target/arm: Drop access_el3_aa32ns_aa64any()
[qemu/ar7.git] / target / arm / helper.c
blobb88d27819d51825de9281075fe98f3fd43850ec8
1 /*
2 * ARM generic helpers.
4 * This code is licensed under the GNU GPL v2 or later.
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
9 #include "qemu/osdep.h"
10 #include "qemu/units.h"
11 #include "target/arm/idau.h"
12 #include "trace.h"
13 #include "cpu.h"
14 #include "internals.h"
15 #include "exec/gdbstub.h"
16 #include "exec/helper-proto.h"
17 #include "qemu/host-utils.h"
18 #include "qemu/main-loop.h"
19 #include "qemu/bitops.h"
20 #include "qemu/crc32c.h"
21 #include "qemu/qemu-print.h"
22 #include "exec/exec-all.h"
23 #include <zlib.h> /* For crc32 */
24 #include "hw/irq.h"
25 #include "hw/semihosting/semihost.h"
26 #include "sysemu/cpus.h"
27 #include "sysemu/kvm.h"
28 #include "sysemu/tcg.h"
29 #include "qemu/range.h"
30 #include "qapi/qapi-commands-machine-target.h"
31 #include "qapi/error.h"
32 #include "qemu/guest-random.h"
33 #ifdef CONFIG_TCG
34 #include "arm_ldst.h"
35 #include "exec/cpu_ldst.h"
36 #endif
38 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
40 #ifndef CONFIG_USER_ONLY
42 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
43 MMUAccessType access_type, ARMMMUIdx mmu_idx,
44 bool s1_is_el0,
45 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
46 target_ulong *page_size_ptr,
47 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
48 #endif
50 static void switch_mode(CPUARMState *env, int mode);
52 static int vfp_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg)
54 ARMCPU *cpu = env_archcpu(env);
55 int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16;
57 /* VFP data registers are always little-endian. */
58 if (reg < nregs) {
59 return gdb_get_reg64(buf, *aa32_vfp_dreg(env, reg));
61 if (arm_feature(env, ARM_FEATURE_NEON)) {
62 /* Aliases for Q regs. */
63 nregs += 16;
64 if (reg < nregs) {
65 uint64_t *q = aa32_vfp_qreg(env, reg - 32);
66 return gdb_get_reg128(buf, q[0], q[1]);
69 switch (reg - nregs) {
70 case 0: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPSID]); break;
71 case 1: return gdb_get_reg32(buf, vfp_get_fpscr(env)); break;
72 case 2: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPEXC]); break;
74 return 0;
77 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
79 ARMCPU *cpu = env_archcpu(env);
80 int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16;
82 if (reg < nregs) {
83 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf);
84 return 8;
86 if (arm_feature(env, ARM_FEATURE_NEON)) {
87 nregs += 16;
88 if (reg < nregs) {
89 uint64_t *q = aa32_vfp_qreg(env, reg - 32);
90 q[0] = ldq_le_p(buf);
91 q[1] = ldq_le_p(buf + 8);
92 return 16;
95 switch (reg - nregs) {
96 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
97 case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4;
98 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
100 return 0;
103 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg)
105 switch (reg) {
106 case 0 ... 31:
108 /* 128 bit FP register - quads are in LE order */
109 uint64_t *q = aa64_vfp_qreg(env, reg);
110 return gdb_get_reg128(buf, q[1], q[0]);
112 case 32:
113 /* FPSR */
114 return gdb_get_reg32(buf, vfp_get_fpsr(env));
115 case 33:
116 /* FPCR */
117 return gdb_get_reg32(buf,vfp_get_fpcr(env));
118 default:
119 return 0;
123 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
125 switch (reg) {
126 case 0 ... 31:
127 /* 128 bit FP register */
129 uint64_t *q = aa64_vfp_qreg(env, reg);
130 q[0] = ldq_le_p(buf);
131 q[1] = ldq_le_p(buf + 8);
132 return 16;
134 case 32:
135 /* FPSR */
136 vfp_set_fpsr(env, ldl_p(buf));
137 return 4;
138 case 33:
139 /* FPCR */
140 vfp_set_fpcr(env, ldl_p(buf));
141 return 4;
142 default:
143 return 0;
147 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
149 assert(ri->fieldoffset);
150 if (cpreg_field_is_64bit(ri)) {
151 return CPREG_FIELD64(env, ri);
152 } else {
153 return CPREG_FIELD32(env, ri);
157 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
158 uint64_t value)
160 assert(ri->fieldoffset);
161 if (cpreg_field_is_64bit(ri)) {
162 CPREG_FIELD64(env, ri) = value;
163 } else {
164 CPREG_FIELD32(env, ri) = value;
168 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
170 return (char *)env + ri->fieldoffset;
173 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
175 /* Raw read of a coprocessor register (as needed for migration, etc). */
176 if (ri->type & ARM_CP_CONST) {
177 return ri->resetvalue;
178 } else if (ri->raw_readfn) {
179 return ri->raw_readfn(env, ri);
180 } else if (ri->readfn) {
181 return ri->readfn(env, ri);
182 } else {
183 return raw_read(env, ri);
187 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
188 uint64_t v)
190 /* Raw write of a coprocessor register (as needed for migration, etc).
191 * Note that constant registers are treated as write-ignored; the
192 * caller should check for success by whether a readback gives the
193 * value written.
195 if (ri->type & ARM_CP_CONST) {
196 return;
197 } else if (ri->raw_writefn) {
198 ri->raw_writefn(env, ri, v);
199 } else if (ri->writefn) {
200 ri->writefn(env, ri, v);
201 } else {
202 raw_write(env, ri, v);
207 * arm_get/set_gdb_*: get/set a gdb register
208 * @env: the CPU state
209 * @buf: a buffer to copy to/from
210 * @reg: register number (offset from start of group)
212 * We return the number of bytes copied
215 static int arm_gdb_get_sysreg(CPUARMState *env, GByteArray *buf, int reg)
217 ARMCPU *cpu = env_archcpu(env);
218 const ARMCPRegInfo *ri;
219 uint32_t key;
221 key = cpu->dyn_sysreg_xml.data.cpregs.keys[reg];
222 ri = get_arm_cp_reginfo(cpu->cp_regs, key);
223 if (ri) {
224 if (cpreg_field_is_64bit(ri)) {
225 return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri));
226 } else {
227 return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri));
230 return 0;
233 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg)
235 return 0;
238 #ifdef TARGET_AARCH64
239 static int arm_gdb_get_svereg(CPUARMState *env, GByteArray *buf, int reg)
241 ARMCPU *cpu = env_archcpu(env);
243 switch (reg) {
244 /* The first 32 registers are the zregs */
245 case 0 ... 31:
247 int vq, len = 0;
248 for (vq = 0; vq < cpu->sve_max_vq; vq++) {
249 len += gdb_get_reg128(buf,
250 env->vfp.zregs[reg].d[vq * 2 + 1],
251 env->vfp.zregs[reg].d[vq * 2]);
253 return len;
255 case 32:
256 return gdb_get_reg32(buf, vfp_get_fpsr(env));
257 case 33:
258 return gdb_get_reg32(buf, vfp_get_fpcr(env));
259 /* then 16 predicates and the ffr */
260 case 34 ... 50:
262 int preg = reg - 34;
263 int vq, len = 0;
264 for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) {
265 len += gdb_get_reg64(buf, env->vfp.pregs[preg].p[vq / 4]);
267 return len;
269 case 51:
272 * We report in Vector Granules (VG) which is 64bit in a Z reg
273 * while the ZCR works in Vector Quads (VQ) which is 128bit chunks.
275 int vq = sve_zcr_len_for_el(env, arm_current_el(env)) + 1;
276 return gdb_get_reg32(buf, vq * 2);
278 default:
279 /* gdbstub asked for something out our range */
280 qemu_log_mask(LOG_UNIMP, "%s: out of range register %d", __func__, reg);
281 break;
284 return 0;
287 static int arm_gdb_set_svereg(CPUARMState *env, uint8_t *buf, int reg)
289 ARMCPU *cpu = env_archcpu(env);
291 /* The first 32 registers are the zregs */
292 switch (reg) {
293 /* The first 32 registers are the zregs */
294 case 0 ... 31:
296 int vq, len = 0;
297 uint64_t *p = (uint64_t *) buf;
298 for (vq = 0; vq < cpu->sve_max_vq; vq++) {
299 env->vfp.zregs[reg].d[vq * 2 + 1] = *p++;
300 env->vfp.zregs[reg].d[vq * 2] = *p++;
301 len += 16;
303 return len;
305 case 32:
306 vfp_set_fpsr(env, *(uint32_t *)buf);
307 return 4;
308 case 33:
309 vfp_set_fpcr(env, *(uint32_t *)buf);
310 return 4;
311 case 34 ... 50:
313 int preg = reg - 34;
314 int vq, len = 0;
315 uint64_t *p = (uint64_t *) buf;
316 for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) {
317 env->vfp.pregs[preg].p[vq / 4] = *p++;
318 len += 8;
320 return len;
322 case 51:
323 /* cannot set vg via gdbstub */
324 return 0;
325 default:
326 /* gdbstub asked for something out our range */
327 break;
330 return 0;
332 #endif /* TARGET_AARCH64 */
334 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
336 /* Return true if the regdef would cause an assertion if you called
337 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
338 * program bug for it not to have the NO_RAW flag).
339 * NB that returning false here doesn't necessarily mean that calling
340 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
341 * read/write access functions which are safe for raw use" from "has
342 * read/write access functions which have side effects but has forgotten
343 * to provide raw access functions".
344 * The tests here line up with the conditions in read/write_raw_cp_reg()
345 * and assertions in raw_read()/raw_write().
347 if ((ri->type & ARM_CP_CONST) ||
348 ri->fieldoffset ||
349 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
350 return false;
352 return true;
355 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
357 /* Write the coprocessor state from cpu->env to the (index,value) list. */
358 int i;
359 bool ok = true;
361 for (i = 0; i < cpu->cpreg_array_len; i++) {
362 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
363 const ARMCPRegInfo *ri;
364 uint64_t newval;
366 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
367 if (!ri) {
368 ok = false;
369 continue;
371 if (ri->type & ARM_CP_NO_RAW) {
372 continue;
375 newval = read_raw_cp_reg(&cpu->env, ri);
376 if (kvm_sync) {
378 * Only sync if the previous list->cpustate sync succeeded.
379 * Rather than tracking the success/failure state for every
380 * item in the list, we just recheck "does the raw write we must
381 * have made in write_list_to_cpustate() read back OK" here.
383 uint64_t oldval = cpu->cpreg_values[i];
385 if (oldval == newval) {
386 continue;
389 write_raw_cp_reg(&cpu->env, ri, oldval);
390 if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
391 continue;
394 write_raw_cp_reg(&cpu->env, ri, newval);
396 cpu->cpreg_values[i] = newval;
398 return ok;
401 bool write_list_to_cpustate(ARMCPU *cpu)
403 int i;
404 bool ok = true;
406 for (i = 0; i < cpu->cpreg_array_len; i++) {
407 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
408 uint64_t v = cpu->cpreg_values[i];
409 const ARMCPRegInfo *ri;
411 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
412 if (!ri) {
413 ok = false;
414 continue;
416 if (ri->type & ARM_CP_NO_RAW) {
417 continue;
419 /* Write value and confirm it reads back as written
420 * (to catch read-only registers and partially read-only
421 * registers where the incoming migration value doesn't match)
423 write_raw_cp_reg(&cpu->env, ri, v);
424 if (read_raw_cp_reg(&cpu->env, ri) != v) {
425 ok = false;
428 return ok;
431 static void add_cpreg_to_list(gpointer key, gpointer opaque)
433 ARMCPU *cpu = opaque;
434 uint64_t regidx;
435 const ARMCPRegInfo *ri;
437 regidx = *(uint32_t *)key;
438 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
440 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
441 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
442 /* The value array need not be initialized at this point */
443 cpu->cpreg_array_len++;
447 static void count_cpreg(gpointer key, gpointer opaque)
449 ARMCPU *cpu = opaque;
450 uint64_t regidx;
451 const ARMCPRegInfo *ri;
453 regidx = *(uint32_t *)key;
454 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
456 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
457 cpu->cpreg_array_len++;
461 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
463 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
464 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
466 if (aidx > bidx) {
467 return 1;
469 if (aidx < bidx) {
470 return -1;
472 return 0;
475 void init_cpreg_list(ARMCPU *cpu)
477 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
478 * Note that we require cpreg_tuples[] to be sorted by key ID.
480 GList *keys;
481 int arraylen;
483 keys = g_hash_table_get_keys(cpu->cp_regs);
484 keys = g_list_sort(keys, cpreg_key_compare);
486 cpu->cpreg_array_len = 0;
488 g_list_foreach(keys, count_cpreg, cpu);
490 arraylen = cpu->cpreg_array_len;
491 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
492 cpu->cpreg_values = g_new(uint64_t, arraylen);
493 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
494 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
495 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
496 cpu->cpreg_array_len = 0;
498 g_list_foreach(keys, add_cpreg_to_list, cpu);
500 assert(cpu->cpreg_array_len == arraylen);
502 g_list_free(keys);
506 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
508 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
509 const ARMCPRegInfo *ri,
510 bool isread)
512 if (!is_a64(env) && arm_current_el(env) == 3 &&
513 arm_is_secure_below_el3(env)) {
514 return CP_ACCESS_TRAP_UNCATEGORIZED;
516 return CP_ACCESS_OK;
519 /* Some secure-only AArch32 registers trap to EL3 if used from
520 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
521 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
522 * We assume that the .access field is set to PL1_RW.
524 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
525 const ARMCPRegInfo *ri,
526 bool isread)
528 if (arm_current_el(env) == 3) {
529 return CP_ACCESS_OK;
531 if (arm_is_secure_below_el3(env)) {
532 return CP_ACCESS_TRAP_EL3;
534 /* This will be EL1 NS and EL2 NS, which just UNDEF */
535 return CP_ACCESS_TRAP_UNCATEGORIZED;
538 /* Check for traps to "powerdown debug" registers, which are controlled
539 * by MDCR.TDOSA
541 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
542 bool isread)
544 int el = arm_current_el(env);
545 bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) ||
546 (env->cp15.mdcr_el2 & MDCR_TDE) ||
547 (arm_hcr_el2_eff(env) & HCR_TGE);
549 if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) {
550 return CP_ACCESS_TRAP_EL2;
552 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
553 return CP_ACCESS_TRAP_EL3;
555 return CP_ACCESS_OK;
558 /* Check for traps to "debug ROM" registers, which are controlled
559 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
561 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
562 bool isread)
564 int el = arm_current_el(env);
565 bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) ||
566 (env->cp15.mdcr_el2 & MDCR_TDE) ||
567 (arm_hcr_el2_eff(env) & HCR_TGE);
569 if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) {
570 return CP_ACCESS_TRAP_EL2;
572 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
573 return CP_ACCESS_TRAP_EL3;
575 return CP_ACCESS_OK;
578 /* Check for traps to general debug registers, which are controlled
579 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
581 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
582 bool isread)
584 int el = arm_current_el(env);
585 bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) ||
586 (env->cp15.mdcr_el2 & MDCR_TDE) ||
587 (arm_hcr_el2_eff(env) & HCR_TGE);
589 if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) {
590 return CP_ACCESS_TRAP_EL2;
592 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
593 return CP_ACCESS_TRAP_EL3;
595 return CP_ACCESS_OK;
598 /* Check for traps to performance monitor registers, which are controlled
599 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
601 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
602 bool isread)
604 int el = arm_current_el(env);
606 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
607 && !arm_is_secure_below_el3(env)) {
608 return CP_ACCESS_TRAP_EL2;
610 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
611 return CP_ACCESS_TRAP_EL3;
613 return CP_ACCESS_OK;
616 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */
617 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
618 bool isread)
620 if (arm_current_el(env) == 1) {
621 uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
622 if (arm_hcr_el2_eff(env) & trap) {
623 return CP_ACCESS_TRAP_EL2;
626 return CP_ACCESS_OK;
629 /* Check for traps from EL1 due to HCR_EL2.TSW. */
630 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
631 bool isread)
633 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
634 return CP_ACCESS_TRAP_EL2;
636 return CP_ACCESS_OK;
639 /* Check for traps from EL1 due to HCR_EL2.TACR. */
640 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
641 bool isread)
643 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
644 return CP_ACCESS_TRAP_EL2;
646 return CP_ACCESS_OK;
649 /* Check for traps from EL1 due to HCR_EL2.TTLB. */
650 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
651 bool isread)
653 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
654 return CP_ACCESS_TRAP_EL2;
656 return CP_ACCESS_OK;
659 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
661 ARMCPU *cpu = env_archcpu(env);
663 raw_write(env, ri, value);
664 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
667 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
669 ARMCPU *cpu = env_archcpu(env);
671 if (raw_read(env, ri) != value) {
672 /* Unlike real hardware the qemu TLB uses virtual addresses,
673 * not modified virtual addresses, so this causes a TLB flush.
675 tlb_flush(CPU(cpu));
676 raw_write(env, ri, value);
680 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
681 uint64_t value)
683 ARMCPU *cpu = env_archcpu(env);
685 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
686 && !extended_addresses_enabled(env)) {
687 /* For VMSA (when not using the LPAE long descriptor page table
688 * format) this register includes the ASID, so do a TLB flush.
689 * For PMSA it is purely a process ID and no action is needed.
691 tlb_flush(CPU(cpu));
693 raw_write(env, ri, value);
696 /* IS variants of TLB operations must affect all cores */
697 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
698 uint64_t value)
700 CPUState *cs = env_cpu(env);
702 tlb_flush_all_cpus_synced(cs);
705 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
706 uint64_t value)
708 CPUState *cs = env_cpu(env);
710 tlb_flush_all_cpus_synced(cs);
713 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
714 uint64_t value)
716 CPUState *cs = env_cpu(env);
718 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
721 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
722 uint64_t value)
724 CPUState *cs = env_cpu(env);
726 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
730 * Non-IS variants of TLB operations are upgraded to
731 * IS versions if we are at NS EL1 and HCR_EL2.FB is set to
732 * force broadcast of these operations.
734 static bool tlb_force_broadcast(CPUARMState *env)
736 return (env->cp15.hcr_el2 & HCR_FB) &&
737 arm_current_el(env) == 1 && arm_is_secure_below_el3(env);
740 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
741 uint64_t value)
743 /* Invalidate all (TLBIALL) */
744 CPUState *cs = env_cpu(env);
746 if (tlb_force_broadcast(env)) {
747 tlb_flush_all_cpus_synced(cs);
748 } else {
749 tlb_flush(cs);
753 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
754 uint64_t value)
756 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
757 CPUState *cs = env_cpu(env);
759 value &= TARGET_PAGE_MASK;
760 if (tlb_force_broadcast(env)) {
761 tlb_flush_page_all_cpus_synced(cs, value);
762 } else {
763 tlb_flush_page(cs, value);
767 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
768 uint64_t value)
770 /* Invalidate by ASID (TLBIASID) */
771 CPUState *cs = env_cpu(env);
773 if (tlb_force_broadcast(env)) {
774 tlb_flush_all_cpus_synced(cs);
775 } else {
776 tlb_flush(cs);
780 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
781 uint64_t value)
783 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
784 CPUState *cs = env_cpu(env);
786 value &= TARGET_PAGE_MASK;
787 if (tlb_force_broadcast(env)) {
788 tlb_flush_page_all_cpus_synced(cs, value);
789 } else {
790 tlb_flush_page(cs, value);
794 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
795 uint64_t value)
797 CPUState *cs = env_cpu(env);
799 tlb_flush_by_mmuidx(cs,
800 ARMMMUIdxBit_E10_1 |
801 ARMMMUIdxBit_E10_1_PAN |
802 ARMMMUIdxBit_E10_0);
805 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
806 uint64_t value)
808 CPUState *cs = env_cpu(env);
810 tlb_flush_by_mmuidx_all_cpus_synced(cs,
811 ARMMMUIdxBit_E10_1 |
812 ARMMMUIdxBit_E10_1_PAN |
813 ARMMMUIdxBit_E10_0);
817 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
818 uint64_t value)
820 CPUState *cs = env_cpu(env);
822 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
825 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
826 uint64_t value)
828 CPUState *cs = env_cpu(env);
830 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
833 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
834 uint64_t value)
836 CPUState *cs = env_cpu(env);
837 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
839 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
842 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
843 uint64_t value)
845 CPUState *cs = env_cpu(env);
846 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
848 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
849 ARMMMUIdxBit_E2);
852 static const ARMCPRegInfo cp_reginfo[] = {
853 /* Define the secure and non-secure FCSE identifier CP registers
854 * separately because there is no secure bank in V8 (no _EL3). This allows
855 * the secure register to be properly reset and migrated. There is also no
856 * v8 EL1 version of the register so the non-secure instance stands alone.
858 { .name = "FCSEIDR",
859 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
860 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
861 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
862 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
863 { .name = "FCSEIDR_S",
864 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
865 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
866 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
867 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
868 /* Define the secure and non-secure context identifier CP registers
869 * separately because there is no secure bank in V8 (no _EL3). This allows
870 * the secure register to be properly reset and migrated. In the
871 * non-secure case, the 32-bit register will have reset and migration
872 * disabled during registration as it is handled by the 64-bit instance.
874 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
875 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
876 .access = PL1_RW, .accessfn = access_tvm_trvm,
877 .secure = ARM_CP_SECSTATE_NS,
878 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
879 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
880 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
881 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
882 .access = PL1_RW, .accessfn = access_tvm_trvm,
883 .secure = ARM_CP_SECSTATE_S,
884 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
885 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
886 REGINFO_SENTINEL
889 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
890 /* NB: Some of these registers exist in v8 but with more precise
891 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
893 /* MMU Domain access control / MPU write buffer control */
894 { .name = "DACR",
895 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
896 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
897 .writefn = dacr_write, .raw_writefn = raw_write,
898 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
899 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
900 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
901 * For v6 and v5, these mappings are overly broad.
903 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
904 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
905 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
906 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
907 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
908 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
909 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
910 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
911 /* Cache maintenance ops; some of this space may be overridden later. */
912 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
913 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
914 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
915 REGINFO_SENTINEL
918 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
919 /* Not all pre-v6 cores implemented this WFI, so this is slightly
920 * over-broad.
922 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
923 .access = PL1_W, .type = ARM_CP_WFI },
924 REGINFO_SENTINEL
927 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
928 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
929 * is UNPREDICTABLE; we choose to NOP as most implementations do).
931 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
932 .access = PL1_W, .type = ARM_CP_WFI },
933 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
934 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
935 * OMAPCP will override this space.
937 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
938 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
939 .resetvalue = 0 },
940 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
941 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
942 .resetvalue = 0 },
943 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
944 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
945 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
946 .resetvalue = 0 },
947 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
948 * implementing it as RAZ means the "debug architecture version" bits
949 * will read as a reserved value, which should cause Linux to not try
950 * to use the debug hardware.
952 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
953 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
954 /* MMU TLB control. Note that the wildcarding means we cover not just
955 * the unified TLB ops but also the dside/iside/inner-shareable variants.
957 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
958 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
959 .type = ARM_CP_NO_RAW },
960 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
961 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
962 .type = ARM_CP_NO_RAW },
963 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
964 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
965 .type = ARM_CP_NO_RAW },
966 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
967 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
968 .type = ARM_CP_NO_RAW },
969 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
970 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
971 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
972 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
973 REGINFO_SENTINEL
976 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
977 uint64_t value)
979 uint32_t mask = 0;
981 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
982 if (!arm_feature(env, ARM_FEATURE_V8)) {
983 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
984 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
985 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
987 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
988 /* VFP coprocessor: cp10 & cp11 [23:20] */
989 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
991 if (!arm_feature(env, ARM_FEATURE_NEON)) {
992 /* ASEDIS [31] bit is RAO/WI */
993 value |= (1 << 31);
996 /* VFPv3 and upwards with NEON implement 32 double precision
997 * registers (D0-D31).
999 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
1000 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
1001 value |= (1 << 30);
1004 value &= mask;
1008 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
1009 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
1011 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
1012 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
1013 value &= ~(0xf << 20);
1014 value |= env->cp15.cpacr_el1 & (0xf << 20);
1017 env->cp15.cpacr_el1 = value;
1020 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1023 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
1024 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
1026 uint64_t value = env->cp15.cpacr_el1;
1028 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
1029 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
1030 value &= ~(0xf << 20);
1032 return value;
1036 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1038 /* Call cpacr_write() so that we reset with the correct RAO bits set
1039 * for our CPU features.
1041 cpacr_write(env, ri, 0);
1044 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1045 bool isread)
1047 if (arm_feature(env, ARM_FEATURE_V8)) {
1048 /* Check if CPACR accesses are to be trapped to EL2 */
1049 if (arm_current_el(env) == 1 &&
1050 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
1051 return CP_ACCESS_TRAP_EL2;
1052 /* Check if CPACR accesses are to be trapped to EL3 */
1053 } else if (arm_current_el(env) < 3 &&
1054 (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
1055 return CP_ACCESS_TRAP_EL3;
1059 return CP_ACCESS_OK;
1062 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1063 bool isread)
1065 /* Check if CPTR accesses are set to trap to EL3 */
1066 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
1067 return CP_ACCESS_TRAP_EL3;
1070 return CP_ACCESS_OK;
1073 static const ARMCPRegInfo v6_cp_reginfo[] = {
1074 /* prefetch by MVA in v6, NOP in v7 */
1075 { .name = "MVA_prefetch",
1076 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
1077 .access = PL1_W, .type = ARM_CP_NOP },
1078 /* We need to break the TB after ISB to execute self-modifying code
1079 * correctly and also to take any pending interrupts immediately.
1080 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
1082 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
1083 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
1084 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
1085 .access = PL0_W, .type = ARM_CP_NOP },
1086 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
1087 .access = PL0_W, .type = ARM_CP_NOP },
1088 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
1089 .access = PL1_RW, .accessfn = access_tvm_trvm,
1090 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
1091 offsetof(CPUARMState, cp15.ifar_ns) },
1092 .resetvalue = 0, },
1093 /* Watchpoint Fault Address Register : should actually only be present
1094 * for 1136, 1176, 11MPCore.
1096 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1097 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
1098 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
1099 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
1100 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
1101 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
1102 REGINFO_SENTINEL
1105 /* Definitions for the PMU registers */
1106 #define PMCRN_MASK 0xf800
1107 #define PMCRN_SHIFT 11
1108 #define PMCRLC 0x40
1109 #define PMCRDP 0x20
1110 #define PMCRX 0x10
1111 #define PMCRD 0x8
1112 #define PMCRC 0x4
1113 #define PMCRP 0x2
1114 #define PMCRE 0x1
1116 * Mask of PMCR bits writeable by guest (not including WO bits like C, P,
1117 * which can be written as 1 to trigger behaviour but which stay RAZ).
1119 #define PMCR_WRITEABLE_MASK (PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE)
1121 #define PMXEVTYPER_P 0x80000000
1122 #define PMXEVTYPER_U 0x40000000
1123 #define PMXEVTYPER_NSK 0x20000000
1124 #define PMXEVTYPER_NSU 0x10000000
1125 #define PMXEVTYPER_NSH 0x08000000
1126 #define PMXEVTYPER_M 0x04000000
1127 #define PMXEVTYPER_MT 0x02000000
1128 #define PMXEVTYPER_EVTCOUNT 0x0000ffff
1129 #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1130 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1131 PMXEVTYPER_M | PMXEVTYPER_MT | \
1132 PMXEVTYPER_EVTCOUNT)
1134 #define PMCCFILTR 0xf8000000
1135 #define PMCCFILTR_M PMXEVTYPER_M
1136 #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M)
1138 static inline uint32_t pmu_num_counters(CPUARMState *env)
1140 return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT;
1143 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1144 static inline uint64_t pmu_counter_mask(CPUARMState *env)
1146 return (1 << 31) | ((1 << pmu_num_counters(env)) - 1);
1149 typedef struct pm_event {
1150 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
1151 /* If the event is supported on this CPU (used to generate PMCEID[01]) */
1152 bool (*supported)(CPUARMState *);
1154 * Retrieve the current count of the underlying event. The programmed
1155 * counters hold a difference from the return value from this function
1157 uint64_t (*get_count)(CPUARMState *);
1159 * Return how many nanoseconds it will take (at a minimum) for count events
1160 * to occur. A negative value indicates the counter will never overflow, or
1161 * that the counter has otherwise arranged for the overflow bit to be set
1162 * and the PMU interrupt to be raised on overflow.
1164 int64_t (*ns_per_count)(uint64_t);
1165 } pm_event;
1167 static bool event_always_supported(CPUARMState *env)
1169 return true;
1172 static uint64_t swinc_get_count(CPUARMState *env)
1175 * SW_INCR events are written directly to the pmevcntr's by writes to
1176 * PMSWINC, so there is no underlying count maintained by the PMU itself
1178 return 0;
1181 static int64_t swinc_ns_per(uint64_t ignored)
1183 return -1;
1187 * Return the underlying cycle count for the PMU cycle counters. If we're in
1188 * usermode, simply return 0.
1190 static uint64_t cycles_get_count(CPUARMState *env)
1192 #ifndef CONFIG_USER_ONLY
1193 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1194 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1195 #else
1196 return cpu_get_host_ticks();
1197 #endif
1200 #ifndef CONFIG_USER_ONLY
1201 static int64_t cycles_ns_per(uint64_t cycles)
1203 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
1206 static bool instructions_supported(CPUARMState *env)
1208 return use_icount == 1 /* Precise instruction counting */;
1211 static uint64_t instructions_get_count(CPUARMState *env)
1213 return (uint64_t)cpu_get_icount_raw();
1216 static int64_t instructions_ns_per(uint64_t icount)
1218 return cpu_icount_to_ns((int64_t)icount);
1220 #endif
1222 static bool pmu_8_1_events_supported(CPUARMState *env)
1224 /* For events which are supported in any v8.1 PMU */
1225 return cpu_isar_feature(any_pmu_8_1, env_archcpu(env));
1228 static bool pmu_8_4_events_supported(CPUARMState *env)
1230 /* For events which are supported in any v8.1 PMU */
1231 return cpu_isar_feature(any_pmu_8_4, env_archcpu(env));
1234 static uint64_t zero_event_get_count(CPUARMState *env)
1236 /* For events which on QEMU never fire, so their count is always zero */
1237 return 0;
1240 static int64_t zero_event_ns_per(uint64_t cycles)
1242 /* An event which never fires can never overflow */
1243 return -1;
1246 static const pm_event pm_events[] = {
1247 { .number = 0x000, /* SW_INCR */
1248 .supported = event_always_supported,
1249 .get_count = swinc_get_count,
1250 .ns_per_count = swinc_ns_per,
1252 #ifndef CONFIG_USER_ONLY
1253 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
1254 .supported = instructions_supported,
1255 .get_count = instructions_get_count,
1256 .ns_per_count = instructions_ns_per,
1258 { .number = 0x011, /* CPU_CYCLES, Cycle */
1259 .supported = event_always_supported,
1260 .get_count = cycles_get_count,
1261 .ns_per_count = cycles_ns_per,
1263 #endif
1264 { .number = 0x023, /* STALL_FRONTEND */
1265 .supported = pmu_8_1_events_supported,
1266 .get_count = zero_event_get_count,
1267 .ns_per_count = zero_event_ns_per,
1269 { .number = 0x024, /* STALL_BACKEND */
1270 .supported = pmu_8_1_events_supported,
1271 .get_count = zero_event_get_count,
1272 .ns_per_count = zero_event_ns_per,
1274 { .number = 0x03c, /* STALL */
1275 .supported = pmu_8_4_events_supported,
1276 .get_count = zero_event_get_count,
1277 .ns_per_count = zero_event_ns_per,
1282 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1283 * events (i.e. the statistical profiling extension), this implementation
1284 * should first be updated to something sparse instead of the current
1285 * supported_event_map[] array.
1287 #define MAX_EVENT_ID 0x3c
1288 #define UNSUPPORTED_EVENT UINT16_MAX
1289 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1292 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1293 * of ARM event numbers to indices in our pm_events array.
1295 * Note: Events in the 0x40XX range are not currently supported.
1297 void pmu_init(ARMCPU *cpu)
1299 unsigned int i;
1302 * Empty supported_event_map and cpu->pmceid[01] before adding supported
1303 * events to them
1305 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1306 supported_event_map[i] = UNSUPPORTED_EVENT;
1308 cpu->pmceid0 = 0;
1309 cpu->pmceid1 = 0;
1311 for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1312 const pm_event *cnt = &pm_events[i];
1313 assert(cnt->number <= MAX_EVENT_ID);
1314 /* We do not currently support events in the 0x40xx range */
1315 assert(cnt->number <= 0x3f);
1317 if (cnt->supported(&cpu->env)) {
1318 supported_event_map[cnt->number] = i;
1319 uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1320 if (cnt->number & 0x20) {
1321 cpu->pmceid1 |= event_mask;
1322 } else {
1323 cpu->pmceid0 |= event_mask;
1330 * Check at runtime whether a PMU event is supported for the current machine
1332 static bool event_supported(uint16_t number)
1334 if (number > MAX_EVENT_ID) {
1335 return false;
1337 return supported_event_map[number] != UNSUPPORTED_EVENT;
1340 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1341 bool isread)
1343 /* Performance monitor registers user accessibility is controlled
1344 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1345 * trapping to EL2 or EL3 for other accesses.
1347 int el = arm_current_el(env);
1349 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1350 return CP_ACCESS_TRAP;
1352 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
1353 && !arm_is_secure_below_el3(env)) {
1354 return CP_ACCESS_TRAP_EL2;
1356 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1357 return CP_ACCESS_TRAP_EL3;
1360 return CP_ACCESS_OK;
1363 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1364 const ARMCPRegInfo *ri,
1365 bool isread)
1367 /* ER: event counter read trap control */
1368 if (arm_feature(env, ARM_FEATURE_V8)
1369 && arm_current_el(env) == 0
1370 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1371 && isread) {
1372 return CP_ACCESS_OK;
1375 return pmreg_access(env, ri, isread);
1378 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1379 const ARMCPRegInfo *ri,
1380 bool isread)
1382 /* SW: software increment write trap control */
1383 if (arm_feature(env, ARM_FEATURE_V8)
1384 && arm_current_el(env) == 0
1385 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1386 && !isread) {
1387 return CP_ACCESS_OK;
1390 return pmreg_access(env, ri, isread);
1393 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1394 const ARMCPRegInfo *ri,
1395 bool isread)
1397 /* ER: event counter read trap control */
1398 if (arm_feature(env, ARM_FEATURE_V8)
1399 && arm_current_el(env) == 0
1400 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1401 return CP_ACCESS_OK;
1404 return pmreg_access(env, ri, isread);
1407 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1408 const ARMCPRegInfo *ri,
1409 bool isread)
1411 /* CR: cycle counter read trap control */
1412 if (arm_feature(env, ARM_FEATURE_V8)
1413 && arm_current_el(env) == 0
1414 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1415 && isread) {
1416 return CP_ACCESS_OK;
1419 return pmreg_access(env, ri, isread);
1422 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1423 * the current EL, security state, and register configuration.
1425 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1427 uint64_t filter;
1428 bool e, p, u, nsk, nsu, nsh, m;
1429 bool enabled, prohibited, filtered;
1430 bool secure = arm_is_secure(env);
1431 int el = arm_current_el(env);
1432 uint8_t hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
1434 if (!arm_feature(env, ARM_FEATURE_PMU)) {
1435 return false;
1438 if (!arm_feature(env, ARM_FEATURE_EL2) ||
1439 (counter < hpmn || counter == 31)) {
1440 e = env->cp15.c9_pmcr & PMCRE;
1441 } else {
1442 e = env->cp15.mdcr_el2 & MDCR_HPME;
1444 enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1446 if (!secure) {
1447 if (el == 2 && (counter < hpmn || counter == 31)) {
1448 prohibited = env->cp15.mdcr_el2 & MDCR_HPMD;
1449 } else {
1450 prohibited = false;
1452 } else {
1453 prohibited = arm_feature(env, ARM_FEATURE_EL3) &&
1454 (env->cp15.mdcr_el3 & MDCR_SPME);
1457 if (prohibited && counter == 31) {
1458 prohibited = env->cp15.c9_pmcr & PMCRDP;
1461 if (counter == 31) {
1462 filter = env->cp15.pmccfiltr_el0;
1463 } else {
1464 filter = env->cp15.c14_pmevtyper[counter];
1467 p = filter & PMXEVTYPER_P;
1468 u = filter & PMXEVTYPER_U;
1469 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1470 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1471 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1472 m = arm_el_is_aa64(env, 1) &&
1473 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1475 if (el == 0) {
1476 filtered = secure ? u : u != nsu;
1477 } else if (el == 1) {
1478 filtered = secure ? p : p != nsk;
1479 } else if (el == 2) {
1480 filtered = !nsh;
1481 } else { /* EL3 */
1482 filtered = m != p;
1485 if (counter != 31) {
1487 * If not checking PMCCNTR, ensure the counter is setup to an event we
1488 * support
1490 uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1491 if (!event_supported(event)) {
1492 return false;
1496 return enabled && !prohibited && !filtered;
1499 static void pmu_update_irq(CPUARMState *env)
1501 ARMCPU *cpu = env_archcpu(env);
1502 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1503 (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1507 * Ensure c15_ccnt is the guest-visible count so that operations such as
1508 * enabling/disabling the counter or filtering, modifying the count itself,
1509 * etc. can be done logically. This is essentially a no-op if the counter is
1510 * not enabled at the time of the call.
1512 static void pmccntr_op_start(CPUARMState *env)
1514 uint64_t cycles = cycles_get_count(env);
1516 if (pmu_counter_enabled(env, 31)) {
1517 uint64_t eff_cycles = cycles;
1518 if (env->cp15.c9_pmcr & PMCRD) {
1519 /* Increment once every 64 processor clock cycles */
1520 eff_cycles /= 64;
1523 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1525 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1526 1ull << 63 : 1ull << 31;
1527 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1528 env->cp15.c9_pmovsr |= (1 << 31);
1529 pmu_update_irq(env);
1532 env->cp15.c15_ccnt = new_pmccntr;
1534 env->cp15.c15_ccnt_delta = cycles;
1538 * If PMCCNTR is enabled, recalculate the delta between the clock and the
1539 * guest-visible count. A call to pmccntr_op_finish should follow every call to
1540 * pmccntr_op_start.
1542 static void pmccntr_op_finish(CPUARMState *env)
1544 if (pmu_counter_enabled(env, 31)) {
1545 #ifndef CONFIG_USER_ONLY
1546 /* Calculate when the counter will next overflow */
1547 uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1548 if (!(env->cp15.c9_pmcr & PMCRLC)) {
1549 remaining_cycles = (uint32_t)remaining_cycles;
1551 int64_t overflow_in = cycles_ns_per(remaining_cycles);
1553 if (overflow_in > 0) {
1554 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1555 overflow_in;
1556 ARMCPU *cpu = env_archcpu(env);
1557 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1559 #endif
1561 uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1562 if (env->cp15.c9_pmcr & PMCRD) {
1563 /* Increment once every 64 processor clock cycles */
1564 prev_cycles /= 64;
1566 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1570 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1573 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1574 uint64_t count = 0;
1575 if (event_supported(event)) {
1576 uint16_t event_idx = supported_event_map[event];
1577 count = pm_events[event_idx].get_count(env);
1580 if (pmu_counter_enabled(env, counter)) {
1581 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1583 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) {
1584 env->cp15.c9_pmovsr |= (1 << counter);
1585 pmu_update_irq(env);
1587 env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1589 env->cp15.c14_pmevcntr_delta[counter] = count;
1592 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1594 if (pmu_counter_enabled(env, counter)) {
1595 #ifndef CONFIG_USER_ONLY
1596 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1597 uint16_t event_idx = supported_event_map[event];
1598 uint64_t delta = UINT32_MAX -
1599 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1;
1600 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta);
1602 if (overflow_in > 0) {
1603 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1604 overflow_in;
1605 ARMCPU *cpu = env_archcpu(env);
1606 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1608 #endif
1610 env->cp15.c14_pmevcntr_delta[counter] -=
1611 env->cp15.c14_pmevcntr[counter];
1615 void pmu_op_start(CPUARMState *env)
1617 unsigned int i;
1618 pmccntr_op_start(env);
1619 for (i = 0; i < pmu_num_counters(env); i++) {
1620 pmevcntr_op_start(env, i);
1624 void pmu_op_finish(CPUARMState *env)
1626 unsigned int i;
1627 pmccntr_op_finish(env);
1628 for (i = 0; i < pmu_num_counters(env); i++) {
1629 pmevcntr_op_finish(env, i);
1633 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1635 pmu_op_start(&cpu->env);
1638 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1640 pmu_op_finish(&cpu->env);
1643 void arm_pmu_timer_cb(void *opaque)
1645 ARMCPU *cpu = opaque;
1648 * Update all the counter values based on the current underlying counts,
1649 * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1650 * has the effect of setting the cpu->pmu_timer to the next earliest time a
1651 * counter may expire.
1653 pmu_op_start(&cpu->env);
1654 pmu_op_finish(&cpu->env);
1657 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1658 uint64_t value)
1660 pmu_op_start(env);
1662 if (value & PMCRC) {
1663 /* The counter has been reset */
1664 env->cp15.c15_ccnt = 0;
1667 if (value & PMCRP) {
1668 unsigned int i;
1669 for (i = 0; i < pmu_num_counters(env); i++) {
1670 env->cp15.c14_pmevcntr[i] = 0;
1674 env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK;
1675 env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK);
1677 pmu_op_finish(env);
1680 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1681 uint64_t value)
1683 unsigned int i;
1684 for (i = 0; i < pmu_num_counters(env); i++) {
1685 /* Increment a counter's count iff: */
1686 if ((value & (1 << i)) && /* counter's bit is set */
1687 /* counter is enabled and not filtered */
1688 pmu_counter_enabled(env, i) &&
1689 /* counter is SW_INCR */
1690 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1691 pmevcntr_op_start(env, i);
1694 * Detect if this write causes an overflow since we can't predict
1695 * PMSWINC overflows like we can for other events
1697 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1699 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
1700 env->cp15.c9_pmovsr |= (1 << i);
1701 pmu_update_irq(env);
1704 env->cp15.c14_pmevcntr[i] = new_pmswinc;
1706 pmevcntr_op_finish(env, i);
1711 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1713 uint64_t ret;
1714 pmccntr_op_start(env);
1715 ret = env->cp15.c15_ccnt;
1716 pmccntr_op_finish(env);
1717 return ret;
1720 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1721 uint64_t value)
1723 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1724 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1725 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1726 * accessed.
