2(cpu, run->s390_stsi.addr, run->s390_stsi.ar);
2179 return 0;
2180 default:
2181 return 0;
2185 static int kvm_arch_handle_debug_exit(S390CPU *cpu)
2187 CPUState *cs = CPU(cpu);
2188 struct kvm_run *run = cs->kvm_run;
2190 int ret = 0;
2191 struct kvm_debug_exit_arch *arch_info = &run->debug.arch;
2193 switch (arch_info->type) {
2194 case KVM_HW_WP_WRITE:
2195 if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) {
2196 cs->watchpoint_hit = &hw_watchpoint;
2197 hw_watchpoint.vaddr = arch_info->addr;
2198 hw_watchpoint.flags = BP_MEM_WRITE;
2199 ret = EXCP_DEBUG;
2201 break;
2202 case KVM_HW_BP:
2203 if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) {
2204 ret = EXCP_DEBUG;
2206 break;
2207 case KVM_SINGLESTEP:
2208 if (cs->singlestep_enabled) {
2209 ret = EXCP_DEBUG;
2211 break;
2212 default:
2213 ret = -ENOSYS;
2216 return ret;
2219 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
2221 S390CPU *cpu = S390_CPU(cs);
2222 int ret = 0;
2224 qemu_mutex_lock_iothread();
2226 switch (run->exit_reason) {
2227 case KVM_EXIT_S390_SIEIC:
2228 ret = handle_intercept(cpu);
2229 break;
2230 case KVM_EXIT_S390_RESET:
2231 s390_reipl_request();
2232 break;
2233 case KVM_EXIT_S390_TSCH:
2234 ret = handle_tsch(cpu);
2235 break;
2236 case KVM_EXIT_S390_STSI:
2237 ret = handle_stsi(cpu);
2238 break;
2239 case KVM_EXIT_DEBUG:
2240 ret = kvm_arch_handle_debug_exit(cpu);
2241 break;
2242 default:
2243 fprintf(stderr, "Unknown KVM exit: %d\n", run->exit_reason);
2244 break;
2246 qemu_mutex_unlock_iothread();
2248 if (ret == 0) {
2249 ret = EXCP_INTERRUPT;
2251 return ret;
2254 bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
2256 return true;
2259 void kvm_s390_io_interrupt(uint16_t subchannel_id,
2260 uint16_t subchannel_nr, uint32_t io_int_parm,
2261 uint32_t io_int_word)
2263 struct kvm_s390_irq irq = {
2264 .u.io.subchannel_id = subchannel_id,
2265 .u.io.subchannel_nr = subchannel_nr,
2266 .u.io.io_int_parm = io_int_parm,
2267 .u.io.io_int_word = io_int_word,
2270 if (io_int_word & IO_INT_WORD_AI) {
2271 irq.type = KVM_S390_INT_IO(1, 0, 0, 0);
2272 } else {
2273 irq.type = KVM_S390_INT_IO(0, (subchannel_id & 0xff00) >> 8,
2274 (subchannel_id & 0x0006),
2275 subchannel_nr);
2277 kvm_s390_floating_interrupt(&irq);
2280 static uint64_t build_channel_report_mcic(void)
2282 uint64_t mcic;
2284 /* subclass: indicate channel report pending */
2285 mcic = MCIC_SC_CP |
2286 /* subclass modifiers: none */
2287 /* storage errors: none */
2288 /* validity bits: no damage */
2289 MCIC_VB_WP | MCIC_VB_MS | MCIC_VB_PM | MCIC_VB_IA | MCIC_VB_FP |
2290 MCIC_VB_GR | MCIC_VB_CR | MCIC_VB_ST | MCIC_VB_AR | MCIC_VB_PR |
2291 MCIC_VB_FC | MCIC_VB_CT | MCIC_VB_CC;
2292 if (s390_has_feat(S390_FEAT_VECTOR)) {
2293 mcic |= MCIC_VB_VR;
2295 if (s390_has_feat(S390_FEAT_GUARDED_STORAGE)) {
2296 mcic |= MCIC_VB_GS;
2298 return mcic;
2301 void kvm_s390_crw_mchk(void)
2303 struct kvm_s390_irq irq = {
2304 .type = KVM_S390_MCHK,
2305 .u.mchk.cr14 = 1 << 28,
2306 .u.mchk.mcic = build_channel_report_mcic(),
2308 kvm_s390_floating_interrupt(&irq);
2311 void kvm_s390_enable_css_support(S390CPU *cpu)
2313 int r;
2315 /* Activate host kernel channel subsystem support. */
2316 r = kvm_vcpu_enable_cap(CPU(cpu), KVM_CAP_S390_CSS_SUPPORT, 0);
2317 assert(r == 0);
2320 void kvm_arch_init_irq_routing(KVMState *s)
2323 * Note that while irqchip capabilities generally imply that cpustates
2324 * are handled in-kernel, it is not true for s390 (yet); therefore, we
2325 * have to override the common code kvm_halt_in_kernel_allowed setting.
