nbd: always query export list in fixed new style protocol
[qemu/ar7.git] / hw / block / onenand.c
blob91896851f5b3324b9e7b17a624266227b6923029
1 /*
2 * OneNAND flash memories emulation.
4 * Copyright (C) 2008 Nokia Corporation
5 * Written by Andrzej Zaborowski <andrew@openedhand.com>
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as
9 * published by the Free Software Foundation; either version 2 or
10 * (at your option) version 3 of the License.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, see <http://www.gnu.org/licenses/>.
21 #include "qemu/osdep.h"
22 #include "qemu-common.h"
23 #include "hw/hw.h"
24 #include "hw/block/flash.h"
25 #include "hw/irq.h"
26 #include "sysemu/block-backend.h"
27 #include "sysemu/blockdev.h"
28 #include "exec/memory.h"
29 #include "exec/address-spaces.h"
30 #include "hw/sysbus.h"
31 #include "qemu/error-report.h"
33 /* 11 for 2kB-page OneNAND ("2nd generation") and 10 for 1kB-page chips */
34 #define PAGE_SHIFT 11
36 /* Fixed */
37 #define BLOCK_SHIFT (PAGE_SHIFT + 6)
39 #define TYPE_ONE_NAND "onenand"
40 #define ONE_NAND(obj) OBJECT_CHECK(OneNANDState, (obj), TYPE_ONE_NAND)
42 typedef struct OneNANDState {
43 SysBusDevice parent_obj;
45 struct {
46 uint16_t man;
47 uint16_t dev;
48 uint16_t ver;
49 } id;
50 int shift;
51 hwaddr base;
52 qemu_irq intr;
53 qemu_irq rdy;
54 BlockBackend *blk;
55 BlockBackend *blk_cur;
56 uint8_t *image;
57 uint8_t *otp;
58 uint8_t *current;
59 MemoryRegion ram;
60 MemoryRegion mapped_ram;
61 uint8_t current_direction;
62 uint8_t *boot[2];
63 uint8_t *data[2][2];
64 MemoryRegion iomem;
65 MemoryRegion container;
66 int cycle;
67 int otpmode;
69 uint16_t addr[8];
70 uint16_t unladdr[8];
71 int bufaddr;
72 int count;
73 uint16_t command;
74 uint16_t config[2];
75 uint16_t status;
76 uint16_t intstatus;
77 uint16_t wpstatus;
79 ECCState ecc;
81 int density_mask;
82 int secs;
83 int secs_cur;
84 int blocks;
85 uint8_t *blockwp;
86 } OneNANDState;
88 enum {
89 ONEN_BUF_BLOCK = 0,
90 ONEN_BUF_BLOCK2 = 1,
91 ONEN_BUF_DEST_BLOCK = 2,
92 ONEN_BUF_DEST_PAGE = 3,
93 ONEN_BUF_PAGE = 7,
96 enum {
97 ONEN_ERR_CMD = 1 << 10,
98 ONEN_ERR_ERASE = 1 << 11,
99 ONEN_ERR_PROG = 1 << 12,
100 ONEN_ERR_LOAD = 1 << 13,
103 enum {
104 ONEN_INT_RESET = 1 << 4,
105 ONEN_INT_ERASE = 1 << 5,
106 ONEN_INT_PROG = 1 << 6,
107 ONEN_INT_LOAD = 1 << 7,
108 ONEN_INT = 1 << 15,
111 enum {
112 ONEN_LOCK_LOCKTIGHTEN = 1 << 0,
113 ONEN_LOCK_LOCKED = 1 << 1,
114 ONEN_LOCK_UNLOCKED = 1 << 2,
117 static void onenand_mem_setup(OneNANDState *s)
119 /* XXX: We should use IO_MEM_ROMD but we broke it earlier...