1728 env->cp15.c9_pmselr = value & 0x1f;
1731 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1732 uint64_t value)
1734 pmccntr_op_start(env);
1735 env->cp15.c15_ccnt = value;
1736 pmccntr_op_finish(env);
1739 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1740 uint64_t value)
1742 uint64_t cur_val = pmccntr_read(env, NULL);
1744 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1747 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1748 uint64_t value)
1750 pmccntr_op_start(env);
1751 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1752 pmccntr_op_finish(env);
1755 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1756 uint64_t value)
1758 pmccntr_op_start(env);
1759 /* M is not accessible from AArch32 */
1760 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1761 (value & PMCCFILTR);
1762 pmccntr_op_finish(env);
1765 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1767 /* M is not visible in AArch32 */
1768 return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1771 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1772 uint64_t value)
1774 value &= pmu_counter_mask(env);
1775 env->cp15.c9_pmcnten |= value;
1778 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1779 uint64_t value)
1781 value &= pmu_counter_mask(env);
1782 env->cp15.c9_pmcnten &= ~value;
1785 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1786 uint64_t value)
1788 value &= pmu_counter_mask(env);
1789 env->cp15.c9_pmovsr &= ~value;
1790 pmu_update_irq(env);
1793 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1794 uint64_t value)
1796 value &= pmu_counter_mask(env);
1797 env->cp15.c9_pmovsr |= value;
1798 pmu_update_irq(env);
1801 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1802 uint64_t value, const uint8_t counter)
1804 if (counter == 31) {
1805 pmccfiltr_write(env, ri, value);
1806 } else if (counter < pmu_num_counters(env)) {
1807 pmevcntr_op_start(env, counter);
1810 * If this counter's event type is changing, store the current
1811 * underlying count for the new type in c14_pmevcntr_delta[counter] so
1812 * pmevcntr_op_finish has the correct baseline when it converts back to
1813 * a delta.
1815 uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1816 PMXEVTYPER_EVTCOUNT;
1817 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1818 if (old_event != new_event) {
1819 uint64_t count = 0;
1820 if (event_supported(new_event)) {
1821 uint16_t event_idx = supported_event_map[new_event];
1822 count = pm_events[event_idx].get_count(env);
1824 env->cp15.c14_pmevcntr_delta[counter] = count;
1827 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1828 pmevcntr_op_finish(env, counter);
1830 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1831 * PMSELR value is equal to or greater than the number of implemented
1832 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1836 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1837 const uint8_t counter)
1839 if (counter == 31) {
1840 return env->cp15.pmccfiltr_el0;
1841 } else if (counter < pmu_num_counters(env)) {
1842 return env->cp15.c14_pmevtyper[counter];
1843 } else {
1845 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1846 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1848 return 0;
1852 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1853 uint64_t value)
1855 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1856 pmevtyper_write(env, ri, value, counter);
1859 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1860 uint64_t value)
1862 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1863 env->cp15.c14_pmevtyper[counter] = value;
1866 * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1867 * pmu_op_finish calls when loading saved state for a migration. Because
1868 * we're potentially updating the type of event here, the value written to
1869 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1870 * different counter type. Therefore, we need to set this value to the
1871 * current count for the counter type we're writing so that pmu_op_finish
1872 * has the correct count for its calculation.
1874 uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1875 if (event_supported(event)) {
1876 uint16_t event_idx = supported_event_map[event];
1877 env->cp15.c14_pmevcntr_delta[counter] =
1878 pm_events[event_idx].get_count(env);
1882 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1884 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1885 return pmevtyper_read(env, ri, counter);
1888 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1889 uint64_t value)
1891 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1894 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1896 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1899 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1900 uint64_t value, uint8_t counter)
1902 if (counter < pmu_num_counters(env)) {
1903 pmevcntr_op_start(env, counter);
1904 env->cp15.c14_pmevcntr[counter] = value;
1905 pmevcntr_op_finish(env, counter);
1908 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1909 * are CONSTRAINED UNPREDICTABLE.
1913 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1914 uint8_t counter)
1916 if (counter < pmu_num_counters(env)) {
1917 uint64_t ret;
1918 pmevcntr_op_start(env, counter);
1919 ret = env->cp15.c14_pmevcntr[counter];
1920 pmevcntr_op_finish(env, counter);
1921 return ret;
1922 } else {
1923 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1924 * are CONSTRAINED UNPREDICTABLE. */
1925 return 0;
1929 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1930 uint64_t value)
1932 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1933 pmevcntr_write(env, ri, value, counter);
1936 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1938 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1939 return pmevcntr_read(env, ri, counter);
1942 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1943 uint64_t value)
1945 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1946 assert(counter < pmu_num_counters(env));
1947 env->cp15.c14_pmevcntr[counter] = value;
1948 pmevcntr_write(env, ri, value, counter);
1951 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1953 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1954 assert(counter < pmu_num_counters(env));
1955 return env->cp15.c14_pmevcntr[counter];
1958 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1959 uint64_t value)
1961 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1964 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1966 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1969 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1970 uint64_t value)
1972 if (arm_feature(env, ARM_FEATURE_V8)) {
1973 env->cp15.c9_pmuserenr = value & 0xf;
1974 } else {
1975 env->cp15.c9_pmuserenr = value & 1;
1979 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1980 uint64_t value)
1982 /* We have no event counters so only the C bit can be changed */
1983 value &= pmu_counter_mask(env);
1984 env->cp15.c9_pminten |= value;
1985 pmu_update_irq(env);
1988 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1989 uint64_t value)
1991 value &= pmu_counter_mask(env);
1992 env->cp15.c9_pminten &= ~value;
1993 pmu_update_irq(env);
1996 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1997 uint64_t value)
1999 /* Note that even though the AArch64 view of this register has bits
2000 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
2001 * architectural requirements for bits which are RES0 only in some
2002 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
2003 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
2005 raw_write(env, ri, value & ~0x1FULL);
2008 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2010 /* Begin with base v8.0 state. */
2011 uint32_t valid_mask = 0x3fff;
2012 ARMCPU *cpu = env_archcpu(env);
2014 if (arm_el_is_aa64(env, 3)) {
2015 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */
2016 valid_mask &= ~SCR_NET;
2017 } else {
2018 valid_mask &= ~(SCR_RW | SCR_ST);
2021 if (!arm_feature(env, ARM_FEATURE_EL2)) {
2022 valid_mask &= ~SCR_HCE;
2024 /* On ARMv7, SMD (or SCD as it is called in v7) is only
2025 * supported if EL2 exists. The bit is UNK/SBZP when
2026 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
2027 * when EL2 is unavailable.
2028 * On ARMv8, this bit is always available.
2030 if (arm_feature(env, ARM_FEATURE_V7) &&
2031 !arm_feature(env, ARM_FEATURE_V8)) {
2032 valid_mask &= ~SCR_SMD;
2035 if (cpu_isar_feature(aa64_lor, cpu)) {
2036 valid_mask |= SCR_TLOR;
2038 if (cpu_isar_feature(aa64_pauth, cpu)) {
2039 valid_mask |= SCR_API | SCR_APK;
2042 /* Clear all-context RES0 bits. */
2043 value &= valid_mask;
2044 raw_write(env, ri, value);
2047 static CPAccessResult access_aa64_tid2(CPUARMState *env,
2048 const ARMCPRegInfo *ri,
2049 bool isread)
2051 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) {
2052 return CP_ACCESS_TRAP_EL2;
2055 return CP_ACCESS_OK;
2058 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2060 ARMCPU *cpu = env_archcpu(env);
2062 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
2063 * bank
2065 uint32_t index = A32_BANKED_REG_GET(env, csselr,
2066 ri->secure & ARM_CP_SECSTATE_S);
2068 return cpu->ccsidr[index];
2071 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2072 uint64_t value)
2074 raw_write(env, ri, value & 0xf);
2077 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2079 CPUState *cs = env_cpu(env);
2080 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
2081 uint64_t ret = 0;
2082 bool allow_virt = (arm_current_el(env) == 1 &&
2083 (!arm_is_secure_below_el3(env) ||
2084 (env->cp15.scr_el3 & SCR_EEL2)));
2086 if (allow_virt && (hcr_el2 & HCR_IMO)) {
2087 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
2088 ret |= CPSR_I;
2090 } else {
2091 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
2092 ret |= CPSR_I;
2096 if (allow_virt && (hcr_el2 & HCR_FMO)) {
2097 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
2098 ret |= CPSR_F;
2100 } else {
2101 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
2102 ret |= CPSR_F;
2106 /* External aborts are not possible in QEMU so A bit is always clear */
2107 return ret;
2110 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2111 bool isread)
2113 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
2114 return CP_ACCESS_TRAP_EL2;
2117 return CP_ACCESS_OK;
2120 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2121 bool isread)
2123 if (arm_feature(env, ARM_FEATURE_V8)) {
2124 return access_aa64_tid1(env, ri, isread);
2127 return CP_ACCESS_OK;
2130 static const ARMCPRegInfo v7_cp_reginfo[] = {
2131 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
2132 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
2133 .access = PL1_W, .type = ARM_CP_NOP },
2134 /* Performance monitors are implementation defined in v7,
2135 * but with an ARM recommended set of registers, which we
2136 * follow.
2138 * Performance registers fall into three categories:
2139 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
2140 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
2141 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
2142 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
2143 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
2145 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
2146 .access = PL0_RW, .type = ARM_CP_ALIAS,
2147 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2148 .writefn = pmcntenset_write,
2149 .accessfn = pmreg_access,
2150 .raw_writefn = raw_write },
2151 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
2152 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
2153 .access = PL0_RW, .accessfn = pmreg_access,
2154 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
2155 .writefn = pmcntenset_write, .raw_writefn = raw_write },
2156 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
2157 .access = PL0_RW,
2158 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2159 .accessfn = pmreg_access,
2160 .writefn = pmcntenclr_write,
2161 .type = ARM_CP_ALIAS },
2162 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
2163 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
2164 .access = PL0_RW, .accessfn = pmreg_access,
2165 .type = ARM_CP_ALIAS,
2166 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
2167 .writefn = pmcntenclr_write },
2168 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
2169 .access = PL0_RW, .type = ARM_CP_IO,
2170 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2171 .accessfn = pmreg_access,
2172 .writefn = pmovsr_write,
2173 .raw_writefn = raw_write },
2174 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
2175 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
2176 .access = PL0_RW, .accessfn = pmreg_access,
2177 .type = ARM_CP_ALIAS | ARM_CP_IO,
2178 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2179 .writefn = pmovsr_write,
2180 .raw_writefn = raw_write },
2181 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
2182 .access = PL0_W, .accessfn = pmreg_access_swinc,
2183 .type = ARM_CP_NO_RAW | ARM_CP_IO,
2184 .writefn = pmswinc_write },
2185 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2186 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
2187 .access = PL0_W, .accessfn = pmreg_access_swinc,
2188 .type = ARM_CP_NO_RAW | ARM_CP_IO,
2189 .writefn = pmswinc_write },
2190 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2191 .access = PL0_RW, .type = ARM_CP_ALIAS,
2192 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
2193 .accessfn = pmreg_access_selr, .writefn = pmselr_write,
2194 .raw_writefn = raw_write},
2195 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2196 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
2197 .access = PL0_RW, .accessfn = pmreg_access_selr,
2198 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2199 .writefn = pmselr_write, .raw_writefn = raw_write, },
2200 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
2201 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
2202 .readfn = pmccntr_read, .writefn = pmccntr_write32,
2203 .accessfn = pmreg_access_ccntr },
2204 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2205 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2206 .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2207 .type = ARM_CP_IO,
2208 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2209 .readfn = pmccntr_read, .writefn = pmccntr_write,
2210 .raw_readfn = raw_read, .raw_writefn = raw_write, },
2211 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2212 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2213 .access = PL0_RW, .accessfn = pmreg_access,
2214 .type = ARM_CP_ALIAS | ARM_CP_IO,
2215 .resetvalue = 0, },
2216 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2217 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2218 .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2219 .access = PL0_RW, .accessfn = pmreg_access,
2220 .type = ARM_CP_IO,
2221 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2222 .resetvalue = 0, },
2223 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2224 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2225 .accessfn = pmreg_access,
2226 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2227 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2228 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2229 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2230 .accessfn = pmreg_access,
2231 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2232 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2233 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2234 .accessfn = pmreg_access_xevcntr,
2235 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2236 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2237 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2238 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2239 .accessfn = pmreg_access_xevcntr,
2240 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2241 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2242 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2243 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2244 .resetvalue = 0,
2245 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2246 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2247 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2248 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2249 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2250 .resetvalue = 0,
2251 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2252 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2253 .access = PL1_RW, .accessfn = access_tpm,
2254 .type = ARM_CP_ALIAS | ARM_CP_IO,
2255 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2256 .resetvalue = 0,
2257 .writefn = pmintenset_write, .raw_writefn = raw_write },
2258 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2259 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2260 .access = PL1_RW, .accessfn = access_tpm,
2261 .type = ARM_CP_IO,
2262 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2263 .writefn = pmintenset_write, .raw_writefn = raw_write,
2264 .resetvalue = 0x0 },
2265 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2266 .access = PL1_RW, .accessfn = access_tpm,
2267 .type = ARM_CP_ALIAS | ARM_CP_IO,
2268 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2269 .writefn = pmintenclr_write, },
2270 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2271 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2272 .access = PL1_RW, .accessfn = access_tpm,
2273 .type = ARM_CP_ALIAS | ARM_CP_IO,
2274 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2275 .writefn = pmintenclr_write },
2276 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2277 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2278 .access = PL1_R,
2279 .accessfn = access_aa64_tid2,
2280 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2281 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2282 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2283 .access = PL1_RW,
2284 .accessfn = access_aa64_tid2,
2285 .writefn = csselr_write, .resetvalue = 0,
2286 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2287 offsetof(CPUARMState, cp15.csselr_ns) } },
2288 /* Auxiliary ID register: this actually has an IMPDEF value but for now
2289 * just RAZ for all cores:
2291 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2292 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2293 .access = PL1_R, .type = ARM_CP_CONST,
2294 .accessfn = access_aa64_tid1,
2295 .resetvalue = 0 },
2296 /* Auxiliary fault status registers: these also are IMPDEF, and we
2297 * choose to RAZ/WI for all cores.
2299 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2300 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2301 .access = PL1_RW, .accessfn = access_tvm_trvm,
2302 .type = ARM_CP_CONST, .resetvalue = 0 },
2303 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2304 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2305 .access = PL1_RW, .accessfn = access_tvm_trvm,
2306 .type = ARM_CP_CONST, .resetvalue = 0 },
2307 /* MAIR can just read-as-written because we don't implement caches
2308 * and so don't need to care about memory attributes.
2310 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2311 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2312 .access = PL1_RW, .accessfn = access_tvm_trvm,
2313 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2314 .resetvalue = 0 },
2315 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2316 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2317 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2318 .resetvalue = 0 },
2319 /* For non-long-descriptor page tables these are PRRR and NMRR;
2320 * regardless they still act as reads-as-written for QEMU.
2322 /* MAIR0/1 are defined separately from their 64-bit counterpart which
2323 * allows them to assign the correct fieldoffset based on the endianness
2324 * handled in the field definitions.
2326 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2327 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2328 .access = PL1_RW, .accessfn = access_tvm_trvm,
2329 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2330 offsetof(CPUARMState, cp15.mair0_ns) },
2331 .resetfn = arm_cp_reset_ignore },
2332 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2333 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2334 .access = PL1_RW, .accessfn = access_tvm_trvm,
2335 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2336 offsetof(CPUARMState, cp15.mair1_ns) },
2337 .resetfn = arm_cp_reset_ignore },
2338 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2339 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2340 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2341 /* 32 bit ITLB invalidates */
2342 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2343 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2344 .writefn = tlbiall_write },
2345 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2346 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2347 .writefn = tlbimva_write },
2348 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2349 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2350 .writefn = tlbiasid_write },
2351 /* 32 bit DTLB invalidates */
2352 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2353 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2354 .writefn = tlbiall_write },
2355 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2356 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2357 .writefn = tlbimva_write },
2358 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2359 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2360 .writefn = tlbiasid_write },
2361 /* 32 bit TLB invalidates */
2362 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2363 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2364 .writefn = tlbiall_write },
2365 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2366 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2367 .writefn = tlbimva_write },
2368 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2369 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2370 .writefn = tlbiasid_write },
2371 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2372 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2373 .writefn = tlbimvaa_write },
2374 REGINFO_SENTINEL
2377 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2378 /* 32 bit TLB invalidates, Inner Shareable */
2379 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2380 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2381 .writefn = tlbiall_is_write },
2382 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2383 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2384 .writefn = tlbimva_is_write },
2385 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2386 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2387 .writefn = tlbiasid_is_write },
2388 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2389 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2390 .writefn = tlbimvaa_is_write },
2391 REGINFO_SENTINEL
2394 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2395 /* PMOVSSET is not implemented in v7 before v7ve */
2396 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2397 .access = PL0_RW, .accessfn = pmreg_access,
2398 .type = ARM_CP_ALIAS | ARM_CP_IO,
2399 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2400 .writefn = pmovsset_write,
2401 .raw_writefn = raw_write },
2402 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2403 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2404 .access = PL0_RW, .accessfn = pmreg_access,
2405 .type = ARM_CP_ALIAS | ARM_CP_IO,
2406 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2407 .writefn = pmovsset_write,
2408 .raw_writefn = raw_write },
2409 REGINFO_SENTINEL
2412 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2413 uint64_t value)
2415 value &= 1;
2416 env->teecr = value;
2419 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2420 bool isread)
2422 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2423 return CP_ACCESS_TRAP;
2425 return CP_ACCESS_OK;
2428 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2429 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2430 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2431 .resetvalue = 0,
2432 .writefn = teecr_write },
2433 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2434 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2435 .accessfn = teehbr_access, .resetvalue = 0 },
2436 REGINFO_SENTINEL
2439 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2440 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2441 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2442 .access = PL0_RW,
2443 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2444 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2445 .access = PL0_RW,
2446 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2447 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2448 .resetfn = arm_cp_reset_ignore },
2449 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2450 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2451 .access = PL0_R|PL1_W,
2452 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2453 .resetvalue = 0},
2454 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2455 .access = PL0_R|PL1_W,
2456 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2457 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2458 .resetfn = arm_cp_reset_ignore },
2459 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2460 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2461 .access = PL1_RW,
2462 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2463 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2464 .access = PL1_RW,
2465 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2466 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2467 .resetvalue = 0 },
2468 REGINFO_SENTINEL
2471 #ifndef CONFIG_USER_ONLY
2473 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2474 bool isread)
2476 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2477 * Writable only at the highest implemented exception level.
2479 int el = arm_current_el(env);
2480 uint64_t hcr;
2481 uint32_t cntkctl;
2483 switch (el) {
2484 case 0:
2485 hcr = arm_hcr_el2_eff(env);
2486 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2487 cntkctl = env->cp15.cnthctl_el2;
2488 } else {
2489 cntkctl = env->cp15.c14_cntkctl;
2491 if (!extract32(cntkctl, 0, 2)) {
2492 return CP_ACCESS_TRAP;
2494 break;
2495 case 1:
2496 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2497 arm_is_secure_below_el3(env)) {
2498 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2499 return CP_ACCESS_TRAP_UNCATEGORIZED;
2501 break;
2502 case 2:
2503 case 3:
2504 break;
2507 if (!isread && el < arm_highest_el(env)) {
2508 return CP_ACCESS_TRAP_UNCATEGORIZED;
2511 return CP_ACCESS_OK;
2514 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2515 bool isread)
2517 unsigned int cur_el = arm_current_el(env);
2518 bool secure = arm_is_secure(env);
2519 uint64_t hcr = arm_hcr_el2_eff(env);
2521 switch (cur_el) {
2522 case 0:
2523 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2524 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2525 return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2526 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2529 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2530 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2531 return CP_ACCESS_TRAP;
2534 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */
2535 if (hcr & HCR_E2H) {
2536 if (timeridx == GTIMER_PHYS &&
2537 !extract32(env->cp15.cnthctl_el2, 10, 1)) {
2538 return CP_ACCESS_TRAP_EL2;
2540 } else {
2541 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2542 if (arm_feature(env, ARM_FEATURE_EL2) &&
2543 timeridx == GTIMER_PHYS && !secure &&
2544 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2545 return CP_ACCESS_TRAP_EL2;
2548 break;
2550 case 1:
2551 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2552 if (arm_feature(env, ARM_FEATURE_EL2) &&
2553 timeridx == GTIMER_PHYS && !secure &&
2554 (hcr & HCR_E2H
2555 ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2556 : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2557 return CP_ACCESS_TRAP_EL2;
2559 break;
2561 return CP_ACCESS_OK;
2564 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2565 bool isread)
2567 unsigned int cur_el = arm_current_el(env);
2568 bool secure = arm_is_secure(env);
2569 uint64_t hcr = arm_hcr_el2_eff(env);
2571 switch (cur_el) {
2572 case 0:
2573 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2574 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2575 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2576 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2580 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2581 * EL0 if EL0[PV]TEN is zero.
2583 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2584 return CP_ACCESS_TRAP;
2586 /* fall through */
2588 case 1:
2589 if (arm_feature(env, ARM_FEATURE_EL2) &&
2590 timeridx == GTIMER_PHYS && !secure) {
2591 if (hcr & HCR_E2H) {
2592 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2593 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2594 return CP_ACCESS_TRAP_EL2;
2596 } else {
2597 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2598 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2599 return CP_ACCESS_TRAP_EL2;
2603 break;
2605 return CP_ACCESS_OK;
2608 static CPAccessResult gt_pct_access(CPUARMState *env,
2609 const ARMCPRegInfo *ri,
2610 bool isread)
2612 return gt_counter_access(env, GTIMER_PHYS, isread);
2615 static CPAccessResult gt_vct_access(CPUARMState *env,
2616 const ARMCPRegInfo *ri,
2617 bool isread)
2619 return gt_counter_access(env, GTIMER_VIRT, isread);
2622 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2623 bool isread)
2625 return gt_timer_access(env, GTIMER_PHYS, isread);
2628 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2629 bool isread)
2631 return gt_timer_access(env, GTIMER_VIRT, isread);
2634 static CPAccessResult gt_stimer_access(CPUARMState *env,
2635 const ARMCPRegInfo *ri,
2636 bool isread)
2638 /* The AArch64 register view of the secure physical timer is
2639 * always accessible from EL3, and configurably accessible from
2640 * Secure EL1.
2642 switch (arm_current_el(env)) {
2643 case 1:
2644 if (!arm_is_secure(env)) {
2645 return CP_ACCESS_TRAP;
2647 if (!(env->cp15.scr_el3 & SCR_ST)) {
2648 return CP_ACCESS_TRAP_EL3;
2650 return CP_ACCESS_OK;
2651 case 0:
2652 case 2:
2653 return CP_ACCESS_TRAP;
2654 case 3:
2655 return CP_ACCESS_OK;
2656 default:
2657 g_assert_not_reached();
2661 static uint64_t gt_get_countervalue(CPUARMState *env)
2663 ARMCPU *cpu = env_archcpu(env);
2665 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2668 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2670 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2672 if (gt->ctl & 1) {
2673 /* Timer enabled: calculate and set current ISTATUS, irq, and
2674 * reset timer to when ISTATUS next has to change
2676 uint64_t offset = timeridx == GTIMER_VIRT ?
2677 cpu->env.cp15.cntvoff_el2 : 0;
2678 uint64_t count = gt_get_countervalue(&cpu->env);
2679 /* Note that this must be unsigned 64 bit arithmetic: */
2680 int istatus = count - offset >= gt->cval;
2681 uint64_t nexttick;
2682 int irqstate;
2684 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2686 irqstate = (istatus && !(gt->ctl & 2));
2687 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2689 if (istatus) {
2690 /* Next transition is when count rolls back over to zero */
2691 nexttick = UINT64_MAX;
2692 } else {
2693 /* Next transition is when we hit cval */
2694 nexttick = gt->cval + offset;
2696 /* Note that the desired next expiry time might be beyond the
2697 * signed-64-bit range of a QEMUTimer -- in this case we just
2698 * set the timer for as far in the future as possible. When the
2699 * timer expires we will reset the timer for any remaining period.
2701 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2702 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2703 } else {
2704 timer_mod(cpu->gt_timer[timeridx], nexttick);
2706 trace_arm_gt_recalc(timeridx, irqstate, nexttick);
2707 } else {
2708 /* Timer disabled: ISTATUS and timer output always clear */
2709 gt->ctl &= ~4;
2710 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
2711 timer_del(cpu->gt_timer[timeridx]);
2712 trace_arm_gt_recalc_disabled(timeridx);
2716 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2717 int timeridx)
2719 ARMCPU *cpu = env_archcpu(env);
2721 timer_del(cpu->gt_timer[timeridx]);
2724 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2726 return gt_get_countervalue(env);
2729 static uint64_t gt_virt_cnt_offset(CPUARMState *env)
2731 uint64_t hcr;
2733 switch (arm_current_el(env)) {
2734 case 2:
2735 hcr = arm_hcr_el2_eff(env);
2736 if (hcr & HCR_E2H) {
2737 return 0;
2739 break;
2740 case 0:
2741 hcr = arm_hcr_el2_eff(env);
2742 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2743 return 0;
2745 break;
2748 return env->cp15.cntvoff_el2;
2751 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2753 return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
2756 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2757 int timeridx,
2758 uint64_t value)
2760 trace_arm_gt_cval_write(timeridx, value);
2761 env->cp15.c14_timer[timeridx].cval = value;
2762 gt_recalc_timer(env_archcpu(env), timeridx);
2765 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2766 int timeridx)
2768 uint64_t offset = 0;
2770 switch (timeridx) {
2771 case GTIMER_VIRT:
2772 case GTIMER_HYPVIRT:
2773 offset = gt_virt_cnt_offset(env);
2774 break;
2777 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2778 (gt_get_countervalue(env) - offset));
2781 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2782 int timeridx,
2783 uint64_t value)
2785 uint64_t offset = 0;
2787 switch (timeridx) {
2788 case GTIMER_VIRT:
2789 case GTIMER_HYPVIRT:
2790 offset = gt_virt_cnt_offset(env);
2791 break;
2794 trace_arm_gt_tval_write(timeridx, value);
2795 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2796 sextract64(value, 0, 32);
2797 gt_recalc_timer(env_archcpu(env), timeridx);
2800 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2801 int timeridx,
2802 uint64_t value)
2804 ARMCPU *cpu = env_archcpu(env);
2805 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2807 trace_arm_gt_ctl_write(timeridx, value);
2808 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2809 if ((oldval ^ value) & 1) {
2810 /* Enable toggled */
2811 gt_recalc_timer(cpu, timeridx);
2812 } else if ((oldval ^ value) & 2) {
2813 /* IMASK toggled: don't need to recalculate,
2814 * just set the interrupt line based on ISTATUS
2816 int irqstate = (oldval & 4) && !(value & 2);
2818 trace_arm_gt_imask_toggle(timeridx, irqstate);
2819 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2823 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2825 gt_timer_reset(env, ri, GTIMER_PHYS);
2828 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2829 uint64_t value)
2831 gt_cval_write(env, ri, GTIMER_PHYS, value);
2834 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2836 return gt_tval_read(env, ri, GTIMER_PHYS);
2839 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2840 uint64_t value)
2842 gt_tval_write(env, ri, GTIMER_PHYS, value);
2845 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2846 uint64_t value)
2848 gt_ctl_write(env, ri, GTIMER_PHYS, value);
2851 static int gt_phys_redir_timeridx(CPUARMState *env)
2853 switch (arm_mmu_idx(env)) {
2854 case ARMMMUIdx_E20_0:
2855 case ARMMMUIdx_E20_2:
2856 case ARMMMUIdx_E20_2_PAN:
2857 return GTIMER_HYP;
2858 default:
2859 return GTIMER_PHYS;
2863 static int gt_virt_redir_timeridx(CPUARMState *env)
2865 switch (arm_mmu_idx(env)) {
2866 case ARMMMUIdx_E20_0:
2867 case ARMMMUIdx_E20_2:
2868 case ARMMMUIdx_E20_2_PAN:
2869 return GTIMER_HYPVIRT;
2870 default:
2871 return GTIMER_VIRT;
2875 static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2876 const ARMCPRegInfo *ri)
2878 int timeridx = gt_phys_redir_timeridx(env);
2879 return env->cp15.c14_timer[timeridx].cval;
2882 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2883 uint64_t value)
2885 int timeridx = gt_phys_redir_timeridx(env);
2886 gt_cval_write(env, ri, timeridx, value);
2889 static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2890 const ARMCPRegInfo *ri)
2892 int timeridx = gt_phys_redir_timeridx(env);
2893 return gt_tval_read(env, ri, timeridx);
2896 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2897 uint64_t value)
2899 int timeridx = gt_phys_redir_timeridx(env);
2900 gt_tval_write(env, ri, timeridx, value);
2903 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2904 const ARMCPRegInfo *ri)
2906 int timeridx = gt_phys_redir_timeridx(env);
2907 return env->cp15.c14_timer[timeridx].ctl;
2910 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2911 uint64_t value)
2913 int timeridx = gt_phys_redir_timeridx(env);
2914 gt_ctl_write(env, ri, timeridx, value);
2917 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2919 gt_timer_reset(env, ri, GTIMER_VIRT);
2922 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2923 uint64_t value)
2925 gt_cval_write(env, ri, GTIMER_VIRT, value);
2928 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2930 return gt_tval_read(env, ri, GTIMER_VIRT);
2933 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2934 uint64_t value)
2936 gt_tval_write(env, ri, GTIMER_VIRT, value);
2939 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2940 uint64_t value)
2942 gt_ctl_write(env, ri, GTIMER_VIRT, value);
2945 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2946 uint64_t value)
2948 ARMCPU *cpu = env_archcpu(env);
2950 trace_arm_gt_cntvoff_write(value);
2951 raw_write(env, ri, value);
2952 gt_recalc_timer(cpu, GTIMER_VIRT);
2955 static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
2956 const ARMCPRegInfo *ri)
2958 int timeridx = gt_virt_redir_timeridx(env);
2959 return env->cp15.c14_timer[timeridx].cval;
2962 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2963 uint64_t value)
2965 int timeridx = gt_virt_redir_timeridx(env);
2966 gt_cval_write(env, ri, timeridx, value);
2969 static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
2970 const ARMCPRegInfo *ri)
2972 int timeridx = gt_virt_redir_timeridx(env);
2973 return gt_tval_read(env, ri, timeridx);
2976 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2977 uint64_t value)
2979 int timeridx = gt_virt_redir_timeridx(env);
2980 gt_tval_write(env, ri, timeridx, value);
2983 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
2984 const ARMCPRegInfo *ri)
2986 int timeridx = gt_virt_redir_timeridx(env);
2987 return env->cp15.c14_timer[timeridx].ctl;
2990 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2991 uint64_t value)
2993 int timeridx = gt_virt_redir_timeridx(env);
2994 gt_ctl_write(env, ri, timeridx, value);
2997 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2999 gt_timer_reset(env, ri, GTIMER_HYP);
3002 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3003 uint64_t value)
3005 gt_cval_write(env, ri, GTIMER_HYP, value);
3008 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3010 return gt_tval_read(env, ri, GTIMER_HYP);
3013 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3014 uint64_t value)
3016 gt_tval_write(env, ri, GTIMER_HYP, value);
3019 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3020 uint64_t value)
3022 gt_ctl_write(env, ri, GTIMER_HYP, value);
3025 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3027 gt_timer_reset(env, ri, GTIMER_SEC);
3030 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3031 uint64_t value)
3033 gt_cval_write(env, ri, GTIMER_SEC, value);
3036 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3038 return gt_tval_read(env, ri, GTIMER_SEC);
3041 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3042 uint64_t value)
3044 gt_tval_write(env, ri, GTIMER_SEC, value);
3047 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3048 uint64_t value)
3050 gt_ctl_write(env, ri, GTIMER_SEC, value);
3053 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3055 gt_timer_reset(env, ri, GTIMER_HYPVIRT);
3058 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3059 uint64_t value)
3061 gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
3064 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3066 return gt_tval_read(env, ri, GTIMER_HYPVIRT);
3069 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3070 uint64_t value)
3072 gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
3075 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3076 uint64_t value)
3078 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
3081 void arm_gt_ptimer_cb(void *opaque)
3083 ARMCPU *cpu = opaque;
3085 gt_recalc_timer(cpu, GTIMER_PHYS);
3088 void arm_gt_vtimer_cb(void *opaque)
3090 ARMCPU *cpu = opaque;
3092 gt_recalc_timer(cpu, GTIMER_VIRT);
3095 void arm_gt_htimer_cb(void *opaque)
3097 ARMCPU *cpu = opaque;
3099 gt_recalc_timer(cpu, GTIMER_HYP);
3102 void arm_gt_stimer_cb(void *opaque)
3104 ARMCPU *cpu = opaque;
3106 gt_recalc_timer(cpu, GTIMER_SEC);
3109 void arm_gt_hvtimer_cb(void *opaque)
3111 ARMCPU *cpu = opaque;
3113 gt_recalc_timer(cpu, GTIMER_HYPVIRT);
3116 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
3118 ARMCPU *cpu = env_archcpu(env);
3120 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
3123 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3124 /* Note that CNTFRQ is purely reads-as-written for the benefit
3125 * of software; writing it doesn't actually change the timer frequency.
3126 * Our reset value matches the fixed frequency we implement the timer at.
3128 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
3129 .type = ARM_CP_ALIAS,
3130 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3131 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
3133 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3134 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3135 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3136 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3137 .resetfn = arm_gt_cntfrq_reset,
3139 /* overall control: mostly access permissions */
3140 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
3141 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
3142 .access = PL1_RW,
3143 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
3144 .resetvalue = 0,
3146 /* per-timer control */
3147 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3148 .secure = ARM_CP_SECSTATE_NS,
3149 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3150 .accessfn = gt_ptimer_access,
3151 .fieldoffset = offsetoflow32(CPUARMState,
3152 cp15.c14_timer[GTIMER_PHYS].ctl),
3153 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3154 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3156 { .name = "CNTP_CTL_S",
3157 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3158 .secure = ARM_CP_SECSTATE_S,
3159 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3160 .accessfn = gt_ptimer_access,
3161 .fieldoffset = offsetoflow32(CPUARMState,
3162 cp15.c14_timer[GTIMER_SEC].ctl),
3163 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3165 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
3166 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
3167 .type = ARM_CP_IO, .access = PL0_RW,
3168 .accessfn = gt_ptimer_access,
3169 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
3170 .resetvalue = 0,
3171 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3172 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3174 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
3175 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3176 .accessfn = gt_vtimer_access,
3177 .fieldoffset = offsetoflow32(CPUARMState,
3178 cp15.c14_timer[GTIMER_VIRT].ctl),
3179 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3180 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3182 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
3183 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
3184 .type = ARM_CP_IO, .access = PL0_RW,
3185 .accessfn = gt_vtimer_access,
3186 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
3187 .resetvalue = 0,
3188 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3189 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3191 /* TimerValue views: a 32 bit downcounting view of the underlying state */
3192 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3193 .secure = ARM_CP_SECSTATE_NS,
3194 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3195 .accessfn = gt_ptimer_access,
3196 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3198 { .name = "CNTP_TVAL_S",
3199 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3200 .secure = ARM_CP_SECSTATE_S,
3201 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3202 .accessfn = gt_ptimer_access,
3203 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
3205 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3206 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
3207 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3208 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
3209 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3211 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
3212 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3213 .accessfn = gt_vtimer_access,
3214 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3216 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3217 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
3218 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3219 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
3220 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3222 /* The counter itself */
3223 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
3224 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3225 .accessfn = gt_pct_access,
3226 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3228 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3229 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
3230 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3231 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3233 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
3234 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3235 .accessfn = gt_vct_access,
3236 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3238 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3239 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3240 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3241 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3243 /* Comparison value, indicating when the timer goes off */
3244 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
3245 .secure = ARM_CP_SECSTATE_NS,
3246 .access = PL0_RW,
3247 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3248 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3249 .accessfn = gt_ptimer_access,
3250 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3251 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3253 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3254 .secure = ARM_CP_SECSTATE_S,
3255 .access = PL0_RW,
3256 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3257 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3258 .accessfn = gt_ptimer_access,
3259 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3261 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3262 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3263 .access = PL0_RW,
3264 .type = ARM_CP_IO,
3265 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3266 .resetvalue = 0, .accessfn = gt_ptimer_access,
3267 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3268 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3270 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3271 .access = PL0_RW,
3272 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3273 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3274 .accessfn = gt_vtimer_access,
3275 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3276 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3278 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3279 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3280 .access = PL0_RW,
3281 .type = ARM_CP_IO,
3282 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3283 .resetvalue = 0, .accessfn = gt_vtimer_access,
3284 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3285 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3287 /* Secure timer -- this is actually restricted to only EL3
3288 * and configurably Secure-EL1 via the accessfn.
3290 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3291 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3292 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3293 .accessfn = gt_stimer_access,
3294 .readfn = gt_sec_tval_read,
3295 .writefn = gt_sec_tval_write,
3296 .resetfn = gt_sec_timer_reset,
3298 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3299 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3300 .type = ARM_CP_IO, .access = PL1_RW,
3301 .accessfn = gt_stimer_access,
3302 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3303 .resetvalue = 0,
3304 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3306 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3307 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3308 .type = ARM_CP_IO, .access = PL1_RW,
3309 .accessfn = gt_stimer_access,
3310 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3311 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3313 REGINFO_SENTINEL
3316 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
3317 bool isread)
3319 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
3320 return CP_ACCESS_TRAP;
3322 return CP_ACCESS_OK;
3325 #else
3327 /* In user-mode most of the generic timer registers are inaccessible
3328 * however modern kernels (4.12+) allow access to cntvct_el0
3331 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3333 ARMCPU *cpu = env_archcpu(env);
3335 /* Currently we have no support for QEMUTimer in linux-user so we
3336 * can't call gt_get_countervalue(env), instead we directly
3337 * call the lower level functions.
3339 return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3342 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3343 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3344 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3345 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3346 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3347 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
3349 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3350 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3351 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3352 .readfn = gt_virt_cnt_read,
3354 REGINFO_SENTINEL
3357 #endif
3359 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3361 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3362 raw_write(env, ri, value);
3363 } else if (arm_feature(env, ARM_FEATURE_V7)) {
3364 raw_write(env, ri, value & 0xfffff6ff);
3365 } else {
3366 raw_write(env, ri, value & 0xfffff1ff);
3370 #ifndef CONFIG_USER_ONLY
3371 /* get_phys_addr() isn't present for user-mode-only targets */
3373 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3374 bool isread)
3376 if (ri->opc2 & 4) {
3377 /* The ATS12NSO* operations must trap to EL3 if executed in
3378 * Secure EL1 (which can only happen if EL3 is AArch64).
3379 * They are simply UNDEF if executed from NS EL1.
3380 * They function normally from EL2 or EL3.
3382 if (arm_current_el(env) == 1) {
3383 if (arm_is_secure_below_el3(env)) {
3384 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
3386 return CP_ACCESS_TRAP_UNCATEGORIZED;
3389 return CP_ACCESS_OK;
3392 #ifdef CONFIG_TCG
3393 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3394 MMUAccessType access_type, ARMMMUIdx mmu_idx)
3396 hwaddr phys_addr;
3397 target_ulong page_size;
3398 int prot;
3399 bool ret;
3400 uint64_t par64;
3401 bool format64 = false;
3402 MemTxAttrs attrs = {};
3403 ARMMMUFaultInfo fi = {};
3404 ARMCacheAttrs cacheattrs = {};
3406 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
3407 &prot, &page_size, &fi, &cacheattrs);
3409 if (ret) {
3411 * Some kinds of translation fault must cause exceptions rather
3412 * than being reported in the PAR.
3414 int current_el = arm_current_el(env);
3415 int target_el;
3416 uint32_t syn, fsr, fsc;
3417 bool take_exc = false;
3419 if (fi.s1ptw && current_el == 1 && !arm_is_secure(env)
3420 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3422 * Synchronous stage 2 fault on an access made as part of the
3423 * translation table walk for AT S1E0* or AT S1E1* insn
3424 * executed from NS EL1. If this is a synchronous external abort
3425 * and SCR_EL3.EA == 1, then we take a synchronous external abort
3426 * to EL3. Otherwise the fault is taken as an exception to EL2,
3427 * and HPFAR_EL2 holds the faulting IPA.
3429 if (fi.type == ARMFault_SyncExternalOnWalk &&
3430 (env->cp15.scr_el3 & SCR_EA)) {
3431 target_el = 3;
3432 } else {
3433 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3434 target_el = 2;
3436 take_exc = true;
3437 } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3439 * Synchronous external aborts during a translation table walk
3440 * are taken as Data Abort exceptions.
3442 if (fi.stage2) {
3443 if (current_el == 3) {
3444 target_el = 3;
3445 } else {
3446 target_el = 2;
3448 } else {
3449 target_el = exception_target_el(env);
3451 take_exc = true;
3454 if (take_exc) {
3455 /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3456 if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3457 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3458 fsr = arm_fi_to_lfsc(&fi);
3459 fsc = extract32(fsr, 0, 6);
3460 } else {
3461 fsr = arm_fi_to_sfsc(&fi);
3462 fsc = 0x3f;
3465 * Report exception with ESR indicating a fault due to a
3466 * translation table walk for a cache maintenance instruction.
3468 syn = syn_data_abort_no_iss(current_el == target_el,
3469 fi.ea, 1, fi.s1ptw, 1, fsc);
3470 env->exception.vaddress = value;
3471 env->exception.fsr = fsr;
3472 raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3476 if (is_a64(env)) {
3477 format64 = true;
3478 } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3480 * ATS1Cxx:
3481 * * TTBCR.EAE determines whether the result is returned using the
3482 * 32-bit or the 64-bit PAR format
3483 * * Instructions executed in Hyp mode always use the 64bit format
3485 * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3486 * * The Non-secure TTBCR.EAE bit is set to 1
3487 * * The implementation includes EL2, and the value of HCR.VM is 1
3489 * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3491 * ATS1Hx always uses the 64bit format.
3493 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3495 if (arm_feature(env, ARM_FEATURE_EL2)) {
3496 if (mmu_idx == ARMMMUIdx_E10_0 ||
3497 mmu_idx == ARMMMUIdx_E10_1 ||
3498 mmu_idx == ARMMMUIdx_E10_1_PAN) {
3499 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3500 } else {
3501 format64 |= arm_current_el(env) == 2;
3506 if (format64) {
3507 /* Create a 64-bit PAR */
3508 par64 = (1 << 11); /* LPAE bit always set */
3509 if (!ret) {
3510 par64 |= phys_addr & ~0xfffULL;
3511 if (!attrs.secure) {
3512 par64 |= (1 << 9); /* NS */
3514 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
3515 par64 |= cacheattrs.shareability << 7; /* SH */
3516 } else {
3517 uint32_t fsr = arm_fi_to_lfsc(&fi);
3519 par64 |= 1; /* F */
3520 par64 |= (fsr & 0x3f) << 1; /* FS */
3521 if (fi.stage2) {
3522 par64 |= (1 << 9); /* S */
3524 if (fi.s1ptw) {
3525 par64 |= (1 << 8); /* PTW */
3528 } else {
3529 /* fsr is a DFSR/IFSR value for the short descriptor
3530 * translation table format (with WnR always clear).
3531 * Convert it to a 32-bit PAR.
