Fix 'writeable' typos
[qemu/ar7.git] / target / arm / helper.c
blob5727ead5e4ce9d2110f8274101f0929239043760
1 /*
2 * ARM generic helpers.
4 * This code is licensed under the GNU GPL v2 or later.
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
9 #include "qemu/osdep.h"
10 #include "qemu/units.h"
11 #include "qemu/log.h"
12 #include "target/arm/idau.h"
13 #include "trace.h"
14 #include "cpu.h"
15 #include "internals.h"
16 #include "exec/helper-proto.h"
17 #include "qemu/host-utils.h"
18 #include "qemu/main-loop.h"
19 #include "qemu/timer.h"
20 #include "qemu/bitops.h"
21 #include "qemu/crc32c.h"
22 #include "qemu/qemu-print.h"
23 #include "exec/exec-all.h"
24 #include <zlib.h> /* For crc32 */
25 #include "hw/irq.h"
26 #include "semihosting/semihost.h"
27 #include "sysemu/cpus.h"
28 #include "sysemu/cpu-timers.h"
29 #include "sysemu/kvm.h"
30 #include "qemu/range.h"
31 #include "qapi/qapi-commands-machine-target.h"
32 #include "qapi/error.h"
33 #include "qemu/guest-random.h"
34 #ifdef CONFIG_TCG
35 #include "arm_ldst.h"
36 #include "exec/cpu_ldst.h"
37 #include "semihosting/common-semi.h"
38 #endif
39 #include "cpregs.h"
41 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
43 #ifndef CONFIG_USER_ONLY
45 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address,
46 MMUAccessType access_type, ARMMMUIdx mmu_idx,
47 bool s1_is_el0,
48 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
49 target_ulong *page_size_ptr,
50 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
51 __attribute__((nonnull));
52 #endif
54 static void switch_mode(CPUARMState *env, int mode);
55 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx);
57 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
59 assert(ri->fieldoffset);
60 if (cpreg_field_is_64bit(ri)) {
61 return CPREG_FIELD64(env, ri);
62 } else {
63 return CPREG_FIELD32(env, ri);
67 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
68 uint64_t value)
70 assert(ri->fieldoffset);
71 if (cpreg_field_is_64bit(ri)) {
72 CPREG_FIELD64(env, ri) = value;
73 } else {
74 CPREG_FIELD32(env, ri) = value;
78 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
80 return (char *)env + ri->fieldoffset;
83 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
85 /* Raw read of a coprocessor register (as needed for migration, etc). */
86 if (ri->type & ARM_CP_CONST) {
87 return ri->resetvalue;
88 } else if (ri->raw_readfn) {
89 return ri->raw_readfn(env, ri);
90 } else if (ri->readfn) {
91 return ri->readfn(env, ri);
92 } else {
93 return raw_read(env, ri);
97 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
98 uint64_t v)
100 /* Raw write of a coprocessor register (as needed for migration, etc).
101 * Note that constant registers are treated as write-ignored; the
102 * caller should check for success by whether a readback gives the
103 * value written.
105 if (ri->type & ARM_CP_CONST) {
106 return;
107 } else if (ri->raw_writefn) {
108 ri->raw_writefn(env, ri, v);
109 } else if (ri->writefn) {
110 ri->writefn(env, ri, v);
111 } else {
112 raw_write(env, ri, v);
116 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
118 /* Return true if the regdef would cause an assertion if you called
119 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
120 * program bug for it not to have the NO_RAW flag).
121 * NB that returning false here doesn't necessarily mean that calling
122 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
123 * read/write access functions which are safe for raw use" from "has
124 * read/write access functions which have side effects but has forgotten
125 * to provide raw access functions".
126 * The tests here line up with the conditions in read/write_raw_cp_reg()
127 * and assertions in raw_read()/raw_write().
129 if ((ri->type & ARM_CP_CONST) ||
130 ri->fieldoffset ||
131 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
132 return false;
134 return true;
137 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
139 /* Write the coprocessor state from cpu->env to the (index,value) list. */
140 int i;
141 bool ok = true;
143 for (i = 0; i < cpu->cpreg_array_len; i++) {
144 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
145 const ARMCPRegInfo *ri;
146 uint64_t newval;
148 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
149 if (!ri) {
150 ok = false;
151 continue;
153 if (ri->type & ARM_CP_NO_RAW) {
154 continue;
157 newval = read_raw_cp_reg(&cpu->env, ri);
158 if (kvm_sync) {
160 * Only sync if the previous list->cpustate sync succeeded.
161 * Rather than tracking the success/failure state for every
162 * item in the list, we just recheck "does the raw write we must
163 * have made in write_list_to_cpustate() read back OK" here.
165 uint64_t oldval = cpu->cpreg_values[i];
167 if (oldval == newval) {
168 continue;
171 write_raw_cp_reg(&cpu->env, ri, oldval);
172 if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
173 continue;
176 write_raw_cp_reg(&cpu->env, ri, newval);
178 cpu->cpreg_values[i] = newval;
180 return ok;
183 bool write_list_to_cpustate(ARMCPU *cpu)
185 int i;
186 bool ok = true;
188 for (i = 0; i < cpu->cpreg_array_len; i++) {
189 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
190 uint64_t v = cpu->cpreg_values[i];
191 const ARMCPRegInfo *ri;
193 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
194 if (!ri) {
195 ok = false;
196 continue;
198 if (ri->type & ARM_CP_NO_RAW) {
199 continue;
201 /* Write value and confirm it reads back as written
202 * (to catch read-only registers and partially read-only
203 * registers where the incoming migration value doesn't match)
205 write_raw_cp_reg(&cpu->env, ri, v);
206 if (read_raw_cp_reg(&cpu->env, ri) != v) {
207 ok = false;
210 return ok;
213 static void add_cpreg_to_list(gpointer key, gpointer opaque)
215 ARMCPU *cpu = opaque;
216 uint32_t regidx = (uintptr_t)key;
217 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
219 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
220 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
221 /* The value array need not be initialized at this point */
222 cpu->cpreg_array_len++;
226 static void count_cpreg(gpointer key, gpointer opaque)
228 ARMCPU *cpu = opaque;
229 const ARMCPRegInfo *ri;
231 ri = g_hash_table_lookup(cpu->cp_regs, key);
233 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
234 cpu->cpreg_array_len++;
238 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
240 uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a);
241 uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b);
243 if (aidx > bidx) {
244 return 1;
246 if (aidx < bidx) {
247 return -1;
249 return 0;
252 void init_cpreg_list(ARMCPU *cpu)
254 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
255 * Note that we require cpreg_tuples[] to be sorted by key ID.
257 GList *keys;
258 int arraylen;
260 keys = g_hash_table_get_keys(cpu->cp_regs);
261 keys = g_list_sort(keys, cpreg_key_compare);
263 cpu->cpreg_array_len = 0;
265 g_list_foreach(keys, count_cpreg, cpu);
267 arraylen = cpu->cpreg_array_len;
268 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
269 cpu->cpreg_values = g_new(uint64_t, arraylen);
270 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
271 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
272 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
273 cpu->cpreg_array_len = 0;
275 g_list_foreach(keys, add_cpreg_to_list, cpu);
277 assert(cpu->cpreg_array_len == arraylen);
279 g_list_free(keys);
283 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
285 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
286 const ARMCPRegInfo *ri,
287 bool isread)
289 if (!is_a64(env) && arm_current_el(env) == 3 &&
290 arm_is_secure_below_el3(env)) {
291 return CP_ACCESS_TRAP_UNCATEGORIZED;
293 return CP_ACCESS_OK;
296 /* Some secure-only AArch32 registers trap to EL3 if used from
297 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
298 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
299 * We assume that the .access field is set to PL1_RW.
301 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
302 const ARMCPRegInfo *ri,
303 bool isread)
305 if (arm_current_el(env) == 3) {
306 return CP_ACCESS_OK;
308 if (arm_is_secure_below_el3(env)) {
309 if (env->cp15.scr_el3 & SCR_EEL2) {
310 return CP_ACCESS_TRAP_EL2;
312 return CP_ACCESS_TRAP_EL3;
314 /* This will be EL1 NS and EL2 NS, which just UNDEF */
315 return CP_ACCESS_TRAP_UNCATEGORIZED;
318 static uint64_t arm_mdcr_el2_eff(CPUARMState *env)
320 return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0;
323 /* Check for traps to "powerdown debug" registers, which are controlled
324 * by MDCR.TDOSA
326 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
327 bool isread)
329 int el = arm_current_el(env);
330 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
331 bool mdcr_el2_tdosa = (mdcr_el2 & MDCR_TDOSA) || (mdcr_el2 & MDCR_TDE) ||
332 (arm_hcr_el2_eff(env) & HCR_TGE);
334 if (el < 2 && mdcr_el2_tdosa) {
335 return CP_ACCESS_TRAP_EL2;
337 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
338 return CP_ACCESS_TRAP_EL3;
340 return CP_ACCESS_OK;
343 /* Check for traps to "debug ROM" registers, which are controlled
344 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
346 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
347 bool isread)
349 int el = arm_current_el(env);
350 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
351 bool mdcr_el2_tdra = (mdcr_el2 & MDCR_TDRA) || (mdcr_el2 & MDCR_TDE) ||
352 (arm_hcr_el2_eff(env) & HCR_TGE);
354 if (el < 2 && mdcr_el2_tdra) {
355 return CP_ACCESS_TRAP_EL2;
357 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
358 return CP_ACCESS_TRAP_EL3;
360 return CP_ACCESS_OK;
363 /* Check for traps to general debug registers, which are controlled
364 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
366 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
367 bool isread)
369 int el = arm_current_el(env);
370 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
371 bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) ||
372 (arm_hcr_el2_eff(env) & HCR_TGE);
374 if (el < 2 && mdcr_el2_tda) {
375 return CP_ACCESS_TRAP_EL2;
377 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
378 return CP_ACCESS_TRAP_EL3;
380 return CP_ACCESS_OK;
383 /* Check for traps to performance monitor registers, which are controlled
384 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
386 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
387 bool isread)
389 int el = arm_current_el(env);
390 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
392 if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
393 return CP_ACCESS_TRAP_EL2;
395 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
396 return CP_ACCESS_TRAP_EL3;
398 return CP_ACCESS_OK;
401 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */
402 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
403 bool isread)
405 if (arm_current_el(env) == 1) {
406 uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
407 if (arm_hcr_el2_eff(env) & trap) {
408 return CP_ACCESS_TRAP_EL2;
411 return CP_ACCESS_OK;
414 /* Check for traps from EL1 due to HCR_EL2.TSW. */
415 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
416 bool isread)
418 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
419 return CP_ACCESS_TRAP_EL2;
421 return CP_ACCESS_OK;
424 /* Check for traps from EL1 due to HCR_EL2.TACR. */
425 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
426 bool isread)
428 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
429 return CP_ACCESS_TRAP_EL2;
431 return CP_ACCESS_OK;
434 /* Check for traps from EL1 due to HCR_EL2.TTLB. */
435 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
436 bool isread)
438 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
439 return CP_ACCESS_TRAP_EL2;
441 return CP_ACCESS_OK;
444 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
446 ARMCPU *cpu = env_archcpu(env);
448 raw_write(env, ri, value);
449 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
452 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
454 ARMCPU *cpu = env_archcpu(env);
456 if (raw_read(env, ri) != value) {
457 /* Unlike real hardware the qemu TLB uses virtual addresses,
458 * not modified virtual addresses, so this causes a TLB flush.
460 tlb_flush(CPU(cpu));
461 raw_write(env, ri, value);
465 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
466 uint64_t value)
468 ARMCPU *cpu = env_archcpu(env);
470 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
471 && !extended_addresses_enabled(env)) {
472 /* For VMSA (when not using the LPAE long descriptor page table
473 * format) this register includes the ASID, so do a TLB flush.
474 * For PMSA it is purely a process ID and no action is needed.
476 tlb_flush(CPU(cpu));
478 raw_write(env, ri, value);
481 /* IS variants of TLB operations must affect all cores */
482 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
483 uint64_t value)
485 CPUState *cs = env_cpu(env);
487 tlb_flush_all_cpus_synced(cs);
490 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
491 uint64_t value)
493 CPUState *cs = env_cpu(env);
495 tlb_flush_all_cpus_synced(cs);
498 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
499 uint64_t value)
501 CPUState *cs = env_cpu(env);
503 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
506 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
507 uint64_t value)
509 CPUState *cs = env_cpu(env);
511 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
515 * Non-IS variants of TLB operations are upgraded to
516 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to
517 * force broadcast of these operations.
519 static bool tlb_force_broadcast(CPUARMState *env)
521 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB);
524 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
525 uint64_t value)
527 /* Invalidate all (TLBIALL) */
528 CPUState *cs = env_cpu(env);
530 if (tlb_force_broadcast(env)) {
531 tlb_flush_all_cpus_synced(cs);
532 } else {
533 tlb_flush(cs);
537 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
538 uint64_t value)
540 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
541 CPUState *cs = env_cpu(env);
543 value &= TARGET_PAGE_MASK;
544 if (tlb_force_broadcast(env)) {
545 tlb_flush_page_all_cpus_synced(cs, value);
546 } else {
547 tlb_flush_page(cs, value);
551 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
552 uint64_t value)
554 /* Invalidate by ASID (TLBIASID) */
555 CPUState *cs = env_cpu(env);
557 if (tlb_force_broadcast(env)) {
558 tlb_flush_all_cpus_synced(cs);
559 } else {
560 tlb_flush(cs);
564 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
565 uint64_t value)
567 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
568 CPUState *cs = env_cpu(env);
570 value &= TARGET_PAGE_MASK;
571 if (tlb_force_broadcast(env)) {
572 tlb_flush_page_all_cpus_synced(cs, value);
573 } else {
574 tlb_flush_page(cs, value);
578 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
579 uint64_t value)
581 CPUState *cs = env_cpu(env);
583 tlb_flush_by_mmuidx(cs,
584 ARMMMUIdxBit_E10_1 |
585 ARMMMUIdxBit_E10_1_PAN |
586 ARMMMUIdxBit_E10_0);
589 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
590 uint64_t value)
592 CPUState *cs = env_cpu(env);
594 tlb_flush_by_mmuidx_all_cpus_synced(cs,
595 ARMMMUIdxBit_E10_1 |
596 ARMMMUIdxBit_E10_1_PAN |
597 ARMMMUIdxBit_E10_0);
601 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
602 uint64_t value)
604 CPUState *cs = env_cpu(env);
606 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
609 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
610 uint64_t value)
612 CPUState *cs = env_cpu(env);
614 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
617 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
618 uint64_t value)
620 CPUState *cs = env_cpu(env);
621 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
623 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
626 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
627 uint64_t value)
629 CPUState *cs = env_cpu(env);
630 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
632 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
633 ARMMMUIdxBit_E2);
636 static const ARMCPRegInfo cp_reginfo[] = {
637 /* Define the secure and non-secure FCSE identifier CP registers
638 * separately because there is no secure bank in V8 (no _EL3). This allows
639 * the secure register to be properly reset and migrated. There is also no
640 * v8 EL1 version of the register so the non-secure instance stands alone.
642 { .name = "FCSEIDR",
643 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
644 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
645 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
646 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
647 { .name = "FCSEIDR_S",
648 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
649 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
650 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
651 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
652 /* Define the secure and non-secure context identifier CP registers
653 * separately because there is no secure bank in V8 (no _EL3). This allows
654 * the secure register to be properly reset and migrated. In the
655 * non-secure case, the 32-bit register will have reset and migration
656 * disabled during registration as it is handled by the 64-bit instance.
658 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
659 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
660 .access = PL1_RW, .accessfn = access_tvm_trvm,
661 .secure = ARM_CP_SECSTATE_NS,
662 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
663 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
664 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
665 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
666 .access = PL1_RW, .accessfn = access_tvm_trvm,
667 .secure = ARM_CP_SECSTATE_S,
668 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
669 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
672 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
673 /* NB: Some of these registers exist in v8 but with more precise
674 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
676 /* MMU Domain access control / MPU write buffer control */
677 { .name = "DACR",
678 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
679 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
680 .writefn = dacr_write, .raw_writefn = raw_write,
681 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
682 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
683 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
684 * For v6 and v5, these mappings are overly broad.
686 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
687 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
688 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
689 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
690 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
691 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
692 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
693 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
694 /* Cache maintenance ops; some of this space may be overridden later. */
695 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
696 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
697 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
700 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
701 /* Not all pre-v6 cores implemented this WFI, so this is slightly
702 * over-broad.
704 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
705 .access = PL1_W, .type = ARM_CP_WFI },
708 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
709 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
710 * is UNPREDICTABLE; we choose to NOP as most implementations do).
712 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
713 .access = PL1_W, .type = ARM_CP_WFI },
714 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
715 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
716 * OMAPCP will override this space.
718 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
719 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
720 .resetvalue = 0 },
721 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
722 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
723 .resetvalue = 0 },
724 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
725 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
726 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
727 .resetvalue = 0 },
728 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
729 * implementing it as RAZ means the "debug architecture version" bits
730 * will read as a reserved value, which should cause Linux to not try
731 * to use the debug hardware.
733 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
734 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
735 /* MMU TLB control. Note that the wildcarding means we cover not just
736 * the unified TLB ops but also the dside/iside/inner-shareable variants.
738 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
739 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
740 .type = ARM_CP_NO_RAW },
741 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
742 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
743 .type = ARM_CP_NO_RAW },
744 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
745 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
746 .type = ARM_CP_NO_RAW },
747 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
748 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
749 .type = ARM_CP_NO_RAW },
750 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
751 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
752 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
753 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
756 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
757 uint64_t value)
759 uint32_t mask = 0;
761 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
762 if (!arm_feature(env, ARM_FEATURE_V8)) {
763 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
764 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
765 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
767 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
768 /* VFP coprocessor: cp10 & cp11 [23:20] */
769 mask |= R_CPACR_ASEDIS_MASK |
770 R_CPACR_D32DIS_MASK |
771 R_CPACR_CP11_MASK |
772 R_CPACR_CP10_MASK;
774 if (!arm_feature(env, ARM_FEATURE_NEON)) {
775 /* ASEDIS [31] bit is RAO/WI */
776 value |= R_CPACR_ASEDIS_MASK;
779 /* VFPv3 and upwards with NEON implement 32 double precision
780 * registers (D0-D31).
782 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
783 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
784 value |= R_CPACR_D32DIS_MASK;
787 value &= mask;
791 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
792 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
794 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
795 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
796 mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK;
797 value = (value & ~mask) | (env->cp15.cpacr_el1 & mask);
800 env->cp15.cpacr_el1 = value;
803 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
806 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
807 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
809 uint64_t value = env->cp15.cpacr_el1;
811 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
812 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
813 value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK);
815 return value;
819 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
821 /* Call cpacr_write() so that we reset with the correct RAO bits set
822 * for our CPU features.
824 cpacr_write(env, ri, 0);
827 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
828 bool isread)
830 if (arm_feature(env, ARM_FEATURE_V8)) {
831 /* Check if CPACR accesses are to be trapped to EL2 */
832 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) &&
833 FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) {
834 return CP_ACCESS_TRAP_EL2;
835 /* Check if CPACR accesses are to be trapped to EL3 */
836 } else if (arm_current_el(env) < 3 &&
837 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
838 return CP_ACCESS_TRAP_EL3;
842 return CP_ACCESS_OK;
845 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
846 bool isread)
848 /* Check if CPTR accesses are set to trap to EL3 */
849 if (arm_current_el(env) == 2 &&
850 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
851 return CP_ACCESS_TRAP_EL3;
854 return CP_ACCESS_OK;
857 static const ARMCPRegInfo v6_cp_reginfo[] = {
858 /* prefetch by MVA in v6, NOP in v7 */
859 { .name = "MVA_prefetch",
860 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
861 .access = PL1_W, .type = ARM_CP_NOP },
862 /* We need to break the TB after ISB to execute self-modifying code
863 * correctly and also to take any pending interrupts immediately.
864 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
866 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
867 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
868 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
869 .access = PL0_W, .type = ARM_CP_NOP },
870 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
871 .access = PL0_W, .type = ARM_CP_NOP },
872 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
873 .access = PL1_RW, .accessfn = access_tvm_trvm,
874 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
875 offsetof(CPUARMState, cp15.ifar_ns) },
876 .resetvalue = 0, },
877 /* Watchpoint Fault Address Register : should actually only be present
878 * for 1136, 1176, 11MPCore.
880 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
881 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
882 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
883 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
884 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
885 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
888 typedef struct pm_event {
889 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
890 /* If the event is supported on this CPU (used to generate PMCEID[01]) */
891 bool (*supported)(CPUARMState *);
893 * Retrieve the current count of the underlying event. The programmed
894 * counters hold a difference from the return value from this function
896 uint64_t (*get_count)(CPUARMState *);
898 * Return how many nanoseconds it will take (at a minimum) for count events
899 * to occur. A negative value indicates the counter will never overflow, or
900 * that the counter has otherwise arranged for the overflow bit to be set
901 * and the PMU interrupt to be raised on overflow.
903 int64_t (*ns_per_count)(uint64_t);
904 } pm_event;
906 static bool event_always_supported(CPUARMState *env)
908 return true;
911 static uint64_t swinc_get_count(CPUARMState *env)
914 * SW_INCR events are written directly to the pmevcntr's by writes to
915 * PMSWINC, so there is no underlying count maintained by the PMU itself
917 return 0;
920 static int64_t swinc_ns_per(uint64_t ignored)
922 return -1;
926 * Return the underlying cycle count for the PMU cycle counters. If we're in
927 * usermode, simply return 0.
929 static uint64_t cycles_get_count(CPUARMState *env)
931 #ifndef CONFIG_USER_ONLY
932 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
933 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
934 #else
935 return cpu_get_host_ticks();
936 #endif
939 #ifndef CONFIG_USER_ONLY
940 static int64_t cycles_ns_per(uint64_t cycles)
942 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
945 static bool instructions_supported(CPUARMState *env)
947 return icount_enabled() == 1; /* Precise instruction counting */
950 static uint64_t instructions_get_count(CPUARMState *env)
952 return (uint64_t)icount_get_raw();
955 static int64_t instructions_ns_per(uint64_t icount)
957 return icount_to_ns((int64_t)icount);
959 #endif
961 static bool pmu_8_1_events_supported(CPUARMState *env)
963 /* For events which are supported in any v8.1 PMU */
964 return cpu_isar_feature(any_pmu_8_1, env_archcpu(env));
967 static bool pmu_8_4_events_supported(CPUARMState *env)
969 /* For events which are supported in any v8.1 PMU */
970 return cpu_isar_feature(any_pmu_8_4, env_archcpu(env));
973 static uint64_t zero_event_get_count(CPUARMState *env)
975 /* For events which on QEMU never fire, so their count is always zero */
976 return 0;
979 static int64_t zero_event_ns_per(uint64_t cycles)
981 /* An event which never fires can never overflow */
982 return -1;
985 static const pm_event pm_events[] = {
986 { .number = 0x000, /* SW_INCR */
987 .supported = event_always_supported,
988 .get_count = swinc_get_count,
989 .ns_per_count = swinc_ns_per,
991 #ifndef CONFIG_USER_ONLY
992 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
993 .supported = instructions_supported,
994 .get_count = instructions_get_count,
995 .ns_per_count = instructions_ns_per,
997 { .number = 0x011, /* CPU_CYCLES, Cycle */
998 .supported = event_always_supported,
999 .get_count = cycles_get_count,
1000 .ns_per_count = cycles_ns_per,
1002 #endif
1003 { .number = 0x023, /* STALL_FRONTEND */
1004 .supported = pmu_8_1_events_supported,
1005 .get_count = zero_event_get_count,
1006 .ns_per_count = zero_event_ns_per,
1008 { .number = 0x024, /* STALL_BACKEND */
1009 .supported = pmu_8_1_events_supported,
1010 .get_count = zero_event_get_count,
1011 .ns_per_count = zero_event_ns_per,
1013 { .number = 0x03c, /* STALL */
1014 .supported = pmu_8_4_events_supported,
1015 .get_count = zero_event_get_count,
1016 .ns_per_count = zero_event_ns_per,
1021 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1022 * events (i.e. the statistical profiling extension), this implementation
1023 * should first be updated to something sparse instead of the current
1024 * supported_event_map[] array.
1026 #define MAX_EVENT_ID 0x3c
1027 #define UNSUPPORTED_EVENT UINT16_MAX
1028 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1031 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1032 * of ARM event numbers to indices in our pm_events array.
1034 * Note: Events in the 0x40XX range are not currently supported.
1036 void pmu_init(ARMCPU *cpu)
1038 unsigned int i;
1041 * Empty supported_event_map and cpu->pmceid[01] before adding supported
1042 * events to them
1044 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1045 supported_event_map[i] = UNSUPPORTED_EVENT;
1047 cpu->pmceid0 = 0;
1048 cpu->pmceid1 = 0;
1050 for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1051 const pm_event *cnt = &pm_events[i];
1052 assert(cnt->number <= MAX_EVENT_ID);
1053 /* We do not currently support events in the 0x40xx range */
1054 assert(cnt->number <= 0x3f);
1056 if (cnt->supported(&cpu->env)) {
1057 supported_event_map[cnt->number] = i;
1058 uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1059 if (cnt->number & 0x20) {
1060 cpu->pmceid1 |= event_mask;
1061 } else {
1062 cpu->pmceid0 |= event_mask;
1069 * Check at runtime whether a PMU event is supported for the current machine
1071 static bool event_supported(uint16_t number)
1073 if (number > MAX_EVENT_ID) {
1074 return false;
1076 return supported_event_map[number] != UNSUPPORTED_EVENT;
1079 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1080 bool isread)
1082 /* Performance monitor registers user accessibility is controlled
1083 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1084 * trapping to EL2 or EL3 for other accesses.
1086 int el = arm_current_el(env);
1087 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1089 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1090 return CP_ACCESS_TRAP;
1092 if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
1093 return CP_ACCESS_TRAP_EL2;
1095 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1096 return CP_ACCESS_TRAP_EL3;
1099 return CP_ACCESS_OK;
1102 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1103 const ARMCPRegInfo *ri,
1104 bool isread)
1106 /* ER: event counter read trap control */
1107 if (arm_feature(env, ARM_FEATURE_V8)
1108 && arm_current_el(env) == 0
1109 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1110 && isread) {
1111 return CP_ACCESS_OK;
1114 return pmreg_access(env, ri, isread);
1117 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1118 const ARMCPRegInfo *ri,
1119 bool isread)
1121 /* SW: software increment write trap control */
1122 if (arm_feature(env, ARM_FEATURE_V8)
1123 && arm_current_el(env) == 0
1124 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1125 && !isread) {
1126 return CP_ACCESS_OK;
1129 return pmreg_access(env, ri, isread);
1132 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1133 const ARMCPRegInfo *ri,
1134 bool isread)
1136 /* ER: event counter read trap control */
1137 if (arm_feature(env, ARM_FEATURE_V8)
1138 && arm_current_el(env) == 0
1139 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1140 return CP_ACCESS_OK;
1143 return pmreg_access(env, ri, isread);
1146 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1147 const ARMCPRegInfo *ri,
1148 bool isread)
1150 /* CR: cycle counter read trap control */
1151 if (arm_feature(env, ARM_FEATURE_V8)
1152 && arm_current_el(env) == 0
1153 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1154 && isread) {
1155 return CP_ACCESS_OK;
1158 return pmreg_access(env, ri, isread);
1161 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1162 * the current EL, security state, and register configuration.