2327 if (kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2328 kvm_gsi_routing_allowed = true;
2329 kvm_halt_in_kernel_allowed = false;
2333 int kvm_s390_assign_subch_ioeventfd(EventNotifier *notifier, uint32_t sch,
2334 int vq, bool assign)
2336 struct kvm_ioeventfd kick = {
2337 .flags = KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY |
2338 KVM_IOEVENTFD_FLAG_DATAMATCH,
2339 .fd = event_notifier_get_fd(notifier),
2340 .datamatch = vq,
2341 .addr = sch,
2342 .len = 8,
2344 if (!kvm_check_extension(kvm_state, KVM_CAP_IOEVENTFD)) {
2345 return -ENOSYS;
2347 if (!assign) {
2348 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
2350 return kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
2353 int kvm_s390_get_memslot_count(void)
2355 return kvm_check_extension(kvm_state, KVM_CAP_NR_MEMSLOTS);
2358 int kvm_s390_get_ri(void)
2360 return cap_ri;
2363 int kvm_s390_get_gs(void)
2365 return cap_gs;
2368 int kvm_s390_set_cpu_state(S390CPU *cpu, uint8_t cpu_state)
2370 struct kvm_mp_state mp_state = {};
2371 int ret;
2373 /* the kvm part might not have been initialized yet */
2374 if (CPU(cpu)->kvm_state == NULL) {
2375 return 0;
2378 switch (cpu_state) {
2379 case CPU_STATE_STOPPED:
2380 mp_state.mp_state = KVM_MP_STATE_STOPPED;
2381 break;
2382 case CPU_STATE_CHECK_STOP:
2383 mp_state.mp_state = KVM_MP_STATE_CHECK_STOP;
2384 break;
2385 case CPU_STATE_OPERATING:
2386 mp_state.mp_state = KVM_MP_STATE_OPERATING;
2387 break;
2388 case CPU_STATE_LOAD:
2389 mp_state.mp_state = KVM_MP_STATE_LOAD;
2390 break;
2391 default:
2392 error_report("Requested CPU state is not a valid S390 CPU state: %u",
2393 cpu_state);
2394 exit(1);
2397 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
2398 if (ret) {
2399 trace_kvm_failed_cpu_state_set(CPU(cpu)->cpu_index, cpu_state,
2400 strerror(-ret));
2403 return ret;
2406 void kvm_s390_vcpu_interrupt_pre_save(S390CPU *cpu)
2408 struct kvm_s390_irq_state irq_state;
2409 CPUState *cs = CPU(cpu);
2410 int32_t bytes;
2412 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) {
2413 return;
2416 irq_state.buf = (uint64_t) cpu->irqstate;
2417 irq_state.len = VCPU_IRQ_BUF_SIZE;
2419 bytes = kvm_vcpu_ioctl(cs, KVM_S390_GET_IRQ_STATE, &irq_state);
2420 if (bytes < 0) {
2421 cpu->irqstate_saved_size = 0;
2422 error_report("Migration of interrupt state failed");
2423 return;
2426 cpu->irqstate_saved_size = bytes;
2429 int kvm_s390_vcpu_interrupt_post_load(S390CPU *cpu)
2431 CPUState *cs = CPU(cpu);
2432 struct kvm_s390_irq_state irq_state;
2433 int r;
2435 if (cpu->irqstate_saved_size == 0) {
2436 return 0;
2439 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) {
2440 return -ENOSYS;
2443 irq_state.buf = (uint64_t) cpu->irqstate;
2444 irq_state.len = cpu->irqstate_saved_size;
2446 r = kvm_vcpu_ioctl(cs, KVM_S390_SET_IRQ_STATE, &irq_state);
2447 if (r) {
2448 error_report("Setting interrupt state failed %d", r);
2450 return r;
2453 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
2454 uint64_t address, uint32_t data, PCIDevice *dev)
2456 S390PCIBusDevice *pbdev;
2457 uint32_t vec = data & ZPCI_MSI_VEC_MASK;
2459 if (!dev) {
2460 DPRINTF("add_msi_route no pci device\n");
2461 return -ENODEV;
2464 pbdev = s390_pci_find_dev_by_target(s390_get_phb(), DEVICE(dev)->id);
2465 if (!pbdev) {
2466 DPRINTF("add_msi_route no zpci device\n");
2467 return -ENODEV;
2470 route->type = KVM_IRQ_ROUTING_S390_ADAPTER;
2471 route->flags = 0;
2472 route->u.adapter.summary_addr = pbdev->routes.adapter.summary_addr;
2473 route->u.adapter.ind_addr = pbdev->routes.adapter.ind_addr;
2474 route->u.adapter.summary_offset = pbdev->routes.adapter.summary_offset;
