Revert "arm: Allow system registers for KVM guests to be changed by QEMU code"
[qemu/ar7.git] / target / arm / helper.c
blob1fa282a7fc1c270df1a177d57aaf6def9a31fdca
1 #include "qemu/osdep.h"
2 #include "target/arm/idau.h"
3 #include "trace.h"
4 #include "cpu.h"
5 #include "internals.h"
6 #include "exec/gdbstub.h"
7 #include "exec/helper-proto.h"
8 #include "qemu/host-utils.h"
9 #include "sysemu/arch_init.h"
10 #include "sysemu/sysemu.h"
11 #include "qemu/bitops.h"
12 #include "qemu/crc32c.h"
13 #include "exec/exec-all.h"
14 #include "exec/cpu_ldst.h"
15 #include "arm_ldst.h"
16 #include <zlib.h> /* For crc32 */
17 #include "exec/semihost.h"
18 #include "sysemu/cpus.h"
19 #include "sysemu/kvm.h"
20 #include "fpu/softfloat.h"
21 #include "qemu/range.h"
22 #include "qapi/qapi-commands-target.h"
24 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
26 #ifndef CONFIG_USER_ONLY
27 /* Cacheability and shareability attributes for a memory access */
28 typedef struct ARMCacheAttrs {
29 unsigned int attrs:8; /* as in the MAIR register encoding */
30 unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
31 } ARMCacheAttrs;
33 static bool get_phys_addr(CPUARMState *env, target_ulong address,
34 MMUAccessType access_type, ARMMMUIdx mmu_idx,
35 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
36 target_ulong *page_size,
37 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
39 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
40 MMUAccessType access_type, ARMMMUIdx mmu_idx,
41 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
42 target_ulong *page_size_ptr,
43 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
45 /* Security attributes for an address, as returned by v8m_security_lookup. */
46 typedef struct V8M_SAttributes {
47 bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */
48 bool ns;
49 bool nsc;
50 uint8_t sregion;
51 bool srvalid;
52 uint8_t iregion;
53 bool irvalid;
54 } V8M_SAttributes;
56 static void v8m_security_lookup(CPUARMState *env, uint32_t address,
57 MMUAccessType access_type, ARMMMUIdx mmu_idx,
58 V8M_SAttributes *sattrs);
59 #endif
61 static void switch_mode(CPUARMState *env, int mode);
63 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
65 int nregs;
67 /* VFP data registers are always little-endian. */
68 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
69 if (reg < nregs) {
70 stq_le_p(buf, *aa32_vfp_dreg(env, reg));
71 return 8;
73 if (arm_feature(env, ARM_FEATURE_NEON)) {
74 /* Aliases for Q regs. */
75 nregs += 16;
76 if (reg < nregs) {
77 uint64_t *q = aa32_vfp_qreg(env, reg - 32);
78 stq_le_p(buf, q[0]);
79 stq_le_p(buf + 8, q[1]);
80 return 16;
83 switch (reg - nregs) {
84 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
85 case 1: stl_p(buf, vfp_get_fpscr(env)); return 4;
86 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
88 return 0;
91 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
93 int nregs;
95 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
96 if (reg < nregs) {
97 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf);
98 return 8;
100 if (arm_feature(env, ARM_FEATURE_NEON)) {
101 nregs += 16;
102 if (reg < nregs) {
103 uint64_t *q = aa32_vfp_qreg(env, reg - 32);
104 q[0] = ldq_le_p(buf);
105 q[1] = ldq_le_p(buf + 8);
106 return 16;
109 switch (reg - nregs) {
110 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
111 case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4;
112 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
114 return 0;
117 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
119 switch (reg) {
120 case 0 ... 31:
121 /* 128 bit FP register */
123 uint64_t *q = aa64_vfp_qreg(env, reg);
124 stq_le_p(buf, q[0]);
125 stq_le_p(buf + 8, q[1]);
126 return 16;
128 case 32:
129 /* FPSR */
130 stl_p(buf, vfp_get_fpsr(env));
131 return 4;
132 case 33:
133 /* FPCR */
134 stl_p(buf, vfp_get_fpcr(env));
135 return 4;
136 default:
137 return 0;
141 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
143 switch (reg) {
144 case 0 ... 31:
145 /* 128 bit FP register */
147 uint64_t *q = aa64_vfp_qreg(env, reg);
148 q[0] = ldq_le_p(buf);
149 q[1] = ldq_le_p(buf + 8);
150 return 16;
152 case 32:
153 /* FPSR */
154 vfp_set_fpsr(env, ldl_p(buf));
155 return 4;
156 case 33:
157 /* FPCR */
158 vfp_set_fpcr(env, ldl_p(buf));
159 return 4;
160 default:
161 return 0;
165 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
167 assert(ri->fieldoffset);
168 if (cpreg_field_is_64bit(ri)) {
169 return CPREG_FIELD64(env, ri);
170 } else {
171 return CPREG_FIELD32(env, ri);
175 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
176 uint64_t value)
178 assert(ri->fieldoffset);
179 if (cpreg_field_is_64bit(ri)) {
180 CPREG_FIELD64(env, ri) = value;
181 } else {
182 CPREG_FIELD32(env, ri) = value;
186 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
188 return (char *)env + ri->fieldoffset;
191 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
193 /* Raw read of a coprocessor register (as needed for migration, etc). */
194 if (ri->type & ARM_CP_CONST) {
195 return ri->resetvalue;
196 } else if (ri->raw_readfn) {
197 return ri->raw_readfn(env, ri);
198 } else if (ri->readfn) {
199 return ri->readfn(env, ri);
200 } else {
201 return raw_read(env, ri);
205 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
206 uint64_t v)
208 /* Raw write of a coprocessor register (as needed for migration, etc).
209 * Note that constant registers are treated as write-ignored; the
210 * caller should check for success by whether a readback gives the
211 * value written.
213 if (ri->type & ARM_CP_CONST) {
214 return;
215 } else if (ri->raw_writefn) {
216 ri->raw_writefn(env, ri, v);
217 } else if (ri->writefn) {
218 ri->writefn(env, ri, v);
219 } else {
220 raw_write(env, ri, v);
224 static int arm_gdb_get_sysreg(CPUARMState *env, uint8_t *buf, int reg)
226 ARMCPU *cpu = arm_env_get_cpu(env);
227 const ARMCPRegInfo *ri;
228 uint32_t key;
230 key = cpu->dyn_xml.cpregs_keys[reg];
231 ri = get_arm_cp_reginfo(cpu->cp_regs, key);
232 if (ri) {
233 if (cpreg_field_is_64bit(ri)) {
234 return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri));
235 } else {
236 return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri));
239 return 0;
242 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg)
244 return 0;
247 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
249 /* Return true if the regdef would cause an assertion if you called
250 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
251 * program bug for it not to have the NO_RAW flag).
252 * NB that returning false here doesn't necessarily mean that calling
253 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
254 * read/write access functions which are safe for raw use" from "has
255 * read/write access functions which have side effects but has forgotten
256 * to provide raw access functions".
257 * The tests here line up with the conditions in read/write_raw_cp_reg()
258 * and assertions in raw_read()/raw_write().
260 if ((ri->type & ARM_CP_CONST) ||
261 ri->fieldoffset ||
262 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
263 return false;
265 return true;
268 bool write_cpustate_to_list(ARMCPU *cpu)
270 /* Write the coprocessor state from cpu->env to the (index,value) list. */
271 int i;
272 bool ok = true;
274 for (i = 0; i < cpu->cpreg_array_len; i++) {
275 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
276 const ARMCPRegInfo *ri;
278 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
279 if (!ri) {
280 ok = false;
281 continue;
283 if (ri->type & ARM_CP_NO_RAW) {
284 continue;
286 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
288 return ok;
291 bool write_list_to_cpustate(ARMCPU *cpu)
293 int i;
294 bool ok = true;
296 for (i = 0; i < cpu->cpreg_array_len; i++) {
297 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
298 uint64_t v = cpu->cpreg_values[i];
299 const ARMCPRegInfo *ri;
301 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
302 if (!ri) {
303 ok = false;
304 continue;
306 if (ri->type & ARM_CP_NO_RAW) {
307 continue;
309 /* Write value and confirm it reads back as written
310 * (to catch read-only registers and partially read-only
311 * registers where the incoming migration value doesn't match)
313 write_raw_cp_reg(&cpu->env, ri, v);
314 if (read_raw_cp_reg(&cpu->env, ri) != v) {
315 ok = false;
318 return ok;
321 static void add_cpreg_to_list(gpointer key, gpointer opaque)
323 ARMCPU *cpu = opaque;
324 uint64_t regidx;
325 const ARMCPRegInfo *ri;
327 regidx = *(uint32_t *)key;
328 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
330 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
331 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
332 /* The value array need not be initialized at this point */
333 cpu->cpreg_array_len++;
337 static void count_cpreg(gpointer key, gpointer opaque)
339 ARMCPU *cpu = opaque;
340 uint64_t regidx;
341 const ARMCPRegInfo *ri;
343 regidx = *(uint32_t *)key;
344 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
346 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
347 cpu->cpreg_array_len++;
351 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
353 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
354 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
356 if (aidx > bidx) {
357 return 1;
359 if (aidx < bidx) {
360 return -1;
362 return 0;
365 void init_cpreg_list(ARMCPU *cpu)
367 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
368 * Note that we require cpreg_tuples[] to be sorted by key ID.
370 GList *keys;
371 int arraylen;
373 keys = g_hash_table_get_keys(cpu->cp_regs);
374 keys = g_list_sort(keys, cpreg_key_compare);
376 cpu->cpreg_array_len = 0;
378 g_list_foreach(keys, count_cpreg, cpu);
380 arraylen = cpu->cpreg_array_len;
381 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
382 cpu->cpreg_values = g_new(uint64_t, arraylen);
383 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
384 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
385 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
386 cpu->cpreg_array_len = 0;
388 g_list_foreach(keys, add_cpreg_to_list, cpu);
390 assert(cpu->cpreg_array_len == arraylen);
392 g_list_free(keys);
396 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
397 * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
399 * access_el3_aa32ns: Used to check AArch32 register views.
400 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
402 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
403 const ARMCPRegInfo *ri,
404 bool isread)
406 bool secure = arm_is_secure_below_el3(env);
408 assert(!arm_el_is_aa64(env, 3));
409 if (secure) {
410 return CP_ACCESS_TRAP_UNCATEGORIZED;
412 return CP_ACCESS_OK;
415 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
416 const ARMCPRegInfo *ri,
417 bool isread)
419 if (!arm_el_is_aa64(env, 3)) {
420 return access_el3_aa32ns(env, ri, isread);
422 return CP_ACCESS_OK;
425 /* Some secure-only AArch32 registers trap to EL3 if used from
426 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
427 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
428 * We assume that the .access field is set to PL1_RW.
430 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
431 const ARMCPRegInfo *ri,
432 bool isread)
434 if (arm_current_el(env) == 3) {
435 return CP_ACCESS_OK;
437 if (arm_is_secure_below_el3(env)) {
438 return CP_ACCESS_TRAP_EL3;
440 /* This will be EL1 NS and EL2 NS, which just UNDEF */
441 return CP_ACCESS_TRAP_UNCATEGORIZED;
444 /* Check for traps to "powerdown debug" registers, which are controlled
445 * by MDCR.TDOSA
447 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
448 bool isread)
450 int el = arm_current_el(env);
451 bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) ||
452 (env->cp15.mdcr_el2 & MDCR_TDE) ||
453 (arm_hcr_el2_eff(env) & HCR_TGE);
455 if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) {
456 return CP_ACCESS_TRAP_EL2;
458 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
459 return CP_ACCESS_TRAP_EL3;
461 return CP_ACCESS_OK;
464 /* Check for traps to "debug ROM" registers, which are controlled
465 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
467 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
468 bool isread)
470 int el = arm_current_el(env);
471 bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) ||
472 (env->cp15.mdcr_el2 & MDCR_TDE) ||
473 (arm_hcr_el2_eff(env) & HCR_TGE);
475 if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) {
476 return CP_ACCESS_TRAP_EL2;
478 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
479 return CP_ACCESS_TRAP_EL3;
481 return CP_ACCESS_OK;
484 /* Check for traps to general debug registers, which are controlled
485 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
487 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
488 bool isread)
490 int el = arm_current_el(env);
491 bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) ||
492 (env->cp15.mdcr_el2 & MDCR_TDE) ||
493 (arm_hcr_el2_eff(env) & HCR_TGE);
495 if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) {
496 return CP_ACCESS_TRAP_EL2;
498 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
499 return CP_ACCESS_TRAP_EL3;
501 return CP_ACCESS_OK;
504 /* Check for traps to performance monitor registers, which are controlled
505 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
507 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
508 bool isread)
510 int el = arm_current_el(env);
512 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
513 && !arm_is_secure_below_el3(env)) {
514 return CP_ACCESS_TRAP_EL2;
516 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
517 return CP_ACCESS_TRAP_EL3;
519 return CP_ACCESS_OK;
522 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
524 ARMCPU *cpu = arm_env_get_cpu(env);
526 raw_write(env, ri, value);
527 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
530 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
532 ARMCPU *cpu = arm_env_get_cpu(env);
534 if (raw_read(env, ri) != value) {
535 /* Unlike real hardware the qemu TLB uses virtual addresses,
536 * not modified virtual addresses, so this causes a TLB flush.
538 tlb_flush(CPU(cpu));
539 raw_write(env, ri, value);
543 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
544 uint64_t value)
546 ARMCPU *cpu = arm_env_get_cpu(env);
548 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
549 && !extended_addresses_enabled(env)) {
550 /* For VMSA (when not using the LPAE long descriptor page table
551 * format) this register includes the ASID, so do a TLB flush.
552 * For PMSA it is purely a process ID and no action is needed.
554 tlb_flush(CPU(cpu));
556 raw_write(env, ri, value);
559 /* IS variants of TLB operations must affect all cores */
560 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
561 uint64_t value)
563 CPUState *cs = ENV_GET_CPU(env);
565 tlb_flush_all_cpus_synced(cs);
568 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
569 uint64_t value)
571 CPUState *cs = ENV_GET_CPU(env);
573 tlb_flush_all_cpus_synced(cs);
576 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
577 uint64_t value)
579 CPUState *cs = ENV_GET_CPU(env);
581 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
584 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
585 uint64_t value)
587 CPUState *cs = ENV_GET_CPU(env);
589 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
593 * Non-IS variants of TLB operations are upgraded to
594 * IS versions if we are at NS EL1 and HCR_EL2.FB is set to
595 * force broadcast of these operations.
597 static bool tlb_force_broadcast(CPUARMState *env)
599 return (env->cp15.hcr_el2 & HCR_FB) &&
600 arm_current_el(env) == 1 && arm_is_secure_below_el3(env);
603 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
604 uint64_t value)
606 /* Invalidate all (TLBIALL) */
607 ARMCPU *cpu = arm_env_get_cpu(env);
609 if (tlb_force_broadcast(env)) {
610 tlbiall_is_write(env, NULL, value);
611 return;
614 tlb_flush(CPU(cpu));
617 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
618 uint64_t value)
620 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
621 ARMCPU *cpu = arm_env_get_cpu(env);
623 if (tlb_force_broadcast(env)) {
624 tlbimva_is_write(env, NULL, value);
625 return;
628 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
631 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
632 uint64_t value)
634 /* Invalidate by ASID (TLBIASID) */
635 ARMCPU *cpu = arm_env_get_cpu(env);
637 if (tlb_force_broadcast(env)) {
638 tlbiasid_is_write(env, NULL, value);
639 return;
642 tlb_flush(CPU(cpu));
645 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
646 uint64_t value)
648 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
649 ARMCPU *cpu = arm_env_get_cpu(env);
651 if (tlb_force_broadcast(env)) {
652 tlbimvaa_is_write(env, NULL, value);
653 return;
656 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
659 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
660 uint64_t value)
662 CPUState *cs = ENV_GET_CPU(env);
664 tlb_flush_by_mmuidx(cs,
665 ARMMMUIdxBit_S12NSE1 |
666 ARMMMUIdxBit_S12NSE0 |
667 ARMMMUIdxBit_S2NS);
670 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
671 uint64_t value)
673 CPUState *cs = ENV_GET_CPU(env);
675 tlb_flush_by_mmuidx_all_cpus_synced(cs,
676 ARMMMUIdxBit_S12NSE1 |
677 ARMMMUIdxBit_S12NSE0 |
678 ARMMMUIdxBit_S2NS);
681 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
682 uint64_t value)
684 /* Invalidate by IPA. This has to invalidate any structures that
685 * contain only stage 2 translation information, but does not need
686 * to apply to structures that contain combined stage 1 and stage 2
687 * translation information.
688 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
690 CPUState *cs = ENV_GET_CPU(env);
691 uint64_t pageaddr;
693 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
694 return;
697 pageaddr = sextract64(value << 12, 0, 40);
699 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
702 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
703 uint64_t value)
705 CPUState *cs = ENV_GET_CPU(env);
706 uint64_t pageaddr;
708 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
709 return;
712 pageaddr = sextract64(value << 12, 0, 40);
714 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
715 ARMMMUIdxBit_S2NS);
718 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
719 uint64_t value)
721 CPUState *cs = ENV_GET_CPU(env);
723 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
726 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
727 uint64_t value)
729 CPUState *cs = ENV_GET_CPU(env);
731 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
734 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
735 uint64_t value)
737 CPUState *cs = ENV_GET_CPU(env);
738 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
740 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
743 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
744 uint64_t value)
746 CPUState *cs = ENV_GET_CPU(env);
747 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
749 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
750 ARMMMUIdxBit_S1E2);
753 static const ARMCPRegInfo cp_reginfo[] = {
754 /* Define the secure and non-secure FCSE identifier CP registers
755 * separately because there is no secure bank in V8 (no _EL3). This allows
756 * the secure register to be properly reset and migrated. There is also no
757 * v8 EL1 version of the register so the non-secure instance stands alone.
759 { .name = "FCSEIDR",
760 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
761 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
762 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
763 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
764 { .name = "FCSEIDR_S",
765 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
766 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
767 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
768 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
769 /* Define the secure and non-secure context identifier CP registers
770 * separately because there is no secure bank in V8 (no _EL3). This allows
771 * the secure register to be properly reset and migrated. In the
772 * non-secure case, the 32-bit register will have reset and migration
773 * disabled during registration as it is handled by the 64-bit instance.
775 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
776 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
777 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
778 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
779 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
780 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
781 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
782 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
783 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
784 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
785 REGINFO_SENTINEL
788 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
789 /* NB: Some of these registers exist in v8 but with more precise
790 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
792 /* MMU Domain access control / MPU write buffer control */
793 { .name = "DACR",
794 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
795 .access = PL1_RW, .resetvalue = 0,
796 .writefn = dacr_write, .raw_writefn = raw_write,
797 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
798 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
799 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
800 * For v6 and v5, these mappings are overly broad.
802 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
803 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
804 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
805 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
806 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
807 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
808 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
809 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
810 /* Cache maintenance ops; some of this space may be overridden later. */
811 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
812 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
813 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
814 REGINFO_SENTINEL
817 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
818 /* Not all pre-v6 cores implemented this WFI, so this is slightly
819 * over-broad.
821 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
822 .access = PL1_W, .type = ARM_CP_WFI },
823 REGINFO_SENTINEL
826 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
827 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
828 * is UNPREDICTABLE; we choose to NOP as most implementations do).
830 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
831 .access = PL1_W, .type = ARM_CP_WFI },
832 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
833 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
834 * OMAPCP will override this space.
836 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
837 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
838 .resetvalue = 0 },
839 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
840 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
841 .resetvalue = 0 },
842 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
843 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
844 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
845 .resetvalue = 0 },
846 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
847 * implementing it as RAZ means the "debug architecture version" bits
848 * will read as a reserved value, which should cause Linux to not try
849 * to use the debug hardware.
851 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
852 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
853 /* MMU TLB control. Note that the wildcarding means we cover not just
854 * the unified TLB ops but also the dside/iside/inner-shareable variants.
856 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
857 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
858 .type = ARM_CP_NO_RAW },
859 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
860 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
861 .type = ARM_CP_NO_RAW },
862 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
863 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
864 .type = ARM_CP_NO_RAW },
865 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
866 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
867 .type = ARM_CP_NO_RAW },
868 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
869 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
870 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
871 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
872 REGINFO_SENTINEL
875 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
876 uint64_t value)
878 uint32_t mask = 0;
880 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
881 if (!arm_feature(env, ARM_FEATURE_V8)) {
882 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
883 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
884 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
886 if (arm_feature(env, ARM_FEATURE_VFP)) {
887 /* VFP coprocessor: cp10 & cp11 [23:20] */
888 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
890 if (!arm_feature(env, ARM_FEATURE_NEON)) {
891 /* ASEDIS [31] bit is RAO/WI */
892 value |= (1 << 31);
895 /* VFPv3 and upwards with NEON implement 32 double precision
896 * registers (D0-D31).
898 if (!arm_feature(env, ARM_FEATURE_NEON) ||
899 !arm_feature(env, ARM_FEATURE_VFP3)) {
900 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
901 value |= (1 << 30);
904 value &= mask;
906 env->cp15.cpacr_el1 = value;
909 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
911 /* Call cpacr_write() so that we reset with the correct RAO bits set
912 * for our CPU features.
914 cpacr_write(env, ri, 0);
917 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
918 bool isread)
920 if (arm_feature(env, ARM_FEATURE_V8)) {
921 /* Check if CPACR accesses are to be trapped to EL2 */
922 if (arm_current_el(env) == 1 &&
923 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
924 return CP_ACCESS_TRAP_EL2;
925 /* Check if CPACR accesses are to be trapped to EL3 */
926 } else if (arm_current_el(env) < 3 &&
927 (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
928 return CP_ACCESS_TRAP_EL3;
932 return CP_ACCESS_OK;
935 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
936 bool isread)
938 /* Check if CPTR accesses are set to trap to EL3 */
939 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
940 return CP_ACCESS_TRAP_EL3;
943 return CP_ACCESS_OK;
946 static const ARMCPRegInfo v6_cp_reginfo[] = {
947 /* prefetch by MVA in v6, NOP in v7 */
948 { .name = "MVA_prefetch",
949 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
950 .access = PL1_W, .type = ARM_CP_NOP },
951 /* We need to break the TB after ISB to execute self-modifying code
952 * correctly and also to take any pending interrupts immediately.
953 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
955 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
956 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
957 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
958 .access = PL0_W, .type = ARM_CP_NOP },
959 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
960 .access = PL0_W, .type = ARM_CP_NOP },
961 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
962 .access = PL1_RW,
963 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
964 offsetof(CPUARMState, cp15.ifar_ns) },
965 .resetvalue = 0, },
966 /* Watchpoint Fault Address Register : should actually only be present
967 * for 1136, 1176, 11MPCore.
969 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
970 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
971 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
972 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
973 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
974 .resetfn = cpacr_reset, .writefn = cpacr_write },
975 REGINFO_SENTINEL
978 /* Definitions for the PMU registers */
979 #define PMCRN_MASK 0xf800
980 #define PMCRN_SHIFT 11
981 #define PMCRLC 0x40
982 #define PMCRDP 0x10
983 #define PMCRD 0x8
984 #define PMCRC 0x4
985 #define PMCRP 0x2
986 #define PMCRE 0x1
988 #define PMXEVTYPER_P 0x80000000
989 #define PMXEVTYPER_U 0x40000000
990 #define PMXEVTYPER_NSK 0x20000000
991 #define PMXEVTYPER_NSU 0x10000000
992 #define PMXEVTYPER_NSH 0x08000000
993 #define PMXEVTYPER_M 0x04000000
994 #define PMXEVTYPER_MT 0x02000000
995 #define PMXEVTYPER_EVTCOUNT 0x0000ffff
996 #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
997 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
998 PMXEVTYPER_M | PMXEVTYPER_MT | \
999 PMXEVTYPER_EVTCOUNT)
1001 #define PMCCFILTR 0xf8000000
1002 #define PMCCFILTR_M PMXEVTYPER_M
1003 #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M)
1005 static inline uint32_t pmu_num_counters(CPUARMState *env)
1007 return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT;
1010 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1011 static inline uint64_t pmu_counter_mask(CPUARMState *env)
1013 return (1 << 31) | ((1 << pmu_num_counters(env)) - 1);
1016 typedef struct pm_event {
1017 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
1018 /* If the event is supported on this CPU (used to generate PMCEID[01]) */
1019 bool (*supported)(CPUARMState *);
1021 * Retrieve the current count of the underlying event. The programmed
1022 * counters hold a difference from the return value from this function
1024 uint64_t (*get_count)(CPUARMState *);
1026 * Return how many nanoseconds it will take (at a minimum) for count events
1027 * to occur. A negative value indicates the counter will never overflow, or
1028 * that the counter has otherwise arranged for the overflow bit to be set
1029 * and the PMU interrupt to be raised on overflow.
1031 int64_t (*ns_per_count)(uint64_t);
1032 } pm_event;
1034 static bool event_always_supported(CPUARMState *env)
1036 return true;
1039 static uint64_t swinc_get_count(CPUARMState *env)
1042 * SW_INCR events are written directly to the pmevcntr's by writes to
1043 * PMSWINC, so there is no underlying count maintained by the PMU itself
1045 return 0;
1048 static int64_t swinc_ns_per(uint64_t ignored)
1050 return -1;
1054 * Return the underlying cycle count for the PMU cycle counters. If we're in
1055 * usermode, simply return 0.
1057 static uint64_t cycles_get_count(CPUARMState *env)
1059 #ifndef CONFIG_USER_ONLY
1060 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1061 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1062 #else
1063 return cpu_get_host_ticks();
1064 #endif
1067 #ifndef CONFIG_USER_ONLY
1068 static int64_t cycles_ns_per(uint64_t cycles)
1070 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
1073 static bool instructions_supported(CPUARMState *env)
1075 return use_icount == 1 /* Precise instruction counting */;
1078 static uint64_t instructions_get_count(CPUARMState *env)
1080 return (uint64_t)cpu_get_icount_raw();
1083 static int64_t instructions_ns_per(uint64_t icount)
1085 return cpu_icount_to_ns((int64_t)icount);
1087 #endif
1089 static const pm_event pm_events[] = {
1090 { .number = 0x000, /* SW_INCR */
1091 .supported = event_always_supported,
1092 .get_count = swinc_get_count,
1093 .ns_per_count = swinc_ns_per,
1095 #ifndef CONFIG_USER_ONLY
1096 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
1097 .supported = instructions_supported,
1098 .get_count = instructions_get_count,
1099 .ns_per_count = instructions_ns_per,
1101 { .number = 0x011, /* CPU_CYCLES, Cycle */
1102 .supported = event_always_supported,
1103 .get_count = cycles_get_count,
1104 .ns_per_count = cycles_ns_per,
1106 #endif
1110 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1111 * events (i.e. the statistical profiling extension), this implementation
1112 * should first be updated to something sparse instead of the current
1113 * supported_event_map[] array.
1115 #define MAX_EVENT_ID 0x11
1116 #define UNSUPPORTED_EVENT UINT16_MAX
1117 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1120 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1121 * of ARM event numbers to indices in our pm_events array.
1123 * Note: Events in the 0x40XX range are not currently supported.
1125 void pmu_init(ARMCPU *cpu)
1127 unsigned int i;
1130 * Empty supported_event_map and cpu->pmceid[01] before adding supported
1131 * events to them
1133 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1134 supported_event_map[i] = UNSUPPORTED_EVENT;
1136 cpu->pmceid0 = 0;
1137 cpu->pmceid1 = 0;
1139 for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1140 const pm_event *cnt = &pm_events[i];
1141 assert(cnt->number <= MAX_EVENT_ID);
1142 /* We do not currently support events in the 0x40xx range */
1143 assert(cnt->number <= 0x3f);
1145 if (cnt->supported(&cpu->env)) {
1146 supported_event_map[cnt->number] = i;
1147 uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1148 if (cnt->number & 0x20) {
1149 cpu->pmceid1 |= event_mask;
1150 } else {
1151 cpu->pmceid0 |= event_mask;
1158 * Check at runtime whether a PMU event is supported for the current machine
1160 static bool event_supported(uint16_t number)
1162 if (number > MAX_EVENT_ID) {
1163 return false;
1165 return supported_event_map[number] != UNSUPPORTED_EVENT;
1168 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1169 bool isread)
1171 /* Performance monitor registers user accessibility is controlled
1172 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1173 * trapping to EL2 or EL3 for other accesses.
1175 int el = arm_current_el(env);
1177 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1178 return CP_ACCESS_TRAP;
1180 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
1181 && !arm_is_secure_below_el3(env)) {
1182 return CP_ACCESS_TRAP_EL2;
1184 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1185 return CP_ACCESS_TRAP_EL3;
1188 return CP_ACCESS_OK;
1191 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1192 const ARMCPRegInfo *ri,
1193 bool isread)
1195 /* ER: event counter read trap control */
1196 if (arm_feature(env, ARM_FEATURE_V8)
1197 && arm_current_el(env) == 0
1198 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1199 && isread) {
1200 return CP_ACCESS_OK;
1203 return pmreg_access(env, ri, isread);
1206 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1207 const ARMCPRegInfo *ri,
1208 bool isread)
1210 /* SW: software increment write trap control */
1211 if (arm_feature(env, ARM_FEATURE_V8)
1212 && arm_current_el(env) == 0
1213 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1214 && !isread) {
1215 return CP_ACCESS_OK;
1218 return pmreg_access(env, ri, isread);
1221 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1222 const ARMCPRegInfo *ri,
1223 bool isread)
1225 /* ER: event counter read trap control */
1226 if (arm_feature(env, ARM_FEATURE_V8)
1227 && arm_current_el(env) == 0
1228 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1229 return CP_ACCESS_OK;
1232 return pmreg_access(env, ri, isread);
1235 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1236 const ARMCPRegInfo *ri,
1237 bool isread)
1239 /* CR: cycle counter read trap control */
1240 if (arm_feature(env, ARM_FEATURE_V8)
1241 && arm_current_el(env) == 0
1242 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1243 && isread) {
1244 return CP_ACCESS_OK;
1247 return pmreg_access(env, ri, isread);
1250 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1251 * the current EL, security state, and register configuration.
1253 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1255 uint64_t filter;
1256 bool e, p, u, nsk, nsu, nsh, m;
1257 bool enabled, prohibited, filtered;
1258 bool secure = arm_is_secure(env);
1259 int el = arm_current_el(env);
1260 uint8_t hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
1262 if (!arm_feature(env, ARM_FEATURE_EL2) ||
1263 (counter < hpmn || counter == 31)) {
1264 e = env->cp15.c9_pmcr & PMCRE;
1265 } else {
1266 e = env->cp15.mdcr_el2 & MDCR_HPME;
1268 enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1270 if (!secure) {
1271 if (el == 2 && (counter < hpmn || counter == 31)) {
1272 prohibited = env->cp15.mdcr_el2 & MDCR_HPMD;
1273 } else {
1274 prohibited = false;
1276 } else {
1277 prohibited = arm_feature(env, ARM_FEATURE_EL3) &&
1278 (env->cp15.mdcr_el3 & MDCR_SPME);
1281 if (prohibited && counter == 31) {
1282 prohibited = env->cp15.c9_pmcr & PMCRDP;
1285 if (counter == 31) {
1286 filter = env->cp15.pmccfiltr_el0;
1287 } else {
1288 filter = env->cp15.c14_pmevtyper[counter];
1291 p = filter & PMXEVTYPER_P;
1292 u = filter & PMXEVTYPER_U;
1293 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1294 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1295 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1296 m = arm_el_is_aa64(env, 1) &&
1297 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1299 if (el == 0) {
1300 filtered = secure ? u : u != nsu;
1301 } else if (el == 1) {
1302 filtered = secure ? p : p != nsk;
1303 } else if (el == 2) {
1304 filtered = !nsh;
1305 } else { /* EL3 */
1306 filtered = m != p;
1309 if (counter != 31) {
1311 * If not checking PMCCNTR, ensure the counter is setup to an event we
1312 * support
1314 uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1315 if (!event_supported(event)) {
1316 return false;
1320 return enabled && !prohibited && !filtered;
1323 static void pmu_update_irq(CPUARMState *env)
1325 ARMCPU *cpu = arm_env_get_cpu(env);
1326 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1327 (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1331 * Ensure c15_ccnt is the guest-visible count so that operations such as
1332 * enabling/disabling the counter or filtering, modifying the count itself,
1333 * etc. can be done logically. This is essentially a no-op if the counter is
1334 * not enabled at the time of the call.
1336 void pmccntr_op_start(CPUARMState *env)
1338 uint64_t cycles = cycles_get_count(env);
1340 if (pmu_counter_enabled(env, 31)) {
1341 uint64_t eff_cycles = cycles;
1342 if (env->cp15.c9_pmcr & PMCRD) {
1343 /* Increment once every 64 processor clock cycles */
1344 eff_cycles /= 64;
1347 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1349 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1350 1ull << 63 : 1ull << 31;
1351 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1352 env->cp15.c9_pmovsr |= (1 << 31);
1353 pmu_update_irq(env);
1356 env->cp15.c15_ccnt = new_pmccntr;
1358 env->cp15.c15_ccnt_delta = cycles;
1362 * If PMCCNTR is enabled, recalculate the delta between the clock and the
1363 * guest-visible count. A call to pmccntr_op_finish should follow every call to
1364 * pmccntr_op_start.
1366 void pmccntr_op_finish(CPUARMState *env)
1368 if (pmu_counter_enabled(env, 31)) {
1369 #ifndef CONFIG_USER_ONLY
1370 /* Calculate when the counter will next overflow */
1371 uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1372 if (!(env->cp15.c9_pmcr & PMCRLC)) {
1373 remaining_cycles = (uint32_t)remaining_cycles;
1375 int64_t overflow_in = cycles_ns_per(remaining_cycles);
1377 if (overflow_in > 0) {
1378 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1379 overflow_in;
1380 ARMCPU *cpu = arm_env_get_cpu(env);
1381 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1383 #endif
1385 uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1386 if (env->cp15.c9_pmcr & PMCRD) {
1387 /* Increment once every 64 processor clock cycles */
1388 prev_cycles /= 64;
1390 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1394 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1397 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1398 uint64_t count = 0;
1399 if (event_supported(event)) {
1400 uint16_t event_idx = supported_event_map[event];
1401 count = pm_events[event_idx].get_count(env);
1404 if (pmu_counter_enabled(env, counter)) {
1405 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1407 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) {
1408 env->cp15.c9_pmovsr |= (1 << counter);
1409 pmu_update_irq(env);
1411 env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1413 env->cp15.c14_pmevcntr_delta[counter] = count;
1416 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1418 if (pmu_counter_enabled(env, counter)) {
1419 #ifndef CONFIG_USER_ONLY
1420 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1421 uint16_t event_idx = supported_event_map[event];
1422 uint64_t delta = UINT32_MAX -
1423 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1;
1424 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta);
1426 if (overflow_in > 0) {
1427 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1428 overflow_in;
1429 ARMCPU *cpu = arm_env_get_cpu(env);
1430 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1432 #endif
1434 env->cp15.c14_pmevcntr_delta[counter] -=
1435 env->cp15.c14_pmevcntr[counter];
1439 void pmu_op_start(CPUARMState *env)
1441 unsigned int i;
1442 pmccntr_op_start(env);
1443 for (i = 0; i < pmu_num_counters(env); i++) {
1444 pmevcntr_op_start(env, i);
1448 void pmu_op_finish(CPUARMState *env)
1450 unsigned int i;
1451 pmccntr_op_finish(env);
1452 for (i = 0; i < pmu_num_counters(env); i++) {
1453 pmevcntr_op_finish(env, i);
1457 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1459 pmu_op_start(&cpu->env);
1462 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1464 pmu_op_finish(&cpu->env);
1467 void arm_pmu_timer_cb(void *opaque)
1469 ARMCPU *cpu = opaque;
1472 * Update all the counter values based on the current underlying counts,
1473 * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1474 * has the effect of setting the cpu->pmu_timer to the next earliest time a
1475 * counter may expire.
1477 pmu_op_start(&cpu->env);
1478 pmu_op_finish(&cpu->env);
1481 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1482 uint64_t value)
1484 pmu_op_start(env);
1486 if (value & PMCRC) {
1487 /* The counter has been reset */
1488 env->cp15.c15_ccnt = 0;
1491 if (value & PMCRP) {
1492 unsigned int i;
1493 for (i = 0; i < pmu_num_counters(env); i++) {
1494 env->cp15.c14_pmevcntr[i] = 0;
1498 /* only the DP, X, D and E bits are writable */
1499 env->cp15.c9_pmcr &= ~0x39;
1500 env->cp15.c9_pmcr |= (value & 0x39);
1502 pmu_op_finish(env);
1505 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1506 uint64_t value)
1508 unsigned int i;
1509 for (i = 0; i < pmu_num_counters(env); i++) {
1510 /* Increment a counter's count iff: */
1511 if ((value & (1 << i)) && /* counter's bit is set */
1512 /* counter is enabled and not filtered */
1513 pmu_counter_enabled(env, i) &&
1514 /* counter is SW_INCR */
1515 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1516 pmevcntr_op_start(env, i);
1519 * Detect if this write causes an overflow since we can't predict
1520 * PMSWINC overflows like we can for other events
1522 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1524 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
1525 env->cp15.c9_pmovsr |= (1 << i);
1526 pmu_update_irq(env);
1529 env->cp15.c14_pmevcntr[i] = new_pmswinc;
1531 pmevcntr_op_finish(env, i);
1536 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1538 uint64_t ret;
1539 pmccntr_op_start(env);
1540 ret = env->cp15.c15_ccnt;
1541 pmccntr_op_finish(env);
1542 return ret;
1545 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1546 uint64_t value)
1548 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1549 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1550 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1551 * accessed.
1553 env->cp15.c9_pmselr = value & 0x1f;
1556 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1557 uint64_t value)
1559 pmccntr_op_start(env);
1560 env->cp15.c15_ccnt = value;
1561 pmccntr_op_finish(env);
1564 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1565 uint64_t value)
1567 uint64_t cur_val = pmccntr_read(env, NULL);
1569 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1572 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1573 uint64_t value)
1575 pmccntr_op_start(env);
1576 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1577 pmccntr_op_finish(env);
1580 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1581 uint64_t value)
1583 pmccntr_op_start(env);
1584 /* M is not accessible from AArch32 */
1585 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1586 (value & PMCCFILTR);
1587 pmccntr_op_finish(env);
1590 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1592 /* M is not visible in AArch32 */
1593 return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1596 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1597 uint64_t value)
1599 value &= pmu_counter_mask(env);
1600 env->cp15.c9_pmcnten |= value;
1603 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1604 uint64_t value)
1606 value &= pmu_counter_mask(env);
1607 env->cp15.c9_pmcnten &= ~value;
1610 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1611 uint64_t value)
1613 value &= pmu_counter_mask(env);
1614 env->cp15.c9_pmovsr &= ~value;
1615 pmu_update_irq(env);
1618 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1619 uint64_t value)
1621 value &= pmu_counter_mask(env);
1622 env->cp15.c9_pmovsr |= value;
1623 pmu_update_irq(env);
1626 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1627 uint64_t value, const uint8_t counter)
1629 if (counter == 31) {
1630 pmccfiltr_write(env, ri, value);
1631 } else if (counter < pmu_num_counters(env)) {
1632 pmevcntr_op_start(env, counter);
1635 * If this counter's event type is changing, store the current
1636 * underlying count for the new type in c14_pmevcntr_delta[counter] so
1637 * pmevcntr_op_finish has the correct baseline when it converts back to
1638 * a delta.
1640 uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1641 PMXEVTYPER_EVTCOUNT;
1642 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1643 if (old_event != new_event) {
1644 uint64_t count = 0;
1645 if (event_supported(new_event)) {
1646 uint16_t event_idx = supported_event_map[new_event];
1647 count = pm_events[event_idx].get_count(env);
1649 env->cp15.c14_pmevcntr_delta[counter] = count;
1652 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1653 pmevcntr_op_finish(env, counter);
1655 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1656 * PMSELR value is equal to or greater than the number of implemented
1657 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1661 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1662 const uint8_t counter)
1664 if (counter == 31) {
1665 return env->cp15.pmccfiltr_el0;
1666 } else if (counter < pmu_num_counters(env)) {
1667 return env->cp15.c14_pmevtyper[counter];
1668 } else {
1670 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1671 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1673 return 0;
1677 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1678 uint64_t value)
1680 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1681 pmevtyper_write(env, ri, value, counter);
1684 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1685 uint64_t value)
1687 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1688 env->cp15.c14_pmevtyper[counter] = value;
1691 * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1692 * pmu_op_finish calls when loading saved state for a migration. Because
1693 * we're potentially updating the type of event here, the value written to
1694 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1695 * different counter type. Therefore, we need to set this value to the
1696 * current count for the counter type we're writing so that pmu_op_finish
1697 * has the correct count for its calculation.
1699 uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1700 if (event_supported(event)) {
1701 uint16_t event_idx = supported_event_map[event];
1702 env->cp15.c14_pmevcntr_delta[counter] =
1703 pm_events[event_idx].get_count(env);
1707 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1709 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1710 return pmevtyper_read(env, ri, counter);
1713 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1714 uint64_t value)
1716 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1719 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1721 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1724 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1725 uint64_t value, uint8_t counter)
1727 if (counter < pmu_num_counters(env)) {
1728 pmevcntr_op_start(env, counter);
1729 env->cp15.c14_pmevcntr[counter] = value;
1730 pmevcntr_op_finish(env, counter);
1733 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1734 * are CONSTRAINED UNPREDICTABLE.
1738 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1739 uint8_t counter)
1741 if (counter < pmu_num_counters(env)) {
1742 uint64_t ret;
1743 pmevcntr_op_start(env, counter);
1744 ret = env->cp15.c14_pmevcntr[counter];
1745 pmevcntr_op_finish(env, counter);
1746 return ret;
1747 } else {
1748 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1749 * are CONSTRAINED UNPREDICTABLE. */
1750 return 0;
1754 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1755 uint64_t value)
1757 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1758 pmevcntr_write(env, ri, value, counter);
1761 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1763 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1764 return pmevcntr_read(env, ri, counter);
1767 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1768 uint64_t value)
1770 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1771 assert(counter < pmu_num_counters(env));
1772 env->cp15.c14_pmevcntr[counter] = value;
1773 pmevcntr_write(env, ri, value, counter);
1776 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1778 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1779 assert(counter < pmu_num_counters(env));
1780 return env->cp15.c14_pmevcntr[counter];
1783 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1784 uint64_t value)
1786 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1789 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1791 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1794 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1795 uint64_t value)
1797 if (arm_feature(env, ARM_FEATURE_V8)) {
1798 env->cp15.c9_pmuserenr = value & 0xf;
1799 } else {
1800 env->cp15.c9_pmuserenr = value & 1;
1804 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1805 uint64_t value)
1807 /* We have no event counters so only the C bit can be changed */
1808 value &= pmu_counter_mask(env);
1809 env->cp15.c9_pminten |= value;
1810 pmu_update_irq(env);
1813 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1814 uint64_t value)
1816 value &= pmu_counter_mask(env);
1817 env->cp15.c9_pminten &= ~value;
1818 pmu_update_irq(env);
1821 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1822 uint64_t value)
1824 /* Note that even though the AArch64 view of this register has bits
1825 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1826 * architectural requirements for bits which are RES0 only in some
1827 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1828 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1830 raw_write(env, ri, value & ~0x1FULL);
1833 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1835 /* Begin with base v8.0 state. */
1836 uint32_t valid_mask = 0x3fff;
1837 ARMCPU *cpu = arm_env_get_cpu(env);
1839 if (arm_el_is_aa64(env, 3)) {
1840 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */
1841 valid_mask &= ~SCR_NET;
1842 } else {
1843 valid_mask &= ~(SCR_RW | SCR_ST);
1846 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1847 valid_mask &= ~SCR_HCE;
1849 /* On ARMv7, SMD (or SCD as it is called in v7) is only
1850 * supported if EL2 exists. The bit is UNK/SBZP when
1851 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1852 * when EL2 is unavailable.
1853 * On ARMv8, this bit is always available.
1855 if (arm_feature(env, ARM_FEATURE_V7) &&
1856 !arm_feature(env, ARM_FEATURE_V8)) {
1857 valid_mask &= ~SCR_SMD;
1860 if (cpu_isar_feature(aa64_lor, cpu)) {
1861 valid_mask |= SCR_TLOR;
1863 if (cpu_isar_feature(aa64_pauth, cpu)) {
1864 valid_mask |= SCR_API | SCR_APK;
1867 /* Clear all-context RES0 bits. */
1868 value &= valid_mask;
1869 raw_write(env, ri, value);
1872 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1874 ARMCPU *cpu = arm_env_get_cpu(env);
1876 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1877 * bank
1879 uint32_t index = A32_BANKED_REG_GET(env, csselr,
1880 ri->secure & ARM_CP_SECSTATE_S);
1882 return cpu->ccsidr[index];
1885 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1886 uint64_t value)
1888 raw_write(env, ri, value & 0xf);
1891 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1893 CPUState *cs = ENV_GET_CPU(env);
1894 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
1895 uint64_t ret = 0;
1897 if (hcr_el2 & HCR_IMO) {
1898 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
1899 ret |= CPSR_I;
1901 } else {
1902 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1903 ret |= CPSR_I;
1907 if (hcr_el2 & HCR_FMO) {
1908 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
1909 ret |= CPSR_F;
1911 } else {
1912 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1913 ret |= CPSR_F;
1917 /* External aborts are not possible in QEMU so A bit is always clear */
1918 return ret;
1921 static const ARMCPRegInfo v7_cp_reginfo[] = {
1922 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1923 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1924 .access = PL1_W, .type = ARM_CP_NOP },
1925 /* Performance monitors are implementation defined in v7,
1926 * but with an ARM recommended set of registers, which we
1927 * follow.