1164 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1166 uint64_t filter;
1167 bool e, p, u, nsk, nsu, nsh, m;
1168 bool enabled, prohibited, filtered;
1169 bool secure = arm_is_secure(env);
1170 int el = arm_current_el(env);
1171 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1172 uint8_t hpmn = mdcr_el2 & MDCR_HPMN;
1174 if (!arm_feature(env, ARM_FEATURE_PMU)) {
1175 return false;
1178 if (!arm_feature(env, ARM_FEATURE_EL2) ||
1179 (counter < hpmn || counter == 31)) {
1180 e = env->cp15.c9_pmcr & PMCRE;
1181 } else {
1182 e = mdcr_el2 & MDCR_HPME;
1184 enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1186 if (!secure) {
1187 if (el == 2 && (counter < hpmn || counter == 31)) {
1188 prohibited = mdcr_el2 & MDCR_HPMD;
1189 } else {
1190 prohibited = false;
1192 } else {
1193 prohibited = arm_feature(env, ARM_FEATURE_EL3) &&
1194 !(env->cp15.mdcr_el3 & MDCR_SPME);
1197 if (prohibited && counter == 31) {
1198 prohibited = env->cp15.c9_pmcr & PMCRDP;
1201 if (counter == 31) {
1202 filter = env->cp15.pmccfiltr_el0;
1203 } else {
1204 filter = env->cp15.c14_pmevtyper[counter];
1207 p = filter & PMXEVTYPER_P;
1208 u = filter & PMXEVTYPER_U;
1209 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1210 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1211 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1212 m = arm_el_is_aa64(env, 1) &&
1213 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1215 if (el == 0) {
1216 filtered = secure ? u : u != nsu;
1217 } else if (el == 1) {
1218 filtered = secure ? p : p != nsk;
1219 } else if (el == 2) {
1220 filtered = !nsh;
1221 } else { /* EL3 */
1222 filtered = m != p;
1225 if (counter != 31) {
1227 * If not checking PMCCNTR, ensure the counter is setup to an event we
1228 * support
1230 uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1231 if (!event_supported(event)) {
1232 return false;
1236 return enabled && !prohibited && !filtered;
1239 static void pmu_update_irq(CPUARMState *env)
1241 ARMCPU *cpu = env_archcpu(env);
1242 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1243 (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1247 * Ensure c15_ccnt is the guest-visible count so that operations such as
1248 * enabling/disabling the counter or filtering, modifying the count itself,
1249 * etc. can be done logically. This is essentially a no-op if the counter is
1250 * not enabled at the time of the call.
1252 static void pmccntr_op_start(CPUARMState *env)
1254 uint64_t cycles = cycles_get_count(env);
1256 if (pmu_counter_enabled(env, 31)) {
1257 uint64_t eff_cycles = cycles;
1258 if (env->cp15.c9_pmcr & PMCRD) {
1259 /* Increment once every 64 processor clock cycles */
1260 eff_cycles /= 64;
1263 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1265 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1266 1ull << 63 : 1ull << 31;
1267 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1268 env->cp15.c9_pmovsr |= (1 << 31);
1269 pmu_update_irq(env);
1272 env->cp15.c15_ccnt = new_pmccntr;
1274 env->cp15.c15_ccnt_delta = cycles;
1278 * If PMCCNTR is enabled, recalculate the delta between the clock and the
1279 * guest-visible count. A call to pmccntr_op_finish should follow every call to
1280 * pmccntr_op_start.
1282 static void pmccntr_op_finish(CPUARMState *env)
1284 if (pmu_counter_enabled(env, 31)) {
1285 #ifndef CONFIG_USER_ONLY
1286 /* Calculate when the counter will next overflow */
1287 uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1288 if (!(env->cp15.c9_pmcr & PMCRLC)) {
1289 remaining_cycles = (uint32_t)remaining_cycles;
1291 int64_t overflow_in = cycles_ns_per(remaining_cycles);
1293 if (overflow_in > 0) {
1294 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1295 overflow_in;
1296 ARMCPU *cpu = env_archcpu(env);
1297 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1299 #endif
1301 uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1302 if (env->cp15.c9_pmcr & PMCRD) {
1303 /* Increment once every 64 processor clock cycles */
1304 prev_cycles /= 64;
1306 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1310 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1313 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1314 uint64_t count = 0;
1315 if (event_supported(event)) {
1316 uint16_t event_idx = supported_event_map[event];
1317 count = pm_events[event_idx].get_count(env);
1320 if (pmu_counter_enabled(env, counter)) {
1321 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1323 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) {
1324 env->cp15.c9_pmovsr |= (1 << counter);
1325 pmu_update_irq(env);
1327 env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1329 env->cp15.c14_pmevcntr_delta[counter] = count;
1332 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1334 if (pmu_counter_enabled(env, counter)) {
1335 #ifndef CONFIG_USER_ONLY
1336 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1337 uint16_t event_idx = supported_event_map[event];
1338 uint64_t delta = UINT32_MAX -
1339 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1;
1340 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta);
1342 if (overflow_in > 0) {
1343 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1344 overflow_in;
1345 ARMCPU *cpu = env_archcpu(env);
1346 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1348 #endif
1350 env->cp15.c14_pmevcntr_delta[counter] -=
1351 env->cp15.c14_pmevcntr[counter];
1355 void pmu_op_start(CPUARMState *env)
1357 unsigned int i;
1358 pmccntr_op_start(env);
1359 for (i = 0; i < pmu_num_counters(env); i++) {
1360 pmevcntr_op_start(env, i);
1364 void pmu_op_finish(CPUARMState *env)
1366 unsigned int i;
1367 pmccntr_op_finish(env);
1368 for (i = 0; i < pmu_num_counters(env); i++) {
1369 pmevcntr_op_finish(env, i);
1373 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1375 pmu_op_start(&cpu->env);
1378 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1380 pmu_op_finish(&cpu->env);
1383 void arm_pmu_timer_cb(void *opaque)
1385 ARMCPU *cpu = opaque;
1388 * Update all the counter values based on the current underlying counts,
1389 * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1390 * has the effect of setting the cpu->pmu_timer to the next earliest time a
1391 * counter may expire.
1393 pmu_op_start(&cpu->env);
1394 pmu_op_finish(&cpu->env);
1397 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1398 uint64_t value)
1400 pmu_op_start(env);
1402 if (value & PMCRC) {
1403 /* The counter has been reset */
1404 env->cp15.c15_ccnt = 0;
1407 if (value & PMCRP) {
1408 unsigned int i;
1409 for (i = 0; i < pmu_num_counters(env); i++) {
1410 env->cp15.c14_pmevcntr[i] = 0;
1414 env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK;
1415 env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK);
1417 pmu_op_finish(env);
1420 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1421 uint64_t value)
1423 unsigned int i;
1424 for (i = 0; i < pmu_num_counters(env); i++) {
1425 /* Increment a counter's count iff: */
1426 if ((value & (1 << i)) && /* counter's bit is set */
1427 /* counter is enabled and not filtered */
1428 pmu_counter_enabled(env, i) &&
1429 /* counter is SW_INCR */
1430 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1431 pmevcntr_op_start(env, i);
1434 * Detect if this write causes an overflow since we can't predict
1435 * PMSWINC overflows like we can for other events
1437 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1439 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
1440 env->cp15.c9_pmovsr |= (1 << i);
1441 pmu_update_irq(env);
1444 env->cp15.c14_pmevcntr[i] = new_pmswinc;
1446 pmevcntr_op_finish(env, i);
1451 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1453 uint64_t ret;
1454 pmccntr_op_start(env);
1455 ret = env->cp15.c15_ccnt;
1456 pmccntr_op_finish(env);
1457 return ret;
1460 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1461 uint64_t value)
1463 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1464 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1465 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1466 * accessed.
1468 env->cp15.c9_pmselr = value & 0x1f;
1471 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1472 uint64_t value)
1474 pmccntr_op_start(env);
1475 env->cp15.c15_ccnt = value;
1476 pmccntr_op_finish(env);
1479 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1480 uint64_t value)
1482 uint64_t cur_val = pmccntr_read(env, NULL);
1484 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1487 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1488 uint64_t value)
1490 pmccntr_op_start(env);
1491 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1492 pmccntr_op_finish(env);
1495 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1496 uint64_t value)
1498 pmccntr_op_start(env);
1499 /* M is not accessible from AArch32 */
1500 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1501 (value & PMCCFILTR);
1502 pmccntr_op_finish(env);
1505 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1507 /* M is not visible in AArch32 */
1508 return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1511 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1512 uint64_t value)
1514 value &= pmu_counter_mask(env);
1515 env->cp15.c9_pmcnten |= value;
1518 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1519 uint64_t value)
1521 value &= pmu_counter_mask(env);
1522 env->cp15.c9_pmcnten &= ~value;
1525 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1526 uint64_t value)
1528 value &= pmu_counter_mask(env);
1529 env->cp15.c9_pmovsr &= ~value;
1530 pmu_update_irq(env);
1533 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1534 uint64_t value)
1536 value &= pmu_counter_mask(env);
1537 env->cp15.c9_pmovsr |= value;
1538 pmu_update_irq(env);
1541 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1542 uint64_t value, const uint8_t counter)
1544 if (counter == 31) {
1545 pmccfiltr_write(env, ri, value);
1546 } else if (counter < pmu_num_counters(env)) {
1547 pmevcntr_op_start(env, counter);
1550 * If this counter's event type is changing, store the current
1551 * underlying count for the new type in c14_pmevcntr_delta[counter] so
1552 * pmevcntr_op_finish has the correct baseline when it converts back to
1553 * a delta.
1555 uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1556 PMXEVTYPER_EVTCOUNT;
1557 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1558 if (old_event != new_event) {
1559 uint64_t count = 0;
1560 if (event_supported(new_event)) {
1561 uint16_t event_idx = supported_event_map[new_event];
1562 count = pm_events[event_idx].get_count(env);
1564 env->cp15.c14_pmevcntr_delta[counter] = count;
1567 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1568 pmevcntr_op_finish(env, counter);
1570 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1571 * PMSELR value is equal to or greater than the number of implemented
1572 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1576 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1577 const uint8_t counter)
1579 if (counter == 31) {
1580 return env->cp15.pmccfiltr_el0;
1581 } else if (counter < pmu_num_counters(env)) {
1582 return env->cp15.c14_pmevtyper[counter];
1583 } else {
1585 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1586 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1588 return 0;
1592 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1593 uint64_t value)
1595 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1596 pmevtyper_write(env, ri, value, counter);
1599 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1600 uint64_t value)
1602 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1603 env->cp15.c14_pmevtyper[counter] = value;
1606 * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1607 * pmu_op_finish calls when loading saved state for a migration. Because
1608 * we're potentially updating the type of event here, the value written to
1609 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1610 * different counter type. Therefore, we need to set this value to the
1611 * current count for the counter type we're writing so that pmu_op_finish
1612 * has the correct count for its calculation.
1614 uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1615 if (event_supported(event)) {
1616 uint16_t event_idx = supported_event_map[event];
1617 env->cp15.c14_pmevcntr_delta[counter] =
1618 pm_events[event_idx].get_count(env);
1622 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1624 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1625 return pmevtyper_read(env, ri, counter);
1628 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1629 uint64_t value)
1631 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1634 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1636 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1639 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1640 uint64_t value, uint8_t counter)
1642 if (counter < pmu_num_counters(env)) {
1643 pmevcntr_op_start(env, counter);
1644 env->cp15.c14_pmevcntr[counter] = value;
1645 pmevcntr_op_finish(env, counter);
1648 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1649 * are CONSTRAINED UNPREDICTABLE.
1653 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1654 uint8_t counter)
1656 if (counter < pmu_num_counters(env)) {
1657 uint64_t ret;
1658 pmevcntr_op_start(env, counter);
1659 ret = env->cp15.c14_pmevcntr[counter];
1660 pmevcntr_op_finish(env, counter);
1661 return ret;
1662 } else {
1663 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1664 * are CONSTRAINED UNPREDICTABLE. */
1665 return 0;
1669 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1670 uint64_t value)
1672 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1673 pmevcntr_write(env, ri, value, counter);
1676 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1678 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1679 return pmevcntr_read(env, ri, counter);
1682 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1683 uint64_t value)
1685 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1686 assert(counter < pmu_num_counters(env));
1687 env->cp15.c14_pmevcntr[counter] = value;
1688 pmevcntr_write(env, ri, value, counter);
1691 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1693 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1694 assert(counter < pmu_num_counters(env));
1695 return env->cp15.c14_pmevcntr[counter];
1698 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1699 uint64_t value)
1701 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1704 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1706 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1709 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1710 uint64_t value)
1712 if (arm_feature(env, ARM_FEATURE_V8)) {
1713 env->cp15.c9_pmuserenr = value & 0xf;
1714 } else {
1715 env->cp15.c9_pmuserenr = value & 1;
1719 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1720 uint64_t value)
1722 /* We have no event counters so only the C bit can be changed */
1723 value &= pmu_counter_mask(env);
1724 env->cp15.c9_pminten |= value;
1725 pmu_update_irq(env);
1728 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1729 uint64_t value)
1731 value &= pmu_counter_mask(env);
1732 env->cp15.c9_pminten &= ~value;
1733 pmu_update_irq(env);
1736 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1737 uint64_t value)
1739 /* Note that even though the AArch64 view of this register has bits
1740 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1741 * architectural requirements for bits which are RES0 only in some
1742 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1743 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1745 raw_write(env, ri, value & ~0x1FULL);
1748 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1750 /* Begin with base v8.0 state. */
1751 uint32_t valid_mask = 0x3fff;
1752 ARMCPU *cpu = env_archcpu(env);
1754 if (ri->state == ARM_CP_STATE_AA64) {
1755 if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1756 !cpu_isar_feature(aa64_aa32_el1, cpu)) {
1757 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */
1759 valid_mask &= ~SCR_NET;
1761 if (cpu_isar_feature(aa64_ras, cpu)) {
1762 valid_mask |= SCR_TERR;
1764 if (cpu_isar_feature(aa64_lor, cpu)) {
1765 valid_mask |= SCR_TLOR;
1767 if (cpu_isar_feature(aa64_pauth, cpu)) {
1768 valid_mask |= SCR_API | SCR_APK;
1770 if (cpu_isar_feature(aa64_sel2, cpu)) {
1771 valid_mask |= SCR_EEL2;
1773 if (cpu_isar_feature(aa64_mte, cpu)) {
1774 valid_mask |= SCR_ATA;
1776 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
1777 valid_mask |= SCR_ENSCXT;
1779 if (cpu_isar_feature(aa64_doublefault, cpu)) {
1780 valid_mask |= SCR_EASE | SCR_NMEA;
1782 } else {
1783 valid_mask &= ~(SCR_RW | SCR_ST);
1784 if (cpu_isar_feature(aa32_ras, cpu)) {
1785 valid_mask |= SCR_TERR;
1789 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1790 valid_mask &= ~SCR_HCE;
1792 /* On ARMv7, SMD (or SCD as it is called in v7) is only
1793 * supported if EL2 exists. The bit is UNK/SBZP when
1794 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1795 * when EL2 is unavailable.
1796 * On ARMv8, this bit is always available.
1798 if (arm_feature(env, ARM_FEATURE_V7) &&
1799 !arm_feature(env, ARM_FEATURE_V8)) {
1800 valid_mask &= ~SCR_SMD;
1804 /* Clear all-context RES0 bits. */
1805 value &= valid_mask;
1806 raw_write(env, ri, value);
1809 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1812 * scr_write will set the RES1 bits on an AArch64-only CPU.
1813 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise.
1815 scr_write(env, ri, 0);
1818 static CPAccessResult access_aa64_tid2(CPUARMState *env,
1819 const ARMCPRegInfo *ri,
1820 bool isread)
1822 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) {
1823 return CP_ACCESS_TRAP_EL2;
1826 return CP_ACCESS_OK;
1829 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1831 ARMCPU *cpu = env_archcpu(env);
1833 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1834 * bank
1836 uint32_t index = A32_BANKED_REG_GET(env, csselr,
1837 ri->secure & ARM_CP_SECSTATE_S);
1839 return cpu->ccsidr[index];
1842 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1843 uint64_t value)
1845 raw_write(env, ri, value & 0xf);
1848 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1850 CPUState *cs = env_cpu(env);
1851 bool el1 = arm_current_el(env) == 1;
1852 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0;
1853 uint64_t ret = 0;
1855 if (hcr_el2 & HCR_IMO) {
1856 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
1857 ret |= CPSR_I;
1859 } else {
1860 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1861 ret |= CPSR_I;
1865 if (hcr_el2 & HCR_FMO) {
1866 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
1867 ret |= CPSR_F;
1869 } else {
1870 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1871 ret |= CPSR_F;
1875 if (hcr_el2 & HCR_AMO) {
1876 if (cs->interrupt_request & CPU_INTERRUPT_VSERR) {
1877 ret |= CPSR_A;
1881 return ret;
1884 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
1885 bool isread)
1887 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
1888 return CP_ACCESS_TRAP_EL2;
1891 return CP_ACCESS_OK;
1894 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
1895 bool isread)
1897 if (arm_feature(env, ARM_FEATURE_V8)) {
1898 return access_aa64_tid1(env, ri, isread);
1901 return CP_ACCESS_OK;
1904 static const ARMCPRegInfo v7_cp_reginfo[] = {
1905 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1906 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1907 .access = PL1_W, .type = ARM_CP_NOP },
1908 /* Performance monitors are implementation defined in v7,
1909 * but with an ARM recommended set of registers, which we
1910 * follow.
1912 * Performance registers fall into three categories:
1913 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1914 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1915 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1916 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1917 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1919 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1920 .access = PL0_RW, .type = ARM_CP_ALIAS,
1921 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1922 .writefn = pmcntenset_write,
1923 .accessfn = pmreg_access,
1924 .raw_writefn = raw_write },
1925 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1926 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1927 .access = PL0_RW, .accessfn = pmreg_access,
1928 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1929 .writefn = pmcntenset_write, .raw_writefn = raw_write },
1930 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1931 .access = PL0_RW,
1932 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1933 .accessfn = pmreg_access,
1934 .writefn = pmcntenclr_write,
1935 .type = ARM_CP_ALIAS },
1936 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1937 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1938 .access = PL0_RW, .accessfn = pmreg_access,
1939 .type = ARM_CP_ALIAS,
1940 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1941 .writefn = pmcntenclr_write },
1942 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1943 .access = PL0_RW, .type = ARM_CP_IO,
1944 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
1945 .accessfn = pmreg_access,
1946 .writefn = pmovsr_write,
1947 .raw_writefn = raw_write },
1948 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
1949 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
1950 .access = PL0_RW, .accessfn = pmreg_access,
1951 .type = ARM_CP_ALIAS | ARM_CP_IO,
1952 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1953 .writefn = pmovsr_write,
1954 .raw_writefn = raw_write },
1955 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
1956 .access = PL0_W, .accessfn = pmreg_access_swinc,
1957 .type = ARM_CP_NO_RAW | ARM_CP_IO,
1958 .writefn = pmswinc_write },
1959 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
1960 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
1961 .access = PL0_W, .accessfn = pmreg_access_swinc,
1962 .type = ARM_CP_NO_RAW | ARM_CP_IO,
1963 .writefn = pmswinc_write },
1964 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
1965 .access = PL0_RW, .type = ARM_CP_ALIAS,
1966 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
1967 .accessfn = pmreg_access_selr, .writefn = pmselr_write,
1968 .raw_writefn = raw_write},
1969 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
1970 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
1971 .access = PL0_RW, .accessfn = pmreg_access_selr,
1972 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
1973 .writefn = pmselr_write, .raw_writefn = raw_write, },
1974 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
1975 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
1976 .readfn = pmccntr_read, .writefn = pmccntr_write32,
1977 .accessfn = pmreg_access_ccntr },
1978 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
1979 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
1980 .access = PL0_RW, .accessfn = pmreg_access_ccntr,
1981 .type = ARM_CP_IO,
1982 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
1983 .readfn = pmccntr_read, .writefn = pmccntr_write,
1984 .raw_readfn = raw_read, .raw_writefn = raw_write, },
1985 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
1986 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
1987 .access = PL0_RW, .accessfn = pmreg_access,
1988 .type = ARM_CP_ALIAS | ARM_CP_IO,
1989 .resetvalue = 0, },
1990 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
1991 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
1992 .writefn = pmccfiltr_write, .raw_writefn = raw_write,
1993 .access = PL0_RW, .accessfn = pmreg_access,
1994 .type = ARM_CP_IO,
1995 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
1996 .resetvalue = 0, },
1997 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
1998 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1999 .accessfn = pmreg_access,
2000 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2001 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2002 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2003 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2004 .accessfn = pmreg_access,
2005 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2006 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2007 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2008 .accessfn = pmreg_access_xevcntr,
2009 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2010 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2011 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2012 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2013 .accessfn = pmreg_access_xevcntr,
2014 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2015 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2016 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2017 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2018 .resetvalue = 0,
2019 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2020 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2021 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2022 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2023 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2024 .resetvalue = 0,
2025 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2026 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2027 .access = PL1_RW, .accessfn = access_tpm,
2028 .type = ARM_CP_ALIAS | ARM_CP_IO,
2029 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2030 .resetvalue = 0,
2031 .writefn = pmintenset_write, .raw_writefn = raw_write },
2032 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2033 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2034 .access = PL1_RW, .accessfn = access_tpm,
2035 .type = ARM_CP_IO,
2036 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2037 .writefn = pmintenset_write, .raw_writefn = raw_write,
2038 .resetvalue = 0x0 },
2039 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2040 .access = PL1_RW, .accessfn = access_tpm,
2041 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2042 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2043 .writefn = pmintenclr_write, },
2044 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2045 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2046 .access = PL1_RW, .accessfn = access_tpm,
2047 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2048 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2049 .writefn = pmintenclr_write },
2050 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2051 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2052 .access = PL1_R,
2053 .accessfn = access_aa64_tid2,
2054 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2055 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2056 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2057 .access = PL1_RW,
2058 .accessfn = access_aa64_tid2,
2059 .writefn = csselr_write, .resetvalue = 0,
2060 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2061 offsetof(CPUARMState, cp15.csselr_ns) } },
2062 /* Auxiliary ID register: this actually has an IMPDEF value but for now
2063 * just RAZ for all cores:
2065 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2066 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2067 .access = PL1_R, .type = ARM_CP_CONST,
2068 .accessfn = access_aa64_tid1,
2069 .resetvalue = 0 },
2070 /* Auxiliary fault status registers: these also are IMPDEF, and we
2071 * choose to RAZ/WI for all cores.
2073 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2074 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2075 .access = PL1_RW, .accessfn = access_tvm_trvm,
2076 .type = ARM_CP_CONST, .resetvalue = 0 },
2077 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2078 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2079 .access = PL1_RW, .accessfn = access_tvm_trvm,
2080 .type = ARM_CP_CONST, .resetvalue = 0 },
2081 /* MAIR can just read-as-written because we don't implement caches
2082 * and so don't need to care about memory attributes.
2084 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2085 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2086 .access = PL1_RW, .accessfn = access_tvm_trvm,
2087 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2088 .resetvalue = 0 },
2089 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2090 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2091 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2092 .resetvalue = 0 },
2093 /* For non-long-descriptor page tables these are PRRR and NMRR;
2094 * regardless they still act as reads-as-written for QEMU.
2096 /* MAIR0/1 are defined separately from their 64-bit counterpart which
2097 * allows them to assign the correct fieldoffset based on the endianness
2098 * handled in the field definitions.
2100 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2101 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2102 .access = PL1_RW, .accessfn = access_tvm_trvm,
2103 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2104 offsetof(CPUARMState, cp15.mair0_ns) },
2105 .resetfn = arm_cp_reset_ignore },
2106 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2107 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2108 .access = PL1_RW, .accessfn = access_tvm_trvm,
2109 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2110 offsetof(CPUARMState, cp15.mair1_ns) },
2111 .resetfn = arm_cp_reset_ignore },
2112 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2113 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2114 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2115 /* 32 bit ITLB invalidates */
2116 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2117 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2118 .writefn = tlbiall_write },
2119 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2120 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2121 .writefn = tlbimva_write },
2122 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2123 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2124 .writefn = tlbiasid_write },
2125 /* 32 bit DTLB invalidates */
2126 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2127 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2128 .writefn = tlbiall_write },
2129 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2130 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2131 .writefn = tlbimva_write },
2132 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2133 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2134 .writefn = tlbiasid_write },
2135 /* 32 bit TLB invalidates */
2136 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2137 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2138 .writefn = tlbiall_write },
2139 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2140 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2141 .writefn = tlbimva_write },
2142 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2143 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2144 .writefn = tlbiasid_write },
2145 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2146 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2147 .writefn = tlbimvaa_write },
2150 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2151 /* 32 bit TLB invalidates, Inner Shareable */
2152 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2153 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2154 .writefn = tlbiall_is_write },
2155 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2156 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2157 .writefn = tlbimva_is_write },
2158 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2159 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2160 .writefn = tlbiasid_is_write },
2161 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2162 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2163 .writefn = tlbimvaa_is_write },
2166 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2167 /* PMOVSSET is not implemented in v7 before v7ve */
2168 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2169 .access = PL0_RW, .accessfn = pmreg_access,
2170 .type = ARM_CP_ALIAS | ARM_CP_IO,
2171 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2172 .writefn = pmovsset_write,
2173 .raw_writefn = raw_write },
2174 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2175 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2176 .access = PL0_RW, .accessfn = pmreg_access,
2177 .type = ARM_CP_ALIAS | ARM_CP_IO,
2178 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2179 .writefn = pmovsset_write,
2180 .raw_writefn = raw_write },
2183 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2184 uint64_t value)
2186 value &= 1;
2187 env->teecr = value;
2190 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2191 bool isread)
2194 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE
2195 * at all, so we don't need to check whether we're v8A.
2197 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
2198 (env->cp15.hstr_el2 & HSTR_TTEE)) {
2199 return CP_ACCESS_TRAP_EL2;
2201 return CP_ACCESS_OK;
2204 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2205 bool isread)
2207 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2208 return CP_ACCESS_TRAP;
2210 return teecr_access(env, ri, isread);
2213 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2214 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2215 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2216 .resetvalue = 0,
2217 .writefn = teecr_write, .accessfn = teecr_access },
2218 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2219 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2220 .accessfn = teehbr_access, .resetvalue = 0 },
2223 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2224 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2225 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2226 .access = PL0_RW,
2227 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2228 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2229 .access = PL0_RW,
2230 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2231 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2232 .resetfn = arm_cp_reset_ignore },
2233 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2234 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2235 .access = PL0_R|PL1_W,
2236 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2237 .resetvalue = 0},
2238 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2239 .access = PL0_R|PL1_W,
2240 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2241 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2242 .resetfn = arm_cp_reset_ignore },
2243 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2244 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2245 .access = PL1_RW,
2246 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2247 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2248 .access = PL1_RW,
2249 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2250 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2251 .resetvalue = 0 },
2254 #ifndef CONFIG_USER_ONLY
2256 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2257 bool isread)
2259 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2260 * Writable only at the highest implemented exception level.
2262 int el = arm_current_el(env);
2263 uint64_t hcr;
2264 uint32_t cntkctl;
2266 switch (el) {
2267 case 0:
2268 hcr = arm_hcr_el2_eff(env);
2269 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2270 cntkctl = env->cp15.cnthctl_el2;
2271 } else {
2272 cntkctl = env->cp15.c14_cntkctl;
2274 if (!extract32(cntkctl, 0, 2)) {
2275 return CP_ACCESS_TRAP;
2277 break;
2278 case 1:
2279 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2280 arm_is_secure_below_el3(env)) {
2281 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2282 return CP_ACCESS_TRAP_UNCATEGORIZED;
2284 break;
2285 case 2:
2286 case 3:
2287 break;
2290 if (!isread && el < arm_highest_el(env)) {
2291 return CP_ACCESS_TRAP_UNCATEGORIZED;
2294 return CP_ACCESS_OK;
2297 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2298 bool isread)
2300 unsigned int cur_el = arm_current_el(env);
2301 bool has_el2 = arm_is_el2_enabled(env);
2302 uint64_t hcr = arm_hcr_el2_eff(env);
2304 switch (cur_el) {
2305 case 0:
2306 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2307 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2308 return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2309 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2312 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2313 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2314 return CP_ACCESS_TRAP;
2317 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */
2318 if (hcr & HCR_E2H) {
2319 if (timeridx == GTIMER_PHYS &&
2320 !extract32(env->cp15.cnthctl_el2, 10, 1)) {
2321 return CP_ACCESS_TRAP_EL2;
2323 } else {
2324 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2325 if (has_el2 && timeridx == GTIMER_PHYS &&
2326 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2327 return CP_ACCESS_TRAP_EL2;
2330 break;
2332 case 1:
2333 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2334 if (has_el2 && timeridx == GTIMER_PHYS &&
2335 (hcr & HCR_E2H
2336 ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2337 : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2338 return CP_ACCESS_TRAP_EL2;
2340 break;
2342 return CP_ACCESS_OK;
2345 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2346 bool isread)
2348 unsigned int cur_el = arm_current_el(env);
2349 bool has_el2 = arm_is_el2_enabled(env);
2350 uint64_t hcr = arm_hcr_el2_eff(env);
2352 switch (cur_el) {
2353 case 0:
2354 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2355 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2356 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2357 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2361 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2362 * EL0 if EL0[PV]TEN is zero.