2475 route->u.adapter.ind_offset = pbdev->routes.adapter.ind_offset + vec;
2476 route->u.adapter.adapter_id = pbdev->routes.adapter.adapter_id;
2477 return 0;
2480 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
2481 int vector, PCIDevice *dev)
2483 return 0;
2486 int kvm_arch_release_virq_post(int virq)
2488 return 0;
2491 int kvm_arch_msi_data_to_gsi(uint32_t data)
2493 abort();
2496 static int query_cpu_subfunc(S390FeatBitmap features)
2498 struct kvm_s390_vm_cpu_subfunc prop;
2499 struct kvm_device_attr attr = {
2500 .group = KVM_S390_VM_CPU_MODEL,
2501 .attr = KVM_S390_VM_CPU_MACHINE_SUBFUNC,
2502 .addr = (uint64_t) &prop,
2504 int rc;
2506 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2507 if (rc) {
2508 return rc;
2512 * We're going to add all subfunctions now, if the corresponding feature
2513 * is available that unlocks the query functions.
2515 s390_add_from_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo);
2516 if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) {
2517 s390_add_from_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff);
2519 if (test_bit(S390_FEAT_MSA, features)) {
2520 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac);
2521 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc);
2522 s390_add_from_feat_block(features, S390_FEAT_TYPE_KM, prop.km);
2523 s390_add_from_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd);
2524 s390_add_from_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd);
2526 if (test_bit(S390_FEAT_MSA_EXT_3, features)) {
2527 s390_add_from_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo);
2529 if (test_bit(S390_FEAT_MSA_EXT_4, features)) {
2530 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr);
2531 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf);
2532 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo);
2533 s390_add_from_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc);
2535 if (test_bit(S390_FEAT_MSA_EXT_5, features)) {
2536 s390_add_from_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno);
2538 if (test_bit(S390_FEAT_MSA_EXT_8, features)) {
2539 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma);
2541 return 0;
2544 static int configure_cpu_subfunc(const S390FeatBitmap features)
2546 struct kvm_s390_vm_cpu_subfunc prop = {};
2547 struct kvm_device_attr attr = {
2548 .group = KVM_S390_VM_CPU_MODEL,
2549 .attr = KVM_S390_VM_CPU_PROCESSOR_SUBFUNC,
2550 .addr = (uint64_t) &prop,
2553 if (!kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2554 KVM_S390_VM_CPU_PROCESSOR_SUBFUNC)) {
2555 /* hardware support might be missing, IBC will handle most of this */
2556 return 0;
2559 s390_fill_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo);
2560 if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) {
2561 s390_fill_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff);
2563 if (test_bit(S390_FEAT_MSA, features)) {
2564 s390_fill_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac);
2565 s390_fill_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc);
2566 s390_fill_feat_block(features, S390_FEAT_TYPE_KM, prop.km);
2567 s390_fill_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd);
2568 s390_fill_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd);
2570 if (test_bit(S390_FEAT_MSA_EXT_3, features)) {
2571 s390_fill_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo);
2573 if (test_bit(S390_FEAT_MSA_EXT_4, features)) {
2574 s390_fill_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr);
2575 s390_fill_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf);
2576 s390_fill_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo);