3533 if (!ret) {
3534 /* We do not set any attribute bits in the PAR */
3535 if (page_size == (1 << 24)
3536 && arm_feature(env, ARM_FEATURE_V7)) {
3537 par64 = (phys_addr & 0xff000000) | (1 << 1);
3538 } else {
3539 par64 = phys_addr & 0xfffff000;
3541 if (!attrs.secure) {
3542 par64 |= (1 << 9); /* NS */
3544 } else {
3545 uint32_t fsr = arm_fi_to_sfsc(&fi);
3547 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3548 ((fsr & 0xf) << 1) | 1;
3551 return par64;
3553 #endif /* CONFIG_TCG */
3555 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3557 #ifdef CONFIG_TCG
3558 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3559 uint64_t par64;
3560 ARMMMUIdx mmu_idx;
3561 int el = arm_current_el(env);
3562 bool secure = arm_is_secure_below_el3(env);
3564 switch (ri->opc2 & 6) {
3565 case 0:
3566 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3567 switch (el) {
3568 case 3:
3569 mmu_idx = ARMMMUIdx_SE3;
3570 break;
3571 case 2:
3572 g_assert(!secure); /* TODO: ARMv8.4-SecEL2 */
3573 /* fall through */
3574 case 1:
3575 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) {
3576 mmu_idx = (secure ? ARMMMUIdx_SE10_1_PAN
3577 : ARMMMUIdx_Stage1_E1_PAN);
3578 } else {
3579 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_Stage1_E1;
3581 break;
3582 default:
3583 g_assert_not_reached();
3585 break;
3586 case 2:
3587 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3588 switch (el) {
3589 case 3:
3590 mmu_idx = ARMMMUIdx_SE10_0;
3591 break;
3592 case 2:
3593 mmu_idx = ARMMMUIdx_Stage1_E0;
3594 break;
3595 case 1:
3596 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_Stage1_E0;
3597 break;
3598 default:
3599 g_assert_not_reached();
3601 break;
3602 case 4:
3603 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3604 mmu_idx = ARMMMUIdx_E10_1;
3605 break;
3606 case 6:
3607 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3608 mmu_idx = ARMMMUIdx_E10_0;
3609 break;
3610 default:
3611 g_assert_not_reached();
3614 par64 = do_ats_write(env, value, access_type, mmu_idx);
3616 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3617 #else
3618 /* Handled by hardware accelerator. */
3619 g_assert_not_reached();
3620 #endif /* CONFIG_TCG */
3623 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3624 uint64_t value)
3626 #ifdef CONFIG_TCG
3627 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3628 uint64_t par64;
3630 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2);
3632 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3633 #else
3634 /* Handled by hardware accelerator. */
3635 g_assert_not_reached();
3636 #endif /* CONFIG_TCG */
3639 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3640 bool isread)
3642 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
3643 return CP_ACCESS_TRAP;
3645 return CP_ACCESS_OK;
3648 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3649 uint64_t value)
3651 #ifdef CONFIG_TCG
3652 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3653 ARMMMUIdx mmu_idx;
3654 int secure = arm_is_secure_below_el3(env);
3656 switch (ri->opc2 & 6) {
3657 case 0:
3658 switch (ri->opc1) {
3659 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3660 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) {
3661 mmu_idx = (secure ? ARMMMUIdx_SE10_1_PAN
3662 : ARMMMUIdx_Stage1_E1_PAN);
3663 } else {
3664 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_Stage1_E1;
3666 break;
3667 case 4: /* AT S1E2R, AT S1E2W */
3668 mmu_idx = ARMMMUIdx_E2;
3669 break;
3670 case 6: /* AT S1E3R, AT S1E3W */
3671 mmu_idx = ARMMMUIdx_SE3;
3672 break;
3673 default:
3674 g_assert_not_reached();
3676 break;
3677 case 2: /* AT S1E0R, AT S1E0W */
3678 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_Stage1_E0;
3679 break;
3680 case 4: /* AT S12E1R, AT S12E1W */
3681 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1;
3682 break;
3683 case 6: /* AT S12E0R, AT S12E0W */
3684 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0;
3685 break;
3686 default:
3687 g_assert_not_reached();
3690 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
3691 #else
3692 /* Handled by hardware accelerator. */
3693 g_assert_not_reached();
3694 #endif /* CONFIG_TCG */
3696 #endif
3698 static const ARMCPRegInfo vapa_cp_reginfo[] = {
3699 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3700 .access = PL1_RW, .resetvalue = 0,
3701 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3702 offsetoflow32(CPUARMState, cp15.par_ns) },
3703 .writefn = par_write },
3704 #ifndef CONFIG_USER_ONLY
3705 /* This underdecoding is safe because the reginfo is NO_RAW. */
3706 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3707 .access = PL1_W, .accessfn = ats_access,
3708 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
3709 #endif
3710 REGINFO_SENTINEL
3713 /* Return basic MPU access permission bits. */
3714 static uint32_t simple_mpu_ap_bits(uint32_t val)
3716 uint32_t ret;
3717 uint32_t mask;
3718 int i;
3719 ret = 0;
3720 mask = 3;
3721 for (i = 0; i < 16; i += 2) {
3722 ret |= (val >> i) & mask;
3723 mask <<= 2;
3725 return ret;
3728 /* Pad basic MPU access permission bits to extended format. */
3729 static uint32_t extended_mpu_ap_bits(uint32_t val)
3731 uint32_t ret;
3732 uint32_t mask;
3733 int i;
3734 ret = 0;
3735 mask = 3;
3736 for (i = 0; i < 16; i += 2) {
3737 ret |= (val & mask) << i;
3738 mask <<= 2;
3740 return ret;
3743 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3744 uint64_t value)
3746 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3749 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3751 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3754 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3755 uint64_t value)
3757 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3760 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3762 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3765 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3767 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3769 if (!u32p) {
3770 return 0;
3773 u32p += env->pmsav7.rnr[M_REG_NS];
3774 return *u32p;
3777 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3778 uint64_t value)
3780 ARMCPU *cpu = env_archcpu(env);
3781 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3783 if (!u32p) {
3784 return;
3787 u32p += env->pmsav7.rnr[M_REG_NS];
3788 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3789 *u32p = value;
3792 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3793 uint64_t value)
3795 ARMCPU *cpu = env_archcpu(env);
3796 uint32_t nrgs = cpu->pmsav7_dregion;
3798 if (value >= nrgs) {
3799 qemu_log_mask(LOG_GUEST_ERROR,
3800 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3801 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3802 return;
3805 raw_write(env, ri, value);
3808 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
3809 /* Reset for all these registers is handled in arm_cpu_reset(),
3810 * because the PMSAv7 is also used by M-profile CPUs, which do
3811 * not register cpregs but still need the state to be reset.
3813 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3814 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3815 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
3816 .readfn = pmsav7_read, .writefn = pmsav7_write,
3817 .resetfn = arm_cp_reset_ignore },
3818 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
3819 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3820 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
3821 .readfn = pmsav7_read, .writefn = pmsav7_write,
3822 .resetfn = arm_cp_reset_ignore },
3823 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
3824 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3825 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
3826 .readfn = pmsav7_read, .writefn = pmsav7_write,
3827 .resetfn = arm_cp_reset_ignore },
3828 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
3829 .access = PL1_RW,
3830 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
3831 .writefn = pmsav7_rgnr_write,
3832 .resetfn = arm_cp_reset_ignore },
3833 REGINFO_SENTINEL
3836 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
3837 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3838 .access = PL1_RW, .type = ARM_CP_ALIAS,
3839 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3840 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
3841 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3842 .access = PL1_RW, .type = ARM_CP_ALIAS,
3843 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3844 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
3845 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
3846 .access = PL1_RW,
3847 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3848 .resetvalue = 0, },
3849 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
3850 .access = PL1_RW,
3851 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3852 .resetvalue = 0, },
3853 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
3854 .access = PL1_RW,
3855 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
3856 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
3857 .access = PL1_RW,
3858 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
3859 /* Protection region base and size registers */
3860 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
3861 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3862 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
3863 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
3864 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3865 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
3866 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
3867 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3868 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
3869 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
3870 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3871 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
3872 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
3873 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3874 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
3875 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
3876 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3877 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
3878 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
3879 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3880 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
3881 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
3882 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3883 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
3884 REGINFO_SENTINEL
3887 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
3888 uint64_t value)
3890 TCR *tcr = raw_ptr(env, ri);
3891 int maskshift = extract32(value, 0, 3);
3893 if (!arm_feature(env, ARM_FEATURE_V8)) {
3894 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
3895 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
3896 * using Long-desciptor translation table format */
3897 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
3898 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
3899 /* In an implementation that includes the Security Extensions
3900 * TTBCR has additional fields PD0 [4] and PD1 [5] for
3901 * Short-descriptor translation table format.
3903 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
3904 } else {
3905 value &= TTBCR_N;
3909 /* Update the masks corresponding to the TCR bank being written
3910 * Note that we always calculate mask and base_mask, but
3911 * they are only used for short-descriptor tables (ie if EAE is 0);
3912 * for long-descriptor tables the TCR fields are used differently
3913 * and the mask and base_mask values are meaningless.
3915 tcr->raw_tcr = value;
3916 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
3917 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
3920 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3921 uint64_t value)
3923 ARMCPU *cpu = env_archcpu(env);
3924 TCR *tcr = raw_ptr(env, ri);
3926 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3927 /* With LPAE the TTBCR could result in a change of ASID
3928 * via the TTBCR.A1 bit, so do a TLB flush.
3930 tlb_flush(CPU(cpu));
3932 /* Preserve the high half of TCR_EL1, set via TTBCR2. */
3933 value = deposit64(tcr->raw_tcr, 0, 32, value);
3934 vmsa_ttbcr_raw_write(env, ri, value);
3937 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3939 TCR *tcr = raw_ptr(env, ri);
3941 /* Reset both the TCR as well as the masks corresponding to the bank of
3942 * the TCR being reset.
3944 tcr->raw_tcr = 0;
3945 tcr->mask = 0;
3946 tcr->base_mask = 0xffffc000u;
3949 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
3950 uint64_t value)
3952 ARMCPU *cpu = env_archcpu(env);
3953 TCR *tcr = raw_ptr(env, ri);
3955 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
3956 tlb_flush(CPU(cpu));
3957 tcr->raw_tcr = value;
3960 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3961 uint64_t value)
3963 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */
3964 if (cpreg_field_is_64bit(ri) &&
3965 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
3966 ARMCPU *cpu = env_archcpu(env);
3967 tlb_flush(CPU(cpu));
3969 raw_write(env, ri, value);
3972 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3973 uint64_t value)
3976 * If we are running with E2&0 regime, then an ASID is active.
3977 * Flush if that might be changing. Note we're not checking
3978 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
3979 * holds the active ASID, only checking the field that might.
3981 if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
3982 (arm_hcr_el2_eff(env) & HCR_E2H)) {
3983 tlb_flush_by_mmuidx(env_cpu(env),
3984 ARMMMUIdxBit_E20_2 |
3985 ARMMMUIdxBit_E20_2_PAN |
3986 ARMMMUIdxBit_E20_0);
3988 raw_write(env, ri, value);
3991 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3992 uint64_t value)
3994 ARMCPU *cpu = env_archcpu(env);
3995 CPUState *cs = CPU(cpu);
3998 * A change in VMID to the stage2 page table (Stage2) invalidates
3999 * the combined stage 1&2 tlbs (EL10_1 and EL10_0).
4001 if (raw_read(env, ri) != value) {
4002 tlb_flush_by_mmuidx(cs,
4003 ARMMMUIdxBit_E10_1 |
4004 ARMMMUIdxBit_E10_1_PAN |
4005 ARMMMUIdxBit_E10_0);
4006 raw_write(env, ri, value);
4010 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
4011 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4012 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
4013 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
4014 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
4015 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4016 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4017 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
4018 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
4019 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
4020 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4021 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
4022 offsetof(CPUARMState, cp15.dfar_ns) } },
4023 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
4024 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
4025 .access = PL1_RW, .accessfn = access_tvm_trvm,
4026 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
4027 .resetvalue = 0, },
4028 REGINFO_SENTINEL
4031 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
4032 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
4033 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
4034 .access = PL1_RW, .accessfn = access_tvm_trvm,
4035 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
4036 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
4037 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
4038 .access = PL1_RW, .accessfn = access_tvm_trvm,
4039 .writefn = vmsa_ttbr_write, .resetvalue = 0,
4040 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4041 offsetof(CPUARMState, cp15.ttbr0_ns) } },
4042 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
4043 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
4044 .access = PL1_RW, .accessfn = access_tvm_trvm,
4045 .writefn = vmsa_ttbr_write, .resetvalue = 0,
4046 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4047 offsetof(CPUARMState, cp15.ttbr1_ns) } },
4048 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
4049 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4050 .access = PL1_RW, .accessfn = access_tvm_trvm,
4051 .writefn = vmsa_tcr_el12_write,
4052 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
4053 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
4054 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4055 .access = PL1_RW, .accessfn = access_tvm_trvm,
4056 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
4057 .raw_writefn = vmsa_ttbcr_raw_write,
4058 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
4059 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
4060 REGINFO_SENTINEL
4063 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
4064 * qemu tlbs nor adjusting cached masks.
4066 static const ARMCPRegInfo ttbcr2_reginfo = {
4067 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
4068 .access = PL1_RW, .accessfn = access_tvm_trvm,
4069 .type = ARM_CP_ALIAS,
4070 .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
4071 offsetofhigh32(CPUARMState, cp15.tcr_el[1]) },
4074 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
4075 uint64_t value)
4077 env->cp15.c15_ticonfig = value & 0xe7;
4078 /* The OS_TYPE bit in this register changes the reported CPUID! */
4079 env->cp15.c0_cpuid = (value & (1 << 5)) ?
4080 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
4083 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
4084 uint64_t value)
4086 env->cp15.c15_threadid = value & 0xffff;
4089 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
4090 uint64_t value)
4092 /* Wait-for-interrupt (deprecated) */
4093 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
4096 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
4097 uint64_t value)
4099 /* On OMAP there are registers indicating the max/min index of dcache lines
4100 * containing a dirty line; cache flush operations have to reset these.
4102 env->cp15.c15_i_max = 0x000;
4103 env->cp15.c15_i_min = 0xff0;
4106 static const ARMCPRegInfo omap_cp_reginfo[] = {
4107 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
4108 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
4109 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
4110 .resetvalue = 0, },
4111 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
4112 .access = PL1_RW, .type = ARM_CP_NOP },
4113 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
4114 .access = PL1_RW,
4115 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
4116 .writefn = omap_ticonfig_write },
4117 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
4118 .access = PL1_RW,
4119 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
4120 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
4121 .access = PL1_RW, .resetvalue = 0xff0,
4122 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
4123 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
4124 .access = PL1_RW,
4125 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
4126 .writefn = omap_threadid_write },
4127 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
4128 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4129 .type = ARM_CP_NO_RAW,
4130 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
4131 /* TODO: Peripheral port remap register:
4132 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
4133 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
4134 * when MMU is off.
4136 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
4137 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
4138 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
4139 .writefn = omap_cachemaint_write },
4140 { .name = "C9", .cp = 15, .crn = 9,
4141 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
4142 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
4143 REGINFO_SENTINEL
4146 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4147 uint64_t value)
4149 env->cp15.c15_cpar = value & 0x3fff;
4152 static const ARMCPRegInfo xscale_cp_reginfo[] = {
4153 { .name = "XSCALE_CPAR",
4154 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4155 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
4156 .writefn = xscale_cpar_write, },
4157 { .name = "XSCALE_AUXCR",
4158 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
4159 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
4160 .resetvalue = 0, },
4161 /* XScale specific cache-lockdown: since we have no cache we NOP these
4162 * and hope the guest does not really rely on cache behaviour.
4164 { .name = "XSCALE_LOCK_ICACHE_LINE",
4165 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
4166 .access = PL1_W, .type = ARM_CP_NOP },
4167 { .name = "XSCALE_UNLOCK_ICACHE",
4168 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
4169 .access = PL1_W, .type = ARM_CP_NOP },
4170 { .name = "XSCALE_DCACHE_LOCK",
4171 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
4172 .access = PL1_RW, .type = ARM_CP_NOP },
4173 { .name = "XSCALE_UNLOCK_DCACHE",
4174 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
4175 .access = PL1_W, .type = ARM_CP_NOP },
4176 REGINFO_SENTINEL
4179 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
4180 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
4181 * implementation of this implementation-defined space.
4182 * Ideally this should eventually disappear in favour of actually
4183 * implementing the correct behaviour for all cores.
4185 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
4186 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4187 .access = PL1_RW,
4188 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
4189 .resetvalue = 0 },
4190 REGINFO_SENTINEL
4193 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
4194 /* Cache status: RAZ because we have no cache so it's always clean */
4195 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
4196 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4197 .resetvalue = 0 },
4198 REGINFO_SENTINEL
4201 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
4202 /* We never have a a block transfer operation in progress */
4203 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
4204 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4205 .resetvalue = 0 },
4206 /* The cache ops themselves: these all NOP for QEMU */
4207 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
4208 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4209 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
4210 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4211 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
4212 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4213 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
4214 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4215 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
4216 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4217 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
4218 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4219 REGINFO_SENTINEL
4222 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
4223 /* The cache test-and-clean instructions always return (1 << 30)
4224 * to indicate that there are no dirty cache lines.
4226 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
4227 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4228 .resetvalue = (1 << 30) },
4229 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
4230 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4231 .resetvalue = (1 << 30) },
4232 REGINFO_SENTINEL
4235 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4236 /* Ignore ReadBuffer accesses */
4237 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4238 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4239 .access = PL1_RW, .resetvalue = 0,
4240 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
4241 REGINFO_SENTINEL
4244 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4246 ARMCPU *cpu = env_archcpu(env);
4247 unsigned int cur_el = arm_current_el(env);
4248 bool secure = arm_is_secure(env);
4250 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
4251 return env->cp15.vpidr_el2;
4253 return raw_read(env, ri);
4256 static uint64_t mpidr_read_val(CPUARMState *env)
4258 ARMCPU *cpu = env_archcpu(env);
4259 uint64_t mpidr = cpu->mp_affinity;
4261 if (arm_feature(env, ARM_FEATURE_V7MP)) {
4262 mpidr |= (1U << 31);
4263 /* Cores which are uniprocessor (non-coherent)
4264 * but still implement the MP extensions set
4265 * bit 30. (For instance, Cortex-R5).
4267 if (cpu->mp_is_up) {
4268 mpidr |= (1u << 30);
4271 return mpidr;
4274 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4276 unsigned int cur_el = arm_current_el(env);
4277 bool secure = arm_is_secure(env);
4279 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
4280 return env->cp15.vmpidr_el2;
4282 return mpidr_read_val(env);
4285 static const ARMCPRegInfo lpae_cp_reginfo[] = {
4286 /* NOP AMAIR0/1 */
4287 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4288 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4289 .access = PL1_RW, .accessfn = access_tvm_trvm,
4290 .type = ARM_CP_CONST, .resetvalue = 0 },
4291 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4292 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4293 .access = PL1_RW, .accessfn = access_tvm_trvm,
4294 .type = ARM_CP_CONST, .resetvalue = 0 },
4295 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4296 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4297 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4298 offsetof(CPUARMState, cp15.par_ns)} },
4299 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4300 .access = PL1_RW, .accessfn = access_tvm_trvm,
4301 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4302 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4303 offsetof(CPUARMState, cp15.ttbr0_ns) },
4304 .writefn = vmsa_ttbr_write, },
4305 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4306 .access = PL1_RW, .accessfn = access_tvm_trvm,
4307 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4308 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4309 offsetof(CPUARMState, cp15.ttbr1_ns) },
4310 .writefn = vmsa_ttbr_write, },
4311 REGINFO_SENTINEL
4314 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4316 return vfp_get_fpcr(env);
4319 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4320 uint64_t value)
4322 vfp_set_fpcr(env, value);
4325 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4327 return vfp_get_fpsr(env);
4330 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4331 uint64_t value)
4333 vfp_set_fpsr(env, value);
4336 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4337 bool isread)
4339 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4340 return CP_ACCESS_TRAP;
4342 return CP_ACCESS_OK;
4345 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4346 uint64_t value)
4348 env->daif = value & PSTATE_DAIF;
4351 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4353 return env->pstate & PSTATE_PAN;
4356 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4357 uint64_t value)
4359 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4362 static const ARMCPRegInfo pan_reginfo = {
4363 .name = "PAN", .state = ARM_CP_STATE_AA64,
4364 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4365 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4366 .readfn = aa64_pan_read, .writefn = aa64_pan_write
4369 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4371 return env->pstate & PSTATE_UAO;
4374 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4375 uint64_t value)
4377 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4380 static const ARMCPRegInfo uao_reginfo = {
4381 .name = "UAO", .state = ARM_CP_STATE_AA64,
4382 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4383 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4384 .readfn = aa64_uao_read, .writefn = aa64_uao_write
4387 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
4388 const ARMCPRegInfo *ri,
4389 bool isread)
4391 /* Cache invalidate/clean to Point of Coherency or Persistence... */
4392 switch (arm_current_el(env)) {
4393 case 0:
4394 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4395 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4396 return CP_ACCESS_TRAP;
4398 /* fall through */
4399 case 1:
4400 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */
4401 if (arm_hcr_el2_eff(env) & HCR_TPCP) {
4402 return CP_ACCESS_TRAP_EL2;
4404 break;
4406 return CP_ACCESS_OK;
4409 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env,
4410 const ARMCPRegInfo *ri,
4411 bool isread)
4413 /* Cache invalidate/clean to Point of Unification... */
4414 switch (arm_current_el(env)) {
4415 case 0:
4416 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4417 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4418 return CP_ACCESS_TRAP;
4420 /* fall through */
4421 case 1:
4422 /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set. */
4423 if (arm_hcr_el2_eff(env) & HCR_TPU) {
4424 return CP_ACCESS_TRAP_EL2;
4426 break;
4428 return CP_ACCESS_OK;
4431 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4432 * Page D4-1736 (DDI0487A.b)
4435 static int vae1_tlbmask(CPUARMState *env)
4437 /* Since we exclude secure first, we may read HCR_EL2 directly. */
4438 if (arm_is_secure_below_el3(env)) {
4439 return ARMMMUIdxBit_SE10_1 |
4440 ARMMMUIdxBit_SE10_1_PAN |
4441 ARMMMUIdxBit_SE10_0;
4442 } else if ((env->cp15.hcr_el2 & (HCR_E2H | HCR_TGE))
4443 == (HCR_E2H | HCR_TGE)) {
4444 return ARMMMUIdxBit_E20_2 |
4445 ARMMMUIdxBit_E20_2_PAN |
4446 ARMMMUIdxBit_E20_0;
4447 } else {
4448 return ARMMMUIdxBit_E10_1 |
4449 ARMMMUIdxBit_E10_1_PAN |
4450 ARMMMUIdxBit_E10_0;
4454 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4455 uint64_t value)
4457 CPUState *cs = env_cpu(env);
4458 int mask = vae1_tlbmask(env);
4460 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4463 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4464 uint64_t value)
4466 CPUState *cs = env_cpu(env);
4467 int mask = vae1_tlbmask(env);
4469 if (tlb_force_broadcast(env)) {
4470 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4471 } else {
4472 tlb_flush_by_mmuidx(cs, mask);
4476 static int alle1_tlbmask(CPUARMState *env)
4479 * Note that the 'ALL' scope must invalidate both stage 1 and
4480 * stage 2 translations, whereas most other scopes only invalidate
4481 * stage 1 translations.
4483 if (arm_is_secure_below_el3(env)) {
4484 return ARMMMUIdxBit_SE10_1 |
4485 ARMMMUIdxBit_SE10_1_PAN |
4486 ARMMMUIdxBit_SE10_0;
4487 } else {
4488 return ARMMMUIdxBit_E10_1 |
4489 ARMMMUIdxBit_E10_1_PAN |
4490 ARMMMUIdxBit_E10_0;
4494 static int e2_tlbmask(CPUARMState *env)
4496 /* TODO: ARMv8.4-SecEL2 */
4497 return ARMMMUIdxBit_E20_0 |
4498 ARMMMUIdxBit_E20_2 |
4499 ARMMMUIdxBit_E20_2_PAN |
4500 ARMMMUIdxBit_E2;
4503 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4504 uint64_t value)
4506 CPUState *cs = env_cpu(env);
4507 int mask = alle1_tlbmask(env);
4509 tlb_flush_by_mmuidx(cs, mask);
4512 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4513 uint64_t value)
4515 CPUState *cs = env_cpu(env);
4516 int mask = e2_tlbmask(env);
4518 tlb_flush_by_mmuidx(cs, mask);
4521 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4522 uint64_t value)
4524 ARMCPU *cpu = env_archcpu(env);
4525 CPUState *cs = CPU(cpu);
4527 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3);
4530 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4531 uint64_t value)
4533 CPUState *cs = env_cpu(env);
4534 int mask = alle1_tlbmask(env);
4536 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4539 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4540 uint64_t value)
4542 CPUState *cs = env_cpu(env);
4543 int mask = e2_tlbmask(env);
4545 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4548 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4549 uint64_t value)
4551 CPUState *cs = env_cpu(env);
4553 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3);
4556 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4557 uint64_t value)
4559 /* Invalidate by VA, EL2
4560 * Currently handles both VAE2 and VALE2, since we don't support
4561 * flush-last-level-only.
4563 CPUState *cs = env_cpu(env);
4564 int mask = e2_tlbmask(env);
4565 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4567 tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4570 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4571 uint64_t value)
4573 /* Invalidate by VA, EL3
4574 * Currently handles both VAE3 and VALE3, since we don't support
4575 * flush-last-level-only.
4577 ARMCPU *cpu = env_archcpu(env);
4578 CPUState *cs = CPU(cpu);
4579 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4581 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3);
4584 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4585 uint64_t value)
4587 CPUState *cs = env_cpu(env);
4588 int mask = vae1_tlbmask(env);
4589 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4591 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
4594 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4595 uint64_t value)
4597 /* Invalidate by VA, EL1&0 (AArch64 version).
4598 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4599 * since we don't support flush-for-specific-ASID-only or
4600 * flush-last-level-only.
4602 CPUState *cs = env_cpu(env);
4603 int mask = vae1_tlbmask(env);
4604 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4606 if (tlb_force_broadcast(env)) {
4607 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
4608 } else {
4609 tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4613 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4614 uint64_t value)
4616 CPUState *cs = env_cpu(env);
4617 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4619 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
4620 ARMMMUIdxBit_E2);
4623 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4624 uint64_t value)
4626 CPUState *cs = env_cpu(env);
4627 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4629 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
4630 ARMMMUIdxBit_SE3);
4633 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
4634 bool isread)
4636 int cur_el = arm_current_el(env);
4638 if (cur_el < 2) {
4639 uint64_t hcr = arm_hcr_el2_eff(env);
4641 if (cur_el == 0) {
4642 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4643 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
4644 return CP_ACCESS_TRAP_EL2;
4646 } else {
4647 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
4648 return CP_ACCESS_TRAP;
4650 if (hcr & HCR_TDZ) {
4651 return CP_ACCESS_TRAP_EL2;
4654 } else if (hcr & HCR_TDZ) {
4655 return CP_ACCESS_TRAP_EL2;
4658 return CP_ACCESS_OK;
4661 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
4663 ARMCPU *cpu = env_archcpu(env);
4664 int dzp_bit = 1 << 4;
4666 /* DZP indicates whether DC ZVA access is allowed */
4667 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
4668 dzp_bit = 0;
4670 return cpu->dcz_blocksize | dzp_bit;
4673 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4674 bool isread)
4676 if (!(env->pstate & PSTATE_SP)) {
4677 /* Access to SP_EL0 is undefined if it's being used as
4678 * the stack pointer.
4680 return CP_ACCESS_TRAP_UNCATEGORIZED;
4682 return CP_ACCESS_OK;
4685 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
4687 return env->pstate & PSTATE_SP;
4690 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
4692 update_spsel(env, val);
4695 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4696 uint64_t value)
4698 ARMCPU *cpu = env_archcpu(env);
4700 if (raw_read(env, ri) == value) {
4701 /* Skip the TLB flush if nothing actually changed; Linux likes
4702 * to do a lot of pointless SCTLR writes.
4704 return;
4707 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
4708 /* M bit is RAZ/WI for PMSA with no MPU implemented */
4709 value &= ~SCTLR_M;
4712 raw_write(env, ri, value);
4713 /* ??? Lots of these bits are not implemented. */
4714 /* This may enable/disable the MMU, so do a TLB flush. */
4715 tlb_flush(CPU(cpu));
4717 if (ri->type & ARM_CP_SUPPRESS_TB_END) {
4719 * Normally we would always end the TB on an SCTLR write; see the
4720 * comment in ARMCPRegInfo sctlr initialization below for why Xscale
4721 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
4722 * of hflags from the translator, so do it here.
4724 arm_rebuild_hflags(env);
4728 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
4729 bool isread)
4731 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
4732 return CP_ACCESS_TRAP_FP_EL2;
4734 if (env->cp15.cptr_el[3] & CPTR_TFP) {
4735 return CP_ACCESS_TRAP_FP_EL3;
4737 return CP_ACCESS_OK;
4740 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4741 uint64_t value)
4743 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
4746 static const ARMCPRegInfo v8_cp_reginfo[] = {
4747 /* Minimal set of EL0-visible registers. This will need to be expanded
4748 * significantly for system emulation of AArch64 CPUs.
4750 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
4751 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
4752 .access = PL0_RW, .type = ARM_CP_NZCV },
4753 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
4754 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
4755 .type = ARM_CP_NO_RAW,
4756 .access = PL0_RW, .accessfn = aa64_daif_access,
4757 .fieldoffset = offsetof(CPUARMState, daif),
4758 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
4759 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
4760 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
4761 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4762 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
4763 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
4764 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
4765 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4766 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
4767 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
4768 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
4769 .access = PL0_R, .type = ARM_CP_NO_RAW,
4770 .readfn = aa64_dczid_read },
4771 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
4772 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
4773 .access = PL0_W, .type = ARM_CP_DC_ZVA,
4774 #ifndef CONFIG_USER_ONLY
4775 /* Avoid overhead of an access check that always passes in user-mode */
4776 .accessfn = aa64_zva_access,
4777 #endif
4779 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
4780 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
4781 .access = PL1_R, .type = ARM_CP_CURRENTEL },
4782 /* Cache ops: all NOPs since we don't emulate caches */
4783 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
4784 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4785 .access = PL1_W, .type = ARM_CP_NOP,
4786 .accessfn = aa64_cacheop_pou_access },
4787 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
4788 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4789 .access = PL1_W, .type = ARM_CP_NOP,
4790 .accessfn = aa64_cacheop_pou_access },
4791 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
4792 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
4793 .access = PL0_W, .type = ARM_CP_NOP,
4794 .accessfn = aa64_cacheop_pou_access },
4795 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
4796 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4797 .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
4798 .type = ARM_CP_NOP },
4799 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
4800 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4801 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4802 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
4803 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
4804 .access = PL0_W, .type = ARM_CP_NOP,
4805 .accessfn = aa64_cacheop_poc_access },
4806 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
4807 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4808 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4809 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
4810 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
4811 .access = PL0_W, .type = ARM_CP_NOP,
4812 .accessfn = aa64_cacheop_pou_access },
4813 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
4814 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
4815 .access = PL0_W, .type = ARM_CP_NOP,
4816 .accessfn = aa64_cacheop_poc_access },
4817 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
4818 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4819 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4820 /* TLBI operations */
4821 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
4822 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
4823 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4824 .writefn = tlbi_aa64_vmalle1is_write },
4825 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
4826 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
4827 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4828 .writefn = tlbi_aa64_vae1is_write },
4829 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
4830 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
4831 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4832 .writefn = tlbi_aa64_vmalle1is_write },
4833 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
4834 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
4835 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4836 .writefn = tlbi_aa64_vae1is_write },
4837 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
4838 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4839 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4840 .writefn = tlbi_aa64_vae1is_write },
4841 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
4842 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4843 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4844 .writefn = tlbi_aa64_vae1is_write },
4845 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
4846 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
4847 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4848 .writefn = tlbi_aa64_vmalle1_write },
4849 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
4850 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
4851 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4852 .writefn = tlbi_aa64_vae1_write },
4853 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
4854 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
4855 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4856 .writefn = tlbi_aa64_vmalle1_write },
4857 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
4858 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
4859 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4860 .writefn = tlbi_aa64_vae1_write },
4861 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
4862 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4863 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4864 .writefn = tlbi_aa64_vae1_write },
4865 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
4866 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4867 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4868 .writefn = tlbi_aa64_vae1_write },
4869 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
4870 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4871 .access = PL2_W, .type = ARM_CP_NOP },
4872 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
4873 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4874 .access = PL2_W, .type = ARM_CP_NOP },
4875 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
4876 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4877 .access = PL2_W, .type = ARM_CP_NO_RAW,
4878 .writefn = tlbi_aa64_alle1is_write },
4879 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
4880 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
4881 .access = PL2_W, .type = ARM_CP_NO_RAW,
4882 .writefn = tlbi_aa64_alle1is_write },
4883 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
4884 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4885 .access = PL2_W, .type = ARM_CP_NOP },
4886 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
4887 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4888 .access = PL2_W, .type = ARM_CP_NOP },
4889 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
4890 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4891 .access = PL2_W, .type = ARM_CP_NO_RAW,
4892 .writefn = tlbi_aa64_alle1_write },
4893 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
4894 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
4895 .access = PL2_W, .type = ARM_CP_NO_RAW,
4896 .writefn = tlbi_aa64_alle1is_write },
4897 #ifndef CONFIG_USER_ONLY
4898 /* 64 bit address translation operations */
4899 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
4900 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
4901 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4902 .writefn = ats_write64 },
4903 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
4904 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
4905 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4906 .writefn = ats_write64 },
4907 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
4908 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
4909 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4910 .writefn = ats_write64 },
4911 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
4912 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
4913 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4914 .writefn = ats_write64 },
4915 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
4916 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
4917 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4918 .writefn = ats_write64 },
4919 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
4920 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
4921 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4922 .writefn = ats_write64 },
4923 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
4924 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
4925 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4926 .writefn = ats_write64 },
4927 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
4928 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
4929 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4930 .writefn = ats_write64 },
4931 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
4932 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
4933 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
4934 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4935 .writefn = ats_write64 },
4936 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
4937 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
4938 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4939 .writefn = ats_write64 },
4940 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
4941 .type = ARM_CP_ALIAS,
4942 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
4943 .access = PL1_RW, .resetvalue = 0,
4944 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
4945 .writefn = par_write },
4946 #endif
4947 /* TLB invalidate last level of translation table walk */
4948 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4949 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
4950 .writefn = tlbimva_is_write },
4951 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4952 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
4953 .writefn = tlbimvaa_is_write },
4954 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4955 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
4956 .writefn = tlbimva_write },
4957 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4958 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
4959 .writefn = tlbimvaa_write },
4960 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
4961 .type = ARM_CP_NO_RAW, .access = PL2_W,
4962 .writefn = tlbimva_hyp_write },
4963 { .name = "TLBIMVALHIS",
4964 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
4965 .type = ARM_CP_NO_RAW, .access = PL2_W,
4966 .writefn = tlbimva_hyp_is_write },
4967 { .name = "TLBIIPAS2",
4968 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4969 .type = ARM_CP_NOP, .access = PL2_W },
4970 { .name = "TLBIIPAS2IS",
4971 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4972 .type = ARM_CP_NOP, .access = PL2_W },
4973 { .name = "TLBIIPAS2L",
4974 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4975 .type = ARM_CP_NOP, .access = PL2_W },
4976 { .name = "TLBIIPAS2LIS",
4977 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4978 .type = ARM_CP_NOP, .access = PL2_W },
4979 /* 32 bit cache operations */
4980 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4981 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
4982 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
4983 .type = ARM_CP_NOP, .access = PL1_W },
4984 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4985 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
4986 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
4987 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
4988 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
4989 .type = ARM_CP_NOP, .access = PL1_W },
4990 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
4991 .type = ARM_CP_NOP, .access = PL1_W },
4992 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4993 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
4994 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4995 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
4996 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
4997 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
4998 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4999 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5000 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
5001 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5002 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
5003 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5004 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5005 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5006 /* MMU Domain access control / MPU write buffer control */
5007 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
5008 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
5009 .writefn = dacr_write, .raw_writefn = raw_write,
5010 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
5011 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
5012 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
5013 .type = ARM_CP_ALIAS,
5014 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
5015 .access = PL1_RW,
5016 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
5017 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
5018 .type = ARM_CP_ALIAS,
5019 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
5020 .access = PL1_RW,
5021 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
5022 /* We rely on the access checks not allowing the guest to write to the
5023 * state field when SPSel indicates that it's being used as the stack
5024 * pointer.
5026 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
5027 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
5028 .access = PL1_RW, .accessfn = sp_el0_access,
5029 .type = ARM_CP_ALIAS,
5030 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
5031 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
5032 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
5033 .access = PL2_RW, .type = ARM_CP_ALIAS,
5034 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
5035 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
5036 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
5037 .type = ARM_CP_NO_RAW,
5038 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
5039 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
5040 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
5041 .type = ARM_CP_ALIAS,
5042 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
5043 .access = PL2_RW, .accessfn = fpexc32_access },
5044 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
5045 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
5046 .access = PL2_RW, .resetvalue = 0,
5047 .writefn = dacr_write, .raw_writefn = raw_write,
5048 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
5049 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
5050 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
5051 .access = PL2_RW, .resetvalue = 0,
5052 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
5053 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
5054 .type = ARM_CP_ALIAS,
5055 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
5056 .access = PL2_RW,
5057 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
5058 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
5059 .type = ARM_CP_ALIAS,
5060 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
5061 .access = PL2_RW,
5062 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
5063 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
5064 .type = ARM_CP_ALIAS,
5065 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
5066 .access = PL2_RW,
5067 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
5068 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
5069 .type = ARM_CP_ALIAS,
5070 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
5071 .access = PL2_RW,
5072 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
5073 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
5074 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
5075 .resetvalue = 0,
5076 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
5077 { .name = "SDCR", .type = ARM_CP_ALIAS,
5078 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
5079 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5080 .writefn = sdcr_write,
5081 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
5082 REGINFO_SENTINEL
5085 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
5086 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
5087 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5088 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5089 .access = PL2_RW,
5090 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
5091 { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH,
5092 .type = ARM_CP_NO_RAW,
5093 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5094 .access = PL2_RW,
5095 .type = ARM_CP_CONST, .resetvalue = 0 },
5096 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5097 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5098 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5099 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5100 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5101 .access = PL2_RW,
5102 .type = ARM_CP_CONST, .resetvalue = 0 },
5103 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5104 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5105 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5106 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5107 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5108 .access = PL2_RW, .type = ARM_CP_CONST,
5109 .resetvalue = 0 },
5110 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5111 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5112 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5113 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5114 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5115 .access = PL2_RW, .type = ARM_CP_CONST,
5116 .resetvalue = 0 },
5117 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5118 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5119 .access = PL2_RW, .type = ARM_CP_CONST,
5120 .resetvalue = 0 },
5121 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5122 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5123 .access = PL2_RW, .type = ARM_CP_CONST,
5124 .resetvalue = 0 },
5125 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5126 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5127 .access = PL2_RW, .type = ARM_CP_CONST,
5128 .resetvalue = 0 },
5129 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5130 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5131 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5132 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
5133 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5134 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5135 .type = ARM_CP_CONST, .resetvalue = 0 },
5136 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5137 .cp = 15, .opc1 = 6, .crm = 2,
5138 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5139 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
5140 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5141 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5142 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5143 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5144 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5145 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5146 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5147 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
5148 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5149 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
5150 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
5151 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5152 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
5153 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5154 .resetvalue = 0 },
5155 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5156 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5157 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5158 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5159 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5160 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5161 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5162 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5163 .resetvalue = 0 },
5164 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5165 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5166 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5167 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5168 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5169 .resetvalue = 0 },
5170 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5171 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5172 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5173 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5174 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5175 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5176 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
5177 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
5178 .access = PL2_RW, .accessfn = access_tda,
5179 .type = ARM_CP_CONST, .resetvalue = 0 },
5180 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
5181 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5182 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5183 .type = ARM_CP_CONST, .resetvalue = 0 },
5184 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5185 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5186 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5187 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5188 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5189 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5190 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5191 .type = ARM_CP_CONST,
5192 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5193 .access = PL2_RW, .resetvalue = 0 },
5194 REGINFO_SENTINEL
5197 /* Ditto, but for registers which exist in ARMv8 but not v7 */
5198 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = {
5199 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5200 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5201 .access = PL2_RW,
5202 .type = ARM_CP_CONST, .resetvalue = 0 },
5203 REGINFO_SENTINEL
5206 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
5208 ARMCPU *cpu = env_archcpu(env);
5210 if (arm_feature(env, ARM_FEATURE_V8)) {
5211 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */
5212 } else {
5213 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */
5216 if (arm_feature(env, ARM_FEATURE_EL3)) {
5217 valid_mask &= ~HCR_HCD;
5218 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
5219 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
5220 * However, if we're using the SMC PSCI conduit then QEMU is
5221 * effectively acting like EL3 firmware and so the guest at
5222 * EL2 should retain the ability to prevent EL1 from being
5223 * able to make SMC calls into the ersatz firmware, so in
5224 * that case HCR.TSC should be read/write.
5226 valid_mask &= ~HCR_TSC;
5229 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5230 if (cpu_isar_feature(aa64_vh, cpu)) {
5231 valid_mask |= HCR_E2H;
5233 if (cpu_isar_feature(aa64_lor, cpu)) {
5234 valid_mask |= HCR_TLOR;
5236 if (cpu_isar_feature(aa64_pauth, cpu)) {
5237 valid_mask |= HCR_API | HCR_APK;
5241 /* Clear RES0 bits. */
5242 value &= valid_mask;
5244 /* These bits change the MMU setup:
5245 * HCR_VM enables stage 2 translation
5246 * HCR_PTW forbids certain page-table setups
5247 * HCR_DC Disables stage1 and enables stage2 translation
5249 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
5250 tlb_flush(CPU(cpu));
5252 env->cp15.hcr_el2 = value;
5255 * Updates to VI and VF require us to update the status of
5256 * virtual interrupts, which are the logical OR of these bits
5257 * and the state of the input lines from the GIC. (This requires
5258 * that we have the iothread lock, which is done by marking the
5259 * reginfo structs as ARM_CP_IO.)
5260 * Note that if a write to HCR pends a VIRQ or VFIQ it is never
5261 * possible for it to be taken immediately, because VIRQ and
5262 * VFIQ are masked unless running at EL0 or EL1, and HCR
5263 * can only be written at EL2.
5265 g_assert(qemu_mutex_iothread_locked());
5266 arm_cpu_update_virq(cpu);
5267 arm_cpu_update_vfiq(cpu);
5270 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
5272 do_hcr_write(env, value, 0);
5275 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
5276 uint64_t value)
5278 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
5279 value = deposit64(env->cp15.hcr_el2, 32, 32, value);
5280 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
5283 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
5284 uint64_t value)
5286 /* Handle HCR write, i.e. write to low half of HCR_EL2 */
5287 value = deposit64(env->cp15.hcr_el2, 0, 32, value);
5288 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
5292 * Return the effective value of HCR_EL2.
5293 * Bits that are not included here:
5294 * RW (read from SCR_EL3.RW as needed)
5296 uint64_t arm_hcr_el2_eff(CPUARMState *env)
5298 uint64_t ret = env->cp15.hcr_el2;
5300 if (arm_is_secure_below_el3(env)) {
5302 * "This register has no effect if EL2 is not enabled in the
5303 * current Security state". This is ARMv8.4-SecEL2 speak for
5304 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
5306 * Prior to that, the language was "In an implementation that
5307 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
5308 * as if this field is 0 for all purposes other than a direct
5309 * read or write access of HCR_EL2". With lots of enumeration
5310 * on a per-field basis. In current QEMU, this is condition
5311 * is arm_is_secure_below_el3.
5313 * Since the v8.4 language applies to the entire register, and
5314 * appears to be backward compatible, use that.
5316 return 0;
5320 * For a cpu that supports both aarch64 and aarch32, we can set bits
5321 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
5322 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
5324 if (!arm_el_is_aa64(env, 2)) {
5325 uint64_t aa32_valid;
5328 * These bits are up-to-date as of ARMv8.6.