120 * Both 0x0000 ... 0x01ff and 0x8000 ... 0x800f can be used to
121 * write boot commands. Also take note of the BWPS bit. */
122 memory_region_init(&s->container, OBJECT(s), "onenand",
123 0x10000 << s->shift);
124 memory_region_add_subregion(&s->container, 0, &s->iomem);
125 memory_region_init_alias(&s->mapped_ram, OBJECT(s), "onenand-mapped-ram",
126 &s->ram, 0x0200 << s->shift,
127 0xbe00 << s->shift);
128 memory_region_add_subregion_overlap(&s->container,
129 0x0200 << s->shift,
130 &s->mapped_ram,
134 static void onenand_intr_update(OneNANDState *s)
136 qemu_set_irq(s->intr, ((s->intstatus >> 15) ^ (~s->config[0] >> 6)) & 1);
139 static void onenand_pre_save(void *opaque)
141 OneNANDState *s = opaque;
142 if (s->current == s->otp) {
143 s->current_direction = 1;
144 } else if (s->current == s->image) {
145 s->current_direction = 2;
146 } else {
147 s->current_direction = 0;
151 static int onenand_post_load(void *opaque, int version_id)
153 OneNANDState *s = opaque;
154 switch (s->current_direction) {
155 case 0:
156 break;
157 case 1:
158 s->current = s->otp;
159 break;
160 case 2:
161 s->current = s->image;
162 break;
163 default:
164 return -1;
166 onenand_intr_update(s);
167 return 0;
170 static const VMStateDescription vmstate_onenand = {
171 .name = "onenand",
172 .version_id = 1,
173 .minimum_version_id = 1,
174 .pre_save = onenand_pre_save,
175 .post_load = onenand_post_load,
176 .fields = (VMStateField[]) {
177 VMSTATE_UINT8(current_direction, OneNANDState),
178 VMSTATE_INT32(cycle, OneNANDState),
179 VMSTATE_INT32(otpmode, OneNANDState),
180 VMSTATE_UINT16_ARRAY(addr, OneNANDState, 8),
181 VMSTATE_UINT16_ARRAY(unladdr, OneNANDState, 8),
182 VMSTATE_INT32(bufaddr, OneNANDState),
183 VMSTATE_INT32(count, OneNANDState),
184 VMSTATE_UINT16(command, OneNANDState),
185 VMSTATE_UINT16_ARRAY(config, OneNANDState, 2),
186 VMSTATE_UINT16(status, OneNANDState),
187 VMSTATE_UINT16(intstatus, OneNANDState),
188 VMSTATE_UINT16(wpstatus, OneNANDState),
189 VMSTATE_INT32(secs_cur, OneNANDState),
190 VMSTATE_PARTIAL_VBUFFER(blockwp, OneNANDState, blocks),
191 VMSTATE_UINT8(ecc.cp, OneNANDState),
192 VMSTATE_UINT16_ARRAY(ecc.lp, OneNANDState, 2),
193 VMSTATE_UINT16(ecc.count, OneNANDState),
194 VMSTATE_BUFFER_POINTER_UNSAFE(otp, OneNANDState, 0,
195 ((64 + 2) << PAGE_SHIFT)),
196 VMSTATE_END_OF_LIST()
200 /* Hot reset (Reset OneNAND command) or warm reset (RP pin low) */
201 static void onenand_reset(OneNANDState *s, int cold)
203 memset(&s->addr, 0, sizeof(s->addr));
204 s->command = 0;
205 s->count = 1;
206 s->bufaddr = 0;
207 s->config[0] = 0x40c0;
208 s->config[1] = 0x0000;
209 onenand_intr_update(s);
210 qemu_irq_raise(s->rdy);
211 s->status = 0x0000;
212 s->intstatus = cold ? 0x8080 : 0x8010;
213 s->unladdr[0] = 0;
214 s->unladdr[1] = 0;
215 s->wpstatus = 0x0002;
216 s->cycle = 0;
217 s->otpmode = 0;
218 s->blk_cur = s->blk;
219 s->current = s->image;
220 s->secs_cur = s->secs;
222 if (cold) {
223 /* Lock the whole flash */
224 memset(s->blockwp, ONEN_LOCK_LOCKED, s->blocks);