1929 * Performance registers fall into three categories:
1930 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1931 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1932 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1933 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1934 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1936 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1937 .access = PL0_RW, .type = ARM_CP_ALIAS,
1938 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1939 .writefn = pmcntenset_write,
1940 .accessfn = pmreg_access,
1941 .raw_writefn = raw_write },
1942 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1943 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1944 .access = PL0_RW, .accessfn = pmreg_access,
1945 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1946 .writefn = pmcntenset_write, .raw_writefn = raw_write },
1947 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1948 .access = PL0_RW,
1949 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1950 .accessfn = pmreg_access,
1951 .writefn = pmcntenclr_write,
1952 .type = ARM_CP_ALIAS },
1953 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1954 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1955 .access = PL0_RW, .accessfn = pmreg_access,
1956 .type = ARM_CP_ALIAS,
1957 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1958 .writefn = pmcntenclr_write },
1959 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1960 .access = PL0_RW, .type = ARM_CP_IO,
1961 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
1962 .accessfn = pmreg_access,
1963 .writefn = pmovsr_write,
1964 .raw_writefn = raw_write },
1965 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
1966 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
1967 .access = PL0_RW, .accessfn = pmreg_access,
1968 .type = ARM_CP_ALIAS | ARM_CP_IO,
1969 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1970 .writefn = pmovsr_write,
1971 .raw_writefn = raw_write },
1972 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
1973 .access = PL0_W, .accessfn = pmreg_access_swinc,
1974 .type = ARM_CP_NO_RAW | ARM_CP_IO,
1975 .writefn = pmswinc_write },
1976 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
1977 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
1978 .access = PL0_W, .accessfn = pmreg_access_swinc,
1979 .type = ARM_CP_NO_RAW | ARM_CP_IO,
1980 .writefn = pmswinc_write },
1981 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
1982 .access = PL0_RW, .type = ARM_CP_ALIAS,
1983 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
1984 .accessfn = pmreg_access_selr, .writefn = pmselr_write,
1985 .raw_writefn = raw_write},
1986 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
1987 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
1988 .access = PL0_RW, .accessfn = pmreg_access_selr,
1989 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
1990 .writefn = pmselr_write, .raw_writefn = raw_write, },
1991 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
1992 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
1993 .readfn = pmccntr_read, .writefn = pmccntr_write32,
1994 .accessfn = pmreg_access_ccntr },
1995 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
1996 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
1997 .access = PL0_RW, .accessfn = pmreg_access_ccntr,
1998 .type = ARM_CP_IO,
1999 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2000 .readfn = pmccntr_read, .writefn = pmccntr_write,
2001 .raw_readfn = raw_read, .raw_writefn = raw_write, },
2002 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2003 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2004 .access = PL0_RW, .accessfn = pmreg_access,
2005 .type = ARM_CP_ALIAS | ARM_CP_IO,
2006 .resetvalue = 0, },
2007 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2008 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2009 .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2010 .access = PL0_RW, .accessfn = pmreg_access,
2011 .type = ARM_CP_IO,
2012 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2013 .resetvalue = 0, },
2014 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2015 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2016 .accessfn = pmreg_access,
2017 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2018 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2019 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2020 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2021 .accessfn = pmreg_access,
2022 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2023 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2024 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2025 .accessfn = pmreg_access_xevcntr,
2026 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2027 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2028 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2029 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2030 .accessfn = pmreg_access_xevcntr,
2031 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2032 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2033 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2034 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2035 .resetvalue = 0,
2036 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2037 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2038 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2039 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2040 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2041 .resetvalue = 0,
2042 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2043 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2044 .access = PL1_RW, .accessfn = access_tpm,
2045 .type = ARM_CP_ALIAS | ARM_CP_IO,
2046 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2047 .resetvalue = 0,
2048 .writefn = pmintenset_write, .raw_writefn = raw_write },
2049 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2050 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2051 .access = PL1_RW, .accessfn = access_tpm,
2052 .type = ARM_CP_IO,
2053 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2054 .writefn = pmintenset_write, .raw_writefn = raw_write,
2055 .resetvalue = 0x0 },
2056 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2057 .access = PL1_RW, .accessfn = access_tpm,
2058 .type = ARM_CP_ALIAS | ARM_CP_IO,
2059 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2060 .writefn = pmintenclr_write, },
2061 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2062 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2063 .access = PL1_RW, .accessfn = access_tpm,
2064 .type = ARM_CP_ALIAS | ARM_CP_IO,
2065 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2066 .writefn = pmintenclr_write },
2067 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2068 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2069 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2070 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2071 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2072 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
2073 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2074 offsetof(CPUARMState, cp15.csselr_ns) } },
2075 /* Auxiliary ID register: this actually has an IMPDEF value but for now
2076 * just RAZ for all cores:
2078 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2079 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2080 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2081 /* Auxiliary fault status registers: these also are IMPDEF, and we
2082 * choose to RAZ/WI for all cores.
2084 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2085 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2086 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2087 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2088 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2089 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2090 /* MAIR can just read-as-written because we don't implement caches
2091 * and so don't need to care about memory attributes.
2093 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2094 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2095 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2096 .resetvalue = 0 },
2097 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2098 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2099 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2100 .resetvalue = 0 },
2101 /* For non-long-descriptor page tables these are PRRR and NMRR;
2102 * regardless they still act as reads-as-written for QEMU.
2104 /* MAIR0/1 are defined separately from their 64-bit counterpart which
2105 * allows them to assign the correct fieldoffset based on the endianness
2106 * handled in the field definitions.
2108 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2109 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
2110 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2111 offsetof(CPUARMState, cp15.mair0_ns) },
2112 .resetfn = arm_cp_reset_ignore },
2113 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2114 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
2115 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2116 offsetof(CPUARMState, cp15.mair1_ns) },
2117 .resetfn = arm_cp_reset_ignore },
2118 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2119 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2120 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2121 /* 32 bit ITLB invalidates */
2122 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2123 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
2124 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2125 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2126 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2127 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
2128 /* 32 bit DTLB invalidates */
2129 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2130 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
2131 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2132 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2133 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2134 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
2135 /* 32 bit TLB invalidates */
2136 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2137 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
2138 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2139 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2140 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2141 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
2142 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2143 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
2144 REGINFO_SENTINEL
2147 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2148 /* 32 bit TLB invalidates, Inner Shareable */
2149 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2150 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
2151 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2152 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
2153 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2154 .type = ARM_CP_NO_RAW, .access = PL1_W,
2155 .writefn = tlbiasid_is_write },
2156 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2157 .type = ARM_CP_NO_RAW, .access = PL1_W,
2158 .writefn = tlbimvaa_is_write },
2159 REGINFO_SENTINEL
2162 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2163 /* PMOVSSET is not implemented in v7 before v7ve */
2164 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2165 .access = PL0_RW, .accessfn = pmreg_access,
2166 .type = ARM_CP_ALIAS | ARM_CP_IO,
2167 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2168 .writefn = pmovsset_write,
2169 .raw_writefn = raw_write },
2170 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2171 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2172 .access = PL0_RW, .accessfn = pmreg_access,
2173 .type = ARM_CP_ALIAS | ARM_CP_IO,
2174 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2175 .writefn = pmovsset_write,
2176 .raw_writefn = raw_write },
2177 REGINFO_SENTINEL
2180 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2181 uint64_t value)
2183 value &= 1;
2184 env->teecr = value;
2187 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2188 bool isread)
2190 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2191 return CP_ACCESS_TRAP;
2193 return CP_ACCESS_OK;
2196 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2197 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2198 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2199 .resetvalue = 0,
2200 .writefn = teecr_write },
2201 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2202 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2203 .accessfn = teehbr_access, .resetvalue = 0 },
2204 REGINFO_SENTINEL
2207 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2208 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2209 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2210 .access = PL0_RW,
2211 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2212 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2213 .access = PL0_RW,
2214 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2215 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2216 .resetfn = arm_cp_reset_ignore },
2217 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2218 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2219 .access = PL0_R|PL1_W,
2220 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2221 .resetvalue = 0},
2222 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2223 .access = PL0_R|PL1_W,
2224 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2225 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2226 .resetfn = arm_cp_reset_ignore },
2227 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2228 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2229 .access = PL1_RW,
2230 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2231 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2232 .access = PL1_RW,
2233 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2234 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2235 .resetvalue = 0 },
2236 REGINFO_SENTINEL
2239 #ifndef CONFIG_USER_ONLY
2241 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2242 bool isread)
2244 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2245 * Writable only at the highest implemented exception level.
2247 int el = arm_current_el(env);
2249 switch (el) {
2250 case 0:
2251 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
2252 return CP_ACCESS_TRAP;
2254 break;
2255 case 1:
2256 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2257 arm_is_secure_below_el3(env)) {
2258 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2259 return CP_ACCESS_TRAP_UNCATEGORIZED;
2261 break;
2262 case 2:
2263 case 3:
2264 break;
2267 if (!isread && el < arm_highest_el(env)) {
2268 return CP_ACCESS_TRAP_UNCATEGORIZED;
2271 return CP_ACCESS_OK;
2274 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2275 bool isread)
2277 unsigned int cur_el = arm_current_el(env);
2278 bool secure = arm_is_secure(env);
2280 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
2281 if (cur_el == 0 &&
2282 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2283 return CP_ACCESS_TRAP;
2286 if (arm_feature(env, ARM_FEATURE_EL2) &&
2287 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
2288 !extract32(env->cp15.cnthctl_el2, 0, 1)) {
2289 return CP_ACCESS_TRAP_EL2;
2291 return CP_ACCESS_OK;
2294 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2295 bool isread)
2297 unsigned int cur_el = arm_current_el(env);
2298 bool secure = arm_is_secure(env);
2300 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
2301 * EL0[PV]TEN is zero.
2303 if (cur_el == 0 &&
2304 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2305 return CP_ACCESS_TRAP;
2308 if (arm_feature(env, ARM_FEATURE_EL2) &&
2309 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
2310 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2311 return CP_ACCESS_TRAP_EL2;
2313 return CP_ACCESS_OK;
2316 static CPAccessResult gt_pct_access(CPUARMState *env,
2317 const ARMCPRegInfo *ri,
2318 bool isread)
2320 return gt_counter_access(env, GTIMER_PHYS, isread);
2323 static CPAccessResult gt_vct_access(CPUARMState *env,
2324 const ARMCPRegInfo *ri,
2325 bool isread)
2327 return gt_counter_access(env, GTIMER_VIRT, isread);
2330 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2331 bool isread)
2333 return gt_timer_access(env, GTIMER_PHYS, isread);
2336 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2337 bool isread)
2339 return gt_timer_access(env, GTIMER_VIRT, isread);
2342 static CPAccessResult gt_stimer_access(CPUARMState *env,
2343 const ARMCPRegInfo *ri,
2344 bool isread)
2346 /* The AArch64 register view of the secure physical timer is
2347 * always accessible from EL3, and configurably accessible from
2348 * Secure EL1.
2350 switch (arm_current_el(env)) {
2351 case 1:
2352 if (!arm_is_secure(env)) {
2353 return CP_ACCESS_TRAP;
2355 if (!(env->cp15.scr_el3 & SCR_ST)) {
2356 return CP_ACCESS_TRAP_EL3;
2358 return CP_ACCESS_OK;
2359 case 0:
2360 case 2:
2361 return CP_ACCESS_TRAP;
2362 case 3:
2363 return CP_ACCESS_OK;
2364 default:
2365 g_assert_not_reached();
2369 static uint64_t gt_get_countervalue(CPUARMState *env)
2371 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
2374 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2376 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2378 if (gt->ctl & 1) {
2379 /* Timer enabled: calculate and set current ISTATUS, irq, and
2380 * reset timer to when ISTATUS next has to change
2382 uint64_t offset = timeridx == GTIMER_VIRT ?
2383 cpu->env.cp15.cntvoff_el2 : 0;
2384 uint64_t count = gt_get_countervalue(&cpu->env);
2385 /* Note that this must be unsigned 64 bit arithmetic: */
2386 int istatus = count - offset >= gt->cval;
2387 uint64_t nexttick;
2388 int irqstate;
2390 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2392 irqstate = (istatus && !(gt->ctl & 2));
2393 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2395 if (istatus) {
2396 /* Next transition is when count rolls back over to zero */
2397 nexttick = UINT64_MAX;
2398 } else {
2399 /* Next transition is when we hit cval */
2400 nexttick = gt->cval + offset;
2402 /* Note that the desired next expiry time might be beyond the
2403 * signed-64-bit range of a QEMUTimer -- in this case we just
2404 * set the timer for as far in the future as possible. When the
2405 * timer expires we will reset the timer for any remaining period.
2407 if (nexttick > INT64_MAX / GTIMER_SCALE) {
2408 nexttick = INT64_MAX / GTIMER_SCALE;
2410 timer_mod(cpu->gt_timer[timeridx], nexttick);
2411 trace_arm_gt_recalc(timeridx, irqstate, nexttick);
2412 } else {
2413 /* Timer disabled: ISTATUS and timer output always clear */
2414 gt->ctl &= ~4;
2415 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
2416 timer_del(cpu->gt_timer[timeridx]);
2417 trace_arm_gt_recalc_disabled(timeridx);
2421 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2422 int timeridx)
2424 ARMCPU *cpu = arm_env_get_cpu(env);
2426 timer_del(cpu->gt_timer[timeridx]);
2429 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2431 return gt_get_countervalue(env);
2434 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2436 return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
2439 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2440 int timeridx,
2441 uint64_t value)
2443 trace_arm_gt_cval_write(timeridx, value);
2444 env->cp15.c14_timer[timeridx].cval = value;
2445 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
2448 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2449 int timeridx)
2451 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
2453 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2454 (gt_get_countervalue(env) - offset));
2457 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2458 int timeridx,
2459 uint64_t value)
2461 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
2463 trace_arm_gt_tval_write(timeridx, value);
2464 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2465 sextract64(value, 0, 32);
2466 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
2469 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2470 int timeridx,
2471 uint64_t value)
2473 ARMCPU *cpu = arm_env_get_cpu(env);
2474 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2476 trace_arm_gt_ctl_write(timeridx, value);
2477 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2478 if ((oldval ^ value) & 1) {
2479 /* Enable toggled */
2480 gt_recalc_timer(cpu, timeridx);
2481 } else if ((oldval ^ value) & 2) {
2482 /* IMASK toggled: don't need to recalculate,
2483 * just set the interrupt line based on ISTATUS
2485 int irqstate = (oldval & 4) && !(value & 2);
2487 trace_arm_gt_imask_toggle(timeridx, irqstate);
2488 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2492 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2494 gt_timer_reset(env, ri, GTIMER_PHYS);
2497 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2498 uint64_t value)
2500 gt_cval_write(env, ri, GTIMER_PHYS, value);
2503 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2505 return gt_tval_read(env, ri, GTIMER_PHYS);
2508 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2509 uint64_t value)
2511 gt_tval_write(env, ri, GTIMER_PHYS, value);
2514 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2515 uint64_t value)
2517 gt_ctl_write(env, ri, GTIMER_PHYS, value);
2520 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2522 gt_timer_reset(env, ri, GTIMER_VIRT);
2525 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2526 uint64_t value)
2528 gt_cval_write(env, ri, GTIMER_VIRT, value);
2531 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2533 return gt_tval_read(env, ri, GTIMER_VIRT);
2536 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2537 uint64_t value)
2539 gt_tval_write(env, ri, GTIMER_VIRT, value);
2542 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2543 uint64_t value)
2545 gt_ctl_write(env, ri, GTIMER_VIRT, value);
2548 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2549 uint64_t value)
2551 ARMCPU *cpu = arm_env_get_cpu(env);
2553 trace_arm_gt_cntvoff_write(value);
2554 raw_write(env, ri, value);
2555 gt_recalc_timer(cpu, GTIMER_VIRT);
2558 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2560 gt_timer_reset(env, ri, GTIMER_HYP);
2563 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2564 uint64_t value)
2566 gt_cval_write(env, ri, GTIMER_HYP, value);
2569 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2571 return gt_tval_read(env, ri, GTIMER_HYP);
2574 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2575 uint64_t value)
2577 gt_tval_write(env, ri, GTIMER_HYP, value);
2580 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2581 uint64_t value)
2583 gt_ctl_write(env, ri, GTIMER_HYP, value);
2586 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2588 gt_timer_reset(env, ri, GTIMER_SEC);
2591 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2592 uint64_t value)
2594 gt_cval_write(env, ri, GTIMER_SEC, value);
2597 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2599 return gt_tval_read(env, ri, GTIMER_SEC);
2602 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2603 uint64_t value)
2605 gt_tval_write(env, ri, GTIMER_SEC, value);
2608 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2609 uint64_t value)
2611 gt_ctl_write(env, ri, GTIMER_SEC, value);
2614 void arm_gt_ptimer_cb(void *opaque)
2616 ARMCPU *cpu = opaque;
2618 gt_recalc_timer(cpu, GTIMER_PHYS);
2621 void arm_gt_vtimer_cb(void *opaque)
2623 ARMCPU *cpu = opaque;
2625 gt_recalc_timer(cpu, GTIMER_VIRT);
2628 void arm_gt_htimer_cb(void *opaque)
2630 ARMCPU *cpu = opaque;
2632 gt_recalc_timer(cpu, GTIMER_HYP);
2635 void arm_gt_stimer_cb(void *opaque)
2637 ARMCPU *cpu = opaque;
2639 gt_recalc_timer(cpu, GTIMER_SEC);
2642 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2643 /* Note that CNTFRQ is purely reads-as-written for the benefit
2644 * of software; writing it doesn't actually change the timer frequency.
2645 * Our reset value matches the fixed frequency we implement the timer at.
2647 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
2648 .type = ARM_CP_ALIAS,
2649 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2650 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
2652 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2653 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2654 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2655 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2656 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
2658 /* overall control: mostly access permissions */
2659 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
2660 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
2661 .access = PL1_RW,
2662 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
2663 .resetvalue = 0,
2665 /* per-timer control */
2666 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2667 .secure = ARM_CP_SECSTATE_NS,
2668 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
2669 .accessfn = gt_ptimer_access,
2670 .fieldoffset = offsetoflow32(CPUARMState,
2671 cp15.c14_timer[GTIMER_PHYS].ctl),
2672 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
2674 { .name = "CNTP_CTL_S",
2675 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2676 .secure = ARM_CP_SECSTATE_S,
2677 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
2678 .accessfn = gt_ptimer_access,
2679 .fieldoffset = offsetoflow32(CPUARMState,
2680 cp15.c14_timer[GTIMER_SEC].ctl),
2681 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2683 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
2684 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
2685 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
2686 .accessfn = gt_ptimer_access,
2687 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
2688 .resetvalue = 0,
2689 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
2691 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
2692 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
2693 .accessfn = gt_vtimer_access,
2694 .fieldoffset = offsetoflow32(CPUARMState,
2695 cp15.c14_timer[GTIMER_VIRT].ctl),
2696 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
2698 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
2699 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
2700 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
2701 .accessfn = gt_vtimer_access,
2702 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
2703 .resetvalue = 0,
2704 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
2706 /* TimerValue views: a 32 bit downcounting view of the underlying state */
2707 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2708 .secure = ARM_CP_SECSTATE_NS,
2709 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2710 .accessfn = gt_ptimer_access,
2711 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2713 { .name = "CNTP_TVAL_S",
2714 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2715 .secure = ARM_CP_SECSTATE_S,
2716 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2717 .accessfn = gt_ptimer_access,
2718 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
2720 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2721 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
2722 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2723 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
2724 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2726 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
2727 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2728 .accessfn = gt_vtimer_access,
2729 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2731 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2732 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
2733 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2734 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
2735 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2737 /* The counter itself */
2738 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
2739 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2740 .accessfn = gt_pct_access,
2741 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
2743 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
2744 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
2745 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2746 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
2748 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
2749 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2750 .accessfn = gt_vct_access,
2751 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
2753 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2754 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2755 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2756 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
2758 /* Comparison value, indicating when the timer goes off */
2759 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
2760 .secure = ARM_CP_SECSTATE_NS,
2761 .access = PL1_RW | PL0_R,
2762 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2763 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2764 .accessfn = gt_ptimer_access,
2765 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2767 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
2768 .secure = ARM_CP_SECSTATE_S,
2769 .access = PL1_RW | PL0_R,
2770 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2771 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2772 .accessfn = gt_ptimer_access,
2773 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2775 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2776 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
2777 .access = PL1_RW | PL0_R,
2778 .type = ARM_CP_IO,
2779 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2780 .resetvalue = 0, .accessfn = gt_ptimer_access,
2781 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2783 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
2784 .access = PL1_RW | PL0_R,
2785 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2786 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2787 .accessfn = gt_vtimer_access,
2788 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2790 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2791 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
2792 .access = PL1_RW | PL0_R,
2793 .type = ARM_CP_IO,
2794 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2795 .resetvalue = 0, .accessfn = gt_vtimer_access,
2796 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2798 /* Secure timer -- this is actually restricted to only EL3
2799 * and configurably Secure-EL1 via the accessfn.
2801 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
2802 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
2803 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
2804 .accessfn = gt_stimer_access,
2805 .readfn = gt_sec_tval_read,
2806 .writefn = gt_sec_tval_write,
2807 .resetfn = gt_sec_timer_reset,
2809 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
2810 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
2811 .type = ARM_CP_IO, .access = PL1_RW,
2812 .accessfn = gt_stimer_access,
2813 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
2814 .resetvalue = 0,
2815 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2817 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
2818 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
2819 .type = ARM_CP_IO, .access = PL1_RW,
2820 .accessfn = gt_stimer_access,
2821 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2822 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2824 REGINFO_SENTINEL
2827 #else
2829 /* In user-mode most of the generic timer registers are inaccessible
2830 * however modern kernels (4.12+) allow access to cntvct_el0
2833 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2835 /* Currently we have no support for QEMUTimer in linux-user so we
2836 * can't call gt_get_countervalue(env), instead we directly
2837 * call the lower level functions.
2839 return cpu_get_clock() / GTIMER_SCALE;
2842 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2843 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2844 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2845 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
2846 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2847 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
2849 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2850 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2851 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2852 .readfn = gt_virt_cnt_read,
2854 REGINFO_SENTINEL
2857 #endif
2859 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2861 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2862 raw_write(env, ri, value);
2863 } else if (arm_feature(env, ARM_FEATURE_V7)) {
2864 raw_write(env, ri, value & 0xfffff6ff);
2865 } else {
2866 raw_write(env, ri, value & 0xfffff1ff);
2870 #ifndef CONFIG_USER_ONLY
2871 /* get_phys_addr() isn't present for user-mode-only targets */
2873 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
2874 bool isread)
2876 if (ri->opc2 & 4) {
2877 /* The ATS12NSO* operations must trap to EL3 if executed in
2878 * Secure EL1 (which can only happen if EL3 is AArch64).
2879 * They are simply UNDEF if executed from NS EL1.
2880 * They function normally from EL2 or EL3.
2882 if (arm_current_el(env) == 1) {
2883 if (arm_is_secure_below_el3(env)) {
2884 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
2886 return CP_ACCESS_TRAP_UNCATEGORIZED;
2889 return CP_ACCESS_OK;
2892 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
2893 MMUAccessType access_type, ARMMMUIdx mmu_idx)
2895 hwaddr phys_addr;
2896 target_ulong page_size;
2897 int prot;
2898 bool ret;
2899 uint64_t par64;
2900 bool format64 = false;
2901 MemTxAttrs attrs = {};
2902 ARMMMUFaultInfo fi = {};
2903 ARMCacheAttrs cacheattrs = {};
2905 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
2906 &prot, &page_size, &fi, &cacheattrs);
2908 if (is_a64(env)) {
2909 format64 = true;
2910 } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
2912 * ATS1Cxx:
2913 * * TTBCR.EAE determines whether the result is returned using the
2914 * 32-bit or the 64-bit PAR format
2915 * * Instructions executed in Hyp mode always use the 64bit format
2917 * ATS1S2NSOxx uses the 64bit format if any of the following is true:
2918 * * The Non-secure TTBCR.EAE bit is set to 1
2919 * * The implementation includes EL2, and the value of HCR.VM is 1
2921 * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
2923 * ATS1Hx always uses the 64bit format.
2925 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
2927 if (arm_feature(env, ARM_FEATURE_EL2)) {
2928 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
2929 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
2930 } else {
2931 format64 |= arm_current_el(env) == 2;
2936 if (format64) {
2937 /* Create a 64-bit PAR */
2938 par64 = (1 << 11); /* LPAE bit always set */
2939 if (!ret) {
2940 par64 |= phys_addr & ~0xfffULL;
2941 if (!attrs.secure) {
2942 par64 |= (1 << 9); /* NS */
2944 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
2945 par64 |= cacheattrs.shareability << 7; /* SH */
2946 } else {
2947 uint32_t fsr = arm_fi_to_lfsc(&fi);
2949 par64 |= 1; /* F */
2950 par64 |= (fsr & 0x3f) << 1; /* FS */
2951 if (fi.stage2) {
2952 par64 |= (1 << 9); /* S */
2954 if (fi.s1ptw) {
2955 par64 |= (1 << 8); /* PTW */
2958 } else {
2959 /* fsr is a DFSR/IFSR value for the short descriptor
2960 * translation table format (with WnR always clear).
2961 * Convert it to a 32-bit PAR.
2963 if (!ret) {
2964 /* We do not set any attribute bits in the PAR */
2965 if (page_size == (1 << 24)
2966 && arm_feature(env, ARM_FEATURE_V7)) {
2967 par64 = (phys_addr & 0xff000000) | (1 << 1);
2968 } else {
2969 par64 = phys_addr & 0xfffff000;
2971 if (!attrs.secure) {
2972 par64 |= (1 << 9); /* NS */
2974 } else {
2975 uint32_t fsr = arm_fi_to_sfsc(&fi);
2977 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
2978 ((fsr & 0xf) << 1) | 1;
2981 return par64;
2984 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2986 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2987 uint64_t par64;
2988 ARMMMUIdx mmu_idx;
2989 int el = arm_current_el(env);
2990 bool secure = arm_is_secure_below_el3(env);
2992 switch (ri->opc2 & 6) {
2993 case 0:
2994 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
2995 switch (el) {
2996 case 3:
2997 mmu_idx = ARMMMUIdx_S1E3;
2998 break;
2999 case 2:
3000 mmu_idx = ARMMMUIdx_S1NSE1;
3001 break;
3002 case 1:
3003 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
3004 break;
3005 default:
3006 g_assert_not_reached();
3008 break;
3009 case 2:
3010 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3011 switch (el) {
3012 case 3:
3013 mmu_idx = ARMMMUIdx_S1SE0;
3014 break;
3015 case 2:
3016 mmu_idx = ARMMMUIdx_S1NSE0;
3017 break;
3018 case 1:
3019 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
3020 break;
3021 default:
3022 g_assert_not_reached();
3024 break;
3025 case 4:
3026 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3027 mmu_idx = ARMMMUIdx_S12NSE1;
3028 break;
3029 case 6:
3030 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3031 mmu_idx = ARMMMUIdx_S12NSE0;
3032 break;
3033 default:
3034 g_assert_not_reached();
3037 par64 = do_ats_write(env, value, access_type, mmu_idx);
3039 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3042 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3043 uint64_t value)
3045 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3046 uint64_t par64;
3048 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S1E2);
3050 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3053 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3054 bool isread)
3056 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
3057 return CP_ACCESS_TRAP;
3059 return CP_ACCESS_OK;
3062 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3063 uint64_t value)
3065 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3066 ARMMMUIdx mmu_idx;
3067 int secure = arm_is_secure_below_el3(env);
3069 switch (ri->opc2 & 6) {
3070 case 0:
3071 switch (ri->opc1) {
3072 case 0: /* AT S1E1R, AT S1E1W */
3073 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
3074 break;
3075 case 4: /* AT S1E2R, AT S1E2W */
3076 mmu_idx = ARMMMUIdx_S1E2;
3077 break;
3078 case 6: /* AT S1E3R, AT S1E3W */
3079 mmu_idx = ARMMMUIdx_S1E3;
3080 break;
3081 default:
3082 g_assert_not_reached();
3084 break;
3085 case 2: /* AT S1E0R, AT S1E0W */
3086 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
3087 break;
3088 case 4: /* AT S12E1R, AT S12E1W */
3089 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
3090 break;
3091 case 6: /* AT S12E0R, AT S12E0W */
3092 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
3093 break;
3094 default:
3095 g_assert_not_reached();
3098 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
3100 #endif
3102 static const ARMCPRegInfo vapa_cp_reginfo[] = {
3103 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3104 .access = PL1_RW, .resetvalue = 0,
3105 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3106 offsetoflow32(CPUARMState, cp15.par_ns) },
3107 .writefn = par_write },
3108 #ifndef CONFIG_USER_ONLY
3109 /* This underdecoding is safe because the reginfo is NO_RAW. */
3110 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3111 .access = PL1_W, .accessfn = ats_access,
3112 .writefn = ats_write, .type = ARM_CP_NO_RAW },
3113 #endif
3114 REGINFO_SENTINEL
3117 /* Return basic MPU access permission bits. */
3118 static uint32_t simple_mpu_ap_bits(uint32_t val)
3120 uint32_t ret;
3121 uint32_t mask;
3122 int i;
3123 ret = 0;
3124 mask = 3;
3125 for (i = 0; i < 16; i += 2) {
3126 ret |= (val >> i) & mask;
3127 mask <<= 2;
3129 return ret;
3132 /* Pad basic MPU access permission bits to extended format. */
3133 static uint32_t extended_mpu_ap_bits(uint32_t val)
3135 uint32_t ret;
3136 uint32_t mask;
3137 int i;
3138 ret = 0;
3139 mask = 3;
3140 for (i = 0; i < 16; i += 2) {
3141 ret |= (val & mask) << i;
3142 mask <<= 2;
3144 return ret;
3147 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3148 uint64_t value)
3150 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3153 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3155 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3158 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3159 uint64_t value)
3161 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3164 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3166 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3169 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3171 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3173 if (!u32p) {
3174 return 0;
3177 u32p += env->pmsav7.rnr[M_REG_NS];
3178 return *u32p;
3181 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3182 uint64_t value)
3184 ARMCPU *cpu = arm_env_get_cpu(env);
3185 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3187 if (!u32p) {
3188 return;
3191 u32p += env->pmsav7.rnr[M_REG_NS];
3192 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3193 *u32p = value;
3196 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3197 uint64_t value)
3199 ARMCPU *cpu = arm_env_get_cpu(env);
3200 uint32_t nrgs = cpu->pmsav7_dregion;
3202 if (value >= nrgs) {
3203 qemu_log_mask(LOG_GUEST_ERROR,
3204 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3205 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3206 return;
3209 raw_write(env, ri, value);
3212 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
3213 /* Reset for all these registers is handled in arm_cpu_reset(),
3214 * because the PMSAv7 is also used by M-profile CPUs, which do
3215 * not register cpregs but still need the state to be reset.
3217 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3218 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3219 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
3220 .readfn = pmsav7_read, .writefn = pmsav7_write,
3221 .resetfn = arm_cp_reset_ignore },
3222 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
3223 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3224 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
3225 .readfn = pmsav7_read, .writefn = pmsav7_write,
3226 .resetfn = arm_cp_reset_ignore },
3227 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
3228 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3229 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
3230 .readfn = pmsav7_read, .writefn = pmsav7_write,
3231 .resetfn = arm_cp_reset_ignore },
3232 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
3233 .access = PL1_RW,
3234 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
3235 .writefn = pmsav7_rgnr_write,
3236 .resetfn = arm_cp_reset_ignore },
3237 REGINFO_SENTINEL
3240 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
3241 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3242 .access = PL1_RW, .type = ARM_CP_ALIAS,
3243 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3244 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
3245 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3246 .access = PL1_RW, .type = ARM_CP_ALIAS,
3247 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3248 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
3249 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
3250 .access = PL1_RW,
3251 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3252 .resetvalue = 0, },
3253 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
3254 .access = PL1_RW,
3255 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3256 .resetvalue = 0, },
3257 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
3258 .access = PL1_RW,
3259 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
3260 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
3261 .access = PL1_RW,
3262 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
3263 /* Protection region base and size registers */
3264 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
3265 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3266 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
3267 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
3268 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3269 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
3270 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
3271 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3272 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
3273 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
3274 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3275 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
3276 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
3277 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3278 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
3279 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
3280 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3281 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
3282 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
3283 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3284 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
3285 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
3286 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3287 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
3288 REGINFO_SENTINEL
3291 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
3292 uint64_t value)
3294 TCR *tcr = raw_ptr(env, ri);
3295 int maskshift = extract32(value, 0, 3);
3297 if (!arm_feature(env, ARM_FEATURE_V8)) {
3298 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
3299 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
3300 * using Long-desciptor translation table format */
3301 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
3302 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
3303 /* In an implementation that includes the Security Extensions
3304 * TTBCR has additional fields PD0 [4] and PD1 [5] for
3305 * Short-descriptor translation table format.
3307 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
3308 } else {
3309 value &= TTBCR_N;
3313 /* Update the masks corresponding to the TCR bank being written
3314 * Note that we always calculate mask and base_mask, but
3315 * they are only used for short-descriptor tables (ie if EAE is 0);
3316 * for long-descriptor tables the TCR fields are used differently
3317 * and the mask and base_mask values are meaningless.
3319 tcr->raw_tcr = value;
3320 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
3321 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
3324 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3325 uint64_t value)
3327 ARMCPU *cpu = arm_env_get_cpu(env);
3328 TCR *tcr = raw_ptr(env, ri);
3330 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3331 /* With LPAE the TTBCR could result in a change of ASID
3332 * via the TTBCR.A1 bit, so do a TLB flush.
3334 tlb_flush(CPU(cpu));
3336 /* Preserve the high half of TCR_EL1, set via TTBCR2. */
3337 value = deposit64(tcr->raw_tcr, 0, 32, value);
3338 vmsa_ttbcr_raw_write(env, ri, value);
3341 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3343 TCR *tcr = raw_ptr(env, ri);
3345 /* Reset both the TCR as well as the masks corresponding to the bank of
3346 * the TCR being reset.
3348 tcr->raw_tcr = 0;
3349 tcr->mask = 0;
3350 tcr->base_mask = 0xffffc000u;
3353 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3354 uint64_t value)
3356 ARMCPU *cpu = arm_env_get_cpu(env);
3357 TCR *tcr = raw_ptr(env, ri);
3359 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
3360 tlb_flush(CPU(cpu));
3361 tcr->raw_tcr = value;
3364 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3365 uint64_t value)
3367 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */
3368 if (cpreg_field_is_64bit(ri) &&
3369 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
3370 ARMCPU *cpu = arm_env_get_cpu(env);
3371 tlb_flush(CPU(cpu));
3373 raw_write(env, ri, value);
3376 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3377 uint64_t value)
3379 ARMCPU *cpu = arm_env_get_cpu(env);
3380 CPUState *cs = CPU(cpu);
3382 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */
3383 if (raw_read(env, ri) != value) {
3384 tlb_flush_by_mmuidx(cs,
3385 ARMMMUIdxBit_S12NSE1 |
3386 ARMMMUIdxBit_S12NSE0 |
3387 ARMMMUIdxBit_S2NS);
3388 raw_write(env, ri, value);
3392 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
3393 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3394 .access = PL1_RW, .type = ARM_CP_ALIAS,
3395 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
3396 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
3397 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3398 .access = PL1_RW, .resetvalue = 0,
3399 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
3400 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
3401 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
3402 .access = PL1_RW, .resetvalue = 0,
3403 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
3404 offsetof(CPUARMState, cp15.dfar_ns) } },
3405 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
3406 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
3407 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
3408 .resetvalue = 0, },
3409 REGINFO_SENTINEL
3412 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
3413 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
3414 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
3415 .access = PL1_RW,
3416 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
3417 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
3418 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
3419 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
3420 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
3421 offsetof(CPUARMState, cp15.ttbr0_ns) } },
3422 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
3423 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
3424 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
3425 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
3426 offsetof(CPUARMState, cp15.ttbr1_ns) } },
3427 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
3428 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3429 .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
3430 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
3431 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
3432 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3433 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
3434 .raw_writefn = vmsa_ttbcr_raw_write,
3435 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
3436 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
3437 REGINFO_SENTINEL
3440 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
3441 * qemu tlbs nor adjusting cached masks.
3443 static const ARMCPRegInfo ttbcr2_reginfo = {
3444 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
3445 .access = PL1_RW, .type = ARM_CP_ALIAS,
3446 .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
3447 offsetofhigh32(CPUARMState, cp15.tcr_el[1]) },
3450 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
3451 uint64_t value)
3453 env->cp15.c15_ticonfig = value & 0xe7;
3454 /* The OS_TYPE bit in this register changes the reported CPUID! */
3455 env->cp15.c0_cpuid = (value & (1 << 5)) ?
3456 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
3459 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
3460 uint64_t value)
3462 env->cp15.c15_threadid = value & 0xffff;
3465 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
3466 uint64_t value)
3468 /* Wait-for-interrupt (deprecated) */
3469 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
3472 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
3473 uint64_t value)
3475 /* On OMAP there are registers indicating the max/min index of dcache lines
3476 * containing a dirty line; cache flush operations have to reset these.
3478 env->cp15.c15_i_max = 0x000;
3479 env->cp15.c15_i_min = 0xff0;
3482 static const ARMCPRegInfo omap_cp_reginfo[] = {
3483 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
3484 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
3485 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
3486 .resetvalue = 0, },
3487 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
3488 .access = PL1_RW, .type = ARM_CP_NOP },
3489 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
3490 .access = PL1_RW,
3491 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
3492 .writefn = omap_ticonfig_write },
3493 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
3494 .access = PL1_RW,
3495 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
3496 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
3497 .access = PL1_RW, .resetvalue = 0xff0,
3498 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
3499 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
3500 .access = PL1_RW,
3501 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
3502 .writefn = omap_threadid_write },
3503 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
3504 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3505 .type = ARM_CP_NO_RAW,
3506 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
3507 /* TODO: Peripheral port remap register:
3508 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
3509 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
3510 * when MMU is off.
3512 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
3513 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
3514 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
3515 .writefn = omap_cachemaint_write },
3516 { .name = "C9", .cp = 15, .crn = 9,
3517 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
3518 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
3519 REGINFO_SENTINEL
3522 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3523 uint64_t value)
3525 env->cp15.c15_cpar = value & 0x3fff;
3528 static const ARMCPRegInfo xscale_cp_reginfo[] = {
3529 { .name = "XSCALE_CPAR",
3530 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3531 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
3532 .writefn = xscale_cpar_write, },
3533 { .name = "XSCALE_AUXCR",
3534 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
3535 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
3536 .resetvalue = 0, },
3537 /* XScale specific cache-lockdown: since we have no cache we NOP these
3538 * and hope the guest does not really rely on cache behaviour.
3540 { .name = "XSCALE_LOCK_ICACHE_LINE",
3541 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
3542 .access = PL1_W, .type = ARM_CP_NOP },
3543 { .name = "XSCALE_UNLOCK_ICACHE",
3544 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
3545 .access = PL1_W, .type = ARM_CP_NOP },
3546 { .name = "XSCALE_DCACHE_LOCK",
3547 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
3548 .access = PL1_RW, .type = ARM_CP_NOP },
3549 { .name = "XSCALE_UNLOCK_DCACHE",
3550 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
3551 .access = PL1_W, .type = ARM_CP_NOP },
3552 REGINFO_SENTINEL
3555 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
3556 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
3557 * implementation of this implementation-defined space.
3558 * Ideally this should eventually disappear in favour of actually
3559 * implementing the correct behaviour for all cores.
3561 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
3562 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3563 .access = PL1_RW,
3564 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
3565 .resetvalue = 0 },
3566 REGINFO_SENTINEL
3569 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
3570 /* Cache status: RAZ because we have no cache so it's always clean */
3571 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
3572 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3573 .resetvalue = 0 },
3574 REGINFO_SENTINEL
3577 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
3578 /* We never have a a block transfer operation in progress */
3579 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
3580 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3581 .resetvalue = 0 },
3582 /* The cache ops themselves: these all NOP for QEMU */
3583 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
3584 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3585 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
3586 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3587 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
3588 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3589 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
3590 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3591 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
3592 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3593 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
3594 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3595 REGINFO_SENTINEL
3598 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
3599 /* The cache test-and-clean instructions always return (1 << 30)
3600 * to indicate that there are no dirty cache lines.
3602 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
3603 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3604 .resetvalue = (1 << 30) },
3605 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
3606 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3607 .resetvalue = (1 << 30) },
3608 REGINFO_SENTINEL
3611 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
3612 /* Ignore ReadBuffer accesses */
3613 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
3614 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3615 .access = PL1_RW, .resetvalue = 0,
3616 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
3617 REGINFO_SENTINEL
3620 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3622 ARMCPU *cpu = arm_env_get_cpu(env);
3623 unsigned int cur_el = arm_current_el(env);
3624 bool secure = arm_is_secure(env);
3626 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
3627 return env->cp15.vpidr_el2;
3629 return raw_read(env, ri);
3632 static uint64_t mpidr_read_val(CPUARMState *env)
3634 ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
3635 uint64_t mpidr = cpu->mp_affinity;
3637 if (arm_feature(env, ARM_FEATURE_V7MP)) {
3638 mpidr |= (1U << 31);
3639 /* Cores which are uniprocessor (non-coherent)
3640 * but still implement the MP extensions set
3641 * bit 30. (For instance, Cortex-R5).
3643 if (cpu->mp_is_up) {
3644 mpidr |= (1u << 30);
3647 return mpidr;
3650 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3652 unsigned int cur_el = arm_current_el(env);
3653 bool secure = arm_is_secure(env);
3655 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
3656 return env->cp15.vmpidr_el2;
3658 return mpidr_read_val(env);
3661 static const ARMCPRegInfo lpae_cp_reginfo[] = {
3662 /* NOP AMAIR0/1 */
3663 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
3664 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
3665 .access = PL1_RW, .type = ARM_CP_CONST,
3666 .resetvalue = 0 },
3667 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
3668 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
3669 .access = PL1_RW, .type = ARM_CP_CONST,
3670 .resetvalue = 0 },
3671 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
3672 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
3673 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
3674 offsetof(CPUARMState, cp15.par_ns)} },
3675 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
3676 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3677 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
3678 offsetof(CPUARMState, cp15.ttbr0_ns) },
3679 .writefn = vmsa_ttbr_write, },
3680 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
3681 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3682 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
3683 offsetof(CPUARMState, cp15.ttbr1_ns) },
3684 .writefn = vmsa_ttbr_write, },
3685 REGINFO_SENTINEL
3688 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3690 return vfp_get_fpcr(env);
3693 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3694 uint64_t value)
3696 vfp_set_fpcr(env, value);
3699 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3701 return vfp_get_fpsr(env);
3704 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3705 uint64_t value)
3707 vfp_set_fpsr(env, value);
3710 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
3711 bool isread)
3713 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
3714 return CP_ACCESS_TRAP;
3716 return CP_ACCESS_OK;
3719 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
3720 uint64_t value)
3722 env->daif = value & PSTATE_DAIF;
3725 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
3726 const ARMCPRegInfo *ri,
3727 bool isread)
3729 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
3730 * SCTLR_EL1.UCI is set.
3732 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
3733 return CP_ACCESS_TRAP;
3735 return CP_ACCESS_OK;
3738 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
3739 * Page D4-1736 (DDI0487A.b)
3742 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3743 uint64_t value)
3745 CPUState *cs = ENV_GET_CPU(env);
3746 bool sec = arm_is_secure_below_el3(env);
3748 if (sec) {
3749 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3750 ARMMMUIdxBit_S1SE1 |
3751 ARMMMUIdxBit_S1SE0);
3752 } else {
3753 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3754 ARMMMUIdxBit_S12NSE1 |
3755 ARMMMUIdxBit_S12NSE0);
3759 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3760 uint64_t value)
3762 CPUState *cs = ENV_GET_CPU(env);
3764 if (tlb_force_broadcast(env)) {
3765 tlbi_aa64_vmalle1is_write(env, NULL, value);
3766 return;
3769 if (arm_is_secure_below_el3(env)) {
3770 tlb_flush_by_mmuidx(cs,
3771 ARMMMUIdxBit_S1SE1 |
3772 ARMMMUIdxBit_S1SE0);
3773 } else {
3774 tlb_flush_by_mmuidx(cs,
3775 ARMMMUIdxBit_S12NSE1 |
3776 ARMMMUIdxBit_S12NSE0);
3780 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3781 uint64_t value)
3783 /* Note that the 'ALL' scope must invalidate both stage 1 and
3784 * stage 2 translations, whereas most other scopes only invalidate
3785 * stage 1 translations.
3787 ARMCPU *cpu = arm_env_get_cpu(env);
3788 CPUState *cs = CPU(cpu);
3790 if (arm_is_secure_below_el3(env)) {
3791 tlb_flush_by_mmuidx(cs,
3792 ARMMMUIdxBit_S1SE1 |
3793 ARMMMUIdxBit_S1SE0);
3794 } else {
3795 if (arm_feature(env, ARM_FEATURE_EL2)) {
3796 tlb_flush_by_mmuidx(cs,
3797 ARMMMUIdxBit_S12NSE1 |
3798 ARMMMUIdxBit_S12NSE0 |
3799 ARMMMUIdxBit_S2NS);
3800 } else {
3801 tlb_flush_by_mmuidx(cs,
3802 ARMMMUIdxBit_S12NSE1 |
3803 ARMMMUIdxBit_S12NSE0);
3808 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3809 uint64_t value)
3811 ARMCPU *cpu = arm_env_get_cpu(env);
3812 CPUState *cs = CPU(cpu);
3814 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
3817 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3818 uint64_t value)
3820 ARMCPU *cpu = arm_env_get_cpu(env);
3821 CPUState *cs = CPU(cpu);
3823 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3);
3826 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3827 uint64_t value)
3829 /* Note that the 'ALL' scope must invalidate both stage 1 and
3830 * stage 2 translations, whereas most other scopes only invalidate
3831 * stage 1 translations.
3833 CPUState *cs = ENV_GET_CPU(env);
3834 bool sec = arm_is_secure_below_el3(env);
3835 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
3837 if (sec) {
3838 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3839 ARMMMUIdxBit_S1SE1 |
3840 ARMMMUIdxBit_S1SE0);
3841 } else if (has_el2) {
3842 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3843 ARMMMUIdxBit_S12NSE1 |
3844 ARMMMUIdxBit_S12NSE0 |
3845 ARMMMUIdxBit_S2NS);
3846 } else {
3847 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3848 ARMMMUIdxBit_S12NSE1 |
3849 ARMMMUIdxBit_S12NSE0);
3853 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3854 uint64_t value)
3856 CPUState *cs = ENV_GET_CPU(env);
3858 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
3861 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3862 uint64_t value)
3864 CPUState *cs = ENV_GET_CPU(env);
3866 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3);
3869 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3870 uint64_t value)
3872 /* Invalidate by VA, EL2
3873 * Currently handles both VAE2 and VALE2, since we don't support
3874 * flush-last-level-only.