5329 * For HCR, it's easiest to list just the 2 bits that are invalid.
5330 * For HCR2, list those that are valid.
5332 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
5333 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
5334 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
5335 ret &= aa32_valid;
5338 if (ret & HCR_TGE) {
5339 /* These bits are up-to-date as of ARMv8.6. */
5340 if (ret & HCR_E2H) {
5341 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
5342 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
5343 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
5344 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
5345 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
5346 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
5347 } else {
5348 ret |= HCR_FMO | HCR_IMO | HCR_AMO;
5350 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
5351 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
5352 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
5353 HCR_TLOR);
5356 return ret;
5359 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5360 uint64_t value)
5363 * For A-profile AArch32 EL3, if NSACR.CP10
5364 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5366 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5367 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5368 value &= ~(0x3 << 10);
5369 value |= env->cp15.cptr_el[2] & (0x3 << 10);
5371 env->cp15.cptr_el[2] = value;
5374 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
5377 * For A-profile AArch32 EL3, if NSACR.CP10
5378 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5380 uint64_t value = env->cp15.cptr_el[2];
5382 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5383 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5384 value |= 0x3 << 10;
5386 return value;
5389 static const ARMCPRegInfo el2_cp_reginfo[] = {
5390 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
5391 .type = ARM_CP_IO,
5392 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5393 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5394 .writefn = hcr_write },
5395 { .name = "HCR", .state = ARM_CP_STATE_AA32,
5396 .type = ARM_CP_ALIAS | ARM_CP_IO,
5397 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5398 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5399 .writefn = hcr_writelow },
5400 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5401 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5402 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5403 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
5404 .type = ARM_CP_ALIAS,
5405 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
5406 .access = PL2_RW,
5407 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
5408 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5409 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5410 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
5411 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5412 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5413 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
5414 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5415 .type = ARM_CP_ALIAS,
5416 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5417 .access = PL2_RW,
5418 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
5419 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
5420 .type = ARM_CP_ALIAS,
5421 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
5422 .access = PL2_RW,
5423 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
5424 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5425 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5426 .access = PL2_RW, .writefn = vbar_write,
5427 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
5428 .resetvalue = 0 },
5429 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
5430 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
5431 .access = PL3_RW, .type = ARM_CP_ALIAS,
5432 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
5433 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5434 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5435 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
5436 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
5437 .readfn = cptr_el2_read, .writefn = cptr_el2_write },
5438 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5439 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5440 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
5441 .resetvalue = 0 },
5442 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5443 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5444 .access = PL2_RW, .type = ARM_CP_ALIAS,
5445 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
5446 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5447 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5448 .access = PL2_RW, .type = ARM_CP_CONST,
5449 .resetvalue = 0 },
5450 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
5451 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5452 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5453 .access = PL2_RW, .type = ARM_CP_CONST,
5454 .resetvalue = 0 },
5455 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5456 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5457 .access = PL2_RW, .type = ARM_CP_CONST,
5458 .resetvalue = 0 },
5459 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5460 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5461 .access = PL2_RW, .type = ARM_CP_CONST,
5462 .resetvalue = 0 },
5463 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5464 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5465 .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
5466 /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */
5467 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
5468 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
5469 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5470 .type = ARM_CP_ALIAS,
5471 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5472 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5473 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
5474 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5475 .access = PL2_RW,
5476 /* no .writefn needed as this can't cause an ASID change;
5477 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
5479 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5480 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5481 .cp = 15, .opc1 = 6, .crm = 2,
5482 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5483 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5484 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
5485 .writefn = vttbr_write },
5486 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5487 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5488 .access = PL2_RW, .writefn = vttbr_write,
5489 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
5490 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5491 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5492 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
5493 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
5494 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5495 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
5496 .access = PL2_RW, .resetvalue = 0,
5497 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
5498 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
5499 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
5500 .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write,
5501 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5502 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
5503 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5504 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5505 { .name = "TLBIALLNSNH",
5506 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5507 .type = ARM_CP_NO_RAW, .access = PL2_W,
5508 .writefn = tlbiall_nsnh_write },
5509 { .name = "TLBIALLNSNHIS",
5510 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5511 .type = ARM_CP_NO_RAW, .access = PL2_W,
5512 .writefn = tlbiall_nsnh_is_write },
5513 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5514 .type = ARM_CP_NO_RAW, .access = PL2_W,
5515 .writefn = tlbiall_hyp_write },
5516 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5517 .type = ARM_CP_NO_RAW, .access = PL2_W,
5518 .writefn = tlbiall_hyp_is_write },
5519 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5520 .type = ARM_CP_NO_RAW, .access = PL2_W,
5521 .writefn = tlbimva_hyp_write },
5522 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5523 .type = ARM_CP_NO_RAW, .access = PL2_W,
5524 .writefn = tlbimva_hyp_is_write },
5525 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
5526 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5527 .type = ARM_CP_NO_RAW, .access = PL2_W,
5528 .writefn = tlbi_aa64_alle2_write },
5529 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
5530 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5531 .type = ARM_CP_NO_RAW, .access = PL2_W,
5532 .writefn = tlbi_aa64_vae2_write },
5533 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
5534 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5535 .access = PL2_W, .type = ARM_CP_NO_RAW,
5536 .writefn = tlbi_aa64_vae2_write },
5537 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
5538 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5539 .access = PL2_W, .type = ARM_CP_NO_RAW,
5540 .writefn = tlbi_aa64_alle2is_write },
5541 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
5542 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5543 .type = ARM_CP_NO_RAW, .access = PL2_W,
5544 .writefn = tlbi_aa64_vae2is_write },
5545 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
5546 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5547 .access = PL2_W, .type = ARM_CP_NO_RAW,
5548 .writefn = tlbi_aa64_vae2is_write },
5549 #ifndef CONFIG_USER_ONLY
5550 /* Unlike the other EL2-related AT operations, these must
5551 * UNDEF from EL3 if EL2 is not implemented, which is why we
5552 * define them here rather than with the rest of the AT ops.
5554 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
5555 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5556 .access = PL2_W, .accessfn = at_s1e2_access,
5557 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
5558 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
5559 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5560 .access = PL2_W, .accessfn = at_s1e2_access,
5561 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
5562 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
5563 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
5564 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
5565 * to behave as if SCR.NS was 1.
5567 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5568 .access = PL2_W,
5569 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5570 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5571 .access = PL2_W,
5572 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5573 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5574 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5575 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
5576 * reset values as IMPDEF. We choose to reset to 3 to comply with
5577 * both ARMv7 and ARMv8.
5579 .access = PL2_RW, .resetvalue = 3,
5580 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
5581 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5582 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5583 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
5584 .writefn = gt_cntvoff_write,
5585 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5586 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5587 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
5588 .writefn = gt_cntvoff_write,
5589 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5590 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5591 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5592 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5593 .type = ARM_CP_IO, .access = PL2_RW,
5594 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5595 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5596 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5597 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
5598 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5599 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5600 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5601 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
5602 .resetfn = gt_hyp_timer_reset,
5603 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
5604 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5605 .type = ARM_CP_IO,
5606 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5607 .access = PL2_RW,
5608 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
5609 .resetvalue = 0,
5610 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
5611 #endif
5612 /* The only field of MDCR_EL2 that has a defined architectural reset value
5613 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
5614 * don't implement any PMU event counters, so using zero as a reset
5615 * value for MDCR_EL2 is okay
5617 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
5618 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
5619 .access = PL2_RW, .resetvalue = 0,
5620 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
5621 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
5622 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5623 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5624 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5625 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
5626 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5627 .access = PL2_RW,
5628 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5629 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5630 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5631 .access = PL2_RW,
5632 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
5633 REGINFO_SENTINEL
5636 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
5637 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5638 .type = ARM_CP_ALIAS | ARM_CP_IO,
5639 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5640 .access = PL2_RW,
5641 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
5642 .writefn = hcr_writehigh },
5643 REGINFO_SENTINEL
5646 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
5647 bool isread)
5649 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
5650 * At Secure EL1 it traps to EL3.
5652 if (arm_current_el(env) == 3) {
5653 return CP_ACCESS_OK;
5655 if (arm_is_secure_below_el3(env)) {
5656 return CP_ACCESS_TRAP_EL3;
5658 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
5659 if (isread) {
5660 return CP_ACCESS_OK;
5662 return CP_ACCESS_TRAP_UNCATEGORIZED;
5665 static const ARMCPRegInfo el3_cp_reginfo[] = {
5666 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
5667 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
5668 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
5669 .resetvalue = 0, .writefn = scr_write },
5670 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
5671 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
5672 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5673 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
5674 .writefn = scr_write },
5675 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
5676 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
5677 .access = PL3_RW, .resetvalue = 0,
5678 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
5679 { .name = "SDER",
5680 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
5681 .access = PL3_RW, .resetvalue = 0,
5682 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
5683 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
5684 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5685 .writefn = vbar_write, .resetvalue = 0,
5686 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
5687 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
5688 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
5689 .access = PL3_RW, .resetvalue = 0,
5690 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
5691 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
5692 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
5693 .access = PL3_RW,
5694 /* no .writefn needed as this can't cause an ASID change;
5695 * we must provide a .raw_writefn and .resetfn because we handle
5696 * reset and migration for the AArch32 TTBCR(S), which might be
5697 * using mask and base_mask.
5699 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
5700 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
5701 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
5702 .type = ARM_CP_ALIAS,
5703 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
5704 .access = PL3_RW,
5705 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
5706 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
5707 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
5708 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
5709 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
5710 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
5711 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
5712 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
5713 .type = ARM_CP_ALIAS,
5714 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
5715 .access = PL3_RW,
5716 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
5717 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
5718 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
5719 .access = PL3_RW, .writefn = vbar_write,
5720 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
5721 .resetvalue = 0 },
5722 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
5723 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
5724 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
5725 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
5726 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
5727 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
5728 .access = PL3_RW, .resetvalue = 0,
5729 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
5730 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
5731 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
5732 .access = PL3_RW, .type = ARM_CP_CONST,
5733 .resetvalue = 0 },
5734 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
5735 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
5736 .access = PL3_RW, .type = ARM_CP_CONST,
5737 .resetvalue = 0 },
5738 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
5739 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
5740 .access = PL3_RW, .type = ARM_CP_CONST,
5741 .resetvalue = 0 },
5742 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
5743 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
5744 .access = PL3_W, .type = ARM_CP_NO_RAW,
5745 .writefn = tlbi_aa64_alle3is_write },
5746 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
5747 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
5748 .access = PL3_W, .type = ARM_CP_NO_RAW,
5749 .writefn = tlbi_aa64_vae3is_write },
5750 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
5751 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
5752 .access = PL3_W, .type = ARM_CP_NO_RAW,
5753 .writefn = tlbi_aa64_vae3is_write },
5754 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
5755 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
5756 .access = PL3_W, .type = ARM_CP_NO_RAW,
5757 .writefn = tlbi_aa64_alle3_write },
5758 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
5759 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
5760 .access = PL3_W, .type = ARM_CP_NO_RAW,
5761 .writefn = tlbi_aa64_vae3_write },
5762 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
5763 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
5764 .access = PL3_W, .type = ARM_CP_NO_RAW,
5765 .writefn = tlbi_aa64_vae3_write },
5766 REGINFO_SENTINEL
5769 #ifndef CONFIG_USER_ONLY
5770 /* Test if system register redirection is to occur in the current state. */
5771 static bool redirect_for_e2h(CPUARMState *env)
5773 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
5776 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
5778 CPReadFn *readfn;
5780 if (redirect_for_e2h(env)) {
5781 /* Switch to the saved EL2 version of the register. */
5782 ri = ri->opaque;
5783 readfn = ri->readfn;
5784 } else {
5785 readfn = ri->orig_readfn;
5787 if (readfn == NULL) {
5788 readfn = raw_read;
5790 return readfn(env, ri);
5793 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
5794 uint64_t value)
5796 CPWriteFn *writefn;
5798 if (redirect_for_e2h(env)) {
5799 /* Switch to the saved EL2 version of the register. */
5800 ri = ri->opaque;
5801 writefn = ri->writefn;
5802 } else {
5803 writefn = ri->orig_writefn;
5805 if (writefn == NULL) {
5806 writefn = raw_write;
5808 writefn(env, ri, value);
5811 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
5813 struct E2HAlias {
5814 uint32_t src_key, dst_key, new_key;
5815 const char *src_name, *dst_name, *new_name;
5816 bool (*feature)(const ARMISARegisters *id);
5819 #define K(op0, op1, crn, crm, op2) \
5820 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
5822 static const struct E2HAlias aliases[] = {
5823 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0),
5824 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
5825 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2),
5826 "CPACR", "CPTR_EL2", "CPACR_EL12" },
5827 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0),
5828 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
5829 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1),
5830 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
5831 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2),
5832 "TCR_EL1", "TCR_EL2", "TCR_EL12" },
5833 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0),
5834 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
5835 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1),
5836 "ELR_EL1", "ELR_EL2", "ELR_EL12" },
5837 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0),
5838 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
5839 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1),
5840 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
5841 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0),
5842 "ESR_EL1", "ESR_EL2", "ESR_EL12" },
5843 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0),
5844 "FAR_EL1", "FAR_EL2", "FAR_EL12" },
5845 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
5846 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
5847 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
5848 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
5849 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
5850 "VBAR", "VBAR_EL2", "VBAR_EL12" },
5851 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
5852 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
5853 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
5854 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
5857 * Note that redirection of ZCR is mentioned in the description
5858 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
5859 * not in the summary table.
5861 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0),
5862 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
5864 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
5865 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
5867 #undef K
5869 size_t i;
5871 for (i = 0; i < ARRAY_SIZE(aliases); i++) {
5872 const struct E2HAlias *a = &aliases[i];
5873 ARMCPRegInfo *src_reg, *dst_reg;
5875 if (a->feature && !a->feature(&cpu->isar)) {
5876 continue;
5879 src_reg = g_hash_table_lookup(cpu->cp_regs, &a->src_key);
5880 dst_reg = g_hash_table_lookup(cpu->cp_regs, &a->dst_key);
5881 g_assert(src_reg != NULL);
5882 g_assert(dst_reg != NULL);
5884 /* Cross-compare names to detect typos in the keys. */
5885 g_assert(strcmp(src_reg->name, a->src_name) == 0);
5886 g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
5888 /* None of the core system registers use opaque; we will. */
5889 g_assert(src_reg->opaque == NULL);
5891 /* Create alias before redirection so we dup the right data. */
5892 if (a->new_key) {
5893 ARMCPRegInfo *new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
5894 uint32_t *new_key = g_memdup(&a->new_key, sizeof(uint32_t));
5895 bool ok;
5897 new_reg->name = a->new_name;
5898 new_reg->type |= ARM_CP_ALIAS;
5899 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */
5900 new_reg->access &= PL2_RW | PL3_RW;
5902 ok = g_hash_table_insert(cpu->cp_regs, new_key, new_reg);
5903 g_assert(ok);
5906 src_reg->opaque = dst_reg;
5907 src_reg->orig_readfn = src_reg->readfn ?: raw_read;
5908 src_reg->orig_writefn = src_reg->writefn ?: raw_write;
5909 if (!src_reg->raw_readfn) {
5910 src_reg->raw_readfn = raw_read;
5912 if (!src_reg->raw_writefn) {
5913 src_reg->raw_writefn = raw_write;
5915 src_reg->readfn = el2_e2h_read;
5916 src_reg->writefn = el2_e2h_write;
5919 #endif
5921 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5922 bool isread)
5924 int cur_el = arm_current_el(env);
5926 if (cur_el < 2) {
5927 uint64_t hcr = arm_hcr_el2_eff(env);
5929 if (cur_el == 0) {
5930 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
5931 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
5932 return CP_ACCESS_TRAP_EL2;
5934 } else {
5935 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
5936 return CP_ACCESS_TRAP;
5938 if (hcr & HCR_TID2) {
5939 return CP_ACCESS_TRAP_EL2;
5942 } else if (hcr & HCR_TID2) {
5943 return CP_ACCESS_TRAP_EL2;
5947 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
5948 return CP_ACCESS_TRAP_EL2;
5951 return CP_ACCESS_OK;
5954 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
5955 uint64_t value)
5957 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
5958 * read via a bit in OSLSR_EL1.
5960 int oslock;
5962 if (ri->state == ARM_CP_STATE_AA32) {
5963 oslock = (value == 0xC5ACCE55);
5964 } else {
5965 oslock = value & 1;
5968 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
5971 static const ARMCPRegInfo debug_cp_reginfo[] = {
5972 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
5973 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
5974 * unlike DBGDRAR it is never accessible from EL0.
5975 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
5976 * accessor.
5978 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
5979 .access = PL0_R, .accessfn = access_tdra,
5980 .type = ARM_CP_CONST, .resetvalue = 0 },
5981 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
5982 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
5983 .access = PL1_R, .accessfn = access_tdra,
5984 .type = ARM_CP_CONST, .resetvalue = 0 },
5985 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
5986 .access = PL0_R, .accessfn = access_tdra,
5987 .type = ARM_CP_CONST, .resetvalue = 0 },
5988 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
5989 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
5990 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
5991 .access = PL1_RW, .accessfn = access_tda,
5992 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
5993 .resetvalue = 0 },
5994 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
5995 * We don't implement the configurable EL0 access.
5997 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
5998 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
5999 .type = ARM_CP_ALIAS,
6000 .access = PL1_R, .accessfn = access_tda,
6001 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
6002 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
6003 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
6004 .access = PL1_W, .type = ARM_CP_NO_RAW,
6005 .accessfn = access_tdosa,
6006 .writefn = oslar_write },
6007 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
6008 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
6009 .access = PL1_R, .resetvalue = 10,
6010 .accessfn = access_tdosa,
6011 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
6012 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
6013 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
6014 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
6015 .access = PL1_RW, .accessfn = access_tdosa,
6016 .type = ARM_CP_NOP },
6017 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
6018 * implement vector catch debug events yet.
6020 { .name = "DBGVCR",
6021 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
6022 .access = PL1_RW, .accessfn = access_tda,
6023 .type = ARM_CP_NOP },
6024 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
6025 * to save and restore a 32-bit guest's DBGVCR)
6027 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
6028 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
6029 .access = PL2_RW, .accessfn = access_tda,
6030 .type = ARM_CP_NOP },
6031 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
6032 * Channel but Linux may try to access this register. The 32-bit
6033 * alias is DBGDCCINT.
6035 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
6036 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
6037 .access = PL1_RW, .accessfn = access_tda,
6038 .type = ARM_CP_NOP },
6039 REGINFO_SENTINEL
6042 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
6043 /* 64 bit access versions of the (dummy) debug registers */
6044 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
6045 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
6046 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
6047 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
6048 REGINFO_SENTINEL
6051 /* Return the exception level to which exceptions should be taken
6052 * via SVEAccessTrap. If an exception should be routed through
6053 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should
6054 * take care of raising that exception.
6055 * C.f. the ARM pseudocode function CheckSVEEnabled.
6057 int sve_exception_el(CPUARMState *env, int el)
6059 #ifndef CONFIG_USER_ONLY
6060 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
6062 if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
6063 bool disabled = false;
6065 /* The CPACR.ZEN controls traps to EL1:
6066 * 0, 2 : trap EL0 and EL1 accesses
6067 * 1 : trap only EL0 accesses
6068 * 3 : trap no accesses
6070 if (!extract32(env->cp15.cpacr_el1, 16, 1)) {
6071 disabled = true;
6072 } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) {
6073 disabled = el == 0;
6075 if (disabled) {
6076 /* route_to_el2 */
6077 return hcr_el2 & HCR_TGE ? 2 : 1;
6080 /* Check CPACR.FPEN. */
6081 if (!extract32(env->cp15.cpacr_el1, 20, 1)) {
6082 disabled = true;
6083 } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) {
6084 disabled = el == 0;
6086 if (disabled) {
6087 return 0;
6091 /* CPTR_EL2. Since TZ and TFP are positive,
6092 * they will be zero when EL2 is not present.
6094 if (el <= 2 && !arm_is_secure_below_el3(env)) {
6095 if (env->cp15.cptr_el[2] & CPTR_TZ) {
6096 return 2;
6098 if (env->cp15.cptr_el[2] & CPTR_TFP) {
6099 return 0;
6103 /* CPTR_EL3. Since EZ is negative we must check for EL3. */
6104 if (arm_feature(env, ARM_FEATURE_EL3)
6105 && !(env->cp15.cptr_el[3] & CPTR_EZ)) {
6106 return 3;
6108 #endif
6109 return 0;
6112 static uint32_t sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len)
6114 uint32_t end_len;
6116 end_len = start_len &= 0xf;
6117 if (!test_bit(start_len, cpu->sve_vq_map)) {
6118 end_len = find_last_bit(cpu->sve_vq_map, start_len);
6119 assert(end_len < start_len);
6121 return end_len;
6125 * Given that SVE is enabled, return the vector length for EL.
6127 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el)
6129 ARMCPU *cpu = env_archcpu(env);
6130 uint32_t zcr_len = cpu->sve_max_vq - 1;
6132 if (el <= 1) {
6133 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]);
6135 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
6136 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
6138 if (arm_feature(env, ARM_FEATURE_EL3)) {
6139 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
6142 return sve_zcr_get_valid_len(cpu, zcr_len);
6145 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6146 uint64_t value)
6148 int cur_el = arm_current_el(env);
6149 int old_len = sve_zcr_len_for_el(env, cur_el);
6150 int new_len;
6152 /* Bits other than [3:0] are RAZ/WI. */
6153 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
6154 raw_write(env, ri, value & 0xf);
6157 * Because we arrived here, we know both FP and SVE are enabled;
6158 * otherwise we would have trapped access to the ZCR_ELn register.
6160 new_len = sve_zcr_len_for_el(env, cur_el);
6161 if (new_len < old_len) {
6162 aarch64_sve_narrow_vq(env, new_len + 1);
6166 static const ARMCPRegInfo zcr_el1_reginfo = {
6167 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
6168 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
6169 .access = PL1_RW, .type = ARM_CP_SVE,
6170 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
6171 .writefn = zcr_write, .raw_writefn = raw_write
6174 static const ARMCPRegInfo zcr_el2_reginfo = {
6175 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6176 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6177 .access = PL2_RW, .type = ARM_CP_SVE,
6178 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
6179 .writefn = zcr_write, .raw_writefn = raw_write
6182 static const ARMCPRegInfo zcr_no_el2_reginfo = {
6183 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6184 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6185 .access = PL2_RW, .type = ARM_CP_SVE,
6186 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore
6189 static const ARMCPRegInfo zcr_el3_reginfo = {
6190 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
6191 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
6192 .access = PL3_RW, .type = ARM_CP_SVE,
6193 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
6194 .writefn = zcr_write, .raw_writefn = raw_write
6197 void hw_watchpoint_update(ARMCPU *cpu, int n)
6199 CPUARMState *env = &cpu->env;
6200 vaddr len = 0;
6201 vaddr wvr = env->cp15.dbgwvr[n];
6202 uint64_t wcr = env->cp15.dbgwcr[n];
6203 int mask;
6204 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
6206 if (env->cpu_watchpoint[n]) {
6207 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
6208 env->cpu_watchpoint[n] = NULL;
6211 if (!extract64(wcr, 0, 1)) {
6212 /* E bit clear : watchpoint disabled */
6213 return;
6216 switch (extract64(wcr, 3, 2)) {
6217 case 0:
6218 /* LSC 00 is reserved and must behave as if the wp is disabled */
6219 return;
6220 case 1:
6221 flags |= BP_MEM_READ;
6222 break;
6223 case 2:
6224 flags |= BP_MEM_WRITE;
6225 break;
6226 case 3:
6227 flags |= BP_MEM_ACCESS;
6228 break;
6231 /* Attempts to use both MASK and BAS fields simultaneously are
6232 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
6233 * thus generating a watchpoint for every byte in the masked region.
6235 mask = extract64(wcr, 24, 4);
6236 if (mask == 1 || mask == 2) {
6237 /* Reserved values of MASK; we must act as if the mask value was
6238 * some non-reserved value, or as if the watchpoint were disabled.
6239 * We choose the latter.
6241 return;
6242 } else if (mask) {
6243 /* Watchpoint covers an aligned area up to 2GB in size */
6244 len = 1ULL << mask;
6245 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
6246 * whether the watchpoint fires when the unmasked bits match; we opt
6247 * to generate the exceptions.
6249 wvr &= ~(len - 1);
6250 } else {
6251 /* Watchpoint covers bytes defined by the byte address select bits */
6252 int bas = extract64(wcr, 5, 8);
6253 int basstart;
6255 if (extract64(wvr, 2, 1)) {
6256 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
6257 * ignored, and BAS[3:0] define which bytes to watch.
6259 bas &= 0xf;
6262 if (bas == 0) {
6263 /* This must act as if the watchpoint is disabled */
6264 return;
6267 /* The BAS bits are supposed to be programmed to indicate a contiguous
6268 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
6269 * we fire for each byte in the word/doubleword addressed by the WVR.
6270 * We choose to ignore any non-zero bits after the first range of 1s.
6272 basstart = ctz32(bas);
6273 len = cto32(bas >> basstart);
6274 wvr += basstart;
6277 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
6278 &env->cpu_watchpoint[n]);
6281 void hw_watchpoint_update_all(ARMCPU *cpu)
6283 int i;
6284 CPUARMState *env = &cpu->env;
6286 /* Completely clear out existing QEMU watchpoints and our array, to
6287 * avoid possible stale entries following migration load.
6289 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
6290 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
6292 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
6293 hw_watchpoint_update(cpu, i);
6297 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6298 uint64_t value)
6300 ARMCPU *cpu = env_archcpu(env);
6301 int i = ri->crm;
6303 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
6304 * register reads and behaves as if values written are sign extended.
6305 * Bits [1:0] are RES0.
6307 value = sextract64(value, 0, 49) & ~3ULL;
6309 raw_write(env, ri, value);
6310 hw_watchpoint_update(cpu, i);
6313 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6314 uint64_t value)
6316 ARMCPU *cpu = env_archcpu(env);
6317 int i = ri->crm;
6319 raw_write(env, ri, value);
6320 hw_watchpoint_update(cpu, i);
6323 void hw_breakpoint_update(ARMCPU *cpu, int n)
6325 CPUARMState *env = &cpu->env;
6326 uint64_t bvr = env->cp15.dbgbvr[n];
6327 uint64_t bcr = env->cp15.dbgbcr[n];
6328 vaddr addr;
6329 int bt;
6330 int flags = BP_CPU;
6332 if (env->cpu_breakpoint[n]) {
6333 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
6334 env->cpu_breakpoint[n] = NULL;
6337 if (!extract64(bcr, 0, 1)) {
6338 /* E bit clear : watchpoint disabled */
6339 return;
6342 bt = extract64(bcr, 20, 4);
6344 switch (bt) {
6345 case 4: /* unlinked address mismatch (reserved if AArch64) */
6346 case 5: /* linked address mismatch (reserved if AArch64) */
6347 qemu_log_mask(LOG_UNIMP,
6348 "arm: address mismatch breakpoint types not implemented\n");
6349 return;
6350 case 0: /* unlinked address match */
6351 case 1: /* linked address match */
6353 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
6354 * we behave as if the register was sign extended. Bits [1:0] are
6355 * RES0. The BAS field is used to allow setting breakpoints on 16
6356 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
6357 * a bp will fire if the addresses covered by the bp and the addresses
6358 * covered by the insn overlap but the insn doesn't start at the
6359 * start of the bp address range. We choose to require the insn and
6360 * the bp to have the same address. The constraints on writing to
6361 * BAS enforced in dbgbcr_write mean we have only four cases:
6362 * 0b0000 => no breakpoint
6363 * 0b0011 => breakpoint on addr
6364 * 0b1100 => breakpoint on addr + 2
6365 * 0b1111 => breakpoint on addr
6366 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
6368 int bas = extract64(bcr, 5, 4);
6369 addr = sextract64(bvr, 0, 49) & ~3ULL;
6370 if (bas == 0) {
6371 return;
6373 if (bas == 0xc) {
6374 addr += 2;
6376 break;
6378 case 2: /* unlinked context ID match */
6379 case 8: /* unlinked VMID match (reserved if no EL2) */
6380 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
6381 qemu_log_mask(LOG_UNIMP,
6382 "arm: unlinked context breakpoint types not implemented\n");
6383 return;
6384 case 9: /* linked VMID match (reserved if no EL2) */
6385 case 11: /* linked context ID and VMID match (reserved if no EL2) */
6386 case 3: /* linked context ID match */
6387 default:
6388 /* We must generate no events for Linked context matches (unless
6389 * they are linked to by some other bp/wp, which is handled in
6390 * updates for the linking bp/wp). We choose to also generate no events
6391 * for reserved values.
6393 return;
6396 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
6399 void hw_breakpoint_update_all(ARMCPU *cpu)
6401 int i;
6402 CPUARMState *env = &cpu->env;
6404 /* Completely clear out existing QEMU breakpoints and our array, to
6405 * avoid possible stale entries following migration load.
6407 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
6408 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
6410 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
6411 hw_breakpoint_update(cpu, i);
6415 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6416 uint64_t value)
6418 ARMCPU *cpu = env_archcpu(env);
6419 int i = ri->crm;
6421 raw_write(env, ri, value);
6422 hw_breakpoint_update(cpu, i);
6425 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6426 uint64_t value)
6428 ARMCPU *cpu = env_archcpu(env);
6429 int i = ri->crm;
6431 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
6432 * copy of BAS[0].
6434 value = deposit64(value, 6, 1, extract64(value, 5, 1));
6435 value = deposit64(value, 8, 1, extract64(value, 7, 1));
6437 raw_write(env, ri, value);
6438 hw_breakpoint_update(cpu, i);
6441 static void define_debug_regs(ARMCPU *cpu)
6443 /* Define v7 and v8 architectural debug registers.
6444 * These are just dummy implementations for now.
6446 int i;
6447 int wrps, brps, ctx_cmps;
6448 ARMCPRegInfo dbgdidr = {
6449 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
6450 .access = PL0_R, .accessfn = access_tda,
6451 .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr,
6454 /* Note that all these register fields hold "number of Xs minus 1". */
6455 brps = arm_num_brps(cpu);
6456 wrps = arm_num_wrps(cpu);
6457 ctx_cmps = arm_num_ctx_cmps(cpu);
6459 assert(ctx_cmps <= brps);
6461 define_one_arm_cp_reg(cpu, &dbgdidr);
6462 define_arm_cp_regs(cpu, debug_cp_reginfo);
6464 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
6465 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
6468 for (i = 0; i < brps; i++) {
6469 ARMCPRegInfo dbgregs[] = {
6470 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
6471 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
6472 .access = PL1_RW, .accessfn = access_tda,
6473 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
6474 .writefn = dbgbvr_write, .raw_writefn = raw_write
6476 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
6477 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
6478 .access = PL1_RW, .accessfn = access_tda,
6479 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
6480 .writefn = dbgbcr_write, .raw_writefn = raw_write
6482 REGINFO_SENTINEL
6484 define_arm_cp_regs(cpu, dbgregs);
6487 for (i = 0; i < wrps; i++) {
6488 ARMCPRegInfo dbgregs[] = {
6489 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
6490 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
6491 .access = PL1_RW, .accessfn = access_tda,
6492 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
6493 .writefn = dbgwvr_write, .raw_writefn = raw_write
6495 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
6496 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
6497 .access = PL1_RW, .accessfn = access_tda,
6498 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
6499 .writefn = dbgwcr_write, .raw_writefn = raw_write
6501 REGINFO_SENTINEL
6503 define_arm_cp_regs(cpu, dbgregs);
6507 static void define_pmu_regs(ARMCPU *cpu)
6510 * v7 performance monitor control register: same implementor
6511 * field as main ID register, and we implement four counters in
6512 * addition to the cycle count register.
6514 unsigned int i, pmcrn = 4;
6515 ARMCPRegInfo pmcr = {
6516 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
6517 .access = PL0_RW,
6518 .type = ARM_CP_IO | ARM_CP_ALIAS,
6519 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
6520 .accessfn = pmreg_access, .writefn = pmcr_write,
6521 .raw_writefn = raw_write,
6523 ARMCPRegInfo pmcr64 = {
6524 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
6525 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
6526 .access = PL0_RW, .accessfn = pmreg_access,
6527 .type = ARM_CP_IO,
6528 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
6529 .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT) |
6530 PMCRLC,
6531 .writefn = pmcr_write, .raw_writefn = raw_write,
6533 define_one_arm_cp_reg(cpu, &pmcr);
6534 define_one_arm_cp_reg(cpu, &pmcr64);
6535 for (i = 0; i < pmcrn; i++) {
6536 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
6537 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
6538 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
6539 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
6540 ARMCPRegInfo pmev_regs[] = {
6541 { .name = pmevcntr_name, .cp = 15, .crn = 14,
6542 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6543 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6544 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6545 .accessfn = pmreg_access },
6546 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
6547 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
6548 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6549 .type = ARM_CP_IO,
6550 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6551 .raw_readfn = pmevcntr_rawread,
6552 .raw_writefn = pmevcntr_rawwrite },
6553 { .name = pmevtyper_name, .cp = 15, .crn = 14,
6554 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6555 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6556 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6557 .accessfn = pmreg_access },
6558 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
6559 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
6560 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6561 .type = ARM_CP_IO,
6562 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6563 .raw_writefn = pmevtyper_rawwrite },
6564 REGINFO_SENTINEL
6566 define_arm_cp_regs(cpu, pmev_regs);
6567 g_free(pmevcntr_name);
6568 g_free(pmevcntr_el0_name);
6569 g_free(pmevtyper_name);
6570 g_free(pmevtyper_el0_name);
6572 if (cpu_isar_feature(aa32_pmu_8_1, cpu)) {
6573 ARMCPRegInfo v81_pmu_regs[] = {
6574 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
6575 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
6576 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6577 .resetvalue = extract64(cpu->pmceid0, 32, 32) },
6578 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
6579 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
6580 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6581 .resetvalue = extract64(cpu->pmceid1, 32, 32) },
6582 REGINFO_SENTINEL
6584 define_arm_cp_regs(cpu, v81_pmu_regs);
6586 if (cpu_isar_feature(any_pmu_8_4, cpu)) {
6587 static const ARMCPRegInfo v84_pmmir = {
6588 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
6589 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
6590 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6591 .resetvalue = 0
6593 define_one_arm_cp_reg(cpu, &v84_pmmir);
6597 /* We don't know until after realize whether there's a GICv3
6598 * attached, and that is what registers the gicv3 sysregs.
6599 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
6600 * at runtime.
6602 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
6604 ARMCPU *cpu = env_archcpu(env);
6605 uint64_t pfr1 = cpu->id_pfr1;
6607 if (env->gicv3state) {
6608 pfr1 |= 1 << 28;
6610 return pfr1;
6613 #ifndef CONFIG_USER_ONLY
6614 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
6616 ARMCPU *cpu = env_archcpu(env);
6617 uint64_t pfr0 = cpu->isar.id_aa64pfr0;
6619 if (env->gicv3state) {
6620 pfr0 |= 1 << 24;
6622 return pfr0;
6624 #endif
6626 /* Shared logic between LORID and the rest of the LOR* registers.
6627 * Secure state has already been delt with.
6629 static CPAccessResult access_lor_ns(CPUARMState *env)
6631 int el = arm_current_el(env);
6633 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
6634 return CP_ACCESS_TRAP_EL2;
6636 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
6637 return CP_ACCESS_TRAP_EL3;
6639 return CP_ACCESS_OK;
6642 static CPAccessResult access_lorid(CPUARMState *env, const ARMCPRegInfo *ri,
6643 bool isread)
6645 if (arm_is_secure_below_el3(env)) {
6646 /* Access ok in secure mode. */
6647 return CP_ACCESS_OK;
6649 return access_lor_ns(env);
6652 static CPAccessResult access_lor_other(CPUARMState *env,
6653 const ARMCPRegInfo *ri, bool isread)
6655 if (arm_is_secure_below_el3(env)) {
6656 /* Access denied in secure mode. */
6657 return CP_ACCESS_TRAP;
6659 return access_lor_ns(env);
6663 * A trivial implementation of ARMv8.1-LOR leaves all of these
6664 * registers fixed at 0, which indicates that there are zero
6665 * supported Limited Ordering regions.
6667 static const ARMCPRegInfo lor_reginfo[] = {
6668 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
6669 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
6670 .access = PL1_RW, .accessfn = access_lor_other,
6671 .type = ARM_CP_CONST, .resetvalue = 0 },
6672 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
6673 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
6674 .access = PL1_RW, .accessfn = access_lor_other,
6675 .type = ARM_CP_CONST, .resetvalue = 0 },
6676 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
6677 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
6678 .access = PL1_RW, .accessfn = access_lor_other,
6679 .type = ARM_CP_CONST, .resetvalue = 0 },
6680 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
6681 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
6682 .access = PL1_RW, .accessfn = access_lor_other,
6683 .type = ARM_CP_CONST, .resetvalue = 0 },
6684 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
6685 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
6686 .access = PL1_R, .accessfn = access_lorid,
6687 .type = ARM_CP_CONST, .resetvalue = 0 },
6688 REGINFO_SENTINEL
6691 #ifdef TARGET_AARCH64
6692 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
6693 bool isread)
6695 int el = arm_current_el(env);
6697 if (el < 2 &&
6698 arm_feature(env, ARM_FEATURE_EL2) &&
6699 !(arm_hcr_el2_eff(env) & HCR_APK)) {
6700 return CP_ACCESS_TRAP_EL2;
6702 if (el < 3 &&
6703 arm_feature(env, ARM_FEATURE_EL3) &&
6704 !(env->cp15.scr_el3 & SCR_APK)) {
6705 return CP_ACCESS_TRAP_EL3;
6707 return CP_ACCESS_OK;
6710 static const ARMCPRegInfo pauth_reginfo[] = {
6711 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6712 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
6713 .access = PL1_RW, .accessfn = access_pauth,
6714 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
6715 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6716 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
6717 .access = PL1_RW, .accessfn = access_pauth,
6718 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
6719 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6720 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
6721 .access = PL1_RW, .accessfn = access_pauth,
6722 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
6723 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6724 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
6725 .access = PL1_RW, .accessfn = access_pauth,
6726 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
6727 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6728 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
6729 .access = PL1_RW, .accessfn = access_pauth,
6730 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
6731 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6732 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
6733 .access = PL1_RW, .accessfn = access_pauth,
6734 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
6735 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6736 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
6737 .access = PL1_RW, .accessfn = access_pauth,
6738 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
6739 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6740 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
6741 .access = PL1_RW, .accessfn = access_pauth,
6742 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
6743 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6744 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
6745 .access = PL1_RW, .accessfn = access_pauth,
6746 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
6747 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6748 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
6749 .access = PL1_RW, .accessfn = access_pauth,
6750 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
6751 REGINFO_SENTINEL
6754 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
6756 Error *err = NULL;
6757 uint64_t ret;
6759 /* Success sets NZCV = 0000. */
6760 env->NF = env->CF = env->VF = 0, env->ZF = 1;
6762 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
6764 * ??? Failed, for unknown reasons in the crypto subsystem.
6765 * The best we can do is log the reason and return the
6766 * timed-out indication to the guest. There is no reason
6767 * we know to expect this failure to be transitory, so the
6768 * guest may well hang retrying the operation.
6770 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
6771 ri->name, error_get_pretty(err));
6772 error_free(err);
6774 env->ZF = 0; /* NZCF = 0100 */
6775 return 0;
6777 return ret;
6780 /* We do not support re-seeding, so the two registers operate the same. */
6781 static const ARMCPRegInfo rndr_reginfo[] = {
6782 { .name = "RNDR", .state = ARM_CP_STATE_AA64,
6783 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
6784 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
6785 .access = PL0_R, .readfn = rndr_readfn },
6786 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
6787 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
6788 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
6789 .access = PL0_R, .readfn = rndr_readfn },
6790 REGINFO_SENTINEL
6793 #ifndef CONFIG_USER_ONLY
6794 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
6795 uint64_t value)
6797 ARMCPU *cpu = env_archcpu(env);
6798 /* CTR_EL0 System register -> DminLine, bits [19:16] */
6799 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
6800 uint64_t vaddr_in = (uint64_t) value;
6801 uint64_t vaddr = vaddr_in & ~(dline_size - 1);
6802 void *haddr;
6803 int mem_idx = cpu_mmu_index(env, false);
6805 /* This won't be crossing page boundaries */
6806 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
6807 if (haddr) {
6809 ram_addr_t offset;
6810 MemoryRegion *mr;
6812 /* RCU lock is already being held */
6813 mr = memory_region_from_host(haddr, &offset);
6815 if (mr) {
6816 memory_region_do_writeback(mr, offset, dline_size);
6821 static const ARMCPRegInfo dcpop_reg[] = {
6822 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
6823 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
6824 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
6825 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
6826 REGINFO_SENTINEL
6829 static const ARMCPRegInfo dcpodp_reg[] = {
6830 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
6831 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
6832 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
6833 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
6834 REGINFO_SENTINEL
6836 #endif /*CONFIG_USER_ONLY*/
6838 #endif
6840 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
6841 bool isread)
6843 int el = arm_current_el(env);
6845 if (el == 0) {
6846 uint64_t sctlr = arm_sctlr(env, el);
6847 if (!(sctlr & SCTLR_EnRCTX)) {
6848 return CP_ACCESS_TRAP;
6850 } else if (el == 1) {
6851 uint64_t hcr = arm_hcr_el2_eff(env);
6852 if (hcr & HCR_NV) {
6853 return CP_ACCESS_TRAP_EL2;
6856 return CP_ACCESS_OK;
6859 static const ARMCPRegInfo predinv_reginfo[] = {
6860 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
6861 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
6862 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
6863 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
6864 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
6865 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
6866 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
6867 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
6868 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
6870 * Note the AArch32 opcodes have a different OPC1.