226 if (s->blk_cur && blk_read(s->blk_cur, 0, s->boot[0], 8) < 0) {
227 hw_error("%s: Loading the BootRAM failed.\n", __func__);
232 static void onenand_system_reset(DeviceState *dev)
234 OneNANDState *s = ONE_NAND(dev);
236 onenand_reset(s, 1);
239 static inline int onenand_load_main(OneNANDState *s, int sec, int secn,
240 void *dest)
242 if (s->blk_cur) {
243 return blk_read(s->blk_cur, sec, dest, secn) < 0;
244 } else if (sec + secn > s->secs_cur) {
245 return 1;
248 memcpy(dest, s->current + (sec << 9), secn << 9);
250 return 0;
253 static inline int onenand_prog_main(OneNANDState *s, int sec, int secn,
254 void *src)
256 int result = 0;
258 if (secn > 0) {
259 uint32_t size = (uint32_t)secn * 512;
260 const uint8_t *sp = (const uint8_t *)src;
261 uint8_t *dp = 0;
262 if (s->blk_cur) {
263 dp = g_malloc(size);
264 if (!dp || blk_read(s->blk_cur, sec, dp, secn) < 0) {
265 result = 1;
267 } else {
268 if (sec + secn > s->secs_cur) {
269 result = 1;
270 } else {
271 dp = (uint8_t *)s->current + (sec << 9);
274 if (!result) {
275 uint32_t i;
276 for (i = 0; i < size; i++) {
277 dp[i] &= sp[i];
279 if (s->blk_cur) {
280 result = blk_write(s->blk_cur, sec, dp, secn) < 0;
283 if (dp && s->blk_cur) {
284 g_free(dp);
288 return result;
291 static inline int onenand_load_spare(OneNANDState *s, int sec, int secn,
292 void *dest)
294 uint8_t buf[512];
296 if (s->blk_cur) {
297 if (blk_read(s->blk_cur, s->secs_cur + (sec >> 5), buf, 1) < 0) {
298 return 1;
300 memcpy(dest, buf + ((sec & 31) << 4), secn << 4);
301 } else if (sec + secn > s->secs_cur) {
302 return 1;
303 } else {
304 memcpy(dest, s->current + (s->secs_cur << 9) + (sec << 4), secn << 4);
307 return 0;
310 static inline int onenand_prog_spare(OneNANDState *s, int sec, int secn,
311 void *src)
313 int result = 0;
314 if (secn > 0) {
315 const uint8_t *sp = (const uint8_t *)src;
316 uint8_t *dp = 0, *dpp = 0;
317 if (s->blk_cur) {
318 dp = g_malloc(512);
319 if (!dp
320 || blk_read(s->blk_cur, s->secs_cur + (sec >> 5), dp, 1) < 0) {
321 result = 1;
322 } else {
323 dpp = dp + ((sec & 31) << 4);
325 } else {
326 if (sec + secn > s->secs_cur) {
327 result = 1;
328 } else {
329 dpp = s->current + (s->secs_cur << 9) + (sec << 4);
332 if (!result) {
333 uint32_t i;
334 for (i = 0; i < (secn << 4); i++) {
335 dpp[i] &= sp[i];
337 if (s->blk_cur) {
338 result = blk_write(s->blk_cur, s->secs_cur + (sec >> 5),
339 dp, 1) < 0;
342 g_free(dp);
344 return result;
347 static inline int onenand_erase(OneNANDState *s, int sec, int num)
349 uint8_t *blankbuf, *tmpbuf;
351 blankbuf = g_malloc(512);
352 tmpbuf = g_malloc(512);
353 memset(blankbuf, 0xff, 512);
354 for (; num > 0; num--, sec++) {
355 if (s->blk_cur) {
356 int erasesec = s->secs_cur + (sec >> 5);
357 if (blk_write(s->blk_cur, sec, blankbuf, 1) < 0) {
358 goto fail;
360 if (blk_read(s->blk_cur, erasesec, tmpbuf, 1) < 0) {
361 goto fail;
363 memcpy(tmpbuf + ((sec & 31) << 4), blankbuf, 1 << 4);
364 if (blk_write(s->blk_cur, erasesec, tmpbuf, 1) < 0) {
365 goto fail;
367 } else {
368 if (sec + 1 > s->secs_cur) {
369 goto fail;