2577 s390_fill_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc);
2579 if (test_bit(S390_FEAT_MSA_EXT_5, features)) {
2580 s390_fill_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno);
2582 if (test_bit(S390_FEAT_MSA_EXT_8, features)) {
2583 s390_fill_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma);
2585 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2588 static int kvm_to_feat[][2] = {
2589 { KVM_S390_VM_CPU_FEAT_ESOP, S390_FEAT_ESOP },
2590 { KVM_S390_VM_CPU_FEAT_SIEF2, S390_FEAT_SIE_F2 },
2591 { KVM_S390_VM_CPU_FEAT_64BSCAO , S390_FEAT_SIE_64BSCAO },
2592 { KVM_S390_VM_CPU_FEAT_SIIF, S390_FEAT_SIE_SIIF },
2593 { KVM_S390_VM_CPU_FEAT_GPERE, S390_FEAT_SIE_GPERE },
2594 { KVM_S390_VM_CPU_FEAT_GSLS, S390_FEAT_SIE_GSLS },
2595 { KVM_S390_VM_CPU_FEAT_IB, S390_FEAT_SIE_IB },
2596 { KVM_S390_VM_CPU_FEAT_CEI, S390_FEAT_SIE_CEI },
2597 { KVM_S390_VM_CPU_FEAT_IBS, S390_FEAT_SIE_IBS },
2598 { KVM_S390_VM_CPU_FEAT_SKEY, S390_FEAT_SIE_SKEY },
2599 { KVM_S390_VM_CPU_FEAT_CMMA, S390_FEAT_SIE_CMMA },
2600 { KVM_S390_VM_CPU_FEAT_PFMFI, S390_FEAT_SIE_PFMFI},
2601 { KVM_S390_VM_CPU_FEAT_SIGPIF, S390_FEAT_SIE_SIGPIF},
2602 { KVM_S390_VM_CPU_FEAT_KSS, S390_FEAT_SIE_KSS},
2605 static int query_cpu_feat(S390FeatBitmap features)
2607 struct kvm_s390_vm_cpu_feat prop;
2608 struct kvm_device_attr attr = {
2609 .group = KVM_S390_VM_CPU_MODEL,
2610 .attr = KVM_S390_VM_CPU_MACHINE_FEAT,
2611 .addr = (uint64_t) &prop,
2613 int rc;
2614 int i;
2616 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2617 if (rc) {
2618 return rc;
2621 for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) {
2622 if (test_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat)) {
2623 set_bit(kvm_to_feat[i][1], features);
2626 return 0;
2629 static int configure_cpu_feat(const S390FeatBitmap features)
2631 struct kvm_s390_vm_cpu_feat prop = {};
2632 struct kvm_device_attr attr = {
2633 .group = KVM_S390_VM_CPU_MODEL,
2634 .attr = KVM_S390_VM_CPU_PROCESSOR_FEAT,
2635 .addr = (uint64_t) &prop,
2637 int i;
2639 for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) {
2640 if (test_bit(kvm_to_feat[i][1], features)) {
2641 set_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat);
2644 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2647 bool kvm_s390_cpu_models_supported(void)
2649 if (!cpu_model_allowed()) {
2650 /* compatibility machines interfere with the cpu model */
2651 return false;
2653 return kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2654 KVM_S390_VM_CPU_MACHINE) &&
2655 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2656 KVM_S390_VM_CPU_PROCESSOR) &&
2657 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2658 KVM_S390_VM_CPU_MACHINE_FEAT) &&
2659 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2660 KVM_S390_VM_CPU_PROCESSOR_FEAT) &&
2661 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2662 KVM_S390_VM_CPU_MACHINE_SUBFUNC);
2665 void kvm_s390_get_host_cpu_model(S390CPUModel *model, Error **errp)
2667 struct kvm_s390_vm_cpu_machine prop = {};
2668 struct kvm_device_attr attr = {
2669 .group = KVM_S390_VM_CPU_MODEL,
2670 .attr = KVM_S390_VM_CPU_MACHINE,
2671 .addr = (uint64_t) &prop,
2673 uint16_t unblocked_ibc = 0, cpu_type = 0;
2674 int rc;
2676 memset(model, 0, sizeof(*model));
2678 if (!kvm_s390_cpu_models_supported()) {
2679 error_setg(errp, "KVM doesn't support CPU models");
2680 return;
2683 /* query the basic cpu model properties */
2684 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2685 if (rc) {
2686 error_setg(errp, "KVM: Error querying host CPU model: %d", rc);
2687 return;
2690 cpu_type = cpuid_type(prop.cpuid);
2691 if (has_ibc(prop.ibc)) {