6872 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
6873 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
6874 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
6875 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
6876 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
6877 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
6878 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
6879 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
6880 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
6881 REGINFO_SENTINEL
6884 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
6886 /* Read the high 32 bits of the current CCSIDR */
6887 return extract64(ccsidr_read(env, ri), 32, 32);
6890 static const ARMCPRegInfo ccsidr2_reginfo[] = {
6891 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
6892 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
6893 .access = PL1_R,
6894 .accessfn = access_aa64_tid2,
6895 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
6896 REGINFO_SENTINEL
6899 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
6900 bool isread)
6902 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
6903 return CP_ACCESS_TRAP_EL2;
6906 return CP_ACCESS_OK;
6909 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
6910 bool isread)
6912 if (arm_feature(env, ARM_FEATURE_V8)) {
6913 return access_aa64_tid3(env, ri, isread);
6916 return CP_ACCESS_OK;
6919 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
6920 bool isread)
6922 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
6923 return CP_ACCESS_TRAP_EL2;
6926 return CP_ACCESS_OK;
6929 static const ARMCPRegInfo jazelle_regs[] = {
6930 { .name = "JIDR",
6931 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
6932 .access = PL1_R, .accessfn = access_jazelle,
6933 .type = ARM_CP_CONST, .resetvalue = 0 },
6934 { .name = "JOSCR",
6935 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
6936 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
6937 { .name = "JMCR",
6938 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
6939 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
6940 REGINFO_SENTINEL
6943 static const ARMCPRegInfo vhe_reginfo[] = {
6944 { .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
6945 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
6946 .access = PL2_RW,
6947 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) },
6948 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
6949 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
6950 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
6951 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
6952 #ifndef CONFIG_USER_ONLY
6953 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
6954 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
6955 .fieldoffset =
6956 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
6957 .type = ARM_CP_IO, .access = PL2_RW,
6958 .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
6959 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
6960 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
6961 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
6962 .resetfn = gt_hv_timer_reset,
6963 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
6964 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
6965 .type = ARM_CP_IO,
6966 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
6967 .access = PL2_RW,
6968 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
6969 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
6970 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
6971 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
6972 .type = ARM_CP_IO | ARM_CP_ALIAS,
6973 .access = PL2_RW, .accessfn = e2h_access,
6974 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
6975 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
6976 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
6977 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
6978 .type = ARM_CP_IO | ARM_CP_ALIAS,
6979 .access = PL2_RW, .accessfn = e2h_access,
6980 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
6981 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
6982 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
6983 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
6984 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
6985 .access = PL2_RW, .accessfn = e2h_access,
6986 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
6987 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
6988 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
6989 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
6990 .access = PL2_RW, .accessfn = e2h_access,
6991 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
6992 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
6993 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
6994 .type = ARM_CP_IO | ARM_CP_ALIAS,
6995 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
6996 .access = PL2_RW, .accessfn = e2h_access,
6997 .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
6998 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
6999 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
7000 .type = ARM_CP_IO | ARM_CP_ALIAS,
7001 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
7002 .access = PL2_RW, .accessfn = e2h_access,
7003 .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
7004 #endif
7005 REGINFO_SENTINEL
7008 #ifndef CONFIG_USER_ONLY
7009 static const ARMCPRegInfo ats1e1_reginfo[] = {
7010 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
7011 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7012 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7013 .writefn = ats_write64 },
7014 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
7015 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7016 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7017 .writefn = ats_write64 },
7018 REGINFO_SENTINEL
7021 static const ARMCPRegInfo ats1cp_reginfo[] = {
7022 { .name = "ATS1CPRP",
7023 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7024 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7025 .writefn = ats_write },
7026 { .name = "ATS1CPWP",
7027 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7028 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7029 .writefn = ats_write },
7030 REGINFO_SENTINEL
7032 #endif
7035 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
7036 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
7037 * is non-zero, which is never for ARMv7, optionally in ARMv8
7038 * and mandatorily for ARMv8.2 and up.
7039 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
7040 * implementation is RAZ/WI we can ignore this detail, as we
7041 * do for ACTLR.
7043 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
7044 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
7045 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
7046 .access = PL1_RW, .accessfn = access_tacr,
7047 .type = ARM_CP_CONST, .resetvalue = 0 },
7048 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
7049 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
7050 .access = PL2_RW, .type = ARM_CP_CONST,
7051 .resetvalue = 0 },
7052 REGINFO_SENTINEL
7055 void register_cp_regs_for_features(ARMCPU *cpu)
7057 /* Register all the coprocessor registers based on feature bits */
7058 CPUARMState *env = &cpu->env;
7059 if (arm_feature(env, ARM_FEATURE_M)) {
7060 /* M profile has no coprocessor registers */
7061 return;
7064 define_arm_cp_regs(cpu, cp_reginfo);
7065 if (!arm_feature(env, ARM_FEATURE_V8)) {
7066 /* Must go early as it is full of wildcards that may be
7067 * overridden by later definitions.
7069 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
7072 if (arm_feature(env, ARM_FEATURE_V6)) {
7073 /* The ID registers all have impdef reset values */
7074 ARMCPRegInfo v6_idregs[] = {
7075 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
7076 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
7077 .access = PL1_R, .type = ARM_CP_CONST,
7078 .accessfn = access_aa32_tid3,
7079 .resetvalue = cpu->id_pfr0 },
7080 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
7081 * the value of the GIC field until after we define these regs.
7083 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
7084 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
7085 .access = PL1_R, .type = ARM_CP_NO_RAW,
7086 .accessfn = access_aa32_tid3,
7087 .readfn = id_pfr1_read,
7088 .writefn = arm_cp_write_ignore },
7089 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
7090 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
7091 .access = PL1_R, .type = ARM_CP_CONST,
7092 .accessfn = access_aa32_tid3,
7093 .resetvalue = cpu->isar.id_dfr0 },
7094 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
7095 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
7096 .access = PL1_R, .type = ARM_CP_CONST,
7097 .accessfn = access_aa32_tid3,
7098 .resetvalue = cpu->id_afr0 },
7099 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
7100 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
7101 .access = PL1_R, .type = ARM_CP_CONST,
7102 .accessfn = access_aa32_tid3,
7103 .resetvalue = cpu->isar.id_mmfr0 },
7104 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
7105 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
7106 .access = PL1_R, .type = ARM_CP_CONST,
7107 .accessfn = access_aa32_tid3,
7108 .resetvalue = cpu->isar.id_mmfr1 },
7109 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
7110 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
7111 .access = PL1_R, .type = ARM_CP_CONST,
7112 .accessfn = access_aa32_tid3,
7113 .resetvalue = cpu->isar.id_mmfr2 },
7114 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
7115 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
7116 .access = PL1_R, .type = ARM_CP_CONST,
7117 .accessfn = access_aa32_tid3,
7118 .resetvalue = cpu->isar.id_mmfr3 },
7119 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
7120 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
7121 .access = PL1_R, .type = ARM_CP_CONST,
7122 .accessfn = access_aa32_tid3,
7123 .resetvalue = cpu->isar.id_isar0 },
7124 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
7125 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
7126 .access = PL1_R, .type = ARM_CP_CONST,
7127 .accessfn = access_aa32_tid3,
7128 .resetvalue = cpu->isar.id_isar1 },
7129 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
7130 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
7131 .access = PL1_R, .type = ARM_CP_CONST,
7132 .accessfn = access_aa32_tid3,
7133 .resetvalue = cpu->isar.id_isar2 },
7134 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
7135 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
7136 .access = PL1_R, .type = ARM_CP_CONST,
7137 .accessfn = access_aa32_tid3,
7138 .resetvalue = cpu->isar.id_isar3 },
7139 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
7140 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
7141 .access = PL1_R, .type = ARM_CP_CONST,
7142 .accessfn = access_aa32_tid3,
7143 .resetvalue = cpu->isar.id_isar4 },
7144 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
7145 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
7146 .access = PL1_R, .type = ARM_CP_CONST,
7147 .accessfn = access_aa32_tid3,
7148 .resetvalue = cpu->isar.id_isar5 },
7149 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
7150 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
7151 .access = PL1_R, .type = ARM_CP_CONST,
7152 .accessfn = access_aa32_tid3,
7153 .resetvalue = cpu->isar.id_mmfr4 },
7154 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
7155 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
7156 .access = PL1_R, .type = ARM_CP_CONST,
7157 .accessfn = access_aa32_tid3,
7158 .resetvalue = cpu->isar.id_isar6 },
7159 REGINFO_SENTINEL
7161 define_arm_cp_regs(cpu, v6_idregs);
7162 define_arm_cp_regs(cpu, v6_cp_reginfo);
7163 } else {
7164 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
7166 if (arm_feature(env, ARM_FEATURE_V6K)) {
7167 define_arm_cp_regs(cpu, v6k_cp_reginfo);
7169 if (arm_feature(env, ARM_FEATURE_V7MP) &&
7170 !arm_feature(env, ARM_FEATURE_PMSA)) {
7171 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
7173 if (arm_feature(env, ARM_FEATURE_V7VE)) {
7174 define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
7176 if (arm_feature(env, ARM_FEATURE_V7)) {
7177 ARMCPRegInfo clidr = {
7178 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
7179 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
7180 .access = PL1_R, .type = ARM_CP_CONST,
7181 .accessfn = access_aa64_tid2,
7182 .resetvalue = cpu->clidr
7184 define_one_arm_cp_reg(cpu, &clidr);
7185 define_arm_cp_regs(cpu, v7_cp_reginfo);
7186 define_debug_regs(cpu);
7187 define_pmu_regs(cpu);
7188 } else {
7189 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
7191 if (arm_feature(env, ARM_FEATURE_V8)) {
7192 /* AArch64 ID registers, which all have impdef reset values.
7193 * Note that within the ID register ranges the unused slots
7194 * must all RAZ, not UNDEF; future architecture versions may
7195 * define new registers here.
7197 ARMCPRegInfo v8_idregs[] = {
7199 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
7200 * emulation because we don't know the right value for the
7201 * GIC field until after we define these regs.
7203 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
7204 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
7205 .access = PL1_R,
7206 #ifdef CONFIG_USER_ONLY
7207 .type = ARM_CP_CONST,
7208 .resetvalue = cpu->isar.id_aa64pfr0
7209 #else
7210 .type = ARM_CP_NO_RAW,
7211 .accessfn = access_aa64_tid3,
7212 .readfn = id_aa64pfr0_read,
7213 .writefn = arm_cp_write_ignore
7214 #endif
7216 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
7217 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
7218 .access = PL1_R, .type = ARM_CP_CONST,
7219 .accessfn = access_aa64_tid3,
7220 .resetvalue = cpu->isar.id_aa64pfr1},
7221 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7222 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
7223 .access = PL1_R, .type = ARM_CP_CONST,
7224 .accessfn = access_aa64_tid3,
7225 .resetvalue = 0 },
7226 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7227 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
7228 .access = PL1_R, .type = ARM_CP_CONST,
7229 .accessfn = access_aa64_tid3,
7230 .resetvalue = 0 },
7231 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
7232 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
7233 .access = PL1_R, .type = ARM_CP_CONST,
7234 .accessfn = access_aa64_tid3,
7235 /* At present, only SVEver == 0 is defined anyway. */
7236 .resetvalue = 0 },
7237 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7238 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
7239 .access = PL1_R, .type = ARM_CP_CONST,
7240 .accessfn = access_aa64_tid3,
7241 .resetvalue = 0 },
7242 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7243 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
7244 .access = PL1_R, .type = ARM_CP_CONST,
7245 .accessfn = access_aa64_tid3,
7246 .resetvalue = 0 },
7247 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7248 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
7249 .access = PL1_R, .type = ARM_CP_CONST,
7250 .accessfn = access_aa64_tid3,
7251 .resetvalue = 0 },
7252 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
7253 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
7254 .access = PL1_R, .type = ARM_CP_CONST,
7255 .accessfn = access_aa64_tid3,
7256 .resetvalue = cpu->isar.id_aa64dfr0 },
7257 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
7258 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
7259 .access = PL1_R, .type = ARM_CP_CONST,
7260 .accessfn = access_aa64_tid3,
7261 .resetvalue = cpu->isar.id_aa64dfr1 },
7262 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7263 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
7264 .access = PL1_R, .type = ARM_CP_CONST,
7265 .accessfn = access_aa64_tid3,
7266 .resetvalue = 0 },
7267 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7268 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
7269 .access = PL1_R, .type = ARM_CP_CONST,
7270 .accessfn = access_aa64_tid3,
7271 .resetvalue = 0 },
7272 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
7273 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
7274 .access = PL1_R, .type = ARM_CP_CONST,
7275 .accessfn = access_aa64_tid3,
7276 .resetvalue = cpu->id_aa64afr0 },
7277 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
7278 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
7279 .access = PL1_R, .type = ARM_CP_CONST,
7280 .accessfn = access_aa64_tid3,
7281 .resetvalue = cpu->id_aa64afr1 },
7282 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7283 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
7284 .access = PL1_R, .type = ARM_CP_CONST,
7285 .accessfn = access_aa64_tid3,
7286 .resetvalue = 0 },
7287 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7288 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
7289 .access = PL1_R, .type = ARM_CP_CONST,
7290 .accessfn = access_aa64_tid3,
7291 .resetvalue = 0 },
7292 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
7293 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
7294 .access = PL1_R, .type = ARM_CP_CONST,
7295 .accessfn = access_aa64_tid3,
7296 .resetvalue = cpu->isar.id_aa64isar0 },
7297 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
7298 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
7299 .access = PL1_R, .type = ARM_CP_CONST,
7300 .accessfn = access_aa64_tid3,
7301 .resetvalue = cpu->isar.id_aa64isar1 },
7302 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7303 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
7304 .access = PL1_R, .type = ARM_CP_CONST,
7305 .accessfn = access_aa64_tid3,
7306 .resetvalue = 0 },
7307 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7308 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
7309 .access = PL1_R, .type = ARM_CP_CONST,
7310 .accessfn = access_aa64_tid3,
7311 .resetvalue = 0 },
7312 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7313 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
7314 .access = PL1_R, .type = ARM_CP_CONST,
7315 .accessfn = access_aa64_tid3,
7316 .resetvalue = 0 },
7317 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7318 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
7319 .access = PL1_R, .type = ARM_CP_CONST,
7320 .accessfn = access_aa64_tid3,
7321 .resetvalue = 0 },
7322 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7323 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
7324 .access = PL1_R, .type = ARM_CP_CONST,
7325 .accessfn = access_aa64_tid3,
7326 .resetvalue = 0 },
7327 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7328 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
7329 .access = PL1_R, .type = ARM_CP_CONST,
7330 .accessfn = access_aa64_tid3,
7331 .resetvalue = 0 },
7332 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
7333 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
7334 .access = PL1_R, .type = ARM_CP_CONST,
7335 .accessfn = access_aa64_tid3,
7336 .resetvalue = cpu->isar.id_aa64mmfr0 },
7337 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
7338 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
7339 .access = PL1_R, .type = ARM_CP_CONST,
7340 .accessfn = access_aa64_tid3,
7341 .resetvalue = cpu->isar.id_aa64mmfr1 },
7342 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
7343 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
7344 .access = PL1_R, .type = ARM_CP_CONST,
7345 .accessfn = access_aa64_tid3,
7346 .resetvalue = cpu->isar.id_aa64mmfr2 },
7347 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7348 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
7349 .access = PL1_R, .type = ARM_CP_CONST,
7350 .accessfn = access_aa64_tid3,
7351 .resetvalue = 0 },
7352 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7353 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
7354 .access = PL1_R, .type = ARM_CP_CONST,
7355 .accessfn = access_aa64_tid3,
7356 .resetvalue = 0 },
7357 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7358 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
7359 .access = PL1_R, .type = ARM_CP_CONST,
7360 .accessfn = access_aa64_tid3,
7361 .resetvalue = 0 },
7362 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7363 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
7364 .access = PL1_R, .type = ARM_CP_CONST,
7365 .accessfn = access_aa64_tid3,
7366 .resetvalue = 0 },
7367 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7368 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
7369 .access = PL1_R, .type = ARM_CP_CONST,
7370 .accessfn = access_aa64_tid3,
7371 .resetvalue = 0 },
7372 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
7373 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
7374 .access = PL1_R, .type = ARM_CP_CONST,
7375 .accessfn = access_aa64_tid3,
7376 .resetvalue = cpu->isar.mvfr0 },
7377 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
7378 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
7379 .access = PL1_R, .type = ARM_CP_CONST,
7380 .accessfn = access_aa64_tid3,
7381 .resetvalue = cpu->isar.mvfr1 },
7382 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
7383 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
7384 .access = PL1_R, .type = ARM_CP_CONST,
7385 .accessfn = access_aa64_tid3,
7386 .resetvalue = cpu->isar.mvfr2 },
7387 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7388 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
7389 .access = PL1_R, .type = ARM_CP_CONST,
7390 .accessfn = access_aa64_tid3,
7391 .resetvalue = 0 },
7392 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7393 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
7394 .access = PL1_R, .type = ARM_CP_CONST,
7395 .accessfn = access_aa64_tid3,
7396 .resetvalue = 0 },
7397 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7398 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
7399 .access = PL1_R, .type = ARM_CP_CONST,
7400 .accessfn = access_aa64_tid3,
7401 .resetvalue = 0 },
7402 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7403 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
7404 .access = PL1_R, .type = ARM_CP_CONST,
7405 .accessfn = access_aa64_tid3,
7406 .resetvalue = 0 },
7407 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7408 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
7409 .access = PL1_R, .type = ARM_CP_CONST,
7410 .accessfn = access_aa64_tid3,
7411 .resetvalue = 0 },
7412 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
7413 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
7414 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7415 .resetvalue = extract64(cpu->pmceid0, 0, 32) },
7416 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
7417 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
7418 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7419 .resetvalue = cpu->pmceid0 },
7420 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
7421 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
7422 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7423 .resetvalue = extract64(cpu->pmceid1, 0, 32) },
7424 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
7425 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
7426 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7427 .resetvalue = cpu->pmceid1 },
7428 REGINFO_SENTINEL
7430 #ifdef CONFIG_USER_ONLY
7431 ARMCPRegUserSpaceInfo v8_user_idregs[] = {
7432 { .name = "ID_AA64PFR0_EL1",
7433 .exported_bits = 0x000f000f00ff0000,
7434 .fixed_bits = 0x0000000000000011 },
7435 { .name = "ID_AA64PFR1_EL1",
7436 .exported_bits = 0x00000000000000f0 },
7437 { .name = "ID_AA64PFR*_EL1_RESERVED",
7438 .is_glob = true },
7439 { .name = "ID_AA64ZFR0_EL1" },
7440 { .name = "ID_AA64MMFR0_EL1",
7441 .fixed_bits = 0x00000000ff000000 },
7442 { .name = "ID_AA64MMFR1_EL1" },
7443 { .name = "ID_AA64MMFR*_EL1_RESERVED",
7444 .is_glob = true },
7445 { .name = "ID_AA64DFR0_EL1",
7446 .fixed_bits = 0x0000000000000006 },
7447 { .name = "ID_AA64DFR1_EL1" },
7448 { .name = "ID_AA64DFR*_EL1_RESERVED",
7449 .is_glob = true },
7450 { .name = "ID_AA64AFR*",
7451 .is_glob = true },
7452 { .name = "ID_AA64ISAR0_EL1",
7453 .exported_bits = 0x00fffffff0fffff0 },
7454 { .name = "ID_AA64ISAR1_EL1",
7455 .exported_bits = 0x000000f0ffffffff },
7456 { .name = "ID_AA64ISAR*_EL1_RESERVED",
7457 .is_glob = true },
7458 REGUSERINFO_SENTINEL
7460 modify_arm_cp_regs(v8_idregs, v8_user_idregs);
7461 #endif
7462 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
7463 if (!arm_feature(env, ARM_FEATURE_EL3) &&
7464 !arm_feature(env, ARM_FEATURE_EL2)) {
7465 ARMCPRegInfo rvbar = {
7466 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
7467 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
7468 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
7470 define_one_arm_cp_reg(cpu, &rvbar);
7472 define_arm_cp_regs(cpu, v8_idregs);
7473 define_arm_cp_regs(cpu, v8_cp_reginfo);
7475 if (arm_feature(env, ARM_FEATURE_EL2)) {
7476 uint64_t vmpidr_def = mpidr_read_val(env);
7477 ARMCPRegInfo vpidr_regs[] = {
7478 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
7479 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7480 .access = PL2_RW, .accessfn = access_el3_aa32ns,
7481 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS,
7482 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
7483 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
7484 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7485 .access = PL2_RW, .resetvalue = cpu->midr,
7486 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
7487 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
7488 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7489 .access = PL2_RW, .accessfn = access_el3_aa32ns,
7490 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS,
7491 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
7492 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
7493 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7494 .access = PL2_RW,
7495 .resetvalue = vmpidr_def,
7496 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
7497 REGINFO_SENTINEL
7499 define_arm_cp_regs(cpu, vpidr_regs);
7500 define_arm_cp_regs(cpu, el2_cp_reginfo);
7501 if (arm_feature(env, ARM_FEATURE_V8)) {
7502 define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
7504 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
7505 if (!arm_feature(env, ARM_FEATURE_EL3)) {
7506 ARMCPRegInfo rvbar = {
7507 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
7508 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
7509 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
7511 define_one_arm_cp_reg(cpu, &rvbar);
7513 } else {
7514 /* If EL2 is missing but higher ELs are enabled, we need to
7515 * register the no_el2 reginfos.
7517 if (arm_feature(env, ARM_FEATURE_EL3)) {
7518 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
7519 * of MIDR_EL1 and MPIDR_EL1.
7521 ARMCPRegInfo vpidr_regs[] = {
7522 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
7523 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7524 .access = PL2_RW, .accessfn = access_el3_aa32ns,
7525 .type = ARM_CP_CONST, .resetvalue = cpu->midr,
7526 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
7527 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
7528 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7529 .access = PL2_RW, .accessfn = access_el3_aa32ns,
7530 .type = ARM_CP_NO_RAW,
7531 .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
7532 REGINFO_SENTINEL
7534 define_arm_cp_regs(cpu, vpidr_regs);
7535 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
7536 if (arm_feature(env, ARM_FEATURE_V8)) {
7537 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo);
7541 if (arm_feature(env, ARM_FEATURE_EL3)) {
7542 define_arm_cp_regs(cpu, el3_cp_reginfo);
7543 ARMCPRegInfo el3_regs[] = {
7544 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
7545 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
7546 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
7547 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
7548 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
7549 .access = PL3_RW,
7550 .raw_writefn = raw_write, .writefn = sctlr_write,
7551 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
7552 .resetvalue = cpu->reset_sctlr },
7553 REGINFO_SENTINEL
7556 define_arm_cp_regs(cpu, el3_regs);
7558 /* The behaviour of NSACR is sufficiently various that we don't
7559 * try to describe it in a single reginfo:
7560 * if EL3 is 64 bit, then trap to EL3 from S EL1,
7561 * reads as constant 0xc00 from NS EL1 and NS EL2
7562 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
7563 * if v7 without EL3, register doesn't exist
7564 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
7566 if (arm_feature(env, ARM_FEATURE_EL3)) {
7567 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
7568 ARMCPRegInfo nsacr = {
7569 .name = "NSACR", .type = ARM_CP_CONST,
7570 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
7571 .access = PL1_RW, .accessfn = nsacr_access,
7572 .resetvalue = 0xc00
7574 define_one_arm_cp_reg(cpu, &nsacr);
7575 } else {
7576 ARMCPRegInfo nsacr = {
7577 .name = "NSACR",
7578 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
7579 .access = PL3_RW | PL1_R,
7580 .resetvalue = 0,
7581 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
7583 define_one_arm_cp_reg(cpu, &nsacr);
7585 } else {
7586 if (arm_feature(env, ARM_FEATURE_V8)) {
7587 ARMCPRegInfo nsacr = {
7588 .name = "NSACR", .type = ARM_CP_CONST,
7589 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
7590 .access = PL1_R,
7591 .resetvalue = 0xc00
7593 define_one_arm_cp_reg(cpu, &nsacr);
7597 if (arm_feature(env, ARM_FEATURE_PMSA)) {
7598 if (arm_feature(env, ARM_FEATURE_V6)) {
7599 /* PMSAv6 not implemented */
7600 assert(arm_feature(env, ARM_FEATURE_V7));
7601 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
7602 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
7603 } else {
7604 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
7606 } else {
7607 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
7608 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
7609 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */
7610 if (cpu_isar_feature(aa32_hpd, cpu)) {
7611 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
7614 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
7615 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
7617 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
7618 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
7620 if (arm_feature(env, ARM_FEATURE_VAPA)) {
7621 define_arm_cp_regs(cpu, vapa_cp_reginfo);
7623 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
7624 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
7626 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
7627 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
7629 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
7630 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
7632 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
7633 define_arm_cp_regs(cpu, omap_cp_reginfo);
7635 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
7636 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
7638 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
7639 define_arm_cp_regs(cpu, xscale_cp_reginfo);
7641 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
7642 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
7644 if (arm_feature(env, ARM_FEATURE_LPAE)) {
7645 define_arm_cp_regs(cpu, lpae_cp_reginfo);
7647 if (cpu_isar_feature(aa32_jazelle, cpu)) {
7648 define_arm_cp_regs(cpu, jazelle_regs);
7650 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
7651 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
7652 * be read-only (ie write causes UNDEF exception).
7655 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
7656 /* Pre-v8 MIDR space.
7657 * Note that the MIDR isn't a simple constant register because
7658 * of the TI925 behaviour where writes to another register can
7659 * cause the MIDR value to change.
7661 * Unimplemented registers in the c15 0 0 0 space default to
7662 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
7663 * and friends override accordingly.
7665 { .name = "MIDR",
7666 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
7667 .access = PL1_R, .resetvalue = cpu->midr,
7668 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
7669 .readfn = midr_read,
7670 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
7671 .type = ARM_CP_OVERRIDE },
7672 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
7673 { .name = "DUMMY",
7674 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
7675 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7676 { .name = "DUMMY",
7677 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
7678 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7679 { .name = "DUMMY",
7680 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
7681 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7682 { .name = "DUMMY",
7683 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
7684 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7685 { .name = "DUMMY",
7686 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
7687 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7688 REGINFO_SENTINEL
7690 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
7691 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
7692 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
7693 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
7694 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
7695 .readfn = midr_read },
7696 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
7697 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
7698 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
7699 .access = PL1_R, .resetvalue = cpu->midr },
7700 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
7701 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
7702 .access = PL1_R, .resetvalue = cpu->midr },
7703 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
7704 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
7705 .access = PL1_R,
7706 .accessfn = access_aa64_tid1,
7707 .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
7708 REGINFO_SENTINEL
7710 ARMCPRegInfo id_cp_reginfo[] = {
7711 /* These are common to v8 and pre-v8 */
7712 { .name = "CTR",
7713 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
7714 .access = PL1_R, .accessfn = ctr_el0_access,
7715 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
7716 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
7717 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
7718 .access = PL0_R, .accessfn = ctr_el0_access,
7719 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
7720 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
7721 { .name = "TCMTR",
7722 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
7723 .access = PL1_R,
7724 .accessfn = access_aa32_tid1,
7725 .type = ARM_CP_CONST, .resetvalue = 0 },
7726 REGINFO_SENTINEL
7728 /* TLBTR is specific to VMSA */
7729 ARMCPRegInfo id_tlbtr_reginfo = {
7730 .name = "TLBTR",
7731 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
7732 .access = PL1_R,
7733 .accessfn = access_aa32_tid1,
7734 .type = ARM_CP_CONST, .resetvalue = 0,
7736 /* MPUIR is specific to PMSA V6+ */
7737 ARMCPRegInfo id_mpuir_reginfo = {
7738 .name = "MPUIR",
7739 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
7740 .access = PL1_R, .type = ARM_CP_CONST,
7741 .resetvalue = cpu->pmsav7_dregion << 8
7743 ARMCPRegInfo crn0_wi_reginfo = {
7744 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
7745 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
7746 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
7748 #ifdef CONFIG_USER_ONLY
7749 ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
7750 { .name = "MIDR_EL1",
7751 .exported_bits = 0x00000000ffffffff },
7752 { .name = "REVIDR_EL1" },
7753 REGUSERINFO_SENTINEL
7755 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
7756 #endif
7757 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
7758 arm_feature(env, ARM_FEATURE_STRONGARM)) {
7759 ARMCPRegInfo *r;
7760 /* Register the blanket "writes ignored" value first to cover the
7761 * whole space. Then update the specific ID registers to allow write
7762 * access, so that they ignore writes rather than causing them to
7763 * UNDEF.
7765 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
7766 for (r = id_pre_v8_midr_cp_reginfo;
7767 r->type != ARM_CP_SENTINEL; r++) {
7768 r->access = PL1_RW;
7770 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
7771 r->access = PL1_RW;
7773 id_mpuir_reginfo.access = PL1_RW;
7774 id_tlbtr_reginfo.access = PL1_RW;
7776 if (arm_feature(env, ARM_FEATURE_V8)) {
7777 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
7778 } else {
7779 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
7781 define_arm_cp_regs(cpu, id_cp_reginfo);
7782 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
7783 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
7784 } else if (arm_feature(env, ARM_FEATURE_V7)) {
7785 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
7789 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
7790 ARMCPRegInfo mpidr_cp_reginfo[] = {
7791 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
7792 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
7793 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
7794 REGINFO_SENTINEL
7796 #ifdef CONFIG_USER_ONLY
7797 ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
7798 { .name = "MPIDR_EL1",
7799 .fixed_bits = 0x0000000080000000 },
7800 REGUSERINFO_SENTINEL
7802 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
7803 #endif
7804 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
7807 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
7808 ARMCPRegInfo auxcr_reginfo[] = {
7809 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
7810 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
7811 .access = PL1_RW, .accessfn = access_tacr,
7812 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
7813 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
7814 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
7815 .access = PL2_RW, .type = ARM_CP_CONST,
7816 .resetvalue = 0 },
7817 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
7818 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
7819 .access = PL3_RW, .type = ARM_CP_CONST,
7820 .resetvalue = 0 },
7821 REGINFO_SENTINEL
7823 define_arm_cp_regs(cpu, auxcr_reginfo);
7824 if (cpu_isar_feature(aa32_ac2, cpu)) {
7825 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
7829 if (arm_feature(env, ARM_FEATURE_CBAR)) {
7831 * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
7832 * There are two flavours:
7833 * (1) older 32-bit only cores have a simple 32-bit CBAR
7834 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
7835 * 32-bit register visible to AArch32 at a different encoding
7836 * to the "flavour 1" register and with the bits rearranged to
7837 * be able to squash a 64-bit address into the 32-bit view.
7838 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
7839 * in future if we support AArch32-only configs of some of the
7840 * AArch64 cores we might need to add a specific feature flag
7841 * to indicate cores with "flavour 2" CBAR.
7843 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
7844 /* 32 bit view is [31:18] 0...0 [43:32]. */
7845 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
7846 | extract64(cpu->reset_cbar, 32, 12);
7847 ARMCPRegInfo cbar_reginfo[] = {
7848 { .name = "CBAR",
7849 .type = ARM_CP_CONST,
7850 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
7851 .access = PL1_R, .resetvalue = cbar32 },
7852 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
7853 .type = ARM_CP_CONST,
7854 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
7855 .access = PL1_R, .resetvalue = cpu->reset_cbar },
7856 REGINFO_SENTINEL
7858 /* We don't implement a r/w 64 bit CBAR currently */
7859 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
7860 define_arm_cp_regs(cpu, cbar_reginfo);
7861 } else {
7862 ARMCPRegInfo cbar = {
7863 .name = "CBAR",
7864 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
7865 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
7866 .fieldoffset = offsetof(CPUARMState,
7867 cp15.c15_config_base_address)
7869 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
7870 cbar.access = PL1_R;
7871 cbar.fieldoffset = 0;
7872 cbar.type = ARM_CP_CONST;
7874 define_one_arm_cp_reg(cpu, &cbar);
7878 if (arm_feature(env, ARM_FEATURE_VBAR)) {
7879 ARMCPRegInfo vbar_cp_reginfo[] = {
7880 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
7881 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
7882 .access = PL1_RW, .writefn = vbar_write,
7883 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
7884 offsetof(CPUARMState, cp15.vbar_ns) },
7885 .resetvalue = 0 },
7886 REGINFO_SENTINEL
7888 define_arm_cp_regs(cpu, vbar_cp_reginfo);
7891 /* Generic registers whose values depend on the implementation */
7893 ARMCPRegInfo sctlr = {
7894 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
7895 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
7896 .access = PL1_RW, .accessfn = access_tvm_trvm,
7897 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
7898 offsetof(CPUARMState, cp15.sctlr_ns) },
7899 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
7900 .raw_writefn = raw_write,
7902 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
7903 /* Normally we would always end the TB on an SCTLR write, but Linux
7904 * arch/arm/mach-pxa/sleep.S expects two instructions following
7905 * an MMU enable to execute from cache. Imitate this behaviour.
7907 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
7909 define_one_arm_cp_reg(cpu, &sctlr);
7912 if (cpu_isar_feature(aa64_lor, cpu)) {
7913 define_arm_cp_regs(cpu, lor_reginfo);
7915 if (cpu_isar_feature(aa64_pan, cpu)) {
7916 define_one_arm_cp_reg(cpu, &pan_reginfo);
7918 #ifndef CONFIG_USER_ONLY
7919 if (cpu_isar_feature(aa64_ats1e1, cpu)) {
7920 define_arm_cp_regs(cpu, ats1e1_reginfo);
7922 if (cpu_isar_feature(aa32_ats1e1, cpu)) {
7923 define_arm_cp_regs(cpu, ats1cp_reginfo);
7925 #endif
7926 if (cpu_isar_feature(aa64_uao, cpu)) {
7927 define_one_arm_cp_reg(cpu, &uao_reginfo);
7930 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
7931 define_arm_cp_regs(cpu, vhe_reginfo);
7934 if (cpu_isar_feature(aa64_sve, cpu)) {
7935 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo);
7936 if (arm_feature(env, ARM_FEATURE_EL2)) {
7937 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo);
7938 } else {
7939 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo);
7941 if (arm_feature(env, ARM_FEATURE_EL3)) {
7942 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo);
7946 #ifdef TARGET_AARCH64
7947 if (cpu_isar_feature(aa64_pauth, cpu)) {
7948 define_arm_cp_regs(cpu, pauth_reginfo);
7950 if (cpu_isar_feature(aa64_rndr, cpu)) {
7951 define_arm_cp_regs(cpu, rndr_reginfo);
7953 #ifndef CONFIG_USER_ONLY
7954 /* Data Cache clean instructions up to PoP */
7955 if (cpu_isar_feature(aa64_dcpop, cpu)) {
7956 define_one_arm_cp_reg(cpu, dcpop_reg);
7958 if (cpu_isar_feature(aa64_dcpodp, cpu)) {
7959 define_one_arm_cp_reg(cpu, dcpodp_reg);
7962 #endif /*CONFIG_USER_ONLY*/
7963 #endif
7965 if (cpu_isar_feature(any_predinv, cpu)) {
7966 define_arm_cp_regs(cpu, predinv_reginfo);
7969 if (cpu_isar_feature(any_ccidx, cpu)) {
7970 define_arm_cp_regs(cpu, ccsidr2_reginfo);
7973 #ifndef CONFIG_USER_ONLY
7975 * Register redirections and aliases must be done last,
7976 * after the registers from the other extensions have been defined.
7978 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
7979 define_arm_vh_e2h_redirects_aliases(cpu);
7981 #endif
7984 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
7986 CPUState *cs = CPU(cpu);
7987 CPUARMState *env = &cpu->env;
7989 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
7991 * The lower part of each SVE register aliases to the FPU
7992 * registers so we don't need to include both.
7994 #ifdef TARGET_AARCH64
7995 if (isar_feature_aa64_sve(&cpu->isar)) {
7996 gdb_register_coprocessor(cs, arm_gdb_get_svereg, arm_gdb_set_svereg,
7997 arm_gen_dynamic_svereg_xml(cs, cs->gdb_num_regs),
7998 "sve-registers.xml", 0);
7999 } else
8000 #endif
8002 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
8003 aarch64_fpu_gdb_set_reg,
8004 34, "aarch64-fpu.xml", 0);
8006 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
8007 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
8008 51, "arm-neon.xml", 0);
8009 } else if (cpu_isar_feature(aa32_simd_r32, cpu)) {
8010 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
8011 35, "arm-vfp3.xml", 0);
8012 } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
8013 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
8014 19, "arm-vfp.xml", 0);
8016 gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg,
8017 arm_gen_dynamic_sysreg_xml(cs, cs->gdb_num_regs),
8018 "system-registers.xml", 0);
8022 /* Sort alphabetically by type name, except for "any". */
8023 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
8025 ObjectClass *class_a = (ObjectClass *)a;
8026 ObjectClass *class_b = (ObjectClass *)b;
8027 const char *name_a, *name_b;
8029 name_a = object_class_get_name(class_a);
8030 name_b = object_class_get_name(class_b);
8031 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
8032 return 1;
8033 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
8034 return -1;
8035 } else {
8036 return strcmp(name_a, name_b);
8040 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
8042 ObjectClass *oc = data;
8043 const char *typename;
8044 char *name;
8046 typename = object_class_get_name(oc);
8047 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
8048 qemu_printf(" %s\n", name);
8049 g_free(name);
8052 void arm_cpu_list(void)
8054 GSList *list;
8056 list = object_class_get_list(TYPE_ARM_CPU, false);
8057 list = g_slist_sort(list, arm_cpu_list_compare);
8058 qemu_printf("Available CPUs:\n");
8059 g_slist_foreach(list, arm_cpu_list_entry, NULL);
8060 g_slist_free(list);
8063 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
8065 ObjectClass *oc = data;
8066 CpuDefinitionInfoList **cpu_list = user_data;
8067 CpuDefinitionInfoList *entry;
8068 CpuDefinitionInfo *info;
8069 const char *typename;
8071 typename = object_class_get_name(oc);
8072 info = g_malloc0(sizeof(*info));
8073 info->name = g_strndup(typename,
8074 strlen(typename) - strlen("-" TYPE_ARM_CPU));
8075 info->q_typename = g_strdup(typename);
8077 entry = g_malloc0(sizeof(*entry));
8078 entry->value = info;
8079 entry->next = *cpu_list;
8080 *cpu_list = entry;
8083 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
8085 CpuDefinitionInfoList *cpu_list = NULL;
8086 GSList *list;
8088 list = object_class_get_list(TYPE_ARM_CPU, false);
8089 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
8090 g_slist_free(list);
8092 return cpu_list;
8095 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
8096 void *opaque, int state, int secstate,
8097 int crm, int opc1, int opc2,
8098 const char *name)
8100 /* Private utility function for define_one_arm_cp_reg_with_opaque():
8101 * add a single reginfo struct to the hash table.
8103 uint32_t *key = g_new(uint32_t, 1);
8104 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
8105 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
8106 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
8108 r2->name = g_strdup(name);
8109 /* Reset the secure state to the specific incoming state. This is
8110 * necessary as the register may have been defined with both states.
8112 r2->secure = secstate;
8114 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
8115 /* Register is banked (using both entries in array).
8116 * Overwriting fieldoffset as the array is only used to define
8117 * banked registers but later only fieldoffset is used.
8119 r2->fieldoffset = r->bank_fieldoffsets[ns];
8122 if (state == ARM_CP_STATE_AA32) {
8123 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
8124 /* If the register is banked then we don't need to migrate or
8125 * reset the 32-bit instance in certain cases:
8127 * 1) If the register has both 32-bit and 64-bit instances then we
8128 * can count on the 64-bit instance taking care of the
8129 * non-secure bank.
8130 * 2) If ARMv8 is enabled then we can count on a 64-bit version
8131 * taking care of the secure bank. This requires that separate
8132 * 32 and 64-bit definitions are provided.
8134 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
8135 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
8136 r2->type |= ARM_CP_ALIAS;
8138 } else if ((secstate != r->secure) && !ns) {
8139 /* The register is not banked so we only want to allow migration of
8140 * the non-secure instance.
8142 r2->type |= ARM_CP_ALIAS;
8145 if (r->state == ARM_CP_STATE_BOTH) {
8146 /* We assume it is a cp15 register if the .cp field is left unset.
8148 if (r2->cp == 0) {
8149 r2->cp = 15;
8152 #ifdef HOST_WORDS_BIGENDIAN
8153 if (r2->fieldoffset) {
8154 r2->fieldoffset += sizeof(uint32_t);
8156 #endif
8159 if (state == ARM_CP_STATE_AA64) {
8160 /* To allow abbreviation of ARMCPRegInfo
8161 * definitions, we treat cp == 0 as equivalent to
8162 * the value for "standard guest-visible sysreg".
8163 * STATE_BOTH definitions are also always "standard
8164 * sysreg" in their AArch64 view (the .cp value may
8165 * be non-zero for the benefit of the AArch32 view).
8167 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
8168 r2->cp = CP_REG_ARM64_SYSREG_CP;
8170 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
8171 r2->opc0, opc1, opc2);
8172 } else {
8173 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
8175 if (opaque) {
8176 r2->opaque = opaque;
8178 /* reginfo passed to helpers is correct for the actual access,
8179 * and is never ARM_CP_STATE_BOTH:
8181 r2->state = state;
8182 /* Make sure reginfo passed to helpers for wildcarded regs
8183 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
8185 r2->crm = crm;
8186 r2->opc1 = opc1;
8187 r2->opc2 = opc2;
8188 /* By convention, for wildcarded registers only the first
8189 * entry is used for migration; the others are marked as
8190 * ALIAS so we don't try to transfer the register
8191 * multiple times. Special registers (ie NOP/WFI) are
8192 * never migratable and not even raw-accessible.
8194 if ((r->type & ARM_CP_SPECIAL)) {
8195 r2->type |= ARM_CP_NO_RAW;
8197 if (((r->crm == CP_ANY) && crm != 0) ||
8198 ((r->opc1 == CP_ANY) && opc1 != 0) ||
8199 ((r->opc2 == CP_ANY) && opc2 != 0)) {
8200 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
8203 /* Check that raw accesses are either forbidden or handled. Note that
8204 * we can't assert this earlier because the setup of fieldoffset for
8205 * banked registers has to be done first.
8207 if (!(r2->type & ARM_CP_NO_RAW)) {
8208 assert(!raw_accessors_invalid(r2));
8211 /* Overriding of an existing definition must be explicitly
8212 * requested.
8214 if (!(r->type & ARM_CP_OVERRIDE)) {
8215 ARMCPRegInfo *oldreg;
8216 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
8217 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
8218 fprintf(stderr, "Register redefined: cp=%d %d bit "
8219 "crn=%d crm=%d opc1=%d opc2=%d, "
8220 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
8221 r2->crn, r2->crm, r2->opc1, r2->opc2,
8222 oldreg->name, r2->name);
8223 g_assert_not_reached();
8226 g_hash_table_insert(cpu->cp_regs, key, r2);
8230 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
8231 const ARMCPRegInfo *r, void *opaque)
8233 /* Define implementations of coprocessor registers.
8234 * We store these in a hashtable because typically
8235 * there are less than 150 registers in a space which
8236 * is 16*16*16*8*8 = 262144 in size.
8237 * Wildcarding is supported for the crm, opc1 and opc2 fields.
8238 * If a register is defined twice then the second definition is
8239 * used, so this can be used to define some generic registers and
8240 * then override them with implementation specific variations.
8241 * At least one of the original and the second definition should
8242 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
8243 * against accidental use.
8245 * The state field defines whether the register is to be
8246 * visible in the AArch32 or AArch64 execution state. If the
8247 * state is set to ARM_CP_STATE_BOTH then we synthesise a
8248 * reginfo structure for the AArch32 view, which sees the lower
8249 * 32 bits of the 64 bit register.
8251 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
8252 * be wildcarded. AArch64 registers are always considered to be 64
8253 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
8254 * the register, if any.
8256 int crm, opc1, opc2, state;
8257 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
8258 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
8259 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
8260 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
8261 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
8262 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
8263 /* 64 bit registers have only CRm and Opc1 fields */
8264 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
8265 /* op0 only exists in the AArch64 encodings */
8266 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
8267 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
8268 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
8269 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
8270 * encodes a minimum access level for the register. We roll this
8271 * runtime check into our general permission check code, so check
8272 * here that the reginfo's specified permissions are strict enough
8273 * to encompass the generic architectural permission check.
8275 if (r->state != ARM_CP_STATE_AA32) {
8276 int mask = 0;
8277 switch (r->opc1) {
8278 case 0:
8279 /* min_EL EL1, but some accessible to EL0 via kernel ABI */
8280 mask = PL0U_R | PL1_RW;
8281 break;
8282 case 1: case 2:
8283 /* min_EL EL1 */
8284 mask = PL1_RW;
8285 break;
8286 case 3:
8287 /* min_EL EL0 */
8288 mask = PL0_RW;
8289 break;
8290 case 4:
8291 case 5:
8292 /* min_EL EL2 */
8293 mask = PL2_RW;
8294 break;
8295 case 6:
8296 /* min_EL EL3 */
8297 mask = PL3_RW;
8298 break;
8299 case 7:
8300 /* min_EL EL1, secure mode only (we don't check the latter) */
8301 mask = PL1_RW;
8302 break;
8303 default:
8304 /* broken reginfo with out-of-range opc1 */
8305 assert(false);
8306 break;
8308 /* assert our permissions are not too lax (stricter is fine) */
8309 assert((r->access & ~mask) == 0);
8312 /* Check that the register definition has enough info to handle
8313 * reads and writes if they are permitted.