3876 ARMCPU *cpu = arm_env_get_cpu(env);
3877 CPUState *cs = CPU(cpu);
3878 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3880 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
3883 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3884 uint64_t value)
3886 /* Invalidate by VA, EL3
3887 * Currently handles both VAE3 and VALE3, since we don't support
3888 * flush-last-level-only.
3890 ARMCPU *cpu = arm_env_get_cpu(env);
3891 CPUState *cs = CPU(cpu);
3892 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3894 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3);
3897 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3898 uint64_t value)
3900 ARMCPU *cpu = arm_env_get_cpu(env);
3901 CPUState *cs = CPU(cpu);
3902 bool sec = arm_is_secure_below_el3(env);
3903 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3905 if (sec) {
3906 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3907 ARMMMUIdxBit_S1SE1 |
3908 ARMMMUIdxBit_S1SE0);
3909 } else {
3910 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3911 ARMMMUIdxBit_S12NSE1 |
3912 ARMMMUIdxBit_S12NSE0);
3916 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3917 uint64_t value)
3919 /* Invalidate by VA, EL1&0 (AArch64 version).
3920 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
3921 * since we don't support flush-for-specific-ASID-only or
3922 * flush-last-level-only.
3924 ARMCPU *cpu = arm_env_get_cpu(env);
3925 CPUState *cs = CPU(cpu);
3926 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3928 if (tlb_force_broadcast(env)) {
3929 tlbi_aa64_vae1is_write(env, NULL, value);
3930 return;
3933 if (arm_is_secure_below_el3(env)) {
3934 tlb_flush_page_by_mmuidx(cs, pageaddr,
3935 ARMMMUIdxBit_S1SE1 |
3936 ARMMMUIdxBit_S1SE0);
3937 } else {
3938 tlb_flush_page_by_mmuidx(cs, pageaddr,
3939 ARMMMUIdxBit_S12NSE1 |
3940 ARMMMUIdxBit_S12NSE0);
3944 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3945 uint64_t value)
3947 CPUState *cs = ENV_GET_CPU(env);
3948 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3950 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3951 ARMMMUIdxBit_S1E2);
3954 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3955 uint64_t value)
3957 CPUState *cs = ENV_GET_CPU(env);
3958 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3960 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3961 ARMMMUIdxBit_S1E3);
3964 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3965 uint64_t value)
3967 /* Invalidate by IPA. This has to invalidate any structures that
3968 * contain only stage 2 translation information, but does not need
3969 * to apply to structures that contain combined stage 1 and stage 2
3970 * translation information.
3971 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
3973 ARMCPU *cpu = arm_env_get_cpu(env);
3974 CPUState *cs = CPU(cpu);
3975 uint64_t pageaddr;
3977 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3978 return;
3981 pageaddr = sextract64(value << 12, 0, 48);
3983 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
3986 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3987 uint64_t value)
3989 CPUState *cs = ENV_GET_CPU(env);
3990 uint64_t pageaddr;
3992 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3993 return;
3996 pageaddr = sextract64(value << 12, 0, 48);
3998 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3999 ARMMMUIdxBit_S2NS);
4002 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
4003 bool isread)
4005 /* We don't implement EL2, so the only control on DC ZVA is the
4006 * bit in the SCTLR which can prohibit access for EL0.
4008 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
4009 return CP_ACCESS_TRAP;
4011 return CP_ACCESS_OK;
4014 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
4016 ARMCPU *cpu = arm_env_get_cpu(env);
4017 int dzp_bit = 1 << 4;
4019 /* DZP indicates whether DC ZVA access is allowed */
4020 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
4021 dzp_bit = 0;
4023 return cpu->dcz_blocksize | dzp_bit;
4026 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4027 bool isread)
4029 if (!(env->pstate & PSTATE_SP)) {
4030 /* Access to SP_EL0 is undefined if it's being used as
4031 * the stack pointer.
4033 return CP_ACCESS_TRAP_UNCATEGORIZED;
4035 return CP_ACCESS_OK;
4038 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
4040 return env->pstate & PSTATE_SP;
4043 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
4045 update_spsel(env, val);
4048 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4049 uint64_t value)
4051 ARMCPU *cpu = arm_env_get_cpu(env);
4053 if (raw_read(env, ri) == value) {
4054 /* Skip the TLB flush if nothing actually changed; Linux likes
4055 * to do a lot of pointless SCTLR writes.
4057 return;
4060 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
4061 /* M bit is RAZ/WI for PMSA with no MPU implemented */
4062 value &= ~SCTLR_M;
4065 raw_write(env, ri, value);
4066 /* ??? Lots of these bits are not implemented. */
4067 /* This may enable/disable the MMU, so do a TLB flush. */
4068 tlb_flush(CPU(cpu));
4071 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
4072 bool isread)
4074 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
4075 return CP_ACCESS_TRAP_FP_EL2;
4077 if (env->cp15.cptr_el[3] & CPTR_TFP) {
4078 return CP_ACCESS_TRAP_FP_EL3;
4080 return CP_ACCESS_OK;
4083 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4084 uint64_t value)
4086 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
4089 static const ARMCPRegInfo v8_cp_reginfo[] = {
4090 /* Minimal set of EL0-visible registers. This will need to be expanded
4091 * significantly for system emulation of AArch64 CPUs.
4093 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
4094 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
4095 .access = PL0_RW, .type = ARM_CP_NZCV },
4096 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
4097 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
4098 .type = ARM_CP_NO_RAW,
4099 .access = PL0_RW, .accessfn = aa64_daif_access,
4100 .fieldoffset = offsetof(CPUARMState, daif),
4101 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
4102 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
4103 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
4104 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4105 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
4106 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
4107 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
4108 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4109 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
4110 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
4111 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
4112 .access = PL0_R, .type = ARM_CP_NO_RAW,
4113 .readfn = aa64_dczid_read },
4114 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
4115 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
4116 .access = PL0_W, .type = ARM_CP_DC_ZVA,
4117 #ifndef CONFIG_USER_ONLY
4118 /* Avoid overhead of an access check that always passes in user-mode */
4119 .accessfn = aa64_zva_access,
4120 #endif
4122 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
4123 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
4124 .access = PL1_R, .type = ARM_CP_CURRENTEL },
4125 /* Cache ops: all NOPs since we don't emulate caches */
4126 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
4127 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4128 .access = PL1_W, .type = ARM_CP_NOP },
4129 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
4130 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4131 .access = PL1_W, .type = ARM_CP_NOP },
4132 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
4133 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
4134 .access = PL0_W, .type = ARM_CP_NOP,
4135 .accessfn = aa64_cacheop_access },
4136 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
4137 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4138 .access = PL1_W, .type = ARM_CP_NOP },
4139 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
4140 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4141 .access = PL1_W, .type = ARM_CP_NOP },
4142 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
4143 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
4144 .access = PL0_W, .type = ARM_CP_NOP,
4145 .accessfn = aa64_cacheop_access },
4146 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
4147 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4148 .access = PL1_W, .type = ARM_CP_NOP },
4149 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
4150 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
4151 .access = PL0_W, .type = ARM_CP_NOP,
4152 .accessfn = aa64_cacheop_access },
4153 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
4154 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
4155 .access = PL0_W, .type = ARM_CP_NOP,
4156 .accessfn = aa64_cacheop_access },
4157 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
4158 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4159 .access = PL1_W, .type = ARM_CP_NOP },
4160 /* TLBI operations */
4161 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
4162 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
4163 .access = PL1_W, .type = ARM_CP_NO_RAW,
4164 .writefn = tlbi_aa64_vmalle1is_write },
4165 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
4166 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
4167 .access = PL1_W, .type = ARM_CP_NO_RAW,
4168 .writefn = tlbi_aa64_vae1is_write },
4169 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
4170 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
4171 .access = PL1_W, .type = ARM_CP_NO_RAW,
4172 .writefn = tlbi_aa64_vmalle1is_write },
4173 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
4174 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
4175 .access = PL1_W, .type = ARM_CP_NO_RAW,
4176 .writefn = tlbi_aa64_vae1is_write },
4177 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
4178 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4179 .access = PL1_W, .type = ARM_CP_NO_RAW,
4180 .writefn = tlbi_aa64_vae1is_write },
4181 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
4182 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4183 .access = PL1_W, .type = ARM_CP_NO_RAW,
4184 .writefn = tlbi_aa64_vae1is_write },
4185 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
4186 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
4187 .access = PL1_W, .type = ARM_CP_NO_RAW,
4188 .writefn = tlbi_aa64_vmalle1_write },
4189 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
4190 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
4191 .access = PL1_W, .type = ARM_CP_NO_RAW,
4192 .writefn = tlbi_aa64_vae1_write },
4193 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
4194 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
4195 .access = PL1_W, .type = ARM_CP_NO_RAW,
4196 .writefn = tlbi_aa64_vmalle1_write },
4197 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
4198 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
4199 .access = PL1_W, .type = ARM_CP_NO_RAW,
4200 .writefn = tlbi_aa64_vae1_write },
4201 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
4202 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4203 .access = PL1_W, .type = ARM_CP_NO_RAW,
4204 .writefn = tlbi_aa64_vae1_write },
4205 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
4206 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4207 .access = PL1_W, .type = ARM_CP_NO_RAW,
4208 .writefn = tlbi_aa64_vae1_write },
4209 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
4210 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4211 .access = PL2_W, .type = ARM_CP_NO_RAW,
4212 .writefn = tlbi_aa64_ipas2e1is_write },
4213 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
4214 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4215 .access = PL2_W, .type = ARM_CP_NO_RAW,
4216 .writefn = tlbi_aa64_ipas2e1is_write },
4217 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
4218 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4219 .access = PL2_W, .type = ARM_CP_NO_RAW,
4220 .writefn = tlbi_aa64_alle1is_write },
4221 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
4222 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
4223 .access = PL2_W, .type = ARM_CP_NO_RAW,
4224 .writefn = tlbi_aa64_alle1is_write },
4225 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
4226 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4227 .access = PL2_W, .type = ARM_CP_NO_RAW,
4228 .writefn = tlbi_aa64_ipas2e1_write },
4229 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
4230 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4231 .access = PL2_W, .type = ARM_CP_NO_RAW,
4232 .writefn = tlbi_aa64_ipas2e1_write },
4233 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
4234 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4235 .access = PL2_W, .type = ARM_CP_NO_RAW,
4236 .writefn = tlbi_aa64_alle1_write },
4237 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
4238 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
4239 .access = PL2_W, .type = ARM_CP_NO_RAW,
4240 .writefn = tlbi_aa64_alle1is_write },
4241 #ifndef CONFIG_USER_ONLY
4242 /* 64 bit address translation operations */
4243 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
4244 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
4245 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4246 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
4247 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
4248 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4249 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
4250 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
4251 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4252 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
4253 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
4254 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4255 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
4256 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
4257 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4258 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
4259 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
4260 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4261 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
4262 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
4263 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4264 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
4265 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
4266 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4267 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
4268 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
4269 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
4270 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4271 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
4272 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
4273 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4274 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
4275 .type = ARM_CP_ALIAS,
4276 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
4277 .access = PL1_RW, .resetvalue = 0,
4278 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
4279 .writefn = par_write },
4280 #endif
4281 /* TLB invalidate last level of translation table walk */
4282 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4283 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
4284 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4285 .type = ARM_CP_NO_RAW, .access = PL1_W,
4286 .writefn = tlbimvaa_is_write },
4287 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4288 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
4289 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4290 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
4291 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
4292 .type = ARM_CP_NO_RAW, .access = PL2_W,
4293 .writefn = tlbimva_hyp_write },
4294 { .name = "TLBIMVALHIS",
4295 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
4296 .type = ARM_CP_NO_RAW, .access = PL2_W,
4297 .writefn = tlbimva_hyp_is_write },
4298 { .name = "TLBIIPAS2",
4299 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4300 .type = ARM_CP_NO_RAW, .access = PL2_W,
4301 .writefn = tlbiipas2_write },
4302 { .name = "TLBIIPAS2IS",
4303 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4304 .type = ARM_CP_NO_RAW, .access = PL2_W,
4305 .writefn = tlbiipas2_is_write },
4306 { .name = "TLBIIPAS2L",
4307 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4308 .type = ARM_CP_NO_RAW, .access = PL2_W,
4309 .writefn = tlbiipas2_write },
4310 { .name = "TLBIIPAS2LIS",
4311 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4312 .type = ARM_CP_NO_RAW, .access = PL2_W,
4313 .writefn = tlbiipas2_is_write },
4314 /* 32 bit cache operations */
4315 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4316 .type = ARM_CP_NOP, .access = PL1_W },
4317 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
4318 .type = ARM_CP_NOP, .access = PL1_W },
4319 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4320 .type = ARM_CP_NOP, .access = PL1_W },
4321 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
4322 .type = ARM_CP_NOP, .access = PL1_W },
4323 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
4324 .type = ARM_CP_NOP, .access = PL1_W },
4325 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
4326 .type = ARM_CP_NOP, .access = PL1_W },
4327 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4328 .type = ARM_CP_NOP, .access = PL1_W },
4329 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4330 .type = ARM_CP_NOP, .access = PL1_W },
4331 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
4332 .type = ARM_CP_NOP, .access = PL1_W },
4333 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4334 .type = ARM_CP_NOP, .access = PL1_W },
4335 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
4336 .type = ARM_CP_NOP, .access = PL1_W },
4337 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
4338 .type = ARM_CP_NOP, .access = PL1_W },
4339 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4340 .type = ARM_CP_NOP, .access = PL1_W },
4341 /* MMU Domain access control / MPU write buffer control */
4342 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
4343 .access = PL1_RW, .resetvalue = 0,
4344 .writefn = dacr_write, .raw_writefn = raw_write,
4345 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
4346 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
4347 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
4348 .type = ARM_CP_ALIAS,
4349 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
4350 .access = PL1_RW,
4351 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
4352 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
4353 .type = ARM_CP_ALIAS,
4354 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
4355 .access = PL1_RW,
4356 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
4357 /* We rely on the access checks not allowing the guest to write to the
4358 * state field when SPSel indicates that it's being used as the stack
4359 * pointer.
4361 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
4362 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
4363 .access = PL1_RW, .accessfn = sp_el0_access,
4364 .type = ARM_CP_ALIAS,
4365 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
4366 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
4367 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
4368 .access = PL2_RW, .type = ARM_CP_ALIAS,
4369 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
4370 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
4371 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
4372 .type = ARM_CP_NO_RAW,
4373 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
4374 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
4375 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
4376 .type = ARM_CP_ALIAS,
4377 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
4378 .access = PL2_RW, .accessfn = fpexc32_access },
4379 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
4380 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
4381 .access = PL2_RW, .resetvalue = 0,
4382 .writefn = dacr_write, .raw_writefn = raw_write,
4383 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
4384 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
4385 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
4386 .access = PL2_RW, .resetvalue = 0,
4387 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
4388 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
4389 .type = ARM_CP_ALIAS,
4390 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
4391 .access = PL2_RW,
4392 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
4393 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
4394 .type = ARM_CP_ALIAS,
4395 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
4396 .access = PL2_RW,
4397 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
4398 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
4399 .type = ARM_CP_ALIAS,
4400 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
4401 .access = PL2_RW,
4402 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
4403 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
4404 .type = ARM_CP_ALIAS,
4405 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
4406 .access = PL2_RW,
4407 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
4408 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
4409 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
4410 .resetvalue = 0,
4411 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
4412 { .name = "SDCR", .type = ARM_CP_ALIAS,
4413 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
4414 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4415 .writefn = sdcr_write,
4416 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
4417 REGINFO_SENTINEL
4420 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
4421 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
4422 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
4423 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
4424 .access = PL2_RW,
4425 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
4426 { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH,
4427 .type = ARM_CP_NO_RAW,
4428 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4429 .access = PL2_RW,
4430 .type = ARM_CP_CONST, .resetvalue = 0 },
4431 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
4432 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
4433 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4434 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
4435 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
4436 .access = PL2_RW,
4437 .type = ARM_CP_CONST, .resetvalue = 0 },
4438 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
4439 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
4440 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4441 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
4442 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
4443 .access = PL2_RW, .type = ARM_CP_CONST,
4444 .resetvalue = 0 },
4445 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
4446 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
4447 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4448 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
4449 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
4450 .access = PL2_RW, .type = ARM_CP_CONST,
4451 .resetvalue = 0 },
4452 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
4453 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
4454 .access = PL2_RW, .type = ARM_CP_CONST,
4455 .resetvalue = 0 },
4456 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
4457 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
4458 .access = PL2_RW, .type = ARM_CP_CONST,
4459 .resetvalue = 0 },
4460 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
4461 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
4462 .access = PL2_RW, .type = ARM_CP_CONST,
4463 .resetvalue = 0 },
4464 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
4465 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
4466 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4467 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
4468 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
4469 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4470 .type = ARM_CP_CONST, .resetvalue = 0 },
4471 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
4472 .cp = 15, .opc1 = 6, .crm = 2,
4473 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4474 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
4475 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
4476 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
4477 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4478 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
4479 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
4480 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4481 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4482 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
4483 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4484 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
4485 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
4486 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4487 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
4488 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
4489 .resetvalue = 0 },
4490 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
4491 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
4492 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4493 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
4494 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
4495 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4496 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
4497 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
4498 .resetvalue = 0 },
4499 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
4500 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
4501 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4502 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
4503 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
4504 .resetvalue = 0 },
4505 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
4506 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
4507 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4508 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
4509 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
4510 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4511 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
4512 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
4513 .access = PL2_RW, .accessfn = access_tda,
4514 .type = ARM_CP_CONST, .resetvalue = 0 },
4515 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
4516 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4517 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4518 .type = ARM_CP_CONST, .resetvalue = 0 },
4519 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
4520 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
4521 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4522 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
4523 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
4524 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4525 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
4526 .type = ARM_CP_CONST,
4527 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
4528 .access = PL2_RW, .resetvalue = 0 },
4529 REGINFO_SENTINEL
4532 /* Ditto, but for registers which exist in ARMv8 but not v7 */
4533 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = {
4534 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
4535 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
4536 .access = PL2_RW,
4537 .type = ARM_CP_CONST, .resetvalue = 0 },
4538 REGINFO_SENTINEL
4541 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
4543 ARMCPU *cpu = arm_env_get_cpu(env);
4544 uint64_t valid_mask = HCR_MASK;
4546 if (arm_feature(env, ARM_FEATURE_EL3)) {
4547 valid_mask &= ~HCR_HCD;
4548 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
4549 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
4550 * However, if we're using the SMC PSCI conduit then QEMU is
4551 * effectively acting like EL3 firmware and so the guest at
4552 * EL2 should retain the ability to prevent EL1 from being
4553 * able to make SMC calls into the ersatz firmware, so in
4554 * that case HCR.TSC should be read/write.
4556 valid_mask &= ~HCR_TSC;
4558 if (cpu_isar_feature(aa64_lor, cpu)) {
4559 valid_mask |= HCR_TLOR;
4561 if (cpu_isar_feature(aa64_pauth, cpu)) {
4562 valid_mask |= HCR_API | HCR_APK;
4565 /* Clear RES0 bits. */
4566 value &= valid_mask;
4568 /* These bits change the MMU setup:
4569 * HCR_VM enables stage 2 translation
4570 * HCR_PTW forbids certain page-table setups
4571 * HCR_DC Disables stage1 and enables stage2 translation
4573 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
4574 tlb_flush(CPU(cpu));
4576 env->cp15.hcr_el2 = value;
4579 * Updates to VI and VF require us to update the status of
4580 * virtual interrupts, which are the logical OR of these bits
4581 * and the state of the input lines from the GIC. (This requires
4582 * that we have the iothread lock, which is done by marking the
4583 * reginfo structs as ARM_CP_IO.)
4584 * Note that if a write to HCR pends a VIRQ or VFIQ it is never
4585 * possible for it to be taken immediately, because VIRQ and
4586 * VFIQ are masked unless running at EL0 or EL1, and HCR
4587 * can only be written at EL2.
4589 g_assert(qemu_mutex_iothread_locked());
4590 arm_cpu_update_virq(cpu);
4591 arm_cpu_update_vfiq(cpu);
4594 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
4595 uint64_t value)
4597 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
4598 value = deposit64(env->cp15.hcr_el2, 32, 32, value);
4599 hcr_write(env, NULL, value);
4602 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
4603 uint64_t value)
4605 /* Handle HCR write, i.e. write to low half of HCR_EL2 */
4606 value = deposit64(env->cp15.hcr_el2, 0, 32, value);
4607 hcr_write(env, NULL, value);
4611 * Return the effective value of HCR_EL2.
4612 * Bits that are not included here:
4613 * RW (read from SCR_EL3.RW as needed)
4615 uint64_t arm_hcr_el2_eff(CPUARMState *env)
4617 uint64_t ret = env->cp15.hcr_el2;
4619 if (arm_is_secure_below_el3(env)) {
4621 * "This register has no effect if EL2 is not enabled in the
4622 * current Security state". This is ARMv8.4-SecEL2 speak for
4623 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
4625 * Prior to that, the language was "In an implementation that
4626 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
4627 * as if this field is 0 for all purposes other than a direct
4628 * read or write access of HCR_EL2". With lots of enumeration
4629 * on a per-field basis. In current QEMU, this is condition
4630 * is arm_is_secure_below_el3.
4632 * Since the v8.4 language applies to the entire register, and
4633 * appears to be backward compatible, use that.
4635 ret = 0;
4636 } else if (ret & HCR_TGE) {
4637 /* These bits are up-to-date as of ARMv8.4. */
4638 if (ret & HCR_E2H) {
4639 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
4640 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
4641 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
4642 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE);
4643 } else {
4644 ret |= HCR_FMO | HCR_IMO | HCR_AMO;
4646 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
4647 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
4648 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
4649 HCR_TLOR);
4652 return ret;
4655 static const ARMCPRegInfo el2_cp_reginfo[] = {
4656 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
4657 .type = ARM_CP_IO,
4658 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4659 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
4660 .writefn = hcr_write },
4661 { .name = "HCR", .state = ARM_CP_STATE_AA32,
4662 .type = ARM_CP_ALIAS | ARM_CP_IO,
4663 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4664 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
4665 .writefn = hcr_writelow },
4666 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
4667 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
4668 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4669 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
4670 .type = ARM_CP_ALIAS,
4671 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
4672 .access = PL2_RW,
4673 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
4674 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
4675 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
4676 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
4677 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
4678 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
4679 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
4680 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
4681 .type = ARM_CP_ALIAS,
4682 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
4683 .access = PL2_RW,
4684 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
4685 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
4686 .type = ARM_CP_ALIAS,
4687 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
4688 .access = PL2_RW,
4689 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
4690 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
4691 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
4692 .access = PL2_RW, .writefn = vbar_write,
4693 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
4694 .resetvalue = 0 },
4695 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
4696 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
4697 .access = PL3_RW, .type = ARM_CP_ALIAS,
4698 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
4699 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
4700 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
4701 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
4702 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
4703 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
4704 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
4705 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
4706 .resetvalue = 0 },
4707 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
4708 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
4709 .access = PL2_RW, .type = ARM_CP_ALIAS,
4710 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
4711 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
4712 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
4713 .access = PL2_RW, .type = ARM_CP_CONST,
4714 .resetvalue = 0 },
4715 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
4716 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
4717 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
4718 .access = PL2_RW, .type = ARM_CP_CONST,
4719 .resetvalue = 0 },
4720 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
4721 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
4722 .access = PL2_RW, .type = ARM_CP_CONST,
4723 .resetvalue = 0 },
4724 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
4725 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
4726 .access = PL2_RW, .type = ARM_CP_CONST,
4727 .resetvalue = 0 },
4728 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
4729 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
4730 .access = PL2_RW,
4731 /* no .writefn needed as this can't cause an ASID change;
4732 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
4734 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
4735 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
4736 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
4737 .type = ARM_CP_ALIAS,
4738 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4739 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
4740 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
4741 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
4742 .access = PL2_RW,
4743 /* no .writefn needed as this can't cause an ASID change;
4744 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
4746 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
4747 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
4748 .cp = 15, .opc1 = 6, .crm = 2,
4749 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4750 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4751 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
4752 .writefn = vttbr_write },
4753 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
4754 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
4755 .access = PL2_RW, .writefn = vttbr_write,
4756 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
4757 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
4758 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
4759 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
4760 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
4761 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4762 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
4763 .access = PL2_RW, .resetvalue = 0,
4764 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
4765 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
4766 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
4767 .access = PL2_RW, .resetvalue = 0,
4768 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
4769 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
4770 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4771 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
4772 { .name = "TLBIALLNSNH",
4773 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4774 .type = ARM_CP_NO_RAW, .access = PL2_W,
4775 .writefn = tlbiall_nsnh_write },
4776 { .name = "TLBIALLNSNHIS",
4777 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4778 .type = ARM_CP_NO_RAW, .access = PL2_W,
4779 .writefn = tlbiall_nsnh_is_write },
4780 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
4781 .type = ARM_CP_NO_RAW, .access = PL2_W,
4782 .writefn = tlbiall_hyp_write },
4783 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
4784 .type = ARM_CP_NO_RAW, .access = PL2_W,
4785 .writefn = tlbiall_hyp_is_write },
4786 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
4787 .type = ARM_CP_NO_RAW, .access = PL2_W,
4788 .writefn = tlbimva_hyp_write },
4789 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
4790 .type = ARM_CP_NO_RAW, .access = PL2_W,
4791 .writefn = tlbimva_hyp_is_write },
4792 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
4793 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
4794 .type = ARM_CP_NO_RAW, .access = PL2_W,
4795 .writefn = tlbi_aa64_alle2_write },
4796 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
4797 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
4798 .type = ARM_CP_NO_RAW, .access = PL2_W,
4799 .writefn = tlbi_aa64_vae2_write },
4800 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
4801 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
4802 .access = PL2_W, .type = ARM_CP_NO_RAW,
4803 .writefn = tlbi_aa64_vae2_write },
4804 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
4805 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
4806 .access = PL2_W, .type = ARM_CP_NO_RAW,
4807 .writefn = tlbi_aa64_alle2is_write },
4808 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
4809 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
4810 .type = ARM_CP_NO_RAW, .access = PL2_W,
4811 .writefn = tlbi_aa64_vae2is_write },
4812 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
4813 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
4814 .access = PL2_W, .type = ARM_CP_NO_RAW,
4815 .writefn = tlbi_aa64_vae2is_write },
4816 #ifndef CONFIG_USER_ONLY
4817 /* Unlike the other EL2-related AT operations, these must
4818 * UNDEF from EL3 if EL2 is not implemented, which is why we
4819 * define them here rather than with the rest of the AT ops.
4821 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
4822 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
4823 .access = PL2_W, .accessfn = at_s1e2_access,
4824 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4825 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
4826 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
4827 .access = PL2_W, .accessfn = at_s1e2_access,
4828 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4829 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
4830 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
4831 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
4832 * to behave as if SCR.NS was 1.
4834 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
4835 .access = PL2_W,
4836 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
4837 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
4838 .access = PL2_W,
4839 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
4840 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
4841 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
4842 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
4843 * reset values as IMPDEF. We choose to reset to 3 to comply with
4844 * both ARMv7 and ARMv8.
4846 .access = PL2_RW, .resetvalue = 3,
4847 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
4848 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
4849 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
4850 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
4851 .writefn = gt_cntvoff_write,
4852 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
4853 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
4854 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
4855 .writefn = gt_cntvoff_write,
4856 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
4857 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
4858 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
4859 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
4860 .type = ARM_CP_IO, .access = PL2_RW,
4861 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
4862 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
4863 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
4864 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
4865 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
4866 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
4867 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
4868 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
4869 .resetfn = gt_hyp_timer_reset,
4870 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
4871 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
4872 .type = ARM_CP_IO,
4873 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
4874 .access = PL2_RW,
4875 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
4876 .resetvalue = 0,
4877 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
4878 #endif
4879 /* The only field of MDCR_EL2 that has a defined architectural reset value
4880 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
4881 * don't implement any PMU event counters, so using zero as a reset
4882 * value for MDCR_EL2 is okay
4884 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
4885 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
4886 .access = PL2_RW, .resetvalue = 0,
4887 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
4888 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
4889 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4890 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4891 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
4892 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
4893 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4894 .access = PL2_RW,
4895 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
4896 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
4897 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
4898 .access = PL2_RW,
4899 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
4900 REGINFO_SENTINEL
4903 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
4904 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
4905 .type = ARM_CP_ALIAS | ARM_CP_IO,
4906 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
4907 .access = PL2_RW,
4908 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
4909 .writefn = hcr_writehigh },
4910 REGINFO_SENTINEL
4913 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
4914 bool isread)
4916 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
4917 * At Secure EL1 it traps to EL3.
4919 if (arm_current_el(env) == 3) {
4920 return CP_ACCESS_OK;
4922 if (arm_is_secure_below_el3(env)) {
4923 return CP_ACCESS_TRAP_EL3;
4925 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
4926 if (isread) {
4927 return CP_ACCESS_OK;
4929 return CP_ACCESS_TRAP_UNCATEGORIZED;
4932 static const ARMCPRegInfo el3_cp_reginfo[] = {
4933 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
4934 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
4935 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
4936 .resetvalue = 0, .writefn = scr_write },
4937 { .name = "SCR", .type = ARM_CP_ALIAS,
4938 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
4939 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4940 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
4941 .writefn = scr_write },
4942 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
4943 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
4944 .access = PL3_RW, .resetvalue = 0,
4945 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
4946 { .name = "SDER",
4947 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
4948 .access = PL3_RW, .resetvalue = 0,
4949 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
4950 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4951 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4952 .writefn = vbar_write, .resetvalue = 0,
4953 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
4954 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
4955 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
4956 .access = PL3_RW, .resetvalue = 0,
4957 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
4958 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
4959 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
4960 .access = PL3_RW,
4961 /* no .writefn needed as this can't cause an ASID change;
4962 * we must provide a .raw_writefn and .resetfn because we handle
4963 * reset and migration for the AArch32 TTBCR(S), which might be
4964 * using mask and base_mask.
4966 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
4967 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
4968 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
4969 .type = ARM_CP_ALIAS,
4970 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
4971 .access = PL3_RW,
4972 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
4973 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
4974 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
4975 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
4976 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
4977 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
4978 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
4979 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
4980 .type = ARM_CP_ALIAS,
4981 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
4982 .access = PL3_RW,
4983 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
4984 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
4985 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
4986 .access = PL3_RW, .writefn = vbar_write,
4987 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
4988 .resetvalue = 0 },
4989 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
4990 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
4991 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
4992 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
4993 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
4994 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
4995 .access = PL3_RW, .resetvalue = 0,
4996 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
4997 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
4998 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
4999 .access = PL3_RW, .type = ARM_CP_CONST,
5000 .resetvalue = 0 },
5001 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
5002 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
5003 .access = PL3_RW, .type = ARM_CP_CONST,
5004 .resetvalue = 0 },
5005 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
5006 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
5007 .access = PL3_RW, .type = ARM_CP_CONST,
5008 .resetvalue = 0 },
5009 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
5010 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
5011 .access = PL3_W, .type = ARM_CP_NO_RAW,
5012 .writefn = tlbi_aa64_alle3is_write },
5013 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
5014 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
5015 .access = PL3_W, .type = ARM_CP_NO_RAW,
5016 .writefn = tlbi_aa64_vae3is_write },
5017 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
5018 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
5019 .access = PL3_W, .type = ARM_CP_NO_RAW,
5020 .writefn = tlbi_aa64_vae3is_write },
5021 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
5022 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
5023 .access = PL3_W, .type = ARM_CP_NO_RAW,
5024 .writefn = tlbi_aa64_alle3_write },
5025 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
5026 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
5027 .access = PL3_W, .type = ARM_CP_NO_RAW,
5028 .writefn = tlbi_aa64_vae3_write },
5029 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
5030 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
5031 .access = PL3_W, .type = ARM_CP_NO_RAW,
5032 .writefn = tlbi_aa64_vae3_write },
5033 REGINFO_SENTINEL
5036 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5037 bool isread)
5039 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
5040 * but the AArch32 CTR has its own reginfo struct)
5042 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
5043 return CP_ACCESS_TRAP;
5045 return CP_ACCESS_OK;
5048 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
5049 uint64_t value)
5051 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
5052 * read via a bit in OSLSR_EL1.
5054 int oslock;
5056 if (ri->state == ARM_CP_STATE_AA32) {
5057 oslock = (value == 0xC5ACCE55);
5058 } else {
5059 oslock = value & 1;
5062 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
5065 static const ARMCPRegInfo debug_cp_reginfo[] = {
5066 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
5067 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
5068 * unlike DBGDRAR it is never accessible from EL0.
5069 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
5070 * accessor.
5072 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
5073 .access = PL0_R, .accessfn = access_tdra,
5074 .type = ARM_CP_CONST, .resetvalue = 0 },
5075 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
5076 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
5077 .access = PL1_R, .accessfn = access_tdra,
5078 .type = ARM_CP_CONST, .resetvalue = 0 },
5079 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
5080 .access = PL0_R, .accessfn = access_tdra,
5081 .type = ARM_CP_CONST, .resetvalue = 0 },
5082 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
5083 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
5084 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
5085 .access = PL1_RW, .accessfn = access_tda,
5086 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
5087 .resetvalue = 0 },
5088 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
5089 * We don't implement the configurable EL0 access.
5091 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
5092 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
5093 .type = ARM_CP_ALIAS,
5094 .access = PL1_R, .accessfn = access_tda,
5095 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
5096 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
5097 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
5098 .access = PL1_W, .type = ARM_CP_NO_RAW,
5099 .accessfn = access_tdosa,
5100 .writefn = oslar_write },
5101 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
5102 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
5103 .access = PL1_R, .resetvalue = 10,
5104 .accessfn = access_tdosa,
5105 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
5106 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
5107 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
5108 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
5109 .access = PL1_RW, .accessfn = access_tdosa,
5110 .type = ARM_CP_NOP },
5111 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
5112 * implement vector catch debug events yet.
5114 { .name = "DBGVCR",
5115 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
5116 .access = PL1_RW, .accessfn = access_tda,
5117 .type = ARM_CP_NOP },
5118 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
5119 * to save and restore a 32-bit guest's DBGVCR)
5121 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
5122 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
5123 .access = PL2_RW, .accessfn = access_tda,
5124 .type = ARM_CP_NOP },
5125 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
5126 * Channel but Linux may try to access this register. The 32-bit
5127 * alias is DBGDCCINT.
5129 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
5130 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
5131 .access = PL1_RW, .accessfn = access_tda,
5132 .type = ARM_CP_NOP },
5133 REGINFO_SENTINEL
5136 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
5137 /* 64 bit access versions of the (dummy) debug registers */
5138 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
5139 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
5140 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
5141 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
5142 REGINFO_SENTINEL
5145 /* Return the exception level to which exceptions should be taken
5146 * via SVEAccessTrap. If an exception should be routed through
5147 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should
5148 * take care of raising that exception.
5149 * C.f. the ARM pseudocode function CheckSVEEnabled.
5151 int sve_exception_el(CPUARMState *env, int el)
5153 #ifndef CONFIG_USER_ONLY
5154 if (el <= 1) {
5155 bool disabled = false;
5157 /* The CPACR.ZEN controls traps to EL1:
5158 * 0, 2 : trap EL0 and EL1 accesses
5159 * 1 : trap only EL0 accesses
5160 * 3 : trap no accesses
5162 if (!extract32(env->cp15.cpacr_el1, 16, 1)) {
5163 disabled = true;
5164 } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) {
5165 disabled = el == 0;
5167 if (disabled) {
5168 /* route_to_el2 */
5169 return (arm_feature(env, ARM_FEATURE_EL2)
5170 && (arm_hcr_el2_eff(env) & HCR_TGE) ? 2 : 1);
5173 /* Check CPACR.FPEN. */
5174 if (!extract32(env->cp15.cpacr_el1, 20, 1)) {
5175 disabled = true;
5176 } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) {
5177 disabled = el == 0;
5179 if (disabled) {
5180 return 0;
5184 /* CPTR_EL2. Since TZ and TFP are positive,
5185 * they will be zero when EL2 is not present.
5187 if (el <= 2 && !arm_is_secure_below_el3(env)) {
5188 if (env->cp15.cptr_el[2] & CPTR_TZ) {
5189 return 2;
5191 if (env->cp15.cptr_el[2] & CPTR_TFP) {
5192 return 0;
5196 /* CPTR_EL3. Since EZ is negative we must check for EL3. */
5197 if (arm_feature(env, ARM_FEATURE_EL3)
5198 && !(env->cp15.cptr_el[3] & CPTR_EZ)) {
5199 return 3;
5201 #endif
5202 return 0;
5206 * Given that SVE is enabled, return the vector length for EL.
5208 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el)
5210 ARMCPU *cpu = arm_env_get_cpu(env);
5211 uint32_t zcr_len = cpu->sve_max_vq - 1;
5213 if (el <= 1) {
5214 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]);
5216 if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) {
5217 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
5219 if (el < 3 && arm_feature(env, ARM_FEATURE_EL3)) {
5220 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
5222 return zcr_len;
5225 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5226 uint64_t value)
5228 int cur_el = arm_current_el(env);
5229 int old_len = sve_zcr_len_for_el(env, cur_el);
5230 int new_len;
5232 /* Bits other than [3:0] are RAZ/WI. */
5233 raw_write(env, ri, value & 0xf);
5236 * Because we arrived here, we know both FP and SVE are enabled;
5237 * otherwise we would have trapped access to the ZCR_ELn register.
5239 new_len = sve_zcr_len_for_el(env, cur_el);
5240 if (new_len < old_len) {
5241 aarch64_sve_narrow_vq(env, new_len + 1);
5245 static const ARMCPRegInfo zcr_el1_reginfo = {
5246 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
5247 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
5248 .access = PL1_RW, .type = ARM_CP_SVE,
5249 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
5250 .writefn = zcr_write, .raw_writefn = raw_write
5253 static const ARMCPRegInfo zcr_el2_reginfo = {
5254 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
5255 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
5256 .access = PL2_RW, .type = ARM_CP_SVE,
5257 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
5258 .writefn = zcr_write, .raw_writefn = raw_write
5261 static const ARMCPRegInfo zcr_no_el2_reginfo = {
5262 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
5263 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
5264 .access = PL2_RW, .type = ARM_CP_SVE,
5265 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore
5268 static const ARMCPRegInfo zcr_el3_reginfo = {
5269 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
5270 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
5271 .access = PL3_RW, .type = ARM_CP_SVE,
5272 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
5273 .writefn = zcr_write, .raw_writefn = raw_write
5276 void hw_watchpoint_update(ARMCPU *cpu, int n)
5278 CPUARMState *env = &cpu->env;
5279 vaddr len = 0;
5280 vaddr wvr = env->cp15.dbgwvr[n];
5281 uint64_t wcr = env->cp15.dbgwcr[n];
5282 int mask;
5283 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
5285 if (env->cpu_watchpoint[n]) {
5286 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
5287 env->cpu_watchpoint[n] = NULL;
5290 if (!extract64(wcr, 0, 1)) {
5291 /* E bit clear : watchpoint disabled */
5292 return;
5295 switch (extract64(wcr, 3, 2)) {
5296 case 0:
5297 /* LSC 00 is reserved and must behave as if the wp is disabled */
5298 return;
5299 case 1:
5300 flags |= BP_MEM_READ;
5301 break;
5302 case 2:
5303 flags |= BP_MEM_WRITE;
5304 break;
5305 case 3:
5306 flags |= BP_MEM_ACCESS;
5307 break;
5310 /* Attempts to use both MASK and BAS fields simultaneously are
5311 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
5312 * thus generating a watchpoint for every byte in the masked region.
5314 mask = extract64(wcr, 24, 4);
5315 if (mask == 1 || mask == 2) {
5316 /* Reserved values of MASK; we must act as if the mask value was
5317 * some non-reserved value, or as if the watchpoint were disabled.
5318 * We choose the latter.
5320 return;
5321 } else if (mask) {
5322 /* Watchpoint covers an aligned area up to 2GB in size */
5323 len = 1ULL << mask;
5324 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
5325 * whether the watchpoint fires when the unmasked bits match; we opt
5326 * to generate the exceptions.
5328 wvr &= ~(len - 1);
5329 } else {
5330 /* Watchpoint covers bytes defined by the byte address select bits */
5331 int bas = extract64(wcr, 5, 8);
5332 int basstart;
5334 if (bas == 0) {
5335 /* This must act as if the watchpoint is disabled */
5336 return;
5339 if (extract64(wvr, 2, 1)) {
5340 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
5341 * ignored, and BAS[3:0] define which bytes to watch.
5343 bas &= 0xf;
5345 /* The BAS bits are supposed to be programmed to indicate a contiguous
5346 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
5347 * we fire for each byte in the word/doubleword addressed by the WVR.
5348 * We choose to ignore any non-zero bits after the first range of 1s.
5350 basstart = ctz32(bas);
5351 len = cto32(bas >> basstart);
5352 wvr += basstart;
5355 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
5356 &env->cpu_watchpoint[n]);
5359 void hw_watchpoint_update_all(ARMCPU *cpu)
5361 int i;
5362 CPUARMState *env = &cpu->env;
5364 /* Completely clear out existing QEMU watchpoints and our array, to
5365 * avoid possible stale entries following migration load.
5367 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
5368 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
5370 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
5371 hw_watchpoint_update(cpu, i);
5375 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5376 uint64_t value)
5378 ARMCPU *cpu = arm_env_get_cpu(env);
5379 int i = ri->crm;
5381 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
5382 * register reads and behaves as if values written are sign extended.
5383 * Bits [1:0] are RES0.
5385 value = sextract64(value, 0, 49) & ~3ULL;
5387 raw_write(env, ri, value);
5388 hw_watchpoint_update(cpu, i);
5391 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5392 uint64_t value)
5394 ARMCPU *cpu = arm_env_get_cpu(env);
5395 int i = ri->crm;
5397 raw_write(env, ri, value);
5398 hw_watchpoint_update(cpu, i);
5401 void hw_breakpoint_update(ARMCPU *cpu, int n)
5403 CPUARMState *env = &cpu->env;
5404 uint64_t bvr = env->cp15.dbgbvr[n];
5405 uint64_t bcr = env->cp15.dbgbcr[n];
5406 vaddr addr;
5407 int bt;
5408 int flags = BP_CPU;
5410 if (env->cpu_breakpoint[n]) {
5411 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
5412 env->cpu_breakpoint[n] = NULL;
5415 if (!extract64(bcr, 0, 1)) {
5416 /* E bit clear : watchpoint disabled */
5417 return;
5420 bt = extract64(bcr, 20, 4);
5422 switch (bt) {
5423 case 4: /* unlinked address mismatch (reserved if AArch64) */
5424 case 5: /* linked address mismatch (reserved if AArch64) */
5425 qemu_log_mask(LOG_UNIMP,
5426 "arm: address mismatch breakpoint types not implemented\n");
5427 return;
5428 case 0: /* unlinked address match */
5429 case 1: /* linked address match */
5431 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
5432 * we behave as if the register was sign extended. Bits [1:0] are
5433 * RES0. The BAS field is used to allow setting breakpoints on 16
5434 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
5435 * a bp will fire if the addresses covered by the bp and the addresses
5436 * covered by the insn overlap but the insn doesn't start at the
5437 * start of the bp address range. We choose to require the insn and
5438 * the bp to have the same address. The constraints on writing to
5439 * BAS enforced in dbgbcr_write mean we have only four cases:
5440 * 0b0000 => no breakpoint
5441 * 0b0011 => breakpoint on addr
5442 * 0b1100 => breakpoint on addr + 2
5443 * 0b1111 => breakpoint on addr
5444 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
5446 int bas = extract64(bcr, 5, 4);
5447 addr = sextract64(bvr, 0, 49) & ~3ULL;
5448 if (bas == 0) {
5449 return;
5451 if (bas == 0xc) {
5452 addr += 2;
5454 break;
5456 case 2: /* unlinked context ID match */
5457 case 8: /* unlinked VMID match (reserved if no EL2) */
5458 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
5459 qemu_log_mask(LOG_UNIMP,
5460 "arm: unlinked context breakpoint types not implemented\n");
5461 return;
5462 case 9: /* linked VMID match (reserved if no EL2) */
5463 case 11: /* linked context ID and VMID match (reserved if no EL2) */
5464 case 3: /* linked context ID match */
5465 default:
5466 /* We must generate no events for Linked context matches (unless
5467 * they are linked to by some other bp/wp, which is handled in
5468 * updates for the linking bp/wp). We choose to also generate no events
5469 * for reserved values.
5471 return;
5474 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
5477 void hw_breakpoint_update_all(ARMCPU *cpu)
5479 int i;
5480 CPUARMState *env = &cpu->env;
5482 /* Completely clear out existing QEMU breakpoints and our array, to
5483 * avoid possible stale entries following migration load.
5485 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
5486 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
5488 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
5489 hw_breakpoint_update(cpu, i);
5493 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5494 uint64_t value)
5496 ARMCPU *cpu = arm_env_get_cpu(env);
5497 int i = ri->crm;
5499 raw_write(env, ri, value);
5500 hw_breakpoint_update(cpu, i);
5503 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5504 uint64_t value)
5506 ARMCPU *cpu = arm_env_get_cpu(env);
5507 int i = ri->crm;
5509 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
5510 * copy of BAS[0].
5512 value = deposit64(value, 6, 1, extract64(value, 5, 1));
5513 value = deposit64(value, 8, 1, extract64(value, 7, 1));
5515 raw_write(env, ri, value);
5516 hw_breakpoint_update(cpu, i);
5519 static void define_debug_regs(ARMCPU *cpu)
5521 /* Define v7 and v8 architectural debug registers.
5522 * These are just dummy implementations for now.
5524 int i;
5525 int wrps, brps, ctx_cmps;
5526 ARMCPRegInfo dbgdidr = {
5527 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
5528 .access = PL0_R, .accessfn = access_tda,
5529 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
5532 /* Note that all these register fields hold "number of Xs minus 1". */
5533 brps = extract32(cpu->dbgdidr, 24, 4);
5534 wrps = extract32(cpu->dbgdidr, 28, 4);
5535 ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
5537 assert(ctx_cmps <= brps);
5539 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
5540 * of the debug registers such as number of breakpoints;
5541 * check that if they both exist then they agree.