2692 model->lowest_ibc = lowest_ibc(prop.ibc);
2693 unblocked_ibc = unblocked_ibc(prop.ibc);
2695 model->cpu_id = cpuid_id(prop.cpuid);
2696 model->cpu_id_format = cpuid_format(prop.cpuid);
2697 model->cpu_ver = 0xff;
2699 /* get supported cpu features indicated via STFL(E) */
2700 s390_add_from_feat_block(model->features, S390_FEAT_TYPE_STFL,
2701 (uint8_t *) prop.fac_mask);
2702 /* dat-enhancement facility 2 has no bit but was introduced with stfle */
2703 if (test_bit(S390_FEAT_STFLE, model->features)) {
2704 set_bit(S390_FEAT_DAT_ENH_2, model->features);
2706 /* get supported cpu features indicated e.g. via SCLP */
2707 rc = query_cpu_feat(model->features);
2708 if (rc) {
2709 error_setg(errp, "KVM: Error querying CPU features: %d", rc);
2710 return;
2712 /* get supported cpu subfunctions indicated via query / test bit */
2713 rc = query_cpu_subfunc(model->features);
2714 if (rc) {
2715 error_setg(errp, "KVM: Error querying CPU subfunctions: %d", rc);
2716 return;
2719 /* with cpu model support, CMM is only indicated if really available */
2720 if (kvm_s390_cmma_available()) {
2721 set_bit(S390_FEAT_CMM, model->features);
2722 } else {
2723 /* no cmm -> no cmm nt */
2724 clear_bit(S390_FEAT_CMM_NT, model->features);
2727 /* We emulate a zPCI bus and AEN, therefore we don't need HW support */
2728 if (pci_available) {
2729 set_bit(S390_FEAT_ZPCI, model->features);
2731 set_bit(S390_FEAT_ADAPTER_EVENT_NOTIFICATION, model->features);
2733 if (s390_known_cpu_type(cpu_type)) {
2734 /* we want the exact model, even if some features are missing */
2735 model->def = s390_find_cpu_def(cpu_type, ibc_gen(unblocked_ibc),
2736 ibc_ec_ga(unblocked_ibc), NULL);
2737 } else {
2738 /* model unknown, e.g. too new - search using features */
2739 model->def = s390_find_cpu_def(0, ibc_gen(unblocked_ibc),
2740 ibc_ec_ga(unblocked_ibc),
2741 model->features);
2743 if (!model->def) {
2744 error_setg(errp, "KVM: host CPU model could not be identified");
2745 return;
2747 /* strip of features that are not part of the maximum model */
2748 bitmap_and(model->features, model->features, model->def->full_feat,
2749 S390_FEAT_MAX);
2752 void kvm_s390_apply_cpu_model(const S390CPUModel *model, Error **errp)
2754 struct kvm_s390_vm_cpu_processor prop = {
2755 .fac_list = { 0 },
2757 struct kvm_device_attr attr = {
2758 .group = KVM_S390_VM_CPU_MODEL,
2759 .attr = KVM_S390_VM_CPU_PROCESSOR,
2760 .addr = (uint64_t) &prop,
2762 int rc;
2764 if (!model) {
2765 /* compatibility handling if cpu models are disabled */
2766 if (kvm_s390_cmma_available()) {
2767 kvm_s390_enable_cmma();
2769 return;
2771 if (!kvm_s390_cpu_models_supported()) {
2772 error_setg(errp, "KVM doesn't support CPU models");
2773 return;
2775 prop.cpuid = s390_cpuid_from_cpu_model(model);
2776 prop.ibc = s390_ibc_from_cpu_model(model);
2777 /* configure cpu features indicated via STFL(e) */
2778 s390_fill_feat_block(model->features, S390_FEAT_TYPE_STFL,
2779 (uint8_t *) prop.fac_list);
2780 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2781 if (rc) {
2782 error_setg(errp, "KVM: Error configuring the CPU model: %d", rc);
2783 return;
2785 /* configure cpu features indicated e.g. via SCLP */
2786 rc = configure_cpu_feat(model->features);
2787 if (rc) {
2788 error_setg(errp, "KVM: Error configuring CPU features: %d", rc);
2789 return;
2791 /* configure cpu subfunctions indicated via query / test bit */
2792 rc = configure_cpu_subfunc(model->features);
2793 if (rc) {
2794 error_setg(errp, "KVM: Error configuring CPU subfunctions: %d", rc);
2795 return;
2797 /* enable CMM via CMMA */
2798 if (test_bit(S390_FEAT_CMM, model->features)) {
2799 kvm_s390_enable_cmma();