2364 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2365 return CP_ACCESS_TRAP;
2367 /* fall through */
2369 case 1:
2370 if (has_el2 && timeridx == GTIMER_PHYS) {
2371 if (hcr & HCR_E2H) {
2372 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2373 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2374 return CP_ACCESS_TRAP_EL2;
2376 } else {
2377 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2378 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2379 return CP_ACCESS_TRAP_EL2;
2383 break;
2385 return CP_ACCESS_OK;
2388 static CPAccessResult gt_pct_access(CPUARMState *env,
2389 const ARMCPRegInfo *ri,
2390 bool isread)
2392 return gt_counter_access(env, GTIMER_PHYS, isread);
2395 static CPAccessResult gt_vct_access(CPUARMState *env,
2396 const ARMCPRegInfo *ri,
2397 bool isread)
2399 return gt_counter_access(env, GTIMER_VIRT, isread);
2402 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2403 bool isread)
2405 return gt_timer_access(env, GTIMER_PHYS, isread);
2408 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2409 bool isread)
2411 return gt_timer_access(env, GTIMER_VIRT, isread);
2414 static CPAccessResult gt_stimer_access(CPUARMState *env,
2415 const ARMCPRegInfo *ri,
2416 bool isread)
2418 /* The AArch64 register view of the secure physical timer is
2419 * always accessible from EL3, and configurably accessible from
2420 * Secure EL1.
2422 switch (arm_current_el(env)) {
2423 case 1:
2424 if (!arm_is_secure(env)) {
2425 return CP_ACCESS_TRAP;
2427 if (!(env->cp15.scr_el3 & SCR_ST)) {
2428 return CP_ACCESS_TRAP_EL3;
2430 return CP_ACCESS_OK;
2431 case 0:
2432 case 2:
2433 return CP_ACCESS_TRAP;
2434 case 3:
2435 return CP_ACCESS_OK;
2436 default:
2437 g_assert_not_reached();
2441 static uint64_t gt_get_countervalue(CPUARMState *env)
2443 ARMCPU *cpu = env_archcpu(env);
2445 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2448 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2450 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2452 if (gt->ctl & 1) {
2453 /* Timer enabled: calculate and set current ISTATUS, irq, and
2454 * reset timer to when ISTATUS next has to change
2456 uint64_t offset = timeridx == GTIMER_VIRT ?
2457 cpu->env.cp15.cntvoff_el2 : 0;
2458 uint64_t count = gt_get_countervalue(&cpu->env);
2459 /* Note that this must be unsigned 64 bit arithmetic: */
2460 int istatus = count - offset >= gt->cval;
2461 uint64_t nexttick;
2462 int irqstate;
2464 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2466 irqstate = (istatus && !(gt->ctl & 2));
2467 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2469 if (istatus) {
2470 /* Next transition is when count rolls back over to zero */
2471 nexttick = UINT64_MAX;
2472 } else {
2473 /* Next transition is when we hit cval */
2474 nexttick = gt->cval + offset;
2476 /* Note that the desired next expiry time might be beyond the
2477 * signed-64-bit range of a QEMUTimer -- in this case we just
2478 * set the timer for as far in the future as possible. When the
2479 * timer expires we will reset the timer for any remaining period.
2481 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2482 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2483 } else {
2484 timer_mod(cpu->gt_timer[timeridx], nexttick);
2486 trace_arm_gt_recalc(timeridx, irqstate, nexttick);
2487 } else {
2488 /* Timer disabled: ISTATUS and timer output always clear */
2489 gt->ctl &= ~4;
2490 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
2491 timer_del(cpu->gt_timer[timeridx]);
2492 trace_arm_gt_recalc_disabled(timeridx);
2496 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2497 int timeridx)
2499 ARMCPU *cpu = env_archcpu(env);
2501 timer_del(cpu->gt_timer[timeridx]);
2504 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2506 return gt_get_countervalue(env);
2509 static uint64_t gt_virt_cnt_offset(CPUARMState *env)
2511 uint64_t hcr;
2513 switch (arm_current_el(env)) {
2514 case 2:
2515 hcr = arm_hcr_el2_eff(env);
2516 if (hcr & HCR_E2H) {
2517 return 0;
2519 break;
2520 case 0:
2521 hcr = arm_hcr_el2_eff(env);
2522 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2523 return 0;
2525 break;
2528 return env->cp15.cntvoff_el2;
2531 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2533 return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
2536 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2537 int timeridx,
2538 uint64_t value)
2540 trace_arm_gt_cval_write(timeridx, value);
2541 env->cp15.c14_timer[timeridx].cval = value;
2542 gt_recalc_timer(env_archcpu(env), timeridx);
2545 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2546 int timeridx)
2548 uint64_t offset = 0;
2550 switch (timeridx) {
2551 case GTIMER_VIRT:
2552 case GTIMER_HYPVIRT:
2553 offset = gt_virt_cnt_offset(env);
2554 break;
2557 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2558 (gt_get_countervalue(env) - offset));
2561 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2562 int timeridx,
2563 uint64_t value)
2565 uint64_t offset = 0;
2567 switch (timeridx) {
2568 case GTIMER_VIRT:
2569 case GTIMER_HYPVIRT:
2570 offset = gt_virt_cnt_offset(env);
2571 break;
2574 trace_arm_gt_tval_write(timeridx, value);
2575 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2576 sextract64(value, 0, 32);
2577 gt_recalc_timer(env_archcpu(env), timeridx);
2580 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2581 int timeridx,
2582 uint64_t value)
2584 ARMCPU *cpu = env_archcpu(env);
2585 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2587 trace_arm_gt_ctl_write(timeridx, value);
2588 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2589 if ((oldval ^ value) & 1) {
2590 /* Enable toggled */
2591 gt_recalc_timer(cpu, timeridx);
2592 } else if ((oldval ^ value) & 2) {
2593 /* IMASK toggled: don't need to recalculate,
2594 * just set the interrupt line based on ISTATUS
2596 int irqstate = (oldval & 4) && !(value & 2);
2598 trace_arm_gt_imask_toggle(timeridx, irqstate);
2599 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2603 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2605 gt_timer_reset(env, ri, GTIMER_PHYS);
2608 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2609 uint64_t value)
2611 gt_cval_write(env, ri, GTIMER_PHYS, value);
2614 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2616 return gt_tval_read(env, ri, GTIMER_PHYS);
2619 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2620 uint64_t value)
2622 gt_tval_write(env, ri, GTIMER_PHYS, value);
2625 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2626 uint64_t value)
2628 gt_ctl_write(env, ri, GTIMER_PHYS, value);
2631 static int gt_phys_redir_timeridx(CPUARMState *env)
2633 switch (arm_mmu_idx(env)) {
2634 case ARMMMUIdx_E20_0:
2635 case ARMMMUIdx_E20_2:
2636 case ARMMMUIdx_E20_2_PAN:
2637 case ARMMMUIdx_SE20_0:
2638 case ARMMMUIdx_SE20_2:
2639 case ARMMMUIdx_SE20_2_PAN:
2640 return GTIMER_HYP;
2641 default:
2642 return GTIMER_PHYS;
2646 static int gt_virt_redir_timeridx(CPUARMState *env)
2648 switch (arm_mmu_idx(env)) {
2649 case ARMMMUIdx_E20_0:
2650 case ARMMMUIdx_E20_2:
2651 case ARMMMUIdx_E20_2_PAN:
2652 case ARMMMUIdx_SE20_0:
2653 case ARMMMUIdx_SE20_2:
2654 case ARMMMUIdx_SE20_2_PAN:
2655 return GTIMER_HYPVIRT;
2656 default:
2657 return GTIMER_VIRT;
2661 static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2662 const ARMCPRegInfo *ri)
2664 int timeridx = gt_phys_redir_timeridx(env);
2665 return env->cp15.c14_timer[timeridx].cval;
2668 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2669 uint64_t value)
2671 int timeridx = gt_phys_redir_timeridx(env);
2672 gt_cval_write(env, ri, timeridx, value);
2675 static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2676 const ARMCPRegInfo *ri)
2678 int timeridx = gt_phys_redir_timeridx(env);
2679 return gt_tval_read(env, ri, timeridx);
2682 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2683 uint64_t value)
2685 int timeridx = gt_phys_redir_timeridx(env);
2686 gt_tval_write(env, ri, timeridx, value);
2689 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2690 const ARMCPRegInfo *ri)
2692 int timeridx = gt_phys_redir_timeridx(env);
2693 return env->cp15.c14_timer[timeridx].ctl;
2696 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2697 uint64_t value)
2699 int timeridx = gt_phys_redir_timeridx(env);
2700 gt_ctl_write(env, ri, timeridx, value);
2703 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2705 gt_timer_reset(env, ri, GTIMER_VIRT);
2708 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2709 uint64_t value)
2711 gt_cval_write(env, ri, GTIMER_VIRT, value);
2714 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2716 return gt_tval_read(env, ri, GTIMER_VIRT);
2719 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2720 uint64_t value)
2722 gt_tval_write(env, ri, GTIMER_VIRT, value);
2725 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2726 uint64_t value)
2728 gt_ctl_write(env, ri, GTIMER_VIRT, value);
2731 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2732 uint64_t value)
2734 ARMCPU *cpu = env_archcpu(env);
2736 trace_arm_gt_cntvoff_write(value);
2737 raw_write(env, ri, value);
2738 gt_recalc_timer(cpu, GTIMER_VIRT);
2741 static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
2742 const ARMCPRegInfo *ri)
2744 int timeridx = gt_virt_redir_timeridx(env);
2745 return env->cp15.c14_timer[timeridx].cval;
2748 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2749 uint64_t value)
2751 int timeridx = gt_virt_redir_timeridx(env);
2752 gt_cval_write(env, ri, timeridx, value);
2755 static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
2756 const ARMCPRegInfo *ri)
2758 int timeridx = gt_virt_redir_timeridx(env);
2759 return gt_tval_read(env, ri, timeridx);
2762 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2763 uint64_t value)
2765 int timeridx = gt_virt_redir_timeridx(env);
2766 gt_tval_write(env, ri, timeridx, value);
2769 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
2770 const ARMCPRegInfo *ri)
2772 int timeridx = gt_virt_redir_timeridx(env);
2773 return env->cp15.c14_timer[timeridx].ctl;
2776 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2777 uint64_t value)
2779 int timeridx = gt_virt_redir_timeridx(env);
2780 gt_ctl_write(env, ri, timeridx, value);
2783 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2785 gt_timer_reset(env, ri, GTIMER_HYP);
2788 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2789 uint64_t value)
2791 gt_cval_write(env, ri, GTIMER_HYP, value);
2794 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2796 return gt_tval_read(env, ri, GTIMER_HYP);
2799 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2800 uint64_t value)
2802 gt_tval_write(env, ri, GTIMER_HYP, value);
2805 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2806 uint64_t value)
2808 gt_ctl_write(env, ri, GTIMER_HYP, value);
2811 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2813 gt_timer_reset(env, ri, GTIMER_SEC);
2816 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2817 uint64_t value)
2819 gt_cval_write(env, ri, GTIMER_SEC, value);
2822 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2824 return gt_tval_read(env, ri, GTIMER_SEC);
2827 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2828 uint64_t value)
2830 gt_tval_write(env, ri, GTIMER_SEC, value);
2833 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2834 uint64_t value)
2836 gt_ctl_write(env, ri, GTIMER_SEC, value);
2839 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2841 gt_timer_reset(env, ri, GTIMER_HYPVIRT);
2844 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2845 uint64_t value)
2847 gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
2850 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2852 return gt_tval_read(env, ri, GTIMER_HYPVIRT);
2855 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2856 uint64_t value)
2858 gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
2861 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2862 uint64_t value)
2864 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
2867 void arm_gt_ptimer_cb(void *opaque)
2869 ARMCPU *cpu = opaque;
2871 gt_recalc_timer(cpu, GTIMER_PHYS);
2874 void arm_gt_vtimer_cb(void *opaque)
2876 ARMCPU *cpu = opaque;
2878 gt_recalc_timer(cpu, GTIMER_VIRT);
2881 void arm_gt_htimer_cb(void *opaque)
2883 ARMCPU *cpu = opaque;
2885 gt_recalc_timer(cpu, GTIMER_HYP);
2888 void arm_gt_stimer_cb(void *opaque)
2890 ARMCPU *cpu = opaque;
2892 gt_recalc_timer(cpu, GTIMER_SEC);
2895 void arm_gt_hvtimer_cb(void *opaque)
2897 ARMCPU *cpu = opaque;
2899 gt_recalc_timer(cpu, GTIMER_HYPVIRT);
2902 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
2904 ARMCPU *cpu = env_archcpu(env);
2906 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
2909 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2910 /* Note that CNTFRQ is purely reads-as-written for the benefit
2911 * of software; writing it doesn't actually change the timer frequency.
2912 * Our reset value matches the fixed frequency we implement the timer at.
2914 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
2915 .type = ARM_CP_ALIAS,
2916 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2917 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
2919 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2920 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2921 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2922 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2923 .resetfn = arm_gt_cntfrq_reset,
2925 /* overall control: mostly access permissions */
2926 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
2927 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
2928 .access = PL1_RW,
2929 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
2930 .resetvalue = 0,
2932 /* per-timer control */
2933 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2934 .secure = ARM_CP_SECSTATE_NS,
2935 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2936 .accessfn = gt_ptimer_access,
2937 .fieldoffset = offsetoflow32(CPUARMState,
2938 cp15.c14_timer[GTIMER_PHYS].ctl),
2939 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
2940 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
2942 { .name = "CNTP_CTL_S",
2943 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2944 .secure = ARM_CP_SECSTATE_S,
2945 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2946 .accessfn = gt_ptimer_access,
2947 .fieldoffset = offsetoflow32(CPUARMState,
2948 cp15.c14_timer[GTIMER_SEC].ctl),
2949 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2951 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
2952 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
2953 .type = ARM_CP_IO, .access = PL0_RW,
2954 .accessfn = gt_ptimer_access,
2955 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
2956 .resetvalue = 0,
2957 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
2958 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
2960 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
2961 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2962 .accessfn = gt_vtimer_access,
2963 .fieldoffset = offsetoflow32(CPUARMState,
2964 cp15.c14_timer[GTIMER_VIRT].ctl),
2965 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
2966 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
2968 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
2969 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
2970 .type = ARM_CP_IO, .access = PL0_RW,
2971 .accessfn = gt_vtimer_access,
2972 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
2973 .resetvalue = 0,
2974 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
2975 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
2977 /* TimerValue views: a 32 bit downcounting view of the underlying state */
2978 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2979 .secure = ARM_CP_SECSTATE_NS,
2980 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2981 .accessfn = gt_ptimer_access,
2982 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
2984 { .name = "CNTP_TVAL_S",
2985 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2986 .secure = ARM_CP_SECSTATE_S,
2987 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2988 .accessfn = gt_ptimer_access,
2989 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
2991 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2992 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
2993 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2994 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
2995 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
2997 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
2998 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2999 .accessfn = gt_vtimer_access,
3000 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3002 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3003 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
3004 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3005 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
3006 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3008 /* The counter itself */
3009 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
3010 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3011 .accessfn = gt_pct_access,
3012 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3014 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3015 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
3016 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3017 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3019 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
3020 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3021 .accessfn = gt_vct_access,
3022 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3024 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3025 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3026 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3027 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3029 /* Comparison value, indicating when the timer goes off */
3030 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
3031 .secure = ARM_CP_SECSTATE_NS,
3032 .access = PL0_RW,
3033 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3034 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3035 .accessfn = gt_ptimer_access,
3036 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3037 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3039 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3040 .secure = ARM_CP_SECSTATE_S,
3041 .access = PL0_RW,
3042 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3043 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3044 .accessfn = gt_ptimer_access,
3045 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3047 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3048 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3049 .access = PL0_RW,
3050 .type = ARM_CP_IO,
3051 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3052 .resetvalue = 0, .accessfn = gt_ptimer_access,
3053 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3054 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3056 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3057 .access = PL0_RW,
3058 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3059 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3060 .accessfn = gt_vtimer_access,
3061 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3062 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3064 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3065 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3066 .access = PL0_RW,
3067 .type = ARM_CP_IO,
3068 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3069 .resetvalue = 0, .accessfn = gt_vtimer_access,
3070 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3071 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3073 /* Secure timer -- this is actually restricted to only EL3
3074 * and configurably Secure-EL1 via the accessfn.
3076 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3077 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3078 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3079 .accessfn = gt_stimer_access,
3080 .readfn = gt_sec_tval_read,
3081 .writefn = gt_sec_tval_write,
3082 .resetfn = gt_sec_timer_reset,
3084 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3085 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3086 .type = ARM_CP_IO, .access = PL1_RW,
3087 .accessfn = gt_stimer_access,
3088 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3089 .resetvalue = 0,
3090 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3092 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3093 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3094 .type = ARM_CP_IO, .access = PL1_RW,
3095 .accessfn = gt_stimer_access,
3096 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3097 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3101 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
3102 bool isread)
3104 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
3105 return CP_ACCESS_TRAP;
3107 return CP_ACCESS_OK;
3110 #else
3112 /* In user-mode most of the generic timer registers are inaccessible
3113 * however modern kernels (4.12+) allow access to cntvct_el0
3116 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3118 ARMCPU *cpu = env_archcpu(env);
3120 /* Currently we have no support for QEMUTimer in linux-user so we
3121 * can't call gt_get_countervalue(env), instead we directly
3122 * call the lower level functions.
3124 return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3127 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3128 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3129 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3130 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3131 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3132 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
3134 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3135 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3136 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3137 .readfn = gt_virt_cnt_read,
3141 #endif
3143 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3145 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3146 raw_write(env, ri, value);
3147 } else if (arm_feature(env, ARM_FEATURE_V7)) {
3148 raw_write(env, ri, value & 0xfffff6ff);
3149 } else {
3150 raw_write(env, ri, value & 0xfffff1ff);
3154 #ifndef CONFIG_USER_ONLY
3155 /* get_phys_addr() isn't present for user-mode-only targets */
3157 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3158 bool isread)
3160 if (ri->opc2 & 4) {
3161 /* The ATS12NSO* operations must trap to EL3 or EL2 if executed in
3162 * Secure EL1 (which can only happen if EL3 is AArch64).
3163 * They are simply UNDEF if executed from NS EL1.
3164 * They function normally from EL2 or EL3.
3166 if (arm_current_el(env) == 1) {
3167 if (arm_is_secure_below_el3(env)) {
3168 if (env->cp15.scr_el3 & SCR_EEL2) {
3169 return CP_ACCESS_TRAP_UNCATEGORIZED_EL2;
3171 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
3173 return CP_ACCESS_TRAP_UNCATEGORIZED;
3176 return CP_ACCESS_OK;
3179 #ifdef CONFIG_TCG
3180 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3181 MMUAccessType access_type, ARMMMUIdx mmu_idx)
3183 hwaddr phys_addr;
3184 target_ulong page_size;
3185 int prot;
3186 bool ret;
3187 uint64_t par64;
3188 bool format64 = false;
3189 MemTxAttrs attrs = {};
3190 ARMMMUFaultInfo fi = {};
3191 ARMCacheAttrs cacheattrs = {};
3193 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
3194 &prot, &page_size, &fi, &cacheattrs);
3197 * ATS operations only do S1 or S1+S2 translations, so we never
3198 * have to deal with the ARMCacheAttrs format for S2 only.
3200 assert(!cacheattrs.is_s2_format);
3202 if (ret) {
3204 * Some kinds of translation fault must cause exceptions rather
3205 * than being reported in the PAR.
3207 int current_el = arm_current_el(env);
3208 int target_el;
3209 uint32_t syn, fsr, fsc;
3210 bool take_exc = false;
3212 if (fi.s1ptw && current_el == 1
3213 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3215 * Synchronous stage 2 fault on an access made as part of the
3216 * translation table walk for AT S1E0* or AT S1E1* insn
3217 * executed from NS EL1. If this is a synchronous external abort
3218 * and SCR_EL3.EA == 1, then we take a synchronous external abort
3219 * to EL3. Otherwise the fault is taken as an exception to EL2,
3220 * and HPFAR_EL2 holds the faulting IPA.
3222 if (fi.type == ARMFault_SyncExternalOnWalk &&
3223 (env->cp15.scr_el3 & SCR_EA)) {
3224 target_el = 3;
3225 } else {
3226 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3227 if (arm_is_secure_below_el3(env) && fi.s1ns) {
3228 env->cp15.hpfar_el2 |= HPFAR_NS;
3230 target_el = 2;
3232 take_exc = true;
3233 } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3235 * Synchronous external aborts during a translation table walk
3236 * are taken as Data Abort exceptions.
3238 if (fi.stage2) {
3239 if (current_el == 3) {
3240 target_el = 3;
3241 } else {
3242 target_el = 2;
3244 } else {
3245 target_el = exception_target_el(env);
3247 take_exc = true;
3250 if (take_exc) {
3251 /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3252 if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3253 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3254 fsr = arm_fi_to_lfsc(&fi);
3255 fsc = extract32(fsr, 0, 6);
3256 } else {
3257 fsr = arm_fi_to_sfsc(&fi);
3258 fsc = 0x3f;
3261 * Report exception with ESR indicating a fault due to a
3262 * translation table walk for a cache maintenance instruction.
3264 syn = syn_data_abort_no_iss(current_el == target_el, 0,
3265 fi.ea, 1, fi.s1ptw, 1, fsc);
3266 env->exception.vaddress = value;
3267 env->exception.fsr = fsr;
3268 raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3272 if (is_a64(env)) {
3273 format64 = true;
3274 } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3276 * ATS1Cxx:
3277 * * TTBCR.EAE determines whether the result is returned using the
3278 * 32-bit or the 64-bit PAR format
3279 * * Instructions executed in Hyp mode always use the 64bit format
3281 * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3282 * * The Non-secure TTBCR.EAE bit is set to 1
3283 * * The implementation includes EL2, and the value of HCR.VM is 1
3285 * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3287 * ATS1Hx always uses the 64bit format.
3289 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3291 if (arm_feature(env, ARM_FEATURE_EL2)) {
3292 if (mmu_idx == ARMMMUIdx_E10_0 ||
3293 mmu_idx == ARMMMUIdx_E10_1 ||
3294 mmu_idx == ARMMMUIdx_E10_1_PAN) {
3295 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3296 } else {
3297 format64 |= arm_current_el(env) == 2;
3302 if (format64) {
3303 /* Create a 64-bit PAR */
3304 par64 = (1 << 11); /* LPAE bit always set */
3305 if (!ret) {
3306 par64 |= phys_addr & ~0xfffULL;
3307 if (!attrs.secure) {
3308 par64 |= (1 << 9); /* NS */
3310 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
3311 par64 |= cacheattrs.shareability << 7; /* SH */
3312 } else {
3313 uint32_t fsr = arm_fi_to_lfsc(&fi);
3315 par64 |= 1; /* F */
3316 par64 |= (fsr & 0x3f) << 1; /* FS */
3317 if (fi.stage2) {
3318 par64 |= (1 << 9); /* S */
3320 if (fi.s1ptw) {
3321 par64 |= (1 << 8); /* PTW */
3324 } else {
3325 /* fsr is a DFSR/IFSR value for the short descriptor
3326 * translation table format (with WnR always clear).
3327 * Convert it to a 32-bit PAR.
3329 if (!ret) {
3330 /* We do not set any attribute bits in the PAR */
3331 if (page_size == (1 << 24)
3332 && arm_feature(env, ARM_FEATURE_V7)) {
3333 par64 = (phys_addr & 0xff000000) | (1 << 1);
3334 } else {
3335 par64 = phys_addr & 0xfffff000;
3337 if (!attrs.secure) {
3338 par64 |= (1 << 9); /* NS */
3340 } else {
3341 uint32_t fsr = arm_fi_to_sfsc(&fi);
3343 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3344 ((fsr & 0xf) << 1) | 1;
3347 return par64;
3349 #endif /* CONFIG_TCG */
3351 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3353 #ifdef CONFIG_TCG
3354 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3355 uint64_t par64;
3356 ARMMMUIdx mmu_idx;
3357 int el = arm_current_el(env);
3358 bool secure = arm_is_secure_below_el3(env);
3360 switch (ri->opc2 & 6) {
3361 case 0:
3362 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3363 switch (el) {
3364 case 3:
3365 mmu_idx = ARMMMUIdx_SE3;
3366 break;
3367 case 2:
3368 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */
3369 /* fall through */
3370 case 1:
3371 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) {
3372 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN
3373 : ARMMMUIdx_Stage1_E1_PAN);
3374 } else {
3375 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1;
3377 break;
3378 default:
3379 g_assert_not_reached();
3381 break;
3382 case 2:
3383 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3384 switch (el) {
3385 case 3:
3386 mmu_idx = ARMMMUIdx_SE10_0;
3387 break;
3388 case 2:
3389 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */
3390 mmu_idx = ARMMMUIdx_Stage1_E0;
3391 break;
3392 case 1:
3393 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0;
3394 break;
3395 default:
3396 g_assert_not_reached();
3398 break;
3399 case 4:
3400 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3401 mmu_idx = ARMMMUIdx_E10_1;
3402 break;
3403 case 6:
3404 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3405 mmu_idx = ARMMMUIdx_E10_0;
3406 break;
3407 default:
3408 g_assert_not_reached();
3411 par64 = do_ats_write(env, value, access_type, mmu_idx);
3413 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3414 #else
3415 /* Handled by hardware accelerator. */
3416 g_assert_not_reached();
3417 #endif /* CONFIG_TCG */
3420 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3421 uint64_t value)
3423 #ifdef CONFIG_TCG
3424 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3425 uint64_t par64;
3427 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2);
3429 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3430 #else
3431 /* Handled by hardware accelerator. */
3432 g_assert_not_reached();
3433 #endif /* CONFIG_TCG */
3436 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3437 bool isread)
3439 if (arm_current_el(env) == 3 &&
3440 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) {
3441 return CP_ACCESS_TRAP;
3443 return CP_ACCESS_OK;
3446 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3447 uint64_t value)
3449 #ifdef CONFIG_TCG
3450 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3451 ARMMMUIdx mmu_idx;
3452 int secure = arm_is_secure_below_el3(env);
3454 switch (ri->opc2 & 6) {
3455 case 0:
3456 switch (ri->opc1) {
3457 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3458 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) {
3459 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN
3460 : ARMMMUIdx_Stage1_E1_PAN);
3461 } else {
3462 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1;
3464 break;
3465 case 4: /* AT S1E2R, AT S1E2W */
3466 mmu_idx = secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2;
3467 break;
3468 case 6: /* AT S1E3R, AT S1E3W */
3469 mmu_idx = ARMMMUIdx_SE3;
3470 break;
3471 default:
3472 g_assert_not_reached();
3474 break;
3475 case 2: /* AT S1E0R, AT S1E0W */
3476 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0;
3477 break;
3478 case 4: /* AT S12E1R, AT S12E1W */
3479 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1;
3480 break;
3481 case 6: /* AT S12E0R, AT S12E0W */
3482 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0;
3483 break;
3484 default:
3485 g_assert_not_reached();
3488 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
3489 #else
3490 /* Handled by hardware accelerator. */
3491 g_assert_not_reached();
3492 #endif /* CONFIG_TCG */
3494 #endif
3496 static const ARMCPRegInfo vapa_cp_reginfo[] = {
3497 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3498 .access = PL1_RW, .resetvalue = 0,
3499 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3500 offsetoflow32(CPUARMState, cp15.par_ns) },
3501 .writefn = par_write },
3502 #ifndef CONFIG_USER_ONLY
3503 /* This underdecoding is safe because the reginfo is NO_RAW. */
3504 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3505 .access = PL1_W, .accessfn = ats_access,
3506 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
3507 #endif
3510 /* Return basic MPU access permission bits. */
3511 static uint32_t simple_mpu_ap_bits(uint32_t val)
3513 uint32_t ret;
3514 uint32_t mask;
3515 int i;
3516 ret = 0;
3517 mask = 3;
3518 for (i = 0; i < 16; i += 2) {
3519 ret |= (val >> i) & mask;
3520 mask <<= 2;
3522 return ret;
3525 /* Pad basic MPU access permission bits to extended format. */
3526 static uint32_t extended_mpu_ap_bits(uint32_t val)
3528 uint32_t ret;
3529 uint32_t mask;
3530 int i;
3531 ret = 0;
3532 mask = 3;
3533 for (i = 0; i < 16; i += 2) {
3534 ret |= (val & mask) << i;
3535 mask <<= 2;
3537 return ret;
3540 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3541 uint64_t value)
3543 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3546 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3548 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3551 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3552 uint64_t value)
3554 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3557 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3559 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3562 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3564 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3566 if (!u32p) {
3567 return 0;
3570 u32p += env->pmsav7.rnr[M_REG_NS];
3571 return *u32p;
3574 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3575 uint64_t value)
3577 ARMCPU *cpu = env_archcpu(env);
3578 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3580 if (!u32p) {
3581 return;
3584 u32p += env->pmsav7.rnr[M_REG_NS];
3585 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3586 *u32p = value;
3589 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3590 uint64_t value)
3592 ARMCPU *cpu = env_archcpu(env);
3593 uint32_t nrgs = cpu->pmsav7_dregion;
3595 if (value >= nrgs) {
3596 qemu_log_mask(LOG_GUEST_ERROR,
3597 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3598 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3599 return;
3602 raw_write(env, ri, value);
3605 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
3606 /* Reset for all these registers is handled in arm_cpu_reset(),
3607 * because the PMSAv7 is also used by M-profile CPUs, which do
3608 * not register cpregs but still need the state to be reset.