5543 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
5544 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
5545 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
5546 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
5549 define_one_arm_cp_reg(cpu, &dbgdidr);
5550 define_arm_cp_regs(cpu, debug_cp_reginfo);
5552 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
5553 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
5556 for (i = 0; i < brps + 1; i++) {
5557 ARMCPRegInfo dbgregs[] = {
5558 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
5559 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
5560 .access = PL1_RW, .accessfn = access_tda,
5561 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
5562 .writefn = dbgbvr_write, .raw_writefn = raw_write
5564 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
5565 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
5566 .access = PL1_RW, .accessfn = access_tda,
5567 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
5568 .writefn = dbgbcr_write, .raw_writefn = raw_write
5570 REGINFO_SENTINEL
5572 define_arm_cp_regs(cpu, dbgregs);
5575 for (i = 0; i < wrps + 1; i++) {
5576 ARMCPRegInfo dbgregs[] = {
5577 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
5578 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
5579 .access = PL1_RW, .accessfn = access_tda,
5580 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
5581 .writefn = dbgwvr_write, .raw_writefn = raw_write
5583 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
5584 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
5585 .access = PL1_RW, .accessfn = access_tda,
5586 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
5587 .writefn = dbgwcr_write, .raw_writefn = raw_write
5589 REGINFO_SENTINEL
5591 define_arm_cp_regs(cpu, dbgregs);
5595 /* We don't know until after realize whether there's a GICv3
5596 * attached, and that is what registers the gicv3 sysregs.
5597 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
5598 * at runtime.
5600 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
5602 ARMCPU *cpu = arm_env_get_cpu(env);
5603 uint64_t pfr1 = cpu->id_pfr1;
5605 if (env->gicv3state) {
5606 pfr1 |= 1 << 28;
5608 return pfr1;
5611 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
5613 ARMCPU *cpu = arm_env_get_cpu(env);
5614 uint64_t pfr0 = cpu->isar.id_aa64pfr0;
5616 if (env->gicv3state) {
5617 pfr0 |= 1 << 24;
5619 return pfr0;
5622 /* Shared logic between LORID and the rest of the LOR* registers.
5623 * Secure state has already been delt with.
5625 static CPAccessResult access_lor_ns(CPUARMState *env)
5627 int el = arm_current_el(env);
5629 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
5630 return CP_ACCESS_TRAP_EL2;
5632 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
5633 return CP_ACCESS_TRAP_EL3;
5635 return CP_ACCESS_OK;
5638 static CPAccessResult access_lorid(CPUARMState *env, const ARMCPRegInfo *ri,
5639 bool isread)
5641 if (arm_is_secure_below_el3(env)) {
5642 /* Access ok in secure mode. */
5643 return CP_ACCESS_OK;
5645 return access_lor_ns(env);
5648 static CPAccessResult access_lor_other(CPUARMState *env,
5649 const ARMCPRegInfo *ri, bool isread)
5651 if (arm_is_secure_below_el3(env)) {
5652 /* Access denied in secure mode. */
5653 return CP_ACCESS_TRAP;
5655 return access_lor_ns(env);
5658 #ifdef TARGET_AARCH64
5659 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
5660 bool isread)
5662 int el = arm_current_el(env);
5664 if (el < 2 &&
5665 arm_feature(env, ARM_FEATURE_EL2) &&
5666 !(arm_hcr_el2_eff(env) & HCR_APK)) {
5667 return CP_ACCESS_TRAP_EL2;
5669 if (el < 3 &&
5670 arm_feature(env, ARM_FEATURE_EL3) &&
5671 !(env->cp15.scr_el3 & SCR_APK)) {
5672 return CP_ACCESS_TRAP_EL3;
5674 return CP_ACCESS_OK;
5677 static const ARMCPRegInfo pauth_reginfo[] = {
5678 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5679 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
5680 .access = PL1_RW, .accessfn = access_pauth,
5681 .fieldoffset = offsetof(CPUARMState, apda_key.lo) },
5682 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5683 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
5684 .access = PL1_RW, .accessfn = access_pauth,
5685 .fieldoffset = offsetof(CPUARMState, apda_key.hi) },
5686 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5687 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
5688 .access = PL1_RW, .accessfn = access_pauth,
5689 .fieldoffset = offsetof(CPUARMState, apdb_key.lo) },
5690 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5691 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
5692 .access = PL1_RW, .accessfn = access_pauth,
5693 .fieldoffset = offsetof(CPUARMState, apdb_key.hi) },
5694 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5695 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
5696 .access = PL1_RW, .accessfn = access_pauth,
5697 .fieldoffset = offsetof(CPUARMState, apga_key.lo) },
5698 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5699 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
5700 .access = PL1_RW, .accessfn = access_pauth,
5701 .fieldoffset = offsetof(CPUARMState, apga_key.hi) },
5702 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5703 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
5704 .access = PL1_RW, .accessfn = access_pauth,
5705 .fieldoffset = offsetof(CPUARMState, apia_key.lo) },
5706 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5707 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
5708 .access = PL1_RW, .accessfn = access_pauth,
5709 .fieldoffset = offsetof(CPUARMState, apia_key.hi) },
5710 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5711 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
5712 .access = PL1_RW, .accessfn = access_pauth,
5713 .fieldoffset = offsetof(CPUARMState, apib_key.lo) },
5714 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5715 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
5716 .access = PL1_RW, .accessfn = access_pauth,
5717 .fieldoffset = offsetof(CPUARMState, apib_key.hi) },
5718 REGINFO_SENTINEL
5720 #endif
5722 void register_cp_regs_for_features(ARMCPU *cpu)
5724 /* Register all the coprocessor registers based on feature bits */
5725 CPUARMState *env = &cpu->env;
5726 if (arm_feature(env, ARM_FEATURE_M)) {
5727 /* M profile has no coprocessor registers */
5728 return;
5731 define_arm_cp_regs(cpu, cp_reginfo);
5732 if (!arm_feature(env, ARM_FEATURE_V8)) {
5733 /* Must go early as it is full of wildcards that may be
5734 * overridden by later definitions.
5736 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
5739 if (arm_feature(env, ARM_FEATURE_V6)) {
5740 /* The ID registers all have impdef reset values */
5741 ARMCPRegInfo v6_idregs[] = {
5742 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
5743 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
5744 .access = PL1_R, .type = ARM_CP_CONST,
5745 .resetvalue = cpu->id_pfr0 },
5746 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
5747 * the value of the GIC field until after we define these regs.
5749 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
5750 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
5751 .access = PL1_R, .type = ARM_CP_NO_RAW,
5752 .readfn = id_pfr1_read,
5753 .writefn = arm_cp_write_ignore },
5754 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
5755 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
5756 .access = PL1_R, .type = ARM_CP_CONST,
5757 .resetvalue = cpu->id_dfr0 },
5758 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
5759 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
5760 .access = PL1_R, .type = ARM_CP_CONST,
5761 .resetvalue = cpu->id_afr0 },
5762 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
5763 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
5764 .access = PL1_R, .type = ARM_CP_CONST,
5765 .resetvalue = cpu->id_mmfr0 },
5766 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
5767 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
5768 .access = PL1_R, .type = ARM_CP_CONST,
5769 .resetvalue = cpu->id_mmfr1 },
5770 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
5771 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
5772 .access = PL1_R, .type = ARM_CP_CONST,
5773 .resetvalue = cpu->id_mmfr2 },
5774 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
5775 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
5776 .access = PL1_R, .type = ARM_CP_CONST,
5777 .resetvalue = cpu->id_mmfr3 },
5778 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
5779 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
5780 .access = PL1_R, .type = ARM_CP_CONST,
5781 .resetvalue = cpu->isar.id_isar0 },
5782 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
5783 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
5784 .access = PL1_R, .type = ARM_CP_CONST,
5785 .resetvalue = cpu->isar.id_isar1 },
5786 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
5787 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
5788 .access = PL1_R, .type = ARM_CP_CONST,
5789 .resetvalue = cpu->isar.id_isar2 },
5790 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
5791 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
5792 .access = PL1_R, .type = ARM_CP_CONST,
5793 .resetvalue = cpu->isar.id_isar3 },
5794 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
5795 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
5796 .access = PL1_R, .type = ARM_CP_CONST,
5797 .resetvalue = cpu->isar.id_isar4 },
5798 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
5799 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
5800 .access = PL1_R, .type = ARM_CP_CONST,
5801 .resetvalue = cpu->isar.id_isar5 },
5802 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
5803 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
5804 .access = PL1_R, .type = ARM_CP_CONST,
5805 .resetvalue = cpu->id_mmfr4 },
5806 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
5807 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
5808 .access = PL1_R, .type = ARM_CP_CONST,
5809 .resetvalue = cpu->isar.id_isar6 },
5810 REGINFO_SENTINEL
5812 define_arm_cp_regs(cpu, v6_idregs);
5813 define_arm_cp_regs(cpu, v6_cp_reginfo);
5814 } else {
5815 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
5817 if (arm_feature(env, ARM_FEATURE_V6K)) {
5818 define_arm_cp_regs(cpu, v6k_cp_reginfo);
5820 if (arm_feature(env, ARM_FEATURE_V7MP) &&
5821 !arm_feature(env, ARM_FEATURE_PMSA)) {
5822 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
5824 if (arm_feature(env, ARM_FEATURE_V7VE)) {
5825 define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
5827 if (arm_feature(env, ARM_FEATURE_V7)) {
5828 /* v7 performance monitor control register: same implementor
5829 * field as main ID register, and we implement four counters in
5830 * addition to the cycle count register.
5832 unsigned int i, pmcrn = 4;
5833 ARMCPRegInfo pmcr = {
5834 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
5835 .access = PL0_RW,
5836 .type = ARM_CP_IO | ARM_CP_ALIAS,
5837 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
5838 .accessfn = pmreg_access, .writefn = pmcr_write,
5839 .raw_writefn = raw_write,
5841 ARMCPRegInfo pmcr64 = {
5842 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
5843 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
5844 .access = PL0_RW, .accessfn = pmreg_access,
5845 .type = ARM_CP_IO,
5846 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
5847 .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT),
5848 .writefn = pmcr_write, .raw_writefn = raw_write,
5850 define_one_arm_cp_reg(cpu, &pmcr);
5851 define_one_arm_cp_reg(cpu, &pmcr64);
5852 for (i = 0; i < pmcrn; i++) {
5853 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
5854 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
5855 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
5856 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
5857 ARMCPRegInfo pmev_regs[] = {
5858 { .name = pmevcntr_name, .cp = 15, .crn = 14,
5859 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
5860 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
5861 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
5862 .accessfn = pmreg_access },
5863 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
5864 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
5865 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
5866 .type = ARM_CP_IO,
5867 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
5868 .raw_readfn = pmevcntr_rawread,
5869 .raw_writefn = pmevcntr_rawwrite },
5870 { .name = pmevtyper_name, .cp = 15, .crn = 14,
5871 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
5872 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
5873 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
5874 .accessfn = pmreg_access },
5875 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
5876 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
5877 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
5878 .type = ARM_CP_IO,
5879 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
5880 .raw_writefn = pmevtyper_rawwrite },
5881 REGINFO_SENTINEL
5883 define_arm_cp_regs(cpu, pmev_regs);
5884 g_free(pmevcntr_name);
5885 g_free(pmevcntr_el0_name);
5886 g_free(pmevtyper_name);
5887 g_free(pmevtyper_el0_name);
5889 ARMCPRegInfo clidr = {
5890 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
5891 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
5892 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
5894 define_one_arm_cp_reg(cpu, &clidr);
5895 define_arm_cp_regs(cpu, v7_cp_reginfo);
5896 define_debug_regs(cpu);
5897 } else {
5898 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
5900 if (FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
5901 FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) != 0xf) {
5902 ARMCPRegInfo v81_pmu_regs[] = {
5903 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
5904 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
5905 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
5906 .resetvalue = extract64(cpu->pmceid0, 32, 32) },
5907 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
5908 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
5909 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
5910 .resetvalue = extract64(cpu->pmceid1, 32, 32) },
5911 REGINFO_SENTINEL
5913 define_arm_cp_regs(cpu, v81_pmu_regs);
5915 if (arm_feature(env, ARM_FEATURE_V8)) {
5916 /* AArch64 ID registers, which all have impdef reset values.
5917 * Note that within the ID register ranges the unused slots
5918 * must all RAZ, not UNDEF; future architecture versions may
5919 * define new registers here.
5921 ARMCPRegInfo v8_idregs[] = {
5922 /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't
5923 * know the right value for the GIC field until after we
5924 * define these regs.
5926 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
5927 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
5928 .access = PL1_R, .type = ARM_CP_NO_RAW,
5929 .readfn = id_aa64pfr0_read,
5930 .writefn = arm_cp_write_ignore },
5931 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
5932 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
5933 .access = PL1_R, .type = ARM_CP_CONST,
5934 .resetvalue = cpu->isar.id_aa64pfr1},
5935 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5936 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
5937 .access = PL1_R, .type = ARM_CP_CONST,
5938 .resetvalue = 0 },
5939 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5940 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
5941 .access = PL1_R, .type = ARM_CP_CONST,
5942 .resetvalue = 0 },
5943 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
5944 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
5945 .access = PL1_R, .type = ARM_CP_CONST,
5946 /* At present, only SVEver == 0 is defined anyway. */
5947 .resetvalue = 0 },
5948 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5949 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
5950 .access = PL1_R, .type = ARM_CP_CONST,
5951 .resetvalue = 0 },
5952 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5953 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
5954 .access = PL1_R, .type = ARM_CP_CONST,
5955 .resetvalue = 0 },
5956 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5957 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
5958 .access = PL1_R, .type = ARM_CP_CONST,
5959 .resetvalue = 0 },
5960 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
5961 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
5962 .access = PL1_R, .type = ARM_CP_CONST,
5963 .resetvalue = cpu->id_aa64dfr0 },
5964 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
5965 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
5966 .access = PL1_R, .type = ARM_CP_CONST,
5967 .resetvalue = cpu->id_aa64dfr1 },
5968 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5969 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
5970 .access = PL1_R, .type = ARM_CP_CONST,
5971 .resetvalue = 0 },
5972 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5973 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
5974 .access = PL1_R, .type = ARM_CP_CONST,
5975 .resetvalue = 0 },
5976 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
5977 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
5978 .access = PL1_R, .type = ARM_CP_CONST,
5979 .resetvalue = cpu->id_aa64afr0 },
5980 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
5981 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
5982 .access = PL1_R, .type = ARM_CP_CONST,
5983 .resetvalue = cpu->id_aa64afr1 },
5984 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5985 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
5986 .access = PL1_R, .type = ARM_CP_CONST,
5987 .resetvalue = 0 },
5988 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5989 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
5990 .access = PL1_R, .type = ARM_CP_CONST,
5991 .resetvalue = 0 },
5992 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
5993 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
5994 .access = PL1_R, .type = ARM_CP_CONST,
5995 .resetvalue = cpu->isar.id_aa64isar0 },
5996 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
5997 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
5998 .access = PL1_R, .type = ARM_CP_CONST,
5999 .resetvalue = cpu->isar.id_aa64isar1 },
6000 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6001 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
6002 .access = PL1_R, .type = ARM_CP_CONST,
6003 .resetvalue = 0 },
6004 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6005 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
6006 .access = PL1_R, .type = ARM_CP_CONST,
6007 .resetvalue = 0 },
6008 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6009 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
6010 .access = PL1_R, .type = ARM_CP_CONST,
6011 .resetvalue = 0 },
6012 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6013 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
6014 .access = PL1_R, .type = ARM_CP_CONST,
6015 .resetvalue = 0 },
6016 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6017 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
6018 .access = PL1_R, .type = ARM_CP_CONST,
6019 .resetvalue = 0 },
6020 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6021 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
6022 .access = PL1_R, .type = ARM_CP_CONST,
6023 .resetvalue = 0 },
6024 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
6025 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
6026 .access = PL1_R, .type = ARM_CP_CONST,
6027 .resetvalue = cpu->isar.id_aa64mmfr0 },
6028 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
6029 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
6030 .access = PL1_R, .type = ARM_CP_CONST,
6031 .resetvalue = cpu->isar.id_aa64mmfr1 },
6032 { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6033 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
6034 .access = PL1_R, .type = ARM_CP_CONST,
6035 .resetvalue = 0 },
6036 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6037 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
6038 .access = PL1_R, .type = ARM_CP_CONST,
6039 .resetvalue = 0 },
6040 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6041 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
6042 .access = PL1_R, .type = ARM_CP_CONST,
6043 .resetvalue = 0 },
6044 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6045 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
6046 .access = PL1_R, .type = ARM_CP_CONST,
6047 .resetvalue = 0 },
6048 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6049 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
6050 .access = PL1_R, .type = ARM_CP_CONST,
6051 .resetvalue = 0 },
6052 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6053 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
6054 .access = PL1_R, .type = ARM_CP_CONST,
6055 .resetvalue = 0 },
6056 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
6057 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
6058 .access = PL1_R, .type = ARM_CP_CONST,
6059 .resetvalue = cpu->isar.mvfr0 },
6060 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
6061 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
6062 .access = PL1_R, .type = ARM_CP_CONST,
6063 .resetvalue = cpu->isar.mvfr1 },
6064 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
6065 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
6066 .access = PL1_R, .type = ARM_CP_CONST,
6067 .resetvalue = cpu->isar.mvfr2 },
6068 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6069 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
6070 .access = PL1_R, .type = ARM_CP_CONST,
6071 .resetvalue = 0 },
6072 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6073 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
6074 .access = PL1_R, .type = ARM_CP_CONST,
6075 .resetvalue = 0 },
6076 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6077 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
6078 .access = PL1_R, .type = ARM_CP_CONST,
6079 .resetvalue = 0 },
6080 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6081 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
6082 .access = PL1_R, .type = ARM_CP_CONST,
6083 .resetvalue = 0 },
6084 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6085 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
6086 .access = PL1_R, .type = ARM_CP_CONST,
6087 .resetvalue = 0 },
6088 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
6089 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
6090 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6091 .resetvalue = extract64(cpu->pmceid0, 0, 32) },
6092 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
6093 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
6094 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6095 .resetvalue = cpu->pmceid0 },
6096 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
6097 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
6098 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6099 .resetvalue = extract64(cpu->pmceid1, 0, 32) },
6100 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
6101 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
6102 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6103 .resetvalue = cpu->pmceid1 },
6104 REGINFO_SENTINEL
6106 #ifdef CONFIG_USER_ONLY
6107 ARMCPRegUserSpaceInfo v8_user_idregs[] = {
6108 { .name = "ID_AA64PFR0_EL1",
6109 .exported_bits = 0x000f000f00ff0000,
6110 .fixed_bits = 0x0000000000000011 },
6111 { .name = "ID_AA64PFR1_EL1",
6112 .exported_bits = 0x00000000000000f0 },
6113 { .name = "ID_AA64PFR*_EL1_RESERVED",
6114 .is_glob = true },
6115 { .name = "ID_AA64ZFR0_EL1" },
6116 { .name = "ID_AA64MMFR0_EL1",
6117 .fixed_bits = 0x00000000ff000000 },
6118 { .name = "ID_AA64MMFR1_EL1" },
6119 { .name = "ID_AA64MMFR*_EL1_RESERVED",
6120 .is_glob = true },
6121 { .name = "ID_AA64DFR0_EL1",
6122 .fixed_bits = 0x0000000000000006 },
6123 { .name = "ID_AA64DFR1_EL1" },
6124 { .name = "ID_AA64DFR*_EL1_RESERVED",
6125 .is_glob = true },
6126 { .name = "ID_AA64AFR*",
6127 .is_glob = true },
6128 { .name = "ID_AA64ISAR0_EL1",
6129 .exported_bits = 0x00fffffff0fffff0 },
6130 { .name = "ID_AA64ISAR1_EL1",
6131 .exported_bits = 0x000000f0ffffffff },
6132 { .name = "ID_AA64ISAR*_EL1_RESERVED",
6133 .is_glob = true },
6134 REGUSERINFO_SENTINEL
6136 modify_arm_cp_regs(v8_idregs, v8_user_idregs);
6137 #endif
6138 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
6139 if (!arm_feature(env, ARM_FEATURE_EL3) &&
6140 !arm_feature(env, ARM_FEATURE_EL2)) {
6141 ARMCPRegInfo rvbar = {
6142 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
6143 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
6144 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
6146 define_one_arm_cp_reg(cpu, &rvbar);
6148 define_arm_cp_regs(cpu, v8_idregs);
6149 define_arm_cp_regs(cpu, v8_cp_reginfo);
6151 if (arm_feature(env, ARM_FEATURE_EL2)) {
6152 uint64_t vmpidr_def = mpidr_read_val(env);
6153 ARMCPRegInfo vpidr_regs[] = {
6154 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
6155 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
6156 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6157 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS,
6158 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
6159 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
6160 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
6161 .access = PL2_RW, .resetvalue = cpu->midr,
6162 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
6163 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
6164 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
6165 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6166 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS,
6167 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
6168 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
6169 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
6170 .access = PL2_RW,
6171 .resetvalue = vmpidr_def,
6172 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
6173 REGINFO_SENTINEL
6175 define_arm_cp_regs(cpu, vpidr_regs);
6176 define_arm_cp_regs(cpu, el2_cp_reginfo);
6177 if (arm_feature(env, ARM_FEATURE_V8)) {
6178 define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
6180 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
6181 if (!arm_feature(env, ARM_FEATURE_EL3)) {
6182 ARMCPRegInfo rvbar = {
6183 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
6184 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
6185 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
6187 define_one_arm_cp_reg(cpu, &rvbar);
6189 } else {
6190 /* If EL2 is missing but higher ELs are enabled, we need to
6191 * register the no_el2 reginfos.
6193 if (arm_feature(env, ARM_FEATURE_EL3)) {
6194 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
6195 * of MIDR_EL1 and MPIDR_EL1.
6197 ARMCPRegInfo vpidr_regs[] = {
6198 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6199 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
6200 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
6201 .type = ARM_CP_CONST, .resetvalue = cpu->midr,
6202 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
6203 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6204 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
6205 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
6206 .type = ARM_CP_NO_RAW,
6207 .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
6208 REGINFO_SENTINEL
6210 define_arm_cp_regs(cpu, vpidr_regs);
6211 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
6212 if (arm_feature(env, ARM_FEATURE_V8)) {
6213 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo);
6217 if (arm_feature(env, ARM_FEATURE_EL3)) {
6218 define_arm_cp_regs(cpu, el3_cp_reginfo);
6219 ARMCPRegInfo el3_regs[] = {
6220 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
6221 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
6222 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
6223 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
6224 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
6225 .access = PL3_RW,
6226 .raw_writefn = raw_write, .writefn = sctlr_write,
6227 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
6228 .resetvalue = cpu->reset_sctlr },
6229 REGINFO_SENTINEL
6232 define_arm_cp_regs(cpu, el3_regs);
6234 /* The behaviour of NSACR is sufficiently various that we don't
6235 * try to describe it in a single reginfo:
6236 * if EL3 is 64 bit, then trap to EL3 from S EL1,
6237 * reads as constant 0xc00 from NS EL1 and NS EL2
6238 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
6239 * if v7 without EL3, register doesn't exist
6240 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
6242 if (arm_feature(env, ARM_FEATURE_EL3)) {
6243 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
6244 ARMCPRegInfo nsacr = {
6245 .name = "NSACR", .type = ARM_CP_CONST,
6246 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
6247 .access = PL1_RW, .accessfn = nsacr_access,
6248 .resetvalue = 0xc00
6250 define_one_arm_cp_reg(cpu, &nsacr);
6251 } else {
6252 ARMCPRegInfo nsacr = {
6253 .name = "NSACR",
6254 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
6255 .access = PL3_RW | PL1_R,
6256 .resetvalue = 0,
6257 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
6259 define_one_arm_cp_reg(cpu, &nsacr);
6261 } else {
6262 if (arm_feature(env, ARM_FEATURE_V8)) {
6263 ARMCPRegInfo nsacr = {
6264 .name = "NSACR", .type = ARM_CP_CONST,
6265 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
6266 .access = PL1_R,
6267 .resetvalue = 0xc00
6269 define_one_arm_cp_reg(cpu, &nsacr);
6273 if (arm_feature(env, ARM_FEATURE_PMSA)) {
6274 if (arm_feature(env, ARM_FEATURE_V6)) {
6275 /* PMSAv6 not implemented */
6276 assert(arm_feature(env, ARM_FEATURE_V7));
6277 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
6278 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
6279 } else {
6280 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
6282 } else {
6283 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
6284 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
6285 /* TTCBR2 is introduced with ARMv8.2-A32HPD. */
6286 if (FIELD_EX32(cpu->id_mmfr4, ID_MMFR4, HPDS) != 0) {
6287 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
6290 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
6291 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
6293 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
6294 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
6296 if (arm_feature(env, ARM_FEATURE_VAPA)) {
6297 define_arm_cp_regs(cpu, vapa_cp_reginfo);
6299 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
6300 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
6302 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
6303 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
6305 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
6306 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
6308 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
6309 define_arm_cp_regs(cpu, omap_cp_reginfo);
6311 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
6312 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
6314 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
6315 define_arm_cp_regs(cpu, xscale_cp_reginfo);
6317 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
6318 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
6320 if (arm_feature(env, ARM_FEATURE_LPAE)) {
6321 define_arm_cp_regs(cpu, lpae_cp_reginfo);
6323 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
6324 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
6325 * be read-only (ie write causes UNDEF exception).
6328 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
6329 /* Pre-v8 MIDR space.
6330 * Note that the MIDR isn't a simple constant register because
6331 * of the TI925 behaviour where writes to another register can
6332 * cause the MIDR value to change.
6334 * Unimplemented registers in the c15 0 0 0 space default to
6335 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
6336 * and friends override accordingly.
6338 { .name = "MIDR",
6339 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
6340 .access = PL1_R, .resetvalue = cpu->midr,
6341 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
6342 .readfn = midr_read,
6343 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
6344 .type = ARM_CP_OVERRIDE },
6345 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
6346 { .name = "DUMMY",
6347 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
6348 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6349 { .name = "DUMMY",
6350 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
6351 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6352 { .name = "DUMMY",
6353 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
6354 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6355 { .name = "DUMMY",
6356 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
6357 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6358 { .name = "DUMMY",
6359 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
6360 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6361 REGINFO_SENTINEL
6363 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
6364 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
6365 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
6366 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
6367 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
6368 .readfn = midr_read },
6369 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
6370 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
6371 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
6372 .access = PL1_R, .resetvalue = cpu->midr },
6373 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
6374 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
6375 .access = PL1_R, .resetvalue = cpu->midr },
6376 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
6377 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
6378 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
6379 REGINFO_SENTINEL
6381 ARMCPRegInfo id_cp_reginfo[] = {
6382 /* These are common to v8 and pre-v8 */
6383 { .name = "CTR",
6384 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
6385 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
6386 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
6387 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
6388 .access = PL0_R, .accessfn = ctr_el0_access,
6389 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
6390 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
6391 { .name = "TCMTR",
6392 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
6393 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6394 REGINFO_SENTINEL
6396 /* TLBTR is specific to VMSA */
6397 ARMCPRegInfo id_tlbtr_reginfo = {
6398 .name = "TLBTR",
6399 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
6400 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
6402 /* MPUIR is specific to PMSA V6+ */
6403 ARMCPRegInfo id_mpuir_reginfo = {
6404 .name = "MPUIR",
6405 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
6406 .access = PL1_R, .type = ARM_CP_CONST,
6407 .resetvalue = cpu->pmsav7_dregion << 8
6409 ARMCPRegInfo crn0_wi_reginfo = {
6410 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
6411 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
6412 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
6414 #ifdef CONFIG_USER_ONLY
6415 ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
6416 { .name = "MIDR_EL1",
6417 .exported_bits = 0x00000000ffffffff },
6418 { .name = "REVIDR_EL1" },
6419 REGUSERINFO_SENTINEL
6421 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
6422 #endif
6423 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
6424 arm_feature(env, ARM_FEATURE_STRONGARM)) {
6425 ARMCPRegInfo *r;
6426 /* Register the blanket "writes ignored" value first to cover the
6427 * whole space. Then update the specific ID registers to allow write
6428 * access, so that they ignore writes rather than causing them to
6429 * UNDEF.
6431 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
6432 for (r = id_pre_v8_midr_cp_reginfo;
6433 r->type != ARM_CP_SENTINEL; r++) {
6434 r->access = PL1_RW;
6436 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
6437 r->access = PL1_RW;
6439 id_mpuir_reginfo.access = PL1_RW;
6440 id_tlbtr_reginfo.access = PL1_RW;
6442 if (arm_feature(env, ARM_FEATURE_V8)) {
6443 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
6444 } else {
6445 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
6447 define_arm_cp_regs(cpu, id_cp_reginfo);
6448 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
6449 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
6450 } else if (arm_feature(env, ARM_FEATURE_V7)) {
6451 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
6455 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
6456 ARMCPRegInfo mpidr_cp_reginfo[] = {
6457 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
6458 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
6459 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
6460 REGINFO_SENTINEL
6462 #ifdef CONFIG_USER_ONLY
6463 ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
6464 { .name = "MPIDR_EL1",
6465 .fixed_bits = 0x0000000080000000 },
6466 REGUSERINFO_SENTINEL
6468 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
6469 #endif
6470 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
6473 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
6474 ARMCPRegInfo auxcr_reginfo[] = {
6475 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
6476 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
6477 .access = PL1_RW, .type = ARM_CP_CONST,
6478 .resetvalue = cpu->reset_auxcr },
6479 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
6480 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
6481 .access = PL2_RW, .type = ARM_CP_CONST,
6482 .resetvalue = 0 },
6483 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
6484 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
6485 .access = PL3_RW, .type = ARM_CP_CONST,
6486 .resetvalue = 0 },
6487 REGINFO_SENTINEL
6489 define_arm_cp_regs(cpu, auxcr_reginfo);
6490 if (arm_feature(env, ARM_FEATURE_V8)) {
6491 /* HACTLR2 maps to ACTLR_EL2[63:32] and is not in ARMv7 */
6492 ARMCPRegInfo hactlr2_reginfo = {
6493 .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
6494 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
6495 .access = PL2_RW, .type = ARM_CP_CONST,
6496 .resetvalue = 0
6498 define_one_arm_cp_reg(cpu, &hactlr2_reginfo);
6502 if (arm_feature(env, ARM_FEATURE_CBAR)) {
6503 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
6504 /* 32 bit view is [31:18] 0...0 [43:32]. */
6505 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
6506 | extract64(cpu->reset_cbar, 32, 12);
6507 ARMCPRegInfo cbar_reginfo[] = {
6508 { .name = "CBAR",
6509 .type = ARM_CP_CONST,
6510 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
6511 .access = PL1_R, .resetvalue = cpu->reset_cbar },
6512 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
6513 .type = ARM_CP_CONST,
6514 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
6515 .access = PL1_R, .resetvalue = cbar32 },
6516 REGINFO_SENTINEL
6518 /* We don't implement a r/w 64 bit CBAR currently */
6519 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
6520 define_arm_cp_regs(cpu, cbar_reginfo);
6521 } else {
6522 ARMCPRegInfo cbar = {
6523 .name = "CBAR",
6524 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
6525 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
6526 .fieldoffset = offsetof(CPUARMState,
6527 cp15.c15_config_base_address)
6529 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
6530 cbar.access = PL1_R;
6531 cbar.fieldoffset = 0;
6532 cbar.type = ARM_CP_CONST;
6534 define_one_arm_cp_reg(cpu, &cbar);
6538 if (arm_feature(env, ARM_FEATURE_VBAR)) {
6539 ARMCPRegInfo vbar_cp_reginfo[] = {
6540 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
6541 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
6542 .access = PL1_RW, .writefn = vbar_write,
6543 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
6544 offsetof(CPUARMState, cp15.vbar_ns) },
6545 .resetvalue = 0 },
6546 REGINFO_SENTINEL
6548 define_arm_cp_regs(cpu, vbar_cp_reginfo);
6551 /* Generic registers whose values depend on the implementation */
6553 ARMCPRegInfo sctlr = {
6554 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
6555 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
6556 .access = PL1_RW,
6557 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
6558 offsetof(CPUARMState, cp15.sctlr_ns) },
6559 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
6560 .raw_writefn = raw_write,
6562 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
6563 /* Normally we would always end the TB on an SCTLR write, but Linux
6564 * arch/arm/mach-pxa/sleep.S expects two instructions following
6565 * an MMU enable to execute from cache. Imitate this behaviour.
6567 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
6569 define_one_arm_cp_reg(cpu, &sctlr);
6572 if (cpu_isar_feature(aa64_lor, cpu)) {
6574 * A trivial implementation of ARMv8.1-LOR leaves all of these
6575 * registers fixed at 0, which indicates that there are zero
6576 * supported Limited Ordering regions.
6578 static const ARMCPRegInfo lor_reginfo[] = {
6579 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
6580 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
6581 .access = PL1_RW, .accessfn = access_lor_other,
6582 .type = ARM_CP_CONST, .resetvalue = 0 },
6583 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
6584 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
6585 .access = PL1_RW, .accessfn = access_lor_other,
6586 .type = ARM_CP_CONST, .resetvalue = 0 },
6587 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
6588 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
6589 .access = PL1_RW, .accessfn = access_lor_other,
6590 .type = ARM_CP_CONST, .resetvalue = 0 },
6591 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
6592 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
6593 .access = PL1_RW, .accessfn = access_lor_other,
6594 .type = ARM_CP_CONST, .resetvalue = 0 },
6595 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
6596 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
6597 .access = PL1_R, .accessfn = access_lorid,
6598 .type = ARM_CP_CONST, .resetvalue = 0 },
6599 REGINFO_SENTINEL
6601 define_arm_cp_regs(cpu, lor_reginfo);
6604 if (cpu_isar_feature(aa64_sve, cpu)) {
6605 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo);
6606 if (arm_feature(env, ARM_FEATURE_EL2)) {
6607 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo);
6608 } else {
6609 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo);
6611 if (arm_feature(env, ARM_FEATURE_EL3)) {
6612 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo);
6616 #ifdef TARGET_AARCH64
6617 if (cpu_isar_feature(aa64_pauth, cpu)) {
6618 define_arm_cp_regs(cpu, pauth_reginfo);
6620 #endif
6623 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
6625 CPUState *cs = CPU(cpu);
6626 CPUARMState *env = &cpu->env;
6628 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
6629 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
6630 aarch64_fpu_gdb_set_reg,
6631 34, "aarch64-fpu.xml", 0);
6632 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
6633 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
6634 51, "arm-neon.xml", 0);
6635 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
6636 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
6637 35, "arm-vfp3.xml", 0);
6638 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
6639 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
6640 19, "arm-vfp.xml", 0);
6642 gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg,
6643 arm_gen_dynamic_xml(cs),
6644 "system-registers.xml", 0);
6647 /* Sort alphabetically by type name, except for "any". */
6648 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
6650 ObjectClass *class_a = (ObjectClass *)a;
6651 ObjectClass *class_b = (ObjectClass *)b;
6652 const char *name_a, *name_b;
6654 name_a = object_class_get_name(class_a);
6655 name_b = object_class_get_name(class_b);
6656 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
6657 return 1;
6658 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
6659 return -1;
6660 } else {
6661 return strcmp(name_a, name_b);
6665 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
6667 ObjectClass *oc = data;
6668 CPUListState *s = user_data;
6669 const char *typename;
6670 char *name;
6672 typename = object_class_get_name(oc);
6673 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
6674 (*s->cpu_fprintf)(s->file, " %s\n",
6675 name);
6676 g_free(name);
6679 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
6681 CPUListState s = {
6682 .file = f,
6683 .cpu_fprintf = cpu_fprintf,
6685 GSList *list;
6687 list = object_class_get_list(TYPE_ARM_CPU, false);
6688 list = g_slist_sort(list, arm_cpu_list_compare);
6689 (*cpu_fprintf)(f, "Available CPUs:\n");
6690 g_slist_foreach(list, arm_cpu_list_entry, &s);
6691 g_slist_free(list);
6694 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
6696 ObjectClass *oc = data;
6697 CpuDefinitionInfoList **cpu_list = user_data;
6698 CpuDefinitionInfoList *entry;
6699 CpuDefinitionInfo *info;
6700 const char *typename;
6702 typename = object_class_get_name(oc);
6703 info = g_malloc0(sizeof(*info));
6704 info->name = g_strndup(typename,
6705 strlen(typename) - strlen("-" TYPE_ARM_CPU));
6706 info->q_typename = g_strdup(typename);
6708 entry = g_malloc0(sizeof(*entry));
6709 entry->value = info;
6710 entry->next = *cpu_list;
6711 *cpu_list = entry;
6714 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
6716 CpuDefinitionInfoList *cpu_list = NULL;
6717 GSList *list;
6719 list = object_class_get_list(TYPE_ARM_CPU, false);
6720 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
6721 g_slist_free(list);
6723 return cpu_list;
6726 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
6727 void *opaque, int state, int secstate,
6728 int crm, int opc1, int opc2,
6729 const char *name)
6731 /* Private utility function for define_one_arm_cp_reg_with_opaque():
6732 * add a single reginfo struct to the hash table.
6734 uint32_t *key = g_new(uint32_t, 1);
6735 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
6736 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
6737 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
6739 r2->name = g_strdup(name);
6740 /* Reset the secure state to the specific incoming state. This is
6741 * necessary as the register may have been defined with both states.
6743 r2->secure = secstate;
6745 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
6746 /* Register is banked (using both entries in array).
6747 * Overwriting fieldoffset as the array is only used to define
6748 * banked registers but later only fieldoffset is used.
6750 r2->fieldoffset = r->bank_fieldoffsets[ns];
6753 if (state == ARM_CP_STATE_AA32) {
6754 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
6755 /* If the register is banked then we don't need to migrate or
6756 * reset the 32-bit instance in certain cases:
6758 * 1) If the register has both 32-bit and 64-bit instances then we
6759 * can count on the 64-bit instance taking care of the
6760 * non-secure bank.
6761 * 2) If ARMv8 is enabled then we can count on a 64-bit version
6762 * taking care of the secure bank. This requires that separate
6763 * 32 and 64-bit definitions are provided.
6765 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
6766 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
6767 r2->type |= ARM_CP_ALIAS;
6769 } else if ((secstate != r->secure) && !ns) {
6770 /* The register is not banked so we only want to allow migration of
6771 * the non-secure instance.
6773 r2->type |= ARM_CP_ALIAS;
6776 if (r->state == ARM_CP_STATE_BOTH) {
6777 /* We assume it is a cp15 register if the .cp field is left unset.
6779 if (r2->cp == 0) {
6780 r2->cp = 15;
6783 #ifdef HOST_WORDS_BIGENDIAN
6784 if (r2->fieldoffset) {
6785 r2->fieldoffset += sizeof(uint32_t);
6787 #endif
6790 if (state == ARM_CP_STATE_AA64) {
6791 /* To allow abbreviation of ARMCPRegInfo
6792 * definitions, we treat cp == 0 as equivalent to
6793 * the value for "standard guest-visible sysreg".
6794 * STATE_BOTH definitions are also always "standard
6795 * sysreg" in their AArch64 view (the .cp value may
6796 * be non-zero for the benefit of the AArch32 view).
6798 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
6799 r2->cp = CP_REG_ARM64_SYSREG_CP;
6801 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
6802 r2->opc0, opc1, opc2);
6803 } else {
6804 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
6806 if (opaque) {
6807 r2->opaque = opaque;
6809 /* reginfo passed to helpers is correct for the actual access,
6810 * and is never ARM_CP_STATE_BOTH:
6812 r2->state = state;
6813 /* Make sure reginfo passed to helpers for wildcarded regs
6814 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
6816 r2->crm = crm;
6817 r2->opc1 = opc1;
6818 r2->opc2 = opc2;
6819 /* By convention, for wildcarded registers only the first
6820 * entry is used for migration; the others are marked as
6821 * ALIAS so we don't try to transfer the register
6822 * multiple times. Special registers (ie NOP/WFI) are
6823 * never migratable and not even raw-accessible.
6825 if ((r->type & ARM_CP_SPECIAL)) {
6826 r2->type |= ARM_CP_NO_RAW;
6828 if (((r->crm == CP_ANY) && crm != 0) ||
6829 ((r->opc1 == CP_ANY) && opc1 != 0) ||
6830 ((r->opc2 == CP_ANY) && opc2 != 0)) {
6831 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
6834 /* Check that raw accesses are either forbidden or handled. Note that
6835 * we can't assert this earlier because the setup of fieldoffset for
6836 * banked registers has to be done first.
6838 if (!(r2->type & ARM_CP_NO_RAW)) {
6839 assert(!raw_accessors_invalid(r2));
6842 /* Overriding of an existing definition must be explicitly
6843 * requested.
6845 if (!(r->type & ARM_CP_OVERRIDE)) {
6846 ARMCPRegInfo *oldreg;
6847 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
6848 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
6849 fprintf(stderr, "Register redefined: cp=%d %d bit "
6850 "crn=%d crm=%d opc1=%d opc2=%d, "
6851 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
6852 r2->crn, r2->crm, r2->opc1, r2->opc2,
6853 oldreg->name, r2->name);
6854 g_assert_not_reached();
6857 g_hash_table_insert(cpu->cp_regs, key, r2);
6861 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
6862 const ARMCPRegInfo *r, void *opaque)
6864 /* Define implementations of coprocessor registers.
6865 * We store these in a hashtable because typically
6866 * there are less than 150 registers in a space which
6867 * is 16*16*16*8*8 = 262144 in size.
6868 * Wildcarding is supported for the crm, opc1 and opc2 fields.
6869 * If a register is defined twice then the second definition is
6870 * used, so this can be used to define some generic registers and
6871 * then override them with implementation specific variations.
6872 * At least one of the original and the second definition should
6873 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
6874 * against accidental use.
6876 * The state field defines whether the register is to be
6877 * visible in the AArch32 or AArch64 execution state. If the
6878 * state is set to ARM_CP_STATE_BOTH then we synthesise a
6879 * reginfo structure for the AArch32 view, which sees the lower
6880 * 32 bits of the 64 bit register.
6882 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
6883 * be wildcarded. AArch64 registers are always considered to be 64
6884 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
6885 * the register, if any.
6887 int crm, opc1, opc2, state;
6888 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
6889 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
6890 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
6891 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
6892 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
6893 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
6894 /* 64 bit registers have only CRm and Opc1 fields */
6895 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
6896 /* op0 only exists in the AArch64 encodings */
6897 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
6898 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
6899 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
6900 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
6901 * encodes a minimum access level for the register. We roll this
6902 * runtime check into our general permission check code, so check
6903 * here that the reginfo's specified permissions are strict enough
6904 * to encompass the generic architectural permission check.
6906 if (r->state != ARM_CP_STATE_AA32) {
6907 int mask = 0;
6908 switch (r->opc1) {
6909 case 0:
6910 /* min_EL EL1, but some accessible to EL0 via kernel ABI */
6911 mask = PL0U_R | PL1_RW;
6912 break;
6913 case 1: case 2:
6914 /* min_EL EL1 */
6915 mask = PL1_RW;
6916 break;
6917 case 3:
6918 /* min_EL EL0 */
6919 mask = PL0_RW;
6920 break;
6921 case 4:
6922 /* min_EL EL2 */
6923 mask = PL2_RW;
6924 break;
6925 case 5:
6926 /* unallocated encoding, so not possible */
6927 assert(false);
6928 break;
6929 case 6:
6930 /* min_EL EL3 */
6931 mask = PL3_RW;
6932 break;
6933 case 7:
6934 /* min_EL EL1, secure mode only (we don't check the latter) */
6935 mask = PL1_RW;
6936 break;
6937 default:
6938 /* broken reginfo with out-of-range opc1 */
6939 assert(false);
6940 break;
6942 /* assert our permissions are not too lax (stricter is fine) */
6943 assert((r->access & ~mask) == 0);
6946 /* Check that the register definition has enough info to handle
6947 * reads and writes if they are permitted.
6949 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
6950 if (r->access & PL3_R) {
6951 assert((r->fieldoffset ||
6952 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
6953 r->readfn);
6955 if (r->access & PL3_W) {
6956 assert((r->fieldoffset ||
6957 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
6958 r->writefn);
6961 /* Bad type field probably means missing sentinel at end of reg list */
6962 assert(cptype_valid(r->type));
6963 for (crm = crmmin; crm <= crmmax; crm++) {
6964 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
6965 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
6966 for (state = ARM_CP_STATE_AA32;
6967 state <= ARM_CP_STATE_AA64; state++) {
6968 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
6969 continue;
6971 if (state == ARM_CP_STATE_AA32) {
6972 /* Under AArch32 CP registers can be common
6973 * (same for secure and non-secure world) or banked.
6975 char *name;
6977 switch (r->secure) {
6978 case ARM_CP_SECSTATE_S:
6979 case ARM_CP_SECSTATE_NS:
6980 add_cpreg_to_hashtable(cpu, r, opaque, state,
6981 r->secure, crm, opc1, opc2,
6982 r->name);
6983 break;
6984 default:
6985 name = g_strdup_printf("%s_S", r->name);
6986 add_cpreg_to_hashtable(cpu, r, opaque, state,
6987 ARM_CP_SECSTATE_S,
6988 crm, opc1, opc2, name);
6989 g_free(name);
6990 add_cpreg_to_hashtable(cpu, r, opaque, state,
6991 ARM_CP_SECSTATE_NS,
6992 crm, opc1, opc2, r->name);
6993 break;
6995 } else {
6996 /* AArch64 registers get mapped to non-secure instance
6997 * of AArch32 */
6998 add_cpreg_to_hashtable(cpu, r, opaque, state,
6999 ARM_CP_SECSTATE_NS,
7000 crm, opc1, opc2, r->name);
7008 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
7009 const ARMCPRegInfo *regs, void *opaque)
7011 /* Define a whole list of registers */
7012 const ARMCPRegInfo *r;
7013 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
7014 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
7019 * Modify ARMCPRegInfo for access from userspace.
7021 * This is a data driven modification directed by
7022 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
7023 * user-space cannot alter any values and dynamic values pertaining to
7024 * execution state are hidden from user space view anyway.