371 memcpy(s->current + (sec << 9), blankbuf, 512);
372 memcpy(s->current + (s->secs_cur << 9) + (sec << 4),
373 blankbuf, 1 << 4);
377 g_free(tmpbuf);
378 g_free(blankbuf);
379 return 0;
381 fail:
382 g_free(tmpbuf);
383 g_free(blankbuf);
384 return 1;
387 static void onenand_command(OneNANDState *s)
389 int b;
390 int sec;
391 void *buf;
392 #define SETADDR(block, page) \
393 sec = (s->addr[page] & 3) + \
394 ((((s->addr[page] >> 2) & 0x3f) + \
395 (((s->addr[block] & 0xfff) | \
396 (s->addr[block] >> 15 ? \
397 s->density_mask : 0)) << 6)) << (PAGE_SHIFT - 9));
398 #define SETBUF_M() \
399 buf = (s->bufaddr & 8) ? \
400 s->data[(s->bufaddr >> 2) & 1][0] : s->boot[0]; \
401 buf += (s->bufaddr & 3) << 9;
402 #define SETBUF_S() \
403 buf = (s->bufaddr & 8) ? \
404 s->data[(s->bufaddr >> 2) & 1][1] : s->boot[1]; \
405 buf += (s->bufaddr & 3) << 4;
407 switch (s->command) {
408 case 0x00: /* Load single/multiple sector data unit into buffer */
409 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
411 SETBUF_M()
412 if (onenand_load_main(s, sec, s->count, buf))
413 s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
415 #if 0
416 SETBUF_S()
417 if (onenand_load_spare(s, sec, s->count, buf))
418 s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
419 #endif
421 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
422 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
423 * then we need two split the read/write into two chunks.
425 s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
426 break;
427 case 0x13: /* Load single/multiple spare sector into buffer */
428 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
430 SETBUF_S()
431 if (onenand_load_spare(s, sec, s->count, buf))
432 s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
434 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
435 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
436 * then we need two split the read/write into two chunks.
438 s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
439 break;
440 case 0x80: /* Program single/multiple sector data unit from buffer */
441 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
443 SETBUF_M()
444 if (onenand_prog_main(s, sec, s->count, buf))
445 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
447 #if 0
448 SETBUF_S()
449 if (onenand_prog_spare(s, sec, s->count, buf))
450 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
451 #endif
453 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
454 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
455 * then we need two split the read/write into two chunks.
457 s->intstatus |= ONEN_INT | ONEN_INT_PROG;
458 break;
459 case 0x1a: /* Program single/multiple spare area sector from buffer */
460 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
462 SETBUF_S()
463 if (onenand_prog_spare(s, sec, s->count, buf))
464 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
466 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
467 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
468 * then we need two split the read/write into two chunks.