3610 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3611 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3612 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
3613 .readfn = pmsav7_read, .writefn = pmsav7_write,
3614 .resetfn = arm_cp_reset_ignore },
3615 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
3616 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3617 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
3618 .readfn = pmsav7_read, .writefn = pmsav7_write,
3619 .resetfn = arm_cp_reset_ignore },
3620 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
3621 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3622 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
3623 .readfn = pmsav7_read, .writefn = pmsav7_write,
3624 .resetfn = arm_cp_reset_ignore },
3625 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
3626 .access = PL1_RW,
3627 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
3628 .writefn = pmsav7_rgnr_write,
3629 .resetfn = arm_cp_reset_ignore },
3632 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
3633 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3634 .access = PL1_RW, .type = ARM_CP_ALIAS,
3635 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3636 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
3637 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3638 .access = PL1_RW, .type = ARM_CP_ALIAS,
3639 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3640 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
3641 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
3642 .access = PL1_RW,
3643 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3644 .resetvalue = 0, },
3645 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
3646 .access = PL1_RW,
3647 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3648 .resetvalue = 0, },
3649 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
3650 .access = PL1_RW,
3651 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
3652 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
3653 .access = PL1_RW,
3654 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
3655 /* Protection region base and size registers */
3656 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
3657 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3658 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
3659 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
3660 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3661 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
3662 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
3663 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3664 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
3665 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
3666 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3667 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
3668 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
3669 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3670 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
3671 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
3672 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3673 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
3674 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
3675 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3676 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
3677 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
3678 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3679 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
3682 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
3683 uint64_t value)
3685 TCR *tcr = raw_ptr(env, ri);
3686 int maskshift = extract32(value, 0, 3);
3688 if (!arm_feature(env, ARM_FEATURE_V8)) {
3689 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
3690 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
3691 * using Long-desciptor translation table format */
3692 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
3693 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
3694 /* In an implementation that includes the Security Extensions
3695 * TTBCR has additional fields PD0 [4] and PD1 [5] for
3696 * Short-descriptor translation table format.
3698 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
3699 } else {
3700 value &= TTBCR_N;
3704 /* Update the masks corresponding to the TCR bank being written
3705 * Note that we always calculate mask and base_mask, but
3706 * they are only used for short-descriptor tables (ie if EAE is 0);
3707 * for long-descriptor tables the TCR fields are used differently
3708 * and the mask and base_mask values are meaningless.
3710 tcr->raw_tcr = value;
3711 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
3712 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
3715 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3716 uint64_t value)
3718 ARMCPU *cpu = env_archcpu(env);
3719 TCR *tcr = raw_ptr(env, ri);
3721 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3722 /* With LPAE the TTBCR could result in a change of ASID
3723 * via the TTBCR.A1 bit, so do a TLB flush.
3725 tlb_flush(CPU(cpu));
3727 /* Preserve the high half of TCR_EL1, set via TTBCR2. */
3728 value = deposit64(tcr->raw_tcr, 0, 32, value);
3729 vmsa_ttbcr_raw_write(env, ri, value);
3732 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3734 TCR *tcr = raw_ptr(env, ri);
3736 /* Reset both the TCR as well as the masks corresponding to the bank of
3737 * the TCR being reset.
3739 tcr->raw_tcr = 0;
3740 tcr->mask = 0;
3741 tcr->base_mask = 0xffffc000u;
3744 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
3745 uint64_t value)
3747 ARMCPU *cpu = env_archcpu(env);
3748 TCR *tcr = raw_ptr(env, ri);
3750 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
3751 tlb_flush(CPU(cpu));
3752 tcr->raw_tcr = value;
3755 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3756 uint64_t value)
3758 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */
3759 if (cpreg_field_is_64bit(ri) &&
3760 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
3761 ARMCPU *cpu = env_archcpu(env);
3762 tlb_flush(CPU(cpu));
3764 raw_write(env, ri, value);
3767 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3768 uint64_t value)
3771 * If we are running with E2&0 regime, then an ASID is active.
3772 * Flush if that might be changing. Note we're not checking
3773 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
3774 * holds the active ASID, only checking the field that might.
3776 if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
3777 (arm_hcr_el2_eff(env) & HCR_E2H)) {
3778 uint16_t mask = ARMMMUIdxBit_E20_2 |
3779 ARMMMUIdxBit_E20_2_PAN |
3780 ARMMMUIdxBit_E20_0;
3782 if (arm_is_secure_below_el3(env)) {
3783 mask >>= ARM_MMU_IDX_A_NS;
3786 tlb_flush_by_mmuidx(env_cpu(env), mask);
3788 raw_write(env, ri, value);
3791 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3792 uint64_t value)
3794 ARMCPU *cpu = env_archcpu(env);
3795 CPUState *cs = CPU(cpu);
3798 * A change in VMID to the stage2 page table (Stage2) invalidates
3799 * the combined stage 1&2 tlbs (EL10_1 and EL10_0).
3801 if (raw_read(env, ri) != value) {
3802 uint16_t mask = ARMMMUIdxBit_E10_1 |
3803 ARMMMUIdxBit_E10_1_PAN |
3804 ARMMMUIdxBit_E10_0;
3806 if (arm_is_secure_below_el3(env)) {
3807 mask >>= ARM_MMU_IDX_A_NS;
3810 tlb_flush_by_mmuidx(cs, mask);
3811 raw_write(env, ri, value);
3815 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
3816 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3817 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
3818 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
3819 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
3820 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3821 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
3822 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
3823 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
3824 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
3825 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
3826 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
3827 offsetof(CPUARMState, cp15.dfar_ns) } },
3828 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
3829 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
3830 .access = PL1_RW, .accessfn = access_tvm_trvm,
3831 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
3832 .resetvalue = 0, },
3835 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
3836 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
3837 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
3838 .access = PL1_RW, .accessfn = access_tvm_trvm,
3839 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
3840 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
3841 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
3842 .access = PL1_RW, .accessfn = access_tvm_trvm,
3843 .writefn = vmsa_ttbr_write, .resetvalue = 0,
3844 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
3845 offsetof(CPUARMState, cp15.ttbr0_ns) } },
3846 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
3847 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
3848 .access = PL1_RW, .accessfn = access_tvm_trvm,
3849 .writefn = vmsa_ttbr_write, .resetvalue = 0,
3850 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
3851 offsetof(CPUARMState, cp15.ttbr1_ns) } },
3852 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
3853 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3854 .access = PL1_RW, .accessfn = access_tvm_trvm,
3855 .writefn = vmsa_tcr_el12_write,
3856 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
3857 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
3858 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3859 .access = PL1_RW, .accessfn = access_tvm_trvm,
3860 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
3861 .raw_writefn = vmsa_ttbcr_raw_write,
3862 /* No offsetoflow32 -- pass the entire TCR to writefn/raw_writefn. */
3863 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.tcr_el[3]),
3864 offsetof(CPUARMState, cp15.tcr_el[1])} },
3867 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
3868 * qemu tlbs nor adjusting cached masks.
3870 static const ARMCPRegInfo ttbcr2_reginfo = {
3871 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
3872 .access = PL1_RW, .accessfn = access_tvm_trvm,
3873 .type = ARM_CP_ALIAS,
3874 .bank_fieldoffsets = {
3875 offsetofhigh32(CPUARMState, cp15.tcr_el[3].raw_tcr),
3876 offsetofhigh32(CPUARMState, cp15.tcr_el[1].raw_tcr),
3880 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
3881 uint64_t value)
3883 env->cp15.c15_ticonfig = value & 0xe7;
3884 /* The OS_TYPE bit in this register changes the reported CPUID! */
3885 env->cp15.c0_cpuid = (value & (1 << 5)) ?
3886 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
3889 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
3890 uint64_t value)
3892 env->cp15.c15_threadid = value & 0xffff;
3895 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
3896 uint64_t value)
3898 /* Wait-for-interrupt (deprecated) */
3899 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
3902 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
3903 uint64_t value)
3905 /* On OMAP there are registers indicating the max/min index of dcache lines
3906 * containing a dirty line; cache flush operations have to reset these.
3908 env->cp15.c15_i_max = 0x000;
3909 env->cp15.c15_i_min = 0xff0;
3912 static const ARMCPRegInfo omap_cp_reginfo[] = {
3913 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
3914 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
3915 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
3916 .resetvalue = 0, },
3917 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
3918 .access = PL1_RW, .type = ARM_CP_NOP },
3919 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
3920 .access = PL1_RW,
3921 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
3922 .writefn = omap_ticonfig_write },
3923 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
3924 .access = PL1_RW,
3925 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
3926 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
3927 .access = PL1_RW, .resetvalue = 0xff0,
3928 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
3929 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
3930 .access = PL1_RW,
3931 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
3932 .writefn = omap_threadid_write },
3933 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
3934 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3935 .type = ARM_CP_NO_RAW,
3936 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
3937 /* TODO: Peripheral port remap register:
3938 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
3939 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
3940 * when MMU is off.
3942 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
3943 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
3944 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
3945 .writefn = omap_cachemaint_write },
3946 { .name = "C9", .cp = 15, .crn = 9,
3947 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
3948 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
3951 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3952 uint64_t value)
3954 env->cp15.c15_cpar = value & 0x3fff;
3957 static const ARMCPRegInfo xscale_cp_reginfo[] = {
3958 { .name = "XSCALE_CPAR",
3959 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3960 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
3961 .writefn = xscale_cpar_write, },
3962 { .name = "XSCALE_AUXCR",
3963 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
3964 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
3965 .resetvalue = 0, },
3966 /* XScale specific cache-lockdown: since we have no cache we NOP these
3967 * and hope the guest does not really rely on cache behaviour.
3969 { .name = "XSCALE_LOCK_ICACHE_LINE",
3970 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
3971 .access = PL1_W, .type = ARM_CP_NOP },
3972 { .name = "XSCALE_UNLOCK_ICACHE",
3973 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
3974 .access = PL1_W, .type = ARM_CP_NOP },
3975 { .name = "XSCALE_DCACHE_LOCK",
3976 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
3977 .access = PL1_RW, .type = ARM_CP_NOP },
3978 { .name = "XSCALE_UNLOCK_DCACHE",
3979 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
3980 .access = PL1_W, .type = ARM_CP_NOP },
3983 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
3984 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
3985 * implementation of this implementation-defined space.
3986 * Ideally this should eventually disappear in favour of actually
3987 * implementing the correct behaviour for all cores.
3989 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
3990 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3991 .access = PL1_RW,
3992 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
3993 .resetvalue = 0 },
3996 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
3997 /* Cache status: RAZ because we have no cache so it's always clean */
3998 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
3999 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4000 .resetvalue = 0 },
4003 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
4004 /* We never have a a block transfer operation in progress */
4005 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
4006 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4007 .resetvalue = 0 },
4008 /* The cache ops themselves: these all NOP for QEMU */
4009 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
4010 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4011 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
4012 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4013 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
4014 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4015 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
4016 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4017 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
4018 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4019 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
4020 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4023 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
4024 /* The cache test-and-clean instructions always return (1 << 30)
4025 * to indicate that there are no dirty cache lines.
4027 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
4028 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4029 .resetvalue = (1 << 30) },
4030 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
4031 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4032 .resetvalue = (1 << 30) },
4035 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4036 /* Ignore ReadBuffer accesses */
4037 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4038 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4039 .access = PL1_RW, .resetvalue = 0,
4040 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
4043 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4045 unsigned int cur_el = arm_current_el(env);
4047 if (arm_is_el2_enabled(env) && cur_el == 1) {
4048 return env->cp15.vpidr_el2;
4050 return raw_read(env, ri);
4053 static uint64_t mpidr_read_val(CPUARMState *env)
4055 ARMCPU *cpu = env_archcpu(env);
4056 uint64_t mpidr = cpu->mp_affinity;
4058 if (arm_feature(env, ARM_FEATURE_V7MP)) {
4059 mpidr |= (1U << 31);
4060 /* Cores which are uniprocessor (non-coherent)
4061 * but still implement the MP extensions set
4062 * bit 30. (For instance, Cortex-R5).
4064 if (cpu->mp_is_up) {
4065 mpidr |= (1u << 30);
4068 return mpidr;
4071 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4073 unsigned int cur_el = arm_current_el(env);
4075 if (arm_is_el2_enabled(env) && cur_el == 1) {
4076 return env->cp15.vmpidr_el2;
4078 return mpidr_read_val(env);
4081 static const ARMCPRegInfo lpae_cp_reginfo[] = {
4082 /* NOP AMAIR0/1 */
4083 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4084 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4085 .access = PL1_RW, .accessfn = access_tvm_trvm,
4086 .type = ARM_CP_CONST, .resetvalue = 0 },
4087 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4088 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4089 .access = PL1_RW, .accessfn = access_tvm_trvm,
4090 .type = ARM_CP_CONST, .resetvalue = 0 },
4091 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4092 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4093 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4094 offsetof(CPUARMState, cp15.par_ns)} },
4095 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4096 .access = PL1_RW, .accessfn = access_tvm_trvm,
4097 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4098 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4099 offsetof(CPUARMState, cp15.ttbr0_ns) },
4100 .writefn = vmsa_ttbr_write, },
4101 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4102 .access = PL1_RW, .accessfn = access_tvm_trvm,
4103 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4104 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4105 offsetof(CPUARMState, cp15.ttbr1_ns) },
4106 .writefn = vmsa_ttbr_write, },
4109 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4111 return vfp_get_fpcr(env);
4114 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4115 uint64_t value)
4117 vfp_set_fpcr(env, value);
4120 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4122 return vfp_get_fpsr(env);
4125 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4126 uint64_t value)
4128 vfp_set_fpsr(env, value);
4131 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4132 bool isread)
4134 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4135 return CP_ACCESS_TRAP;
4137 return CP_ACCESS_OK;
4140 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4141 uint64_t value)
4143 env->daif = value & PSTATE_DAIF;
4146 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4148 return env->pstate & PSTATE_PAN;
4151 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4152 uint64_t value)
4154 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4157 static const ARMCPRegInfo pan_reginfo = {
4158 .name = "PAN", .state = ARM_CP_STATE_AA64,
4159 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4160 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4161 .readfn = aa64_pan_read, .writefn = aa64_pan_write
4164 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4166 return env->pstate & PSTATE_UAO;
4169 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4170 uint64_t value)
4172 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4175 static const ARMCPRegInfo uao_reginfo = {
4176 .name = "UAO", .state = ARM_CP_STATE_AA64,
4177 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4178 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4179 .readfn = aa64_uao_read, .writefn = aa64_uao_write
4182 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri)
4184 return env->pstate & PSTATE_DIT;
4187 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri,
4188 uint64_t value)
4190 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT);
4193 static const ARMCPRegInfo dit_reginfo = {
4194 .name = "DIT", .state = ARM_CP_STATE_AA64,
4195 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5,
4196 .type = ARM_CP_NO_RAW, .access = PL0_RW,
4197 .readfn = aa64_dit_read, .writefn = aa64_dit_write
4200 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri)
4202 return env->pstate & PSTATE_SSBS;
4205 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
4206 uint64_t value)
4208 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS);
4211 static const ARMCPRegInfo ssbs_reginfo = {
4212 .name = "SSBS", .state = ARM_CP_STATE_AA64,
4213 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6,
4214 .type = ARM_CP_NO_RAW, .access = PL0_RW,
4215 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write
4218 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
4219 const ARMCPRegInfo *ri,
4220 bool isread)
4222 /* Cache invalidate/clean to Point of Coherency or Persistence... */
4223 switch (arm_current_el(env)) {
4224 case 0:
4225 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4226 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4227 return CP_ACCESS_TRAP;
4229 /* fall through */
4230 case 1:
4231 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */
4232 if (arm_hcr_el2_eff(env) & HCR_TPCP) {
4233 return CP_ACCESS_TRAP_EL2;
4235 break;
4237 return CP_ACCESS_OK;
4240 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env,
4241 const ARMCPRegInfo *ri,
4242 bool isread)
4244 /* Cache invalidate/clean to Point of Unification... */
4245 switch (arm_current_el(env)) {
4246 case 0:
4247 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4248 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4249 return CP_ACCESS_TRAP;
4251 /* fall through */
4252 case 1:
4253 /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set. */
4254 if (arm_hcr_el2_eff(env) & HCR_TPU) {
4255 return CP_ACCESS_TRAP_EL2;
4257 break;
4259 return CP_ACCESS_OK;
4262 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4263 * Page D4-1736 (DDI0487A.b)
4266 static int vae1_tlbmask(CPUARMState *env)
4268 uint64_t hcr = arm_hcr_el2_eff(env);
4269 uint16_t mask;
4271 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4272 mask = ARMMMUIdxBit_E20_2 |
4273 ARMMMUIdxBit_E20_2_PAN |
4274 ARMMMUIdxBit_E20_0;
4275 } else {
4276 mask = ARMMMUIdxBit_E10_1 |
4277 ARMMMUIdxBit_E10_1_PAN |
4278 ARMMMUIdxBit_E10_0;
4281 if (arm_is_secure_below_el3(env)) {
4282 mask >>= ARM_MMU_IDX_A_NS;
4285 return mask;
4288 /* Return 56 if TBI is enabled, 64 otherwise. */
4289 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx,
4290 uint64_t addr)
4292 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
4293 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
4294 int select = extract64(addr, 55, 1);
4296 return (tbi >> select) & 1 ? 56 : 64;
4299 static int vae1_tlbbits(CPUARMState *env, uint64_t addr)
4301 uint64_t hcr = arm_hcr_el2_eff(env);
4302 ARMMMUIdx mmu_idx;
4304 /* Only the regime of the mmu_idx below is significant. */
4305 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4306 mmu_idx = ARMMMUIdx_E20_0;
4307 } else {
4308 mmu_idx = ARMMMUIdx_E10_0;
4311 if (arm_is_secure_below_el3(env)) {
4312 mmu_idx &= ~ARM_MMU_IDX_A_NS;
4315 return tlbbits_for_regime(env, mmu_idx, addr);
4318 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4319 uint64_t value)
4321 CPUState *cs = env_cpu(env);
4322 int mask = vae1_tlbmask(env);
4324 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4327 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4328 uint64_t value)
4330 CPUState *cs = env_cpu(env);
4331 int mask = vae1_tlbmask(env);
4333 if (tlb_force_broadcast(env)) {
4334 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4335 } else {
4336 tlb_flush_by_mmuidx(cs, mask);
4340 static int alle1_tlbmask(CPUARMState *env)
4343 * Note that the 'ALL' scope must invalidate both stage 1 and
4344 * stage 2 translations, whereas most other scopes only invalidate
4345 * stage 1 translations.
4347 if (arm_is_secure_below_el3(env)) {
4348 return ARMMMUIdxBit_SE10_1 |
4349 ARMMMUIdxBit_SE10_1_PAN |
4350 ARMMMUIdxBit_SE10_0;
4351 } else {
4352 return ARMMMUIdxBit_E10_1 |
4353 ARMMMUIdxBit_E10_1_PAN |
4354 ARMMMUIdxBit_E10_0;
4358 static int e2_tlbmask(CPUARMState *env)
4360 if (arm_is_secure_below_el3(env)) {
4361 return ARMMMUIdxBit_SE20_0 |
4362 ARMMMUIdxBit_SE20_2 |
4363 ARMMMUIdxBit_SE20_2_PAN |
4364 ARMMMUIdxBit_SE2;
4365 } else {
4366 return ARMMMUIdxBit_E20_0 |
4367 ARMMMUIdxBit_E20_2 |
4368 ARMMMUIdxBit_E20_2_PAN |
4369 ARMMMUIdxBit_E2;
4373 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4374 uint64_t value)
4376 CPUState *cs = env_cpu(env);
4377 int mask = alle1_tlbmask(env);
4379 tlb_flush_by_mmuidx(cs, mask);
4382 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4383 uint64_t value)
4385 CPUState *cs = env_cpu(env);
4386 int mask = e2_tlbmask(env);
4388 tlb_flush_by_mmuidx(cs, mask);
4391 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4392 uint64_t value)
4394 ARMCPU *cpu = env_archcpu(env);
4395 CPUState *cs = CPU(cpu);
4397 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3);
4400 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4401 uint64_t value)
4403 CPUState *cs = env_cpu(env);
4404 int mask = alle1_tlbmask(env);
4406 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4409 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4410 uint64_t value)
4412 CPUState *cs = env_cpu(env);
4413 int mask = e2_tlbmask(env);
4415 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4418 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4419 uint64_t value)
4421 CPUState *cs = env_cpu(env);
4423 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3);
4426 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4427 uint64_t value)
4429 /* Invalidate by VA, EL2
4430 * Currently handles both VAE2 and VALE2, since we don't support
4431 * flush-last-level-only.
4433 CPUState *cs = env_cpu(env);
4434 int mask = e2_tlbmask(env);
4435 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4437 tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4440 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4441 uint64_t value)
4443 /* Invalidate by VA, EL3
4444 * Currently handles both VAE3 and VALE3, since we don't support
4445 * flush-last-level-only.
4447 ARMCPU *cpu = env_archcpu(env);
4448 CPUState *cs = CPU(cpu);
4449 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4451 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3);
4454 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4455 uint64_t value)
4457 CPUState *cs = env_cpu(env);
4458 int mask = vae1_tlbmask(env);
4459 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4460 int bits = vae1_tlbbits(env, pageaddr);
4462 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4465 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4466 uint64_t value)
4468 /* Invalidate by VA, EL1&0 (AArch64 version).
4469 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4470 * since we don't support flush-for-specific-ASID-only or
4471 * flush-last-level-only.
4473 CPUState *cs = env_cpu(env);
4474 int mask = vae1_tlbmask(env);
4475 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4476 int bits = vae1_tlbbits(env, pageaddr);
4478 if (tlb_force_broadcast(env)) {
4479 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4480 } else {
4481 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
4485 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4486 uint64_t value)
4488 CPUState *cs = env_cpu(env);
4489 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4490 bool secure = arm_is_secure_below_el3(env);
4491 int mask = secure ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2;
4492 int bits = tlbbits_for_regime(env, secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2,
4493 pageaddr);
4495 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4498 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4499 uint64_t value)
4501 CPUState *cs = env_cpu(env);
4502 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4503 int bits = tlbbits_for_regime(env, ARMMMUIdx_SE3, pageaddr);
4505 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
4506 ARMMMUIdxBit_SE3, bits);
4509 #ifdef TARGET_AARCH64
4510 typedef struct {
4511 uint64_t base;
4512 uint64_t length;
4513 } TLBIRange;
4515 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx,
4516 uint64_t value)
4518 unsigned int page_size_granule, page_shift, num, scale, exponent;
4519 /* Extract one bit to represent the va selector in use. */
4520 uint64_t select = sextract64(value, 36, 1);
4521 ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true);
4522 TLBIRange ret = { };
4524 page_size_granule = extract64(value, 46, 2);
4526 /* The granule encoded in value must match the granule in use. */
4527 if (page_size_granule != (param.using64k ? 3 : param.using16k ? 2 : 1)) {
4528 qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n",
4529 page_size_granule);
4530 return ret;
4533 page_shift = (page_size_granule - 1) * 2 + 12;
4534 num = extract64(value, 39, 5);
4535 scale = extract64(value, 44, 2);
4536 exponent = (5 * scale) + 1;
4538 ret.length = (num + 1) << (exponent + page_shift);
4540 if (param.select) {
4541 ret.base = sextract64(value, 0, 37);
4542 } else {
4543 ret.base = extract64(value, 0, 37);
4545 if (param.ds) {
4547 * With DS=1, BaseADDR is always shifted 16 so that it is able
4548 * to address all 52 va bits. The input address is perforce
4549 * aligned on a 64k boundary regardless of translation granule.
4551 page_shift = 16;
4553 ret.base <<= page_shift;
4555 return ret;
4558 static void do_rvae_write(CPUARMState *env, uint64_t value,
4559 int idxmap, bool synced)
4561 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap);
4562 TLBIRange range;
4563 int bits;
4565 range = tlbi_aa64_get_range(env, one_idx, value);
4566 bits = tlbbits_for_regime(env, one_idx, range.base);
4568 if (synced) {
4569 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env),
4570 range.base,
4571 range.length,
4572 idxmap,
4573 bits);
4574 } else {
4575 tlb_flush_range_by_mmuidx(env_cpu(env), range.base,
4576 range.length, idxmap, bits);
4580 static void tlbi_aa64_rvae1_write(CPUARMState *env,
4581 const ARMCPRegInfo *ri,
4582 uint64_t value)
4585 * Invalidate by VA range, EL1&0.
4586 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1,
4587 * since we don't support flush-for-specific-ASID-only or
4588 * flush-last-level-only.
4591 do_rvae_write(env, value, vae1_tlbmask(env),
4592 tlb_force_broadcast(env));
4595 static void tlbi_aa64_rvae1is_write(CPUARMState *env,
4596 const ARMCPRegInfo *ri,
4597 uint64_t value)
4600 * Invalidate by VA range, Inner/Outer Shareable EL1&0.
4601 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS,
4602 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support
4603 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer
4604 * shareable specific flushes.
4607 do_rvae_write(env, value, vae1_tlbmask(env), true);
4610 static int vae2_tlbmask(CPUARMState *env)
4612 return (arm_is_secure_below_el3(env)
4613 ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2);
4616 static void tlbi_aa64_rvae2_write(CPUARMState *env,
4617 const ARMCPRegInfo *ri,
4618 uint64_t value)
4621 * Invalidate by VA range, EL2.
4622 * Currently handles all of RVAE2 and RVALE2,
4623 * since we don't support flush-for-specific-ASID-only or
4624 * flush-last-level-only.
4627 do_rvae_write(env, value, vae2_tlbmask(env),
4628 tlb_force_broadcast(env));
4633 static void tlbi_aa64_rvae2is_write(CPUARMState *env,
4634 const ARMCPRegInfo *ri,
4635 uint64_t value)
4638 * Invalidate by VA range, Inner/Outer Shareable, EL2.
4639 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS,
4640 * since we don't support flush-for-specific-ASID-only,
4641 * flush-last-level-only or inner/outer shareable specific flushes.
4644 do_rvae_write(env, value, vae2_tlbmask(env), true);
4648 static void tlbi_aa64_rvae3_write(CPUARMState *env,
4649 const ARMCPRegInfo *ri,
4650 uint64_t value)
4653 * Invalidate by VA range, EL3.
4654 * Currently handles all of RVAE3 and RVALE3,
4655 * since we don't support flush-for-specific-ASID-only or
4656 * flush-last-level-only.