7026 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods)
7028 const ARMCPRegUserSpaceInfo *m;
7029 ARMCPRegInfo *r;
7031 for (m = mods; m->name; m++) {
7032 GPatternSpec *pat = NULL;
7033 if (m->is_glob) {
7034 pat = g_pattern_spec_new(m->name);
7036 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
7037 if (pat && g_pattern_match_string(pat, r->name)) {
7038 r->type = ARM_CP_CONST;
7039 r->access = PL0U_R;
7040 r->resetvalue = 0;
7041 /* continue */
7042 } else if (strcmp(r->name, m->name) == 0) {
7043 r->type = ARM_CP_CONST;
7044 r->access = PL0U_R;
7045 r->resetvalue &= m->exported_bits;
7046 r->resetvalue |= m->fixed_bits;
7047 break;
7050 if (pat) {
7051 g_pattern_spec_free(pat);
7056 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
7058 return g_hash_table_lookup(cpregs, &encoded_cp);
7061 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
7062 uint64_t value)
7064 /* Helper coprocessor write function for write-ignore registers */
7067 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
7069 /* Helper coprocessor write function for read-as-zero registers */
7070 return 0;
7073 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
7075 /* Helper coprocessor reset function for do-nothing-on-reset registers */
7078 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
7080 /* Return true if it is not valid for us to switch to
7081 * this CPU mode (ie all the UNPREDICTABLE cases in
7082 * the ARM ARM CPSRWriteByInstr pseudocode).
7085 /* Changes to or from Hyp via MSR and CPS are illegal. */
7086 if (write_type == CPSRWriteByInstr &&
7087 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
7088 mode == ARM_CPU_MODE_HYP)) {
7089 return 1;
7092 switch (mode) {
7093 case ARM_CPU_MODE_USR:
7094 return 0;
7095 case ARM_CPU_MODE_SYS:
7096 case ARM_CPU_MODE_SVC:
7097 case ARM_CPU_MODE_ABT:
7098 case ARM_CPU_MODE_UND:
7099 case ARM_CPU_MODE_IRQ:
7100 case ARM_CPU_MODE_FIQ:
7101 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
7102 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
7104 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
7105 * and CPS are treated as illegal mode changes.
7107 if (write_type == CPSRWriteByInstr &&
7108 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
7109 (arm_hcr_el2_eff(env) & HCR_TGE)) {
7110 return 1;
7112 return 0;
7113 case ARM_CPU_MODE_HYP:
7114 return !arm_feature(env, ARM_FEATURE_EL2)
7115 || arm_current_el(env) < 2 || arm_is_secure_below_el3(env);
7116 case ARM_CPU_MODE_MON:
7117 return arm_current_el(env) < 3;
7118 default:
7119 return 1;
7123 uint32_t cpsr_read(CPUARMState *env)
7125 int ZF;
7126 ZF = (env->ZF == 0);
7127 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
7128 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
7129 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
7130 | ((env->condexec_bits & 0xfc) << 8)
7131 | (env->GE << 16) | (env->daif & CPSR_AIF);
7134 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
7135 CPSRWriteType write_type)
7137 uint32_t changed_daif;
7139 if (mask & CPSR_NZCV) {
7140 env->ZF = (~val) & CPSR_Z;
7141 env->NF = val;
7142 env->CF = (val >> 29) & 1;
7143 env->VF = (val << 3) & 0x80000000;
7145 if (mask & CPSR_Q)
7146 env->QF = ((val & CPSR_Q) != 0);
7147 if (mask & CPSR_T)
7148 env->thumb = ((val & CPSR_T) != 0);
7149 if (mask & CPSR_IT_0_1) {
7150 env->condexec_bits &= ~3;
7151 env->condexec_bits |= (val >> 25) & 3;
7153 if (mask & CPSR_IT_2_7) {
7154 env->condexec_bits &= 3;
7155 env->condexec_bits |= (val >> 8) & 0xfc;
7157 if (mask & CPSR_GE) {
7158 env->GE = (val >> 16) & 0xf;
7161 /* In a V7 implementation that includes the security extensions but does
7162 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
7163 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
7164 * bits respectively.
7166 * In a V8 implementation, it is permitted for privileged software to
7167 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
7169 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
7170 arm_feature(env, ARM_FEATURE_EL3) &&
7171 !arm_feature(env, ARM_FEATURE_EL2) &&
7172 !arm_is_secure(env)) {
7174 changed_daif = (env->daif ^ val) & mask;
7176 if (changed_daif & CPSR_A) {
7177 /* Check to see if we are allowed to change the masking of async
7178 * abort exceptions from a non-secure state.
7180 if (!(env->cp15.scr_el3 & SCR_AW)) {
7181 qemu_log_mask(LOG_GUEST_ERROR,
7182 "Ignoring attempt to switch CPSR_A flag from "
7183 "non-secure world with SCR.AW bit clear\n");
7184 mask &= ~CPSR_A;
7188 if (changed_daif & CPSR_F) {
7189 /* Check to see if we are allowed to change the masking of FIQ
7190 * exceptions from a non-secure state.
7192 if (!(env->cp15.scr_el3 & SCR_FW)) {
7193 qemu_log_mask(LOG_GUEST_ERROR,
7194 "Ignoring attempt to switch CPSR_F flag from "
7195 "non-secure world with SCR.FW bit clear\n");
7196 mask &= ~CPSR_F;
7199 /* Check whether non-maskable FIQ (NMFI) support is enabled.
7200 * If this bit is set software is not allowed to mask
7201 * FIQs, but is allowed to set CPSR_F to 0.
7203 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
7204 (val & CPSR_F)) {
7205 qemu_log_mask(LOG_GUEST_ERROR,
7206 "Ignoring attempt to enable CPSR_F flag "
7207 "(non-maskable FIQ [NMFI] support enabled)\n");
7208 mask &= ~CPSR_F;
7213 env->daif &= ~(CPSR_AIF & mask);
7214 env->daif |= val & CPSR_AIF & mask;
7216 if (write_type != CPSRWriteRaw &&
7217 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
7218 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
7219 /* Note that we can only get here in USR mode if this is a
7220 * gdb stub write; for this case we follow the architectural
7221 * behaviour for guest writes in USR mode of ignoring an attempt
7222 * to switch mode. (Those are caught by translate.c for writes
7223 * triggered by guest instructions.)
7225 mask &= ~CPSR_M;
7226 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
7227 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
7228 * v7, and has defined behaviour in v8:
7229 * + leave CPSR.M untouched
7230 * + allow changes to the other CPSR fields
7231 * + set PSTATE.IL
7232 * For user changes via the GDB stub, we don't set PSTATE.IL,
7233 * as this would be unnecessarily harsh for a user error.
7235 mask &= ~CPSR_M;
7236 if (write_type != CPSRWriteByGDBStub &&
7237 arm_feature(env, ARM_FEATURE_V8)) {
7238 mask |= CPSR_IL;
7239 val |= CPSR_IL;
7241 qemu_log_mask(LOG_GUEST_ERROR,
7242 "Illegal AArch32 mode switch attempt from %s to %s\n",
7243 aarch32_mode_name(env->uncached_cpsr),
7244 aarch32_mode_name(val));
7245 } else {
7246 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
7247 write_type == CPSRWriteExceptionReturn ?
7248 "Exception return from AArch32" :
7249 "AArch32 mode switch from",
7250 aarch32_mode_name(env->uncached_cpsr),
7251 aarch32_mode_name(val), env->regs[15]);
7252 switch_mode(env, val & CPSR_M);
7255 mask &= ~CACHED_CPSR_BITS;
7256 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
7259 /* Sign/zero extend */
7260 uint32_t HELPER(sxtb16)(uint32_t x)
7262 uint32_t res;
7263 res = (uint16_t)(int8_t)x;
7264 res |= (uint32_t)(int8_t)(x >> 16) << 16;
7265 return res;
7268 uint32_t HELPER(uxtb16)(uint32_t x)
7270 uint32_t res;
7271 res = (uint16_t)(uint8_t)x;
7272 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
7273 return res;
7276 int32_t HELPER(sdiv)(int32_t num, int32_t den)
7278 if (den == 0)
7279 return 0;
7280 if (num == INT_MIN && den == -1)
7281 return INT_MIN;
7282 return num / den;
7285 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
7287 if (den == 0)
7288 return 0;
7289 return num / den;
7292 uint32_t HELPER(rbit)(uint32_t x)
7294 return revbit32(x);
7297 #ifdef CONFIG_USER_ONLY
7299 /* These should probably raise undefined insn exceptions. */
7300 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
7302 ARMCPU *cpu = arm_env_get_cpu(env);
7304 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
7307 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
7309 ARMCPU *cpu = arm_env_get_cpu(env);
7311 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
7312 return 0;
7315 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
7317 /* translate.c should never generate calls here in user-only mode */
7318 g_assert_not_reached();
7321 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
7323 /* translate.c should never generate calls here in user-only mode */
7324 g_assert_not_reached();
7327 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
7329 /* The TT instructions can be used by unprivileged code, but in
7330 * user-only emulation we don't have the MPU.
7331 * Luckily since we know we are NonSecure unprivileged (and that in
7332 * turn means that the A flag wasn't specified), all the bits in the
7333 * register must be zero:
7334 * IREGION: 0 because IRVALID is 0
7335 * IRVALID: 0 because NS
7336 * S: 0 because NS
7337 * NSRW: 0 because NS
7338 * NSR: 0 because NS
7339 * RW: 0 because unpriv and A flag not set
7340 * R: 0 because unpriv and A flag not set
7341 * SRVALID: 0 because NS
7342 * MRVALID: 0 because unpriv and A flag not set
7343 * SREGION: 0 becaus SRVALID is 0
7344 * MREGION: 0 because MRVALID is 0
7346 return 0;
7349 static void switch_mode(CPUARMState *env, int mode)
7351 ARMCPU *cpu = arm_env_get_cpu(env);
7353 if (mode != ARM_CPU_MODE_USR) {
7354 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
7358 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
7359 uint32_t cur_el, bool secure)
7361 return 1;
7364 void aarch64_sync_64_to_32(CPUARMState *env)
7366 g_assert_not_reached();
7369 #else
7371 static void switch_mode(CPUARMState *env, int mode)
7373 int old_mode;
7374 int i;
7376 old_mode = env->uncached_cpsr & CPSR_M;
7377 if (mode == old_mode)
7378 return;
7380 if (old_mode == ARM_CPU_MODE_FIQ) {
7381 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
7382 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
7383 } else if (mode == ARM_CPU_MODE_FIQ) {
7384 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
7385 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
7388 i = bank_number(old_mode);
7389 env->banked_r13[i] = env->regs[13];
7390 env->banked_spsr[i] = env->spsr;
7392 i = bank_number(mode);
7393 env->regs[13] = env->banked_r13[i];
7394 env->spsr = env->banked_spsr[i];
7396 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
7397 env->regs[14] = env->banked_r14[r14_bank_number(mode)];
7400 /* Physical Interrupt Target EL Lookup Table
7402 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
7404 * The below multi-dimensional table is used for looking up the target
7405 * exception level given numerous condition criteria. Specifically, the
7406 * target EL is based on SCR and HCR routing controls as well as the
7407 * currently executing EL and secure state.
7409 * Dimensions:
7410 * target_el_table[2][2][2][2][2][4]
7411 * | | | | | +--- Current EL
7412 * | | | | +------ Non-secure(0)/Secure(1)
7413 * | | | +--------- HCR mask override
7414 * | | +------------ SCR exec state control
7415 * | +--------------- SCR mask override
7416 * +------------------ 32-bit(0)/64-bit(1) EL3
7418 * The table values are as such:
7419 * 0-3 = EL0-EL3
7420 * -1 = Cannot occur
7422 * The ARM ARM target EL table includes entries indicating that an "exception
7423 * is not taken". The two cases where this is applicable are:
7424 * 1) An exception is taken from EL3 but the SCR does not have the exception
7425 * routed to EL3.
7426 * 2) An exception is taken from EL2 but the HCR does not have the exception
7427 * routed to EL2.
7428 * In these two cases, the below table contain a target of EL1. This value is
7429 * returned as it is expected that the consumer of the table data will check
7430 * for "target EL >= current EL" to ensure the exception is not taken.
7432 * SCR HCR
7433 * 64 EA AMO From
7434 * BIT IRQ IMO Non-secure Secure
7435 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
7437 static const int8_t target_el_table[2][2][2][2][2][4] = {
7438 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
7439 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
7440 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
7441 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
7442 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
7443 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
7444 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
7445 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
7446 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
7447 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
7448 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
7449 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
7450 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
7451 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
7452 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
7453 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
7457 * Determine the target EL for physical exceptions
7459 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
7460 uint32_t cur_el, bool secure)
7462 CPUARMState *env = cs->env_ptr;
7463 bool rw;
7464 bool scr;
7465 bool hcr;
7466 int target_el;
7467 /* Is the highest EL AArch64? */
7468 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
7469 uint64_t hcr_el2;
7471 if (arm_feature(env, ARM_FEATURE_EL3)) {
7472 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
7473 } else {
7474 /* Either EL2 is the highest EL (and so the EL2 register width
7475 * is given by is64); or there is no EL2 or EL3, in which case
7476 * the value of 'rw' does not affect the table lookup anyway.
7478 rw = is64;
7481 hcr_el2 = arm_hcr_el2_eff(env);
7482 switch (excp_idx) {
7483 case EXCP_IRQ:
7484 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
7485 hcr = hcr_el2 & HCR_IMO;
7486 break;
7487 case EXCP_FIQ:
7488 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
7489 hcr = hcr_el2 & HCR_FMO;
7490 break;
7491 default:
7492 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
7493 hcr = hcr_el2 & HCR_AMO;
7494 break;
7497 /* Perform a table-lookup for the target EL given the current state */
7498 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
7500 assert(target_el > 0);
7502 return target_el;
7505 static bool v7m_stack_write(ARMCPU *cpu, uint32_t addr, uint32_t value,
7506 ARMMMUIdx mmu_idx, bool ignfault)
7508 CPUState *cs = CPU(cpu);
7509 CPUARMState *env = &cpu->env;
7510 MemTxAttrs attrs = {};
7511 MemTxResult txres;
7512 target_ulong page_size;
7513 hwaddr physaddr;
7514 int prot;
7515 ARMMMUFaultInfo fi = {};
7516 bool secure = mmu_idx & ARM_MMU_IDX_M_S;
7517 int exc;
7518 bool exc_secure;
7520 if (get_phys_addr(env, addr, MMU_DATA_STORE, mmu_idx, &physaddr,
7521 &attrs, &prot, &page_size, &fi, NULL)) {
7522 /* MPU/SAU lookup failed */
7523 if (fi.type == ARMFault_QEMU_SFault) {
7524 qemu_log_mask(CPU_LOG_INT,
7525 "...SecureFault with SFSR.AUVIOL during stacking\n");
7526 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK;
7527 env->v7m.sfar = addr;
7528 exc = ARMV7M_EXCP_SECURE;
7529 exc_secure = false;
7530 } else {
7531 qemu_log_mask(CPU_LOG_INT, "...MemManageFault with CFSR.MSTKERR\n");
7532 env->v7m.cfsr[secure] |= R_V7M_CFSR_MSTKERR_MASK;
7533 exc = ARMV7M_EXCP_MEM;
7534 exc_secure = secure;
7536 goto pend_fault;
7538 address_space_stl_le(arm_addressspace(cs, attrs), physaddr, value,
7539 attrs, &txres);
7540 if (txres != MEMTX_OK) {
7541 /* BusFault trying to write the data */
7542 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.STKERR\n");
7543 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_STKERR_MASK;
7544 exc = ARMV7M_EXCP_BUS;
7545 exc_secure = false;
7546 goto pend_fault;
7548 return true;
7550 pend_fault:
7551 /* By pending the exception at this point we are making
7552 * the IMPDEF choice "overridden exceptions pended" (see the
7553 * MergeExcInfo() pseudocode). The other choice would be to not
7554 * pend them now and then make a choice about which to throw away
7555 * later if we have two derived exceptions.
7556 * The only case when we must not pend the exception but instead
7557 * throw it away is if we are doing the push of the callee registers
7558 * and we've already generated a derived exception. Even in this
7559 * case we will still update the fault status registers.
7561 if (!ignfault) {
7562 armv7m_nvic_set_pending_derived(env->nvic, exc, exc_secure);
7564 return false;
7567 static bool v7m_stack_read(ARMCPU *cpu, uint32_t *dest, uint32_t addr,
7568 ARMMMUIdx mmu_idx)
7570 CPUState *cs = CPU(cpu);
7571 CPUARMState *env = &cpu->env;
7572 MemTxAttrs attrs = {};
7573 MemTxResult txres;
7574 target_ulong page_size;
7575 hwaddr physaddr;
7576 int prot;
7577 ARMMMUFaultInfo fi = {};
7578 bool secure = mmu_idx & ARM_MMU_IDX_M_S;
7579 int exc;
7580 bool exc_secure;
7581 uint32_t value;
7583 if (get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &physaddr,
7584 &attrs, &prot, &page_size, &fi, NULL)) {
7585 /* MPU/SAU lookup failed */
7586 if (fi.type == ARMFault_QEMU_SFault) {
7587 qemu_log_mask(CPU_LOG_INT,
7588 "...SecureFault with SFSR.AUVIOL during unstack\n");
7589 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK;
7590 env->v7m.sfar = addr;
7591 exc = ARMV7M_EXCP_SECURE;
7592 exc_secure = false;
7593 } else {
7594 qemu_log_mask(CPU_LOG_INT,
7595 "...MemManageFault with CFSR.MUNSTKERR\n");
7596 env->v7m.cfsr[secure] |= R_V7M_CFSR_MUNSTKERR_MASK;
7597 exc = ARMV7M_EXCP_MEM;
7598 exc_secure = secure;
7600 goto pend_fault;
7603 value = address_space_ldl(arm_addressspace(cs, attrs), physaddr,
7604 attrs, &txres);
7605 if (txres != MEMTX_OK) {
7606 /* BusFault trying to read the data */
7607 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.UNSTKERR\n");
7608 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_UNSTKERR_MASK;
7609 exc = ARMV7M_EXCP_BUS;
7610 exc_secure = false;
7611 goto pend_fault;
7614 *dest = value;
7615 return true;
7617 pend_fault:
7618 /* By pending the exception at this point we are making
7619 * the IMPDEF choice "overridden exceptions pended" (see the
7620 * MergeExcInfo() pseudocode). The other choice would be to not
7621 * pend them now and then make a choice about which to throw away
7622 * later if we have two derived exceptions.
7624 armv7m_nvic_set_pending(env->nvic, exc, exc_secure);
7625 return false;
7628 /* Write to v7M CONTROL.SPSEL bit for the specified security bank.
7629 * This may change the current stack pointer between Main and Process
7630 * stack pointers if it is done for the CONTROL register for the current
7631 * security state.
7633 static void write_v7m_control_spsel_for_secstate(CPUARMState *env,
7634 bool new_spsel,
7635 bool secstate)
7637 bool old_is_psp = v7m_using_psp(env);
7639 env->v7m.control[secstate] =
7640 deposit32(env->v7m.control[secstate],
7641 R_V7M_CONTROL_SPSEL_SHIFT,
7642 R_V7M_CONTROL_SPSEL_LENGTH, new_spsel);
7644 if (secstate == env->v7m.secure) {
7645 bool new_is_psp = v7m_using_psp(env);
7646 uint32_t tmp;
7648 if (old_is_psp != new_is_psp) {
7649 tmp = env->v7m.other_sp;
7650 env->v7m.other_sp = env->regs[13];
7651 env->regs[13] = tmp;
7656 /* Write to v7M CONTROL.SPSEL bit. This may change the current
7657 * stack pointer between Main and Process stack pointers.
7659 static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel)
7661 write_v7m_control_spsel_for_secstate(env, new_spsel, env->v7m.secure);
7664 void write_v7m_exception(CPUARMState *env, uint32_t new_exc)
7666 /* Write a new value to v7m.exception, thus transitioning into or out
7667 * of Handler mode; this may result in a change of active stack pointer.
7669 bool new_is_psp, old_is_psp = v7m_using_psp(env);
7670 uint32_t tmp;
7672 env->v7m.exception = new_exc;
7674 new_is_psp = v7m_using_psp(env);
7676 if (old_is_psp != new_is_psp) {
7677 tmp = env->v7m.other_sp;
7678 env->v7m.other_sp = env->regs[13];
7679 env->regs[13] = tmp;
7683 /* Switch M profile security state between NS and S */
7684 static void switch_v7m_security_state(CPUARMState *env, bool new_secstate)
7686 uint32_t new_ss_msp, new_ss_psp;
7688 if (env->v7m.secure == new_secstate) {
7689 return;
7692 /* All the banked state is accessed by looking at env->v7m.secure
7693 * except for the stack pointer; rearrange the SP appropriately.
7695 new_ss_msp = env->v7m.other_ss_msp;
7696 new_ss_psp = env->v7m.other_ss_psp;
7698 if (v7m_using_psp(env)) {
7699 env->v7m.other_ss_psp = env->regs[13];
7700 env->v7m.other_ss_msp = env->v7m.other_sp;
7701 } else {
7702 env->v7m.other_ss_msp = env->regs[13];
7703 env->v7m.other_ss_psp = env->v7m.other_sp;
7706 env->v7m.secure = new_secstate;
7708 if (v7m_using_psp(env)) {
7709 env->regs[13] = new_ss_psp;
7710 env->v7m.other_sp = new_ss_msp;
7711 } else {
7712 env->regs[13] = new_ss_msp;
7713 env->v7m.other_sp = new_ss_psp;
7717 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
7719 /* Handle v7M BXNS:
7720 * - if the return value is a magic value, do exception return (like BX)
7721 * - otherwise bit 0 of the return value is the target security state
7723 uint32_t min_magic;
7725 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
7726 /* Covers FNC_RETURN and EXC_RETURN magic */
7727 min_magic = FNC_RETURN_MIN_MAGIC;
7728 } else {
7729 /* EXC_RETURN magic only */
7730 min_magic = EXC_RETURN_MIN_MAGIC;
7733 if (dest >= min_magic) {
7734 /* This is an exception return magic value; put it where
7735 * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT.
7736 * Note that if we ever add gen_ss_advance() singlestep support to
7737 * M profile this should count as an "instruction execution complete"
7738 * event (compare gen_bx_excret_final_code()).
7740 env->regs[15] = dest & ~1;
7741 env->thumb = dest & 1;
7742 HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT);
7743 /* notreached */
7746 /* translate.c should have made BXNS UNDEF unless we're secure */
7747 assert(env->v7m.secure);
7749 switch_v7m_security_state(env, dest & 1);
7750 env->thumb = 1;
7751 env->regs[15] = dest & ~1;
7754 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
7756 /* Handle v7M BLXNS:
7757 * - bit 0 of the destination address is the target security state
7760 /* At this point regs[15] is the address just after the BLXNS */
7761 uint32_t nextinst = env->regs[15] | 1;
7762 uint32_t sp = env->regs[13] - 8;
7763 uint32_t saved_psr;
7765 /* translate.c will have made BLXNS UNDEF unless we're secure */
7766 assert(env->v7m.secure);
7768 if (dest & 1) {
7769 /* target is Secure, so this is just a normal BLX,
7770 * except that the low bit doesn't indicate Thumb/not.
7772 env->regs[14] = nextinst;
7773 env->thumb = 1;
7774 env->regs[15] = dest & ~1;
7775 return;
7778 /* Target is non-secure: first push a stack frame */
7779 if (!QEMU_IS_ALIGNED(sp, 8)) {
7780 qemu_log_mask(LOG_GUEST_ERROR,
7781 "BLXNS with misaligned SP is UNPREDICTABLE\n");
7784 if (sp < v7m_sp_limit(env)) {
7785 raise_exception(env, EXCP_STKOF, 0, 1);
7788 saved_psr = env->v7m.exception;
7789 if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK) {
7790 saved_psr |= XPSR_SFPA;
7793 /* Note that these stores can throw exceptions on MPU faults */
7794 cpu_stl_data(env, sp, nextinst);
7795 cpu_stl_data(env, sp + 4, saved_psr);
7797 env->regs[13] = sp;
7798 env->regs[14] = 0xfeffffff;
7799 if (arm_v7m_is_handler_mode(env)) {
7800 /* Write a dummy value to IPSR, to avoid leaking the current secure
7801 * exception number to non-secure code. This is guaranteed not
7802 * to cause write_v7m_exception() to actually change stacks.
7804 write_v7m_exception(env, 1);
7806 switch_v7m_security_state(env, 0);
7807 env->thumb = 1;
7808 env->regs[15] = dest;
7811 static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode,
7812 bool spsel)
7814 /* Return a pointer to the location where we currently store the
7815 * stack pointer for the requested security state and thread mode.
7816 * This pointer will become invalid if the CPU state is updated
7817 * such that the stack pointers are switched around (eg changing
7818 * the SPSEL control bit).
7819 * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode().
7820 * Unlike that pseudocode, we require the caller to pass us in the
7821 * SPSEL control bit value; this is because we also use this
7822 * function in handling of pushing of the callee-saves registers
7823 * part of the v8M stack frame (pseudocode PushCalleeStack()),
7824 * and in the tailchain codepath the SPSEL bit comes from the exception
7825 * return magic LR value from the previous exception. The pseudocode
7826 * opencodes the stack-selection in PushCalleeStack(), but we prefer
7827 * to make this utility function generic enough to do the job.
7829 bool want_psp = threadmode && spsel;
7831 if (secure == env->v7m.secure) {
7832 if (want_psp == v7m_using_psp(env)) {
7833 return &env->regs[13];
7834 } else {
7835 return &env->v7m.other_sp;
7837 } else {
7838 if (want_psp) {
7839 return &env->v7m.other_ss_psp;
7840 } else {
7841 return &env->v7m.other_ss_msp;
7846 static bool arm_v7m_load_vector(ARMCPU *cpu, int exc, bool targets_secure,
7847 uint32_t *pvec)
7849 CPUState *cs = CPU(cpu);
7850 CPUARMState *env = &cpu->env;
7851 MemTxResult result;
7852 uint32_t addr = env->v7m.vecbase[targets_secure] + exc * 4;
7853 uint32_t vector_entry;
7854 MemTxAttrs attrs = {};
7855 ARMMMUIdx mmu_idx;
7856 bool exc_secure;
7858 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targets_secure, true);
7860 /* We don't do a get_phys_addr() here because the rules for vector
7861 * loads are special: they always use the default memory map, and
7862 * the default memory map permits reads from all addresses.
7863 * Since there's no easy way to pass through to pmsav8_mpu_lookup()
7864 * that we want this special case which would always say "yes",
7865 * we just do the SAU lookup here followed by a direct physical load.
7867 attrs.secure = targets_secure;
7868 attrs.user = false;
7870 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
7871 V8M_SAttributes sattrs = {};
7873 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
7874 if (sattrs.ns) {
7875 attrs.secure = false;
7876 } else if (!targets_secure) {
7877 /* NS access to S memory */
7878 goto load_fail;
7882 vector_entry = address_space_ldl(arm_addressspace(cs, attrs), addr,
7883 attrs, &result);
7884 if (result != MEMTX_OK) {
7885 goto load_fail;
7887 *pvec = vector_entry;
7888 return true;
7890 load_fail:
7891 /* All vector table fetch fails are reported as HardFault, with
7892 * HFSR.VECTTBL and .FORCED set. (FORCED is set because
7893 * technically the underlying exception is a MemManage or BusFault
7894 * that is escalated to HardFault.) This is a terminal exception,
7895 * so we will either take the HardFault immediately or else enter
7896 * lockup (the latter case is handled in armv7m_nvic_set_pending_derived()).
7898 exc_secure = targets_secure ||
7899 !(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
7900 env->v7m.hfsr |= R_V7M_HFSR_VECTTBL_MASK | R_V7M_HFSR_FORCED_MASK;
7901 armv7m_nvic_set_pending_derived(env->nvic, ARMV7M_EXCP_HARD, exc_secure);
7902 return false;
7905 static bool v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain,
7906 bool ignore_faults)
7908 /* For v8M, push the callee-saves register part of the stack frame.
7909 * Compare the v8M pseudocode PushCalleeStack().
7910 * In the tailchaining case this may not be the current stack.
7912 CPUARMState *env = &cpu->env;
7913 uint32_t *frame_sp_p;
7914 uint32_t frameptr;
7915 ARMMMUIdx mmu_idx;
7916 bool stacked_ok;
7917 uint32_t limit;
7918 bool want_psp;
7920 if (dotailchain) {
7921 bool mode = lr & R_V7M_EXCRET_MODE_MASK;
7922 bool priv = !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_NPRIV_MASK) ||
7923 !mode;
7925 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, M_REG_S, priv);
7926 frame_sp_p = get_v7m_sp_ptr(env, M_REG_S, mode,
7927 lr & R_V7M_EXCRET_SPSEL_MASK);
7928 want_psp = mode && (lr & R_V7M_EXCRET_SPSEL_MASK);
7929 if (want_psp) {
7930 limit = env->v7m.psplim[M_REG_S];
7931 } else {
7932 limit = env->v7m.msplim[M_REG_S];
7934 } else {
7935 mmu_idx = arm_mmu_idx(env);
7936 frame_sp_p = &env->regs[13];
7937 limit = v7m_sp_limit(env);
7940 frameptr = *frame_sp_p - 0x28;
7941 if (frameptr < limit) {
7943 * Stack limit failure: set SP to the limit value, and generate
7944 * STKOF UsageFault. Stack pushes below the limit must not be
7945 * performed. It is IMPDEF whether pushes above the limit are
7946 * performed; we choose not to.
7948 qemu_log_mask(CPU_LOG_INT,
7949 "...STKOF during callee-saves register stacking\n");
7950 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
7951 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
7952 env->v7m.secure);
7953 *frame_sp_p = limit;
7954 return true;
7957 /* Write as much of the stack frame as we can. A write failure may
7958 * cause us to pend a derived exception.
7960 stacked_ok =
7961 v7m_stack_write(cpu, frameptr, 0xfefa125b, mmu_idx, ignore_faults) &&
7962 v7m_stack_write(cpu, frameptr + 0x8, env->regs[4], mmu_idx,
7963 ignore_faults) &&
7964 v7m_stack_write(cpu, frameptr + 0xc, env->regs[5], mmu_idx,
7965 ignore_faults) &&
7966 v7m_stack_write(cpu, frameptr + 0x10, env->regs[6], mmu_idx,
7967 ignore_faults) &&
7968 v7m_stack_write(cpu, frameptr + 0x14, env->regs[7], mmu_idx,
7969 ignore_faults) &&
7970 v7m_stack_write(cpu, frameptr + 0x18, env->regs[8], mmu_idx,
7971 ignore_faults) &&
7972 v7m_stack_write(cpu, frameptr + 0x1c, env->regs[9], mmu_idx,
7973 ignore_faults) &&
7974 v7m_stack_write(cpu, frameptr + 0x20, env->regs[10], mmu_idx,
7975 ignore_faults) &&
7976 v7m_stack_write(cpu, frameptr + 0x24, env->regs[11], mmu_idx,
7977 ignore_faults);
7979 /* Update SP regardless of whether any of the stack accesses failed. */
7980 *frame_sp_p = frameptr;
7982 return !stacked_ok;
7985 static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain,
7986 bool ignore_stackfaults)
7988 /* Do the "take the exception" parts of exception entry,
7989 * but not the pushing of state to the stack. This is
7990 * similar to the pseudocode ExceptionTaken() function.
7992 CPUARMState *env = &cpu->env;
7993 uint32_t addr;
7994 bool targets_secure;
7995 int exc;
7996 bool push_failed = false;
7998 armv7m_nvic_get_pending_irq_info(env->nvic, &exc, &targets_secure);
7999 qemu_log_mask(CPU_LOG_INT, "...taking pending %s exception %d\n",
8000 targets_secure ? "secure" : "nonsecure", exc);
8002 if (arm_feature(env, ARM_FEATURE_V8)) {
8003 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
8004 (lr & R_V7M_EXCRET_S_MASK)) {
8005 /* The background code (the owner of the registers in the
8006 * exception frame) is Secure. This means it may either already
8007 * have or now needs to push callee-saves registers.
8009 if (targets_secure) {
8010 if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) {
8011 /* We took an exception from Secure to NonSecure
8012 * (which means the callee-saved registers got stacked)
8013 * and are now tailchaining to a Secure exception.
8014 * Clear DCRS so eventual return from this Secure
8015 * exception unstacks the callee-saved registers.
8017 lr &= ~R_V7M_EXCRET_DCRS_MASK;
8019 } else {
8020 /* We're going to a non-secure exception; push the
8021 * callee-saves registers to the stack now, if they're
8022 * not already saved.
8024 if (lr & R_V7M_EXCRET_DCRS_MASK &&
8025 !(dotailchain && !(lr & R_V7M_EXCRET_ES_MASK))) {
8026 push_failed = v7m_push_callee_stack(cpu, lr, dotailchain,
8027 ignore_stackfaults);
8029 lr |= R_V7M_EXCRET_DCRS_MASK;
8033 lr &= ~R_V7M_EXCRET_ES_MASK;
8034 if (targets_secure || !arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8035 lr |= R_V7M_EXCRET_ES_MASK;
8037 lr &= ~R_V7M_EXCRET_SPSEL_MASK;
8038 if (env->v7m.control[targets_secure] & R_V7M_CONTROL_SPSEL_MASK) {
8039 lr |= R_V7M_EXCRET_SPSEL_MASK;
8042 /* Clear registers if necessary to prevent non-secure exception
8043 * code being able to see register values from secure code.
8044 * Where register values become architecturally UNKNOWN we leave
8045 * them with their previous values.
8047 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8048 if (!targets_secure) {
8049 /* Always clear the caller-saved registers (they have been
8050 * pushed to the stack earlier in v7m_push_stack()).
8051 * Clear callee-saved registers if the background code is
8052 * Secure (in which case these regs were saved in
8053 * v7m_push_callee_stack()).
8055 int i;
8057 for (i = 0; i < 13; i++) {
8058 /* r4..r11 are callee-saves, zero only if EXCRET.S == 1 */
8059 if (i < 4 || i > 11 || (lr & R_V7M_EXCRET_S_MASK)) {
8060 env->regs[i] = 0;
8063 /* Clear EAPSR */
8064 xpsr_write(env, 0, XPSR_NZCV | XPSR_Q | XPSR_GE | XPSR_IT);
8069 if (push_failed && !ignore_stackfaults) {
8070 /* Derived exception on callee-saves register stacking:
8071 * we might now want to take a different exception which
8072 * targets a different security state, so try again from the top.
8074 qemu_log_mask(CPU_LOG_INT,
8075 "...derived exception on callee-saves register stacking");
8076 v7m_exception_taken(cpu, lr, true, true);
8077 return;
8080 if (!arm_v7m_load_vector(cpu, exc, targets_secure, &addr)) {
8081 /* Vector load failed: derived exception */
8082 qemu_log_mask(CPU_LOG_INT, "...derived exception on vector table load");
8083 v7m_exception_taken(cpu, lr, true, true);
8084 return;
8087 /* Now we've done everything that might cause a derived exception
8088 * we can go ahead and activate whichever exception we're going to
8089 * take (which might now be the derived exception).
8091 armv7m_nvic_acknowledge_irq(env->nvic);
8093 /* Switch to target security state -- must do this before writing SPSEL */
8094 switch_v7m_security_state(env, targets_secure);
8095 write_v7m_control_spsel(env, 0);
8096 arm_clear_exclusive(env);
8097 /* Clear IT bits */
8098 env->condexec_bits = 0;
8099 env->regs[14] = lr;
8100 env->regs[15] = addr & 0xfffffffe;
8101 env->thumb = addr & 1;
8104 static bool v7m_push_stack(ARMCPU *cpu)
8106 /* Do the "set up stack frame" part of exception entry,
8107 * similar to pseudocode PushStack().
8108 * Return true if we generate a derived exception (and so
8109 * should ignore further stack faults trying to process
8110 * that derived exception.)
8112 bool stacked_ok;
8113 CPUARMState *env = &cpu->env;
8114 uint32_t xpsr = xpsr_read(env);
8115 uint32_t frameptr = env->regs[13];
8116 ARMMMUIdx mmu_idx = arm_mmu_idx(env);
8118 /* Align stack pointer if the guest wants that */
8119 if ((frameptr & 4) &&
8120 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) {
8121 frameptr -= 4;
8122 xpsr |= XPSR_SPREALIGN;
8125 frameptr -= 0x20;
8127 if (arm_feature(env, ARM_FEATURE_V8)) {
8128 uint32_t limit = v7m_sp_limit(env);
8130 if (frameptr < limit) {
8132 * Stack limit failure: set SP to the limit value, and generate
8133 * STKOF UsageFault. Stack pushes below the limit must not be
8134 * performed. It is IMPDEF whether pushes above the limit are
8135 * performed; we choose not to.
8137 qemu_log_mask(CPU_LOG_INT,
8138 "...STKOF during stacking\n");
8139 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
8140 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
8141 env->v7m.secure);
8142 env->regs[13] = limit;
8143 return true;
8147 /* Write as much of the stack frame as we can. If we fail a stack
8148 * write this will result in a derived exception being pended
8149 * (which may be taken in preference to the one we started with
8150 * if it has higher priority).
8152 stacked_ok =
8153 v7m_stack_write(cpu, frameptr, env->regs[0], mmu_idx, false) &&
8154 v7m_stack_write(cpu, frameptr + 4, env->regs[1], mmu_idx, false) &&
8155 v7m_stack_write(cpu, frameptr + 8, env->regs[2], mmu_idx, false) &&
8156 v7m_stack_write(cpu, frameptr + 12, env->regs[3], mmu_idx, false) &&
8157 v7m_stack_write(cpu, frameptr + 16, env->regs[12], mmu_idx, false) &&
8158 v7m_stack_write(cpu, frameptr + 20, env->regs[14], mmu_idx, false) &&
8159 v7m_stack_write(cpu, frameptr + 24, env->regs[15], mmu_idx, false) &&
8160 v7m_stack_write(cpu, frameptr + 28, xpsr, mmu_idx, false);
8162 /* Update SP regardless of whether any of the stack accesses failed. */
8163 env->regs[13] = frameptr;
8165 return !stacked_ok;
8168 static void do_v7m_exception_exit(ARMCPU *cpu)
8170 CPUARMState *env = &cpu->env;
8171 uint32_t excret;
8172 uint32_t xpsr;
8173 bool ufault = false;
8174 bool sfault = false;
8175 bool return_to_sp_process;
8176 bool return_to_handler;
8177 bool rettobase = false;
8178 bool exc_secure = false;
8179 bool return_to_secure;
8181 /* If we're not in Handler mode then jumps to magic exception-exit
8182 * addresses don't have magic behaviour. However for the v8M
8183 * security extensions the magic secure-function-return has to
8184 * work in thread mode too, so to avoid doing an extra check in
8185 * the generated code we allow exception-exit magic to also cause the
8186 * internal exception and bring us here in thread mode. Correct code
8187 * will never try to do this (the following insn fetch will always
8188 * fault) so we the overhead of having taken an unnecessary exception
8189 * doesn't matter.
8191 if (!arm_v7m_is_handler_mode(env)) {
8192 return;
8195 /* In the spec pseudocode ExceptionReturn() is called directly
8196 * from BXWritePC() and gets the full target PC value including
8197 * bit zero. In QEMU's implementation we treat it as a normal
8198 * jump-to-register (which is then caught later on), and so split
8199 * the target value up between env->regs[15] and env->thumb in
8200 * gen_bx(). Reconstitute it.
8202 excret = env->regs[15];
8203 if (env->thumb) {
8204 excret |= 1;
8207 qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32
8208 " previous exception %d\n",
8209 excret, env->v7m.exception);
8211 if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) {
8212 qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception "
8213 "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n",
8214 excret);
8217 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8218 /* EXC_RETURN.ES validation check (R_SMFL). We must do this before
8219 * we pick which FAULTMASK to clear.
8221 if (!env->v7m.secure &&
8222 ((excret & R_V7M_EXCRET_ES_MASK) ||
8223 !(excret & R_V7M_EXCRET_DCRS_MASK))) {
8224 sfault = 1;
8225 /* For all other purposes, treat ES as 0 (R_HXSR) */
8226 excret &= ~R_V7M_EXCRET_ES_MASK;
8228 exc_secure = excret & R_V7M_EXCRET_ES_MASK;
8231 if (env->v7m.exception != ARMV7M_EXCP_NMI) {
8232 /* Auto-clear FAULTMASK on return from other than NMI.
8233 * If the security extension is implemented then this only
8234 * happens if the raw execution priority is >= 0; the
8235 * value of the ES bit in the exception return value indicates
8236 * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.)
8238 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8239 if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) {
8240 env->v7m.faultmask[exc_secure] = 0;
8242 } else {
8243 env->v7m.faultmask[M_REG_NS] = 0;
8247 switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception,
8248 exc_secure)) {
8249 case -1:
8250 /* attempt to exit an exception that isn't active */
8251 ufault = true;
8252 break;
8253 case 0:
8254 /* still an irq active now */
8255 break;
8256 case 1:
8257 /* we returned to base exception level, no nesting.
8258 * (In the pseudocode this is written using "NestedActivation != 1"
8259 * where we have 'rettobase == false'.)
8261 rettobase = true;
8262 break;
8263 default:
8264 g_assert_not_reached();
8267 return_to_handler = !(excret & R_V7M_EXCRET_MODE_MASK);
8268 return_to_sp_process = excret & R_V7M_EXCRET_SPSEL_MASK;
8269 return_to_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) &&
8270 (excret & R_V7M_EXCRET_S_MASK);
8272 if (arm_feature(env, ARM_FEATURE_V8)) {
8273 if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8274 /* UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP);
8275 * we choose to take the UsageFault.
8277 if ((excret & R_V7M_EXCRET_S_MASK) ||
8278 (excret & R_V7M_EXCRET_ES_MASK) ||
8279 !(excret & R_V7M_EXCRET_DCRS_MASK)) {
8280 ufault = true;
8283 if (excret & R_V7M_EXCRET_RES0_MASK) {
8284 ufault = true;
8286 } else {
8287 /* For v7M we only recognize certain combinations of the low bits */
8288 switch (excret & 0xf) {
8289 case 1: /* Return to Handler */
8290 break;
8291 case 13: /* Return to Thread using Process stack */
8292 case 9: /* Return to Thread using Main stack */
8293 /* We only need to check NONBASETHRDENA for v7M, because in
8294 * v8M this bit does not exist (it is RES1).
8296 if (!rettobase &&
8297 !(env->v7m.ccr[env->v7m.secure] &
8298 R_V7M_CCR_NONBASETHRDENA_MASK)) {
8299 ufault = true;
8301 break;
8302 default:
8303 ufault = true;
8308 * Set CONTROL.SPSEL from excret.SPSEL. Since we're still in
8309 * Handler mode (and will be until we write the new XPSR.Interrupt
8310 * field) this does not switch around the current stack pointer.
8311 * We must do this before we do any kind of tailchaining, including
8312 * for the derived exceptions on integrity check failures, or we will
8313 * give the guest an incorrect EXCRET.SPSEL value on exception entry.
8315 write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure);
8317 if (sfault) {
8318 env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK;
8319 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
8320 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
8321 "stackframe: failed EXC_RETURN.ES validity check\n");
8322 v7m_exception_taken(cpu, excret, true, false);
8323 return;
8326 if (ufault) {
8327 /* Bad exception return: instead of popping the exception
8328 * stack, directly take a usage fault on the current stack.
8330 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
8331 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
8332 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
8333 "stackframe: failed exception return integrity check\n");
8334 v7m_exception_taken(cpu, excret, true, false);
8335 return;
8339 * Tailchaining: if there is currently a pending exception that
8340 * is high enough priority to preempt execution at the level we're
8341 * about to return to, then just directly take that exception now,
8342 * avoiding an unstack-and-then-stack. Note that now we have
8343 * deactivated the previous exception by calling armv7m_nvic_complete_irq()
8344 * our current execution priority is already the execution priority we are
8345 * returning to -- none of the state we would unstack or set based on
8346 * the EXCRET value affects it.
8348 if (armv7m_nvic_can_take_pending_exception(env->nvic)) {
8349 qemu_log_mask(CPU_LOG_INT, "...tailchaining to pending exception\n");
8350 v7m_exception_taken(cpu, excret, true, false);
8351 return;
8354 switch_v7m_security_state(env, return_to_secure);
8357 /* The stack pointer we should be reading the exception frame from
8358 * depends on bits in the magic exception return type value (and
8359 * for v8M isn't necessarily the stack pointer we will eventually
8360 * end up resuming execution with). Get a pointer to the location
8361 * in the CPU state struct where the SP we need is currently being
8362 * stored; we will use and modify it in place.
8363 * We use this limited C variable scope so we don't accidentally
8364 * use 'frame_sp_p' after we do something that makes it invalid.