470 s->intstatus |= ONEN_INT | ONEN_INT_PROG;
471 break;
472 case 0x1b: /* Copy-back program */
473 SETBUF_S()
475 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
476 if (onenand_load_main(s, sec, s->count, buf))
477 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
479 SETADDR(ONEN_BUF_DEST_BLOCK, ONEN_BUF_DEST_PAGE)
480 if (onenand_prog_main(s, sec, s->count, buf))
481 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
483 /* TODO: spare areas */
485 s->intstatus |= ONEN_INT | ONEN_INT_PROG;
486 break;
488 case 0x23: /* Unlock NAND array block(s) */
489 s->intstatus |= ONEN_INT;
491 /* XXX the previous (?) area should be locked automatically */
492 for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
493 if (b >= s->blocks) {
494 s->status |= ONEN_ERR_CMD;
495 break;
497 if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
498 break;
500 s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
502 break;
503 case 0x27: /* Unlock All NAND array blocks */
504 s->intstatus |= ONEN_INT;
506 for (b = 0; b < s->blocks; b ++) {
507 if (b >= s->blocks) {
508 s->status |= ONEN_ERR_CMD;
509 break;
511 if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
512 break;
514 s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
516 break;
518 case 0x2a: /* Lock NAND array block(s) */
519 s->intstatus |= ONEN_INT;
521 for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
522 if (b >= s->blocks) {
523 s->status |= ONEN_ERR_CMD;
524 break;
526 if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
527 break;
529 s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKED;
531 break;
532 case 0x2c: /* Lock-tight NAND array block(s) */
533 s->intstatus |= ONEN_INT;
535 for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
536 if (b >= s->blocks) {
537 s->status |= ONEN_ERR_CMD;
538 break;
540 if (s->blockwp[b] == ONEN_LOCK_UNLOCKED)
541 continue;
543 s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKTIGHTEN;
545 break;
547 case 0x71: /* Erase-Verify-Read */
548 s->intstatus |= ONEN_INT;
549 break;
550 case 0x95: /* Multi-block erase */
551 qemu_irq_pulse(s->intr);
552 /* Fall through. */
553 case 0x94: /* Block erase */
554 sec = ((s->addr[ONEN_BUF_BLOCK] & 0xfff) |
555 (s->addr[ONEN_BUF_BLOCK] >> 15 ? s->density_mask : 0))
556 << (BLOCK_SHIFT - 9);
557 if (onenand_erase(s, sec, 1 << (BLOCK_SHIFT - 9)))
558 s->status |= ONEN_ERR_CMD | ONEN_ERR_ERASE;
560 s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
561 break;
562 case 0xb0: /* Erase suspend */
563 break;
564 case 0x30: /* Erase resume */
565 s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
566 break;
568 case 0xf0: /* Reset NAND Flash core */
569 onenand_reset(s, 0);
570 break;
571 case 0xf3: /* Reset OneNAND */
572 onenand_reset(s, 0);
573 break;
575 case 0x65: /* OTP Access */
576 s->intstatus |= ONEN_INT;
577 s->blk_cur = NULL;
578 s->current = s->otp;
579 s->secs_cur = 1 << (BLOCK_SHIFT - 9);
580 s->addr[ONEN_BUF_BLOCK] = 0;
581 s->otpmode = 1;
582 break;
584 default:
585 s->status |= ONEN_ERR_CMD;
586 s->intstatus |= ONEN_INT;
587 fprintf(stderr, "%s: unknown OneNAND command %x\n",
588 __func__, s->command);
591 onenand_intr_update(s);
594 static uint64_t onenand_read(void *opaque, hwaddr addr,
595 unsigned size)
597 OneNANDState *s = (OneNANDState *) opaque;
598 int offset = addr >> s->shift;
600 switch (offset) {
601 case 0x0000 ... 0xc000:
602 return lduw_le_p(s->boot[0] + addr);
604 case 0xf000: /* Manufacturer ID */
605 return s->id.man;
606 case 0xf001: /* Device ID */