4659 do_rvae_write(env, value, ARMMMUIdxBit_SE3,
4660 tlb_force_broadcast(env));
4663 static void tlbi_aa64_rvae3is_write(CPUARMState *env,
4664 const ARMCPRegInfo *ri,
4665 uint64_t value)
4668 * Invalidate by VA range, EL3, Inner/Outer Shareable.
4669 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS,
4670 * since we don't support flush-for-specific-ASID-only,
4671 * flush-last-level-only or inner/outer specific flushes.
4674 do_rvae_write(env, value, ARMMMUIdxBit_SE3, true);
4676 #endif
4678 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
4679 bool isread)
4681 int cur_el = arm_current_el(env);
4683 if (cur_el < 2) {
4684 uint64_t hcr = arm_hcr_el2_eff(env);
4686 if (cur_el == 0) {
4687 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4688 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
4689 return CP_ACCESS_TRAP_EL2;
4691 } else {
4692 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
4693 return CP_ACCESS_TRAP;
4695 if (hcr & HCR_TDZ) {
4696 return CP_ACCESS_TRAP_EL2;
4699 } else if (hcr & HCR_TDZ) {
4700 return CP_ACCESS_TRAP_EL2;
4703 return CP_ACCESS_OK;
4706 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
4708 ARMCPU *cpu = env_archcpu(env);
4709 int dzp_bit = 1 << 4;
4711 /* DZP indicates whether DC ZVA access is allowed */
4712 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
4713 dzp_bit = 0;
4715 return cpu->dcz_blocksize | dzp_bit;
4718 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4719 bool isread)
4721 if (!(env->pstate & PSTATE_SP)) {
4722 /* Access to SP_EL0 is undefined if it's being used as
4723 * the stack pointer.
4725 return CP_ACCESS_TRAP_UNCATEGORIZED;
4727 return CP_ACCESS_OK;
4730 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
4732 return env->pstate & PSTATE_SP;
4735 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
4737 update_spsel(env, val);
4740 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4741 uint64_t value)
4743 ARMCPU *cpu = env_archcpu(env);
4745 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
4746 /* M bit is RAZ/WI for PMSA with no MPU implemented */
4747 value &= ~SCTLR_M;
4750 /* ??? Lots of these bits are not implemented. */
4752 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
4753 if (ri->opc1 == 6) { /* SCTLR_EL3 */
4754 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
4755 } else {
4756 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
4757 SCTLR_ATA0 | SCTLR_ATA);
4761 if (raw_read(env, ri) == value) {
4762 /* Skip the TLB flush if nothing actually changed; Linux likes
4763 * to do a lot of pointless SCTLR writes.
4765 return;
4768 raw_write(env, ri, value);
4770 /* This may enable/disable the MMU, so do a TLB flush. */
4771 tlb_flush(CPU(cpu));
4773 if (ri->type & ARM_CP_SUPPRESS_TB_END) {
4775 * Normally we would always end the TB on an SCTLR write; see the
4776 * comment in ARMCPRegInfo sctlr initialization below for why Xscale
4777 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
4778 * of hflags from the translator, so do it here.
4780 arm_rebuild_hflags(env);
4784 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4785 uint64_t value)
4787 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
4790 static const ARMCPRegInfo v8_cp_reginfo[] = {
4791 /* Minimal set of EL0-visible registers. This will need to be expanded
4792 * significantly for system emulation of AArch64 CPUs.
4794 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
4795 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
4796 .access = PL0_RW, .type = ARM_CP_NZCV },
4797 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
4798 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
4799 .type = ARM_CP_NO_RAW,
4800 .access = PL0_RW, .accessfn = aa64_daif_access,
4801 .fieldoffset = offsetof(CPUARMState, daif),
4802 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
4803 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
4804 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
4805 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4806 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
4807 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
4808 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
4809 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4810 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
4811 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
4812 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
4813 .access = PL0_R, .type = ARM_CP_NO_RAW,
4814 .readfn = aa64_dczid_read },
4815 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
4816 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
4817 .access = PL0_W, .type = ARM_CP_DC_ZVA,
4818 #ifndef CONFIG_USER_ONLY
4819 /* Avoid overhead of an access check that always passes in user-mode */
4820 .accessfn = aa64_zva_access,
4821 #endif
4823 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
4824 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
4825 .access = PL1_R, .type = ARM_CP_CURRENTEL },
4826 /* Cache ops: all NOPs since we don't emulate caches */
4827 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
4828 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4829 .access = PL1_W, .type = ARM_CP_NOP,
4830 .accessfn = aa64_cacheop_pou_access },
4831 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
4832 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4833 .access = PL1_W, .type = ARM_CP_NOP,
4834 .accessfn = aa64_cacheop_pou_access },
4835 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
4836 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
4837 .access = PL0_W, .type = ARM_CP_NOP,
4838 .accessfn = aa64_cacheop_pou_access },
4839 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
4840 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4841 .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
4842 .type = ARM_CP_NOP },
4843 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
4844 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4845 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4846 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
4847 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
4848 .access = PL0_W, .type = ARM_CP_NOP,
4849 .accessfn = aa64_cacheop_poc_access },
4850 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
4851 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4852 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4853 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
4854 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
4855 .access = PL0_W, .type = ARM_CP_NOP,
4856 .accessfn = aa64_cacheop_pou_access },
4857 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
4858 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
4859 .access = PL0_W, .type = ARM_CP_NOP,
4860 .accessfn = aa64_cacheop_poc_access },
4861 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
4862 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4863 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4864 /* TLBI operations */
4865 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
4866 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
4867 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4868 .writefn = tlbi_aa64_vmalle1is_write },
4869 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
4870 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
4871 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4872 .writefn = tlbi_aa64_vae1is_write },
4873 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
4874 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
4875 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4876 .writefn = tlbi_aa64_vmalle1is_write },
4877 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
4878 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
4879 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4880 .writefn = tlbi_aa64_vae1is_write },
4881 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
4882 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4883 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4884 .writefn = tlbi_aa64_vae1is_write },
4885 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
4886 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4887 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4888 .writefn = tlbi_aa64_vae1is_write },
4889 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
4890 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
4891 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4892 .writefn = tlbi_aa64_vmalle1_write },
4893 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
4894 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
4895 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4896 .writefn = tlbi_aa64_vae1_write },
4897 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
4898 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
4899 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4900 .writefn = tlbi_aa64_vmalle1_write },
4901 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
4902 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
4903 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4904 .writefn = tlbi_aa64_vae1_write },
4905 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
4906 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4907 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4908 .writefn = tlbi_aa64_vae1_write },
4909 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
4910 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4911 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4912 .writefn = tlbi_aa64_vae1_write },
4913 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
4914 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4915 .access = PL2_W, .type = ARM_CP_NOP },
4916 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
4917 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4918 .access = PL2_W, .type = ARM_CP_NOP },
4919 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
4920 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4921 .access = PL2_W, .type = ARM_CP_NO_RAW,
4922 .writefn = tlbi_aa64_alle1is_write },
4923 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
4924 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
4925 .access = PL2_W, .type = ARM_CP_NO_RAW,
4926 .writefn = tlbi_aa64_alle1is_write },
4927 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
4928 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4929 .access = PL2_W, .type = ARM_CP_NOP },
4930 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
4931 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4932 .access = PL2_W, .type = ARM_CP_NOP },
4933 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
4934 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4935 .access = PL2_W, .type = ARM_CP_NO_RAW,
4936 .writefn = tlbi_aa64_alle1_write },
4937 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
4938 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
4939 .access = PL2_W, .type = ARM_CP_NO_RAW,
4940 .writefn = tlbi_aa64_alle1is_write },
4941 #ifndef CONFIG_USER_ONLY
4942 /* 64 bit address translation operations */
4943 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
4944 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
4945 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4946 .writefn = ats_write64 },
4947 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
4948 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
4949 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4950 .writefn = ats_write64 },
4951 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
4952 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
4953 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4954 .writefn = ats_write64 },
4955 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
4956 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
4957 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4958 .writefn = ats_write64 },
4959 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
4960 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
4961 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4962 .writefn = ats_write64 },
4963 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
4964 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
4965 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4966 .writefn = ats_write64 },
4967 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
4968 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
4969 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4970 .writefn = ats_write64 },
4971 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
4972 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
4973 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4974 .writefn = ats_write64 },
4975 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
4976 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
4977 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
4978 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4979 .writefn = ats_write64 },
4980 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
4981 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
4982 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4983 .writefn = ats_write64 },
4984 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
4985 .type = ARM_CP_ALIAS,
4986 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
4987 .access = PL1_RW, .resetvalue = 0,
4988 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
4989 .writefn = par_write },
4990 #endif
4991 /* TLB invalidate last level of translation table walk */
4992 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4993 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
4994 .writefn = tlbimva_is_write },
4995 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4996 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
4997 .writefn = tlbimvaa_is_write },
4998 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4999 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5000 .writefn = tlbimva_write },
5001 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5002 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5003 .writefn = tlbimvaa_write },
5004 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5005 .type = ARM_CP_NO_RAW, .access = PL2_W,
5006 .writefn = tlbimva_hyp_write },
5007 { .name = "TLBIMVALHIS",
5008 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5009 .type = ARM_CP_NO_RAW, .access = PL2_W,
5010 .writefn = tlbimva_hyp_is_write },
5011 { .name = "TLBIIPAS2",
5012 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5013 .type = ARM_CP_NOP, .access = PL2_W },
5014 { .name = "TLBIIPAS2IS",
5015 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5016 .type = ARM_CP_NOP, .access = PL2_W },
5017 { .name = "TLBIIPAS2L",
5018 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5019 .type = ARM_CP_NOP, .access = PL2_W },
5020 { .name = "TLBIIPAS2LIS",
5021 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5022 .type = ARM_CP_NOP, .access = PL2_W },
5023 /* 32 bit cache operations */
5024 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5025 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5026 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
5027 .type = ARM_CP_NOP, .access = PL1_W },
5028 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5029 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5030 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
5031 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5032 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
5033 .type = ARM_CP_NOP, .access = PL1_W },
5034 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
5035 .type = ARM_CP_NOP, .access = PL1_W },
5036 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5037 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5038 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5039 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5040 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
5041 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5042 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5043 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5044 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
5045 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5046 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
5047 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5048 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5049 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5050 /* MMU Domain access control / MPU write buffer control */
5051 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
5052 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
5053 .writefn = dacr_write, .raw_writefn = raw_write,
5054 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
5055 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
5056 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
5057 .type = ARM_CP_ALIAS,
5058 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
5059 .access = PL1_RW,
5060 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
5061 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
5062 .type = ARM_CP_ALIAS,
5063 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
5064 .access = PL1_RW,
5065 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
5066 /* We rely on the access checks not allowing the guest to write to the
5067 * state field when SPSel indicates that it's being used as the stack
5068 * pointer.
5070 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
5071 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
5072 .access = PL1_RW, .accessfn = sp_el0_access,
5073 .type = ARM_CP_ALIAS,
5074 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
5075 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
5076 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
5077 .access = PL2_RW, .type = ARM_CP_ALIAS,
5078 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
5079 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
5080 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
5081 .type = ARM_CP_NO_RAW,
5082 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
5083 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
5084 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
5085 .access = PL2_RW,
5086 .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP,
5087 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) },
5088 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
5089 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
5090 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5091 .writefn = dacr_write, .raw_writefn = raw_write,
5092 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
5093 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
5094 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
5095 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5096 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
5097 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
5098 .type = ARM_CP_ALIAS,
5099 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
5100 .access = PL2_RW,
5101 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
5102 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
5103 .type = ARM_CP_ALIAS,
5104 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
5105 .access = PL2_RW,
5106 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
5107 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
5108 .type = ARM_CP_ALIAS,
5109 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
5110 .access = PL2_RW,
5111 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
5112 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
5113 .type = ARM_CP_ALIAS,
5114 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
5115 .access = PL2_RW,
5116 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
5117 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
5118 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
5119 .resetvalue = 0,
5120 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
5121 { .name = "SDCR", .type = ARM_CP_ALIAS,
5122 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
5123 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5124 .writefn = sdcr_write,
5125 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
5128 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
5130 ARMCPU *cpu = env_archcpu(env);
5132 if (arm_feature(env, ARM_FEATURE_V8)) {
5133 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */
5134 } else {
5135 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */
5138 if (arm_feature(env, ARM_FEATURE_EL3)) {
5139 valid_mask &= ~HCR_HCD;
5140 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
5141 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
5142 * However, if we're using the SMC PSCI conduit then QEMU is
5143 * effectively acting like EL3 firmware and so the guest at
5144 * EL2 should retain the ability to prevent EL1 from being
5145 * able to make SMC calls into the ersatz firmware, so in
5146 * that case HCR.TSC should be read/write.
5148 valid_mask &= ~HCR_TSC;
5151 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5152 if (cpu_isar_feature(aa64_vh, cpu)) {
5153 valid_mask |= HCR_E2H;
5155 if (cpu_isar_feature(aa64_ras, cpu)) {
5156 valid_mask |= HCR_TERR | HCR_TEA;
5158 if (cpu_isar_feature(aa64_lor, cpu)) {
5159 valid_mask |= HCR_TLOR;
5161 if (cpu_isar_feature(aa64_pauth, cpu)) {
5162 valid_mask |= HCR_API | HCR_APK;
5164 if (cpu_isar_feature(aa64_mte, cpu)) {
5165 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
5167 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
5168 valid_mask |= HCR_ENSCXT;
5170 if (cpu_isar_feature(aa64_fwb, cpu)) {
5171 valid_mask |= HCR_FWB;
5175 /* Clear RES0 bits. */
5176 value &= valid_mask;
5179 * These bits change the MMU setup:
5180 * HCR_VM enables stage 2 translation
5181 * HCR_PTW forbids certain page-table setups
5182 * HCR_DC disables stage1 and enables stage2 translation
5183 * HCR_DCT enables tagging on (disabled) stage1 translation
5184 * HCR_FWB changes the interpretation of stage2 descriptor bits
5186 if ((env->cp15.hcr_el2 ^ value) &
5187 (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB)) {
5188 tlb_flush(CPU(cpu));
5190 env->cp15.hcr_el2 = value;
5193 * Updates to VI and VF require us to update the status of
5194 * virtual interrupts, which are the logical OR of these bits
5195 * and the state of the input lines from the GIC. (This requires
5196 * that we have the iothread lock, which is done by marking the
5197 * reginfo structs as ARM_CP_IO.)
5198 * Note that if a write to HCR pends a VIRQ or VFIQ it is never
5199 * possible for it to be taken immediately, because VIRQ and
5200 * VFIQ are masked unless running at EL0 or EL1, and HCR
5201 * can only be written at EL2.
5203 g_assert(qemu_mutex_iothread_locked());
5204 arm_cpu_update_virq(cpu);
5205 arm_cpu_update_vfiq(cpu);
5206 arm_cpu_update_vserr(cpu);
5209 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
5211 do_hcr_write(env, value, 0);
5214 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
5215 uint64_t value)
5217 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
5218 value = deposit64(env->cp15.hcr_el2, 32, 32, value);
5219 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
5222 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
5223 uint64_t value)
5225 /* Handle HCR write, i.e. write to low half of HCR_EL2 */
5226 value = deposit64(env->cp15.hcr_el2, 0, 32, value);
5227 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
5231 * Return the effective value of HCR_EL2.
5232 * Bits that are not included here:
5233 * RW (read from SCR_EL3.RW as needed)
5235 uint64_t arm_hcr_el2_eff(CPUARMState *env)
5237 uint64_t ret = env->cp15.hcr_el2;
5239 if (!arm_is_el2_enabled(env)) {
5241 * "This register has no effect if EL2 is not enabled in the
5242 * current Security state". This is ARMv8.4-SecEL2 speak for
5243 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
5245 * Prior to that, the language was "In an implementation that
5246 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
5247 * as if this field is 0 for all purposes other than a direct
5248 * read or write access of HCR_EL2". With lots of enumeration
5249 * on a per-field basis. In current QEMU, this is condition
5250 * is arm_is_secure_below_el3.
5252 * Since the v8.4 language applies to the entire register, and
5253 * appears to be backward compatible, use that.
5255 return 0;
5259 * For a cpu that supports both aarch64 and aarch32, we can set bits
5260 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
5261 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
5263 if (!arm_el_is_aa64(env, 2)) {
5264 uint64_t aa32_valid;
5267 * These bits are up-to-date as of ARMv8.6.
5268 * For HCR, it's easiest to list just the 2 bits that are invalid.
5269 * For HCR2, list those that are valid.
5271 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
5272 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
5273 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
5274 ret &= aa32_valid;
5277 if (ret & HCR_TGE) {
5278 /* These bits are up-to-date as of ARMv8.6. */
5279 if (ret & HCR_E2H) {
5280 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
5281 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
5282 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
5283 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
5284 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
5285 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
5286 } else {
5287 ret |= HCR_FMO | HCR_IMO | HCR_AMO;
5289 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
5290 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
5291 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
5292 HCR_TLOR);
5295 return ret;
5298 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri,
5299 uint64_t value)
5301 uint64_t valid_mask = 0;
5303 /* No features adding bits to HCRX are implemented. */
5305 /* Clear RES0 bits. */
5306 env->cp15.hcrx_el2 = value & valid_mask;
5309 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri,
5310 bool isread)
5312 if (arm_current_el(env) < 3
5313 && arm_feature(env, ARM_FEATURE_EL3)
5314 && !(env->cp15.scr_el3 & SCR_HXEN)) {
5315 return CP_ACCESS_TRAP_EL3;
5317 return CP_ACCESS_OK;
5320 static const ARMCPRegInfo hcrx_el2_reginfo = {
5321 .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64,
5322 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2,
5323 .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen,
5324 .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2),
5327 /* Return the effective value of HCRX_EL2. */
5328 uint64_t arm_hcrx_el2_eff(CPUARMState *env)
5331 * The bits in this register behave as 0 for all purposes other than
5332 * direct reads of the register if:
5333 * - EL2 is not enabled in the current security state,
5334 * - SCR_EL3.HXEn is 0.
5336 if (!arm_is_el2_enabled(env)
5337 || (arm_feature(env, ARM_FEATURE_EL3)
5338 && !(env->cp15.scr_el3 & SCR_HXEN))) {
5339 return 0;
5341 return env->cp15.hcrx_el2;
5344 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5345 uint64_t value)
5348 * For A-profile AArch32 EL3, if NSACR.CP10
5349 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5351 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5352 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5353 uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
5354 value = (value & ~mask) | (env->cp15.cptr_el[2] & mask);
5356 env->cp15.cptr_el[2] = value;
5359 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
5362 * For A-profile AArch32 EL3, if NSACR.CP10
5363 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5365 uint64_t value = env->cp15.cptr_el[2];
5367 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5368 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5369 value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
5371 return value;
5374 static const ARMCPRegInfo el2_cp_reginfo[] = {
5375 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
5376 .type = ARM_CP_IO,
5377 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5378 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5379 .writefn = hcr_write },
5380 { .name = "HCR", .state = ARM_CP_STATE_AA32,
5381 .type = ARM_CP_ALIAS | ARM_CP_IO,
5382 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5383 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5384 .writefn = hcr_writelow },
5385 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5386 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5387 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5388 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
5389 .type = ARM_CP_ALIAS,
5390 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
5391 .access = PL2_RW,
5392 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
5393 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5394 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5395 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
5396 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5397 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5398 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
5399 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5400 .type = ARM_CP_ALIAS,
5401 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5402 .access = PL2_RW,
5403 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
5404 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
5405 .type = ARM_CP_ALIAS,
5406 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
5407 .access = PL2_RW,
5408 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
5409 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5410 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5411 .access = PL2_RW, .writefn = vbar_write,
5412 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
5413 .resetvalue = 0 },
5414 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
5415 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
5416 .access = PL3_RW, .type = ARM_CP_ALIAS,
5417 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
5418 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5419 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5420 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
5421 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
5422 .readfn = cptr_el2_read, .writefn = cptr_el2_write },
5423 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5424 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5425 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
5426 .resetvalue = 0 },
5427 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5428 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5429 .access = PL2_RW, .type = ARM_CP_ALIAS,
5430 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
5431 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5432 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5433 .access = PL2_RW, .type = ARM_CP_CONST,
5434 .resetvalue = 0 },
5435 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
5436 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5437 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5438 .access = PL2_RW, .type = ARM_CP_CONST,
5439 .resetvalue = 0 },
5440 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5441 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5442 .access = PL2_RW, .type = ARM_CP_CONST,
5443 .resetvalue = 0 },
5444 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5445 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5446 .access = PL2_RW, .type = ARM_CP_CONST,
5447 .resetvalue = 0 },
5448 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5449 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5450 .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
5451 /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */
5452 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
5453 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
5454 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5455 .type = ARM_CP_ALIAS,
5456 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5457 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5458 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
5459 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5460 .access = PL2_RW,
5461 /* no .writefn needed as this can't cause an ASID change;
5462 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
5464 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5465 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5466 .cp = 15, .opc1 = 6, .crm = 2,
5467 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5468 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5469 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
5470 .writefn = vttbr_write },
5471 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5472 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5473 .access = PL2_RW, .writefn = vttbr_write,
5474 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
5475 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5476 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5477 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
5478 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
5479 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5480 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
5481 .access = PL2_RW, .resetvalue = 0,
5482 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
5483 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
5484 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
5485 .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write,
5486 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5487 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
5488 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5489 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5490 { .name = "TLBIALLNSNH",
5491 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5492 .type = ARM_CP_NO_RAW, .access = PL2_W,
5493 .writefn = tlbiall_nsnh_write },
5494 { .name = "TLBIALLNSNHIS",
5495 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5496 .type = ARM_CP_NO_RAW, .access = PL2_W,
5497 .writefn = tlbiall_nsnh_is_write },
5498 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5499 .type = ARM_CP_NO_RAW, .access = PL2_W,
5500 .writefn = tlbiall_hyp_write },
5501 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5502 .type = ARM_CP_NO_RAW, .access = PL2_W,
5503 .writefn = tlbiall_hyp_is_write },
5504 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5505 .type = ARM_CP_NO_RAW, .access = PL2_W,
5506 .writefn = tlbimva_hyp_write },
5507 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5508 .type = ARM_CP_NO_RAW, .access = PL2_W,
5509 .writefn = tlbimva_hyp_is_write },
5510 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
5511 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5512 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
5513 .writefn = tlbi_aa64_alle2_write },
5514 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
5515 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5516 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
5517 .writefn = tlbi_aa64_vae2_write },
5518 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
5519 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5520 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
5521 .writefn = tlbi_aa64_vae2_write },
5522 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
5523 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5524 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
5525 .writefn = tlbi_aa64_alle2is_write },
5526 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
5527 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5528 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
5529 .writefn = tlbi_aa64_vae2is_write },
5530 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
5531 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5532 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
5533 .writefn = tlbi_aa64_vae2is_write },
5534 #ifndef CONFIG_USER_ONLY
5535 /* Unlike the other EL2-related AT operations, these must
5536 * UNDEF from EL3 if EL2 is not implemented, which is why we
5537 * define them here rather than with the rest of the AT ops.
5539 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
5540 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5541 .access = PL2_W, .accessfn = at_s1e2_access,
5542 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
5543 .writefn = ats_write64 },
5544 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
5545 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5546 .access = PL2_W, .accessfn = at_s1e2_access,
5547 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
5548 .writefn = ats_write64 },
5549 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
5550 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
5551 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
5552 * to behave as if SCR.NS was 1.
5554 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5555 .access = PL2_W,
5556 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5557 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5558 .access = PL2_W,
5559 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5560 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5561 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5562 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
5563 * reset values as IMPDEF. We choose to reset to 3 to comply with
5564 * both ARMv7 and ARMv8.
5566 .access = PL2_RW, .resetvalue = 3,
5567 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
5568 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5569 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5570 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
5571 .writefn = gt_cntvoff_write,
5572 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5573 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5574 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
5575 .writefn = gt_cntvoff_write,
5576 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5577 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5578 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5579 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5580 .type = ARM_CP_IO, .access = PL2_RW,
5581 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5582 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5583 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5584 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
5585 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5586 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5587 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5588 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
5589 .resetfn = gt_hyp_timer_reset,
5590 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
5591 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5592 .type = ARM_CP_IO,
5593 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5594 .access = PL2_RW,
5595 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
5596 .resetvalue = 0,
5597 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
5598 #endif
5599 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
5600 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5601 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5602 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5603 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
5604 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5605 .access = PL2_RW,
5606 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5607 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5608 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5609 .access = PL2_RW,
5610 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
5613 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
5614 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5615 .type = ARM_CP_ALIAS | ARM_CP_IO,
5616 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5617 .access = PL2_RW,
5618 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
5619 .writefn = hcr_writehigh },
5622 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri,
5623 bool isread)
5625 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) {
5626 return CP_ACCESS_OK;
5628 return CP_ACCESS_TRAP_UNCATEGORIZED;
5631 static const ARMCPRegInfo el2_sec_cp_reginfo[] = {
5632 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64,
5633 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0,
5634 .access = PL2_RW, .accessfn = sel2_access,
5635 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) },
5636 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64,
5637 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2,
5638 .access = PL2_RW, .accessfn = sel2_access,
5639 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) },
5642 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
5643 bool isread)
5645 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
5646 * At Secure EL1 it traps to EL3 or EL2.
5648 if (arm_current_el(env) == 3) {
5649 return CP_ACCESS_OK;
5651 if (arm_is_secure_below_el3(env)) {
5652 if (env->cp15.scr_el3 & SCR_EEL2) {
5653 return CP_ACCESS_TRAP_EL2;
5655 return CP_ACCESS_TRAP_EL3;
5657 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
5658 if (isread) {
5659 return CP_ACCESS_OK;
5661 return CP_ACCESS_TRAP_UNCATEGORIZED;
5664 static const ARMCPRegInfo el3_cp_reginfo[] = {
5665 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
5666 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
5667 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
5668 .resetfn = scr_reset, .writefn = scr_write },
5669 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
5670 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
5671 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5672 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
5673 .writefn = scr_write },
5674 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
5675 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
5676 .access = PL3_RW, .resetvalue = 0,
5677 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
5678 { .name = "SDER",
5679 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
5680 .access = PL3_RW, .resetvalue = 0,
5681 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
5682 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
5683 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5684 .writefn = vbar_write, .resetvalue = 0,
5685 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
5686 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
5687 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
5688 .access = PL3_RW, .resetvalue = 0,
5689 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
5690 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
5691 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
5692 .access = PL3_RW,
5693 /* no .writefn needed as this can't cause an ASID change;
5694 * we must provide a .raw_writefn and .resetfn because we handle
5695 * reset and migration for the AArch32 TTBCR(S), which might be
5696 * using mask and base_mask.