8366 uint32_t *frame_sp_p = get_v7m_sp_ptr(env,
8367 return_to_secure,
8368 !return_to_handler,
8369 return_to_sp_process);
8370 uint32_t frameptr = *frame_sp_p;
8371 bool pop_ok = true;
8372 ARMMMUIdx mmu_idx;
8373 bool return_to_priv = return_to_handler ||
8374 !(env->v7m.control[return_to_secure] & R_V7M_CONTROL_NPRIV_MASK);
8376 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, return_to_secure,
8377 return_to_priv);
8379 if (!QEMU_IS_ALIGNED(frameptr, 8) &&
8380 arm_feature(env, ARM_FEATURE_V8)) {
8381 qemu_log_mask(LOG_GUEST_ERROR,
8382 "M profile exception return with non-8-aligned SP "
8383 "for destination state is UNPREDICTABLE\n");
8386 /* Do we need to pop callee-saved registers? */
8387 if (return_to_secure &&
8388 ((excret & R_V7M_EXCRET_ES_MASK) == 0 ||
8389 (excret & R_V7M_EXCRET_DCRS_MASK) == 0)) {
8390 uint32_t expected_sig = 0xfefa125b;
8391 uint32_t actual_sig;
8393 pop_ok = v7m_stack_read(cpu, &actual_sig, frameptr, mmu_idx);
8395 if (pop_ok && expected_sig != actual_sig) {
8396 /* Take a SecureFault on the current stack */
8397 env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK;
8398 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
8399 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
8400 "stackframe: failed exception return integrity "
8401 "signature check\n");
8402 v7m_exception_taken(cpu, excret, true, false);
8403 return;
8406 pop_ok = pop_ok &&
8407 v7m_stack_read(cpu, &env->regs[4], frameptr + 0x8, mmu_idx) &&
8408 v7m_stack_read(cpu, &env->regs[5], frameptr + 0xc, mmu_idx) &&
8409 v7m_stack_read(cpu, &env->regs[6], frameptr + 0x10, mmu_idx) &&
8410 v7m_stack_read(cpu, &env->regs[7], frameptr + 0x14, mmu_idx) &&
8411 v7m_stack_read(cpu, &env->regs[8], frameptr + 0x18, mmu_idx) &&
8412 v7m_stack_read(cpu, &env->regs[9], frameptr + 0x1c, mmu_idx) &&
8413 v7m_stack_read(cpu, &env->regs[10], frameptr + 0x20, mmu_idx) &&
8414 v7m_stack_read(cpu, &env->regs[11], frameptr + 0x24, mmu_idx);
8416 frameptr += 0x28;
8419 /* Pop registers */
8420 pop_ok = pop_ok &&
8421 v7m_stack_read(cpu, &env->regs[0], frameptr, mmu_idx) &&
8422 v7m_stack_read(cpu, &env->regs[1], frameptr + 0x4, mmu_idx) &&
8423 v7m_stack_read(cpu, &env->regs[2], frameptr + 0x8, mmu_idx) &&
8424 v7m_stack_read(cpu, &env->regs[3], frameptr + 0xc, mmu_idx) &&
8425 v7m_stack_read(cpu, &env->regs[12], frameptr + 0x10, mmu_idx) &&
8426 v7m_stack_read(cpu, &env->regs[14], frameptr + 0x14, mmu_idx) &&
8427 v7m_stack_read(cpu, &env->regs[15], frameptr + 0x18, mmu_idx) &&
8428 v7m_stack_read(cpu, &xpsr, frameptr + 0x1c, mmu_idx);
8430 if (!pop_ok) {
8431 /* v7m_stack_read() pended a fault, so take it (as a tail
8432 * chained exception on the same stack frame)
8434 qemu_log_mask(CPU_LOG_INT, "...derived exception on unstacking\n");
8435 v7m_exception_taken(cpu, excret, true, false);
8436 return;
8439 /* Returning from an exception with a PC with bit 0 set is defined
8440 * behaviour on v8M (bit 0 is ignored), but for v7M it was specified
8441 * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore
8442 * the lsbit, and there are several RTOSes out there which incorrectly
8443 * assume the r15 in the stack frame should be a Thumb-style "lsbit
8444 * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but
8445 * complain about the badly behaved guest.
8447 if (env->regs[15] & 1) {
8448 env->regs[15] &= ~1U;
8449 if (!arm_feature(env, ARM_FEATURE_V8)) {
8450 qemu_log_mask(LOG_GUEST_ERROR,
8451 "M profile return from interrupt with misaligned "
8452 "PC is UNPREDICTABLE on v7M\n");
8456 if (arm_feature(env, ARM_FEATURE_V8)) {
8457 /* For v8M we have to check whether the xPSR exception field
8458 * matches the EXCRET value for return to handler/thread
8459 * before we commit to changing the SP and xPSR.
8461 bool will_be_handler = (xpsr & XPSR_EXCP) != 0;
8462 if (return_to_handler != will_be_handler) {
8463 /* Take an INVPC UsageFault on the current stack.
8464 * By this point we will have switched to the security state
8465 * for the background state, so this UsageFault will target
8466 * that state.
8468 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
8469 env->v7m.secure);
8470 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
8471 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
8472 "stackframe: failed exception return integrity "
8473 "check\n");
8474 v7m_exception_taken(cpu, excret, true, false);
8475 return;
8479 /* Commit to consuming the stack frame */
8480 frameptr += 0x20;
8481 /* Undo stack alignment (the SPREALIGN bit indicates that the original
8482 * pre-exception SP was not 8-aligned and we added a padding word to
8483 * align it, so we undo this by ORing in the bit that increases it
8484 * from the current 8-aligned value to the 8-unaligned value. (Adding 4
8485 * would work too but a logical OR is how the pseudocode specifies it.)
8487 if (xpsr & XPSR_SPREALIGN) {
8488 frameptr |= 4;
8490 *frame_sp_p = frameptr;
8492 /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */
8493 xpsr_write(env, xpsr, ~XPSR_SPREALIGN);
8495 /* The restored xPSR exception field will be zero if we're
8496 * resuming in Thread mode. If that doesn't match what the
8497 * exception return excret specified then this is a UsageFault.
8498 * v7M requires we make this check here; v8M did it earlier.
8500 if (return_to_handler != arm_v7m_is_handler_mode(env)) {
8501 /* Take an INVPC UsageFault by pushing the stack again;
8502 * we know we're v7M so this is never a Secure UsageFault.
8504 bool ignore_stackfaults;
8506 assert(!arm_feature(env, ARM_FEATURE_V8));
8507 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false);
8508 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
8509 ignore_stackfaults = v7m_push_stack(cpu);
8510 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: "
8511 "failed exception return integrity check\n");
8512 v7m_exception_taken(cpu, excret, false, ignore_stackfaults);
8513 return;
8516 /* Otherwise, we have a successful exception exit. */
8517 arm_clear_exclusive(env);
8518 qemu_log_mask(CPU_LOG_INT, "...successful exception return\n");
8521 static bool do_v7m_function_return(ARMCPU *cpu)
8523 /* v8M security extensions magic function return.
8524 * We may either:
8525 * (1) throw an exception (longjump)
8526 * (2) return true if we successfully handled the function return
8527 * (3) return false if we failed a consistency check and have
8528 * pended a UsageFault that needs to be taken now
8530 * At this point the magic return value is split between env->regs[15]
8531 * and env->thumb. We don't bother to reconstitute it because we don't
8532 * need it (all values are handled the same way).
8534 CPUARMState *env = &cpu->env;
8535 uint32_t newpc, newpsr, newpsr_exc;
8537 qemu_log_mask(CPU_LOG_INT, "...really v7M secure function return\n");
8540 bool threadmode, spsel;
8541 TCGMemOpIdx oi;
8542 ARMMMUIdx mmu_idx;
8543 uint32_t *frame_sp_p;
8544 uint32_t frameptr;
8546 /* Pull the return address and IPSR from the Secure stack */
8547 threadmode = !arm_v7m_is_handler_mode(env);
8548 spsel = env->v7m.control[M_REG_S] & R_V7M_CONTROL_SPSEL_MASK;
8550 frame_sp_p = get_v7m_sp_ptr(env, true, threadmode, spsel);
8551 frameptr = *frame_sp_p;
8553 /* These loads may throw an exception (for MPU faults). We want to
8554 * do them as secure, so work out what MMU index that is.
8556 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
8557 oi = make_memop_idx(MO_LE, arm_to_core_mmu_idx(mmu_idx));
8558 newpc = helper_le_ldul_mmu(env, frameptr, oi, 0);
8559 newpsr = helper_le_ldul_mmu(env, frameptr + 4, oi, 0);
8561 /* Consistency checks on new IPSR */
8562 newpsr_exc = newpsr & XPSR_EXCP;
8563 if (!((env->v7m.exception == 0 && newpsr_exc == 0) ||
8564 (env->v7m.exception == 1 && newpsr_exc != 0))) {
8565 /* Pend the fault and tell our caller to take it */
8566 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
8567 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
8568 env->v7m.secure);
8569 qemu_log_mask(CPU_LOG_INT,
8570 "...taking INVPC UsageFault: "
8571 "IPSR consistency check failed\n");
8572 return false;
8575 *frame_sp_p = frameptr + 8;
8578 /* This invalidates frame_sp_p */
8579 switch_v7m_security_state(env, true);
8580 env->v7m.exception = newpsr_exc;
8581 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
8582 if (newpsr & XPSR_SFPA) {
8583 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_SFPA_MASK;
8585 xpsr_write(env, 0, XPSR_IT);
8586 env->thumb = newpc & 1;
8587 env->regs[15] = newpc & ~1;
8589 qemu_log_mask(CPU_LOG_INT, "...function return successful\n");
8590 return true;
8593 static void arm_log_exception(int idx)
8595 if (qemu_loglevel_mask(CPU_LOG_INT)) {
8596 const char *exc = NULL;
8597 static const char * const excnames[] = {
8598 [EXCP_UDEF] = "Undefined Instruction",
8599 [EXCP_SWI] = "SVC",
8600 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
8601 [EXCP_DATA_ABORT] = "Data Abort",
8602 [EXCP_IRQ] = "IRQ",
8603 [EXCP_FIQ] = "FIQ",
8604 [EXCP_BKPT] = "Breakpoint",
8605 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
8606 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
8607 [EXCP_HVC] = "Hypervisor Call",
8608 [EXCP_HYP_TRAP] = "Hypervisor Trap",
8609 [EXCP_SMC] = "Secure Monitor Call",
8610 [EXCP_VIRQ] = "Virtual IRQ",
8611 [EXCP_VFIQ] = "Virtual FIQ",
8612 [EXCP_SEMIHOST] = "Semihosting call",
8613 [EXCP_NOCP] = "v7M NOCP UsageFault",
8614 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
8615 [EXCP_STKOF] = "v8M STKOF UsageFault",
8618 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
8619 exc = excnames[idx];
8621 if (!exc) {
8622 exc = "unknown";
8624 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
8628 static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx,
8629 uint32_t addr, uint16_t *insn)
8631 /* Load a 16-bit portion of a v7M instruction, returning true on success,
8632 * or false on failure (in which case we will have pended the appropriate
8633 * exception).
8634 * We need to do the instruction fetch's MPU and SAU checks
8635 * like this because there is no MMU index that would allow
8636 * doing the load with a single function call. Instead we must
8637 * first check that the security attributes permit the load
8638 * and that they don't mismatch on the two halves of the instruction,
8639 * and then we do the load as a secure load (ie using the security
8640 * attributes of the address, not the CPU, as architecturally required).
8642 CPUState *cs = CPU(cpu);
8643 CPUARMState *env = &cpu->env;
8644 V8M_SAttributes sattrs = {};
8645 MemTxAttrs attrs = {};
8646 ARMMMUFaultInfo fi = {};
8647 MemTxResult txres;
8648 target_ulong page_size;
8649 hwaddr physaddr;
8650 int prot;
8652 v8m_security_lookup(env, addr, MMU_INST_FETCH, mmu_idx, &sattrs);
8653 if (!sattrs.nsc || sattrs.ns) {
8654 /* This must be the second half of the insn, and it straddles a
8655 * region boundary with the second half not being S&NSC.
8657 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
8658 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
8659 qemu_log_mask(CPU_LOG_INT,
8660 "...really SecureFault with SFSR.INVEP\n");
8661 return false;
8663 if (get_phys_addr(env, addr, MMU_INST_FETCH, mmu_idx,
8664 &physaddr, &attrs, &prot, &page_size, &fi, NULL)) {
8665 /* the MPU lookup failed */
8666 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
8667 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, env->v7m.secure);
8668 qemu_log_mask(CPU_LOG_INT, "...really MemManage with CFSR.IACCVIOL\n");
8669 return false;
8671 *insn = address_space_lduw_le(arm_addressspace(cs, attrs), physaddr,
8672 attrs, &txres);
8673 if (txres != MEMTX_OK) {
8674 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
8675 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
8676 qemu_log_mask(CPU_LOG_INT, "...really BusFault with CFSR.IBUSERR\n");
8677 return false;
8679 return true;
8682 static bool v7m_handle_execute_nsc(ARMCPU *cpu)
8684 /* Check whether this attempt to execute code in a Secure & NS-Callable
8685 * memory region is for an SG instruction; if so, then emulate the
8686 * effect of the SG instruction and return true. Otherwise pend
8687 * the correct kind of exception and return false.
8689 CPUARMState *env = &cpu->env;
8690 ARMMMUIdx mmu_idx;
8691 uint16_t insn;
8693 /* We should never get here unless get_phys_addr_pmsav8() caused
8694 * an exception for NS executing in S&NSC memory.
8696 assert(!env->v7m.secure);
8697 assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
8699 /* We want to do the MPU lookup as secure; work out what mmu_idx that is */
8700 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
8702 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15], &insn)) {
8703 return false;
8706 if (!env->thumb) {
8707 goto gen_invep;
8710 if (insn != 0xe97f) {
8711 /* Not an SG instruction first half (we choose the IMPDEF
8712 * early-SG-check option).
8714 goto gen_invep;
8717 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15] + 2, &insn)) {
8718 return false;
8721 if (insn != 0xe97f) {
8722 /* Not an SG instruction second half (yes, both halves of the SG
8723 * insn have the same hex value)
8725 goto gen_invep;
8728 /* OK, we have confirmed that we really have an SG instruction.
8729 * We know we're NS in S memory so don't need to repeat those checks.
8731 qemu_log_mask(CPU_LOG_INT, "...really an SG instruction at 0x%08" PRIx32
8732 ", executing it\n", env->regs[15]);
8733 env->regs[14] &= ~1;
8734 switch_v7m_security_state(env, true);
8735 xpsr_write(env, 0, XPSR_IT);
8736 env->regs[15] += 4;
8737 return true;
8739 gen_invep:
8740 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
8741 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
8742 qemu_log_mask(CPU_LOG_INT,
8743 "...really SecureFault with SFSR.INVEP\n");
8744 return false;
8747 void arm_v7m_cpu_do_interrupt(CPUState *cs)
8749 ARMCPU *cpu = ARM_CPU(cs);
8750 CPUARMState *env = &cpu->env;
8751 uint32_t lr;
8752 bool ignore_stackfaults;
8754 arm_log_exception(cs->exception_index);
8756 /* For exceptions we just mark as pending on the NVIC, and let that
8757 handle it. */
8758 switch (cs->exception_index) {
8759 case EXCP_UDEF:
8760 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
8761 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK;
8762 break;
8763 case EXCP_NOCP:
8764 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
8765 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK;
8766 break;
8767 case EXCP_INVSTATE:
8768 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
8769 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK;
8770 break;
8771 case EXCP_STKOF:
8772 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
8773 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
8774 break;
8775 case EXCP_SWI:
8776 /* The PC already points to the next instruction. */
8777 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure);
8778 break;
8779 case EXCP_PREFETCH_ABORT:
8780 case EXCP_DATA_ABORT:
8781 /* Note that for M profile we don't have a guest facing FSR, but
8782 * the env->exception.fsr will be populated by the code that
8783 * raises the fault, in the A profile short-descriptor format.
8785 switch (env->exception.fsr & 0xf) {
8786 case M_FAKE_FSR_NSC_EXEC:
8787 /* Exception generated when we try to execute code at an address
8788 * which is marked as Secure & Non-Secure Callable and the CPU
8789 * is in the Non-Secure state. The only instruction which can
8790 * be executed like this is SG (and that only if both halves of
8791 * the SG instruction have the same security attributes.)
8792 * Everything else must generate an INVEP SecureFault, so we
8793 * emulate the SG instruction here.
8795 if (v7m_handle_execute_nsc(cpu)) {
8796 return;
8798 break;
8799 case M_FAKE_FSR_SFAULT:
8800 /* Various flavours of SecureFault for attempts to execute or
8801 * access data in the wrong security state.
8803 switch (cs->exception_index) {
8804 case EXCP_PREFETCH_ABORT:
8805 if (env->v7m.secure) {
8806 env->v7m.sfsr |= R_V7M_SFSR_INVTRAN_MASK;
8807 qemu_log_mask(CPU_LOG_INT,
8808 "...really SecureFault with SFSR.INVTRAN\n");
8809 } else {
8810 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
8811 qemu_log_mask(CPU_LOG_INT,
8812 "...really SecureFault with SFSR.INVEP\n");
8814 break;
8815 case EXCP_DATA_ABORT:
8816 /* This must be an NS access to S memory */
8817 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK;
8818 qemu_log_mask(CPU_LOG_INT,
8819 "...really SecureFault with SFSR.AUVIOL\n");
8820 break;
8822 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
8823 break;
8824 case 0x8: /* External Abort */
8825 switch (cs->exception_index) {
8826 case EXCP_PREFETCH_ABORT:
8827 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
8828 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n");
8829 break;
8830 case EXCP_DATA_ABORT:
8831 env->v7m.cfsr[M_REG_NS] |=
8832 (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK);
8833 env->v7m.bfar = env->exception.vaddress;
8834 qemu_log_mask(CPU_LOG_INT,
8835 "...with CFSR.PRECISERR and BFAR 0x%x\n",
8836 env->v7m.bfar);
8837 break;
8839 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
8840 break;
8841 default:
8842 /* All other FSR values are either MPU faults or "can't happen
8843 * for M profile" cases.
8845 switch (cs->exception_index) {
8846 case EXCP_PREFETCH_ABORT:
8847 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
8848 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n");
8849 break;
8850 case EXCP_DATA_ABORT:
8851 env->v7m.cfsr[env->v7m.secure] |=
8852 (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK);
8853 env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress;
8854 qemu_log_mask(CPU_LOG_INT,
8855 "...with CFSR.DACCVIOL and MMFAR 0x%x\n",
8856 env->v7m.mmfar[env->v7m.secure]);
8857 break;
8859 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM,
8860 env->v7m.secure);
8861 break;
8863 break;
8864 case EXCP_BKPT:
8865 if (semihosting_enabled()) {
8866 int nr;
8867 nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff;
8868 if (nr == 0xab) {
8869 env->regs[15] += 2;
8870 qemu_log_mask(CPU_LOG_INT,
8871 "...handling as semihosting call 0x%x\n",
8872 env->regs[0]);
8873 env->regs[0] = do_arm_semihosting(env);
8874 return;
8877 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false);
8878 break;
8879 case EXCP_IRQ:
8880 break;
8881 case EXCP_EXCEPTION_EXIT:
8882 if (env->regs[15] < EXC_RETURN_MIN_MAGIC) {
8883 /* Must be v8M security extension function return */
8884 assert(env->regs[15] >= FNC_RETURN_MIN_MAGIC);
8885 assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
8886 if (do_v7m_function_return(cpu)) {
8887 return;
8889 } else {
8890 do_v7m_exception_exit(cpu);
8891 return;
8893 break;
8894 default:
8895 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
8896 return; /* Never happens. Keep compiler happy. */
8899 if (arm_feature(env, ARM_FEATURE_V8)) {
8900 lr = R_V7M_EXCRET_RES1_MASK |
8901 R_V7M_EXCRET_DCRS_MASK |
8902 R_V7M_EXCRET_FTYPE_MASK;
8903 /* The S bit indicates whether we should return to Secure
8904 * or NonSecure (ie our current state).
8905 * The ES bit indicates whether we're taking this exception
8906 * to Secure or NonSecure (ie our target state). We set it
8907 * later, in v7m_exception_taken().
8908 * The SPSEL bit is also set in v7m_exception_taken() for v8M.
8909 * This corresponds to the ARM ARM pseudocode for v8M setting
8910 * some LR bits in PushStack() and some in ExceptionTaken();
8911 * the distinction matters for the tailchain cases where we
8912 * can take an exception without pushing the stack.
8914 if (env->v7m.secure) {
8915 lr |= R_V7M_EXCRET_S_MASK;
8917 } else {
8918 lr = R_V7M_EXCRET_RES1_MASK |
8919 R_V7M_EXCRET_S_MASK |
8920 R_V7M_EXCRET_DCRS_MASK |
8921 R_V7M_EXCRET_FTYPE_MASK |
8922 R_V7M_EXCRET_ES_MASK;
8923 if (env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK) {
8924 lr |= R_V7M_EXCRET_SPSEL_MASK;
8927 if (!arm_v7m_is_handler_mode(env)) {
8928 lr |= R_V7M_EXCRET_MODE_MASK;
8931 ignore_stackfaults = v7m_push_stack(cpu);
8932 v7m_exception_taken(cpu, lr, false, ignore_stackfaults);
8935 /* Function used to synchronize QEMU's AArch64 register set with AArch32
8936 * register set. This is necessary when switching between AArch32 and AArch64
8937 * execution state.
8939 void aarch64_sync_32_to_64(CPUARMState *env)
8941 int i;
8942 uint32_t mode = env->uncached_cpsr & CPSR_M;
8944 /* We can blanket copy R[0:7] to X[0:7] */
8945 for (i = 0; i < 8; i++) {
8946 env->xregs[i] = env->regs[i];
8949 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
8950 * Otherwise, they come from the banked user regs.
8952 if (mode == ARM_CPU_MODE_FIQ) {
8953 for (i = 8; i < 13; i++) {
8954 env->xregs[i] = env->usr_regs[i - 8];
8956 } else {
8957 for (i = 8; i < 13; i++) {
8958 env->xregs[i] = env->regs[i];
8962 /* Registers x13-x23 are the various mode SP and FP registers. Registers
8963 * r13 and r14 are only copied if we are in that mode, otherwise we copy
8964 * from the mode banked register.
8966 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
8967 env->xregs[13] = env->regs[13];
8968 env->xregs[14] = env->regs[14];
8969 } else {
8970 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
8971 /* HYP is an exception in that it is copied from r14 */
8972 if (mode == ARM_CPU_MODE_HYP) {
8973 env->xregs[14] = env->regs[14];
8974 } else {
8975 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
8979 if (mode == ARM_CPU_MODE_HYP) {
8980 env->xregs[15] = env->regs[13];
8981 } else {
8982 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
8985 if (mode == ARM_CPU_MODE_IRQ) {
8986 env->xregs[16] = env->regs[14];
8987 env->xregs[17] = env->regs[13];
8988 } else {
8989 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
8990 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
8993 if (mode == ARM_CPU_MODE_SVC) {
8994 env->xregs[18] = env->regs[14];
8995 env->xregs[19] = env->regs[13];
8996 } else {
8997 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
8998 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
9001 if (mode == ARM_CPU_MODE_ABT) {
9002 env->xregs[20] = env->regs[14];
9003 env->xregs[21] = env->regs[13];
9004 } else {
9005 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
9006 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
9009 if (mode == ARM_CPU_MODE_UND) {
9010 env->xregs[22] = env->regs[14];
9011 env->xregs[23] = env->regs[13];
9012 } else {
9013 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
9014 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
9017 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
9018 * mode, then we can copy from r8-r14. Otherwise, we copy from the
9019 * FIQ bank for r8-r14.
9021 if (mode == ARM_CPU_MODE_FIQ) {
9022 for (i = 24; i < 31; i++) {
9023 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
9025 } else {
9026 for (i = 24; i < 29; i++) {
9027 env->xregs[i] = env->fiq_regs[i - 24];
9029 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
9030 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
9033 env->pc = env->regs[15];
9036 /* Function used to synchronize QEMU's AArch32 register set with AArch64
9037 * register set. This is necessary when switching between AArch32 and AArch64
9038 * execution state.
9040 void aarch64_sync_64_to_32(CPUARMState *env)
9042 int i;
9043 uint32_t mode = env->uncached_cpsr & CPSR_M;
9045 /* We can blanket copy X[0:7] to R[0:7] */
9046 for (i = 0; i < 8; i++) {
9047 env->regs[i] = env->xregs[i];
9050 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
9051 * Otherwise, we copy x8-x12 into the banked user regs.
9053 if (mode == ARM_CPU_MODE_FIQ) {
9054 for (i = 8; i < 13; i++) {
9055 env->usr_regs[i - 8] = env->xregs[i];
9057 } else {
9058 for (i = 8; i < 13; i++) {
9059 env->regs[i] = env->xregs[i];
9063 /* Registers r13 & r14 depend on the current mode.
9064 * If we are in a given mode, we copy the corresponding x registers to r13
9065 * and r14. Otherwise, we copy the x register to the banked r13 and r14
9066 * for the mode.
9068 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9069 env->regs[13] = env->xregs[13];
9070 env->regs[14] = env->xregs[14];
9071 } else {
9072 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
9074 /* HYP is an exception in that it does not have its own banked r14 but
9075 * shares the USR r14
9077 if (mode == ARM_CPU_MODE_HYP) {
9078 env->regs[14] = env->xregs[14];
9079 } else {
9080 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
9084 if (mode == ARM_CPU_MODE_HYP) {
9085 env->regs[13] = env->xregs[15];
9086 } else {
9087 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
9090 if (mode == ARM_CPU_MODE_IRQ) {
9091 env->regs[14] = env->xregs[16];
9092 env->regs[13] = env->xregs[17];
9093 } else {
9094 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
9095 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
9098 if (mode == ARM_CPU_MODE_SVC) {
9099 env->regs[14] = env->xregs[18];
9100 env->regs[13] = env->xregs[19];
9101 } else {
9102 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
9103 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
9106 if (mode == ARM_CPU_MODE_ABT) {
9107 env->regs[14] = env->xregs[20];
9108 env->regs[13] = env->xregs[21];
9109 } else {
9110 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
9111 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
9114 if (mode == ARM_CPU_MODE_UND) {
9115 env->regs[14] = env->xregs[22];
9116 env->regs[13] = env->xregs[23];
9117 } else {
9118 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
9119 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
9122 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
9123 * mode, then we can copy to r8-r14. Otherwise, we copy to the
9124 * FIQ bank for r8-r14.
9126 if (mode == ARM_CPU_MODE_FIQ) {
9127 for (i = 24; i < 31; i++) {
9128 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
9130 } else {
9131 for (i = 24; i < 29; i++) {
9132 env->fiq_regs[i - 24] = env->xregs[i];
9134 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
9135 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
9138 env->regs[15] = env->pc;
9141 static void take_aarch32_exception(CPUARMState *env, int new_mode,
9142 uint32_t mask, uint32_t offset,
9143 uint32_t newpc)
9145 /* Change the CPU state so as to actually take the exception. */
9146 switch_mode(env, new_mode);
9148 * For exceptions taken to AArch32 we must clear the SS bit in both
9149 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
9151 env->uncached_cpsr &= ~PSTATE_SS;
9152 env->spsr = cpsr_read(env);
9153 /* Clear IT bits. */
9154 env->condexec_bits = 0;
9155 /* Switch to the new mode, and to the correct instruction set. */
9156 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
9157 /* Set new mode endianness */
9158 env->uncached_cpsr &= ~CPSR_E;
9159 if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) {
9160 env->uncached_cpsr |= CPSR_E;
9162 /* J and IL must always be cleared for exception entry */
9163 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
9164 env->daif |= mask;
9166 if (new_mode == ARM_CPU_MODE_HYP) {
9167 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
9168 env->elr_el[2] = env->regs[15];
9169 } else {
9171 * this is a lie, as there was no c1_sys on V4T/V5, but who cares
9172 * and we should just guard the thumb mode on V4
9174 if (arm_feature(env, ARM_FEATURE_V4T)) {
9175 env->thumb =
9176 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
9178 env->regs[14] = env->regs[15] + offset;
9180 env->regs[15] = newpc;
9183 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
9186 * Handle exception entry to Hyp mode; this is sufficiently
9187 * different to entry to other AArch32 modes that we handle it
9188 * separately here.
9190 * The vector table entry used is always the 0x14 Hyp mode entry point,
9191 * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp.
9192 * The offset applied to the preferred return address is always zero
9193 * (see DDI0487C.a section G1.12.3).
9194 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
9196 uint32_t addr, mask;
9197 ARMCPU *cpu = ARM_CPU(cs);
9198 CPUARMState *env = &cpu->env;
9200 switch (cs->exception_index) {
9201 case EXCP_UDEF:
9202 addr = 0x04;
9203 break;
9204 case EXCP_SWI:
9205 addr = 0x14;
9206 break;
9207 case EXCP_BKPT:
9208 /* Fall through to prefetch abort. */
9209 case EXCP_PREFETCH_ABORT:
9210 env->cp15.ifar_s = env->exception.vaddress;
9211 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
9212 (uint32_t)env->exception.vaddress);
9213 addr = 0x0c;
9214 break;
9215 case EXCP_DATA_ABORT:
9216 env->cp15.dfar_s = env->exception.vaddress;
9217 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
9218 (uint32_t)env->exception.vaddress);
9219 addr = 0x10;
9220 break;
9221 case EXCP_IRQ:
9222 addr = 0x18;
9223 break;
9224 case EXCP_FIQ:
9225 addr = 0x1c;
9226 break;
9227 case EXCP_HVC:
9228 addr = 0x08;
9229 break;
9230 case EXCP_HYP_TRAP:
9231 addr = 0x14;
9232 default:
9233 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9236 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
9237 if (!arm_feature(env, ARM_FEATURE_V8)) {
9239 * QEMU syndrome values are v8-style. v7 has the IL bit
9240 * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
9241 * If this is a v7 CPU, squash the IL bit in those cases.
9243 if (cs->exception_index == EXCP_PREFETCH_ABORT ||
9244 (cs->exception_index == EXCP_DATA_ABORT &&
9245 !(env->exception.syndrome & ARM_EL_ISV)) ||
9246 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
9247 env->exception.syndrome &= ~ARM_EL_IL;
9250 env->cp15.esr_el[2] = env->exception.syndrome;
9253 if (arm_current_el(env) != 2 && addr < 0x14) {
9254 addr = 0x14;
9257 mask = 0;
9258 if (!(env->cp15.scr_el3 & SCR_EA)) {
9259 mask |= CPSR_A;
9261 if (!(env->cp15.scr_el3 & SCR_IRQ)) {
9262 mask |= CPSR_I;
9264 if (!(env->cp15.scr_el3 & SCR_FIQ)) {
9265 mask |= CPSR_F;
9268 addr += env->cp15.hvbar;
9270 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
9273 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
9275 ARMCPU *cpu = ARM_CPU(cs);
9276 CPUARMState *env = &cpu->env;
9277 uint32_t addr;
9278 uint32_t mask;
9279 int new_mode;
9280 uint32_t offset;
9281 uint32_t moe;
9283 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
9284 switch (syn_get_ec(env->exception.syndrome)) {
9285 case EC_BREAKPOINT:
9286 case EC_BREAKPOINT_SAME_EL:
9287 moe = 1;
9288 break;
9289 case EC_WATCHPOINT:
9290 case EC_WATCHPOINT_SAME_EL:
9291 moe = 10;
9292 break;
9293 case EC_AA32_BKPT:
9294 moe = 3;
9295 break;
9296 case EC_VECTORCATCH:
9297 moe = 5;
9298 break;
9299 default:
9300 moe = 0;
9301 break;
9304 if (moe) {
9305 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
9308 if (env->exception.target_el == 2) {
9309 arm_cpu_do_interrupt_aarch32_hyp(cs);
9310 return;
9313 switch (cs->exception_index) {
9314 case EXCP_UDEF:
9315 new_mode = ARM_CPU_MODE_UND;
9316 addr = 0x04;
9317 mask = CPSR_I;
9318 if (env->thumb)
9319 offset = 2;
9320 else
9321 offset = 4;
9322 break;
9323 case EXCP_SWI:
9324 new_mode = ARM_CPU_MODE_SVC;
9325 addr = 0x08;
9326 mask = CPSR_I;
9327 /* The PC already points to the next instruction. */
9328 offset = 0;
9329 break;
9330 case EXCP_BKPT:
9331 /* Fall through to prefetch abort. */
9332 case EXCP_PREFETCH_ABORT:
9333 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
9334 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
9335 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
9336 env->exception.fsr, (uint32_t)env->exception.vaddress);
9337 new_mode = ARM_CPU_MODE_ABT;
9338 addr = 0x0c;
9339 mask = CPSR_A | CPSR_I;
9340 offset = 4;
9341 break;
9342 case EXCP_DATA_ABORT:
9343 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
9344 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
9345 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
9346 env->exception.fsr,
9347 (uint32_t)env->exception.vaddress);
9348 new_mode = ARM_CPU_MODE_ABT;
9349 addr = 0x10;
9350 mask = CPSR_A | CPSR_I;
9351 offset = 8;
9352 break;
9353 case EXCP_IRQ:
9354 new_mode = ARM_CPU_MODE_IRQ;
9355 addr = 0x18;
9356 /* Disable IRQ and imprecise data aborts. */
9357 mask = CPSR_A | CPSR_I;
9358 offset = 4;
9359 if (env->cp15.scr_el3 & SCR_IRQ) {
9360 /* IRQ routed to monitor mode */
9361 new_mode = ARM_CPU_MODE_MON;
9362 mask |= CPSR_F;
9364 break;
9365 case EXCP_FIQ:
9366 new_mode = ARM_CPU_MODE_FIQ;
9367 addr = 0x1c;
9368 /* Disable FIQ, IRQ and imprecise data aborts. */
9369 mask = CPSR_A | CPSR_I | CPSR_F;
9370 if (env->cp15.scr_el3 & SCR_FIQ) {
9371 /* FIQ routed to monitor mode */
9372 new_mode = ARM_CPU_MODE_MON;
9374 offset = 4;
9375 break;
9376 case EXCP_VIRQ:
9377 new_mode = ARM_CPU_MODE_IRQ;
9378 addr = 0x18;
9379 /* Disable IRQ and imprecise data aborts. */
9380 mask = CPSR_A | CPSR_I;
9381 offset = 4;
9382 break;
9383 case EXCP_VFIQ:
9384 new_mode = ARM_CPU_MODE_FIQ;
9385 addr = 0x1c;
9386 /* Disable FIQ, IRQ and imprecise data aborts. */
9387 mask = CPSR_A | CPSR_I | CPSR_F;
9388 offset = 4;
9389 break;
9390 case EXCP_SMC:
9391 new_mode = ARM_CPU_MODE_MON;
9392 addr = 0x08;
9393 mask = CPSR_A | CPSR_I | CPSR_F;
9394 offset = 0;
9395 break;
9396 default:
9397 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9398 return; /* Never happens. Keep compiler happy. */
9401 if (new_mode == ARM_CPU_MODE_MON) {
9402 addr += env->cp15.mvbar;
9403 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
9404 /* High vectors. When enabled, base address cannot be remapped. */
9405 addr += 0xffff0000;
9406 } else {
9407 /* ARM v7 architectures provide a vector base address register to remap
9408 * the interrupt vector table.
9409 * This register is only followed in non-monitor mode, and is banked.
9410 * Note: only bits 31:5 are valid.
9412 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
9415 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
9416 env->cp15.scr_el3 &= ~SCR_NS;
9419 take_aarch32_exception(env, new_mode, mask, offset, addr);
9422 /* Handle exception entry to a target EL which is using AArch64 */
9423 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
9425 ARMCPU *cpu = ARM_CPU(cs);
9426 CPUARMState *env = &cpu->env;
9427 unsigned int new_el = env->exception.target_el;
9428 target_ulong addr = env->cp15.vbar_el[new_el];
9429 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
9430 unsigned int cur_el = arm_current_el(env);
9433 * Note that new_el can never be 0. If cur_el is 0, then
9434 * el0_a64 is is_a64(), else el0_a64 is ignored.
9436 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
9438 if (cur_el < new_el) {
9439 /* Entry vector offset depends on whether the implemented EL
9440 * immediately lower than the target level is using AArch32 or AArch64
9442 bool is_aa64;
9444 switch (new_el) {
9445 case 3:
9446 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
9447 break;
9448 case 2:
9449 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
9450 break;
9451 case 1:
9452 is_aa64 = is_a64(env);
9453 break;
9454 default:
9455 g_assert_not_reached();
9458 if (is_aa64) {
9459 addr += 0x400;
9460 } else {
9461 addr += 0x600;
9463 } else if (pstate_read(env) & PSTATE_SP) {
9464 addr += 0x200;
9467 switch (cs->exception_index) {
9468 case EXCP_PREFETCH_ABORT:
9469 case EXCP_DATA_ABORT:
9470 env->cp15.far_el[new_el] = env->exception.vaddress;
9471 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
9472 env->cp15.far_el[new_el]);
9473 /* fall through */
9474 case EXCP_BKPT:
9475 case EXCP_UDEF:
9476 case EXCP_SWI:
9477 case EXCP_HVC:
9478 case EXCP_HYP_TRAP:
9479 case EXCP_SMC:
9480 if (syn_get_ec(env->exception.syndrome) == EC_ADVSIMDFPACCESSTRAP) {
9482 * QEMU internal FP/SIMD syndromes from AArch32 include the
9483 * TA and coproc fields which are only exposed if the exception
9484 * is taken to AArch32 Hyp mode. Mask them out to get a valid
9485 * AArch64 format syndrome.
9487 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
9489 env->cp15.esr_el[new_el] = env->exception.syndrome;
9490 break;
9491 case EXCP_IRQ:
9492 case EXCP_VIRQ:
9493 addr += 0x80;
9494 break;
9495 case EXCP_FIQ:
9496 case EXCP_VFIQ:
9497 addr += 0x100;
9498 break;
9499 case EXCP_SEMIHOST:
9500 qemu_log_mask(CPU_LOG_INT,
9501 "...handling as semihosting call 0x%" PRIx64 "\n",
9502 env->xregs[0]);
9503 env->xregs[0] = do_arm_semihosting(env);
9504 return;
9505 default:
9506 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9509 if (is_a64(env)) {
9510 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
9511 aarch64_save_sp(env, arm_current_el(env));
9512 env->elr_el[new_el] = env->pc;
9513 } else {
9514 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
9515 env->elr_el[new_el] = env->regs[15];
9517 aarch64_sync_32_to_64(env);
9519 env->condexec_bits = 0;
9521 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
9522 env->elr_el[new_el]);
9524 pstate_write(env, PSTATE_DAIF | new_mode);
9525 env->aarch64 = 1;
9526 aarch64_restore_sp(env, new_el);
9528 env->pc = addr;
9530 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
9531 new_el, env->pc, pstate_read(env));
9534 static inline bool check_for_semihosting(CPUState *cs)
9536 /* Check whether this exception is a semihosting call; if so
9537 * then handle it and return true; otherwise return false.
9539 ARMCPU *cpu = ARM_CPU(cs);
9540 CPUARMState *env = &cpu->env;
9542 if (is_a64(env)) {
9543 if (cs->exception_index == EXCP_SEMIHOST) {
9544 /* This is always the 64-bit semihosting exception.
9545 * The "is this usermode" and "is semihosting enabled"
9546 * checks have been done at translate time.
9548 qemu_log_mask(CPU_LOG_INT,
9549 "...handling as semihosting call 0x%" PRIx64 "\n",
9550 env->xregs[0]);
9551 env->xregs[0] = do_arm_semihosting(env);
9552 return true;
9554 return false;
9555 } else {
9556 uint32_t imm;
9558 /* Only intercept calls from privileged modes, to provide some
9559 * semblance of security.
9561 if (cs->exception_index != EXCP_SEMIHOST &&
9562 (!semihosting_enabled() ||
9563 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) {
9564 return false;
9567 switch (cs->exception_index) {
9568 case EXCP_SEMIHOST:
9569 /* This is always a semihosting call; the "is this usermode"
9570 * and "is semihosting enabled" checks have been done at
9571 * translate time.
9573 break;
9574 case EXCP_SWI:
9575 /* Check for semihosting interrupt. */
9576 if (env->thumb) {
9577 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env))
9578 & 0xff;
9579 if (imm == 0xab) {
9580 break;
9582 } else {
9583 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env))
9584 & 0xffffff;
9585 if (imm == 0x123456) {
9586 break;
9589 return false;
9590 case EXCP_BKPT:
9591 /* See if this is a semihosting syscall. */
9592 if (env->thumb) {
9593 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env))
9594 & 0xff;
9595 if (imm == 0xab) {
9596 env->regs[15] += 2;
9597 break;
9600 return false;
9601 default:
9602 return false;
9605 qemu_log_mask(CPU_LOG_INT,
9606 "...handling as semihosting call 0x%x\n",
9607 env->regs[0]);
9608 env->regs[0] = do_arm_semihosting(env);
9609 return true;
9613 /* Handle a CPU exception for A and R profile CPUs.
9614 * Do any appropriate logging, handle PSCI calls, and then hand off
9615 * to the AArch64-entry or AArch32-entry function depending on the
9616 * target exception level's register width.
9618 void arm_cpu_do_interrupt(CPUState *cs)
9620 ARMCPU *cpu = ARM_CPU(cs);
9621 CPUARMState *env = &cpu->env;
9622 unsigned int new_el = env->exception.target_el;
9624 assert(!arm_feature(env, ARM_FEATURE_M));
9626 arm_log_exception(cs->exception_index);
9627 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
9628 new_el);
9629 if (qemu_loglevel_mask(CPU_LOG_INT)
9630 && !excp_is_internal(cs->exception_index)) {
9631 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
9632 syn_get_ec(env->exception.syndrome),
9633 env->exception.syndrome);
9636 if (arm_is_psci_call(cpu, cs->exception_index)) {
9637 arm_handle_psci_call(cpu);
9638 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
9639 return;
9642 /* Semihosting semantics depend on the register width of the
9643 * code that caused the exception, not the target exception level,
9644 * so must be handled here.
9646 if (check_for_semihosting(cs)) {
9647 return;
9650 /* Hooks may change global state so BQL should be held, also the
9651 * BQL needs to be held for any modification of
9652 * cs->interrupt_request.
9654 g_assert(qemu_mutex_iothread_locked());
9656 arm_call_pre_el_change_hook(cpu);
9658 assert(!excp_is_internal(cs->exception_index));
9659 if (arm_el_is_aa64(env, new_el)) {
9660 arm_cpu_do_interrupt_aarch64(cs);
9661 } else {
9662 arm_cpu_do_interrupt_aarch32(cs);
9665 arm_call_el_change_hook(cpu);
9667 if (!kvm_enabled()) {
9668 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
9671 #endif /* !CONFIG_USER_ONLY */
9673 /* Return the exception level which controls this address translation regime */
9674 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
9676 switch (mmu_idx) {
9677 case ARMMMUIdx_S2NS:
9678 case ARMMMUIdx_S1E2:
9679 return 2;
9680 case ARMMMUIdx_S1E3:
9681 return 3;
9682 case ARMMMUIdx_S1SE0:
9683 return arm_el_is_aa64(env, 3) ? 1 : 3;
9684 case ARMMMUIdx_S1SE1:
9685 case ARMMMUIdx_S1NSE0:
9686 case ARMMMUIdx_S1NSE1:
9687 case ARMMMUIdx_MPrivNegPri:
9688 case ARMMMUIdx_MUserNegPri:
9689 case ARMMMUIdx_MPriv:
9690 case ARMMMUIdx_MUser:
9691 case ARMMMUIdx_MSPrivNegPri:
9692 case ARMMMUIdx_MSUserNegPri:
9693 case ARMMMUIdx_MSPriv:
9694 case ARMMMUIdx_MSUser:
9695 return 1;
9696 default:
9697 g_assert_not_reached();
9701 #ifndef CONFIG_USER_ONLY
9703 /* Return the SCTLR value which controls this address translation regime */
9704 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
9706 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
9709 /* Return true if the specified stage of address translation is disabled */
9710 static inline bool regime_translation_disabled(CPUARMState *env,
9711 ARMMMUIdx mmu_idx)
9713 if (arm_feature(env, ARM_FEATURE_M)) {
9714 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
9715 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
9716 case R_V7M_MPU_CTRL_ENABLE_MASK:
9717 /* Enabled, but not for HardFault and NMI */
9718 return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
9719 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
9720 /* Enabled for all cases */
9721 return false;
9722 case 0:
9723 default:
9724 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
9725 * we warned about that in armv7m_nvic.c when the guest set it.
9727 return true;
9731 if (mmu_idx == ARMMMUIdx_S2NS) {
9732 /* HCR.DC means HCR.VM behaves as 1 */
9733 return (env->cp15.hcr_el2 & (HCR_DC | HCR_VM)) == 0;
9736 if (env->cp15.hcr_el2 & HCR_TGE) {
9737 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
9738 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
9739 return true;
9743 if ((env->cp15.hcr_el2 & HCR_DC) &&
9744 (mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1)) {
9745 /* HCR.DC means SCTLR_EL1.M behaves as 0 */
9746 return true;
9749 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
9752 static inline bool regime_translation_big_endian(CPUARMState *env,
9753 ARMMMUIdx mmu_idx)
9755 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
9758 /* Return the TTBR associated with this translation regime */
9759 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
9760 int ttbrn)
9762 if (mmu_idx == ARMMMUIdx_S2NS) {
9763 return env->cp15.vttbr_el2;
9765 if (ttbrn == 0) {
9766 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
9767 } else {
9768 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
9772 #endif /* !CONFIG_USER_ONLY */
9774 /* Return the TCR controlling this translation regime */
9775 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
9777 if (mmu_idx == ARMMMUIdx_S2NS) {
9778 return &env->cp15.vtcr_el2;
9780 return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
9783 /* Convert a possible stage1+2 MMU index into the appropriate
9784 * stage 1 MMU index
9786 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
9788 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
9789 mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0);
9791 return mmu_idx;
9794 /* Return true if the translation regime is using LPAE format page tables */
9795 static inline bool regime_using_lpae_format(CPUARMState *env,
9796 ARMMMUIdx mmu_idx)
9798 int el = regime_el(env, mmu_idx);
9799 if (el == 2 || arm_el_is_aa64(env, el)) {
9800 return true;
9802 if (arm_feature(env, ARM_FEATURE_LPAE)
9803 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
9804 return true;
9806 return false;
9809 /* Returns true if the stage 1 translation regime is using LPAE format page
9810 * tables. Used when raising alignment exceptions, whose FSR changes depending
9811 * on whether the long or short descriptor format is in use. */
9812 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
9814 mmu_idx = stage_1_mmu_idx(mmu_idx);
9816 return regime_using_lpae_format(env, mmu_idx);
9819 #ifndef CONFIG_USER_ONLY
9820 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
9822 switch (mmu_idx) {
9823 case ARMMMUIdx_S1SE0:
9824 case ARMMMUIdx_S1NSE0:
9825 case ARMMMUIdx_MUser:
9826 case ARMMMUIdx_MSUser:
9827 case ARMMMUIdx_MUserNegPri:
9828 case ARMMMUIdx_MSUserNegPri:
9829 return true;
9830 default:
9831 return false;
9832 case ARMMMUIdx_S12NSE0:
9833 case ARMMMUIdx_S12NSE1:
9834 g_assert_not_reached();
9838 /* Translate section/page access permissions to page
9839 * R/W protection flags
9841 * @env: CPUARMState
9842 * @mmu_idx: MMU index indicating required translation regime
9843 * @ap: The 3-bit access permissions (AP[2:0])
9844 * @domain_prot: The 2-bit domain access permissions
9846 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
9847 int ap, int domain_prot)
9849 bool is_user = regime_is_user(env, mmu_idx);
9851 if (domain_prot == 3) {
9852 return PAGE_READ | PAGE_WRITE;
9855 switch (ap) {
9856 case 0:
9857 if (arm_feature(env, ARM_FEATURE_V7)) {
9858 return 0;
9860 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
9861 case SCTLR_S:
9862 return is_user ? 0 : PAGE_READ;
9863 case SCTLR_R:
9864 return PAGE_READ;
9865 default:
9866 return 0;
9868 case 1:
9869 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
9870 case 2:
9871 if (is_user) {
9872 return PAGE_READ;
9873 } else {
9874 return PAGE_READ | PAGE_WRITE;
9876 case 3:
9877 return PAGE_READ | PAGE_WRITE;
9878 case 4: /* Reserved. */
9879 return 0;
9880 case 5:
9881 return is_user ? 0 : PAGE_READ;
9882 case 6:
9883 return PAGE_READ;
9884 case 7:
9885 if (!arm_feature(env, ARM_FEATURE_V6K)) {
9886 return 0;
9888 return PAGE_READ;
9889 default:
9890 g_assert_not_reached();
9894 /* Translate section/page access permissions to page
9895 * R/W protection flags.