607 return s->id.dev;
608 case 0xf002: /* Version ID */
609 return s->id.ver;
610 /* TODO: get the following values from a real chip! */
611 case 0xf003: /* Data Buffer size */
612 return 1 << PAGE_SHIFT;
613 case 0xf004: /* Boot Buffer size */
614 return 0x200;
615 case 0xf005: /* Amount of buffers */
616 return 1 | (2 << 8);
617 case 0xf006: /* Technology */
618 return 0;
620 case 0xf100 ... 0xf107: /* Start addresses */
621 return s->addr[offset - 0xf100];
623 case 0xf200: /* Start buffer */
624 return (s->bufaddr << 8) | ((s->count - 1) & (1 << (PAGE_SHIFT - 10)));
626 case 0xf220: /* Command */
627 return s->command;
628 case 0xf221: /* System Configuration 1 */
629 return s->config[0] & 0xffe0;
630 case 0xf222: /* System Configuration 2 */
631 return s->config[1];
633 case 0xf240: /* Controller Status */
634 return s->status;
635 case 0xf241: /* Interrupt */
636 return s->intstatus;
637 case 0xf24c: /* Unlock Start Block Address */
638 return s->unladdr[0];
639 case 0xf24d: /* Unlock End Block Address */
640 return s->unladdr[1];
641 case 0xf24e: /* Write Protection Status */
642 return s->wpstatus;
644 case 0xff00: /* ECC Status */
645 return 0x00;
646 case 0xff01: /* ECC Result of main area data */
647 case 0xff02: /* ECC Result of spare area data */
648 case 0xff03: /* ECC Result of main area data */
649 case 0xff04: /* ECC Result of spare area data */
650 hw_error("%s: imeplement ECC\n", __FUNCTION__);
651 return 0x0000;
654 fprintf(stderr, "%s: unknown OneNAND register %x\n",
655 __FUNCTION__, offset);
656 return 0;
659 static void onenand_write(void *opaque, hwaddr addr,
660 uint64_t value, unsigned size)
662 OneNANDState *s = (OneNANDState *) opaque;
663 int offset = addr >> s->shift;
664 int sec;
666 switch (offset) {
667 case 0x0000 ... 0x01ff:
668 case 0x8000 ... 0x800f:
669 if (s->cycle) {
670 s->cycle = 0;
672 if (value == 0x0000) {
673 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
674 onenand_load_main(s, sec,
675 1 << (PAGE_SHIFT - 9), s->data[0][0]);
676 s->addr[ONEN_BUF_PAGE] += 4;
677 s->addr[ONEN_BUF_PAGE] &= 0xff;
679 break;
682 switch (value) {
683 case 0x00f0: /* Reset OneNAND */
684 onenand_reset(s, 0);
685 break;
687 case 0x00e0: /* Load Data into Buffer */
688 s->cycle = 1;
689 break;
691 case 0x0090: /* Read Identification Data */
692 memset(s->boot[0], 0, 3 << s->shift);
693 s->boot[0][0 << s->shift] = s->id.man & 0xff;
694 s->boot[0][1 << s->shift] = s->id.dev & 0xff;
695 s->boot[0][2 << s->shift] = s->wpstatus & 0xff;
696 break;
698 default:
699 fprintf(stderr, "%s: unknown OneNAND boot command %"PRIx64"\n",
700 __FUNCTION__, value);
702 break;
704 case 0xf100 ... 0xf107: /* Start addresses */
705 s->addr[offset - 0xf100] = value;
706 break;
708 case 0xf200: /* Start buffer */
709 s->bufaddr = (value >> 8) & 0xf;
710 if (PAGE_SHIFT == 11)
711 s->count = (value & 3) ?: 4;
712 else if (PAGE_SHIFT == 10)
713 s->count = (value & 1) ?: 2;
714 break;
716 case 0xf220: /* Command */
717 if (s->intstatus & (1 << 15))
718 break;
719 s->command = value;
720 onenand_command(s);
721 break;
722 case 0xf221: /* System Configuration 1 */
723 s->config[0] = value;
724 onenand_intr_update(s);
725 qemu_set_irq(s->rdy, (s->config[0] >> 7) & 1);
726 break;
727 case 0xf222: /* System Configuration 2 */
728 s->config[1] = value;
729 break;
731 case 0xf241: /* Interrupt */
732 s->intstatus &= value;
733 if ((1 << 15) & ~s->intstatus)
734 s->status &= ~(ONEN_ERR_CMD | ONEN_ERR_ERASE |
735 ONEN_ERR_PROG | ONEN_ERR_LOAD);