5698 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
5699 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
5700 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
5701 .type = ARM_CP_ALIAS,
5702 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
5703 .access = PL3_RW,
5704 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
5705 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
5706 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
5707 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
5708 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
5709 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
5710 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
5711 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
5712 .type = ARM_CP_ALIAS,
5713 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
5714 .access = PL3_RW,
5715 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
5716 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
5717 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
5718 .access = PL3_RW, .writefn = vbar_write,
5719 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
5720 .resetvalue = 0 },
5721 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
5722 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
5723 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
5724 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
5725 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
5726 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
5727 .access = PL3_RW, .resetvalue = 0,
5728 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
5729 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
5730 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
5731 .access = PL3_RW, .type = ARM_CP_CONST,
5732 .resetvalue = 0 },
5733 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
5734 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
5735 .access = PL3_RW, .type = ARM_CP_CONST,
5736 .resetvalue = 0 },
5737 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
5738 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
5739 .access = PL3_RW, .type = ARM_CP_CONST,
5740 .resetvalue = 0 },
5741 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
5742 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
5743 .access = PL3_W, .type = ARM_CP_NO_RAW,
5744 .writefn = tlbi_aa64_alle3is_write },
5745 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
5746 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
5747 .access = PL3_W, .type = ARM_CP_NO_RAW,
5748 .writefn = tlbi_aa64_vae3is_write },
5749 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
5750 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
5751 .access = PL3_W, .type = ARM_CP_NO_RAW,
5752 .writefn = tlbi_aa64_vae3is_write },
5753 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
5754 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
5755 .access = PL3_W, .type = ARM_CP_NO_RAW,
5756 .writefn = tlbi_aa64_alle3_write },
5757 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
5758 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
5759 .access = PL3_W, .type = ARM_CP_NO_RAW,
5760 .writefn = tlbi_aa64_vae3_write },
5761 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
5762 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
5763 .access = PL3_W, .type = ARM_CP_NO_RAW,
5764 .writefn = tlbi_aa64_vae3_write },
5767 #ifndef CONFIG_USER_ONLY
5768 /* Test if system register redirection is to occur in the current state. */
5769 static bool redirect_for_e2h(CPUARMState *env)
5771 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
5774 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
5776 CPReadFn *readfn;
5778 if (redirect_for_e2h(env)) {
5779 /* Switch to the saved EL2 version of the register. */
5780 ri = ri->opaque;
5781 readfn = ri->readfn;
5782 } else {
5783 readfn = ri->orig_readfn;
5785 if (readfn == NULL) {
5786 readfn = raw_read;
5788 return readfn(env, ri);
5791 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
5792 uint64_t value)
5794 CPWriteFn *writefn;
5796 if (redirect_for_e2h(env)) {
5797 /* Switch to the saved EL2 version of the register. */
5798 ri = ri->opaque;
5799 writefn = ri->writefn;
5800 } else {
5801 writefn = ri->orig_writefn;
5803 if (writefn == NULL) {
5804 writefn = raw_write;
5806 writefn(env, ri, value);
5809 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
5811 struct E2HAlias {
5812 uint32_t src_key, dst_key, new_key;
5813 const char *src_name, *dst_name, *new_name;
5814 bool (*feature)(const ARMISARegisters *id);
5817 #define K(op0, op1, crn, crm, op2) \
5818 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
5820 static const struct E2HAlias aliases[] = {
5821 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0),
5822 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
5823 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2),
5824 "CPACR", "CPTR_EL2", "CPACR_EL12" },
5825 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0),
5826 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
5827 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1),
5828 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
5829 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2),
5830 "TCR_EL1", "TCR_EL2", "TCR_EL12" },
5831 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0),
5832 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
5833 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1),
5834 "ELR_EL1", "ELR_EL2", "ELR_EL12" },
5835 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0),
5836 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
5837 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1),
5838 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
5839 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0),
5840 "ESR_EL1", "ESR_EL2", "ESR_EL12" },
5841 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0),
5842 "FAR_EL1", "FAR_EL2", "FAR_EL12" },
5843 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
5844 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
5845 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
5846 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
5847 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
5848 "VBAR", "VBAR_EL2", "VBAR_EL12" },
5849 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
5850 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
5851 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
5852 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
5855 * Note that redirection of ZCR is mentioned in the description
5856 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
5857 * not in the summary table.
5859 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0),
5860 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
5862 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0),
5863 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
5865 { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7),
5866 "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12",
5867 isar_feature_aa64_scxtnum },
5869 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
5870 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
5872 #undef K
5874 size_t i;
5876 for (i = 0; i < ARRAY_SIZE(aliases); i++) {
5877 const struct E2HAlias *a = &aliases[i];
5878 ARMCPRegInfo *src_reg, *dst_reg, *new_reg;
5879 bool ok;
5881 if (a->feature && !a->feature(&cpu->isar)) {
5882 continue;
5885 src_reg = g_hash_table_lookup(cpu->cp_regs,
5886 (gpointer)(uintptr_t)a->src_key);
5887 dst_reg = g_hash_table_lookup(cpu->cp_regs,
5888 (gpointer)(uintptr_t)a->dst_key);
5889 g_assert(src_reg != NULL);
5890 g_assert(dst_reg != NULL);
5892 /* Cross-compare names to detect typos in the keys. */
5893 g_assert(strcmp(src_reg->name, a->src_name) == 0);
5894 g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
5896 /* None of the core system registers use opaque; we will. */
5897 g_assert(src_reg->opaque == NULL);
5899 /* Create alias before redirection so we dup the right data. */
5900 new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
5902 new_reg->name = a->new_name;
5903 new_reg->type |= ARM_CP_ALIAS;
5904 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */
5905 new_reg->access &= PL2_RW | PL3_RW;
5907 ok = g_hash_table_insert(cpu->cp_regs,
5908 (gpointer)(uintptr_t)a->new_key, new_reg);
5909 g_assert(ok);
5911 src_reg->opaque = dst_reg;
5912 src_reg->orig_readfn = src_reg->readfn ?: raw_read;
5913 src_reg->orig_writefn = src_reg->writefn ?: raw_write;
5914 if (!src_reg->raw_readfn) {
5915 src_reg->raw_readfn = raw_read;
5917 if (!src_reg->raw_writefn) {
5918 src_reg->raw_writefn = raw_write;
5920 src_reg->readfn = el2_e2h_read;
5921 src_reg->writefn = el2_e2h_write;
5924 #endif
5926 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5927 bool isread)
5929 int cur_el = arm_current_el(env);
5931 if (cur_el < 2) {
5932 uint64_t hcr = arm_hcr_el2_eff(env);
5934 if (cur_el == 0) {
5935 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
5936 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
5937 return CP_ACCESS_TRAP_EL2;
5939 } else {
5940 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
5941 return CP_ACCESS_TRAP;
5943 if (hcr & HCR_TID2) {
5944 return CP_ACCESS_TRAP_EL2;
5947 } else if (hcr & HCR_TID2) {
5948 return CP_ACCESS_TRAP_EL2;
5952 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
5953 return CP_ACCESS_TRAP_EL2;
5956 return CP_ACCESS_OK;
5959 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
5960 uint64_t value)
5962 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
5963 * read via a bit in OSLSR_EL1.
5965 int oslock;
5967 if (ri->state == ARM_CP_STATE_AA32) {
5968 oslock = (value == 0xC5ACCE55);
5969 } else {
5970 oslock = value & 1;
5973 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
5976 static const ARMCPRegInfo debug_cp_reginfo[] = {
5977 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
5978 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
5979 * unlike DBGDRAR it is never accessible from EL0.
5980 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
5981 * accessor.
5983 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
5984 .access = PL0_R, .accessfn = access_tdra,
5985 .type = ARM_CP_CONST, .resetvalue = 0 },
5986 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
5987 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
5988 .access = PL1_R, .accessfn = access_tdra,
5989 .type = ARM_CP_CONST, .resetvalue = 0 },
5990 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
5991 .access = PL0_R, .accessfn = access_tdra,
5992 .type = ARM_CP_CONST, .resetvalue = 0 },
5993 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
5994 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
5995 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
5996 .access = PL1_RW, .accessfn = access_tda,
5997 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
5998 .resetvalue = 0 },
6000 * MDCCSR_EL0[30:29] map to EDSCR[30:29]. Simply RAZ as the external
6001 * Debug Communication Channel is not implemented.
6003 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_AA64,
6004 .opc0 = 2, .opc1 = 3, .crn = 0, .crm = 1, .opc2 = 0,
6005 .access = PL0_R, .accessfn = access_tda,
6006 .type = ARM_CP_CONST, .resetvalue = 0 },
6008 * DBGDSCRint[15,12,5:2] map to MDSCR_EL1[15,12,5:2]. Map all bits as
6009 * it is unlikely a guest will care.
6010 * We don't implement the configurable EL0 access.
6012 { .name = "DBGDSCRint", .state = ARM_CP_STATE_AA32,
6013 .cp = 14, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
6014 .type = ARM_CP_ALIAS,
6015 .access = PL1_R, .accessfn = access_tda,
6016 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
6017 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
6018 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
6019 .access = PL1_W, .type = ARM_CP_NO_RAW,
6020 .accessfn = access_tdosa,
6021 .writefn = oslar_write },
6022 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
6023 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
6024 .access = PL1_R, .resetvalue = 10,
6025 .accessfn = access_tdosa,
6026 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
6027 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
6028 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
6029 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
6030 .access = PL1_RW, .accessfn = access_tdosa,
6031 .type = ARM_CP_NOP },
6032 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
6033 * implement vector catch debug events yet.
6035 { .name = "DBGVCR",
6036 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
6037 .access = PL1_RW, .accessfn = access_tda,
6038 .type = ARM_CP_NOP },
6039 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
6040 * to save and restore a 32-bit guest's DBGVCR)
6042 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
6043 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
6044 .access = PL2_RW, .accessfn = access_tda,
6045 .type = ARM_CP_NOP | ARM_CP_EL3_NO_EL2_KEEP },
6046 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
6047 * Channel but Linux may try to access this register. The 32-bit
6048 * alias is DBGDCCINT.
6050 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
6051 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
6052 .access = PL1_RW, .accessfn = access_tda,
6053 .type = ARM_CP_NOP },
6056 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
6057 /* 64 bit access versions of the (dummy) debug registers */
6058 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
6059 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
6060 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
6061 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
6065 * Check for traps to RAS registers, which are controlled
6066 * by HCR_EL2.TERR and SCR_EL3.TERR.
6068 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri,
6069 bool isread)
6071 int el = arm_current_el(env);
6073 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) {
6074 return CP_ACCESS_TRAP_EL2;
6076 if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) {
6077 return CP_ACCESS_TRAP_EL3;
6079 return CP_ACCESS_OK;
6082 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri)
6084 int el = arm_current_el(env);
6086 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
6087 return env->cp15.vdisr_el2;
6089 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
6090 return 0; /* RAZ/WI */
6092 return env->cp15.disr_el1;
6095 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
6097 int el = arm_current_el(env);
6099 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
6100 env->cp15.vdisr_el2 = val;
6101 return;
6103 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
6104 return; /* RAZ/WI */
6106 env->cp15.disr_el1 = val;
6110 * Minimal RAS implementation with no Error Records.
6111 * Which means that all of the Error Record registers:
6112 * ERXADDR_EL1
6113 * ERXCTLR_EL1
6114 * ERXFR_EL1
6115 * ERXMISC0_EL1
6116 * ERXMISC1_EL1
6117 * ERXMISC2_EL1
6118 * ERXMISC3_EL1
6119 * ERXPFGCDN_EL1 (RASv1p1)
6120 * ERXPFGCTL_EL1 (RASv1p1)
6121 * ERXPFGF_EL1 (RASv1p1)
6122 * ERXSTATUS_EL1
6123 * and
6124 * ERRSELR_EL1
6125 * may generate UNDEFINED, which is the effect we get by not
6126 * listing them at all.
6128 static const ARMCPRegInfo minimal_ras_reginfo[] = {
6129 { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH,
6130 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1,
6131 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1),
6132 .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write },
6133 { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH,
6134 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0,
6135 .access = PL1_R, .accessfn = access_terr,
6136 .type = ARM_CP_CONST, .resetvalue = 0 },
6137 { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH,
6138 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1,
6139 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) },
6140 { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH,
6141 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3,
6142 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) },
6145 /* Return the exception level to which exceptions should be taken
6146 * via SVEAccessTrap. If an exception should be routed through
6147 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should
6148 * take care of raising that exception.
6149 * C.f. the ARM pseudocode function CheckSVEEnabled.
6151 int sve_exception_el(CPUARMState *env, int el)
6153 #ifndef CONFIG_USER_ONLY
6154 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
6156 if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
6157 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) {
6158 case 1:
6159 if (el != 0) {
6160 break;
6162 /* fall through */
6163 case 0:
6164 case 2:
6165 /* route_to_el2 */
6166 return hcr_el2 & HCR_TGE ? 2 : 1;
6169 /* Check CPACR.FPEN. */
6170 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN)) {
6171 case 1:
6172 if (el != 0) {
6173 break;
6175 /* fall through */
6176 case 0:
6177 case 2:
6178 return 0;
6183 * CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE).
6185 if (el <= 2) {
6186 if (hcr_el2 & HCR_E2H) {
6187 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) {
6188 case 1:
6189 if (el != 0 || !(hcr_el2 & HCR_TGE)) {
6190 break;
6192 /* fall through */
6193 case 0:
6194 case 2:
6195 return 2;
6198 switch (FIELD_EX32(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) {
6199 case 1:
6200 if (el == 2 || !(hcr_el2 & HCR_TGE)) {
6201 break;
6203 /* fall through */
6204 case 0:
6205 case 2:
6206 return 0;
6208 } else if (arm_is_el2_enabled(env)) {
6209 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) {
6210 return 2;
6212 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) {
6213 return 0;
6218 /* CPTR_EL3. Since EZ is negative we must check for EL3. */
6219 if (arm_feature(env, ARM_FEATURE_EL3)
6220 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) {
6221 return 3;
6223 #endif
6224 return 0;
6227 uint32_t aarch64_sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len)
6229 uint32_t end_len;
6231 start_len = MIN(start_len, ARM_MAX_VQ - 1);
6232 end_len = start_len;
6234 if (!test_bit(start_len, cpu->sve_vq_map)) {
6235 end_len = find_last_bit(cpu->sve_vq_map, start_len);
6236 assert(end_len < start_len);
6238 return end_len;
6242 * Given that SVE is enabled, return the vector length for EL.
6244 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el)
6246 ARMCPU *cpu = env_archcpu(env);
6247 uint32_t zcr_len = cpu->sve_max_vq - 1;
6249 if (el <= 1 &&
6250 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
6251 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]);
6253 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
6254 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
6256 if (arm_feature(env, ARM_FEATURE_EL3)) {
6257 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
6260 return aarch64_sve_zcr_get_valid_len(cpu, zcr_len);
6263 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6264 uint64_t value)
6266 int cur_el = arm_current_el(env);
6267 int old_len = sve_zcr_len_for_el(env, cur_el);
6268 int new_len;
6270 /* Bits other than [3:0] are RAZ/WI. */
6271 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
6272 raw_write(env, ri, value & 0xf);
6275 * Because we arrived here, we know both FP and SVE are enabled;
6276 * otherwise we would have trapped access to the ZCR_ELn register.
6278 new_len = sve_zcr_len_for_el(env, cur_el);
6279 if (new_len < old_len) {
6280 aarch64_sve_narrow_vq(env, new_len + 1);
6284 static const ARMCPRegInfo zcr_reginfo[] = {
6285 { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
6286 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
6287 .access = PL1_RW, .type = ARM_CP_SVE,
6288 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
6289 .writefn = zcr_write, .raw_writefn = raw_write },
6290 { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6291 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6292 .access = PL2_RW, .type = ARM_CP_SVE,
6293 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
6294 .writefn = zcr_write, .raw_writefn = raw_write },
6295 { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
6296 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
6297 .access = PL3_RW, .type = ARM_CP_SVE,
6298 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
6299 .writefn = zcr_write, .raw_writefn = raw_write },
6302 void hw_watchpoint_update(ARMCPU *cpu, int n)
6304 CPUARMState *env = &cpu->env;
6305 vaddr len = 0;
6306 vaddr wvr = env->cp15.dbgwvr[n];
6307 uint64_t wcr = env->cp15.dbgwcr[n];
6308 int mask;
6309 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
6311 if (env->cpu_watchpoint[n]) {
6312 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
6313 env->cpu_watchpoint[n] = NULL;
6316 if (!FIELD_EX64(wcr, DBGWCR, E)) {
6317 /* E bit clear : watchpoint disabled */
6318 return;
6321 switch (FIELD_EX64(wcr, DBGWCR, LSC)) {
6322 case 0:
6323 /* LSC 00 is reserved and must behave as if the wp is disabled */
6324 return;
6325 case 1:
6326 flags |= BP_MEM_READ;
6327 break;
6328 case 2:
6329 flags |= BP_MEM_WRITE;
6330 break;
6331 case 3:
6332 flags |= BP_MEM_ACCESS;
6333 break;
6336 /* Attempts to use both MASK and BAS fields simultaneously are
6337 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
6338 * thus generating a watchpoint for every byte in the masked region.
6340 mask = FIELD_EX64(wcr, DBGWCR, MASK);
6341 if (mask == 1 || mask == 2) {
6342 /* Reserved values of MASK; we must act as if the mask value was
6343 * some non-reserved value, or as if the watchpoint were disabled.
6344 * We choose the latter.
6346 return;
6347 } else if (mask) {
6348 /* Watchpoint covers an aligned area up to 2GB in size */
6349 len = 1ULL << mask;
6350 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
6351 * whether the watchpoint fires when the unmasked bits match; we opt
6352 * to generate the exceptions.
6354 wvr &= ~(len - 1);
6355 } else {
6356 /* Watchpoint covers bytes defined by the byte address select bits */
6357 int bas = FIELD_EX64(wcr, DBGWCR, BAS);
6358 int basstart;
6360 if (extract64(wvr, 2, 1)) {
6361 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
6362 * ignored, and BAS[3:0] define which bytes to watch.
6364 bas &= 0xf;
6367 if (bas == 0) {
6368 /* This must act as if the watchpoint is disabled */
6369 return;
6372 /* The BAS bits are supposed to be programmed to indicate a contiguous
6373 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
6374 * we fire for each byte in the word/doubleword addressed by the WVR.
6375 * We choose to ignore any non-zero bits after the first range of 1s.
6377 basstart = ctz32(bas);
6378 len = cto32(bas >> basstart);
6379 wvr += basstart;
6382 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
6383 &env->cpu_watchpoint[n]);
6386 void hw_watchpoint_update_all(ARMCPU *cpu)
6388 int i;
6389 CPUARMState *env = &cpu->env;
6391 /* Completely clear out existing QEMU watchpoints and our array, to
6392 * avoid possible stale entries following migration load.
6394 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
6395 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
6397 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
6398 hw_watchpoint_update(cpu, i);
6402 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6403 uint64_t value)
6405 ARMCPU *cpu = env_archcpu(env);
6406 int i = ri->crm;
6409 * Bits [1:0] are RES0.
6411 * It is IMPLEMENTATION DEFINED whether [63:49] ([63:53] with FEAT_LVA)
6412 * are hardwired to the value of bit [48] ([52] with FEAT_LVA), or if
6413 * they contain the value written. It is CONSTRAINED UNPREDICTABLE
6414 * whether the RESS bits are ignored when comparing an address.
6416 * Therefore we are allowed to compare the entire register, which lets
6417 * us avoid considering whether or not FEAT_LVA is actually enabled.
6419 value &= ~3ULL;
6421 raw_write(env, ri, value);
6422 hw_watchpoint_update(cpu, i);
6425 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6426 uint64_t value)
6428 ARMCPU *cpu = env_archcpu(env);
6429 int i = ri->crm;
6431 raw_write(env, ri, value);
6432 hw_watchpoint_update(cpu, i);
6435 void hw_breakpoint_update(ARMCPU *cpu, int n)
6437 CPUARMState *env = &cpu->env;
6438 uint64_t bvr = env->cp15.dbgbvr[n];
6439 uint64_t bcr = env->cp15.dbgbcr[n];
6440 vaddr addr;
6441 int bt;
6442 int flags = BP_CPU;
6444 if (env->cpu_breakpoint[n]) {
6445 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
6446 env->cpu_breakpoint[n] = NULL;
6449 if (!extract64(bcr, 0, 1)) {
6450 /* E bit clear : watchpoint disabled */
6451 return;
6454 bt = extract64(bcr, 20, 4);
6456 switch (bt) {
6457 case 4: /* unlinked address mismatch (reserved if AArch64) */
6458 case 5: /* linked address mismatch (reserved if AArch64) */
6459 qemu_log_mask(LOG_UNIMP,
6460 "arm: address mismatch breakpoint types not implemented\n");
6461 return;
6462 case 0: /* unlinked address match */
6463 case 1: /* linked address match */
6466 * Bits [1:0] are RES0.
6468 * It is IMPLEMENTATION DEFINED whether bits [63:49]
6469 * ([63:53] for FEAT_LVA) are hardwired to a copy of the sign bit
6470 * of the VA field ([48] or [52] for FEAT_LVA), or whether the
6471 * value is read as written. It is CONSTRAINED UNPREDICTABLE
6472 * whether the RESS bits are ignored when comparing an address.
6473 * Therefore we are allowed to compare the entire register, which
6474 * lets us avoid considering whether FEAT_LVA is actually enabled.
6476 * The BAS field is used to allow setting breakpoints on 16-bit
6477 * wide instructions; it is CONSTRAINED UNPREDICTABLE whether
6478 * a bp will fire if the addresses covered by the bp and the addresses
6479 * covered by the insn overlap but the insn doesn't start at the
6480 * start of the bp address range. We choose to require the insn and
6481 * the bp to have the same address. The constraints on writing to
6482 * BAS enforced in dbgbcr_write mean we have only four cases:
6483 * 0b0000 => no breakpoint
6484 * 0b0011 => breakpoint on addr
6485 * 0b1100 => breakpoint on addr + 2
6486 * 0b1111 => breakpoint on addr
6487 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
6489 int bas = extract64(bcr, 5, 4);
6490 addr = bvr & ~3ULL;
6491 if (bas == 0) {
6492 return;
6494 if (bas == 0xc) {
6495 addr += 2;
6497 break;
6499 case 2: /* unlinked context ID match */
6500 case 8: /* unlinked VMID match (reserved if no EL2) */
6501 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
6502 qemu_log_mask(LOG_UNIMP,
6503 "arm: unlinked context breakpoint types not implemented\n");
6504 return;
6505 case 9: /* linked VMID match (reserved if no EL2) */
6506 case 11: /* linked context ID and VMID match (reserved if no EL2) */
6507 case 3: /* linked context ID match */
6508 default:
6509 /* We must generate no events for Linked context matches (unless
6510 * they are linked to by some other bp/wp, which is handled in
6511 * updates for the linking bp/wp). We choose to also generate no events
6512 * for reserved values.
6514 return;
6517 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
6520 void hw_breakpoint_update_all(ARMCPU *cpu)
6522 int i;
6523 CPUARMState *env = &cpu->env;
6525 /* Completely clear out existing QEMU breakpoints and our array, to
6526 * avoid possible stale entries following migration load.
6528 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
6529 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
6531 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
6532 hw_breakpoint_update(cpu, i);
6536 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6537 uint64_t value)
6539 ARMCPU *cpu = env_archcpu(env);
6540 int i = ri->crm;
6542 raw_write(env, ri, value);
6543 hw_breakpoint_update(cpu, i);
6546 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6547 uint64_t value)
6549 ARMCPU *cpu = env_archcpu(env);
6550 int i = ri->crm;
6552 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
6553 * copy of BAS[0].
6555 value = deposit64(value, 6, 1, extract64(value, 5, 1));
6556 value = deposit64(value, 8, 1, extract64(value, 7, 1));
6558 raw_write(env, ri, value);
6559 hw_breakpoint_update(cpu, i);
6562 static void define_debug_regs(ARMCPU *cpu)
6564 /* Define v7 and v8 architectural debug registers.
6565 * These are just dummy implementations for now.
6567 int i;
6568 int wrps, brps, ctx_cmps;
6571 * The Arm ARM says DBGDIDR is optional and deprecated if EL1 cannot
6572 * use AArch32. Given that bit 15 is RES1, if the value is 0 then
6573 * the register must not exist for this cpu.
6575 if (cpu->isar.dbgdidr != 0) {
6576 ARMCPRegInfo dbgdidr = {
6577 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0,
6578 .opc1 = 0, .opc2 = 0,
6579 .access = PL0_R, .accessfn = access_tda,
6580 .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr,
6582 define_one_arm_cp_reg(cpu, &dbgdidr);
6585 brps = arm_num_brps(cpu);
6586 wrps = arm_num_wrps(cpu);
6587 ctx_cmps = arm_num_ctx_cmps(cpu);
6589 assert(ctx_cmps <= brps);
6591 define_arm_cp_regs(cpu, debug_cp_reginfo);
6593 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
6594 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
6597 for (i = 0; i < brps; i++) {
6598 char *dbgbvr_el1_name = g_strdup_printf("DBGBVR%d_EL1", i);
6599 char *dbgbcr_el1_name = g_strdup_printf("DBGBCR%d_EL1", i);
6600 ARMCPRegInfo dbgregs[] = {
6601 { .name = dbgbvr_el1_name, .state = ARM_CP_STATE_BOTH,
6602 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
6603 .access = PL1_RW, .accessfn = access_tda,
6604 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
6605 .writefn = dbgbvr_write, .raw_writefn = raw_write
6607 { .name = dbgbcr_el1_name, .state = ARM_CP_STATE_BOTH,
6608 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
6609 .access = PL1_RW, .accessfn = access_tda,
6610 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
6611 .writefn = dbgbcr_write, .raw_writefn = raw_write
6614 define_arm_cp_regs(cpu, dbgregs);
6615 g_free(dbgbvr_el1_name);
6616 g_free(dbgbcr_el1_name);
6619 for (i = 0; i < wrps; i++) {
6620 char *dbgwvr_el1_name = g_strdup_printf("DBGWVR%d_EL1", i);
6621 char *dbgwcr_el1_name = g_strdup_printf("DBGWCR%d_EL1", i);
6622 ARMCPRegInfo dbgregs[] = {
6623 { .name = dbgwvr_el1_name, .state = ARM_CP_STATE_BOTH,
6624 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
6625 .access = PL1_RW, .accessfn = access_tda,
6626 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
6627 .writefn = dbgwvr_write, .raw_writefn = raw_write
6629 { .name = dbgwcr_el1_name, .state = ARM_CP_STATE_BOTH,
6630 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
6631 .access = PL1_RW, .accessfn = access_tda,
6632 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
6633 .writefn = dbgwcr_write, .raw_writefn = raw_write
6636 define_arm_cp_regs(cpu, dbgregs);
6637 g_free(dbgwvr_el1_name);
6638 g_free(dbgwcr_el1_name);
6642 static void define_pmu_regs(ARMCPU *cpu)
6645 * v7 performance monitor control register: same implementor
6646 * field as main ID register, and we implement four counters in
6647 * addition to the cycle count register.
6649 unsigned int i, pmcrn = pmu_num_counters(&cpu->env);
6650 ARMCPRegInfo pmcr = {
6651 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
6652 .access = PL0_RW,
6653 .type = ARM_CP_IO | ARM_CP_ALIAS,
6654 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
6655 .accessfn = pmreg_access, .writefn = pmcr_write,
6656 .raw_writefn = raw_write,
6658 ARMCPRegInfo pmcr64 = {
6659 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
6660 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
6661 .access = PL0_RW, .accessfn = pmreg_access,
6662 .type = ARM_CP_IO,
6663 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
6664 .resetvalue = cpu->isar.reset_pmcr_el0,
6665 .writefn = pmcr_write, .raw_writefn = raw_write,
6668 define_one_arm_cp_reg(cpu, &pmcr);
6669 define_one_arm_cp_reg(cpu, &pmcr64);
6670 for (i = 0; i < pmcrn; i++) {
6671 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
6672 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
6673 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
6674 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
6675 ARMCPRegInfo pmev_regs[] = {
6676 { .name = pmevcntr_name, .cp = 15, .crn = 14,
6677 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6678 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6679 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6680 .accessfn = pmreg_access_xevcntr },
6681 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
6682 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
6683 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr,
6684 .type = ARM_CP_IO,
6685 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6686 .raw_readfn = pmevcntr_rawread,
6687 .raw_writefn = pmevcntr_rawwrite },
6688 { .name = pmevtyper_name, .cp = 15, .crn = 14,
6689 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6690 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6691 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6692 .accessfn = pmreg_access },
6693 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
6694 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
6695 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6696 .type = ARM_CP_IO,
6697 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6698 .raw_writefn = pmevtyper_rawwrite },
6700 define_arm_cp_regs(cpu, pmev_regs);
6701 g_free(pmevcntr_name);
6702 g_free(pmevcntr_el0_name);
6703 g_free(pmevtyper_name);
6704 g_free(pmevtyper_el0_name);
6706 if (cpu_isar_feature(aa32_pmu_8_1, cpu)) {
6707 ARMCPRegInfo v81_pmu_regs[] = {
6708 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
6709 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
6710 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6711 .resetvalue = extract64(cpu->pmceid0, 32, 32) },
6712 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
6713 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
6714 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6715 .resetvalue = extract64(cpu->pmceid1, 32, 32) },
6717 define_arm_cp_regs(cpu, v81_pmu_regs);
6719 if (cpu_isar_feature(any_pmu_8_4, cpu)) {
6720 static const ARMCPRegInfo v84_pmmir = {
6721 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
6722 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
6723 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6724 .resetvalue = 0
6726 define_one_arm_cp_reg(cpu, &v84_pmmir);
6730 /* We don't know until after realize whether there's a GICv3
6731 * attached, and that is what registers the gicv3 sysregs.