8315 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
8316 if (r->access & PL3_R) {
8317 assert((r->fieldoffset ||
8318 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
8319 r->readfn);
8321 if (r->access & PL3_W) {
8322 assert((r->fieldoffset ||
8323 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
8324 r->writefn);
8327 /* Bad type field probably means missing sentinel at end of reg list */
8328 assert(cptype_valid(r->type));
8329 for (crm = crmmin; crm <= crmmax; crm++) {
8330 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
8331 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
8332 for (state = ARM_CP_STATE_AA32;
8333 state <= ARM_CP_STATE_AA64; state++) {
8334 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
8335 continue;
8337 if (state == ARM_CP_STATE_AA32) {
8338 /* Under AArch32 CP registers can be common
8339 * (same for secure and non-secure world) or banked.
8341 char *name;
8343 switch (r->secure) {
8344 case ARM_CP_SECSTATE_S:
8345 case ARM_CP_SECSTATE_NS:
8346 add_cpreg_to_hashtable(cpu, r, opaque, state,
8347 r->secure, crm, opc1, opc2,
8348 r->name);
8349 break;
8350 default:
8351 name = g_strdup_printf("%s_S", r->name);
8352 add_cpreg_to_hashtable(cpu, r, opaque, state,
8353 ARM_CP_SECSTATE_S,
8354 crm, opc1, opc2, name);
8355 g_free(name);
8356 add_cpreg_to_hashtable(cpu, r, opaque, state,
8357 ARM_CP_SECSTATE_NS,
8358 crm, opc1, opc2, r->name);
8359 break;
8361 } else {
8362 /* AArch64 registers get mapped to non-secure instance
8363 * of AArch32 */
8364 add_cpreg_to_hashtable(cpu, r, opaque, state,
8365 ARM_CP_SECSTATE_NS,
8366 crm, opc1, opc2, r->name);
8374 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
8375 const ARMCPRegInfo *regs, void *opaque)
8377 /* Define a whole list of registers */
8378 const ARMCPRegInfo *r;
8379 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
8380 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
8385 * Modify ARMCPRegInfo for access from userspace.
8387 * This is a data driven modification directed by
8388 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
8389 * user-space cannot alter any values and dynamic values pertaining to
8390 * execution state are hidden from user space view anyway.
8392 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods)
8394 const ARMCPRegUserSpaceInfo *m;
8395 ARMCPRegInfo *r;
8397 for (m = mods; m->name; m++) {
8398 GPatternSpec *pat = NULL;
8399 if (m->is_glob) {
8400 pat = g_pattern_spec_new(m->name);
8402 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
8403 if (pat && g_pattern_match_string(pat, r->name)) {
8404 r->type = ARM_CP_CONST;
8405 r->access = PL0U_R;
8406 r->resetvalue = 0;
8407 /* continue */
8408 } else if (strcmp(r->name, m->name) == 0) {
8409 r->type = ARM_CP_CONST;
8410 r->access = PL0U_R;
8411 r->resetvalue &= m->exported_bits;
8412 r->resetvalue |= m->fixed_bits;
8413 break;
8416 if (pat) {
8417 g_pattern_spec_free(pat);
8422 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
8424 return g_hash_table_lookup(cpregs, &encoded_cp);
8427 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
8428 uint64_t value)
8430 /* Helper coprocessor write function for write-ignore registers */
8433 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
8435 /* Helper coprocessor write function for read-as-zero registers */
8436 return 0;
8439 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
8441 /* Helper coprocessor reset function for do-nothing-on-reset registers */
8444 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
8446 /* Return true if it is not valid for us to switch to
8447 * this CPU mode (ie all the UNPREDICTABLE cases in
8448 * the ARM ARM CPSRWriteByInstr pseudocode).
8451 /* Changes to or from Hyp via MSR and CPS are illegal. */
8452 if (write_type == CPSRWriteByInstr &&
8453 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
8454 mode == ARM_CPU_MODE_HYP)) {
8455 return 1;
8458 switch (mode) {
8459 case ARM_CPU_MODE_USR:
8460 return 0;
8461 case ARM_CPU_MODE_SYS:
8462 case ARM_CPU_MODE_SVC:
8463 case ARM_CPU_MODE_ABT:
8464 case ARM_CPU_MODE_UND:
8465 case ARM_CPU_MODE_IRQ:
8466 case ARM_CPU_MODE_FIQ:
8467 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
8468 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
8470 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
8471 * and CPS are treated as illegal mode changes.
8473 if (write_type == CPSRWriteByInstr &&
8474 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
8475 (arm_hcr_el2_eff(env) & HCR_TGE)) {
8476 return 1;
8478 return 0;
8479 case ARM_CPU_MODE_HYP:
8480 return !arm_feature(env, ARM_FEATURE_EL2)
8481 || arm_current_el(env) < 2 || arm_is_secure_below_el3(env);
8482 case ARM_CPU_MODE_MON:
8483 return arm_current_el(env) < 3;
8484 default:
8485 return 1;
8489 uint32_t cpsr_read(CPUARMState *env)
8491 int ZF;
8492 ZF = (env->ZF == 0);
8493 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
8494 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
8495 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
8496 | ((env->condexec_bits & 0xfc) << 8)
8497 | (env->GE << 16) | (env->daif & CPSR_AIF);
8500 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
8501 CPSRWriteType write_type)
8503 uint32_t changed_daif;
8505 if (mask & CPSR_NZCV) {
8506 env->ZF = (~val) & CPSR_Z;
8507 env->NF = val;
8508 env->CF = (val >> 29) & 1;
8509 env->VF = (val << 3) & 0x80000000;
8511 if (mask & CPSR_Q)
8512 env->QF = ((val & CPSR_Q) != 0);
8513 if (mask & CPSR_T)
8514 env->thumb = ((val & CPSR_T) != 0);
8515 if (mask & CPSR_IT_0_1) {
8516 env->condexec_bits &= ~3;
8517 env->condexec_bits |= (val >> 25) & 3;
8519 if (mask & CPSR_IT_2_7) {
8520 env->condexec_bits &= 3;
8521 env->condexec_bits |= (val >> 8) & 0xfc;
8523 if (mask & CPSR_GE) {
8524 env->GE = (val >> 16) & 0xf;
8527 /* In a V7 implementation that includes the security extensions but does
8528 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
8529 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
8530 * bits respectively.
8532 * In a V8 implementation, it is permitted for privileged software to
8533 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
8535 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
8536 arm_feature(env, ARM_FEATURE_EL3) &&
8537 !arm_feature(env, ARM_FEATURE_EL2) &&
8538 !arm_is_secure(env)) {
8540 changed_daif = (env->daif ^ val) & mask;
8542 if (changed_daif & CPSR_A) {
8543 /* Check to see if we are allowed to change the masking of async
8544 * abort exceptions from a non-secure state.
8546 if (!(env->cp15.scr_el3 & SCR_AW)) {
8547 qemu_log_mask(LOG_GUEST_ERROR,
8548 "Ignoring attempt to switch CPSR_A flag from "
8549 "non-secure world with SCR.AW bit clear\n");
8550 mask &= ~CPSR_A;
8554 if (changed_daif & CPSR_F) {
8555 /* Check to see if we are allowed to change the masking of FIQ
8556 * exceptions from a non-secure state.
8558 if (!(env->cp15.scr_el3 & SCR_FW)) {
8559 qemu_log_mask(LOG_GUEST_ERROR,
8560 "Ignoring attempt to switch CPSR_F flag from "
8561 "non-secure world with SCR.FW bit clear\n");
8562 mask &= ~CPSR_F;
8565 /* Check whether non-maskable FIQ (NMFI) support is enabled.
8566 * If this bit is set software is not allowed to mask
8567 * FIQs, but is allowed to set CPSR_F to 0.
8569 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
8570 (val & CPSR_F)) {
8571 qemu_log_mask(LOG_GUEST_ERROR,
8572 "Ignoring attempt to enable CPSR_F flag "
8573 "(non-maskable FIQ [NMFI] support enabled)\n");
8574 mask &= ~CPSR_F;
8579 env->daif &= ~(CPSR_AIF & mask);
8580 env->daif |= val & CPSR_AIF & mask;
8582 if (write_type != CPSRWriteRaw &&
8583 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
8584 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
8585 /* Note that we can only get here in USR mode if this is a
8586 * gdb stub write; for this case we follow the architectural
8587 * behaviour for guest writes in USR mode of ignoring an attempt
8588 * to switch mode. (Those are caught by translate.c for writes
8589 * triggered by guest instructions.)
8591 mask &= ~CPSR_M;
8592 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
8593 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
8594 * v7, and has defined behaviour in v8:
8595 * + leave CPSR.M untouched
8596 * + allow changes to the other CPSR fields
8597 * + set PSTATE.IL
8598 * For user changes via the GDB stub, we don't set PSTATE.IL,
8599 * as this would be unnecessarily harsh for a user error.
8601 mask &= ~CPSR_M;
8602 if (write_type != CPSRWriteByGDBStub &&
8603 arm_feature(env, ARM_FEATURE_V8)) {
8604 mask |= CPSR_IL;
8605 val |= CPSR_IL;
8607 qemu_log_mask(LOG_GUEST_ERROR,
8608 "Illegal AArch32 mode switch attempt from %s to %s\n",
8609 aarch32_mode_name(env->uncached_cpsr),
8610 aarch32_mode_name(val));
8611 } else {
8612 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
8613 write_type == CPSRWriteExceptionReturn ?
8614 "Exception return from AArch32" :
8615 "AArch32 mode switch from",
8616 aarch32_mode_name(env->uncached_cpsr),
8617 aarch32_mode_name(val), env->regs[15]);
8618 switch_mode(env, val & CPSR_M);
8621 mask &= ~CACHED_CPSR_BITS;
8622 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
8625 /* Sign/zero extend */
8626 uint32_t HELPER(sxtb16)(uint32_t x)
8628 uint32_t res;
8629 res = (uint16_t)(int8_t)x;
8630 res |= (uint32_t)(int8_t)(x >> 16) << 16;
8631 return res;
8634 uint32_t HELPER(uxtb16)(uint32_t x)
8636 uint32_t res;
8637 res = (uint16_t)(uint8_t)x;
8638 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
8639 return res;
8642 int32_t HELPER(sdiv)(int32_t num, int32_t den)
8644 if (den == 0)
8645 return 0;
8646 if (num == INT_MIN && den == -1)
8647 return INT_MIN;
8648 return num / den;
8651 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
8653 if (den == 0)
8654 return 0;
8655 return num / den;
8658 uint32_t HELPER(rbit)(uint32_t x)
8660 return revbit32(x);
8663 #ifdef CONFIG_USER_ONLY
8665 static void switch_mode(CPUARMState *env, int mode)
8667 ARMCPU *cpu = env_archcpu(env);
8669 if (mode != ARM_CPU_MODE_USR) {
8670 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
8674 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
8675 uint32_t cur_el, bool secure)
8677 return 1;
8680 void aarch64_sync_64_to_32(CPUARMState *env)
8682 g_assert_not_reached();
8685 #else
8687 static void switch_mode(CPUARMState *env, int mode)
8689 int old_mode;
8690 int i;
8692 old_mode = env->uncached_cpsr & CPSR_M;
8693 if (mode == old_mode)
8694 return;
8696 if (old_mode == ARM_CPU_MODE_FIQ) {
8697 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
8698 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
8699 } else if (mode == ARM_CPU_MODE_FIQ) {
8700 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
8701 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
8704 i = bank_number(old_mode);
8705 env->banked_r13[i] = env->regs[13];
8706 env->banked_spsr[i] = env->spsr;
8708 i = bank_number(mode);
8709 env->regs[13] = env->banked_r13[i];
8710 env->spsr = env->banked_spsr[i];
8712 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
8713 env->regs[14] = env->banked_r14[r14_bank_number(mode)];
8716 /* Physical Interrupt Target EL Lookup Table
8718 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
8720 * The below multi-dimensional table is used for looking up the target
8721 * exception level given numerous condition criteria. Specifically, the
8722 * target EL is based on SCR and HCR routing controls as well as the
8723 * currently executing EL and secure state.
8725 * Dimensions:
8726 * target_el_table[2][2][2][2][2][4]
8727 * | | | | | +--- Current EL
8728 * | | | | +------ Non-secure(0)/Secure(1)
8729 * | | | +--------- HCR mask override
8730 * | | +------------ SCR exec state control
8731 * | +--------------- SCR mask override
8732 * +------------------ 32-bit(0)/64-bit(1) EL3
8734 * The table values are as such:
8735 * 0-3 = EL0-EL3
8736 * -1 = Cannot occur
8738 * The ARM ARM target EL table includes entries indicating that an "exception
8739 * is not taken". The two cases where this is applicable are:
8740 * 1) An exception is taken from EL3 but the SCR does not have the exception
8741 * routed to EL3.
8742 * 2) An exception is taken from EL2 but the HCR does not have the exception
8743 * routed to EL2.
8744 * In these two cases, the below table contain a target of EL1. This value is
8745 * returned as it is expected that the consumer of the table data will check
8746 * for "target EL >= current EL" to ensure the exception is not taken.
8748 * SCR HCR
8749 * 64 EA AMO From
8750 * BIT IRQ IMO Non-secure Secure
8751 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
8753 static const int8_t target_el_table[2][2][2][2][2][4] = {
8754 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
8755 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
8756 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
8757 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
8758 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
8759 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
8760 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
8761 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
8762 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
8763 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
8764 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
8765 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
8766 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
8767 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
8768 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
8769 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
8773 * Determine the target EL for physical exceptions
8775 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
8776 uint32_t cur_el, bool secure)
8778 CPUARMState *env = cs->env_ptr;
8779 bool rw;
8780 bool scr;
8781 bool hcr;
8782 int target_el;
8783 /* Is the highest EL AArch64? */
8784 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
8785 uint64_t hcr_el2;
8787 if (arm_feature(env, ARM_FEATURE_EL3)) {
8788 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
8789 } else {
8790 /* Either EL2 is the highest EL (and so the EL2 register width
8791 * is given by is64); or there is no EL2 or EL3, in which case
8792 * the value of 'rw' does not affect the table lookup anyway.
8794 rw = is64;
8797 hcr_el2 = arm_hcr_el2_eff(env);
8798 switch (excp_idx) {
8799 case EXCP_IRQ:
8800 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
8801 hcr = hcr_el2 & HCR_IMO;
8802 break;
8803 case EXCP_FIQ:
8804 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
8805 hcr = hcr_el2 & HCR_FMO;
8806 break;
8807 default:
8808 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
8809 hcr = hcr_el2 & HCR_AMO;
8810 break;
8814 * For these purposes, TGE and AMO/IMO/FMO both force the
8815 * interrupt to EL2. Fold TGE into the bit extracted above.
8817 hcr |= (hcr_el2 & HCR_TGE) != 0;
8819 /* Perform a table-lookup for the target EL given the current state */
8820 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
8822 assert(target_el > 0);
8824 return target_el;
8827 void arm_log_exception(int idx)
8829 if (qemu_loglevel_mask(CPU_LOG_INT)) {
8830 const char *exc = NULL;
8831 static const char * const excnames[] = {
8832 [EXCP_UDEF] = "Undefined Instruction",
8833 [EXCP_SWI] = "SVC",
8834 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
8835 [EXCP_DATA_ABORT] = "Data Abort",
8836 [EXCP_IRQ] = "IRQ",
8837 [EXCP_FIQ] = "FIQ",
8838 [EXCP_BKPT] = "Breakpoint",
8839 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
8840 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
8841 [EXCP_HVC] = "Hypervisor Call",
8842 [EXCP_HYP_TRAP] = "Hypervisor Trap",
8843 [EXCP_SMC] = "Secure Monitor Call",
8844 [EXCP_VIRQ] = "Virtual IRQ",
8845 [EXCP_VFIQ] = "Virtual FIQ",
8846 [EXCP_SEMIHOST] = "Semihosting call",
8847 [EXCP_NOCP] = "v7M NOCP UsageFault",
8848 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
8849 [EXCP_STKOF] = "v8M STKOF UsageFault",
8850 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
8851 [EXCP_LSERR] = "v8M LSERR UsageFault",
8852 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
8855 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
8856 exc = excnames[idx];
8858 if (!exc) {
8859 exc = "unknown";
8861 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
8866 * Function used to synchronize QEMU's AArch64 register set with AArch32
8867 * register set. This is necessary when switching between AArch32 and AArch64
8868 * execution state.
8870 void aarch64_sync_32_to_64(CPUARMState *env)
8872 int i;
8873 uint32_t mode = env->uncached_cpsr & CPSR_M;
8875 /* We can blanket copy R[0:7] to X[0:7] */
8876 for (i = 0; i < 8; i++) {
8877 env->xregs[i] = env->regs[i];
8881 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
8882 * Otherwise, they come from the banked user regs.
8884 if (mode == ARM_CPU_MODE_FIQ) {
8885 for (i = 8; i < 13; i++) {
8886 env->xregs[i] = env->usr_regs[i - 8];
8888 } else {
8889 for (i = 8; i < 13; i++) {
8890 env->xregs[i] = env->regs[i];
8895 * Registers x13-x23 are the various mode SP and FP registers. Registers
8896 * r13 and r14 are only copied if we are in that mode, otherwise we copy
8897 * from the mode banked register.
8899 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
8900 env->xregs[13] = env->regs[13];
8901 env->xregs[14] = env->regs[14];
8902 } else {
8903 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
8904 /* HYP is an exception in that it is copied from r14 */
8905 if (mode == ARM_CPU_MODE_HYP) {
8906 env->xregs[14] = env->regs[14];
8907 } else {
8908 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
8912 if (mode == ARM_CPU_MODE_HYP) {
8913 env->xregs[15] = env->regs[13];
8914 } else {
8915 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
8918 if (mode == ARM_CPU_MODE_IRQ) {
8919 env->xregs[16] = env->regs[14];
8920 env->xregs[17] = env->regs[13];
8921 } else {
8922 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
8923 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
8926 if (mode == ARM_CPU_MODE_SVC) {
8927 env->xregs[18] = env->regs[14];
8928 env->xregs[19] = env->regs[13];
8929 } else {
8930 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
8931 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
8934 if (mode == ARM_CPU_MODE_ABT) {
8935 env->xregs[20] = env->regs[14];
8936 env->xregs[21] = env->regs[13];
8937 } else {
8938 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
8939 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
8942 if (mode == ARM_CPU_MODE_UND) {
8943 env->xregs[22] = env->regs[14];
8944 env->xregs[23] = env->regs[13];
8945 } else {
8946 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
8947 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
8951 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
8952 * mode, then we can copy from r8-r14. Otherwise, we copy from the
8953 * FIQ bank for r8-r14.
8955 if (mode == ARM_CPU_MODE_FIQ) {
8956 for (i = 24; i < 31; i++) {
8957 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
8959 } else {
8960 for (i = 24; i < 29; i++) {
8961 env->xregs[i] = env->fiq_regs[i - 24];
8963 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
8964 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
8967 env->pc = env->regs[15];
8971 * Function used to synchronize QEMU's AArch32 register set with AArch64
8972 * register set. This is necessary when switching between AArch32 and AArch64
8973 * execution state.
8975 void aarch64_sync_64_to_32(CPUARMState *env)
8977 int i;
8978 uint32_t mode = env->uncached_cpsr & CPSR_M;
8980 /* We can blanket copy X[0:7] to R[0:7] */
8981 for (i = 0; i < 8; i++) {
8982 env->regs[i] = env->xregs[i];
8986 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
8987 * Otherwise, we copy x8-x12 into the banked user regs.
8989 if (mode == ARM_CPU_MODE_FIQ) {
8990 for (i = 8; i < 13; i++) {
8991 env->usr_regs[i - 8] = env->xregs[i];
8993 } else {
8994 for (i = 8; i < 13; i++) {
8995 env->regs[i] = env->xregs[i];
9000 * Registers r13 & r14 depend on the current mode.
9001 * If we are in a given mode, we copy the corresponding x registers to r13
9002 * and r14. Otherwise, we copy the x register to the banked r13 and r14
9003 * for the mode.
9005 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9006 env->regs[13] = env->xregs[13];
9007 env->regs[14] = env->xregs[14];
9008 } else {
9009 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
9012 * HYP is an exception in that it does not have its own banked r14 but
9013 * shares the USR r14
9015 if (mode == ARM_CPU_MODE_HYP) {
9016 env->regs[14] = env->xregs[14];
9017 } else {
9018 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
9022 if (mode == ARM_CPU_MODE_HYP) {
9023 env->regs[13] = env->xregs[15];
9024 } else {
9025 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
9028 if (mode == ARM_CPU_MODE_IRQ) {
9029 env->regs[14] = env->xregs[16];
9030 env->regs[13] = env->xregs[17];
9031 } else {
9032 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
9033 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
9036 if (mode == ARM_CPU_MODE_SVC) {
9037 env->regs[14] = env->xregs[18];
9038 env->regs[13] = env->xregs[19];
9039 } else {
9040 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
9041 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
9044 if (mode == ARM_CPU_MODE_ABT) {
9045 env->regs[14] = env->xregs[20];
9046 env->regs[13] = env->xregs[21];
9047 } else {
9048 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
9049 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
9052 if (mode == ARM_CPU_MODE_UND) {
9053 env->regs[14] = env->xregs[22];
9054 env->regs[13] = env->xregs[23];
9055 } else {
9056 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
9057 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
9060 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
9061 * mode, then we can copy to r8-r14. Otherwise, we copy to the
9062 * FIQ bank for r8-r14.
9064 if (mode == ARM_CPU_MODE_FIQ) {
9065 for (i = 24; i < 31; i++) {
9066 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
9068 } else {
9069 for (i = 24; i < 29; i++) {
9070 env->fiq_regs[i - 24] = env->xregs[i];
9072 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
9073 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
9076 env->regs[15] = env->pc;
9079 static void take_aarch32_exception(CPUARMState *env, int new_mode,
9080 uint32_t mask, uint32_t offset,
9081 uint32_t newpc)
9083 int new_el;
9085 /* Change the CPU state so as to actually take the exception. */
9086 switch_mode(env, new_mode);
9089 * For exceptions taken to AArch32 we must clear the SS bit in both
9090 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
9092 env->uncached_cpsr &= ~PSTATE_SS;
9093 env->spsr = cpsr_read(env);
9094 /* Clear IT bits. */
9095 env->condexec_bits = 0;
9096 /* Switch to the new mode, and to the correct instruction set. */
9097 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
9099 /* This must be after mode switching. */
9100 new_el = arm_current_el(env);
9102 /* Set new mode endianness */
9103 env->uncached_cpsr &= ~CPSR_E;
9104 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
9105 env->uncached_cpsr |= CPSR_E;
9107 /* J and IL must always be cleared for exception entry */
9108 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
9109 env->daif |= mask;
9111 if (new_mode == ARM_CPU_MODE_HYP) {
9112 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
9113 env->elr_el[2] = env->regs[15];
9114 } else {
9115 /* CPSR.PAN is normally preserved preserved unless... */
9116 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
9117 switch (new_el) {
9118 case 3:
9119 if (!arm_is_secure_below_el3(env)) {
9120 /* ... the target is EL3, from non-secure state. */
9121 env->uncached_cpsr &= ~CPSR_PAN;
9122 break;
9124 /* ... the target is EL3, from secure state ... */
9125 /* fall through */
9126 case 1:
9127 /* ... the target is EL1 and SCTLR.SPAN is 0. */
9128 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
9129 env->uncached_cpsr |= CPSR_PAN;
9131 break;
9135 * this is a lie, as there was no c1_sys on V4T/V5, but who cares
9136 * and we should just guard the thumb mode on V4
9138 if (arm_feature(env, ARM_FEATURE_V4T)) {
9139 env->thumb =
9140 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
9142 env->regs[14] = env->regs[15] + offset;
9144 env->regs[15] = newpc;
9145 arm_rebuild_hflags(env);
9148 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
9151 * Handle exception entry to Hyp mode; this is sufficiently
9152 * different to entry to other AArch32 modes that we handle it
9153 * separately here.
9155 * The vector table entry used is always the 0x14 Hyp mode entry point,
9156 * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp.
9157 * The offset applied to the preferred return address is always zero
9158 * (see DDI0487C.a section G1.12.3).
9159 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
9161 uint32_t addr, mask;
9162 ARMCPU *cpu = ARM_CPU(cs);
9163 CPUARMState *env = &cpu->env;
9165 switch (cs->exception_index) {
9166 case EXCP_UDEF:
9167 addr = 0x04;
9168 break;
9169 case EXCP_SWI:
9170 addr = 0x14;
9171 break;
9172 case EXCP_BKPT:
9173 /* Fall through to prefetch abort. */
9174 case EXCP_PREFETCH_ABORT:
9175 env->cp15.ifar_s = env->exception.vaddress;
9176 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
9177 (uint32_t)env->exception.vaddress);
9178 addr = 0x0c;
9179 break;
9180 case EXCP_DATA_ABORT:
9181 env->cp15.dfar_s = env->exception.vaddress;
9182 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
9183 (uint32_t)env->exception.vaddress);
9184 addr = 0x10;
9185 break;
9186 case EXCP_IRQ:
9187 addr = 0x18;
9188 break;
9189 case EXCP_FIQ:
9190 addr = 0x1c;
9191 break;
9192 case EXCP_HVC:
9193 addr = 0x08;
9194 break;
9195 case EXCP_HYP_TRAP:
9196 addr = 0x14;
9197 break;
9198 default:
9199 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9202 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
9203 if (!arm_feature(env, ARM_FEATURE_V8)) {
9205 * QEMU syndrome values are v8-style. v7 has the IL bit
9206 * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
9207 * If this is a v7 CPU, squash the IL bit in those cases.
9209 if (cs->exception_index == EXCP_PREFETCH_ABORT ||
9210 (cs->exception_index == EXCP_DATA_ABORT &&
9211 !(env->exception.syndrome & ARM_EL_ISV)) ||
9212 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
9213 env->exception.syndrome &= ~ARM_EL_IL;
9216 env->cp15.esr_el[2] = env->exception.syndrome;
9219 if (arm_current_el(env) != 2 && addr < 0x14) {
9220 addr = 0x14;
9223 mask = 0;
9224 if (!(env->cp15.scr_el3 & SCR_EA)) {
9225 mask |= CPSR_A;
9227 if (!(env->cp15.scr_el3 & SCR_IRQ)) {
9228 mask |= CPSR_I;
9230 if (!(env->cp15.scr_el3 & SCR_FIQ)) {
9231 mask |= CPSR_F;
9234 addr += env->cp15.hvbar;
9236 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
9239 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
9241 ARMCPU *cpu = ARM_CPU(cs);
9242 CPUARMState *env = &cpu->env;
9243 uint32_t addr;
9244 uint32_t mask;
9245 int new_mode;
9246 uint32_t offset;
9247 uint32_t moe;
9249 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
9250 switch (syn_get_ec(env->exception.syndrome)) {
9251 case EC_BREAKPOINT:
9252 case EC_BREAKPOINT_SAME_EL:
9253 moe = 1;
9254 break;
9255 case EC_WATCHPOINT:
9256 case EC_WATCHPOINT_SAME_EL:
9257 moe = 10;
9258 break;
9259 case EC_AA32_BKPT:
9260 moe = 3;
9261 break;
9262 case EC_VECTORCATCH:
9263 moe = 5;
9264 break;
9265 default:
9266 moe = 0;
9267 break;
9270 if (moe) {
9271 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
9274 if (env->exception.target_el == 2) {
9275 arm_cpu_do_interrupt_aarch32_hyp(cs);
9276 return;
9279 switch (cs->exception_index) {
9280 case EXCP_UDEF:
9281 new_mode = ARM_CPU_MODE_UND;
9282 addr = 0x04;
9283 mask = CPSR_I;
9284 if (env->thumb)
9285 offset = 2;
9286 else
9287 offset = 4;
9288 break;
9289 case EXCP_SWI:
9290 new_mode = ARM_CPU_MODE_SVC;
9291 addr = 0x08;
9292 mask = CPSR_I;
9293 /* The PC already points to the next instruction. */
9294 offset = 0;
9295 break;
9296 case EXCP_BKPT:
9297 /* Fall through to prefetch abort. */
9298 case EXCP_PREFETCH_ABORT:
9299 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
9300 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
9301 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
9302 env->exception.fsr, (uint32_t)env->exception.vaddress);
9303 new_mode = ARM_CPU_MODE_ABT;
9304 addr = 0x0c;
9305 mask = CPSR_A | CPSR_I;
9306 offset = 4;
9307 break;
9308 case EXCP_DATA_ABORT:
9309 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
9310 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
9311 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
9312 env->exception.fsr,
9313 (uint32_t)env->exception.vaddress);
9314 new_mode = ARM_CPU_MODE_ABT;
9315 addr = 0x10;
9316 mask = CPSR_A | CPSR_I;
9317 offset = 8;
9318 break;
9319 case EXCP_IRQ:
9320 new_mode = ARM_CPU_MODE_IRQ;
9321 addr = 0x18;
9322 /* Disable IRQ and imprecise data aborts. */
9323 mask = CPSR_A | CPSR_I;
9324 offset = 4;
9325 if (env->cp15.scr_el3 & SCR_IRQ) {
9326 /* IRQ routed to monitor mode */
9327 new_mode = ARM_CPU_MODE_MON;
9328 mask |= CPSR_F;
9330 break;
9331 case EXCP_FIQ:
9332 new_mode = ARM_CPU_MODE_FIQ;
9333 addr = 0x1c;
9334 /* Disable FIQ, IRQ and imprecise data aborts. */
9335 mask = CPSR_A | CPSR_I | CPSR_F;
9336 if (env->cp15.scr_el3 & SCR_FIQ) {
9337 /* FIQ routed to monitor mode */
9338 new_mode = ARM_CPU_MODE_MON;
9340 offset = 4;
9341 break;
9342 case EXCP_VIRQ:
9343 new_mode = ARM_CPU_MODE_IRQ;
9344 addr = 0x18;
9345 /* Disable IRQ and imprecise data aborts. */
9346 mask = CPSR_A | CPSR_I;
9347 offset = 4;
9348 break;
9349 case EXCP_VFIQ:
9350 new_mode = ARM_CPU_MODE_FIQ;
9351 addr = 0x1c;
9352 /* Disable FIQ, IRQ and imprecise data aborts. */
9353 mask = CPSR_A | CPSR_I | CPSR_F;
9354 offset = 4;
9355 break;
9356 case EXCP_SMC:
9357 new_mode = ARM_CPU_MODE_MON;
9358 addr = 0x08;
9359 mask = CPSR_A | CPSR_I | CPSR_F;
9360 offset = 0;
9361 break;
9362 default:
9363 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9364 return; /* Never happens. Keep compiler happy. */
9367 if (new_mode == ARM_CPU_MODE_MON) {
9368 addr += env->cp15.mvbar;
9369 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
9370 /* High vectors. When enabled, base address cannot be remapped. */
9371 addr += 0xffff0000;
9372 } else {
9373 /* ARM v7 architectures provide a vector base address register to remap
9374 * the interrupt vector table.
9375 * This register is only followed in non-monitor mode, and is banked.
9376 * Note: only bits 31:5 are valid.
9378 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
9381 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
9382 env->cp15.scr_el3 &= ~SCR_NS;
9385 take_aarch32_exception(env, new_mode, mask, offset, addr);
9388 /* Handle exception entry to a target EL which is using AArch64 */
9389 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
9391 ARMCPU *cpu = ARM_CPU(cs);
9392 CPUARMState *env = &cpu->env;
9393 unsigned int new_el = env->exception.target_el;
9394 target_ulong addr = env->cp15.vbar_el[new_el];
9395 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
9396 unsigned int old_mode;
9397 unsigned int cur_el = arm_current_el(env);
9400 * Note that new_el can never be 0. If cur_el is 0, then
9401 * el0_a64 is is_a64(), else el0_a64 is ignored.
9403 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
9405 if (cur_el < new_el) {
9406 /* Entry vector offset depends on whether the implemented EL
9407 * immediately lower than the target level is using AArch32 or AArch64
9409 bool is_aa64;
9410 uint64_t hcr;
9412 switch (new_el) {
9413 case 3:
9414 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
9415 break;
9416 case 2:
9417 hcr = arm_hcr_el2_eff(env);
9418 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
9419 is_aa64 = (hcr & HCR_RW) != 0;
9420 break;
9422 /* fall through */
9423 case 1:
9424 is_aa64 = is_a64(env);
9425 break;
9426 default:
9427 g_assert_not_reached();
9430 if (is_aa64) {
9431 addr += 0x400;
9432 } else {
9433 addr += 0x600;
9435 } else if (pstate_read(env) & PSTATE_SP) {
9436 addr += 0x200;
9439 switch (cs->exception_index) {
9440 case EXCP_PREFETCH_ABORT:
9441 case EXCP_DATA_ABORT:
9442 env->cp15.far_el[new_el] = env->exception.vaddress;
9443 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
9444 env->cp15.far_el[new_el]);
9445 /* fall through */
9446 case EXCP_BKPT:
9447 case EXCP_UDEF:
9448 case EXCP_SWI:
9449 case EXCP_HVC:
9450 case EXCP_HYP_TRAP:
9451 case EXCP_SMC:
9452 if (syn_get_ec(env->exception.syndrome) == EC_ADVSIMDFPACCESSTRAP) {
9454 * QEMU internal FP/SIMD syndromes from AArch32 include the
9455 * TA and coproc fields which are only exposed if the exception
9456 * is taken to AArch32 Hyp mode. Mask them out to get a valid
9457 * AArch64 format syndrome.
9459 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
9461 env->cp15.esr_el[new_el] = env->exception.syndrome;
9462 break;
9463 case EXCP_IRQ:
9464 case EXCP_VIRQ:
9465 addr += 0x80;
9466 break;
9467 case EXCP_FIQ:
9468 case EXCP_VFIQ:
9469 addr += 0x100;
9470 break;
9471 default:
9472 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9475 if (is_a64(env)) {
9476 old_mode = pstate_read(env);
9477 aarch64_save_sp(env, arm_current_el(env));
9478 env->elr_el[new_el] = env->pc;
9479 } else {
9480 old_mode = cpsr_read(env);
9481 env->elr_el[new_el] = env->regs[15];
9483 aarch64_sync_32_to_64(env);
9485 env->condexec_bits = 0;
9487 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
9489 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
9490 env->elr_el[new_el]);
9492 if (cpu_isar_feature(aa64_pan, cpu)) {
9493 /* The value of PSTATE.PAN is normally preserved, except when ... */
9494 new_mode |= old_mode & PSTATE_PAN;
9495 switch (new_el) {
9496 case 2:
9497 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */
9498 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
9499 != (HCR_E2H | HCR_TGE)) {
9500 break;
9502 /* fall through */
9503 case 1:
9504 /* ... the target is EL1 ... */
9505 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */
9506 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
9507 new_mode |= PSTATE_PAN;
9509 break;
9513 pstate_write(env, PSTATE_DAIF | new_mode);
9514 env->aarch64 = 1;
9515 aarch64_restore_sp(env, new_el);
9516 helper_rebuild_hflags_a64(env, new_el);
9518 env->pc = addr;
9520 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
9521 new_el, env->pc, pstate_read(env));
9525 * Do semihosting call and set the appropriate return value. All the
9526 * permission and validity checks have been done at translate time.
9528 * We only see semihosting exceptions in TCG only as they are not
9529 * trapped to the hypervisor in KVM.
9531 #ifdef CONFIG_TCG
9532 static void handle_semihosting(CPUState *cs)
9534 ARMCPU *cpu = ARM_CPU(cs);
9535 CPUARMState *env = &cpu->env;
9537 if (is_a64(env)) {
9538 qemu_log_mask(CPU_LOG_INT,
9539 "...handling as semihosting call 0x%" PRIx64 "\n",
9540 env->xregs[0]);
9541 env->xregs[0] = do_arm_semihosting(env);
9542 env->pc += 4;
9543 } else {
9544 qemu_log_mask(CPU_LOG_INT,
9545 "...handling as semihosting call 0x%x\n",
9546 env->regs[0]);
9547 env->regs[0] = do_arm_semihosting(env);
9548 env->regs[15] += env->thumb ? 2 : 4;
9551 #endif
9553 /* Handle a CPU exception for A and R profile CPUs.
9554 * Do any appropriate logging, handle PSCI calls, and then hand off
9555 * to the AArch64-entry or AArch32-entry function depending on the
9556 * target exception level's register width.
9558 void arm_cpu_do_interrupt(CPUState *cs)
9560 ARMCPU *cpu = ARM_CPU(cs);
9561 CPUARMState *env = &cpu->env;
9562 unsigned int new_el = env->exception.target_el;
9564 assert(!arm_feature(env, ARM_FEATURE_M));
9566 arm_log_exception(cs->exception_index);
9567 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
9568 new_el);
9569 if (qemu_loglevel_mask(CPU_LOG_INT)
9570 && !excp_is_internal(cs->exception_index)) {
9571 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
9572 syn_get_ec(env->exception.syndrome),
9573 env->exception.syndrome);
9576 if (arm_is_psci_call(cpu, cs->exception_index)) {
9577 arm_handle_psci_call(cpu);
9578 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
9579 return;
9583 * Semihosting semantics depend on the register width of the code
9584 * that caused the exception, not the target exception level, so
9585 * must be handled here.
9587 #ifdef CONFIG_TCG
9588 if (cs->exception_index == EXCP_SEMIHOST) {
9589 handle_semihosting(cs);
9590 return;
9592 #endif
9594 /* Hooks may change global state so BQL should be held, also the
9595 * BQL needs to be held for any modification of
9596 * cs->interrupt_request.
9598 g_assert(qemu_mutex_iothread_locked());
9600 arm_call_pre_el_change_hook(cpu);
9602 assert(!excp_is_internal(cs->exception_index));
9603 if (arm_el_is_aa64(env, new_el)) {
9604 arm_cpu_do_interrupt_aarch64(cs);
9605 } else {
9606 arm_cpu_do_interrupt_aarch32(cs);
9609 arm_call_el_change_hook(cpu);
9611 if (!kvm_enabled()) {
9612 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
9615 #endif /* !CONFIG_USER_ONLY */
9617 /* Return the exception level which controls this address translation regime */
9618 static uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
9620 switch (mmu_idx) {
9621 case ARMMMUIdx_E20_0:
9622 case ARMMMUIdx_E20_2:
9623 case ARMMMUIdx_E20_2_PAN:
9624 case ARMMMUIdx_Stage2:
9625 case ARMMMUIdx_E2:
9626 return 2;
9627 case ARMMMUIdx_SE3:
9628 return 3;
9629 case ARMMMUIdx_SE10_0:
9630 return arm_el_is_aa64(env, 3) ? 1 : 3;
9631 case ARMMMUIdx_SE10_1:
9632 case ARMMMUIdx_SE10_1_PAN:
9633 case ARMMMUIdx_Stage1_E0:
9634 case ARMMMUIdx_Stage1_E1:
9635 case ARMMMUIdx_Stage1_E1_PAN:
9636 case ARMMMUIdx_E10_0:
9637 case ARMMMUIdx_E10_1:
9638 case ARMMMUIdx_E10_1_PAN:
9639 case ARMMMUIdx_MPrivNegPri:
9640 case ARMMMUIdx_MUserNegPri:
9641 case ARMMMUIdx_MPriv:
9642 case ARMMMUIdx_MUser:
9643 case ARMMMUIdx_MSPrivNegPri:
9644 case ARMMMUIdx_MSUserNegPri:
9645 case ARMMMUIdx_MSPriv:
9646 case ARMMMUIdx_MSUser:
9647 return 1;
9648 default:
9649 g_assert_not_reached();
9653 uint64_t arm_sctlr(CPUARMState *env, int el)
9655 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
9656 if (el == 0) {
9657 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
9658 el = (mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1);
9660 return env->cp15.sctlr_el[el];
9663 /* Return the SCTLR value which controls this address translation regime */
9664 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
9666 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
9669 #ifndef CONFIG_USER_ONLY
9671 /* Return true if the specified stage of address translation is disabled */
9672 static inline bool regime_translation_disabled(CPUARMState *env,
9673 ARMMMUIdx mmu_idx)
9675 if (arm_feature(env, ARM_FEATURE_M)) {
9676 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
9677 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
9678 case R_V7M_MPU_CTRL_ENABLE_MASK:
9679 /* Enabled, but not for HardFault and NMI */
9680 return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
9681 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
9682 /* Enabled for all cases */
9683 return false;
9684 case 0:
9685 default:
9686 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
9687 * we warned about that in armv7m_nvic.c when the guest set it.
9689 return true;
9693 if (mmu_idx == ARMMMUIdx_Stage2) {
9694 /* HCR.DC means HCR.VM behaves as 1 */
9695 return (env->cp15.hcr_el2 & (HCR_DC | HCR_VM)) == 0;
9698 if (env->cp15.hcr_el2 & HCR_TGE) {
9699 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
9700 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
9701 return true;
9705 if ((env->cp15.hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
9706 /* HCR.DC means SCTLR_EL1.M behaves as 0 */
9707 return true;
9710 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
9713 static inline bool regime_translation_big_endian(CPUARMState *env,
9714 ARMMMUIdx mmu_idx)
9716 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
9719 /* Return the TTBR associated with this translation regime */
9720 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
9721 int ttbrn)
9723 if (mmu_idx == ARMMMUIdx_Stage2) {
9724 return env->cp15.vttbr_el2;
9726 if (ttbrn == 0) {
9727 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
9728 } else {
9729 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
9733 #endif /* !CONFIG_USER_ONLY */
9735 /* Return the TCR controlling this translation regime */
9736 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
9738 if (mmu_idx == ARMMMUIdx_Stage2) {
9739 return &env->cp15.vtcr_el2;
9741 return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
9744 /* Convert a possible stage1+2 MMU index into the appropriate
9745 * stage 1 MMU index
9747 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
9749 switch (mmu_idx) {
9750 case ARMMMUIdx_E10_0:
9751 return ARMMMUIdx_Stage1_E0;
9752 case ARMMMUIdx_E10_1:
9753 return ARMMMUIdx_Stage1_E1;
9754 case ARMMMUIdx_E10_1_PAN:
9755 return ARMMMUIdx_Stage1_E1_PAN;
9756 default:
9757 return mmu_idx;
9761 /* Return true if the translation regime is using LPAE format page tables */
9762 static inline bool regime_using_lpae_format(CPUARMState *env,
9763 ARMMMUIdx mmu_idx)
9765 int el = regime_el(env, mmu_idx);
9766 if (el == 2 || arm_el_is_aa64(env, el)) {
9767 return true;
9769 if (arm_feature(env, ARM_FEATURE_LPAE)
9770 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
9771 return true;
9773 return false;
9776 /* Returns true if the stage 1 translation regime is using LPAE format page
9777 * tables. Used when raising alignment exceptions, whose FSR changes depending
9778 * on whether the long or short descriptor format is in use. */
9779 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
9781 mmu_idx = stage_1_mmu_idx(mmu_idx);
9783 return regime_using_lpae_format(env, mmu_idx);
9786 #ifndef CONFIG_USER_ONLY
9787 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
9789 switch (mmu_idx) {
9790 case ARMMMUIdx_SE10_0:
9791 case ARMMMUIdx_E20_0:
9792 case ARMMMUIdx_Stage1_E0:
9793 case ARMMMUIdx_MUser:
9794 case ARMMMUIdx_MSUser:
9795 case ARMMMUIdx_MUserNegPri:
9796 case ARMMMUIdx_MSUserNegPri:
9797 return true;
9798 default:
9799 return false;
9800 case ARMMMUIdx_E10_0:
9801 case ARMMMUIdx_E10_1:
9802 case ARMMMUIdx_E10_1_PAN:
9803 g_assert_not_reached();
9807 /* Translate section/page access permissions to page
9808 * R/W protection flags
9810 * @env: CPUARMState
9811 * @mmu_idx: MMU index indicating required translation regime
9812 * @ap: The 3-bit access permissions (AP[2:0])
9813 * @domain_prot: The 2-bit domain access permissions
9815 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
9816 int ap, int domain_prot)
9818 bool is_user = regime_is_user(env, mmu_idx);
9820 if (domain_prot == 3) {
9821 return PAGE_READ | PAGE_WRITE;
9824 switch (ap) {
9825 case 0:
9826 if (arm_feature(env, ARM_FEATURE_V7)) {
9827 return 0;
9829 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
9830 case SCTLR_S:
9831 return is_user ? 0 : PAGE_READ;
9832 case SCTLR_R:
9833 return PAGE_READ;
9834 default:
9835 return 0;
9837 case 1:
9838 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
9839 case 2:
9840 if (is_user) {
9841 return PAGE_READ;
9842 } else {
9843 return PAGE_READ | PAGE_WRITE;
9845 case 3:
9846 return PAGE_READ | PAGE_WRITE;
9847 case 4: /* Reserved. */
9848 return 0;
9849 case 5:
9850 return is_user ? 0 : PAGE_READ;
9851 case 6:
9852 return PAGE_READ;
9853 case 7:
9854 if (!arm_feature(env, ARM_FEATURE_V6K)) {
9855 return 0;
9857 return PAGE_READ;
9858 default:
9859 g_assert_not_reached();
9863 /* Translate section/page access permissions to page
9864 * R/W protection flags.