9897 * @ap: The 2-bit simple AP (AP[2:1])
9898 * @is_user: TRUE if accessing from PL0
9900 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
9902 switch (ap) {
9903 case 0:
9904 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
9905 case 1:
9906 return PAGE_READ | PAGE_WRITE;
9907 case 2:
9908 return is_user ? 0 : PAGE_READ;
9909 case 3:
9910 return PAGE_READ;
9911 default:
9912 g_assert_not_reached();
9916 static inline int
9917 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
9919 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
9922 /* Translate S2 section/page access permissions to protection flags
9924 * @env: CPUARMState
9925 * @s2ap: The 2-bit stage2 access permissions (S2AP)
9926 * @xn: XN (execute-never) bit
9928 static int get_S2prot(CPUARMState *env, int s2ap, int xn)
9930 int prot = 0;
9932 if (s2ap & 1) {
9933 prot |= PAGE_READ;
9935 if (s2ap & 2) {
9936 prot |= PAGE_WRITE;
9938 if (!xn) {
9939 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
9940 prot |= PAGE_EXEC;
9943 return prot;
9946 /* Translate section/page access permissions to protection flags
9948 * @env: CPUARMState
9949 * @mmu_idx: MMU index indicating required translation regime
9950 * @is_aa64: TRUE if AArch64
9951 * @ap: The 2-bit simple AP (AP[2:1])
9952 * @ns: NS (non-secure) bit
9953 * @xn: XN (execute-never) bit
9954 * @pxn: PXN (privileged execute-never) bit
9956 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
9957 int ap, int ns, int xn, int pxn)
9959 bool is_user = regime_is_user(env, mmu_idx);
9960 int prot_rw, user_rw;
9961 bool have_wxn;
9962 int wxn = 0;
9964 assert(mmu_idx != ARMMMUIdx_S2NS);
9966 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
9967 if (is_user) {
9968 prot_rw = user_rw;
9969 } else {
9970 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
9973 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
9974 return prot_rw;
9977 /* TODO have_wxn should be replaced with
9978 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
9979 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
9980 * compatible processors have EL2, which is required for [U]WXN.
9982 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
9984 if (have_wxn) {
9985 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
9988 if (is_aa64) {
9989 switch (regime_el(env, mmu_idx)) {
9990 case 1:
9991 if (!is_user) {
9992 xn = pxn || (user_rw & PAGE_WRITE);
9994 break;
9995 case 2:
9996 case 3:
9997 break;
9999 } else if (arm_feature(env, ARM_FEATURE_V7)) {
10000 switch (regime_el(env, mmu_idx)) {
10001 case 1:
10002 case 3:
10003 if (is_user) {
10004 xn = xn || !(user_rw & PAGE_READ);
10005 } else {
10006 int uwxn = 0;
10007 if (have_wxn) {
10008 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
10010 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
10011 (uwxn && (user_rw & PAGE_WRITE));
10013 break;
10014 case 2:
10015 break;
10017 } else {
10018 xn = wxn = 0;
10021 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
10022 return prot_rw;
10024 return prot_rw | PAGE_EXEC;
10027 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
10028 uint32_t *table, uint32_t address)
10030 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
10031 TCR *tcr = regime_tcr(env, mmu_idx);
10033 if (address & tcr->mask) {
10034 if (tcr->raw_tcr & TTBCR_PD1) {
10035 /* Translation table walk disabled for TTBR1 */
10036 return false;
10038 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
10039 } else {
10040 if (tcr->raw_tcr & TTBCR_PD0) {
10041 /* Translation table walk disabled for TTBR0 */
10042 return false;
10044 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
10046 *table |= (address >> 18) & 0x3ffc;
10047 return true;
10050 /* Translate a S1 pagetable walk through S2 if needed. */
10051 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
10052 hwaddr addr, MemTxAttrs txattrs,
10053 ARMMMUFaultInfo *fi)
10055 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
10056 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
10057 target_ulong s2size;
10058 hwaddr s2pa;
10059 int s2prot;
10060 int ret;
10061 ARMCacheAttrs cacheattrs = {};
10062 ARMCacheAttrs *pcacheattrs = NULL;
10064 if (env->cp15.hcr_el2 & HCR_PTW) {
10066 * PTW means we must fault if this S1 walk touches S2 Device
10067 * memory; otherwise we don't care about the attributes and can
10068 * save the S2 translation the effort of computing them.
10070 pcacheattrs = &cacheattrs;
10073 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
10074 &txattrs, &s2prot, &s2size, fi, pcacheattrs);
10075 if (ret) {
10076 assert(fi->type != ARMFault_None);
10077 fi->s2addr = addr;
10078 fi->stage2 = true;
10079 fi->s1ptw = true;
10080 return ~0;
10082 if (pcacheattrs && (pcacheattrs->attrs & 0xf0) == 0) {
10083 /* Access was to Device memory: generate Permission fault */
10084 fi->type = ARMFault_Permission;
10085 fi->s2addr = addr;
10086 fi->stage2 = true;
10087 fi->s1ptw = true;
10088 return ~0;
10090 addr = s2pa;
10092 return addr;
10095 /* All loads done in the course of a page table walk go through here. */
10096 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10097 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10099 ARMCPU *cpu = ARM_CPU(cs);
10100 CPUARMState *env = &cpu->env;
10101 MemTxAttrs attrs = {};
10102 MemTxResult result = MEMTX_OK;
10103 AddressSpace *as;
10104 uint32_t data;
10106 attrs.secure = is_secure;
10107 as = arm_addressspace(cs, attrs);
10108 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
10109 if (fi->s1ptw) {
10110 return 0;
10112 if (regime_translation_big_endian(env, mmu_idx)) {
10113 data = address_space_ldl_be(as, addr, attrs, &result);
10114 } else {
10115 data = address_space_ldl_le(as, addr, attrs, &result);
10117 if (result == MEMTX_OK) {
10118 return data;
10120 fi->type = ARMFault_SyncExternalOnWalk;
10121 fi->ea = arm_extabort_type(result);
10122 return 0;
10125 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10126 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10128 ARMCPU *cpu = ARM_CPU(cs);
10129 CPUARMState *env = &cpu->env;
10130 MemTxAttrs attrs = {};
10131 MemTxResult result = MEMTX_OK;
10132 AddressSpace *as;
10133 uint64_t data;
10135 attrs.secure = is_secure;
10136 as = arm_addressspace(cs, attrs);
10137 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
10138 if (fi->s1ptw) {
10139 return 0;
10141 if (regime_translation_big_endian(env, mmu_idx)) {
10142 data = address_space_ldq_be(as, addr, attrs, &result);
10143 } else {
10144 data = address_space_ldq_le(as, addr, attrs, &result);
10146 if (result == MEMTX_OK) {
10147 return data;
10149 fi->type = ARMFault_SyncExternalOnWalk;
10150 fi->ea = arm_extabort_type(result);
10151 return 0;
10154 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
10155 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10156 hwaddr *phys_ptr, int *prot,
10157 target_ulong *page_size,
10158 ARMMMUFaultInfo *fi)
10160 CPUState *cs = CPU(arm_env_get_cpu(env));
10161 int level = 1;
10162 uint32_t table;
10163 uint32_t desc;
10164 int type;
10165 int ap;
10166 int domain = 0;
10167 int domain_prot;
10168 hwaddr phys_addr;
10169 uint32_t dacr;
10171 /* Pagetable walk. */
10172 /* Lookup l1 descriptor. */
10173 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
10174 /* Section translation fault if page walk is disabled by PD0 or PD1 */
10175 fi->type = ARMFault_Translation;
10176 goto do_fault;
10178 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10179 mmu_idx, fi);
10180 if (fi->type != ARMFault_None) {
10181 goto do_fault;
10183 type = (desc & 3);
10184 domain = (desc >> 5) & 0x0f;
10185 if (regime_el(env, mmu_idx) == 1) {
10186 dacr = env->cp15.dacr_ns;
10187 } else {
10188 dacr = env->cp15.dacr_s;
10190 domain_prot = (dacr >> (domain * 2)) & 3;
10191 if (type == 0) {
10192 /* Section translation fault. */
10193 fi->type = ARMFault_Translation;
10194 goto do_fault;
10196 if (type != 2) {
10197 level = 2;
10199 if (domain_prot == 0 || domain_prot == 2) {
10200 fi->type = ARMFault_Domain;
10201 goto do_fault;
10203 if (type == 2) {
10204 /* 1Mb section. */
10205 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
10206 ap = (desc >> 10) & 3;
10207 *page_size = 1024 * 1024;
10208 } else {
10209 /* Lookup l2 entry. */
10210 if (type == 1) {
10211 /* Coarse pagetable. */
10212 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
10213 } else {
10214 /* Fine pagetable. */
10215 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
10217 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10218 mmu_idx, fi);
10219 if (fi->type != ARMFault_None) {
10220 goto do_fault;
10222 switch (desc & 3) {
10223 case 0: /* Page translation fault. */
10224 fi->type = ARMFault_Translation;
10225 goto do_fault;
10226 case 1: /* 64k page. */
10227 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
10228 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
10229 *page_size = 0x10000;
10230 break;
10231 case 2: /* 4k page. */
10232 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10233 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
10234 *page_size = 0x1000;
10235 break;
10236 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
10237 if (type == 1) {
10238 /* ARMv6/XScale extended small page format */
10239 if (arm_feature(env, ARM_FEATURE_XSCALE)
10240 || arm_feature(env, ARM_FEATURE_V6)) {
10241 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10242 *page_size = 0x1000;
10243 } else {
10244 /* UNPREDICTABLE in ARMv5; we choose to take a
10245 * page translation fault.
10247 fi->type = ARMFault_Translation;
10248 goto do_fault;
10250 } else {
10251 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
10252 *page_size = 0x400;
10254 ap = (desc >> 4) & 3;
10255 break;
10256 default:
10257 /* Never happens, but compiler isn't smart enough to tell. */
10258 abort();
10261 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
10262 *prot |= *prot ? PAGE_EXEC : 0;
10263 if (!(*prot & (1 << access_type))) {
10264 /* Access permission fault. */
10265 fi->type = ARMFault_Permission;
10266 goto do_fault;
10268 *phys_ptr = phys_addr;
10269 return false;
10270 do_fault:
10271 fi->domain = domain;
10272 fi->level = level;
10273 return true;
10276 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
10277 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10278 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
10279 target_ulong *page_size, ARMMMUFaultInfo *fi)
10281 CPUState *cs = CPU(arm_env_get_cpu(env));
10282 int level = 1;
10283 uint32_t table;
10284 uint32_t desc;
10285 uint32_t xn;
10286 uint32_t pxn = 0;
10287 int type;
10288 int ap;
10289 int domain = 0;
10290 int domain_prot;
10291 hwaddr phys_addr;
10292 uint32_t dacr;
10293 bool ns;
10295 /* Pagetable walk. */
10296 /* Lookup l1 descriptor. */
10297 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
10298 /* Section translation fault if page walk is disabled by PD0 or PD1 */
10299 fi->type = ARMFault_Translation;
10300 goto do_fault;
10302 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10303 mmu_idx, fi);
10304 if (fi->type != ARMFault_None) {
10305 goto do_fault;
10307 type = (desc & 3);
10308 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
10309 /* Section translation fault, or attempt to use the encoding
10310 * which is Reserved on implementations without PXN.
10312 fi->type = ARMFault_Translation;
10313 goto do_fault;
10315 if ((type == 1) || !(desc & (1 << 18))) {
10316 /* Page or Section. */
10317 domain = (desc >> 5) & 0x0f;
10319 if (regime_el(env, mmu_idx) == 1) {
10320 dacr = env->cp15.dacr_ns;
10321 } else {
10322 dacr = env->cp15.dacr_s;
10324 if (type == 1) {
10325 level = 2;
10327 domain_prot = (dacr >> (domain * 2)) & 3;
10328 if (domain_prot == 0 || domain_prot == 2) {
10329 /* Section or Page domain fault */
10330 fi->type = ARMFault_Domain;
10331 goto do_fault;
10333 if (type != 1) {
10334 if (desc & (1 << 18)) {
10335 /* Supersection. */
10336 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
10337 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
10338 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
10339 *page_size = 0x1000000;
10340 } else {
10341 /* Section. */
10342 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
10343 *page_size = 0x100000;
10345 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
10346 xn = desc & (1 << 4);
10347 pxn = desc & 1;
10348 ns = extract32(desc, 19, 1);
10349 } else {
10350 if (arm_feature(env, ARM_FEATURE_PXN)) {
10351 pxn = (desc >> 2) & 1;
10353 ns = extract32(desc, 3, 1);
10354 /* Lookup l2 entry. */
10355 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
10356 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10357 mmu_idx, fi);
10358 if (fi->type != ARMFault_None) {
10359 goto do_fault;
10361 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
10362 switch (desc & 3) {
10363 case 0: /* Page translation fault. */
10364 fi->type = ARMFault_Translation;
10365 goto do_fault;
10366 case 1: /* 64k page. */
10367 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
10368 xn = desc & (1 << 15);
10369 *page_size = 0x10000;
10370 break;
10371 case 2: case 3: /* 4k page. */
10372 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10373 xn = desc & 1;
10374 *page_size = 0x1000;
10375 break;
10376 default:
10377 /* Never happens, but compiler isn't smart enough to tell. */
10378 abort();
10381 if (domain_prot == 3) {
10382 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10383 } else {
10384 if (pxn && !regime_is_user(env, mmu_idx)) {
10385 xn = 1;
10387 if (xn && access_type == MMU_INST_FETCH) {
10388 fi->type = ARMFault_Permission;
10389 goto do_fault;
10392 if (arm_feature(env, ARM_FEATURE_V6K) &&
10393 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
10394 /* The simplified model uses AP[0] as an access control bit. */
10395 if ((ap & 1) == 0) {
10396 /* Access flag fault. */
10397 fi->type = ARMFault_AccessFlag;
10398 goto do_fault;
10400 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
10401 } else {
10402 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
10404 if (*prot && !xn) {
10405 *prot |= PAGE_EXEC;
10407 if (!(*prot & (1 << access_type))) {
10408 /* Access permission fault. */
10409 fi->type = ARMFault_Permission;
10410 goto do_fault;
10413 if (ns) {
10414 /* The NS bit will (as required by the architecture) have no effect if
10415 * the CPU doesn't support TZ or this is a non-secure translation
10416 * regime, because the attribute will already be non-secure.
10418 attrs->secure = false;
10420 *phys_ptr = phys_addr;
10421 return false;
10422 do_fault:
10423 fi->domain = domain;
10424 fi->level = level;
10425 return true;
10429 * check_s2_mmu_setup
10430 * @cpu: ARMCPU
10431 * @is_aa64: True if the translation regime is in AArch64 state
10432 * @startlevel: Suggested starting level
10433 * @inputsize: Bitsize of IPAs
10434 * @stride: Page-table stride (See the ARM ARM)
10436 * Returns true if the suggested S2 translation parameters are OK and
10437 * false otherwise.
10439 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
10440 int inputsize, int stride)
10442 const int grainsize = stride + 3;
10443 int startsizecheck;
10445 /* Negative levels are never allowed. */
10446 if (level < 0) {
10447 return false;
10450 startsizecheck = inputsize - ((3 - level) * stride + grainsize);
10451 if (startsizecheck < 1 || startsizecheck > stride + 4) {
10452 return false;
10455 if (is_aa64) {
10456 CPUARMState *env = &cpu->env;
10457 unsigned int pamax = arm_pamax(cpu);
10459 switch (stride) {
10460 case 13: /* 64KB Pages. */
10461 if (level == 0 || (level == 1 && pamax <= 42)) {
10462 return false;
10464 break;
10465 case 11: /* 16KB Pages. */
10466 if (level == 0 || (level == 1 && pamax <= 40)) {
10467 return false;
10469 break;
10470 case 9: /* 4KB Pages. */
10471 if (level == 0 && pamax <= 42) {
10472 return false;
10474 break;
10475 default:
10476 g_assert_not_reached();
10479 /* Inputsize checks. */
10480 if (inputsize > pamax &&
10481 (arm_el_is_aa64(env, 1) || inputsize > 40)) {
10482 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
10483 return false;
10485 } else {
10486 /* AArch32 only supports 4KB pages. Assert on that. */
10487 assert(stride == 9);
10489 if (level == 0) {
10490 return false;
10493 return true;
10496 /* Translate from the 4-bit stage 2 representation of
10497 * memory attributes (without cache-allocation hints) to
10498 * the 8-bit representation of the stage 1 MAIR registers
10499 * (which includes allocation hints).
10501 * ref: shared/translation/attrs/S2AttrDecode()
10502 * .../S2ConvertAttrsHints()
10504 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
10506 uint8_t hiattr = extract32(s2attrs, 2, 2);
10507 uint8_t loattr = extract32(s2attrs, 0, 2);
10508 uint8_t hihint = 0, lohint = 0;
10510 if (hiattr != 0) { /* normal memory */
10511 if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */
10512 hiattr = loattr = 1; /* non-cacheable */
10513 } else {
10514 if (hiattr != 1) { /* Write-through or write-back */
10515 hihint = 3; /* RW allocate */
10517 if (loattr != 1) { /* Write-through or write-back */
10518 lohint = 3; /* RW allocate */
10523 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
10525 #endif /* !CONFIG_USER_ONLY */
10527 ARMVAParameters aa64_va_parameters_both(CPUARMState *env, uint64_t va,
10528 ARMMMUIdx mmu_idx)
10530 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
10531 uint32_t el = regime_el(env, mmu_idx);
10532 bool tbi, tbid, epd, hpd, using16k, using64k;
10533 int select, tsz;
10536 * Bit 55 is always between the two regions, and is canonical for
10537 * determining if address tagging is enabled.
10539 select = extract64(va, 55, 1);
10541 if (el > 1) {
10542 tsz = extract32(tcr, 0, 6);
10543 using64k = extract32(tcr, 14, 1);
10544 using16k = extract32(tcr, 15, 1);
10545 if (mmu_idx == ARMMMUIdx_S2NS) {
10546 /* VTCR_EL2 */
10547 tbi = tbid = hpd = false;
10548 } else {
10549 tbi = extract32(tcr, 20, 1);
10550 hpd = extract32(tcr, 24, 1);
10551 tbid = extract32(tcr, 29, 1);
10553 epd = false;
10554 } else if (!select) {
10555 tsz = extract32(tcr, 0, 6);
10556 epd = extract32(tcr, 7, 1);
10557 using64k = extract32(tcr, 14, 1);
10558 using16k = extract32(tcr, 15, 1);
10559 tbi = extract64(tcr, 37, 1);
10560 hpd = extract64(tcr, 41, 1);
10561 tbid = extract64(tcr, 51, 1);
10562 } else {
10563 int tg = extract32(tcr, 30, 2);
10564 using16k = tg == 1;
10565 using64k = tg == 3;
10566 tsz = extract32(tcr, 16, 6);
10567 epd = extract32(tcr, 23, 1);
10568 tbi = extract64(tcr, 38, 1);
10569 hpd = extract64(tcr, 42, 1);
10570 tbid = extract64(tcr, 52, 1);
10572 tsz = MIN(tsz, 39); /* TODO: ARMv8.4-TTST */
10573 tsz = MAX(tsz, 16); /* TODO: ARMv8.2-LVA */
10575 return (ARMVAParameters) {
10576 .tsz = tsz,
10577 .select = select,
10578 .tbi = tbi,
10579 .tbid = tbid,
10580 .epd = epd,
10581 .hpd = hpd,
10582 .using16k = using16k,
10583 .using64k = using64k,
10587 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
10588 ARMMMUIdx mmu_idx, bool data)
10590 ARMVAParameters ret = aa64_va_parameters_both(env, va, mmu_idx);
10592 /* Present TBI as a composite with TBID. */
10593 ret.tbi &= (data || !ret.tbid);
10594 return ret;
10597 #ifndef CONFIG_USER_ONLY
10598 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
10599 ARMMMUIdx mmu_idx)
10601 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
10602 uint32_t el = regime_el(env, mmu_idx);
10603 int select, tsz;
10604 bool epd, hpd;
10606 if (mmu_idx == ARMMMUIdx_S2NS) {
10607 /* VTCR */
10608 bool sext = extract32(tcr, 4, 1);
10609 bool sign = extract32(tcr, 3, 1);
10612 * If the sign-extend bit is not the same as t0sz[3], the result
10613 * is unpredictable. Flag this as a guest error.
10615 if (sign != sext) {
10616 qemu_log_mask(LOG_GUEST_ERROR,
10617 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
10619 tsz = sextract32(tcr, 0, 4) + 8;
10620 select = 0;
10621 hpd = false;
10622 epd = false;
10623 } else if (el == 2) {
10624 /* HTCR */
10625 tsz = extract32(tcr, 0, 3);
10626 select = 0;
10627 hpd = extract64(tcr, 24, 1);
10628 epd = false;
10629 } else {
10630 int t0sz = extract32(tcr, 0, 3);
10631 int t1sz = extract32(tcr, 16, 3);
10633 if (t1sz == 0) {
10634 select = va > (0xffffffffu >> t0sz);
10635 } else {
10636 /* Note that we will detect errors later. */
10637 select = va >= ~(0xffffffffu >> t1sz);
10639 if (!select) {
10640 tsz = t0sz;
10641 epd = extract32(tcr, 7, 1);
10642 hpd = extract64(tcr, 41, 1);
10643 } else {
10644 tsz = t1sz;
10645 epd = extract32(tcr, 23, 1);
10646 hpd = extract64(tcr, 42, 1);
10648 /* For aarch32, hpd0 is not enabled without t2e as well. */
10649 hpd &= extract32(tcr, 6, 1);
10652 return (ARMVAParameters) {
10653 .tsz = tsz,
10654 .select = select,
10655 .epd = epd,
10656 .hpd = hpd,
10660 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
10661 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10662 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
10663 target_ulong *page_size_ptr,
10664 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
10666 ARMCPU *cpu = arm_env_get_cpu(env);
10667 CPUState *cs = CPU(cpu);
10668 /* Read an LPAE long-descriptor translation table. */
10669 ARMFaultType fault_type = ARMFault_Translation;
10670 uint32_t level;
10671 ARMVAParameters param;
10672 uint64_t ttbr;
10673 hwaddr descaddr, indexmask, indexmask_grainsize;
10674 uint32_t tableattrs;
10675 target_ulong page_size;
10676 uint32_t attrs;
10677 int32_t stride;
10678 int addrsize, inputsize;
10679 TCR *tcr = regime_tcr(env, mmu_idx);
10680 int ap, ns, xn, pxn;
10681 uint32_t el = regime_el(env, mmu_idx);
10682 bool ttbr1_valid;
10683 uint64_t descaddrmask;
10684 bool aarch64 = arm_el_is_aa64(env, el);
10685 bool guarded = false;
10687 /* TODO:
10688 * This code does not handle the different format TCR for VTCR_EL2.
10689 * This code also does not support shareability levels.
10690 * Attribute and permission bit handling should also be checked when adding
10691 * support for those page table walks.
10693 if (aarch64) {
10694 param = aa64_va_parameters(env, address, mmu_idx,
10695 access_type != MMU_INST_FETCH);
10696 level = 0;
10697 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
10698 * invalid.
10700 ttbr1_valid = (el < 2);
10701 addrsize = 64 - 8 * param.tbi;
10702 inputsize = 64 - param.tsz;
10703 } else {
10704 param = aa32_va_parameters(env, address, mmu_idx);
10705 level = 1;
10706 /* There is no TTBR1 for EL2 */
10707 ttbr1_valid = (el != 2);
10708 addrsize = (mmu_idx == ARMMMUIdx_S2NS ? 40 : 32);
10709 inputsize = addrsize - param.tsz;
10713 * We determined the region when collecting the parameters, but we
10714 * have not yet validated that the address is valid for the region.
10715 * Extract the top bits and verify that they all match select.
10717 * For aa32, if inputsize == addrsize, then we have selected the
10718 * region by exclusion in aa32_va_parameters and there is no more
10719 * validation to do here.
10721 if (inputsize < addrsize) {
10722 target_ulong top_bits = sextract64(address, inputsize,
10723 addrsize - inputsize);
10724 if (-top_bits != param.select || (param.select && !ttbr1_valid)) {
10725 /* The gap between the two regions is a Translation fault */
10726 fault_type = ARMFault_Translation;
10727 goto do_fault;
10731 if (param.using64k) {
10732 stride = 13;
10733 } else if (param.using16k) {
10734 stride = 11;
10735 } else {
10736 stride = 9;
10739 /* Note that QEMU ignores shareability and cacheability attributes,
10740 * so we don't need to do anything with the SH, ORGN, IRGN fields
10741 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
10742 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
10743 * implement any ASID-like capability so we can ignore it (instead
10744 * we will always flush the TLB any time the ASID is changed).
10746 ttbr = regime_ttbr(env, mmu_idx, param.select);
10748 /* Here we should have set up all the parameters for the translation:
10749 * inputsize, ttbr, epd, stride, tbi
10752 if (param.epd) {
10753 /* Translation table walk disabled => Translation fault on TLB miss
10754 * Note: This is always 0 on 64-bit EL2 and EL3.
10756 goto do_fault;
10759 if (mmu_idx != ARMMMUIdx_S2NS) {
10760 /* The starting level depends on the virtual address size (which can
10761 * be up to 48 bits) and the translation granule size. It indicates
10762 * the number of strides (stride bits at a time) needed to
10763 * consume the bits of the input address. In the pseudocode this is:
10764 * level = 4 - RoundUp((inputsize - grainsize) / stride)
10765 * where their 'inputsize' is our 'inputsize', 'grainsize' is
10766 * our 'stride + 3' and 'stride' is our 'stride'.
10767 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
10768 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
10769 * = 4 - (inputsize - 4) / stride;
10771 level = 4 - (inputsize - 4) / stride;
10772 } else {
10773 /* For stage 2 translations the starting level is specified by the
10774 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
10776 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
10777 uint32_t startlevel;
10778 bool ok;
10780 if (!aarch64 || stride == 9) {
10781 /* AArch32 or 4KB pages */
10782 startlevel = 2 - sl0;
10783 } else {
10784 /* 16KB or 64KB pages */
10785 startlevel = 3 - sl0;
10788 /* Check that the starting level is valid. */
10789 ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
10790 inputsize, stride);
10791 if (!ok) {
10792 fault_type = ARMFault_Translation;
10793 goto do_fault;
10795 level = startlevel;
10798 indexmask_grainsize = (1ULL << (stride + 3)) - 1;
10799 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
10801 /* Now we can extract the actual base address from the TTBR */
10802 descaddr = extract64(ttbr, 0, 48);
10803 descaddr &= ~indexmask;
10805 /* The address field in the descriptor goes up to bit 39 for ARMv7
10806 * but up to bit 47 for ARMv8, but we use the descaddrmask
10807 * up to bit 39 for AArch32, because we don't need other bits in that case
10808 * to construct next descriptor address (anyway they should be all zeroes).
10810 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
10811 ~indexmask_grainsize;
10813 /* Secure accesses start with the page table in secure memory and
10814 * can be downgraded to non-secure at any step. Non-secure accesses
10815 * remain non-secure. We implement this by just ORing in the NSTable/NS
10816 * bits at each step.
10818 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
10819 for (;;) {
10820 uint64_t descriptor;
10821 bool nstable;
10823 descaddr |= (address >> (stride * (4 - level))) & indexmask;
10824 descaddr &= ~7ULL;
10825 nstable = extract32(tableattrs, 4, 1);
10826 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
10827 if (fi->type != ARMFault_None) {
10828 goto do_fault;
10831 if (!(descriptor & 1) ||
10832 (!(descriptor & 2) && (level == 3))) {
10833 /* Invalid, or the Reserved level 3 encoding */
10834 goto do_fault;
10836 descaddr = descriptor & descaddrmask;
10838 if ((descriptor & 2) && (level < 3)) {
10839 /* Table entry. The top five bits are attributes which may
10840 * propagate down through lower levels of the table (and
10841 * which are all arranged so that 0 means "no effect", so
10842 * we can gather them up by ORing in the bits at each level).
10844 tableattrs |= extract64(descriptor, 59, 5);
10845 level++;
10846 indexmask = indexmask_grainsize;
10847 continue;
10849 /* Block entry at level 1 or 2, or page entry at level 3.
10850 * These are basically the same thing, although the number
10851 * of bits we pull in from the vaddr varies.
10853 page_size = (1ULL << ((stride * (4 - level)) + 3));
10854 descaddr |= (address & (page_size - 1));
10855 /* Extract attributes from the descriptor */
10856 attrs = extract64(descriptor, 2, 10)
10857 | (extract64(descriptor, 52, 12) << 10);
10859 if (mmu_idx == ARMMMUIdx_S2NS) {
10860 /* Stage 2 table descriptors do not include any attribute fields */
10861 break;
10863 /* Merge in attributes from table descriptors */
10864 attrs |= nstable << 3; /* NS */
10865 guarded = extract64(descriptor, 50, 1); /* GP */
10866 if (param.hpd) {
10867 /* HPD disables all the table attributes except NSTable. */
10868 break;
10870 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
10871 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
10872 * means "force PL1 access only", which means forcing AP[1] to 0.
10874 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */
10875 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */
10876 break;
10878 /* Here descaddr is the final physical address, and attributes
10879 * are all in attrs.
10881 fault_type = ARMFault_AccessFlag;
10882 if ((attrs & (1 << 8)) == 0) {
10883 /* Access flag */
10884 goto do_fault;
10887 ap = extract32(attrs, 4, 2);
10888 xn = extract32(attrs, 12, 1);
10890 if (mmu_idx == ARMMMUIdx_S2NS) {
10891 ns = true;
10892 *prot = get_S2prot(env, ap, xn);
10893 } else {
10894 ns = extract32(attrs, 3, 1);
10895 pxn = extract32(attrs, 11, 1);
10896 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
10899 fault_type = ARMFault_Permission;
10900 if (!(*prot & (1 << access_type))) {
10901 goto do_fault;
10904 if (ns) {
10905 /* The NS bit will (as required by the architecture) have no effect if
10906 * the CPU doesn't support TZ or this is a non-secure translation
10907 * regime, because the attribute will already be non-secure.
10909 txattrs->secure = false;
10911 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */
10912 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) {
10913 txattrs->target_tlb_bit0 = true;
10916 if (cacheattrs != NULL) {
10917 if (mmu_idx == ARMMMUIdx_S2NS) {
10918 cacheattrs->attrs = convert_stage2_attrs(env,
10919 extract32(attrs, 0, 4));
10920 } else {
10921 /* Index into MAIR registers for cache attributes */
10922 uint8_t attrindx = extract32(attrs, 0, 3);
10923 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
10924 assert(attrindx <= 7);
10925 cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
10927 cacheattrs->shareability = extract32(attrs, 6, 2);
10930 *phys_ptr = descaddr;
10931 *page_size_ptr = page_size;
10932 return false;
10934 do_fault:
10935 fi->type = fault_type;
10936 fi->level = level;
10937 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
10938 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
10939 return true;
10942 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
10943 ARMMMUIdx mmu_idx,
10944 int32_t address, int *prot)
10946 if (!arm_feature(env, ARM_FEATURE_M)) {
10947 *prot = PAGE_READ | PAGE_WRITE;
10948 switch (address) {
10949 case 0xF0000000 ... 0xFFFFFFFF:
10950 if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
10951 /* hivecs execing is ok */
10952 *prot |= PAGE_EXEC;
10954 break;
10955 case 0x00000000 ... 0x7FFFFFFF:
10956 *prot |= PAGE_EXEC;
10957 break;
10959 } else {
10960 /* Default system address map for M profile cores.
10961 * The architecture specifies which regions are execute-never;
10962 * at the MPU level no other checks are defined.
10964 switch (address) {
10965 case 0x00000000 ... 0x1fffffff: /* ROM */
10966 case 0x20000000 ... 0x3fffffff: /* SRAM */
10967 case 0x60000000 ... 0x7fffffff: /* RAM */
10968 case 0x80000000 ... 0x9fffffff: /* RAM */
10969 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10970 break;
10971 case 0x40000000 ... 0x5fffffff: /* Peripheral */
10972 case 0xa0000000 ... 0xbfffffff: /* Device */
10973 case 0xc0000000 ... 0xdfffffff: /* Device */
10974 case 0xe0000000 ... 0xffffffff: /* System */
10975 *prot = PAGE_READ | PAGE_WRITE;
10976 break;
10977 default:
10978 g_assert_not_reached();
10983 static bool pmsav7_use_background_region(ARMCPU *cpu,
10984 ARMMMUIdx mmu_idx, bool is_user)
10986 /* Return true if we should use the default memory map as a
10987 * "background" region if there are no hits against any MPU regions.
10989 CPUARMState *env = &cpu->env;
10991 if (is_user) {
10992 return false;
10995 if (arm_feature(env, ARM_FEATURE_M)) {
10996 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
10997 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
10998 } else {
10999 return regime_sctlr(env, mmu_idx) & SCTLR_BR;
11003 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
11005 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
11006 return arm_feature(env, ARM_FEATURE_M) &&
11007 extract32(address, 20, 12) == 0xe00;
11010 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
11012 /* True if address is in the M profile system region
11013 * 0xe0000000 - 0xffffffff
11015 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
11018 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
11019 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11020 hwaddr *phys_ptr, int *prot,
11021 target_ulong *page_size,
11022 ARMMMUFaultInfo *fi)
11024 ARMCPU *cpu = arm_env_get_cpu(env);
11025 int n;
11026 bool is_user = regime_is_user(env, mmu_idx);
11028 *phys_ptr = address;
11029 *page_size = TARGET_PAGE_SIZE;
11030 *prot = 0;
11032 if (regime_translation_disabled(env, mmu_idx) ||
11033 m_is_ppb_region(env, address)) {
11034 /* MPU disabled or M profile PPB access: use default memory map.
11035 * The other case which uses the default memory map in the
11036 * v7M ARM ARM pseudocode is exception vector reads from the vector
11037 * table. In QEMU those accesses are done in arm_v7m_load_vector(),
11038 * which always does a direct read using address_space_ldl(), rather
11039 * than going via this function, so we don't need to check that here.
11041 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11042 } else { /* MPU enabled */
11043 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
11044 /* region search */
11045 uint32_t base = env->pmsav7.drbar[n];
11046 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
11047 uint32_t rmask;
11048 bool srdis = false;
11050 if (!(env->pmsav7.drsr[n] & 0x1)) {
11051 continue;
11054 if (!rsize) {
11055 qemu_log_mask(LOG_GUEST_ERROR,
11056 "DRSR[%d]: Rsize field cannot be 0\n", n);
11057 continue;
11059 rsize++;
11060 rmask = (1ull << rsize) - 1;
11062 if (base & rmask) {
11063 qemu_log_mask(LOG_GUEST_ERROR,
11064 "DRBAR[%d]: 0x%" PRIx32 " misaligned "
11065 "to DRSR region size, mask = 0x%" PRIx32 "\n",
11066 n, base, rmask);
11067 continue;
11070 if (address < base || address > base + rmask) {
11072 * Address not in this region. We must check whether the
11073 * region covers addresses in the same page as our address.
11074 * In that case we must not report a size that covers the
11075 * whole page for a subsequent hit against a different MPU
11076 * region or the background region, because it would result in
11077 * incorrect TLB hits for subsequent accesses to addresses that
11078 * are in this MPU region.
11080 if (ranges_overlap(base, rmask,
11081 address & TARGET_PAGE_MASK,
11082 TARGET_PAGE_SIZE)) {
11083 *page_size = 1;
11085 continue;
11088 /* Region matched */
11090 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
11091 int i, snd;
11092 uint32_t srdis_mask;
11094 rsize -= 3; /* sub region size (power of 2) */
11095 snd = ((address - base) >> rsize) & 0x7;
11096 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
11098 srdis_mask = srdis ? 0x3 : 0x0;
11099 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
11100 /* This will check in groups of 2, 4 and then 8, whether
11101 * the subregion bits are consistent. rsize is incremented
11102 * back up to give the region size, considering consistent
11103 * adjacent subregions as one region. Stop testing if rsize
11104 * is already big enough for an entire QEMU page.
11106 int snd_rounded = snd & ~(i - 1);
11107 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
11108 snd_rounded + 8, i);
11109 if (srdis_mask ^ srdis_multi) {
11110 break;
11112 srdis_mask = (srdis_mask << i) | srdis_mask;
11113 rsize++;
11116 if (srdis) {
11117 continue;
11119 if (rsize < TARGET_PAGE_BITS) {
11120 *page_size = 1 << rsize;
11122 break;
11125 if (n == -1) { /* no hits */
11126 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
11127 /* background fault */
11128 fi->type = ARMFault_Background;
11129 return true;
11131 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11132 } else { /* a MPU hit! */
11133 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
11134 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
11136 if (m_is_system_region(env, address)) {
11137 /* System space is always execute never */
11138 xn = 1;
11141 if (is_user) { /* User mode AP bit decoding */
11142 switch (ap) {
11143 case 0:
11144 case 1:
11145 case 5:
11146 break; /* no access */
11147 case 3:
11148 *prot |= PAGE_WRITE;
11149 /* fall through */
11150 case 2:
11151 case 6:
11152 *prot |= PAGE_READ | PAGE_EXEC;
11153 break;
11154 case 7:
11155 /* for v7M, same as 6; for R profile a reserved value */
11156 if (arm_feature(env, ARM_FEATURE_M)) {
11157 *prot |= PAGE_READ | PAGE_EXEC;
11158 break;
11160 /* fall through */
11161 default:
11162 qemu_log_mask(LOG_GUEST_ERROR,
11163 "DRACR[%d]: Bad value for AP bits: 0x%"
11164 PRIx32 "\n", n, ap);
11166 } else { /* Priv. mode AP bits decoding */
11167 switch (ap) {
11168 case 0:
11169 break; /* no access */
11170 case 1:
11171 case 2:
11172 case 3:
11173 *prot |= PAGE_WRITE;
11174 /* fall through */
11175 case 5:
11176 case 6:
11177 *prot |= PAGE_READ | PAGE_EXEC;
11178 break;
11179 case 7:
11180 /* for v7M, same as 6; for R profile a reserved value */
11181 if (arm_feature(env, ARM_FEATURE_M)) {
11182 *prot |= PAGE_READ | PAGE_EXEC;
11183 break;
11185 /* fall through */
11186 default:
11187 qemu_log_mask(LOG_GUEST_ERROR,
11188 "DRACR[%d]: Bad value for AP bits: 0x%"
11189 PRIx32 "\n", n, ap);
11193 /* execute never */
11194 if (xn) {
11195 *prot &= ~PAGE_EXEC;
11200 fi->type = ARMFault_Permission;
11201 fi->level = 1;
11202 return !(*prot & (1 << access_type));
11205 static bool v8m_is_sau_exempt(CPUARMState *env,
11206 uint32_t address, MMUAccessType access_type)
11208 /* The architecture specifies that certain address ranges are
11209 * exempt from v8M SAU/IDAU checks.
11211 return
11212 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
11213 (address >= 0xe0000000 && address <= 0xe0002fff) ||
11214 (address >= 0xe000e000 && address <= 0xe000efff) ||
11215 (address >= 0xe002e000 && address <= 0xe002efff) ||
11216 (address >= 0xe0040000 && address <= 0xe0041fff) ||
11217 (address >= 0xe00ff000 && address <= 0xe00fffff);
11220 static void v8m_security_lookup(CPUARMState *env, uint32_t address,
11221 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11222 V8M_SAttributes *sattrs)
11224 /* Look up the security attributes for this address. Compare the
11225 * pseudocode SecurityCheck() function.
11226 * We assume the caller has zero-initialized *sattrs.
11228 ARMCPU *cpu = arm_env_get_cpu(env);
11229 int r;
11230 bool idau_exempt = false, idau_ns = true, idau_nsc = true;
11231 int idau_region = IREGION_NOTVALID;
11232 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
11233 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
11235 if (cpu->idau) {
11236 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
11237 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
11239 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
11240 &idau_nsc);
11243 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
11244 /* 0xf0000000..0xffffffff is always S for insn fetches */
11245 return;
11248 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
11249 sattrs->ns = !regime_is_secure(env, mmu_idx);
11250 return;
11253 if (idau_region != IREGION_NOTVALID) {
11254 sattrs->irvalid = true;
11255 sattrs->iregion = idau_region;
11258 switch (env->sau.ctrl & 3) {
11259 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
11260 break;
11261 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
11262 sattrs->ns = true;
11263 break;
11264 default: /* SAU.ENABLE == 1 */
11265 for (r = 0; r < cpu->sau_sregion; r++) {
11266 if (env->sau.rlar[r] & 1) {
11267 uint32_t base = env->sau.rbar[r] & ~0x1f;
11268 uint32_t limit = env->sau.rlar[r] | 0x1f;
11270 if (base <= address && limit >= address) {
11271 if (base > addr_page_base || limit < addr_page_limit) {
11272 sattrs->subpage = true;
11274 if (sattrs->srvalid) {
11275 /* If we hit in more than one region then we must report
11276 * as Secure, not NS-Callable, with no valid region
11277 * number info.
11279 sattrs->ns = false;
11280 sattrs->nsc = false;
11281 sattrs->sregion = 0;
11282 sattrs->srvalid = false;
11283 break;
11284 } else {
11285 if (env->sau.rlar[r] & 2) {
11286 sattrs->nsc = true;
11287 } else {
11288 sattrs->ns = true;
11290 sattrs->srvalid = true;
11291 sattrs->sregion = r;
11293 } else {
11295 * Address not in this region. We must check whether the
11296 * region covers addresses in the same page as our address.
11297 * In that case we must not report a size that covers the
11298 * whole page for a subsequent hit against a different MPU
11299 * region or the background region, because it would result
11300 * in incorrect TLB hits for subsequent accesses to
11301 * addresses that are in this MPU region.
11303 if (limit >= base &&
11304 ranges_overlap(base, limit - base + 1,
11305 addr_page_base,
11306 TARGET_PAGE_SIZE)) {
11307 sattrs->subpage = true;
11312 break;
11316 * The IDAU will override the SAU lookup results if it specifies
11317 * higher security than the SAU does.
11319 if (!idau_ns) {
11320 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
11321 sattrs->ns = false;
11322 sattrs->nsc = idau_nsc;
11327 static bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
11328 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11329 hwaddr *phys_ptr, MemTxAttrs *txattrs,
11330 int *prot, bool *is_subpage,
11331 ARMMMUFaultInfo *fi, uint32_t *mregion)
11333 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
11334 * that a full phys-to-virt translation does).
11335 * mregion is (if not NULL) set to the region number which matched,
11336 * or -1 if no region number is returned (MPU off, address did not
11337 * hit a region, address hit in multiple regions).
11338 * We set is_subpage to true if the region hit doesn't cover the
11339 * entire TARGET_PAGE the address is within.
11341 ARMCPU *cpu = arm_env_get_cpu(env);
11342 bool is_user = regime_is_user(env, mmu_idx);
11343 uint32_t secure = regime_is_secure(env, mmu_idx);
11344 int n;
11345 int matchregion = -1;
11346 bool hit = false;
11347 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
11348 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
11350 *is_subpage = false;
11351 *phys_ptr = address;
11352 *prot = 0;
11353 if (mregion) {
11354 *mregion = -1;
11357 /* Unlike the ARM ARM pseudocode, we don't need to check whether this
11358 * was an exception vector read from the vector table (which is always
11359 * done using the default system address map), because those accesses
11360 * are done in arm_v7m_load_vector(), which always does a direct
11361 * read using address_space_ldl(), rather than going via this function.
11363 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
11364 hit = true;
11365 } else if (m_is_ppb_region(env, address)) {
11366 hit = true;
11367 } else {
11368 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
11369 hit = true;
11372 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
11373 /* region search */
11374 /* Note that the base address is bits [31:5] from the register
11375 * with bits [4:0] all zeroes, but the limit address is bits
11376 * [31:5] from the register with bits [4:0] all ones.
11378 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
11379 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
11381 if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
11382 /* Region disabled */
11383 continue;
11386 if (address < base || address > limit) {
11388 * Address not in this region. We must check whether the
11389 * region covers addresses in the same page as our address.
11390 * In that case we must not report a size that covers the
11391 * whole page for a subsequent hit against a different MPU
11392 * region or the background region, because it would result in
11393 * incorrect TLB hits for subsequent accesses to addresses that
11394 * are in this MPU region.
11396 if (limit >= base &&
11397 ranges_overlap(base, limit - base + 1,
11398 addr_page_base,
11399 TARGET_PAGE_SIZE)) {
11400 *is_subpage = true;
11402 continue;
11405 if (base > addr_page_base || limit < addr_page_limit) {
11406 *is_subpage = true;
11409 if (matchregion != -1) {
11410 /* Multiple regions match -- always a failure (unlike
11411 * PMSAv7 where highest-numbered-region wins)
11413 fi->type = ARMFault_Permission;
11414 fi->level = 1;
11415 return true;
11418 matchregion = n;
11419 hit = true;
11423 if (!hit) {
11424 /* background fault */
11425 fi->type = ARMFault_Background;
11426 return true;
11429 if (matchregion == -1) {
11430 /* hit using the background region */
11431 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11432 } else {
11433 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
11434 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
11436 if (m_is_system_region(env, address)) {
11437 /* System space is always execute never */
11438 xn = 1;
11441 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
11442 if (*prot && !xn) {
11443 *prot |= PAGE_EXEC;
11445 /* We don't need to look the attribute up in the MAIR0/MAIR1
11446 * registers because that only tells us about cacheability.