6732 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
6733 * at runtime.
6735 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
6737 ARMCPU *cpu = env_archcpu(env);
6738 uint64_t pfr1 = cpu->isar.id_pfr1;
6740 if (env->gicv3state) {
6741 pfr1 |= 1 << 28;
6743 return pfr1;
6746 #ifndef CONFIG_USER_ONLY
6747 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
6749 ARMCPU *cpu = env_archcpu(env);
6750 uint64_t pfr0 = cpu->isar.id_aa64pfr0;
6752 if (env->gicv3state) {
6753 pfr0 |= 1 << 24;
6755 return pfr0;
6757 #endif
6759 /* Shared logic between LORID and the rest of the LOR* registers.
6760 * Secure state exclusion has already been dealt with.
6762 static CPAccessResult access_lor_ns(CPUARMState *env,
6763 const ARMCPRegInfo *ri, bool isread)
6765 int el = arm_current_el(env);
6767 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
6768 return CP_ACCESS_TRAP_EL2;
6770 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
6771 return CP_ACCESS_TRAP_EL3;
6773 return CP_ACCESS_OK;
6776 static CPAccessResult access_lor_other(CPUARMState *env,
6777 const ARMCPRegInfo *ri, bool isread)
6779 if (arm_is_secure_below_el3(env)) {
6780 /* Access denied in secure mode. */
6781 return CP_ACCESS_TRAP;
6783 return access_lor_ns(env, ri, isread);
6787 * A trivial implementation of ARMv8.1-LOR leaves all of these
6788 * registers fixed at 0, which indicates that there are zero
6789 * supported Limited Ordering regions.
6791 static const ARMCPRegInfo lor_reginfo[] = {
6792 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
6793 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
6794 .access = PL1_RW, .accessfn = access_lor_other,
6795 .type = ARM_CP_CONST, .resetvalue = 0 },
6796 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
6797 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
6798 .access = PL1_RW, .accessfn = access_lor_other,
6799 .type = ARM_CP_CONST, .resetvalue = 0 },
6800 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
6801 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
6802 .access = PL1_RW, .accessfn = access_lor_other,
6803 .type = ARM_CP_CONST, .resetvalue = 0 },
6804 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
6805 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
6806 .access = PL1_RW, .accessfn = access_lor_other,
6807 .type = ARM_CP_CONST, .resetvalue = 0 },
6808 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
6809 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
6810 .access = PL1_R, .accessfn = access_lor_ns,
6811 .type = ARM_CP_CONST, .resetvalue = 0 },
6814 #ifdef TARGET_AARCH64
6815 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
6816 bool isread)
6818 int el = arm_current_el(env);
6820 if (el < 2 &&
6821 arm_is_el2_enabled(env) &&
6822 !(arm_hcr_el2_eff(env) & HCR_APK)) {
6823 return CP_ACCESS_TRAP_EL2;
6825 if (el < 3 &&
6826 arm_feature(env, ARM_FEATURE_EL3) &&
6827 !(env->cp15.scr_el3 & SCR_APK)) {
6828 return CP_ACCESS_TRAP_EL3;
6830 return CP_ACCESS_OK;
6833 static const ARMCPRegInfo pauth_reginfo[] = {
6834 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6835 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
6836 .access = PL1_RW, .accessfn = access_pauth,
6837 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
6838 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6839 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
6840 .access = PL1_RW, .accessfn = access_pauth,
6841 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
6842 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6843 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
6844 .access = PL1_RW, .accessfn = access_pauth,
6845 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
6846 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6847 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
6848 .access = PL1_RW, .accessfn = access_pauth,
6849 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
6850 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6851 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
6852 .access = PL1_RW, .accessfn = access_pauth,
6853 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
6854 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6855 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
6856 .access = PL1_RW, .accessfn = access_pauth,
6857 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
6858 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6859 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
6860 .access = PL1_RW, .accessfn = access_pauth,
6861 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
6862 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6863 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
6864 .access = PL1_RW, .accessfn = access_pauth,
6865 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
6866 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6867 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
6868 .access = PL1_RW, .accessfn = access_pauth,
6869 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
6870 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6871 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
6872 .access = PL1_RW, .accessfn = access_pauth,
6873 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
6876 static const ARMCPRegInfo tlbirange_reginfo[] = {
6877 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64,
6878 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1,
6879 .access = PL1_W, .type = ARM_CP_NO_RAW,
6880 .writefn = tlbi_aa64_rvae1is_write },
6881 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64,
6882 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3,
6883 .access = PL1_W, .type = ARM_CP_NO_RAW,
6884 .writefn = tlbi_aa64_rvae1is_write },
6885 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64,
6886 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5,
6887 .access = PL1_W, .type = ARM_CP_NO_RAW,
6888 .writefn = tlbi_aa64_rvae1is_write },
6889 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64,
6890 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7,
6891 .access = PL1_W, .type = ARM_CP_NO_RAW,
6892 .writefn = tlbi_aa64_rvae1is_write },
6893 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64,
6894 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
6895 .access = PL1_W, .type = ARM_CP_NO_RAW,
6896 .writefn = tlbi_aa64_rvae1is_write },
6897 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64,
6898 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3,
6899 .access = PL1_W, .type = ARM_CP_NO_RAW,
6900 .writefn = tlbi_aa64_rvae1is_write },
6901 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64,
6902 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5,
6903 .access = PL1_W, .type = ARM_CP_NO_RAW,
6904 .writefn = tlbi_aa64_rvae1is_write },
6905 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64,
6906 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7,
6907 .access = PL1_W, .type = ARM_CP_NO_RAW,
6908 .writefn = tlbi_aa64_rvae1is_write },
6909 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64,
6910 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
6911 .access = PL1_W, .type = ARM_CP_NO_RAW,
6912 .writefn = tlbi_aa64_rvae1_write },
6913 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64,
6914 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3,
6915 .access = PL1_W, .type = ARM_CP_NO_RAW,
6916 .writefn = tlbi_aa64_rvae1_write },
6917 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64,
6918 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5,
6919 .access = PL1_W, .type = ARM_CP_NO_RAW,
6920 .writefn = tlbi_aa64_rvae1_write },
6921 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64,
6922 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7,
6923 .access = PL1_W, .type = ARM_CP_NO_RAW,
6924 .writefn = tlbi_aa64_rvae1_write },
6925 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64,
6926 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2,
6927 .access = PL2_W, .type = ARM_CP_NOP },
6928 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64,
6929 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6,
6930 .access = PL2_W, .type = ARM_CP_NOP },
6931 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64,
6932 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1,
6933 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6934 .writefn = tlbi_aa64_rvae2is_write },
6935 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64,
6936 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5,
6937 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6938 .writefn = tlbi_aa64_rvae2is_write },
6939 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64,
6940 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2,
6941 .access = PL2_W, .type = ARM_CP_NOP },
6942 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64,
6943 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6,
6944 .access = PL2_W, .type = ARM_CP_NOP },
6945 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64,
6946 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1,
6947 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6948 .writefn = tlbi_aa64_rvae2is_write },
6949 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64,
6950 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5,
6951 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6952 .writefn = tlbi_aa64_rvae2is_write },
6953 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64,
6954 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1,
6955 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6956 .writefn = tlbi_aa64_rvae2_write },
6957 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64,
6958 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5,
6959 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6960 .writefn = tlbi_aa64_rvae2_write },
6961 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64,
6962 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1,
6963 .access = PL3_W, .type = ARM_CP_NO_RAW,
6964 .writefn = tlbi_aa64_rvae3is_write },
6965 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64,
6966 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5,
6967 .access = PL3_W, .type = ARM_CP_NO_RAW,
6968 .writefn = tlbi_aa64_rvae3is_write },
6969 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64,
6970 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1,
6971 .access = PL3_W, .type = ARM_CP_NO_RAW,
6972 .writefn = tlbi_aa64_rvae3is_write },
6973 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64,
6974 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5,
6975 .access = PL3_W, .type = ARM_CP_NO_RAW,
6976 .writefn = tlbi_aa64_rvae3is_write },
6977 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64,
6978 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1,
6979 .access = PL3_W, .type = ARM_CP_NO_RAW,
6980 .writefn = tlbi_aa64_rvae3_write },
6981 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64,
6982 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5,
6983 .access = PL3_W, .type = ARM_CP_NO_RAW,
6984 .writefn = tlbi_aa64_rvae3_write },
6987 static const ARMCPRegInfo tlbios_reginfo[] = {
6988 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64,
6989 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0,
6990 .access = PL1_W, .type = ARM_CP_NO_RAW,
6991 .writefn = tlbi_aa64_vmalle1is_write },
6992 { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64,
6993 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1,
6994 .access = PL1_W, .type = ARM_CP_NO_RAW,
6995 .writefn = tlbi_aa64_vae1is_write },
6996 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64,
6997 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2,
6998 .access = PL1_W, .type = ARM_CP_NO_RAW,
6999 .writefn = tlbi_aa64_vmalle1is_write },
7000 { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64,
7001 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3,
7002 .access = PL1_W, .type = ARM_CP_NO_RAW,
7003 .writefn = tlbi_aa64_vae1is_write },
7004 { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64,
7005 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5,
7006 .access = PL1_W, .type = ARM_CP_NO_RAW,
7007 .writefn = tlbi_aa64_vae1is_write },
7008 { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64,
7009 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7,
7010 .access = PL1_W, .type = ARM_CP_NO_RAW,
7011 .writefn = tlbi_aa64_vae1is_write },
7012 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64,
7013 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0,
7014 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7015 .writefn = tlbi_aa64_alle2is_write },
7016 { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64,
7017 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1,
7018 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7019 .writefn = tlbi_aa64_vae2is_write },
7020 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64,
7021 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4,
7022 .access = PL2_W, .type = ARM_CP_NO_RAW,
7023 .writefn = tlbi_aa64_alle1is_write },
7024 { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64,
7025 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5,
7026 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7027 .writefn = tlbi_aa64_vae2is_write },
7028 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64,
7029 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6,
7030 .access = PL2_W, .type = ARM_CP_NO_RAW,
7031 .writefn = tlbi_aa64_alle1is_write },
7032 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64,
7033 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0,
7034 .access = PL2_W, .type = ARM_CP_NOP },
7035 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64,
7036 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3,
7037 .access = PL2_W, .type = ARM_CP_NOP },
7038 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7039 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4,
7040 .access = PL2_W, .type = ARM_CP_NOP },
7041 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7042 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7,
7043 .access = PL2_W, .type = ARM_CP_NOP },
7044 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64,
7045 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0,
7046 .access = PL3_W, .type = ARM_CP_NO_RAW,
7047 .writefn = tlbi_aa64_alle3is_write },
7048 { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64,
7049 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1,
7050 .access = PL3_W, .type = ARM_CP_NO_RAW,
7051 .writefn = tlbi_aa64_vae3is_write },
7052 { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64,
7053 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5,
7054 .access = PL3_W, .type = ARM_CP_NO_RAW,
7055 .writefn = tlbi_aa64_vae3is_write },
7058 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
7060 Error *err = NULL;
7061 uint64_t ret;
7063 /* Success sets NZCV = 0000. */
7064 env->NF = env->CF = env->VF = 0, env->ZF = 1;
7066 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
7068 * ??? Failed, for unknown reasons in the crypto subsystem.
7069 * The best we can do is log the reason and return the
7070 * timed-out indication to the guest. There is no reason
7071 * we know to expect this failure to be transitory, so the
7072 * guest may well hang retrying the operation.
7074 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
7075 ri->name, error_get_pretty(err));
7076 error_free(err);
7078 env->ZF = 0; /* NZCF = 0100 */
7079 return 0;
7081 return ret;
7084 /* We do not support re-seeding, so the two registers operate the same. */
7085 static const ARMCPRegInfo rndr_reginfo[] = {
7086 { .name = "RNDR", .state = ARM_CP_STATE_AA64,
7087 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7088 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
7089 .access = PL0_R, .readfn = rndr_readfn },
7090 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
7091 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7092 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
7093 .access = PL0_R, .readfn = rndr_readfn },
7096 #ifndef CONFIG_USER_ONLY
7097 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
7098 uint64_t value)
7100 ARMCPU *cpu = env_archcpu(env);
7101 /* CTR_EL0 System register -> DminLine, bits [19:16] */
7102 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
7103 uint64_t vaddr_in = (uint64_t) value;
7104 uint64_t vaddr = vaddr_in & ~(dline_size - 1);
7105 void *haddr;
7106 int mem_idx = cpu_mmu_index(env, false);
7108 /* This won't be crossing page boundaries */
7109 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
7110 if (haddr) {
7112 ram_addr_t offset;
7113 MemoryRegion *mr;
7115 /* RCU lock is already being held */
7116 mr = memory_region_from_host(haddr, &offset);
7118 if (mr) {
7119 memory_region_writeback(mr, offset, dline_size);
7124 static const ARMCPRegInfo dcpop_reg[] = {
7125 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
7126 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
7127 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7128 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7131 static const ARMCPRegInfo dcpodp_reg[] = {
7132 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
7133 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
7134 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7135 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7137 #endif /*CONFIG_USER_ONLY*/
7139 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
7140 bool isread)
7142 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
7143 return CP_ACCESS_TRAP_EL2;
7146 return CP_ACCESS_OK;
7149 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
7150 bool isread)
7152 int el = arm_current_el(env);
7154 if (el < 2 && arm_is_el2_enabled(env)) {
7155 uint64_t hcr = arm_hcr_el2_eff(env);
7156 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
7157 return CP_ACCESS_TRAP_EL2;
7160 if (el < 3 &&
7161 arm_feature(env, ARM_FEATURE_EL3) &&
7162 !(env->cp15.scr_el3 & SCR_ATA)) {
7163 return CP_ACCESS_TRAP_EL3;
7165 return CP_ACCESS_OK;
7168 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
7170 return env->pstate & PSTATE_TCO;
7173 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
7175 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
7178 static const ARMCPRegInfo mte_reginfo[] = {
7179 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
7180 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
7181 .access = PL1_RW, .accessfn = access_mte,
7182 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
7183 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
7184 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
7185 .access = PL1_RW, .accessfn = access_mte,
7186 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
7187 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
7188 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
7189 .access = PL2_RW, .accessfn = access_mte,
7190 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
7191 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
7192 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
7193 .access = PL3_RW,
7194 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
7195 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
7196 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
7197 .access = PL1_RW, .accessfn = access_mte,
7198 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
7199 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
7200 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
7201 .access = PL1_RW, .accessfn = access_mte,
7202 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
7203 { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
7204 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
7205 .access = PL1_R, .accessfn = access_aa64_tid5,
7206 .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS },
7207 { .name = "TCO", .state = ARM_CP_STATE_AA64,
7208 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7209 .type = ARM_CP_NO_RAW,
7210 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
7211 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
7212 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
7213 .type = ARM_CP_NOP, .access = PL1_W,
7214 .accessfn = aa64_cacheop_poc_access },
7215 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
7216 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
7217 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7218 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
7219 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
7220 .type = ARM_CP_NOP, .access = PL1_W,
7221 .accessfn = aa64_cacheop_poc_access },
7222 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
7223 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
7224 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7225 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
7226 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
7227 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7228 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
7229 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
7230 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7231 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
7232 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
7233 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7234 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
7235 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
7236 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7239 static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
7240 { .name = "TCO", .state = ARM_CP_STATE_AA64,
7241 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7242 .type = ARM_CP_CONST, .access = PL0_RW, },
7245 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
7246 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
7247 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
7248 .type = ARM_CP_NOP, .access = PL0_W,
7249 .accessfn = aa64_cacheop_poc_access },
7250 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
7251 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
7252 .type = ARM_CP_NOP, .access = PL0_W,
7253 .accessfn = aa64_cacheop_poc_access },
7254 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
7255 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
7256 .type = ARM_CP_NOP, .access = PL0_W,
7257 .accessfn = aa64_cacheop_poc_access },
7258 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
7259 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
7260 .type = ARM_CP_NOP, .access = PL0_W,
7261 .accessfn = aa64_cacheop_poc_access },
7262 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
7263 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
7264 .type = ARM_CP_NOP, .access = PL0_W,
7265 .accessfn = aa64_cacheop_poc_access },
7266 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
7267 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
7268 .type = ARM_CP_NOP, .access = PL0_W,
7269 .accessfn = aa64_cacheop_poc_access },
7270 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
7271 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
7272 .type = ARM_CP_NOP, .access = PL0_W,
7273 .accessfn = aa64_cacheop_poc_access },
7274 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
7275 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
7276 .type = ARM_CP_NOP, .access = PL0_W,
7277 .accessfn = aa64_cacheop_poc_access },
7278 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
7279 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
7280 .access = PL0_W, .type = ARM_CP_DC_GVA,
7281 #ifndef CONFIG_USER_ONLY
7282 /* Avoid overhead of an access check that always passes in user-mode */
7283 .accessfn = aa64_zva_access,
7284 #endif
7286 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
7287 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
7288 .access = PL0_W, .type = ARM_CP_DC_GZVA,
7289 #ifndef CONFIG_USER_ONLY
7290 /* Avoid overhead of an access check that always passes in user-mode */
7291 .accessfn = aa64_zva_access,
7292 #endif
7296 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri,
7297 bool isread)
7299 uint64_t hcr = arm_hcr_el2_eff(env);
7300 int el = arm_current_el(env);
7302 if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) {
7303 if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) {
7304 if (hcr & HCR_TGE) {
7305 return CP_ACCESS_TRAP_EL2;
7307 return CP_ACCESS_TRAP;
7309 } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) {
7310 return CP_ACCESS_TRAP_EL2;
7312 if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) {
7313 return CP_ACCESS_TRAP_EL2;
7315 if (el < 3
7316 && arm_feature(env, ARM_FEATURE_EL3)
7317 && !(env->cp15.scr_el3 & SCR_ENSCXT)) {
7318 return CP_ACCESS_TRAP_EL3;
7320 return CP_ACCESS_OK;
7323 static const ARMCPRegInfo scxtnum_reginfo[] = {
7324 { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64,
7325 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7,
7326 .access = PL0_RW, .accessfn = access_scxtnum,
7327 .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) },
7328 { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64,
7329 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7,
7330 .access = PL1_RW, .accessfn = access_scxtnum,
7331 .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) },
7332 { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64,
7333 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7,
7334 .access = PL2_RW, .accessfn = access_scxtnum,
7335 .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) },
7336 { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64,
7337 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7,
7338 .access = PL3_RW,
7339 .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) },
7341 #endif /* TARGET_AARCH64 */
7343 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
7344 bool isread)
7346 int el = arm_current_el(env);
7348 if (el == 0) {
7349 uint64_t sctlr = arm_sctlr(env, el);
7350 if (!(sctlr & SCTLR_EnRCTX)) {
7351 return CP_ACCESS_TRAP;
7353 } else if (el == 1) {
7354 uint64_t hcr = arm_hcr_el2_eff(env);
7355 if (hcr & HCR_NV) {
7356 return CP_ACCESS_TRAP_EL2;
7359 return CP_ACCESS_OK;
7362 static const ARMCPRegInfo predinv_reginfo[] = {
7363 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
7364 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
7365 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7366 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
7367 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
7368 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7369 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
7370 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
7371 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7373 * Note the AArch32 opcodes have a different OPC1.
7375 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
7376 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
7377 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7378 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
7379 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
7380 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7381 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
7382 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
7383 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7386 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
7388 /* Read the high 32 bits of the current CCSIDR */
7389 return extract64(ccsidr_read(env, ri), 32, 32);
7392 static const ARMCPRegInfo ccsidr2_reginfo[] = {
7393 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
7394 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
7395 .access = PL1_R,
7396 .accessfn = access_aa64_tid2,
7397 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
7400 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7401 bool isread)
7403 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
7404 return CP_ACCESS_TRAP_EL2;
7407 return CP_ACCESS_OK;
7410 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7411 bool isread)
7413 if (arm_feature(env, ARM_FEATURE_V8)) {
7414 return access_aa64_tid3(env, ri, isread);
7417 return CP_ACCESS_OK;
7420 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
7421 bool isread)
7423 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
7424 return CP_ACCESS_TRAP_EL2;
7427 return CP_ACCESS_OK;
7430 static CPAccessResult access_joscr_jmcr(CPUARMState *env,
7431 const ARMCPRegInfo *ri, bool isread)
7434 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only
7435 * in v7A, not in v8A.
7437 if (!arm_feature(env, ARM_FEATURE_V8) &&
7438 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
7439 (env->cp15.hstr_el2 & HSTR_TJDBX)) {
7440 return CP_ACCESS_TRAP_EL2;
7442 return CP_ACCESS_OK;
7445 static const ARMCPRegInfo jazelle_regs[] = {
7446 { .name = "JIDR",
7447 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
7448 .access = PL1_R, .accessfn = access_jazelle,
7449 .type = ARM_CP_CONST, .resetvalue = 0 },
7450 { .name = "JOSCR",
7451 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
7452 .accessfn = access_joscr_jmcr,
7453 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7454 { .name = "JMCR",
7455 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
7456 .accessfn = access_joscr_jmcr,
7457 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7460 static const ARMCPRegInfo contextidr_el2 = {
7461 .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
7462 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
7463 .access = PL2_RW,
7464 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2])
7467 static const ARMCPRegInfo vhe_reginfo[] = {
7468 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
7469 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
7470 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
7471 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
7472 #ifndef CONFIG_USER_ONLY
7473 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
7474 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
7475 .fieldoffset =
7476 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
7477 .type = ARM_CP_IO, .access = PL2_RW,
7478 .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
7479 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
7480 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
7481 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
7482 .resetfn = gt_hv_timer_reset,
7483 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
7484 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
7485 .type = ARM_CP_IO,
7486 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
7487 .access = PL2_RW,
7488 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
7489 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
7490 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
7491 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
7492 .type = ARM_CP_IO | ARM_CP_ALIAS,
7493 .access = PL2_RW, .accessfn = e2h_access,
7494 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
7495 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
7496 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
7497 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
7498 .type = ARM_CP_IO | ARM_CP_ALIAS,
7499 .access = PL2_RW, .accessfn = e2h_access,
7500 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
7501 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
7502 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7503 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
7504 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7505 .access = PL2_RW, .accessfn = e2h_access,
7506 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
7507 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7508 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
7509 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7510 .access = PL2_RW, .accessfn = e2h_access,
7511 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
7512 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7513 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
7514 .type = ARM_CP_IO | ARM_CP_ALIAS,
7515 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
7516 .access = PL2_RW, .accessfn = e2h_access,
7517 .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
7518 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7519 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
7520 .type = ARM_CP_IO | ARM_CP_ALIAS,
7521 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
7522 .access = PL2_RW, .accessfn = e2h_access,
7523 .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
7524 #endif
7527 #ifndef CONFIG_USER_ONLY
7528 static const ARMCPRegInfo ats1e1_reginfo[] = {
7529 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
7530 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7531 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7532 .writefn = ats_write64 },
7533 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
7534 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7535 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7536 .writefn = ats_write64 },
7539 static const ARMCPRegInfo ats1cp_reginfo[] = {
7540 { .name = "ATS1CPRP",
7541 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7542 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7543 .writefn = ats_write },
7544 { .name = "ATS1CPWP",
7545 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7546 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7547 .writefn = ats_write },
7549 #endif
7552 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
7553 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
7554 * is non-zero, which is never for ARMv7, optionally in ARMv8
7555 * and mandatorily for ARMv8.2 and up.
7556 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
7557 * implementation is RAZ/WI we can ignore this detail, as we
7558 * do for ACTLR.
7560 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
7561 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
7562 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
7563 .access = PL1_RW, .accessfn = access_tacr,
7564 .type = ARM_CP_CONST, .resetvalue = 0 },
7565 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
7566 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
7567 .access = PL2_RW, .type = ARM_CP_CONST,
7568 .resetvalue = 0 },
7571 void register_cp_regs_for_features(ARMCPU *cpu)
7573 /* Register all the coprocessor registers based on feature bits */
7574 CPUARMState *env = &cpu->env;
7575 if (arm_feature(env, ARM_FEATURE_M)) {
7576 /* M profile has no coprocessor registers */
7577 return;
7580 define_arm_cp_regs(cpu, cp_reginfo);
7581 if (!arm_feature(env, ARM_FEATURE_V8)) {
7582 /* Must go early as it is full of wildcards that may be
7583 * overridden by later definitions.
7585 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
7588 if (arm_feature(env, ARM_FEATURE_V6)) {
7589 /* The ID registers all have impdef reset values */
7590 ARMCPRegInfo v6_idregs[] = {
7591 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
7592 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
7593 .access = PL1_R, .type = ARM_CP_CONST,
7594 .accessfn = access_aa32_tid3,
7595 .resetvalue = cpu->isar.id_pfr0 },
7596 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
7597 * the value of the GIC field until after we define these regs.
7599 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
7600 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
7601 .access = PL1_R, .type = ARM_CP_NO_RAW,
7602 .accessfn = access_aa32_tid3,
7603 .readfn = id_pfr1_read,
7604 .writefn = arm_cp_write_ignore },
7605 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
7606 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
7607 .access = PL1_R, .type = ARM_CP_CONST,
7608 .accessfn = access_aa32_tid3,
7609 .resetvalue = cpu->isar.id_dfr0 },
7610 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
7611 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
7612 .access = PL1_R, .type = ARM_CP_CONST,
7613 .accessfn = access_aa32_tid3,
7614 .resetvalue = cpu->id_afr0 },
7615 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
7616 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
7617 .access = PL1_R, .type = ARM_CP_CONST,
7618 .accessfn = access_aa32_tid3,
7619 .resetvalue = cpu->isar.id_mmfr0 },
7620 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
7621 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
7622 .access = PL1_R, .type = ARM_CP_CONST,
7623 .accessfn = access_aa32_tid3,
7624 .resetvalue = cpu->isar.id_mmfr1 },
7625 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
7626 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
7627 .access = PL1_R, .type = ARM_CP_CONST,
7628 .accessfn = access_aa32_tid3,
7629 .resetvalue = cpu->isar.id_mmfr2 },
7630 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
7631 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
7632 .access = PL1_R, .type = ARM_CP_CONST,
7633 .accessfn = access_aa32_tid3,
7634 .resetvalue = cpu->isar.id_mmfr3 },
7635 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
7636 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
7637 .access = PL1_R, .type = ARM_CP_CONST,
7638 .accessfn = access_aa32_tid3,
7639 .resetvalue = cpu->isar.id_isar0 },
7640 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
7641 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
7642 .access = PL1_R, .type = ARM_CP_CONST,
7643 .accessfn = access_aa32_tid3,
7644 .resetvalue = cpu->isar.id_isar1 },
7645 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
7646 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
7647 .access = PL1_R, .type = ARM_CP_CONST,
7648 .accessfn = access_aa32_tid3,
7649 .resetvalue = cpu->isar.id_isar2 },
7650 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
7651 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
7652 .access = PL1_R, .type = ARM_CP_CONST,
7653 .accessfn = access_aa32_tid3,
7654 .resetvalue = cpu->isar.id_isar3 },
7655 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
7656 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
7657 .access = PL1_R, .type = ARM_CP_CONST,
7658 .accessfn = access_aa32_tid3,
7659 .resetvalue = cpu->isar.id_isar4 },
7660 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
7661 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
7662 .access = PL1_R, .type = ARM_CP_CONST,
7663 .accessfn = access_aa32_tid3,
7664 .resetvalue = cpu->isar.id_isar5 },
7665 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
7666 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
7667 .access = PL1_R, .type = ARM_CP_CONST,
7668 .accessfn = access_aa32_tid3,
7669 .resetvalue = cpu->isar.id_mmfr4 },
7670 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
7671 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
7672 .access = PL1_R, .type = ARM_CP_CONST,
7673 .accessfn = access_aa32_tid3,
7674 .resetvalue = cpu->isar.id_isar6 },
7676 define_arm_cp_regs(cpu, v6_idregs);
7677 define_arm_cp_regs(cpu, v6_cp_reginfo);
7678 } else {
7679 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
7681 if (arm_feature(env, ARM_FEATURE_V6K)) {
7682 define_arm_cp_regs(cpu, v6k_cp_reginfo);
7684 if (arm_feature(env, ARM_FEATURE_V7MP) &&
7685 !arm_feature(env, ARM_FEATURE_PMSA)) {
7686 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
7688 if (arm_feature(env, ARM_FEATURE_V7VE)) {
7689 define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
7691 if (arm_feature(env, ARM_FEATURE_V7)) {
7692 ARMCPRegInfo clidr = {
7693 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
7694 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
7695 .access = PL1_R, .type = ARM_CP_CONST,
7696 .accessfn = access_aa64_tid2,
7697 .resetvalue = cpu->clidr
7699 define_one_arm_cp_reg(cpu, &clidr);
7700 define_arm_cp_regs(cpu, v7_cp_reginfo);
7701 define_debug_regs(cpu);
7702 define_pmu_regs(cpu);
7703 } else {
7704 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
7706 if (arm_feature(env, ARM_FEATURE_V8)) {
7707 /* AArch64 ID registers, which all have impdef reset values.