9866 * @ap: The 2-bit simple AP (AP[2:1])
9867 * @is_user: TRUE if accessing from PL0
9869 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
9871 switch (ap) {
9872 case 0:
9873 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
9874 case 1:
9875 return PAGE_READ | PAGE_WRITE;
9876 case 2:
9877 return is_user ? 0 : PAGE_READ;
9878 case 3:
9879 return PAGE_READ;
9880 default:
9881 g_assert_not_reached();
9885 static inline int
9886 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
9888 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
9891 /* Translate S2 section/page access permissions to protection flags
9893 * @env: CPUARMState
9894 * @s2ap: The 2-bit stage2 access permissions (S2AP)
9895 * @xn: XN (execute-never) bits
9896 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
9898 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
9900 int prot = 0;
9902 if (s2ap & 1) {
9903 prot |= PAGE_READ;
9905 if (s2ap & 2) {
9906 prot |= PAGE_WRITE;
9909 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
9910 switch (xn) {
9911 case 0:
9912 prot |= PAGE_EXEC;
9913 break;
9914 case 1:
9915 if (s1_is_el0) {
9916 prot |= PAGE_EXEC;
9918 break;
9919 case 2:
9920 break;
9921 case 3:
9922 if (!s1_is_el0) {
9923 prot |= PAGE_EXEC;
9925 break;
9926 default:
9927 g_assert_not_reached();
9929 } else {
9930 if (!extract32(xn, 1, 1)) {
9931 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
9932 prot |= PAGE_EXEC;
9936 return prot;
9939 /* Translate section/page access permissions to protection flags
9941 * @env: CPUARMState
9942 * @mmu_idx: MMU index indicating required translation regime
9943 * @is_aa64: TRUE if AArch64
9944 * @ap: The 2-bit simple AP (AP[2:1])
9945 * @ns: NS (non-secure) bit
9946 * @xn: XN (execute-never) bit
9947 * @pxn: PXN (privileged execute-never) bit
9949 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
9950 int ap, int ns, int xn, int pxn)
9952 bool is_user = regime_is_user(env, mmu_idx);
9953 int prot_rw, user_rw;
9954 bool have_wxn;
9955 int wxn = 0;
9957 assert(mmu_idx != ARMMMUIdx_Stage2);
9959 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
9960 if (is_user) {
9961 prot_rw = user_rw;
9962 } else {
9963 if (user_rw && regime_is_pan(env, mmu_idx)) {
9964 /* PAN forbids data accesses but doesn't affect insn fetch */
9965 prot_rw = 0;
9966 } else {
9967 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
9971 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
9972 return prot_rw;
9975 /* TODO have_wxn should be replaced with
9976 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
9977 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
9978 * compatible processors have EL2, which is required for [U]WXN.
9980 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
9982 if (have_wxn) {
9983 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
9986 if (is_aa64) {
9987 if (regime_has_2_ranges(mmu_idx) && !is_user) {
9988 xn = pxn || (user_rw & PAGE_WRITE);
9990 } else if (arm_feature(env, ARM_FEATURE_V7)) {
9991 switch (regime_el(env, mmu_idx)) {
9992 case 1:
9993 case 3:
9994 if (is_user) {
9995 xn = xn || !(user_rw & PAGE_READ);
9996 } else {
9997 int uwxn = 0;
9998 if (have_wxn) {
9999 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
10001 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
10002 (uwxn && (user_rw & PAGE_WRITE));
10004 break;
10005 case 2:
10006 break;
10008 } else {
10009 xn = wxn = 0;
10012 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
10013 return prot_rw;
10015 return prot_rw | PAGE_EXEC;
10018 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
10019 uint32_t *table, uint32_t address)
10021 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
10022 TCR *tcr = regime_tcr(env, mmu_idx);
10024 if (address & tcr->mask) {
10025 if (tcr->raw_tcr & TTBCR_PD1) {
10026 /* Translation table walk disabled for TTBR1 */
10027 return false;
10029 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
10030 } else {
10031 if (tcr->raw_tcr & TTBCR_PD0) {
10032 /* Translation table walk disabled for TTBR0 */
10033 return false;
10035 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
10037 *table |= (address >> 18) & 0x3ffc;
10038 return true;
10041 /* Translate a S1 pagetable walk through S2 if needed. */
10042 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
10043 hwaddr addr, MemTxAttrs txattrs,
10044 ARMMMUFaultInfo *fi)
10046 if (arm_mmu_idx_is_stage1_of_2(mmu_idx) &&
10047 !regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
10048 target_ulong s2size;
10049 hwaddr s2pa;
10050 int s2prot;
10051 int ret;
10052 ARMCacheAttrs cacheattrs = {};
10053 ARMCacheAttrs *pcacheattrs = NULL;
10055 if (env->cp15.hcr_el2 & HCR_PTW) {
10057 * PTW means we must fault if this S1 walk touches S2 Device
10058 * memory; otherwise we don't care about the attributes and can
10059 * save the S2 translation the effort of computing them.
10061 pcacheattrs = &cacheattrs;
10064 ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, ARMMMUIdx_Stage2,
10065 false,
10066 &s2pa, &txattrs, &s2prot, &s2size, fi,
10067 pcacheattrs);
10068 if (ret) {
10069 assert(fi->type != ARMFault_None);
10070 fi->s2addr = addr;
10071 fi->stage2 = true;
10072 fi->s1ptw = true;
10073 return ~0;
10075 if (pcacheattrs && (pcacheattrs->attrs & 0xf0) == 0) {
10076 /* Access was to Device memory: generate Permission fault */
10077 fi->type = ARMFault_Permission;
10078 fi->s2addr = addr;
10079 fi->stage2 = true;
10080 fi->s1ptw = true;
10081 return ~0;
10083 addr = s2pa;
10085 return addr;
10088 /* All loads done in the course of a page table walk go through here. */
10089 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10090 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10092 ARMCPU *cpu = ARM_CPU(cs);
10093 CPUARMState *env = &cpu->env;
10094 MemTxAttrs attrs = {};
10095 MemTxResult result = MEMTX_OK;
10096 AddressSpace *as;
10097 uint32_t data;
10099 attrs.secure = is_secure;
10100 as = arm_addressspace(cs, attrs);
10101 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
10102 if (fi->s1ptw) {
10103 return 0;
10105 if (regime_translation_big_endian(env, mmu_idx)) {
10106 data = address_space_ldl_be(as, addr, attrs, &result);
10107 } else {
10108 data = address_space_ldl_le(as, addr, attrs, &result);
10110 if (result == MEMTX_OK) {
10111 return data;
10113 fi->type = ARMFault_SyncExternalOnWalk;
10114 fi->ea = arm_extabort_type(result);
10115 return 0;
10118 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10119 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10121 ARMCPU *cpu = ARM_CPU(cs);
10122 CPUARMState *env = &cpu->env;
10123 MemTxAttrs attrs = {};
10124 MemTxResult result = MEMTX_OK;
10125 AddressSpace *as;
10126 uint64_t data;
10128 attrs.secure = is_secure;
10129 as = arm_addressspace(cs, attrs);
10130 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
10131 if (fi->s1ptw) {
10132 return 0;
10134 if (regime_translation_big_endian(env, mmu_idx)) {
10135 data = address_space_ldq_be(as, addr, attrs, &result);
10136 } else {
10137 data = address_space_ldq_le(as, addr, attrs, &result);
10139 if (result == MEMTX_OK) {
10140 return data;
10142 fi->type = ARMFault_SyncExternalOnWalk;
10143 fi->ea = arm_extabort_type(result);
10144 return 0;
10147 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
10148 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10149 hwaddr *phys_ptr, int *prot,
10150 target_ulong *page_size,
10151 ARMMMUFaultInfo *fi)
10153 CPUState *cs = env_cpu(env);
10154 int level = 1;
10155 uint32_t table;
10156 uint32_t desc;
10157 int type;
10158 int ap;
10159 int domain = 0;
10160 int domain_prot;
10161 hwaddr phys_addr;
10162 uint32_t dacr;
10164 /* Pagetable walk. */
10165 /* Lookup l1 descriptor. */
10166 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
10167 /* Section translation fault if page walk is disabled by PD0 or PD1 */
10168 fi->type = ARMFault_Translation;
10169 goto do_fault;
10171 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10172 mmu_idx, fi);
10173 if (fi->type != ARMFault_None) {
10174 goto do_fault;
10176 type = (desc & 3);
10177 domain = (desc >> 5) & 0x0f;
10178 if (regime_el(env, mmu_idx) == 1) {
10179 dacr = env->cp15.dacr_ns;
10180 } else {
10181 dacr = env->cp15.dacr_s;
10183 domain_prot = (dacr >> (domain * 2)) & 3;
10184 if (type == 0) {
10185 /* Section translation fault. */
10186 fi->type = ARMFault_Translation;
10187 goto do_fault;
10189 if (type != 2) {
10190 level = 2;
10192 if (domain_prot == 0 || domain_prot == 2) {
10193 fi->type = ARMFault_Domain;
10194 goto do_fault;
10196 if (type == 2) {
10197 /* 1Mb section. */
10198 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
10199 ap = (desc >> 10) & 3;
10200 *page_size = 1024 * 1024;
10201 } else {
10202 /* Lookup l2 entry. */
10203 if (type == 1) {
10204 /* Coarse pagetable. */
10205 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
10206 } else {
10207 /* Fine pagetable. */
10208 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
10210 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10211 mmu_idx, fi);
10212 if (fi->type != ARMFault_None) {
10213 goto do_fault;
10215 switch (desc & 3) {
10216 case 0: /* Page translation fault. */
10217 fi->type = ARMFault_Translation;
10218 goto do_fault;
10219 case 1: /* 64k page. */
10220 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
10221 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
10222 *page_size = 0x10000;
10223 break;
10224 case 2: /* 4k page. */
10225 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10226 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
10227 *page_size = 0x1000;
10228 break;
10229 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
10230 if (type == 1) {
10231 /* ARMv6/XScale extended small page format */
10232 if (arm_feature(env, ARM_FEATURE_XSCALE)
10233 || arm_feature(env, ARM_FEATURE_V6)) {
10234 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10235 *page_size = 0x1000;
10236 } else {
10237 /* UNPREDICTABLE in ARMv5; we choose to take a
10238 * page translation fault.
10240 fi->type = ARMFault_Translation;
10241 goto do_fault;
10243 } else {
10244 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
10245 *page_size = 0x400;
10247 ap = (desc >> 4) & 3;
10248 break;
10249 default:
10250 /* Never happens, but compiler isn't smart enough to tell. */
10251 abort();
10254 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
10255 *prot |= *prot ? PAGE_EXEC : 0;
10256 if (!(*prot & (1 << access_type))) {
10257 /* Access permission fault. */
10258 fi->type = ARMFault_Permission;
10259 goto do_fault;
10261 *phys_ptr = phys_addr;
10262 return false;
10263 do_fault:
10264 fi->domain = domain;
10265 fi->level = level;
10266 return true;
10269 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
10270 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10271 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
10272 target_ulong *page_size, ARMMMUFaultInfo *fi)
10274 CPUState *cs = env_cpu(env);
10275 int level = 1;
10276 uint32_t table;
10277 uint32_t desc;
10278 uint32_t xn;
10279 uint32_t pxn = 0;
10280 int type;
10281 int ap;
10282 int domain = 0;
10283 int domain_prot;
10284 hwaddr phys_addr;
10285 uint32_t dacr;
10286 bool ns;
10288 /* Pagetable walk. */
10289 /* Lookup l1 descriptor. */
10290 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
10291 /* Section translation fault if page walk is disabled by PD0 or PD1 */
10292 fi->type = ARMFault_Translation;
10293 goto do_fault;
10295 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10296 mmu_idx, fi);
10297 if (fi->type != ARMFault_None) {
10298 goto do_fault;
10300 type = (desc & 3);
10301 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
10302 /* Section translation fault, or attempt to use the encoding
10303 * which is Reserved on implementations without PXN.
10305 fi->type = ARMFault_Translation;
10306 goto do_fault;
10308 if ((type == 1) || !(desc & (1 << 18))) {
10309 /* Page or Section. */
10310 domain = (desc >> 5) & 0x0f;
10312 if (regime_el(env, mmu_idx) == 1) {
10313 dacr = env->cp15.dacr_ns;
10314 } else {
10315 dacr = env->cp15.dacr_s;
10317 if (type == 1) {
10318 level = 2;
10320 domain_prot = (dacr >> (domain * 2)) & 3;
10321 if (domain_prot == 0 || domain_prot == 2) {
10322 /* Section or Page domain fault */
10323 fi->type = ARMFault_Domain;
10324 goto do_fault;
10326 if (type != 1) {
10327 if (desc & (1 << 18)) {
10328 /* Supersection. */
10329 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
10330 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
10331 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
10332 *page_size = 0x1000000;
10333 } else {
10334 /* Section. */
10335 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
10336 *page_size = 0x100000;
10338 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
10339 xn = desc & (1 << 4);
10340 pxn = desc & 1;
10341 ns = extract32(desc, 19, 1);
10342 } else {
10343 if (arm_feature(env, ARM_FEATURE_PXN)) {
10344 pxn = (desc >> 2) & 1;
10346 ns = extract32(desc, 3, 1);
10347 /* Lookup l2 entry. */
10348 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
10349 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10350 mmu_idx, fi);
10351 if (fi->type != ARMFault_None) {
10352 goto do_fault;
10354 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
10355 switch (desc & 3) {
10356 case 0: /* Page translation fault. */
10357 fi->type = ARMFault_Translation;
10358 goto do_fault;
10359 case 1: /* 64k page. */
10360 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
10361 xn = desc & (1 << 15);
10362 *page_size = 0x10000;
10363 break;
10364 case 2: case 3: /* 4k page. */
10365 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10366 xn = desc & 1;
10367 *page_size = 0x1000;
10368 break;
10369 default:
10370 /* Never happens, but compiler isn't smart enough to tell. */
10371 abort();
10374 if (domain_prot == 3) {
10375 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10376 } else {
10377 if (pxn && !regime_is_user(env, mmu_idx)) {
10378 xn = 1;
10380 if (xn && access_type == MMU_INST_FETCH) {
10381 fi->type = ARMFault_Permission;
10382 goto do_fault;
10385 if (arm_feature(env, ARM_FEATURE_V6K) &&
10386 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
10387 /* The simplified model uses AP[0] as an access control bit. */
10388 if ((ap & 1) == 0) {
10389 /* Access flag fault. */
10390 fi->type = ARMFault_AccessFlag;
10391 goto do_fault;
10393 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
10394 } else {
10395 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
10397 if (*prot && !xn) {
10398 *prot |= PAGE_EXEC;
10400 if (!(*prot & (1 << access_type))) {
10401 /* Access permission fault. */
10402 fi->type = ARMFault_Permission;
10403 goto do_fault;
10406 if (ns) {
10407 /* The NS bit will (as required by the architecture) have no effect if
10408 * the CPU doesn't support TZ or this is a non-secure translation
10409 * regime, because the attribute will already be non-secure.
10411 attrs->secure = false;
10413 *phys_ptr = phys_addr;
10414 return false;
10415 do_fault:
10416 fi->domain = domain;
10417 fi->level = level;
10418 return true;
10422 * check_s2_mmu_setup
10423 * @cpu: ARMCPU
10424 * @is_aa64: True if the translation regime is in AArch64 state
10425 * @startlevel: Suggested starting level
10426 * @inputsize: Bitsize of IPAs
10427 * @stride: Page-table stride (See the ARM ARM)
10429 * Returns true if the suggested S2 translation parameters are OK and
10430 * false otherwise.
10432 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
10433 int inputsize, int stride)
10435 const int grainsize = stride + 3;
10436 int startsizecheck;
10438 /* Negative levels are never allowed. */
10439 if (level < 0) {
10440 return false;
10443 startsizecheck = inputsize - ((3 - level) * stride + grainsize);
10444 if (startsizecheck < 1 || startsizecheck > stride + 4) {
10445 return false;
10448 if (is_aa64) {
10449 CPUARMState *env = &cpu->env;
10450 unsigned int pamax = arm_pamax(cpu);
10452 switch (stride) {
10453 case 13: /* 64KB Pages. */
10454 if (level == 0 || (level == 1 && pamax <= 42)) {
10455 return false;
10457 break;
10458 case 11: /* 16KB Pages. */
10459 if (level == 0 || (level == 1 && pamax <= 40)) {
10460 return false;
10462 break;
10463 case 9: /* 4KB Pages. */
10464 if (level == 0 && pamax <= 42) {
10465 return false;
10467 break;
10468 default:
10469 g_assert_not_reached();
10472 /* Inputsize checks. */
10473 if (inputsize > pamax &&
10474 (arm_el_is_aa64(env, 1) || inputsize > 40)) {
10475 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
10476 return false;
10478 } else {
10479 /* AArch32 only supports 4KB pages. Assert on that. */
10480 assert(stride == 9);
10482 if (level == 0) {
10483 return false;
10486 return true;
10489 /* Translate from the 4-bit stage 2 representation of
10490 * memory attributes (without cache-allocation hints) to
10491 * the 8-bit representation of the stage 1 MAIR registers
10492 * (which includes allocation hints).
10494 * ref: shared/translation/attrs/S2AttrDecode()
10495 * .../S2ConvertAttrsHints()
10497 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
10499 uint8_t hiattr = extract32(s2attrs, 2, 2);
10500 uint8_t loattr = extract32(s2attrs, 0, 2);
10501 uint8_t hihint = 0, lohint = 0;
10503 if (hiattr != 0) { /* normal memory */
10504 if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */
10505 hiattr = loattr = 1; /* non-cacheable */
10506 } else {
10507 if (hiattr != 1) { /* Write-through or write-back */
10508 hihint = 3; /* RW allocate */
10510 if (loattr != 1) { /* Write-through or write-back */
10511 lohint = 3; /* RW allocate */
10516 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
10518 #endif /* !CONFIG_USER_ONLY */
10520 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
10522 if (regime_has_2_ranges(mmu_idx)) {
10523 return extract64(tcr, 37, 2);
10524 } else if (mmu_idx == ARMMMUIdx_Stage2) {
10525 return 0; /* VTCR_EL2 */
10526 } else {
10527 /* Replicate the single TBI bit so we always have 2 bits. */
10528 return extract32(tcr, 20, 1) * 3;
10532 static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
10534 if (regime_has_2_ranges(mmu_idx)) {
10535 return extract64(tcr, 51, 2);
10536 } else if (mmu_idx == ARMMMUIdx_Stage2) {
10537 return 0; /* VTCR_EL2 */
10538 } else {
10539 /* Replicate the single TBID bit so we always have 2 bits. */
10540 return extract32(tcr, 29, 1) * 3;
10544 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
10545 ARMMMUIdx mmu_idx, bool data)
10547 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
10548 bool epd, hpd, using16k, using64k;
10549 int select, tsz, tbi;
10551 if (!regime_has_2_ranges(mmu_idx)) {
10552 select = 0;
10553 tsz = extract32(tcr, 0, 6);
10554 using64k = extract32(tcr, 14, 1);
10555 using16k = extract32(tcr, 15, 1);
10556 if (mmu_idx == ARMMMUIdx_Stage2) {
10557 /* VTCR_EL2 */
10558 hpd = false;
10559 } else {
10560 hpd = extract32(tcr, 24, 1);
10562 epd = false;
10563 } else {
10565 * Bit 55 is always between the two regions, and is canonical for
10566 * determining if address tagging is enabled.
10568 select = extract64(va, 55, 1);
10569 if (!select) {
10570 tsz = extract32(tcr, 0, 6);
10571 epd = extract32(tcr, 7, 1);
10572 using64k = extract32(tcr, 14, 1);
10573 using16k = extract32(tcr, 15, 1);
10574 hpd = extract64(tcr, 41, 1);
10575 } else {
10576 int tg = extract32(tcr, 30, 2);
10577 using16k = tg == 1;
10578 using64k = tg == 3;
10579 tsz = extract32(tcr, 16, 6);
10580 epd = extract32(tcr, 23, 1);
10581 hpd = extract64(tcr, 42, 1);
10584 tsz = MIN(tsz, 39); /* TODO: ARMv8.4-TTST */
10585 tsz = MAX(tsz, 16); /* TODO: ARMv8.2-LVA */
10587 /* Present TBI as a composite with TBID. */
10588 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
10589 if (!data) {
10590 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
10592 tbi = (tbi >> select) & 1;
10594 return (ARMVAParameters) {
10595 .tsz = tsz,
10596 .select = select,
10597 .tbi = tbi,
10598 .epd = epd,
10599 .hpd = hpd,
10600 .using16k = using16k,
10601 .using64k = using64k,
10605 #ifndef CONFIG_USER_ONLY
10606 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
10607 ARMMMUIdx mmu_idx)
10609 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
10610 uint32_t el = regime_el(env, mmu_idx);
10611 int select, tsz;
10612 bool epd, hpd;
10614 if (mmu_idx == ARMMMUIdx_Stage2) {
10615 /* VTCR */
10616 bool sext = extract32(tcr, 4, 1);
10617 bool sign = extract32(tcr, 3, 1);
10620 * If the sign-extend bit is not the same as t0sz[3], the result
10621 * is unpredictable. Flag this as a guest error.
10623 if (sign != sext) {
10624 qemu_log_mask(LOG_GUEST_ERROR,
10625 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
10627 tsz = sextract32(tcr, 0, 4) + 8;
10628 select = 0;
10629 hpd = false;
10630 epd = false;
10631 } else if (el == 2) {
10632 /* HTCR */
10633 tsz = extract32(tcr, 0, 3);
10634 select = 0;
10635 hpd = extract64(tcr, 24, 1);
10636 epd = false;
10637 } else {
10638 int t0sz = extract32(tcr, 0, 3);
10639 int t1sz = extract32(tcr, 16, 3);
10641 if (t1sz == 0) {
10642 select = va > (0xffffffffu >> t0sz);
10643 } else {
10644 /* Note that we will detect errors later. */
10645 select = va >= ~(0xffffffffu >> t1sz);
10647 if (!select) {
10648 tsz = t0sz;
10649 epd = extract32(tcr, 7, 1);
10650 hpd = extract64(tcr, 41, 1);
10651 } else {
10652 tsz = t1sz;
10653 epd = extract32(tcr, 23, 1);
10654 hpd = extract64(tcr, 42, 1);
10656 /* For aarch32, hpd0 is not enabled without t2e as well. */
10657 hpd &= extract32(tcr, 6, 1);
10660 return (ARMVAParameters) {
10661 .tsz = tsz,
10662 .select = select,
10663 .epd = epd,
10664 .hpd = hpd,
10669 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format
10671 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
10672 * prot and page_size may not be filled in, and the populated fsr value provides
10673 * information on why the translation aborted, in the format of a long-format
10674 * DFSR/IFSR fault register, with the following caveats:
10675 * * the WnR bit is never set (the caller must do this).
10677 * @env: CPUARMState
10678 * @address: virtual address to get physical address for
10679 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
10680 * @mmu_idx: MMU index indicating required translation regime
10681 * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page table
10682 * walk), must be true if this is stage 2 of a stage 1+2 walk for an
10683 * EL0 access). If @mmu_idx is anything else, @s1_is_el0 is ignored.
10684 * @phys_ptr: set to the physical address corresponding to the virtual address
10685 * @attrs: set to the memory transaction attributes to use
10686 * @prot: set to the permissions for the page containing phys_ptr
10687 * @page_size_ptr: set to the size of the page containing phys_ptr
10688 * @fi: set to fault info if the translation fails
10689 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
10691 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
10692 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10693 bool s1_is_el0,
10694 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
10695 target_ulong *page_size_ptr,
10696 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
10698 ARMCPU *cpu = env_archcpu(env);
10699 CPUState *cs = CPU(cpu);
10700 /* Read an LPAE long-descriptor translation table. */
10701 ARMFaultType fault_type = ARMFault_Translation;
10702 uint32_t level;
10703 ARMVAParameters param;
10704 uint64_t ttbr;
10705 hwaddr descaddr, indexmask, indexmask_grainsize;
10706 uint32_t tableattrs;
10707 target_ulong page_size;
10708 uint32_t attrs;
10709 int32_t stride;
10710 int addrsize, inputsize;
10711 TCR *tcr = regime_tcr(env, mmu_idx);
10712 int ap, ns, xn, pxn;
10713 uint32_t el = regime_el(env, mmu_idx);
10714 uint64_t descaddrmask;
10715 bool aarch64 = arm_el_is_aa64(env, el);
10716 bool guarded = false;
10718 /* TODO: This code does not support shareability levels. */
10719 if (aarch64) {
10720 param = aa64_va_parameters(env, address, mmu_idx,
10721 access_type != MMU_INST_FETCH);
10722 level = 0;
10723 addrsize = 64 - 8 * param.tbi;
10724 inputsize = 64 - param.tsz;
10725 } else {
10726 param = aa32_va_parameters(env, address, mmu_idx);
10727 level = 1;
10728 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
10729 inputsize = addrsize - param.tsz;
10733 * We determined the region when collecting the parameters, but we
10734 * have not yet validated that the address is valid for the region.
10735 * Extract the top bits and verify that they all match select.
10737 * For aa32, if inputsize == addrsize, then we have selected the
10738 * region by exclusion in aa32_va_parameters and there is no more
10739 * validation to do here.
10741 if (inputsize < addrsize) {
10742 target_ulong top_bits = sextract64(address, inputsize,
10743 addrsize - inputsize);
10744 if (-top_bits != param.select) {
10745 /* The gap between the two regions is a Translation fault */
10746 fault_type = ARMFault_Translation;
10747 goto do_fault;
10751 if (param.using64k) {
10752 stride = 13;
10753 } else if (param.using16k) {
10754 stride = 11;
10755 } else {
10756 stride = 9;
10759 /* Note that QEMU ignores shareability and cacheability attributes,
10760 * so we don't need to do anything with the SH, ORGN, IRGN fields
10761 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
10762 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
10763 * implement any ASID-like capability so we can ignore it (instead
10764 * we will always flush the TLB any time the ASID is changed).
10766 ttbr = regime_ttbr(env, mmu_idx, param.select);
10768 /* Here we should have set up all the parameters for the translation:
10769 * inputsize, ttbr, epd, stride, tbi
10772 if (param.epd) {
10773 /* Translation table walk disabled => Translation fault on TLB miss
10774 * Note: This is always 0 on 64-bit EL2 and EL3.
10776 goto do_fault;
10779 if (mmu_idx != ARMMMUIdx_Stage2) {
10780 /* The starting level depends on the virtual address size (which can
10781 * be up to 48 bits) and the translation granule size. It indicates
10782 * the number of strides (stride bits at a time) needed to
10783 * consume the bits of the input address. In the pseudocode this is:
10784 * level = 4 - RoundUp((inputsize - grainsize) / stride)
10785 * where their 'inputsize' is our 'inputsize', 'grainsize' is
10786 * our 'stride + 3' and 'stride' is our 'stride'.
10787 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
10788 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
10789 * = 4 - (inputsize - 4) / stride;
10791 level = 4 - (inputsize - 4) / stride;
10792 } else {
10793 /* For stage 2 translations the starting level is specified by the
10794 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
10796 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
10797 uint32_t startlevel;
10798 bool ok;
10800 if (!aarch64 || stride == 9) {
10801 /* AArch32 or 4KB pages */
10802 startlevel = 2 - sl0;
10803 } else {
10804 /* 16KB or 64KB pages */
10805 startlevel = 3 - sl0;
10808 /* Check that the starting level is valid. */
10809 ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
10810 inputsize, stride);
10811 if (!ok) {
10812 fault_type = ARMFault_Translation;
10813 goto do_fault;
10815 level = startlevel;
10818 indexmask_grainsize = (1ULL << (stride + 3)) - 1;
10819 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
10821 /* Now we can extract the actual base address from the TTBR */
10822 descaddr = extract64(ttbr, 0, 48);
10824 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR
10825 * and also to mask out CnP (bit 0) which could validly be non-zero.
10827 descaddr &= ~indexmask;
10829 /* The address field in the descriptor goes up to bit 39 for ARMv7
10830 * but up to bit 47 for ARMv8, but we use the descaddrmask
10831 * up to bit 39 for AArch32, because we don't need other bits in that case
10832 * to construct next descriptor address (anyway they should be all zeroes).
10834 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
10835 ~indexmask_grainsize;
10837 /* Secure accesses start with the page table in secure memory and
10838 * can be downgraded to non-secure at any step. Non-secure accesses
10839 * remain non-secure. We implement this by just ORing in the NSTable/NS
10840 * bits at each step.
10842 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
10843 for (;;) {
10844 uint64_t descriptor;
10845 bool nstable;
10847 descaddr |= (address >> (stride * (4 - level))) & indexmask;
10848 descaddr &= ~7ULL;
10849 nstable = extract32(tableattrs, 4, 1);
10850 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
10851 if (fi->type != ARMFault_None) {
10852 goto do_fault;
10855 if (!(descriptor & 1) ||
10856 (!(descriptor & 2) && (level == 3))) {
10857 /* Invalid, or the Reserved level 3 encoding */
10858 goto do_fault;
10860 descaddr = descriptor & descaddrmask;
10862 if ((descriptor & 2) && (level < 3)) {
10863 /* Table entry. The top five bits are attributes which may
10864 * propagate down through lower levels of the table (and
10865 * which are all arranged so that 0 means "no effect", so
10866 * we can gather them up by ORing in the bits at each level).
10868 tableattrs |= extract64(descriptor, 59, 5);
10869 level++;
10870 indexmask = indexmask_grainsize;
10871 continue;
10873 /* Block entry at level 1 or 2, or page entry at level 3.
10874 * These are basically the same thing, although the number
10875 * of bits we pull in from the vaddr varies.
10877 page_size = (1ULL << ((stride * (4 - level)) + 3));
10878 descaddr |= (address & (page_size - 1));
10879 /* Extract attributes from the descriptor */
10880 attrs = extract64(descriptor, 2, 10)
10881 | (extract64(descriptor, 52, 12) << 10);
10883 if (mmu_idx == ARMMMUIdx_Stage2) {
10884 /* Stage 2 table descriptors do not include any attribute fields */
10885 break;
10887 /* Merge in attributes from table descriptors */
10888 attrs |= nstable << 3; /* NS */
10889 guarded = extract64(descriptor, 50, 1); /* GP */
10890 if (param.hpd) {
10891 /* HPD disables all the table attributes except NSTable. */
10892 break;
10894 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
10895 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
10896 * means "force PL1 access only", which means forcing AP[1] to 0.
10898 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */
10899 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */
10900 break;
10902 /* Here descaddr is the final physical address, and attributes
10903 * are all in attrs.
10905 fault_type = ARMFault_AccessFlag;
10906 if ((attrs & (1 << 8)) == 0) {
10907 /* Access flag */
10908 goto do_fault;
10911 ap = extract32(attrs, 4, 2);
10913 if (mmu_idx == ARMMMUIdx_Stage2) {
10914 ns = true;
10915 xn = extract32(attrs, 11, 2);
10916 *prot = get_S2prot(env, ap, xn, s1_is_el0);
10917 } else {
10918 ns = extract32(attrs, 3, 1);
10919 xn = extract32(attrs, 12, 1);
10920 pxn = extract32(attrs, 11, 1);
10921 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
10924 fault_type = ARMFault_Permission;
10925 if (!(*prot & (1 << access_type))) {
10926 goto do_fault;
10929 if (ns) {
10930 /* The NS bit will (as required by the architecture) have no effect if
10931 * the CPU doesn't support TZ or this is a non-secure translation
10932 * regime, because the attribute will already be non-secure.
10934 txattrs->secure = false;
10936 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */
10937 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) {
10938 txattrs->target_tlb_bit0 = true;
10941 if (cacheattrs != NULL) {
10942 if (mmu_idx == ARMMMUIdx_Stage2) {
10943 cacheattrs->attrs = convert_stage2_attrs(env,
10944 extract32(attrs, 0, 4));
10945 } else {
10946 /* Index into MAIR registers for cache attributes */
10947 uint8_t attrindx = extract32(attrs, 0, 3);
10948 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
10949 assert(attrindx <= 7);
10950 cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
10952 cacheattrs->shareability = extract32(attrs, 6, 2);
10955 *phys_ptr = descaddr;
10956 *page_size_ptr = page_size;
10957 return false;
10959 do_fault:
10960 fi->type = fault_type;
10961 fi->level = level;
10962 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
10963 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2);
10964 return true;
10967 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
10968 ARMMMUIdx mmu_idx,
10969 int32_t address, int *prot)
10971 if (!arm_feature(env, ARM_FEATURE_M)) {
10972 *prot = PAGE_READ | PAGE_WRITE;
10973 switch (address) {
10974 case 0xF0000000 ... 0xFFFFFFFF:
10975 if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
10976 /* hivecs execing is ok */
10977 *prot |= PAGE_EXEC;
10979 break;
10980 case 0x00000000 ... 0x7FFFFFFF:
10981 *prot |= PAGE_EXEC;
10982 break;
10984 } else {
10985 /* Default system address map for M profile cores.
10986 * The architecture specifies which regions are execute-never;
10987 * at the MPU level no other checks are defined.
10989 switch (address) {
10990 case 0x00000000 ... 0x1fffffff: /* ROM */
10991 case 0x20000000 ... 0x3fffffff: /* SRAM */
10992 case 0x60000000 ... 0x7fffffff: /* RAM */
10993 case 0x80000000 ... 0x9fffffff: /* RAM */
10994 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10995 break;
10996 case 0x40000000 ... 0x5fffffff: /* Peripheral */
10997 case 0xa0000000 ... 0xbfffffff: /* Device */
10998 case 0xc0000000 ... 0xdfffffff: /* Device */
10999 case 0xe0000000 ... 0xffffffff: /* System */
11000 *prot = PAGE_READ | PAGE_WRITE;
11001 break;
11002 default:
11003 g_assert_not_reached();
11008 static bool pmsav7_use_background_region(ARMCPU *cpu,
11009 ARMMMUIdx mmu_idx, bool is_user)
11011 /* Return true if we should use the default memory map as a
11012 * "background" region if there are no hits against any MPU regions.
11014 CPUARMState *env = &cpu->env;
11016 if (is_user) {
11017 return false;
11020 if (arm_feature(env, ARM_FEATURE_M)) {
11021 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
11022 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
11023 } else {
11024 return regime_sctlr(env, mmu_idx) & SCTLR_BR;
11028 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
11030 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
11031 return arm_feature(env, ARM_FEATURE_M) &&
11032 extract32(address, 20, 12) == 0xe00;
11035 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
11037 /* True if address is in the M profile system region
11038 * 0xe0000000 - 0xffffffff
11040 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
11043 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
11044 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11045 hwaddr *phys_ptr, int *prot,
11046 target_ulong *page_size,
11047 ARMMMUFaultInfo *fi)
11049 ARMCPU *cpu = env_archcpu(env);
11050 int n;
11051 bool is_user = regime_is_user(env, mmu_idx);
11053 *phys_ptr = address;
11054 *page_size = TARGET_PAGE_SIZE;
11055 *prot = 0;
11057 if (regime_translation_disabled(env, mmu_idx) ||
11058 m_is_ppb_region(env, address)) {
11059 /* MPU disabled or M profile PPB access: use default memory map.
11060 * The other case which uses the default memory map in the
11061 * v7M ARM ARM pseudocode is exception vector reads from the vector
11062 * table. In QEMU those accesses are done in arm_v7m_load_vector(),
11063 * which always does a direct read using address_space_ldl(), rather
11064 * than going via this function, so we don't need to check that here.
11066 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11067 } else { /* MPU enabled */
11068 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
11069 /* region search */
11070 uint32_t base = env->pmsav7.drbar[n];
11071 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
11072 uint32_t rmask;
11073 bool srdis = false;
11075 if (!(env->pmsav7.drsr[n] & 0x1)) {
11076 continue;
11079 if (!rsize) {
11080 qemu_log_mask(LOG_GUEST_ERROR,
11081 "DRSR[%d]: Rsize field cannot be 0\n", n);
11082 continue;
11084 rsize++;
11085 rmask = (1ull << rsize) - 1;
11087 if (base & rmask) {
11088 qemu_log_mask(LOG_GUEST_ERROR,
11089 "DRBAR[%d]: 0x%" PRIx32 " misaligned "
11090 "to DRSR region size, mask = 0x%" PRIx32 "\n",
11091 n, base, rmask);
11092 continue;
11095 if (address < base || address > base + rmask) {
11097 * Address not in this region. We must check whether the
11098 * region covers addresses in the same page as our address.
11099 * In that case we must not report a size that covers the
11100 * whole page for a subsequent hit against a different MPU
11101 * region or the background region, because it would result in
11102 * incorrect TLB hits for subsequent accesses to addresses that
11103 * are in this MPU region.
11105 if (ranges_overlap(base, rmask,
11106 address & TARGET_PAGE_MASK,
11107 TARGET_PAGE_SIZE)) {
11108 *page_size = 1;
11110 continue;
11113 /* Region matched */
11115 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
11116 int i, snd;
11117 uint32_t srdis_mask;
11119 rsize -= 3; /* sub region size (power of 2) */
11120 snd = ((address - base) >> rsize) & 0x7;
11121 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
11123 srdis_mask = srdis ? 0x3 : 0x0;
11124 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
11125 /* This will check in groups of 2, 4 and then 8, whether
11126 * the subregion bits are consistent. rsize is incremented
11127 * back up to give the region size, considering consistent
11128 * adjacent subregions as one region. Stop testing if rsize
11129 * is already big enough for an entire QEMU page.
11131 int snd_rounded = snd & ~(i - 1);
11132 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
11133 snd_rounded + 8, i);
11134 if (srdis_mask ^ srdis_multi) {
11135 break;
11137 srdis_mask = (srdis_mask << i) | srdis_mask;
11138 rsize++;
11141 if (srdis) {
11142 continue;
11144 if (rsize < TARGET_PAGE_BITS) {
11145 *page_size = 1 << rsize;
11147 break;
11150 if (n == -1) { /* no hits */
11151 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
11152 /* background fault */
11153 fi->type = ARMFault_Background;
11154 return true;
11156 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11157 } else { /* a MPU hit! */
11158 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
11159 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
11161 if (m_is_system_region(env, address)) {
11162 /* System space is always execute never */
11163 xn = 1;
11166 if (is_user) { /* User mode AP bit decoding */
11167 switch (ap) {
11168 case 0:
11169 case 1:
11170 case 5:
11171 break; /* no access */
11172 case 3:
11173 *prot |= PAGE_WRITE;
11174 /* fall through */
11175 case 2:
11176 case 6:
11177 *prot |= PAGE_READ | PAGE_EXEC;
11178 break;
11179 case 7:
11180 /* for v7M, same as 6; for R profile a reserved value */
11181 if (arm_feature(env, ARM_FEATURE_M)) {
11182 *prot |= PAGE_READ | PAGE_EXEC;
11183 break;
11185 /* fall through */
11186 default:
11187 qemu_log_mask(LOG_GUEST_ERROR,
11188 "DRACR[%d]: Bad value for AP bits: 0x%"
11189 PRIx32 "\n", n, ap);
11191 } else { /* Priv. mode AP bits decoding */
11192 switch (ap) {
11193 case 0:
11194 break; /* no access */
11195 case 1:
11196 case 2:
11197 case 3:
11198 *prot |= PAGE_WRITE;
11199 /* fall through */
11200 case 5:
11201 case 6:
11202 *prot |= PAGE_READ | PAGE_EXEC;
11203 break;
11204 case 7:
11205 /* for v7M, same as 6; for R profile a reserved value */
11206 if (arm_feature(env, ARM_FEATURE_M)) {
11207 *prot |= PAGE_READ | PAGE_EXEC;
11208 break;
11210 /* fall through */
11211 default:
11212 qemu_log_mask(LOG_GUEST_ERROR,
11213 "DRACR[%d]: Bad value for AP bits: 0x%"
11214 PRIx32 "\n", n, ap);
11218 /* execute never */
11219 if (xn) {
11220 *prot &= ~PAGE_EXEC;
11225 fi->type = ARMFault_Permission;
11226 fi->level = 1;
11227 return !(*prot & (1 << access_type));
11230 static bool v8m_is_sau_exempt(CPUARMState *env,
11231 uint32_t address, MMUAccessType access_type)
11233 /* The architecture specifies that certain address ranges are
11234 * exempt from v8M SAU/IDAU checks.
11236 return
11237 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
11238 (address >= 0xe0000000 && address <= 0xe0002fff) ||
11239 (address >= 0xe000e000 && address <= 0xe000efff) ||
11240 (address >= 0xe002e000 && address <= 0xe002efff) ||
11241 (address >= 0xe0040000 && address <= 0xe0041fff) ||
11242 (address >= 0xe00ff000 && address <= 0xe00fffff);
11245 void v8m_security_lookup(CPUARMState *env, uint32_t address,
11246 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11247 V8M_SAttributes *sattrs)
11249 /* Look up the security attributes for this address. Compare the
11250 * pseudocode SecurityCheck() function.
11251 * We assume the caller has zero-initialized *sattrs.