11448 if (mregion) {
11449 *mregion = matchregion;
11453 fi->type = ARMFault_Permission;
11454 fi->level = 1;
11455 return !(*prot & (1 << access_type));
11459 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
11460 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11461 hwaddr *phys_ptr, MemTxAttrs *txattrs,
11462 int *prot, target_ulong *page_size,
11463 ARMMMUFaultInfo *fi)
11465 uint32_t secure = regime_is_secure(env, mmu_idx);
11466 V8M_SAttributes sattrs = {};
11467 bool ret;
11468 bool mpu_is_subpage;
11470 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
11471 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
11472 if (access_type == MMU_INST_FETCH) {
11473 /* Instruction fetches always use the MMU bank and the
11474 * transaction attribute determined by the fetch address,
11475 * regardless of CPU state. This is painful for QEMU
11476 * to handle, because it would mean we need to encode
11477 * into the mmu_idx not just the (user, negpri) information
11478 * for the current security state but also that for the
11479 * other security state, which would balloon the number
11480 * of mmu_idx values needed alarmingly.
11481 * Fortunately we can avoid this because it's not actually
11482 * possible to arbitrarily execute code from memory with
11483 * the wrong security attribute: it will always generate
11484 * an exception of some kind or another, apart from the
11485 * special case of an NS CPU executing an SG instruction
11486 * in S&NSC memory. So we always just fail the translation
11487 * here and sort things out in the exception handler
11488 * (including possibly emulating an SG instruction).
11490 if (sattrs.ns != !secure) {
11491 if (sattrs.nsc) {
11492 fi->type = ARMFault_QEMU_NSCExec;
11493 } else {
11494 fi->type = ARMFault_QEMU_SFault;
11496 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
11497 *phys_ptr = address;
11498 *prot = 0;
11499 return true;
11501 } else {
11502 /* For data accesses we always use the MMU bank indicated
11503 * by the current CPU state, but the security attributes
11504 * might downgrade a secure access to nonsecure.
11506 if (sattrs.ns) {
11507 txattrs->secure = false;
11508 } else if (!secure) {
11509 /* NS access to S memory must fault.
11510 * Architecturally we should first check whether the
11511 * MPU information for this address indicates that we
11512 * are doing an unaligned access to Device memory, which
11513 * should generate a UsageFault instead. QEMU does not
11514 * currently check for that kind of unaligned access though.
11515 * If we added it we would need to do so as a special case
11516 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
11518 fi->type = ARMFault_QEMU_SFault;
11519 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
11520 *phys_ptr = address;
11521 *prot = 0;
11522 return true;
11527 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
11528 txattrs, prot, &mpu_is_subpage, fi, NULL);
11529 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE;
11530 return ret;
11533 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
11534 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11535 hwaddr *phys_ptr, int *prot,
11536 ARMMMUFaultInfo *fi)
11538 int n;
11539 uint32_t mask;
11540 uint32_t base;
11541 bool is_user = regime_is_user(env, mmu_idx);
11543 if (regime_translation_disabled(env, mmu_idx)) {
11544 /* MPU disabled. */
11545 *phys_ptr = address;
11546 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11547 return false;
11550 *phys_ptr = address;
11551 for (n = 7; n >= 0; n--) {
11552 base = env->cp15.c6_region[n];
11553 if ((base & 1) == 0) {
11554 continue;
11556 mask = 1 << ((base >> 1) & 0x1f);
11557 /* Keep this shift separate from the above to avoid an
11558 (undefined) << 32. */
11559 mask = (mask << 1) - 1;
11560 if (((base ^ address) & ~mask) == 0) {
11561 break;
11564 if (n < 0) {
11565 fi->type = ARMFault_Background;
11566 return true;
11569 if (access_type == MMU_INST_FETCH) {
11570 mask = env->cp15.pmsav5_insn_ap;
11571 } else {
11572 mask = env->cp15.pmsav5_data_ap;
11574 mask = (mask >> (n * 4)) & 0xf;
11575 switch (mask) {
11576 case 0:
11577 fi->type = ARMFault_Permission;
11578 fi->level = 1;
11579 return true;
11580 case 1:
11581 if (is_user) {
11582 fi->type = ARMFault_Permission;
11583 fi->level = 1;
11584 return true;
11586 *prot = PAGE_READ | PAGE_WRITE;
11587 break;
11588 case 2:
11589 *prot = PAGE_READ;
11590 if (!is_user) {
11591 *prot |= PAGE_WRITE;
11593 break;
11594 case 3:
11595 *prot = PAGE_READ | PAGE_WRITE;
11596 break;
11597 case 5:
11598 if (is_user) {
11599 fi->type = ARMFault_Permission;
11600 fi->level = 1;
11601 return true;
11603 *prot = PAGE_READ;
11604 break;
11605 case 6:
11606 *prot = PAGE_READ;
11607 break;
11608 default:
11609 /* Bad permission. */
11610 fi->type = ARMFault_Permission;
11611 fi->level = 1;
11612 return true;
11614 *prot |= PAGE_EXEC;
11615 return false;
11618 /* Combine either inner or outer cacheability attributes for normal
11619 * memory, according to table D4-42 and pseudocode procedure
11620 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
11622 * NB: only stage 1 includes allocation hints (RW bits), leading to
11623 * some asymmetry.
11625 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
11627 if (s1 == 4 || s2 == 4) {
11628 /* non-cacheable has precedence */
11629 return 4;
11630 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
11631 /* stage 1 write-through takes precedence */
11632 return s1;
11633 } else if (extract32(s2, 2, 2) == 2) {
11634 /* stage 2 write-through takes precedence, but the allocation hint
11635 * is still taken from stage 1
11637 return (2 << 2) | extract32(s1, 0, 2);
11638 } else { /* write-back */
11639 return s1;
11643 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
11644 * and CombineS1S2Desc()
11646 * @s1: Attributes from stage 1 walk
11647 * @s2: Attributes from stage 2 walk
11649 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
11651 uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4);
11652 uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4);
11653 ARMCacheAttrs ret;
11655 /* Combine shareability attributes (table D4-43) */
11656 if (s1.shareability == 2 || s2.shareability == 2) {
11657 /* if either are outer-shareable, the result is outer-shareable */
11658 ret.shareability = 2;
11659 } else if (s1.shareability == 3 || s2.shareability == 3) {
11660 /* if either are inner-shareable, the result is inner-shareable */
11661 ret.shareability = 3;
11662 } else {
11663 /* both non-shareable */
11664 ret.shareability = 0;
11667 /* Combine memory type and cacheability attributes */
11668 if (s1hi == 0 || s2hi == 0) {
11669 /* Device has precedence over normal */
11670 if (s1lo == 0 || s2lo == 0) {
11671 /* nGnRnE has precedence over anything */
11672 ret.attrs = 0;
11673 } else if (s1lo == 4 || s2lo == 4) {
11674 /* non-Reordering has precedence over Reordering */
11675 ret.attrs = 4; /* nGnRE */
11676 } else if (s1lo == 8 || s2lo == 8) {
11677 /* non-Gathering has precedence over Gathering */
11678 ret.attrs = 8; /* nGRE */
11679 } else {
11680 ret.attrs = 0xc; /* GRE */
11683 /* Any location for which the resultant memory type is any
11684 * type of Device memory is always treated as Outer Shareable.
11686 ret.shareability = 2;
11687 } else { /* Normal memory */
11688 /* Outer/inner cacheability combine independently */
11689 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
11690 | combine_cacheattr_nibble(s1lo, s2lo);
11692 if (ret.attrs == 0x44) {
11693 /* Any location for which the resultant memory type is Normal
11694 * Inner Non-cacheable, Outer Non-cacheable is always treated
11695 * as Outer Shareable.
11697 ret.shareability = 2;
11701 return ret;
11705 /* get_phys_addr - get the physical address for this virtual address
11707 * Find the physical address corresponding to the given virtual address,
11708 * by doing a translation table walk on MMU based systems or using the
11709 * MPU state on MPU based systems.
11711 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
11712 * prot and page_size may not be filled in, and the populated fsr value provides
11713 * information on why the translation aborted, in the format of a
11714 * DFSR/IFSR fault register, with the following caveats:
11715 * * we honour the short vs long DFSR format differences.
11716 * * the WnR bit is never set (the caller must do this).
11717 * * for PSMAv5 based systems we don't bother to return a full FSR format
11718 * value.
11720 * @env: CPUARMState
11721 * @address: virtual address to get physical address for
11722 * @access_type: 0 for read, 1 for write, 2 for execute
11723 * @mmu_idx: MMU index indicating required translation regime
11724 * @phys_ptr: set to the physical address corresponding to the virtual address
11725 * @attrs: set to the memory transaction attributes to use
11726 * @prot: set to the permissions for the page containing phys_ptr
11727 * @page_size: set to the size of the page containing phys_ptr
11728 * @fi: set to fault info if the translation fails
11729 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
11731 static bool get_phys_addr(CPUARMState *env, target_ulong address,
11732 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11733 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
11734 target_ulong *page_size,
11735 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
11737 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
11738 /* Call ourselves recursively to do the stage 1 and then stage 2
11739 * translations.
11741 if (arm_feature(env, ARM_FEATURE_EL2)) {
11742 hwaddr ipa;
11743 int s2_prot;
11744 int ret;
11745 ARMCacheAttrs cacheattrs2 = {};
11747 ret = get_phys_addr(env, address, access_type,
11748 stage_1_mmu_idx(mmu_idx), &ipa, attrs,
11749 prot, page_size, fi, cacheattrs);
11751 /* If S1 fails or S2 is disabled, return early. */
11752 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
11753 *phys_ptr = ipa;
11754 return ret;
11757 /* S1 is done. Now do S2 translation. */
11758 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
11759 phys_ptr, attrs, &s2_prot,
11760 page_size, fi,
11761 cacheattrs != NULL ? &cacheattrs2 : NULL);
11762 fi->s2addr = ipa;
11763 /* Combine the S1 and S2 perms. */
11764 *prot &= s2_prot;
11766 /* Combine the S1 and S2 cache attributes, if needed */
11767 if (!ret && cacheattrs != NULL) {
11768 if (env->cp15.hcr_el2 & HCR_DC) {
11770 * HCR.DC forces the first stage attributes to
11771 * Normal Non-Shareable,
11772 * Inner Write-Back Read-Allocate Write-Allocate,
11773 * Outer Write-Back Read-Allocate Write-Allocate.
11775 cacheattrs->attrs = 0xff;
11776 cacheattrs->shareability = 0;
11778 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
11781 return ret;
11782 } else {
11784 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
11786 mmu_idx = stage_1_mmu_idx(mmu_idx);
11790 /* The page table entries may downgrade secure to non-secure, but
11791 * cannot upgrade an non-secure translation regime's attributes
11792 * to secure.
11794 attrs->secure = regime_is_secure(env, mmu_idx);
11795 attrs->user = regime_is_user(env, mmu_idx);
11797 /* Fast Context Switch Extension. This doesn't exist at all in v8.
11798 * In v7 and earlier it affects all stage 1 translations.
11800 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
11801 && !arm_feature(env, ARM_FEATURE_V8)) {
11802 if (regime_el(env, mmu_idx) == 3) {
11803 address += env->cp15.fcseidr_s;
11804 } else {
11805 address += env->cp15.fcseidr_ns;
11809 if (arm_feature(env, ARM_FEATURE_PMSA)) {
11810 bool ret;
11811 *page_size = TARGET_PAGE_SIZE;
11813 if (arm_feature(env, ARM_FEATURE_V8)) {
11814 /* PMSAv8 */
11815 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
11816 phys_ptr, attrs, prot, page_size, fi);
11817 } else if (arm_feature(env, ARM_FEATURE_V7)) {
11818 /* PMSAv7 */
11819 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
11820 phys_ptr, prot, page_size, fi);
11821 } else {
11822 /* Pre-v7 MPU */
11823 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
11824 phys_ptr, prot, fi);
11826 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
11827 " mmu_idx %u -> %s (prot %c%c%c)\n",
11828 access_type == MMU_DATA_LOAD ? "reading" :
11829 (access_type == MMU_DATA_STORE ? "writing" : "execute"),
11830 (uint32_t)address, mmu_idx,
11831 ret ? "Miss" : "Hit",
11832 *prot & PAGE_READ ? 'r' : '-',
11833 *prot & PAGE_WRITE ? 'w' : '-',
11834 *prot & PAGE_EXEC ? 'x' : '-');
11836 return ret;
11839 /* Definitely a real MMU, not an MPU */
11841 if (regime_translation_disabled(env, mmu_idx)) {
11842 /* MMU disabled. */
11843 *phys_ptr = address;
11844 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11845 *page_size = TARGET_PAGE_SIZE;
11846 return 0;
11849 if (regime_using_lpae_format(env, mmu_idx)) {
11850 return get_phys_addr_lpae(env, address, access_type, mmu_idx,
11851 phys_ptr, attrs, prot, page_size,
11852 fi, cacheattrs);
11853 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
11854 return get_phys_addr_v6(env, address, access_type, mmu_idx,
11855 phys_ptr, attrs, prot, page_size, fi);
11856 } else {
11857 return get_phys_addr_v5(env, address, access_type, mmu_idx,
11858 phys_ptr, prot, page_size, fi);
11862 /* Walk the page table and (if the mapping exists) add the page
11863 * to the TLB. Return false on success, or true on failure. Populate
11864 * fsr with ARM DFSR/IFSR fault register format value on failure.
11866 bool arm_tlb_fill(CPUState *cs, vaddr address,
11867 MMUAccessType access_type, int mmu_idx,
11868 ARMMMUFaultInfo *fi)
11870 ARMCPU *cpu = ARM_CPU(cs);
11871 CPUARMState *env = &cpu->env;
11872 hwaddr phys_addr;
11873 target_ulong page_size;
11874 int prot;
11875 int ret;
11876 MemTxAttrs attrs = {};
11878 ret = get_phys_addr(env, address, access_type,
11879 core_to_arm_mmu_idx(env, mmu_idx), &phys_addr,
11880 &attrs, &prot, &page_size, fi, NULL);
11881 if (!ret) {
11883 * Map a single [sub]page. Regions smaller than our declared
11884 * target page size are handled specially, so for those we
11885 * pass in the exact addresses.
11887 if (page_size >= TARGET_PAGE_SIZE) {
11888 phys_addr &= TARGET_PAGE_MASK;
11889 address &= TARGET_PAGE_MASK;
11891 tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
11892 prot, mmu_idx, page_size);
11893 return 0;
11896 return ret;
11899 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
11900 MemTxAttrs *attrs)
11902 ARMCPU *cpu = ARM_CPU(cs);
11903 CPUARMState *env = &cpu->env;
11904 hwaddr phys_addr;
11905 target_ulong page_size;
11906 int prot;
11907 bool ret;
11908 ARMMMUFaultInfo fi = {};
11909 ARMMMUIdx mmu_idx = arm_mmu_idx(env);
11911 *attrs = (MemTxAttrs) {};
11913 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
11914 attrs, &prot, &page_size, &fi, NULL);
11916 if (ret) {
11917 return -1;
11919 return phys_addr;
11922 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
11924 uint32_t mask;
11925 unsigned el = arm_current_el(env);
11927 /* First handle registers which unprivileged can read */
11929 switch (reg) {
11930 case 0 ... 7: /* xPSR sub-fields */
11931 mask = 0;
11932 if ((reg & 1) && el) {
11933 mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */
11935 if (!(reg & 4)) {
11936 mask |= XPSR_NZCV | XPSR_Q; /* APSR */
11938 /* EPSR reads as zero */
11939 return xpsr_read(env) & mask;
11940 break;
11941 case 20: /* CONTROL */
11942 return env->v7m.control[env->v7m.secure];
11943 case 0x94: /* CONTROL_NS */
11944 /* We have to handle this here because unprivileged Secure code
11945 * can read the NS CONTROL register.
11947 if (!env->v7m.secure) {
11948 return 0;
11950 return env->v7m.control[M_REG_NS];
11953 if (el == 0) {
11954 return 0; /* unprivileged reads others as zero */
11957 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
11958 switch (reg) {
11959 case 0x88: /* MSP_NS */
11960 if (!env->v7m.secure) {
11961 return 0;
11963 return env->v7m.other_ss_msp;
11964 case 0x89: /* PSP_NS */
11965 if (!env->v7m.secure) {
11966 return 0;
11968 return env->v7m.other_ss_psp;
11969 case 0x8a: /* MSPLIM_NS */
11970 if (!env->v7m.secure) {
11971 return 0;
11973 return env->v7m.msplim[M_REG_NS];
11974 case 0x8b: /* PSPLIM_NS */
11975 if (!env->v7m.secure) {
11976 return 0;
11978 return env->v7m.psplim[M_REG_NS];
11979 case 0x90: /* PRIMASK_NS */
11980 if (!env->v7m.secure) {
11981 return 0;
11983 return env->v7m.primask[M_REG_NS];
11984 case 0x91: /* BASEPRI_NS */
11985 if (!env->v7m.secure) {
11986 return 0;
11988 return env->v7m.basepri[M_REG_NS];
11989 case 0x93: /* FAULTMASK_NS */
11990 if (!env->v7m.secure) {
11991 return 0;
11993 return env->v7m.faultmask[M_REG_NS];
11994 case 0x98: /* SP_NS */
11996 /* This gives the non-secure SP selected based on whether we're
11997 * currently in handler mode or not, using the NS CONTROL.SPSEL.
11999 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
12001 if (!env->v7m.secure) {
12002 return 0;
12004 if (!arm_v7m_is_handler_mode(env) && spsel) {
12005 return env->v7m.other_ss_psp;
12006 } else {
12007 return env->v7m.other_ss_msp;
12010 default:
12011 break;
12015 switch (reg) {
12016 case 8: /* MSP */
12017 return v7m_using_psp(env) ? env->v7m.other_sp : env->regs[13];
12018 case 9: /* PSP */
12019 return v7m_using_psp(env) ? env->regs[13] : env->v7m.other_sp;
12020 case 10: /* MSPLIM */
12021 if (!arm_feature(env, ARM_FEATURE_V8)) {
12022 goto bad_reg;
12024 return env->v7m.msplim[env->v7m.secure];
12025 case 11: /* PSPLIM */
12026 if (!arm_feature(env, ARM_FEATURE_V8)) {
12027 goto bad_reg;
12029 return env->v7m.psplim[env->v7m.secure];
12030 case 16: /* PRIMASK */
12031 return env->v7m.primask[env->v7m.secure];
12032 case 17: /* BASEPRI */
12033 case 18: /* BASEPRI_MAX */
12034 return env->v7m.basepri[env->v7m.secure];
12035 case 19: /* FAULTMASK */
12036 return env->v7m.faultmask[env->v7m.secure];
12037 default:
12038 bad_reg:
12039 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special"
12040 " register %d\n", reg);
12041 return 0;
12045 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
12047 /* We're passed bits [11..0] of the instruction; extract
12048 * SYSm and the mask bits.
12049 * Invalid combinations of SYSm and mask are UNPREDICTABLE;
12050 * we choose to treat them as if the mask bits were valid.
12051 * NB that the pseudocode 'mask' variable is bits [11..10],
12052 * whereas ours is [11..8].
12054 uint32_t mask = extract32(maskreg, 8, 4);
12055 uint32_t reg = extract32(maskreg, 0, 8);
12057 if (arm_current_el(env) == 0 && reg > 7) {
12058 /* only xPSR sub-fields may be written by unprivileged */
12059 return;
12062 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
12063 switch (reg) {
12064 case 0x88: /* MSP_NS */
12065 if (!env->v7m.secure) {
12066 return;
12068 env->v7m.other_ss_msp = val;
12069 return;
12070 case 0x89: /* PSP_NS */
12071 if (!env->v7m.secure) {
12072 return;
12074 env->v7m.other_ss_psp = val;
12075 return;
12076 case 0x8a: /* MSPLIM_NS */
12077 if (!env->v7m.secure) {
12078 return;
12080 env->v7m.msplim[M_REG_NS] = val & ~7;
12081 return;
12082 case 0x8b: /* PSPLIM_NS */
12083 if (!env->v7m.secure) {
12084 return;
12086 env->v7m.psplim[M_REG_NS] = val & ~7;
12087 return;
12088 case 0x90: /* PRIMASK_NS */
12089 if (!env->v7m.secure) {
12090 return;
12092 env->v7m.primask[M_REG_NS] = val & 1;
12093 return;
12094 case 0x91: /* BASEPRI_NS */
12095 if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) {
12096 return;
12098 env->v7m.basepri[M_REG_NS] = val & 0xff;
12099 return;
12100 case 0x93: /* FAULTMASK_NS */
12101 if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) {
12102 return;
12104 env->v7m.faultmask[M_REG_NS] = val & 1;
12105 return;
12106 case 0x94: /* CONTROL_NS */
12107 if (!env->v7m.secure) {
12108 return;
12110 write_v7m_control_spsel_for_secstate(env,
12111 val & R_V7M_CONTROL_SPSEL_MASK,
12112 M_REG_NS);
12113 if (arm_feature(env, ARM_FEATURE_M_MAIN)) {
12114 env->v7m.control[M_REG_NS] &= ~R_V7M_CONTROL_NPRIV_MASK;
12115 env->v7m.control[M_REG_NS] |= val & R_V7M_CONTROL_NPRIV_MASK;
12117 return;
12118 case 0x98: /* SP_NS */
12120 /* This gives the non-secure SP selected based on whether we're
12121 * currently in handler mode or not, using the NS CONTROL.SPSEL.
12123 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
12124 bool is_psp = !arm_v7m_is_handler_mode(env) && spsel;
12125 uint32_t limit;
12127 if (!env->v7m.secure) {
12128 return;
12131 limit = is_psp ? env->v7m.psplim[false] : env->v7m.msplim[false];
12133 if (val < limit) {
12134 CPUState *cs = CPU(arm_env_get_cpu(env));
12136 cpu_restore_state(cs, GETPC(), true);
12137 raise_exception(env, EXCP_STKOF, 0, 1);
12140 if (is_psp) {
12141 env->v7m.other_ss_psp = val;
12142 } else {
12143 env->v7m.other_ss_msp = val;
12145 return;
12147 default:
12148 break;
12152 switch (reg) {
12153 case 0 ... 7: /* xPSR sub-fields */
12154 /* only APSR is actually writable */
12155 if (!(reg & 4)) {
12156 uint32_t apsrmask = 0;
12158 if (mask & 8) {
12159 apsrmask |= XPSR_NZCV | XPSR_Q;
12161 if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
12162 apsrmask |= XPSR_GE;
12164 xpsr_write(env, val, apsrmask);
12166 break;
12167 case 8: /* MSP */
12168 if (v7m_using_psp(env)) {
12169 env->v7m.other_sp = val;
12170 } else {
12171 env->regs[13] = val;
12173 break;
12174 case 9: /* PSP */
12175 if (v7m_using_psp(env)) {
12176 env->regs[13] = val;
12177 } else {
12178 env->v7m.other_sp = val;
12180 break;
12181 case 10: /* MSPLIM */
12182 if (!arm_feature(env, ARM_FEATURE_V8)) {
12183 goto bad_reg;
12185 env->v7m.msplim[env->v7m.secure] = val & ~7;
12186 break;
12187 case 11: /* PSPLIM */
12188 if (!arm_feature(env, ARM_FEATURE_V8)) {
12189 goto bad_reg;
12191 env->v7m.psplim[env->v7m.secure] = val & ~7;
12192 break;
12193 case 16: /* PRIMASK */
12194 env->v7m.primask[env->v7m.secure] = val & 1;
12195 break;
12196 case 17: /* BASEPRI */
12197 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
12198 goto bad_reg;
12200 env->v7m.basepri[env->v7m.secure] = val & 0xff;
12201 break;
12202 case 18: /* BASEPRI_MAX */
12203 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
12204 goto bad_reg;
12206 val &= 0xff;
12207 if (val != 0 && (val < env->v7m.basepri[env->v7m.secure]
12208 || env->v7m.basepri[env->v7m.secure] == 0)) {
12209 env->v7m.basepri[env->v7m.secure] = val;
12211 break;
12212 case 19: /* FAULTMASK */
12213 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
12214 goto bad_reg;
12216 env->v7m.faultmask[env->v7m.secure] = val & 1;
12217 break;
12218 case 20: /* CONTROL */
12219 /* Writing to the SPSEL bit only has an effect if we are in
12220 * thread mode; other bits can be updated by any privileged code.
12221 * write_v7m_control_spsel() deals with updating the SPSEL bit in
12222 * env->v7m.control, so we only need update the others.
12223 * For v7M, we must just ignore explicit writes to SPSEL in handler
12224 * mode; for v8M the write is permitted but will have no effect.
12226 if (arm_feature(env, ARM_FEATURE_V8) ||
12227 !arm_v7m_is_handler_mode(env)) {
12228 write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0);
12230 if (arm_feature(env, ARM_FEATURE_M_MAIN)) {
12231 env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK;
12232 env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK;
12234 break;
12235 default:
12236 bad_reg:
12237 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special"
12238 " register %d\n", reg);
12239 return;
12243 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
12245 /* Implement the TT instruction. op is bits [7:6] of the insn. */
12246 bool forceunpriv = op & 1;
12247 bool alt = op & 2;
12248 V8M_SAttributes sattrs = {};
12249 uint32_t tt_resp;
12250 bool r, rw, nsr, nsrw, mrvalid;
12251 int prot;
12252 ARMMMUFaultInfo fi = {};
12253 MemTxAttrs attrs = {};
12254 hwaddr phys_addr;
12255 ARMMMUIdx mmu_idx;
12256 uint32_t mregion;
12257 bool targetpriv;
12258 bool targetsec = env->v7m.secure;
12259 bool is_subpage;
12261 /* Work out what the security state and privilege level we're
12262 * interested in is...
12264 if (alt) {
12265 targetsec = !targetsec;
12268 if (forceunpriv) {
12269 targetpriv = false;
12270 } else {
12271 targetpriv = arm_v7m_is_handler_mode(env) ||
12272 !(env->v7m.control[targetsec] & R_V7M_CONTROL_NPRIV_MASK);
12275 /* ...and then figure out which MMU index this is */
12276 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targetsec, targetpriv);
12278 /* We know that the MPU and SAU don't care about the access type
12279 * for our purposes beyond that we don't want to claim to be
12280 * an insn fetch, so we arbitrarily call this a read.
12283 /* MPU region info only available for privileged or if
12284 * inspecting the other MPU state.
12286 if (arm_current_el(env) != 0 || alt) {
12287 /* We can ignore the return value as prot is always set */
12288 pmsav8_mpu_lookup(env, addr, MMU_DATA_LOAD, mmu_idx,
12289 &phys_addr, &attrs, &prot, &is_subpage,
12290 &fi, &mregion);
12291 if (mregion == -1) {
12292 mrvalid = false;
12293 mregion = 0;
12294 } else {
12295 mrvalid = true;
12297 r = prot & PAGE_READ;
12298 rw = prot & PAGE_WRITE;
12299 } else {
12300 r = false;
12301 rw = false;
12302 mrvalid = false;
12303 mregion = 0;
12306 if (env->v7m.secure) {
12307 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
12308 nsr = sattrs.ns && r;
12309 nsrw = sattrs.ns && rw;
12310 } else {
12311 sattrs.ns = true;
12312 nsr = false;
12313 nsrw = false;
12316 tt_resp = (sattrs.iregion << 24) |
12317 (sattrs.irvalid << 23) |
12318 ((!sattrs.ns) << 22) |
12319 (nsrw << 21) |
12320 (nsr << 20) |
12321 (rw << 19) |
12322 (r << 18) |
12323 (sattrs.srvalid << 17) |
12324 (mrvalid << 16) |
12325 (sattrs.sregion << 8) |
12326 mregion;
12328 return tt_resp;
12331 #endif
12333 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
12335 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
12336 * Note that we do not implement the (architecturally mandated)
12337 * alignment fault for attempts to use this on Device memory
12338 * (which matches the usual QEMU behaviour of not implementing either
12339 * alignment faults or any memory attribute handling).
12342 ARMCPU *cpu = arm_env_get_cpu(env);
12343 uint64_t blocklen = 4 << cpu->dcz_blocksize;
12344 uint64_t vaddr = vaddr_in & ~(blocklen - 1);
12346 #ifndef CONFIG_USER_ONLY
12348 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
12349 * the block size so we might have to do more than one TLB lookup.
12350 * We know that in fact for any v8 CPU the page size is at least 4K
12351 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
12352 * 1K as an artefact of legacy v5 subpage support being present in the
12353 * same QEMU executable.
12355 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
12356 void *hostaddr[maxidx];
12357 int try, i;
12358 unsigned mmu_idx = cpu_mmu_index(env, false);
12359 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
12361 for (try = 0; try < 2; try++) {
12363 for (i = 0; i < maxidx; i++) {
12364 hostaddr[i] = tlb_vaddr_to_host(env,
12365 vaddr + TARGET_PAGE_SIZE * i,
12366 1, mmu_idx);
12367 if (!hostaddr[i]) {
12368 break;
12371 if (i == maxidx) {
12372 /* If it's all in the TLB it's fair game for just writing to;
12373 * we know we don't need to update dirty status, etc.
12375 for (i = 0; i < maxidx - 1; i++) {
12376 memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
12378 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
12379 return;
12381 /* OK, try a store and see if we can populate the tlb. This
12382 * might cause an exception if the memory isn't writable,
12383 * in which case we will longjmp out of here. We must for
12384 * this purpose use the actual register value passed to us
12385 * so that we get the fault address right.
12387 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC());
12388 /* Now we can populate the other TLB entries, if any */
12389 for (i = 0; i < maxidx; i++) {
12390 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
12391 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
12392 helper_ret_stb_mmu(env, va, 0, oi, GETPC());
12397 /* Slow path (probably attempt to do this to an I/O device or
12398 * similar, or clearing of a block of code we have translations
12399 * cached for). Just do a series of byte writes as the architecture
12400 * demands. It's not worth trying to use a cpu_physical_memory_map(),
12401 * memset(), unmap() sequence here because:
12402 * + we'd need to account for the blocksize being larger than a page
12403 * + the direct-RAM access case is almost always going to be dealt
12404 * with in the fastpath code above, so there's no speed benefit
12405 * + we would have to deal with the map returning NULL because the
12406 * bounce buffer was in use
12408 for (i = 0; i < blocklen; i++) {
12409 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC());
12412 #else
12413 memset(g2h(vaddr), 0, blocklen);
12414 #endif
12417 /* Note that signed overflow is undefined in C. The following routines are
12418 careful to use unsigned types where modulo arithmetic is required.
12419 Failure to do so _will_ break on newer gcc. */
12421 /* Signed saturating arithmetic. */
12423 /* Perform 16-bit signed saturating addition. */
12424 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
12426 uint16_t res;
12428 res = a + b;
12429 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
12430 if (a & 0x8000)
12431 res = 0x8000;
12432 else
12433 res = 0x7fff;
12435 return res;
12438 /* Perform 8-bit signed saturating addition. */
12439 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
12441 uint8_t res;
12443 res = a + b;
12444 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
12445 if (a & 0x80)
12446 res = 0x80;
12447 else
12448 res = 0x7f;
12450 return res;
12453 /* Perform 16-bit signed saturating subtraction. */
12454 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
12456 uint16_t res;
12458 res = a - b;
12459 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
12460 if (a & 0x8000)
12461 res = 0x8000;
12462 else
12463 res = 0x7fff;
12465 return res;
12468 /* Perform 8-bit signed saturating subtraction. */
12469 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
12471 uint8_t res;
12473 res = a - b;
12474 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
12475 if (a & 0x80)
12476 res = 0x80;
12477 else
12478 res = 0x7f;
12480 return res;
12483 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
12484 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
12485 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
12486 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
12487 #define PFX q
12489 #include "op_addsub.h"
12491 /* Unsigned saturating arithmetic. */
12492 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
12494 uint16_t res;
12495 res = a + b;
12496 if (res < a)
12497 res = 0xffff;
12498 return res;
12501 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
12503 if (a > b)
12504 return a - b;
12505 else
12506 return 0;
12509 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
12511 uint8_t res;
12512 res = a + b;
12513 if (res < a)
12514 res = 0xff;
12515 return res;
12518 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
12520 if (a > b)
12521 return a - b;
12522 else
12523 return 0;
12526 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
12527 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
12528 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
12529 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
12530 #define PFX uq
12532 #include "op_addsub.h"
12534 /* Signed modulo arithmetic. */
12535 #define SARITH16(a, b, n, op) do { \
12536 int32_t sum; \
12537 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
12538 RESULT(sum, n, 16); \
12539 if (sum >= 0) \
12540 ge |= 3 << (n * 2); \
12541 } while(0)
12543 #define SARITH8(a, b, n, op) do { \
12544 int32_t sum; \
12545 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
12546 RESULT(sum, n, 8); \
12547 if (sum >= 0) \
12548 ge |= 1 << n; \
12549 } while(0)
12552 #define ADD16(a, b, n) SARITH16(a, b, n, +)
12553 #define SUB16(a, b, n) SARITH16(a, b, n, -)
12554 #define ADD8(a, b, n) SARITH8(a, b, n, +)
12555 #define SUB8(a, b, n) SARITH8(a, b, n, -)
12556 #define PFX s
12557 #define ARITH_GE
12559 #include "op_addsub.h"
12561 /* Unsigned modulo arithmetic. */
12562 #define ADD16(a, b, n) do { \
12563 uint32_t sum; \
12564 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
12565 RESULT(sum, n, 16); \
12566 if ((sum >> 16) == 1) \
12567 ge |= 3 << (n * 2); \
12568 } while(0)
12570 #define ADD8(a, b, n) do { \
12571 uint32_t sum; \
12572 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
12573 RESULT(sum, n, 8); \
12574 if ((sum >> 8) == 1) \
12575 ge |= 1 << n; \
12576 } while(0)
12578 #define SUB16(a, b, n) do { \
12579 uint32_t sum; \
12580 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
12581 RESULT(sum, n, 16); \
12582 if ((sum >> 16) == 0) \
12583 ge |= 3 << (n * 2); \
12584 } while(0)
12586 #define SUB8(a, b, n) do { \
12587 uint32_t sum; \
12588 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
12589 RESULT(sum, n, 8); \
12590 if ((sum >> 8) == 0) \
12591 ge |= 1 << n; \
12592 } while(0)
12594 #define PFX u
12595 #define ARITH_GE
12597 #include "op_addsub.h"
12599 /* Halved signed arithmetic. */
12600 #define ADD16(a, b, n) \
12601 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
12602 #define SUB16(a, b, n) \
12603 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
12604 #define ADD8(a, b, n) \
12605 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
12606 #define SUB8(a, b, n) \
12607 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
12608 #define PFX sh
12610 #include "op_addsub.h"
12612 /* Halved unsigned arithmetic. */
12613 #define ADD16(a, b, n) \
12614 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12615 #define SUB16(a, b, n) \
12616 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12617 #define ADD8(a, b, n) \
12618 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12619 #define SUB8(a, b, n) \
12620 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12621 #define PFX uh
12623 #include "op_addsub.h"
12625 static inline uint8_t do_usad(uint8_t a, uint8_t b)
12627 if (a > b)
12628 return a - b;
12629 else
12630 return b - a;
12633 /* Unsigned sum of absolute byte differences. */
12634 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
12636 uint32_t sum;
12637 sum = do_usad(a, b);
12638 sum += do_usad(a >> 8, b >> 8);
12639 sum += do_usad(a >> 16, b >>16);
12640 sum += do_usad(a >> 24, b >> 24);
12641 return sum;
12644 /* For ARMv6 SEL instruction. */
12645 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
12647 uint32_t mask;
12649 mask = 0;
12650 if (flags & 1)
12651 mask |= 0xff;
12652 if (flags & 2)
12653 mask |= 0xff00;
12654 if (flags & 4)
12655 mask |= 0xff0000;
12656 if (flags & 8)
12657 mask |= 0xff000000;
12658 return (a & mask) | (b & ~mask);
12661 /* CRC helpers.
12662 * The upper bytes of val (above the number specified by 'bytes') must have
12663 * been zeroed out by the caller.
12665 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
12667 uint8_t buf[4];
12669 stl_le_p(buf, val);
12671 /* zlib crc32 converts the accumulator and output to one's complement. */
12672 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
12675 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
12677 uint8_t buf[4];
12679 stl_le_p(buf, val);
12681 /* Linux crc32c converts the output to one's complement. */
12682 return crc32c(acc, buf, bytes) ^ 0xffffffff;
12685 /* Return the exception level to which FP-disabled exceptions should
12686 * be taken, or 0 if FP is enabled.
12688 int fp_exception_el(CPUARMState *env, int cur_el)
12690 #ifndef CONFIG_USER_ONLY
12691 int fpen;
12693 /* CPACR and the CPTR registers don't exist before v6, so FP is
12694 * always accessible
12696 if (!arm_feature(env, ARM_FEATURE_V6)) {
12697 return 0;
12700 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
12701 * 0, 2 : trap EL0 and EL1/PL1 accesses
12702 * 1 : trap only EL0 accesses
12703 * 3 : trap no accesses
12705 fpen = extract32(env->cp15.cpacr_el1, 20, 2);
12706 switch (fpen) {
12707 case 0:
12708 case 2:
12709 if (cur_el == 0 || cur_el == 1) {
12710 /* Trap to PL1, which might be EL1 or EL3 */
12711 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
12712 return 3;
12714 return 1;
12716 if (cur_el == 3 && !is_a64(env)) {
12717 /* Secure PL1 running at EL3 */
12718 return 3;
12720 break;
12721 case 1:
12722 if (cur_el == 0) {
12723 return 1;
12725 break;
12726 case 3:
12727 break;
12730 /* For the CPTR registers we don't need to guard with an ARM_FEATURE
12731 * check because zero bits in the registers mean "don't trap".
12734 /* CPTR_EL2 : present in v7VE or v8 */
12735 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
12736 && !arm_is_secure_below_el3(env)) {
12737 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
12738 return 2;
12741 /* CPTR_EL3 : present in v8 */
12742 if (extract32(env->cp15.cptr_el[3], 10, 1)) {
12743 /* Trap all FP ops to EL3 */
12744 return 3;
12746 #endif
12747 return 0;
12750 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
12751 bool secstate, bool priv)
12753 ARMMMUIdx mmu_idx = ARM_MMU_IDX_M;
12755 if (priv) {
12756 mmu_idx |= ARM_MMU_IDX_M_PRIV;
12759 if (armv7m_nvic_neg_prio_requested(env->nvic, secstate)) {
12760 mmu_idx |= ARM_MMU_IDX_M_NEGPRI;
12763 if (secstate) {
12764 mmu_idx |= ARM_MMU_IDX_M_S;
12767 return mmu_idx;
12770 /* Return the MMU index for a v7M CPU in the specified security state */
12771 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
12773 bool priv = arm_current_el(env) != 0;
12775 return arm_v7m_mmu_idx_for_secstate_and_priv(env, secstate, priv);
12778 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
12780 int el;
12782 if (arm_feature(env, ARM_FEATURE_M)) {
12783 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
12786 el = arm_current_el(env);
12787 if (el < 2 && arm_is_secure_below_el3(env)) {
12788 return ARMMMUIdx_S1SE0 + el;
12789 } else {
12790 return ARMMMUIdx_S12NSE0 + el;
12794 int cpu_mmu_index(CPUARMState *env, bool ifetch)
12796 return arm_to_core_mmu_idx(arm_mmu_idx(env));
12799 #ifndef CONFIG_USER_ONLY
12800 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
12802 return stage_1_mmu_idx(arm_mmu_idx(env));
12804 #endif
12806 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
12807 target_ulong *cs_base, uint32_t *pflags)
12809 ARMMMUIdx mmu_idx = arm_mmu_idx(env);
12810 int current_el = arm_current_el(env);
12811 int fp_el = fp_exception_el(env, current_el);
12812 uint32_t flags = 0;
12814 if (is_a64(env)) {
12815 ARMCPU *cpu = arm_env_get_cpu(env);
12816 uint64_t sctlr;
12818 *pc = env->pc;
12819 flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1);
12821 /* Get control bits for tagged addresses. */
12823 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
12824 ARMVAParameters p0 = aa64_va_parameters_both(env, 0, stage1);
12825 int tbii, tbid;
12827 /* FIXME: ARMv8.1-VHE S2 translation regime. */
12828 if (regime_el(env, stage1) < 2) {
12829 ARMVAParameters p1 = aa64_va_parameters_both(env, -1, stage1);
12830 tbid = (p1.tbi << 1) | p0.tbi;
12831 tbii = tbid & ~((p1.tbid << 1) | p0.tbid);
12832 } else {
12833 tbid = p0.tbi;
12834 tbii = tbid & !p0.tbid;
12837 flags = FIELD_DP32(flags, TBFLAG_A64, TBII, tbii);
12838 flags = FIELD_DP32(flags, TBFLAG_A64, TBID, tbid);
12841 if (cpu_isar_feature(aa64_sve, cpu)) {
12842 int sve_el = sve_exception_el(env, current_el);
12843 uint32_t zcr_len;
12845 /* If SVE is disabled, but FP is enabled,
12846 * then the effective len is 0.
12848 if (sve_el != 0 && fp_el == 0) {
12849 zcr_len = 0;
12850 } else {
12851 zcr_len = sve_zcr_len_for_el(env, current_el);
12853 flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el);
12854 flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len);
12857 if (current_el == 0) {
12858 /* FIXME: ARMv8.1-VHE S2 translation regime. */
12859 sctlr = env->cp15.sctlr_el[1];
12860 } else {
12861 sctlr = env->cp15.sctlr_el[current_el];
12863 if (cpu_isar_feature(aa64_pauth, cpu)) {
12865 * In order to save space in flags, we record only whether
12866 * pauth is "inactive", meaning all insns are implemented as
12867 * a nop, or "active" when some action must be performed.
12868 * The decision of which action to take is left to a helper.
12870 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
12871 flags = FIELD_DP32(flags, TBFLAG_A64, PAUTH_ACTIVE, 1);
12875 if (cpu_isar_feature(aa64_bti, cpu)) {
12876 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */
12877 if (sctlr & (current_el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
12878 flags = FIELD_DP32(flags, TBFLAG_A64, BT, 1);
12880 flags = FIELD_DP32(flags, TBFLAG_A64, BTYPE, env->btype);
12882 } else {
12883 *pc = env->regs[15];
12884 flags = FIELD_DP32(flags, TBFLAG_A32, THUMB, env->thumb);
12885 flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN, env->vfp.vec_len);
12886 flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE, env->vfp.vec_stride);
12887 flags = FIELD_DP32(flags, TBFLAG_A32, CONDEXEC, env->condexec_bits);
12888 flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, arm_sctlr_b(env));
12889 flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env));
12890 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
12891 || arm_el_is_aa64(env, 1)) {
12892 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1);
12894 flags = FIELD_DP32(flags, TBFLAG_A32, XSCALE_CPAR, env->cp15.c15_cpar);
12897 flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX, arm_to_core_mmu_idx(mmu_idx));
12899 /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
12900 * states defined in the ARM ARM for software singlestep:
12901 * SS_ACTIVE PSTATE.SS State
12902 * 0 x Inactive (the TB flag for SS is always 0)
12903 * 1 0 Active-pending
12904 * 1 1 Active-not-pending
12906 if (arm_singlestep_active(env)) {
12907 flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1);
12908 if (is_a64(env)) {
12909 if (env->pstate & PSTATE_SS) {
12910 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1);
12912 } else {
12913 if (env->uncached_cpsr & PSTATE_SS) {
12914 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1);
12918 if (arm_cpu_data_is_big_endian(env)) {
12919 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1);
12921 flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el);
12923 if (arm_v7m_is_handler_mode(env)) {
12924 flags = FIELD_DP32(flags, TBFLAG_A32, HANDLER, 1);
12927 /* v8M always applies stack limit checks unless CCR.STKOFHFNMIGN is
12928 * suppressing them because the requested execution priority is less than 0.
12930 if (arm_feature(env, ARM_FEATURE_V8) &&
12931 arm_feature(env, ARM_FEATURE_M) &&
12932 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
12933 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
12934 flags = FIELD_DP32(flags, TBFLAG_A32, STACKCHECK, 1);
12937 *pflags = flags;
12938 *cs_base = 0;
12941 #ifdef TARGET_AARCH64
12943 * The manual says that when SVE is enabled and VQ is widened the
12944 * implementation is allowed to zero the previously inaccessible
12945 * portion of the registers. The corollary to that is that when
12946 * SVE is enabled and VQ is narrowed we are also allowed to zero
12947 * the now inaccessible portion of the registers.
12949 * The intent of this is that no predicate bit beyond VQ is ever set.
12950 * Which means that some operations on predicate registers themselves
12951 * may operate on full uint64_t or even unrolled across the maximum
12952 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally
12953 * may well be cheaper than conditionals to restrict the operation
12954 * to the relevant portion of a uint16_t[16].
12956 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
12958 int i, j;
12959 uint64_t pmask;
12961 assert(vq >= 1 && vq <= ARM_MAX_VQ);
12962 assert(vq <= arm_env_get_cpu(env)->sve_max_vq);
12964 /* Zap the high bits of the zregs. */
12965 for (i = 0; i < 32; i++) {
12966 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
12969 /* Zap the high bits of the pregs and ffr. */
12970 pmask = 0;
12971 if (vq & 3) {
12972 pmask = ~(-1ULL << (16 * (vq & 3)));
12974 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
12975 for (i = 0; i < 17; ++i) {
12976 env->vfp.pregs[i].p[j] &= pmask;
12978 pmask = 0;
12983 * Notice a change in SVE vector size when changing EL.
12985 void aarch64_sve_change_el(CPUARMState *env, int old_el,
12986 int new_el, bool el0_a64)
12988 ARMCPU *cpu = arm_env_get_cpu(env);
12989 int old_len, new_len;
12990 bool old_a64, new_a64;
12992 /* Nothing to do if no SVE. */
12993 if (!cpu_isar_feature(aa64_sve, cpu)) {
12994 return;
12997 /* Nothing to do if FP is disabled in either EL. */
12998 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
12999 return;
13003 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
13004 * at ELx, or not available because the EL is in AArch32 state, then
13005 * for all purposes other than a direct read, the ZCR_ELx.LEN field
13006 * has an effective value of 0".
13008 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
13009 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
13010 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that
13011 * we already have the correct register contents when encountering the
13012 * vq0->vq0 transition between EL0->EL1.
13014 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
13015 old_len = (old_a64 && !sve_exception_el(env, old_el)
13016 ? sve_zcr_len_for_el(env, old_el) : 0);
13017 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
13018 new_len = (new_a64 && !sve_exception_el(env, new_el)
13019 ? sve_zcr_len_for_el(env, new_el) : 0);
13021 /* When changing vector length, clear inaccessible state. */
13022 if (new_len < old_len) {
13023 aarch64_sve_narrow_vq(env, new_len + 1);
13026 #endif