736 onenand_intr_update(s);
737 break;
738 case 0xf24c: /* Unlock Start Block Address */
739 s->unladdr[0] = value & (s->blocks - 1);
740 /* For some reason we have to set the end address to by default
741 * be same as start because the software forgets to write anything
742 * in there. */
743 s->unladdr[1] = value & (s->blocks - 1);
744 break;
745 case 0xf24d: /* Unlock End Block Address */
746 s->unladdr[1] = value & (s->blocks - 1);
747 break;
749 default:
750 fprintf(stderr, "%s: unknown OneNAND register %x\n",
751 __FUNCTION__, offset);
755 static const MemoryRegionOps onenand_ops = {
756 .read = onenand_read,
757 .write = onenand_write,
758 .endianness = DEVICE_NATIVE_ENDIAN,
761 static int onenand_initfn(SysBusDevice *sbd)
763 DeviceState *dev = DEVICE(sbd);
764 OneNANDState *s = ONE_NAND(dev);
765 uint32_t size = 1 << (24 + ((s->id.dev >> 4) & 7));
766 void *ram;
768 s->base = (hwaddr)-1;
769 s->rdy = NULL;
770 s->blocks = size >> BLOCK_SHIFT;
771 s->secs = size >> 9;
772 s->blockwp = g_malloc(s->blocks);
773 s->density_mask = (s->id.dev & 0x08)
774 ? (1 << (6 + ((s->id.dev >> 4) & 7))) : 0;
775 memory_region_init_io(&s->iomem, OBJECT(s), &onenand_ops, s, "onenand",
776 0x10000 << s->shift);
777 if (!s->blk) {
778 s->image = memset(g_malloc(size + (size >> 5)),
779 0xff, size + (size >> 5));
780 } else {
781 if (blk_is_read_only(s->blk)) {
782 error_report("Can't use a read-only drive");
783 return -1;
785 s->blk_cur = s->blk;
787 s->otp = memset(g_malloc((64 + 2) << PAGE_SHIFT),
788 0xff, (64 + 2) << PAGE_SHIFT);
789 memory_region_init_ram(&s->ram, OBJECT(s), "onenand.ram",
790 0xc000 << s->shift, &error_fatal);
791 vmstate_register_ram_global(&s->ram);
792 ram = memory_region_get_ram_ptr(&s->ram);
793 s->boot[0] = ram + (0x0000 << s->shift);
794 s->boot[1] = ram + (0x8000 << s->shift);
795 s->data[0][0] = ram + ((0x0200 + (0 << (PAGE_SHIFT - 1))) << s->shift);
796 s->data[0][1] = ram + ((0x8010 + (0 << (PAGE_SHIFT - 6))) << s->shift);
797 s->data[1][0] = ram + ((0x0200 + (1 << (PAGE_SHIFT - 1))) << s->shift);
798 s->data[1][1] = ram + ((0x8010 + (1 << (PAGE_SHIFT - 6))) << s->shift);
799 onenand_mem_setup(s);
800 sysbus_init_irq(sbd, &s->intr);
801 sysbus_init_mmio(sbd, &s->container);
802 vmstate_register(dev,
803 ((s->shift & 0x7f) << 24)
804 | ((s->id.man & 0xff) << 16)
805 | ((s->id.dev & 0xff) << 8)
806 | (s->id.ver & 0xff),
807 &vmstate_onenand, s);
808 return 0;
811 static Property onenand_properties[] = {
812 DEFINE_PROP_UINT16("manufacturer_id", OneNANDState, id.man, 0),
813 DEFINE_PROP_UINT16("device_id", OneNANDState, id.dev, 0),
814 DEFINE_PROP_UINT16("version_id", OneNANDState, id.ver, 0),
815 DEFINE_PROP_INT32("shift", OneNANDState, shift, 0),
816 DEFINE_PROP_DRIVE("drive", OneNANDState, blk),
817 DEFINE_PROP_END_OF_LIST(),
820 static void onenand_class_init(ObjectClass *klass, void *data)
822 DeviceClass *dc = DEVICE_CLASS(klass);
823 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
825 k->init = onenand_initfn;
826 dc->reset = onenand_system_reset;
827 dc->props = onenand_properties;
830 static const TypeInfo onenand_info = {
831 .name = TYPE_ONE_NAND,
832 .parent = TYPE_SYS_BUS_DEVICE,
833 .instance_size = sizeof(OneNANDState),
834 .class_init = onenand_class_init,
837 static void onenand_register_types(void)
839 type_register_static(&onenand_info);
842 void *onenand_raw_otp(DeviceState *onenand_device)
844 OneNANDState *s = ONE_NAND(onenand_device);
846 return s->otp;
849 type_init(onenand_register_types)