11253 ARMCPU *cpu = env_archcpu(env);
11254 int r;
11255 bool idau_exempt = false, idau_ns = true, idau_nsc = true;
11256 int idau_region = IREGION_NOTVALID;
11257 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
11258 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
11260 if (cpu->idau) {
11261 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
11262 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
11264 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
11265 &idau_nsc);
11268 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
11269 /* 0xf0000000..0xffffffff is always S for insn fetches */
11270 return;
11273 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
11274 sattrs->ns = !regime_is_secure(env, mmu_idx);
11275 return;
11278 if (idau_region != IREGION_NOTVALID) {
11279 sattrs->irvalid = true;
11280 sattrs->iregion = idau_region;
11283 switch (env->sau.ctrl & 3) {
11284 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
11285 break;
11286 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
11287 sattrs->ns = true;
11288 break;
11289 default: /* SAU.ENABLE == 1 */
11290 for (r = 0; r < cpu->sau_sregion; r++) {
11291 if (env->sau.rlar[r] & 1) {
11292 uint32_t base = env->sau.rbar[r] & ~0x1f;
11293 uint32_t limit = env->sau.rlar[r] | 0x1f;
11295 if (base <= address && limit >= address) {
11296 if (base > addr_page_base || limit < addr_page_limit) {
11297 sattrs->subpage = true;
11299 if (sattrs->srvalid) {
11300 /* If we hit in more than one region then we must report
11301 * as Secure, not NS-Callable, with no valid region
11302 * number info.
11304 sattrs->ns = false;
11305 sattrs->nsc = false;
11306 sattrs->sregion = 0;
11307 sattrs->srvalid = false;
11308 break;
11309 } else {
11310 if (env->sau.rlar[r] & 2) {
11311 sattrs->nsc = true;
11312 } else {
11313 sattrs->ns = true;
11315 sattrs->srvalid = true;
11316 sattrs->sregion = r;
11318 } else {
11320 * Address not in this region. We must check whether the
11321 * region covers addresses in the same page as our address.
11322 * In that case we must not report a size that covers the
11323 * whole page for a subsequent hit against a different MPU
11324 * region or the background region, because it would result
11325 * in incorrect TLB hits for subsequent accesses to
11326 * addresses that are in this MPU region.
11328 if (limit >= base &&
11329 ranges_overlap(base, limit - base + 1,
11330 addr_page_base,
11331 TARGET_PAGE_SIZE)) {
11332 sattrs->subpage = true;
11337 break;
11341 * The IDAU will override the SAU lookup results if it specifies
11342 * higher security than the SAU does.
11344 if (!idau_ns) {
11345 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
11346 sattrs->ns = false;
11347 sattrs->nsc = idau_nsc;
11352 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
11353 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11354 hwaddr *phys_ptr, MemTxAttrs *txattrs,
11355 int *prot, bool *is_subpage,
11356 ARMMMUFaultInfo *fi, uint32_t *mregion)
11358 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
11359 * that a full phys-to-virt translation does).
11360 * mregion is (if not NULL) set to the region number which matched,
11361 * or -1 if no region number is returned (MPU off, address did not
11362 * hit a region, address hit in multiple regions).
11363 * We set is_subpage to true if the region hit doesn't cover the
11364 * entire TARGET_PAGE the address is within.
11366 ARMCPU *cpu = env_archcpu(env);
11367 bool is_user = regime_is_user(env, mmu_idx);
11368 uint32_t secure = regime_is_secure(env, mmu_idx);
11369 int n;
11370 int matchregion = -1;
11371 bool hit = false;
11372 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
11373 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
11375 *is_subpage = false;
11376 *phys_ptr = address;
11377 *prot = 0;
11378 if (mregion) {
11379 *mregion = -1;
11382 /* Unlike the ARM ARM pseudocode, we don't need to check whether this
11383 * was an exception vector read from the vector table (which is always
11384 * done using the default system address map), because those accesses
11385 * are done in arm_v7m_load_vector(), which always does a direct
11386 * read using address_space_ldl(), rather than going via this function.
11388 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
11389 hit = true;
11390 } else if (m_is_ppb_region(env, address)) {
11391 hit = true;
11392 } else {
11393 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
11394 hit = true;
11397 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
11398 /* region search */
11399 /* Note that the base address is bits [31:5] from the register
11400 * with bits [4:0] all zeroes, but the limit address is bits
11401 * [31:5] from the register with bits [4:0] all ones.
11403 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
11404 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
11406 if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
11407 /* Region disabled */
11408 continue;
11411 if (address < base || address > limit) {
11413 * Address not in this region. We must check whether the
11414 * region covers addresses in the same page as our address.
11415 * In that case we must not report a size that covers the
11416 * whole page for a subsequent hit against a different MPU
11417 * region or the background region, because it would result in
11418 * incorrect TLB hits for subsequent accesses to addresses that
11419 * are in this MPU region.
11421 if (limit >= base &&
11422 ranges_overlap(base, limit - base + 1,
11423 addr_page_base,
11424 TARGET_PAGE_SIZE)) {
11425 *is_subpage = true;
11427 continue;
11430 if (base > addr_page_base || limit < addr_page_limit) {
11431 *is_subpage = true;
11434 if (matchregion != -1) {
11435 /* Multiple regions match -- always a failure (unlike
11436 * PMSAv7 where highest-numbered-region wins)
11438 fi->type = ARMFault_Permission;
11439 fi->level = 1;
11440 return true;
11443 matchregion = n;
11444 hit = true;
11448 if (!hit) {
11449 /* background fault */
11450 fi->type = ARMFault_Background;
11451 return true;
11454 if (matchregion == -1) {
11455 /* hit using the background region */
11456 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11457 } else {
11458 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
11459 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
11461 if (m_is_system_region(env, address)) {
11462 /* System space is always execute never */
11463 xn = 1;
11466 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
11467 if (*prot && !xn) {
11468 *prot |= PAGE_EXEC;
11470 /* We don't need to look the attribute up in the MAIR0/MAIR1
11471 * registers because that only tells us about cacheability.
11473 if (mregion) {
11474 *mregion = matchregion;
11478 fi->type = ARMFault_Permission;
11479 fi->level = 1;
11480 return !(*prot & (1 << access_type));
11484 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
11485 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11486 hwaddr *phys_ptr, MemTxAttrs *txattrs,
11487 int *prot, target_ulong *page_size,
11488 ARMMMUFaultInfo *fi)
11490 uint32_t secure = regime_is_secure(env, mmu_idx);
11491 V8M_SAttributes sattrs = {};
11492 bool ret;
11493 bool mpu_is_subpage;
11495 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
11496 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
11497 if (access_type == MMU_INST_FETCH) {
11498 /* Instruction fetches always use the MMU bank and the
11499 * transaction attribute determined by the fetch address,
11500 * regardless of CPU state. This is painful for QEMU
11501 * to handle, because it would mean we need to encode
11502 * into the mmu_idx not just the (user, negpri) information
11503 * for the current security state but also that for the
11504 * other security state, which would balloon the number
11505 * of mmu_idx values needed alarmingly.
11506 * Fortunately we can avoid this because it's not actually
11507 * possible to arbitrarily execute code from memory with
11508 * the wrong security attribute: it will always generate
11509 * an exception of some kind or another, apart from the
11510 * special case of an NS CPU executing an SG instruction
11511 * in S&NSC memory. So we always just fail the translation
11512 * here and sort things out in the exception handler
11513 * (including possibly emulating an SG instruction).
11515 if (sattrs.ns != !secure) {
11516 if (sattrs.nsc) {
11517 fi->type = ARMFault_QEMU_NSCExec;
11518 } else {
11519 fi->type = ARMFault_QEMU_SFault;
11521 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
11522 *phys_ptr = address;
11523 *prot = 0;
11524 return true;
11526 } else {
11527 /* For data accesses we always use the MMU bank indicated
11528 * by the current CPU state, but the security attributes
11529 * might downgrade a secure access to nonsecure.
11531 if (sattrs.ns) {
11532 txattrs->secure = false;
11533 } else if (!secure) {
11534 /* NS access to S memory must fault.
11535 * Architecturally we should first check whether the
11536 * MPU information for this address indicates that we
11537 * are doing an unaligned access to Device memory, which
11538 * should generate a UsageFault instead. QEMU does not
11539 * currently check for that kind of unaligned access though.
11540 * If we added it we would need to do so as a special case
11541 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
11543 fi->type = ARMFault_QEMU_SFault;
11544 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
11545 *phys_ptr = address;
11546 *prot = 0;
11547 return true;
11552 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
11553 txattrs, prot, &mpu_is_subpage, fi, NULL);
11554 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE;
11555 return ret;
11558 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
11559 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11560 hwaddr *phys_ptr, int *prot,
11561 ARMMMUFaultInfo *fi)
11563 int n;
11564 uint32_t mask;
11565 uint32_t base;
11566 bool is_user = regime_is_user(env, mmu_idx);
11568 if (regime_translation_disabled(env, mmu_idx)) {
11569 /* MPU disabled. */
11570 *phys_ptr = address;
11571 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11572 return false;
11575 *phys_ptr = address;
11576 for (n = 7; n >= 0; n--) {
11577 base = env->cp15.c6_region[n];
11578 if ((base & 1) == 0) {
11579 continue;
11581 mask = 1 << ((base >> 1) & 0x1f);
11582 /* Keep this shift separate from the above to avoid an
11583 (undefined) << 32. */
11584 mask = (mask << 1) - 1;
11585 if (((base ^ address) & ~mask) == 0) {
11586 break;
11589 if (n < 0) {
11590 fi->type = ARMFault_Background;
11591 return true;
11594 if (access_type == MMU_INST_FETCH) {
11595 mask = env->cp15.pmsav5_insn_ap;
11596 } else {
11597 mask = env->cp15.pmsav5_data_ap;
11599 mask = (mask >> (n * 4)) & 0xf;
11600 switch (mask) {
11601 case 0:
11602 fi->type = ARMFault_Permission;
11603 fi->level = 1;
11604 return true;
11605 case 1:
11606 if (is_user) {
11607 fi->type = ARMFault_Permission;
11608 fi->level = 1;
11609 return true;
11611 *prot = PAGE_READ | PAGE_WRITE;
11612 break;
11613 case 2:
11614 *prot = PAGE_READ;
11615 if (!is_user) {
11616 *prot |= PAGE_WRITE;
11618 break;
11619 case 3:
11620 *prot = PAGE_READ | PAGE_WRITE;
11621 break;
11622 case 5:
11623 if (is_user) {
11624 fi->type = ARMFault_Permission;
11625 fi->level = 1;
11626 return true;
11628 *prot = PAGE_READ;
11629 break;
11630 case 6:
11631 *prot = PAGE_READ;
11632 break;
11633 default:
11634 /* Bad permission. */
11635 fi->type = ARMFault_Permission;
11636 fi->level = 1;
11637 return true;
11639 *prot |= PAGE_EXEC;
11640 return false;
11643 /* Combine either inner or outer cacheability attributes for normal
11644 * memory, according to table D4-42 and pseudocode procedure
11645 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
11647 * NB: only stage 1 includes allocation hints (RW bits), leading to
11648 * some asymmetry.
11650 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
11652 if (s1 == 4 || s2 == 4) {
11653 /* non-cacheable has precedence */
11654 return 4;
11655 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
11656 /* stage 1 write-through takes precedence */
11657 return s1;
11658 } else if (extract32(s2, 2, 2) == 2) {
11659 /* stage 2 write-through takes precedence, but the allocation hint
11660 * is still taken from stage 1
11662 return (2 << 2) | extract32(s1, 0, 2);
11663 } else { /* write-back */
11664 return s1;
11668 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
11669 * and CombineS1S2Desc()
11671 * @s1: Attributes from stage 1 walk
11672 * @s2: Attributes from stage 2 walk
11674 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
11676 uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4);
11677 uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4);
11678 ARMCacheAttrs ret;
11680 /* Combine shareability attributes (table D4-43) */
11681 if (s1.shareability == 2 || s2.shareability == 2) {
11682 /* if either are outer-shareable, the result is outer-shareable */
11683 ret.shareability = 2;
11684 } else if (s1.shareability == 3 || s2.shareability == 3) {
11685 /* if either are inner-shareable, the result is inner-shareable */
11686 ret.shareability = 3;
11687 } else {
11688 /* both non-shareable */
11689 ret.shareability = 0;
11692 /* Combine memory type and cacheability attributes */
11693 if (s1hi == 0 || s2hi == 0) {
11694 /* Device has precedence over normal */
11695 if (s1lo == 0 || s2lo == 0) {
11696 /* nGnRnE has precedence over anything */
11697 ret.attrs = 0;
11698 } else if (s1lo == 4 || s2lo == 4) {
11699 /* non-Reordering has precedence over Reordering */
11700 ret.attrs = 4; /* nGnRE */
11701 } else if (s1lo == 8 || s2lo == 8) {
11702 /* non-Gathering has precedence over Gathering */
11703 ret.attrs = 8; /* nGRE */
11704 } else {
11705 ret.attrs = 0xc; /* GRE */
11708 /* Any location for which the resultant memory type is any
11709 * type of Device memory is always treated as Outer Shareable.
11711 ret.shareability = 2;
11712 } else { /* Normal memory */
11713 /* Outer/inner cacheability combine independently */
11714 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
11715 | combine_cacheattr_nibble(s1lo, s2lo);
11717 if (ret.attrs == 0x44) {
11718 /* Any location for which the resultant memory type is Normal
11719 * Inner Non-cacheable, Outer Non-cacheable is always treated
11720 * as Outer Shareable.
11722 ret.shareability = 2;
11726 return ret;
11730 /* get_phys_addr - get the physical address for this virtual address
11732 * Find the physical address corresponding to the given virtual address,
11733 * by doing a translation table walk on MMU based systems or using the
11734 * MPU state on MPU based systems.
11736 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
11737 * prot and page_size may not be filled in, and the populated fsr value provides
11738 * information on why the translation aborted, in the format of a
11739 * DFSR/IFSR fault register, with the following caveats:
11740 * * we honour the short vs long DFSR format differences.
11741 * * the WnR bit is never set (the caller must do this).
11742 * * for PSMAv5 based systems we don't bother to return a full FSR format
11743 * value.
11745 * @env: CPUARMState
11746 * @address: virtual address to get physical address for
11747 * @access_type: 0 for read, 1 for write, 2 for execute
11748 * @mmu_idx: MMU index indicating required translation regime
11749 * @phys_ptr: set to the physical address corresponding to the virtual address
11750 * @attrs: set to the memory transaction attributes to use
11751 * @prot: set to the permissions for the page containing phys_ptr
11752 * @page_size: set to the size of the page containing phys_ptr
11753 * @fi: set to fault info if the translation fails
11754 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
11756 bool get_phys_addr(CPUARMState *env, target_ulong address,
11757 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11758 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
11759 target_ulong *page_size,
11760 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
11762 if (mmu_idx == ARMMMUIdx_E10_0 ||
11763 mmu_idx == ARMMMUIdx_E10_1 ||
11764 mmu_idx == ARMMMUIdx_E10_1_PAN) {
11765 /* Call ourselves recursively to do the stage 1 and then stage 2
11766 * translations.
11768 if (arm_feature(env, ARM_FEATURE_EL2)) {
11769 hwaddr ipa;
11770 int s2_prot;
11771 int ret;
11772 ARMCacheAttrs cacheattrs2 = {};
11774 ret = get_phys_addr(env, address, access_type,
11775 stage_1_mmu_idx(mmu_idx), &ipa, attrs,
11776 prot, page_size, fi, cacheattrs);
11778 /* If S1 fails or S2 is disabled, return early. */
11779 if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
11780 *phys_ptr = ipa;
11781 return ret;
11784 /* S1 is done. Now do S2 translation. */
11785 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_Stage2,
11786 mmu_idx == ARMMMUIdx_E10_0,
11787 phys_ptr, attrs, &s2_prot,
11788 page_size, fi,
11789 cacheattrs != NULL ? &cacheattrs2 : NULL);
11790 fi->s2addr = ipa;
11791 /* Combine the S1 and S2 perms. */
11792 *prot &= s2_prot;
11794 /* Combine the S1 and S2 cache attributes, if needed */
11795 if (!ret && cacheattrs != NULL) {
11796 if (env->cp15.hcr_el2 & HCR_DC) {
11798 * HCR.DC forces the first stage attributes to
11799 * Normal Non-Shareable,
11800 * Inner Write-Back Read-Allocate Write-Allocate,
11801 * Outer Write-Back Read-Allocate Write-Allocate.
11803 cacheattrs->attrs = 0xff;
11804 cacheattrs->shareability = 0;
11806 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
11809 return ret;
11810 } else {
11812 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
11814 mmu_idx = stage_1_mmu_idx(mmu_idx);
11818 /* The page table entries may downgrade secure to non-secure, but
11819 * cannot upgrade an non-secure translation regime's attributes
11820 * to secure.
11822 attrs->secure = regime_is_secure(env, mmu_idx);
11823 attrs->user = regime_is_user(env, mmu_idx);
11825 /* Fast Context Switch Extension. This doesn't exist at all in v8.
11826 * In v7 and earlier it affects all stage 1 translations.
11828 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
11829 && !arm_feature(env, ARM_FEATURE_V8)) {
11830 if (regime_el(env, mmu_idx) == 3) {
11831 address += env->cp15.fcseidr_s;
11832 } else {
11833 address += env->cp15.fcseidr_ns;
11837 if (arm_feature(env, ARM_FEATURE_PMSA)) {
11838 bool ret;
11839 *page_size = TARGET_PAGE_SIZE;
11841 if (arm_feature(env, ARM_FEATURE_V8)) {
11842 /* PMSAv8 */
11843 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
11844 phys_ptr, attrs, prot, page_size, fi);
11845 } else if (arm_feature(env, ARM_FEATURE_V7)) {
11846 /* PMSAv7 */
11847 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
11848 phys_ptr, prot, page_size, fi);
11849 } else {
11850 /* Pre-v7 MPU */
11851 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
11852 phys_ptr, prot, fi);
11854 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
11855 " mmu_idx %u -> %s (prot %c%c%c)\n",
11856 access_type == MMU_DATA_LOAD ? "reading" :
11857 (access_type == MMU_DATA_STORE ? "writing" : "execute"),
11858 (uint32_t)address, mmu_idx,
11859 ret ? "Miss" : "Hit",
11860 *prot & PAGE_READ ? 'r' : '-',
11861 *prot & PAGE_WRITE ? 'w' : '-',
11862 *prot & PAGE_EXEC ? 'x' : '-');
11864 return ret;
11867 /* Definitely a real MMU, not an MPU */
11869 if (regime_translation_disabled(env, mmu_idx)) {
11871 * MMU disabled. S1 addresses within aa64 translation regimes are
11872 * still checked for bounds -- see AArch64.TranslateAddressS1Off.
11874 if (mmu_idx != ARMMMUIdx_Stage2) {
11875 int r_el = regime_el(env, mmu_idx);
11876 if (arm_el_is_aa64(env, r_el)) {
11877 int pamax = arm_pamax(env_archcpu(env));
11878 uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr;
11879 int addrtop, tbi;
11881 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
11882 if (access_type == MMU_INST_FETCH) {
11883 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
11885 tbi = (tbi >> extract64(address, 55, 1)) & 1;
11886 addrtop = (tbi ? 55 : 63);
11888 if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
11889 fi->type = ARMFault_AddressSize;
11890 fi->level = 0;
11891 fi->stage2 = false;
11892 return 1;
11896 * When TBI is disabled, we've just validated that all of the
11897 * bits above PAMax are zero, so logically we only need to
11898 * clear the top byte for TBI. But it's clearer to follow
11899 * the pseudocode set of addrdesc.paddress.
11901 address = extract64(address, 0, 52);
11904 *phys_ptr = address;
11905 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11906 *page_size = TARGET_PAGE_SIZE;
11907 return 0;
11910 if (regime_using_lpae_format(env, mmu_idx)) {
11911 return get_phys_addr_lpae(env, address, access_type, mmu_idx, false,
11912 phys_ptr, attrs, prot, page_size,
11913 fi, cacheattrs);
11914 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
11915 return get_phys_addr_v6(env, address, access_type, mmu_idx,
11916 phys_ptr, attrs, prot, page_size, fi);
11917 } else {
11918 return get_phys_addr_v5(env, address, access_type, mmu_idx,
11919 phys_ptr, prot, page_size, fi);
11923 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
11924 MemTxAttrs *attrs)
11926 ARMCPU *cpu = ARM_CPU(cs);
11927 CPUARMState *env = &cpu->env;
11928 hwaddr phys_addr;
11929 target_ulong page_size;
11930 int prot;
11931 bool ret;
11932 ARMMMUFaultInfo fi = {};
11933 ARMMMUIdx mmu_idx = arm_mmu_idx(env);
11935 *attrs = (MemTxAttrs) {};
11937 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
11938 attrs, &prot, &page_size, &fi, NULL);
11940 if (ret) {
11941 return -1;
11943 return phys_addr;
11946 #endif
11948 /* Note that signed overflow is undefined in C. The following routines are
11949 careful to use unsigned types where modulo arithmetic is required.
11950 Failure to do so _will_ break on newer gcc. */
11952 /* Signed saturating arithmetic. */
11954 /* Perform 16-bit signed saturating addition. */
11955 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
11957 uint16_t res;
11959 res = a + b;
11960 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
11961 if (a & 0x8000)
11962 res = 0x8000;
11963 else
11964 res = 0x7fff;
11966 return res;
11969 /* Perform 8-bit signed saturating addition. */
11970 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
11972 uint8_t res;
11974 res = a + b;
11975 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
11976 if (a & 0x80)
11977 res = 0x80;
11978 else
11979 res = 0x7f;
11981 return res;
11984 /* Perform 16-bit signed saturating subtraction. */
11985 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
11987 uint16_t res;
11989 res = a - b;
11990 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
11991 if (a & 0x8000)
11992 res = 0x8000;
11993 else
11994 res = 0x7fff;
11996 return res;
11999 /* Perform 8-bit signed saturating subtraction. */
12000 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
12002 uint8_t res;
12004 res = a - b;
12005 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
12006 if (a & 0x80)
12007 res = 0x80;
12008 else
12009 res = 0x7f;
12011 return res;
12014 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
12015 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
12016 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
12017 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
12018 #define PFX q
12020 #include "op_addsub.h"
12022 /* Unsigned saturating arithmetic. */
12023 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
12025 uint16_t res;
12026 res = a + b;
12027 if (res < a)
12028 res = 0xffff;
12029 return res;
12032 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
12034 if (a > b)
12035 return a - b;
12036 else
12037 return 0;
12040 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
12042 uint8_t res;
12043 res = a + b;
12044 if (res < a)
12045 res = 0xff;
12046 return res;
12049 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
12051 if (a > b)
12052 return a - b;
12053 else
12054 return 0;
12057 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
12058 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
12059 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
12060 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
12061 #define PFX uq
12063 #include "op_addsub.h"
12065 /* Signed modulo arithmetic. */
12066 #define SARITH16(a, b, n, op) do { \
12067 int32_t sum; \
12068 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
12069 RESULT(sum, n, 16); \
12070 if (sum >= 0) \
12071 ge |= 3 << (n * 2); \
12072 } while(0)
12074 #define SARITH8(a, b, n, op) do { \
12075 int32_t sum; \
12076 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
12077 RESULT(sum, n, 8); \
12078 if (sum >= 0) \
12079 ge |= 1 << n; \
12080 } while(0)
12083 #define ADD16(a, b, n) SARITH16(a, b, n, +)
12084 #define SUB16(a, b, n) SARITH16(a, b, n, -)
12085 #define ADD8(a, b, n) SARITH8(a, b, n, +)
12086 #define SUB8(a, b, n) SARITH8(a, b, n, -)
12087 #define PFX s
12088 #define ARITH_GE
12090 #include "op_addsub.h"
12092 /* Unsigned modulo arithmetic. */
12093 #define ADD16(a, b, n) do { \
12094 uint32_t sum; \
12095 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
12096 RESULT(sum, n, 16); \
12097 if ((sum >> 16) == 1) \
12098 ge |= 3 << (n * 2); \
12099 } while(0)
12101 #define ADD8(a, b, n) do { \
12102 uint32_t sum; \
12103 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
12104 RESULT(sum, n, 8); \
12105 if ((sum >> 8) == 1) \
12106 ge |= 1 << n; \
12107 } while(0)
12109 #define SUB16(a, b, n) do { \
12110 uint32_t sum; \
12111 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
12112 RESULT(sum, n, 16); \
12113 if ((sum >> 16) == 0) \
12114 ge |= 3 << (n * 2); \
12115 } while(0)
12117 #define SUB8(a, b, n) do { \
12118 uint32_t sum; \
12119 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
12120 RESULT(sum, n, 8); \
12121 if ((sum >> 8) == 0) \
12122 ge |= 1 << n; \
12123 } while(0)
12125 #define PFX u
12126 #define ARITH_GE
12128 #include "op_addsub.h"
12130 /* Halved signed arithmetic. */
12131 #define ADD16(a, b, n) \
12132 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
12133 #define SUB16(a, b, n) \
12134 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
12135 #define ADD8(a, b, n) \
12136 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
12137 #define SUB8(a, b, n) \
12138 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
12139 #define PFX sh
12141 #include "op_addsub.h"
12143 /* Halved unsigned arithmetic. */
12144 #define ADD16(a, b, n) \
12145 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12146 #define SUB16(a, b, n) \
12147 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12148 #define ADD8(a, b, n) \
12149 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12150 #define SUB8(a, b, n) \
12151 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12152 #define PFX uh
12154 #include "op_addsub.h"
12156 static inline uint8_t do_usad(uint8_t a, uint8_t b)
12158 if (a > b)
12159 return a - b;
12160 else
12161 return b - a;
12164 /* Unsigned sum of absolute byte differences. */
12165 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
12167 uint32_t sum;
12168 sum = do_usad(a, b);
12169 sum += do_usad(a >> 8, b >> 8);
12170 sum += do_usad(a >> 16, b >>16);
12171 sum += do_usad(a >> 24, b >> 24);
12172 return sum;
12175 /* For ARMv6 SEL instruction. */
12176 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
12178 uint32_t mask;
12180 mask = 0;
12181 if (flags & 1)
12182 mask |= 0xff;
12183 if (flags & 2)
12184 mask |= 0xff00;
12185 if (flags & 4)
12186 mask |= 0xff0000;
12187 if (flags & 8)
12188 mask |= 0xff000000;
12189 return (a & mask) | (b & ~mask);
12192 /* CRC helpers.
12193 * The upper bytes of val (above the number specified by 'bytes') must have
12194 * been zeroed out by the caller.
12196 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
12198 uint8_t buf[4];
12200 stl_le_p(buf, val);
12202 /* zlib crc32 converts the accumulator and output to one's complement. */
12203 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
12206 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
12208 uint8_t buf[4];
12210 stl_le_p(buf, val);
12212 /* Linux crc32c converts the output to one's complement. */
12213 return crc32c(acc, buf, bytes) ^ 0xffffffff;
12216 /* Return the exception level to which FP-disabled exceptions should
12217 * be taken, or 0 if FP is enabled.
12219 int fp_exception_el(CPUARMState *env, int cur_el)
12221 #ifndef CONFIG_USER_ONLY
12222 /* CPACR and the CPTR registers don't exist before v6, so FP is
12223 * always accessible
12225 if (!arm_feature(env, ARM_FEATURE_V6)) {
12226 return 0;
12229 if (arm_feature(env, ARM_FEATURE_M)) {
12230 /* CPACR can cause a NOCP UsageFault taken to current security state */
12231 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
12232 return 1;
12235 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
12236 if (!extract32(env->v7m.nsacr, 10, 1)) {
12237 /* FP insns cause a NOCP UsageFault taken to Secure */
12238 return 3;
12242 return 0;
12245 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
12246 * 0, 2 : trap EL0 and EL1/PL1 accesses
12247 * 1 : trap only EL0 accesses
12248 * 3 : trap no accesses
12249 * This register is ignored if E2H+TGE are both set.
12251 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
12252 int fpen = extract32(env->cp15.cpacr_el1, 20, 2);
12254 switch (fpen) {
12255 case 0:
12256 case 2:
12257 if (cur_el == 0 || cur_el == 1) {
12258 /* Trap to PL1, which might be EL1 or EL3 */
12259 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
12260 return 3;
12262 return 1;
12264 if (cur_el == 3 && !is_a64(env)) {
12265 /* Secure PL1 running at EL3 */
12266 return 3;
12268 break;
12269 case 1:
12270 if (cur_el == 0) {
12271 return 1;
12273 break;
12274 case 3:
12275 break;
12280 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
12281 * to control non-secure access to the FPU. It doesn't have any
12282 * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
12284 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
12285 cur_el <= 2 && !arm_is_secure_below_el3(env))) {
12286 if (!extract32(env->cp15.nsacr, 10, 1)) {
12287 /* FP insns act as UNDEF */
12288 return cur_el == 2 ? 2 : 1;
12292 /* For the CPTR registers we don't need to guard with an ARM_FEATURE
12293 * check because zero bits in the registers mean "don't trap".
12296 /* CPTR_EL2 : present in v7VE or v8 */
12297 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
12298 && !arm_is_secure_below_el3(env)) {
12299 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
12300 return 2;
12303 /* CPTR_EL3 : present in v8 */
12304 if (extract32(env->cp15.cptr_el[3], 10, 1)) {
12305 /* Trap all FP ops to EL3 */
12306 return 3;
12308 #endif
12309 return 0;
12312 /* Return the exception level we're running at if this is our mmu_idx */
12313 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
12315 if (mmu_idx & ARM_MMU_IDX_M) {
12316 return mmu_idx & ARM_MMU_IDX_M_PRIV;
12319 switch (mmu_idx) {
12320 case ARMMMUIdx_E10_0:
12321 case ARMMMUIdx_E20_0:
12322 case ARMMMUIdx_SE10_0:
12323 return 0;
12324 case ARMMMUIdx_E10_1:
12325 case ARMMMUIdx_E10_1_PAN:
12326 case ARMMMUIdx_SE10_1:
12327 case ARMMMUIdx_SE10_1_PAN:
12328 return 1;
12329 case ARMMMUIdx_E2:
12330 case ARMMMUIdx_E20_2:
12331 case ARMMMUIdx_E20_2_PAN:
12332 return 2;
12333 case ARMMMUIdx_SE3:
12334 return 3;
12335 default:
12336 g_assert_not_reached();
12340 #ifndef CONFIG_TCG
12341 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
12343 g_assert_not_reached();
12345 #endif
12347 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
12349 if (arm_feature(env, ARM_FEATURE_M)) {
12350 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
12353 /* See ARM pseudo-function ELIsInHost. */
12354 switch (el) {
12355 case 0:
12356 if (arm_is_secure_below_el3(env)) {
12357 return ARMMMUIdx_SE10_0;
12359 if ((env->cp15.hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)
12360 && arm_el_is_aa64(env, 2)) {
12361 return ARMMMUIdx_E20_0;
12363 return ARMMMUIdx_E10_0;
12364 case 1:
12365 if (arm_is_secure_below_el3(env)) {
12366 if (env->pstate & PSTATE_PAN) {
12367 return ARMMMUIdx_SE10_1_PAN;
12369 return ARMMMUIdx_SE10_1;
12371 if (env->pstate & PSTATE_PAN) {
12372 return ARMMMUIdx_E10_1_PAN;
12374 return ARMMMUIdx_E10_1;
12375 case 2:
12376 /* TODO: ARMv8.4-SecEL2 */
12377 /* Note that TGE does not apply at EL2. */
12378 if ((env->cp15.hcr_el2 & HCR_E2H) && arm_el_is_aa64(env, 2)) {
12379 if (env->pstate & PSTATE_PAN) {
12380 return ARMMMUIdx_E20_2_PAN;
12382 return ARMMMUIdx_E20_2;
12384 return ARMMMUIdx_E2;
12385 case 3:
12386 return ARMMMUIdx_SE3;
12387 default:
12388 g_assert_not_reached();
12392 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
12394 return arm_mmu_idx_el(env, arm_current_el(env));
12397 #ifndef CONFIG_USER_ONLY
12398 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
12400 return stage_1_mmu_idx(arm_mmu_idx(env));
12402 #endif
12404 static uint32_t rebuild_hflags_common(CPUARMState *env, int fp_el,
12405 ARMMMUIdx mmu_idx, uint32_t flags)
12407 flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el);
12408 flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX,
12409 arm_to_core_mmu_idx(mmu_idx));
12411 if (arm_singlestep_active(env)) {
12412 flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1);
12414 return flags;
12417 static uint32_t rebuild_hflags_common_32(CPUARMState *env, int fp_el,
12418 ARMMMUIdx mmu_idx, uint32_t flags)
12420 bool sctlr_b = arm_sctlr_b(env);
12422 if (sctlr_b) {
12423 flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, 1);
12425 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) {
12426 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1);
12428 flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env));
12430 return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
12433 static uint32_t rebuild_hflags_m32(CPUARMState *env, int fp_el,
12434 ARMMMUIdx mmu_idx)
12436 uint32_t flags = 0;
12438 if (arm_v7m_is_handler_mode(env)) {
12439 flags = FIELD_DP32(flags, TBFLAG_M32, HANDLER, 1);
12443 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN
12444 * is suppressing them because the requested execution priority
12445 * is less than 0.
12447 if (arm_feature(env, ARM_FEATURE_V8) &&
12448 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
12449 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
12450 flags = FIELD_DP32(flags, TBFLAG_M32, STACKCHECK, 1);
12453 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
12456 static uint32_t rebuild_hflags_aprofile(CPUARMState *env)
12458 int flags = 0;
12460 flags = FIELD_DP32(flags, TBFLAG_ANY, DEBUG_TARGET_EL,
12461 arm_debug_target_el(env));
12462 return flags;
12465 static uint32_t rebuild_hflags_a32(CPUARMState *env, int fp_el,
12466 ARMMMUIdx mmu_idx)
12468 uint32_t flags = rebuild_hflags_aprofile(env);
12470 if (arm_el_is_aa64(env, 1)) {
12471 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1);
12474 if (arm_current_el(env) < 2 && env->cp15.hstr_el2 &&
12475 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
12476 flags = FIELD_DP32(flags, TBFLAG_A32, HSTR_ACTIVE, 1);
12479 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
12482 static uint32_t rebuild_hflags_a64(CPUARMState *env, int el, int fp_el,
12483 ARMMMUIdx mmu_idx)
12485 uint32_t flags = rebuild_hflags_aprofile(env);
12486 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
12487 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
12488 uint64_t sctlr;
12489 int tbii, tbid;
12491 flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1);
12493 /* Get control bits for tagged addresses. */
12494 tbid = aa64_va_parameter_tbi(tcr, mmu_idx);
12495 tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx);
12497 flags = FIELD_DP32(flags, TBFLAG_A64, TBII, tbii);
12498 flags = FIELD_DP32(flags, TBFLAG_A64, TBID, tbid);
12500 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) {
12501 int sve_el = sve_exception_el(env, el);
12502 uint32_t zcr_len;
12505 * If SVE is disabled, but FP is enabled,
12506 * then the effective len is 0.
12508 if (sve_el != 0 && fp_el == 0) {
12509 zcr_len = 0;
12510 } else {
12511 zcr_len = sve_zcr_len_for_el(env, el);
12513 flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el);
12514 flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len);
12517 sctlr = regime_sctlr(env, stage1);
12519 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) {
12520 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1);
12523 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) {
12525 * In order to save space in flags, we record only whether
12526 * pauth is "inactive", meaning all insns are implemented as
12527 * a nop, or "active" when some action must be performed.
12528 * The decision of which action to take is left to a helper.
12530 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
12531 flags = FIELD_DP32(flags, TBFLAG_A64, PAUTH_ACTIVE, 1);
12535 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
12536 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */
12537 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
12538 flags = FIELD_DP32(flags, TBFLAG_A64, BT, 1);
12542 /* Compute the condition for using AccType_UNPRIV for LDTR et al. */
12543 if (!(env->pstate & PSTATE_UAO)) {
12544 switch (mmu_idx) {
12545 case ARMMMUIdx_E10_1:
12546 case ARMMMUIdx_E10_1_PAN:
12547 case ARMMMUIdx_SE10_1:
12548 case ARMMMUIdx_SE10_1_PAN:
12549 /* TODO: ARMv8.3-NV */
12550 flags = FIELD_DP32(flags, TBFLAG_A64, UNPRIV, 1);
12551 break;
12552 case ARMMMUIdx_E20_2:
12553 case ARMMMUIdx_E20_2_PAN:
12554 /* TODO: ARMv8.4-SecEL2 */
12556 * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is
12557 * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR.
12559 if (env->cp15.hcr_el2 & HCR_TGE) {
12560 flags = FIELD_DP32(flags, TBFLAG_A64, UNPRIV, 1);
12562 break;
12563 default:
12564 break;
12568 return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
12571 static uint32_t rebuild_hflags_internal(CPUARMState *env)
12573 int el = arm_current_el(env);
12574 int fp_el = fp_exception_el(env, el);
12575 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12577 if (is_a64(env)) {
12578 return rebuild_hflags_a64(env, el, fp_el, mmu_idx);
12579 } else if (arm_feature(env, ARM_FEATURE_M)) {
12580 return rebuild_hflags_m32(env, fp_el, mmu_idx);
12581 } else {
12582 return rebuild_hflags_a32(env, fp_el, mmu_idx);
12586 void arm_rebuild_hflags(CPUARMState *env)
12588 env->hflags = rebuild_hflags_internal(env);
12592 * If we have triggered a EL state change we can't rely on the
12593 * translator having passed it to us, we need to recompute.
12595 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env)
12597 int el = arm_current_el(env);
12598 int fp_el = fp_exception_el(env, el);
12599 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12600 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
12603 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el)
12605 int fp_el = fp_exception_el(env, el);
12606 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12608 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
12612 * If we have triggered a EL state change we can't rely on the
12613 * translator having passed it to us, we need to recompute.
12615 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env)
12617 int el = arm_current_el(env);
12618 int fp_el = fp_exception_el(env, el);
12619 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12620 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
12623 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el)
12625 int fp_el = fp_exception_el(env, el);
12626 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12628 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
12631 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el)
12633 int fp_el = fp_exception_el(env, el);
12634 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12636 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx);
12639 static inline void assert_hflags_rebuild_correctly(CPUARMState *env)
12641 #ifdef CONFIG_DEBUG_TCG
12642 uint32_t env_flags_current = env->hflags;
12643 uint32_t env_flags_rebuilt = rebuild_hflags_internal(env);
12645 if (unlikely(env_flags_current != env_flags_rebuilt)) {
12646 fprintf(stderr, "TCG hflags mismatch (current:0x%08x rebuilt:0x%08x)\n",
12647 env_flags_current, env_flags_rebuilt);
12648 abort();
12650 #endif
12653 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
12654 target_ulong *cs_base, uint32_t *pflags)
12656 uint32_t flags = env->hflags;
12657 uint32_t pstate_for_ss;
12659 *cs_base = 0;
12660 assert_hflags_rebuild_correctly(env);
12662 if (FIELD_EX32(flags, TBFLAG_ANY, AARCH64_STATE)) {
12663 *pc = env->pc;
12664 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
12665 flags = FIELD_DP32(flags, TBFLAG_A64, BTYPE, env->btype);
12667 pstate_for_ss = env->pstate;
12668 } else {
12669 *pc = env->regs[15];
12671 if (arm_feature(env, ARM_FEATURE_M)) {
12672 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
12673 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
12674 != env->v7m.secure) {
12675 flags = FIELD_DP32(flags, TBFLAG_M32, FPCCR_S_WRONG, 1);
12678 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
12679 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
12680 (env->v7m.secure &&
12681 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
12683 * ASPEN is set, but FPCA/SFPA indicate that there is no
12684 * active FP context; we must create a new FP context before
12685 * executing any FP insn.
12687 flags = FIELD_DP32(flags, TBFLAG_M32, NEW_FP_CTXT_NEEDED, 1);
12690 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
12691 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
12692 flags = FIELD_DP32(flags, TBFLAG_M32, LSPACT, 1);
12694 } else {
12696 * Note that XSCALE_CPAR shares bits with VECSTRIDE.
12697 * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
12699 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
12700 flags = FIELD_DP32(flags, TBFLAG_A32,
12701 XSCALE_CPAR, env->cp15.c15_cpar);
12702 } else {
12703 flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN,
12704 env->vfp.vec_len);
12705 flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE,
12706 env->vfp.vec_stride);
12708 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
12709 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1);
12713 flags = FIELD_DP32(flags, TBFLAG_AM32, THUMB, env->thumb);
12714 flags = FIELD_DP32(flags, TBFLAG_AM32, CONDEXEC, env->condexec_bits);
12715 pstate_for_ss = env->uncached_cpsr;
12719 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
12720 * states defined in the ARM ARM for software singlestep:
12721 * SS_ACTIVE PSTATE.SS State
12722 * 0 x Inactive (the TB flag for SS is always 0)
12723 * 1 0 Active-pending
12724 * 1 1 Active-not-pending
12725 * SS_ACTIVE is set in hflags; PSTATE_SS is computed every TB.
12727 if (FIELD_EX32(flags, TBFLAG_ANY, SS_ACTIVE) &&
12728 (pstate_for_ss & PSTATE_SS)) {
12729 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1);
12732 *pflags = flags;
12735 #ifdef TARGET_AARCH64
12737 * The manual says that when SVE is enabled and VQ is widened the
12738 * implementation is allowed to zero the previously inaccessible
12739 * portion of the registers. The corollary to that is that when
12740 * SVE is enabled and VQ is narrowed we are also allowed to zero
12741 * the now inaccessible portion of the registers.
12743 * The intent of this is that no predicate bit beyond VQ is ever set.
12744 * Which means that some operations on predicate registers themselves
12745 * may operate on full uint64_t or even unrolled across the maximum
12746 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally
12747 * may well be cheaper than conditionals to restrict the operation
12748 * to the relevant portion of a uint16_t[16].
12750 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
12752 int i, j;
12753 uint64_t pmask;
12755 assert(vq >= 1 && vq <= ARM_MAX_VQ);
12756 assert(vq <= env_archcpu(env)->sve_max_vq);
12758 /* Zap the high bits of the zregs. */
12759 for (i = 0; i < 32; i++) {
12760 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
12763 /* Zap the high bits of the pregs and ffr. */
12764 pmask = 0;
12765 if (vq & 3) {
12766 pmask = ~(-1ULL << (16 * (vq & 3)));
12768 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
12769 for (i = 0; i < 17; ++i) {
12770 env->vfp.pregs[i].p[j] &= pmask;
12772 pmask = 0;
12777 * Notice a change in SVE vector size when changing EL.
12779 void aarch64_sve_change_el(CPUARMState *env, int old_el,
12780 int new_el, bool el0_a64)
12782 ARMCPU *cpu = env_archcpu(env);
12783 int old_len, new_len;
12784 bool old_a64, new_a64;
12786 /* Nothing to do if no SVE. */
12787 if (!cpu_isar_feature(aa64_sve, cpu)) {
12788 return;
12791 /* Nothing to do if FP is disabled in either EL. */
12792 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
12793 return;
12797 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
12798 * at ELx, or not available because the EL is in AArch32 state, then
12799 * for all purposes other than a direct read, the ZCR_ELx.LEN field
12800 * has an effective value of 0".
12802 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
12803 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
12804 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that
12805 * we already have the correct register contents when encountering the
12806 * vq0->vq0 transition between EL0->EL1.
12808 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
12809 old_len = (old_a64 && !sve_exception_el(env, old_el)
12810 ? sve_zcr_len_for_el(env, old_el) : 0);
12811 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
12812 new_len = (new_a64 && !sve_exception_el(env, new_el)
12813 ? sve_zcr_len_for_el(env, new_el) : 0);
12815 /* When changing vector length, clear inaccessible state. */
12816 if (new_len < old_len) {
12817 aarch64_sve_narrow_vq(env, new_len + 1);
12820 #endif