7708 * Note that within the ID register ranges the unused slots
7709 * must all RAZ, not UNDEF; future architecture versions may
7710 * define new registers here.
7712 ARMCPRegInfo v8_idregs[] = {
7714 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
7715 * emulation because we don't know the right value for the
7716 * GIC field until after we define these regs.
7718 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
7719 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
7720 .access = PL1_R,
7721 #ifdef CONFIG_USER_ONLY
7722 .type = ARM_CP_CONST,
7723 .resetvalue = cpu->isar.id_aa64pfr0
7724 #else
7725 .type = ARM_CP_NO_RAW,
7726 .accessfn = access_aa64_tid3,
7727 .readfn = id_aa64pfr0_read,
7728 .writefn = arm_cp_write_ignore
7729 #endif
7731 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
7732 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
7733 .access = PL1_R, .type = ARM_CP_CONST,
7734 .accessfn = access_aa64_tid3,
7735 .resetvalue = cpu->isar.id_aa64pfr1},
7736 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7737 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
7738 .access = PL1_R, .type = ARM_CP_CONST,
7739 .accessfn = access_aa64_tid3,
7740 .resetvalue = 0 },
7741 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7742 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
7743 .access = PL1_R, .type = ARM_CP_CONST,
7744 .accessfn = access_aa64_tid3,
7745 .resetvalue = 0 },
7746 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
7747 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
7748 .access = PL1_R, .type = ARM_CP_CONST,
7749 .accessfn = access_aa64_tid3,
7750 .resetvalue = cpu->isar.id_aa64zfr0 },
7751 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7752 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
7753 .access = PL1_R, .type = ARM_CP_CONST,
7754 .accessfn = access_aa64_tid3,
7755 .resetvalue = 0 },
7756 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7757 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
7758 .access = PL1_R, .type = ARM_CP_CONST,
7759 .accessfn = access_aa64_tid3,
7760 .resetvalue = 0 },
7761 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7762 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
7763 .access = PL1_R, .type = ARM_CP_CONST,
7764 .accessfn = access_aa64_tid3,
7765 .resetvalue = 0 },
7766 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
7767 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
7768 .access = PL1_R, .type = ARM_CP_CONST,
7769 .accessfn = access_aa64_tid3,
7770 .resetvalue = cpu->isar.id_aa64dfr0 },
7771 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
7772 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
7773 .access = PL1_R, .type = ARM_CP_CONST,
7774 .accessfn = access_aa64_tid3,
7775 .resetvalue = cpu->isar.id_aa64dfr1 },
7776 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7777 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
7778 .access = PL1_R, .type = ARM_CP_CONST,
7779 .accessfn = access_aa64_tid3,
7780 .resetvalue = 0 },
7781 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7782 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
7783 .access = PL1_R, .type = ARM_CP_CONST,
7784 .accessfn = access_aa64_tid3,
7785 .resetvalue = 0 },
7786 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
7787 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
7788 .access = PL1_R, .type = ARM_CP_CONST,
7789 .accessfn = access_aa64_tid3,
7790 .resetvalue = cpu->id_aa64afr0 },
7791 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
7792 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
7793 .access = PL1_R, .type = ARM_CP_CONST,
7794 .accessfn = access_aa64_tid3,
7795 .resetvalue = cpu->id_aa64afr1 },
7796 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7797 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
7798 .access = PL1_R, .type = ARM_CP_CONST,
7799 .accessfn = access_aa64_tid3,
7800 .resetvalue = 0 },
7801 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7802 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
7803 .access = PL1_R, .type = ARM_CP_CONST,
7804 .accessfn = access_aa64_tid3,
7805 .resetvalue = 0 },
7806 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
7807 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
7808 .access = PL1_R, .type = ARM_CP_CONST,
7809 .accessfn = access_aa64_tid3,
7810 .resetvalue = cpu->isar.id_aa64isar0 },
7811 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
7812 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
7813 .access = PL1_R, .type = ARM_CP_CONST,
7814 .accessfn = access_aa64_tid3,
7815 .resetvalue = cpu->isar.id_aa64isar1 },
7816 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7817 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
7818 .access = PL1_R, .type = ARM_CP_CONST,
7819 .accessfn = access_aa64_tid3,
7820 .resetvalue = 0 },
7821 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7822 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
7823 .access = PL1_R, .type = ARM_CP_CONST,
7824 .accessfn = access_aa64_tid3,
7825 .resetvalue = 0 },
7826 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7827 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
7828 .access = PL1_R, .type = ARM_CP_CONST,
7829 .accessfn = access_aa64_tid3,
7830 .resetvalue = 0 },
7831 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7832 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
7833 .access = PL1_R, .type = ARM_CP_CONST,
7834 .accessfn = access_aa64_tid3,
7835 .resetvalue = 0 },
7836 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7837 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
7838 .access = PL1_R, .type = ARM_CP_CONST,
7839 .accessfn = access_aa64_tid3,
7840 .resetvalue = 0 },
7841 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7842 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
7843 .access = PL1_R, .type = ARM_CP_CONST,
7844 .accessfn = access_aa64_tid3,
7845 .resetvalue = 0 },
7846 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
7847 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
7848 .access = PL1_R, .type = ARM_CP_CONST,
7849 .accessfn = access_aa64_tid3,
7850 .resetvalue = cpu->isar.id_aa64mmfr0 },
7851 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
7852 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
7853 .access = PL1_R, .type = ARM_CP_CONST,
7854 .accessfn = access_aa64_tid3,
7855 .resetvalue = cpu->isar.id_aa64mmfr1 },
7856 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
7857 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
7858 .access = PL1_R, .type = ARM_CP_CONST,
7859 .accessfn = access_aa64_tid3,
7860 .resetvalue = cpu->isar.id_aa64mmfr2 },
7861 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7862 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
7863 .access = PL1_R, .type = ARM_CP_CONST,
7864 .accessfn = access_aa64_tid3,
7865 .resetvalue = 0 },
7866 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7867 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
7868 .access = PL1_R, .type = ARM_CP_CONST,
7869 .accessfn = access_aa64_tid3,
7870 .resetvalue = 0 },
7871 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7872 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
7873 .access = PL1_R, .type = ARM_CP_CONST,
7874 .accessfn = access_aa64_tid3,
7875 .resetvalue = 0 },
7876 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7877 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
7878 .access = PL1_R, .type = ARM_CP_CONST,
7879 .accessfn = access_aa64_tid3,
7880 .resetvalue = 0 },
7881 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7882 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
7883 .access = PL1_R, .type = ARM_CP_CONST,
7884 .accessfn = access_aa64_tid3,
7885 .resetvalue = 0 },
7886 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
7887 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
7888 .access = PL1_R, .type = ARM_CP_CONST,
7889 .accessfn = access_aa64_tid3,
7890 .resetvalue = cpu->isar.mvfr0 },
7891 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
7892 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
7893 .access = PL1_R, .type = ARM_CP_CONST,
7894 .accessfn = access_aa64_tid3,
7895 .resetvalue = cpu->isar.mvfr1 },
7896 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
7897 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
7898 .access = PL1_R, .type = ARM_CP_CONST,
7899 .accessfn = access_aa64_tid3,
7900 .resetvalue = cpu->isar.mvfr2 },
7901 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7902 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
7903 .access = PL1_R, .type = ARM_CP_CONST,
7904 .accessfn = access_aa64_tid3,
7905 .resetvalue = 0 },
7906 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH,
7907 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
7908 .access = PL1_R, .type = ARM_CP_CONST,
7909 .accessfn = access_aa64_tid3,
7910 .resetvalue = cpu->isar.id_pfr2 },
7911 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7912 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
7913 .access = PL1_R, .type = ARM_CP_CONST,
7914 .accessfn = access_aa64_tid3,
7915 .resetvalue = 0 },
7916 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7917 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
7918 .access = PL1_R, .type = ARM_CP_CONST,
7919 .accessfn = access_aa64_tid3,
7920 .resetvalue = 0 },
7921 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7922 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
7923 .access = PL1_R, .type = ARM_CP_CONST,
7924 .accessfn = access_aa64_tid3,
7925 .resetvalue = 0 },
7926 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
7927 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
7928 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7929 .resetvalue = extract64(cpu->pmceid0, 0, 32) },
7930 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
7931 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
7932 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7933 .resetvalue = cpu->pmceid0 },
7934 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
7935 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
7936 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7937 .resetvalue = extract64(cpu->pmceid1, 0, 32) },
7938 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
7939 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
7940 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7941 .resetvalue = cpu->pmceid1 },
7943 #ifdef CONFIG_USER_ONLY
7944 static const ARMCPRegUserSpaceInfo v8_user_idregs[] = {
7945 { .name = "ID_AA64PFR0_EL1",
7946 .exported_bits = 0x000f000f00ff0000,
7947 .fixed_bits = 0x0000000000000011 },
7948 { .name = "ID_AA64PFR1_EL1",
7949 .exported_bits = 0x00000000000000f0 },
7950 { .name = "ID_AA64PFR*_EL1_RESERVED",
7951 .is_glob = true },
7952 { .name = "ID_AA64ZFR0_EL1" },
7953 { .name = "ID_AA64MMFR0_EL1",
7954 .fixed_bits = 0x00000000ff000000 },
7955 { .name = "ID_AA64MMFR1_EL1" },
7956 { .name = "ID_AA64MMFR*_EL1_RESERVED",
7957 .is_glob = true },
7958 { .name = "ID_AA64DFR0_EL1",
7959 .fixed_bits = 0x0000000000000006 },
7960 { .name = "ID_AA64DFR1_EL1" },
7961 { .name = "ID_AA64DFR*_EL1_RESERVED",
7962 .is_glob = true },
7963 { .name = "ID_AA64AFR*",
7964 .is_glob = true },
7965 { .name = "ID_AA64ISAR0_EL1",
7966 .exported_bits = 0x00fffffff0fffff0 },
7967 { .name = "ID_AA64ISAR1_EL1",
7968 .exported_bits = 0x000000f0ffffffff },
7969 { .name = "ID_AA64ISAR*_EL1_RESERVED",
7970 .is_glob = true },
7972 modify_arm_cp_regs(v8_idregs, v8_user_idregs);
7973 #endif
7974 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
7975 if (!arm_feature(env, ARM_FEATURE_EL3) &&
7976 !arm_feature(env, ARM_FEATURE_EL2)) {
7977 ARMCPRegInfo rvbar = {
7978 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
7979 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
7980 .access = PL1_R,
7981 .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
7983 define_one_arm_cp_reg(cpu, &rvbar);
7985 define_arm_cp_regs(cpu, v8_idregs);
7986 define_arm_cp_regs(cpu, v8_cp_reginfo);
7990 * Register the base EL2 cpregs.
7991 * Pre v8, these registers are implemented only as part of the
7992 * Virtualization Extensions (EL2 present). Beginning with v8,
7993 * if EL2 is missing but EL3 is enabled, mostly these become
7994 * RES0 from EL3, with some specific exceptions.
7996 if (arm_feature(env, ARM_FEATURE_EL2)
7997 || (arm_feature(env, ARM_FEATURE_EL3)
7998 && arm_feature(env, ARM_FEATURE_V8))) {
7999 uint64_t vmpidr_def = mpidr_read_val(env);
8000 ARMCPRegInfo vpidr_regs[] = {
8001 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
8002 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8003 .access = PL2_RW, .accessfn = access_el3_aa32ns,
8004 .resetvalue = cpu->midr,
8005 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
8006 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
8007 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
8008 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8009 .access = PL2_RW, .resetvalue = cpu->midr,
8010 .type = ARM_CP_EL3_NO_EL2_C_NZ,
8011 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
8012 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
8013 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8014 .access = PL2_RW, .accessfn = access_el3_aa32ns,
8015 .resetvalue = vmpidr_def,
8016 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
8017 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
8018 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
8019 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8020 .access = PL2_RW, .resetvalue = vmpidr_def,
8021 .type = ARM_CP_EL3_NO_EL2_C_NZ,
8022 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
8025 * The only field of MDCR_EL2 that has a defined architectural reset
8026 * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N.
8028 ARMCPRegInfo mdcr_el2 = {
8029 .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
8030 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
8031 .access = PL2_RW, .resetvalue = pmu_num_counters(env),
8032 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2),
8034 define_one_arm_cp_reg(cpu, &mdcr_el2);
8035 define_arm_cp_regs(cpu, vpidr_regs);
8036 define_arm_cp_regs(cpu, el2_cp_reginfo);
8037 if (arm_feature(env, ARM_FEATURE_V8)) {
8038 define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
8040 if (cpu_isar_feature(aa64_sel2, cpu)) {
8041 define_arm_cp_regs(cpu, el2_sec_cp_reginfo);
8043 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
8044 if (!arm_feature(env, ARM_FEATURE_EL3)) {
8045 ARMCPRegInfo rvbar = {
8046 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
8047 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
8048 .access = PL2_R,
8049 .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
8051 define_one_arm_cp_reg(cpu, &rvbar);
8055 /* Register the base EL3 cpregs. */
8056 if (arm_feature(env, ARM_FEATURE_EL3)) {
8057 define_arm_cp_regs(cpu, el3_cp_reginfo);
8058 ARMCPRegInfo el3_regs[] = {
8059 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
8060 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
8061 .access = PL3_R,
8062 .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
8064 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
8065 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
8066 .access = PL3_RW,
8067 .raw_writefn = raw_write, .writefn = sctlr_write,
8068 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
8069 .resetvalue = cpu->reset_sctlr },
8072 define_arm_cp_regs(cpu, el3_regs);
8074 /* The behaviour of NSACR is sufficiently various that we don't
8075 * try to describe it in a single reginfo:
8076 * if EL3 is 64 bit, then trap to EL3 from S EL1,
8077 * reads as constant 0xc00 from NS EL1 and NS EL2
8078 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
8079 * if v7 without EL3, register doesn't exist
8080 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
8082 if (arm_feature(env, ARM_FEATURE_EL3)) {
8083 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8084 static const ARMCPRegInfo nsacr = {
8085 .name = "NSACR", .type = ARM_CP_CONST,
8086 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8087 .access = PL1_RW, .accessfn = nsacr_access,
8088 .resetvalue = 0xc00
8090 define_one_arm_cp_reg(cpu, &nsacr);
8091 } else {
8092 static const ARMCPRegInfo nsacr = {
8093 .name = "NSACR",
8094 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8095 .access = PL3_RW | PL1_R,
8096 .resetvalue = 0,
8097 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
8099 define_one_arm_cp_reg(cpu, &nsacr);
8101 } else {
8102 if (arm_feature(env, ARM_FEATURE_V8)) {
8103 static const ARMCPRegInfo nsacr = {
8104 .name = "NSACR", .type = ARM_CP_CONST,
8105 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8106 .access = PL1_R,
8107 .resetvalue = 0xc00
8109 define_one_arm_cp_reg(cpu, &nsacr);
8113 if (arm_feature(env, ARM_FEATURE_PMSA)) {
8114 if (arm_feature(env, ARM_FEATURE_V6)) {
8115 /* PMSAv6 not implemented */
8116 assert(arm_feature(env, ARM_FEATURE_V7));
8117 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8118 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
8119 } else {
8120 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
8122 } else {
8123 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8124 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
8125 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */
8126 if (cpu_isar_feature(aa32_hpd, cpu)) {
8127 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
8130 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
8131 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
8133 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
8134 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
8136 if (arm_feature(env, ARM_FEATURE_VAPA)) {
8137 define_arm_cp_regs(cpu, vapa_cp_reginfo);
8139 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
8140 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
8142 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
8143 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
8145 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
8146 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
8148 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
8149 define_arm_cp_regs(cpu, omap_cp_reginfo);
8151 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
8152 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
8154 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8155 define_arm_cp_regs(cpu, xscale_cp_reginfo);
8157 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
8158 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
8160 if (arm_feature(env, ARM_FEATURE_LPAE)) {
8161 define_arm_cp_regs(cpu, lpae_cp_reginfo);
8163 if (cpu_isar_feature(aa32_jazelle, cpu)) {
8164 define_arm_cp_regs(cpu, jazelle_regs);
8166 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
8167 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
8168 * be read-only (ie write causes UNDEF exception).
8171 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
8172 /* Pre-v8 MIDR space.
8173 * Note that the MIDR isn't a simple constant register because
8174 * of the TI925 behaviour where writes to another register can
8175 * cause the MIDR value to change.
8177 * Unimplemented registers in the c15 0 0 0 space default to
8178 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
8179 * and friends override accordingly.
8181 { .name = "MIDR",
8182 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
8183 .access = PL1_R, .resetvalue = cpu->midr,
8184 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
8185 .readfn = midr_read,
8186 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8187 .type = ARM_CP_OVERRIDE },
8188 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
8189 { .name = "DUMMY",
8190 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
8191 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8192 { .name = "DUMMY",
8193 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
8194 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8195 { .name = "DUMMY",
8196 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
8197 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8198 { .name = "DUMMY",
8199 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
8200 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8201 { .name = "DUMMY",
8202 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
8203 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8205 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
8206 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
8207 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
8208 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
8209 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8210 .readfn = midr_read },
8211 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
8212 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8213 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8214 .access = PL1_R, .resetvalue = cpu->midr },
8215 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8216 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
8217 .access = PL1_R, .resetvalue = cpu->midr },
8218 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
8219 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
8220 .access = PL1_R,
8221 .accessfn = access_aa64_tid1,
8222 .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
8224 ARMCPRegInfo id_cp_reginfo[] = {
8225 /* These are common to v8 and pre-v8 */
8226 { .name = "CTR",
8227 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
8228 .access = PL1_R, .accessfn = ctr_el0_access,
8229 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8230 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
8231 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
8232 .access = PL0_R, .accessfn = ctr_el0_access,
8233 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8234 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
8235 { .name = "TCMTR",
8236 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
8237 .access = PL1_R,
8238 .accessfn = access_aa32_tid1,
8239 .type = ARM_CP_CONST, .resetvalue = 0 },
8241 /* TLBTR is specific to VMSA */
8242 ARMCPRegInfo id_tlbtr_reginfo = {
8243 .name = "TLBTR",
8244 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
8245 .access = PL1_R,
8246 .accessfn = access_aa32_tid1,
8247 .type = ARM_CP_CONST, .resetvalue = 0,
8249 /* MPUIR is specific to PMSA V6+ */
8250 ARMCPRegInfo id_mpuir_reginfo = {
8251 .name = "MPUIR",
8252 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8253 .access = PL1_R, .type = ARM_CP_CONST,
8254 .resetvalue = cpu->pmsav7_dregion << 8
8256 static const ARMCPRegInfo crn0_wi_reginfo = {
8257 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
8258 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
8259 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
8261 #ifdef CONFIG_USER_ONLY
8262 static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
8263 { .name = "MIDR_EL1",
8264 .exported_bits = 0x00000000ffffffff },
8265 { .name = "REVIDR_EL1" },
8267 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
8268 #endif
8269 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
8270 arm_feature(env, ARM_FEATURE_STRONGARM)) {
8271 size_t i;
8272 /* Register the blanket "writes ignored" value first to cover the
8273 * whole space. Then update the specific ID registers to allow write
8274 * access, so that they ignore writes rather than causing them to
8275 * UNDEF.
8277 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
8278 for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) {
8279 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW;
8281 for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) {
8282 id_cp_reginfo[i].access = PL1_RW;
8284 id_mpuir_reginfo.access = PL1_RW;
8285 id_tlbtr_reginfo.access = PL1_RW;
8287 if (arm_feature(env, ARM_FEATURE_V8)) {
8288 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
8289 } else {
8290 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
8292 define_arm_cp_regs(cpu, id_cp_reginfo);
8293 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
8294 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
8295 } else if (arm_feature(env, ARM_FEATURE_V7)) {
8296 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
8300 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
8301 ARMCPRegInfo mpidr_cp_reginfo[] = {
8302 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
8303 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
8304 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
8306 #ifdef CONFIG_USER_ONLY
8307 static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
8308 { .name = "MPIDR_EL1",
8309 .fixed_bits = 0x0000000080000000 },
8311 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
8312 #endif
8313 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
8316 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
8317 ARMCPRegInfo auxcr_reginfo[] = {
8318 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
8319 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
8320 .access = PL1_RW, .accessfn = access_tacr,
8321 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
8322 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
8323 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
8324 .access = PL2_RW, .type = ARM_CP_CONST,
8325 .resetvalue = 0 },
8326 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
8327 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
8328 .access = PL3_RW, .type = ARM_CP_CONST,
8329 .resetvalue = 0 },
8331 define_arm_cp_regs(cpu, auxcr_reginfo);
8332 if (cpu_isar_feature(aa32_ac2, cpu)) {
8333 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
8337 if (arm_feature(env, ARM_FEATURE_CBAR)) {
8339 * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
8340 * There are two flavours:
8341 * (1) older 32-bit only cores have a simple 32-bit CBAR
8342 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
8343 * 32-bit register visible to AArch32 at a different encoding
8344 * to the "flavour 1" register and with the bits rearranged to
8345 * be able to squash a 64-bit address into the 32-bit view.
8346 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
8347 * in future if we support AArch32-only configs of some of the
8348 * AArch64 cores we might need to add a specific feature flag
8349 * to indicate cores with "flavour 2" CBAR.
8351 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8352 /* 32 bit view is [31:18] 0...0 [43:32]. */
8353 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
8354 | extract64(cpu->reset_cbar, 32, 12);
8355 ARMCPRegInfo cbar_reginfo[] = {
8356 { .name = "CBAR",
8357 .type = ARM_CP_CONST,
8358 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
8359 .access = PL1_R, .resetvalue = cbar32 },
8360 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
8361 .type = ARM_CP_CONST,
8362 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
8363 .access = PL1_R, .resetvalue = cpu->reset_cbar },
8365 /* We don't implement a r/w 64 bit CBAR currently */
8366 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
8367 define_arm_cp_regs(cpu, cbar_reginfo);
8368 } else {
8369 ARMCPRegInfo cbar = {
8370 .name = "CBAR",
8371 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
8372 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
8373 .fieldoffset = offsetof(CPUARMState,
8374 cp15.c15_config_base_address)
8376 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
8377 cbar.access = PL1_R;
8378 cbar.fieldoffset = 0;
8379 cbar.type = ARM_CP_CONST;
8381 define_one_arm_cp_reg(cpu, &cbar);
8385 if (arm_feature(env, ARM_FEATURE_VBAR)) {
8386 static const ARMCPRegInfo vbar_cp_reginfo[] = {
8387 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
8388 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
8389 .access = PL1_RW, .writefn = vbar_write,
8390 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
8391 offsetof(CPUARMState, cp15.vbar_ns) },
8392 .resetvalue = 0 },
8394 define_arm_cp_regs(cpu, vbar_cp_reginfo);
8397 /* Generic registers whose values depend on the implementation */
8399 ARMCPRegInfo sctlr = {
8400 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
8401 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
8402 .access = PL1_RW, .accessfn = access_tvm_trvm,
8403 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
8404 offsetof(CPUARMState, cp15.sctlr_ns) },
8405 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
8406 .raw_writefn = raw_write,
8408 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8409 /* Normally we would always end the TB on an SCTLR write, but Linux
8410 * arch/arm/mach-pxa/sleep.S expects two instructions following
8411 * an MMU enable to execute from cache. Imitate this behaviour.
8413 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
8415 define_one_arm_cp_reg(cpu, &sctlr);
8418 if (cpu_isar_feature(aa64_lor, cpu)) {
8419 define_arm_cp_regs(cpu, lor_reginfo);
8421 if (cpu_isar_feature(aa64_pan, cpu)) {
8422 define_one_arm_cp_reg(cpu, &pan_reginfo);
8424 #ifndef CONFIG_USER_ONLY
8425 if (cpu_isar_feature(aa64_ats1e1, cpu)) {
8426 define_arm_cp_regs(cpu, ats1e1_reginfo);
8428 if (cpu_isar_feature(aa32_ats1e1, cpu)) {
8429 define_arm_cp_regs(cpu, ats1cp_reginfo);
8431 #endif
8432 if (cpu_isar_feature(aa64_uao, cpu)) {
8433 define_one_arm_cp_reg(cpu, &uao_reginfo);
8436 if (cpu_isar_feature(aa64_dit, cpu)) {
8437 define_one_arm_cp_reg(cpu, &dit_reginfo);
8439 if (cpu_isar_feature(aa64_ssbs, cpu)) {
8440 define_one_arm_cp_reg(cpu, &ssbs_reginfo);
8442 if (cpu_isar_feature(any_ras, cpu)) {
8443 define_arm_cp_regs(cpu, minimal_ras_reginfo);
8446 if (cpu_isar_feature(aa64_vh, cpu) ||
8447 cpu_isar_feature(aa64_debugv8p2, cpu)) {
8448 define_one_arm_cp_reg(cpu, &contextidr_el2);
8450 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
8451 define_arm_cp_regs(cpu, vhe_reginfo);
8454 if (cpu_isar_feature(aa64_sve, cpu)) {
8455 define_arm_cp_regs(cpu, zcr_reginfo);
8458 if (cpu_isar_feature(aa64_hcx, cpu)) {
8459 define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo);
8462 #ifdef TARGET_AARCH64
8463 if (cpu_isar_feature(aa64_pauth, cpu)) {
8464 define_arm_cp_regs(cpu, pauth_reginfo);
8466 if (cpu_isar_feature(aa64_rndr, cpu)) {
8467 define_arm_cp_regs(cpu, rndr_reginfo);
8469 if (cpu_isar_feature(aa64_tlbirange, cpu)) {
8470 define_arm_cp_regs(cpu, tlbirange_reginfo);
8472 if (cpu_isar_feature(aa64_tlbios, cpu)) {
8473 define_arm_cp_regs(cpu, tlbios_reginfo);
8475 #ifndef CONFIG_USER_ONLY
8476 /* Data Cache clean instructions up to PoP */
8477 if (cpu_isar_feature(aa64_dcpop, cpu)) {
8478 define_one_arm_cp_reg(cpu, dcpop_reg);
8480 if (cpu_isar_feature(aa64_dcpodp, cpu)) {
8481 define_one_arm_cp_reg(cpu, dcpodp_reg);
8484 #endif /*CONFIG_USER_ONLY*/
8487 * If full MTE is enabled, add all of the system registers.
8488 * If only "instructions available at EL0" are enabled,
8489 * then define only a RAZ/WI version of PSTATE.TCO.
8491 if (cpu_isar_feature(aa64_mte, cpu)) {
8492 define_arm_cp_regs(cpu, mte_reginfo);
8493 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
8494 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
8495 define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
8496 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
8499 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
8500 define_arm_cp_regs(cpu, scxtnum_reginfo);
8502 #endif
8504 if (cpu_isar_feature(any_predinv, cpu)) {
8505 define_arm_cp_regs(cpu, predinv_reginfo);
8508 if (cpu_isar_feature(any_ccidx, cpu)) {
8509 define_arm_cp_regs(cpu, ccsidr2_reginfo);
8512 #ifndef CONFIG_USER_ONLY
8514 * Register redirections and aliases must be done last,
8515 * after the registers from the other extensions have been defined.
8517 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
8518 define_arm_vh_e2h_redirects_aliases(cpu);
8520 #endif
8523 /* Sort alphabetically by type name, except for "any". */
8524 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
8526 ObjectClass *class_a = (ObjectClass *)a;
8527 ObjectClass *class_b = (ObjectClass *)b;
8528 const char *name_a, *name_b;
8530 name_a = object_class_get_name(class_a);
8531 name_b = object_class_get_name(class_b);
8532 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
8533 return 1;
8534 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
8535 return -1;
8536 } else {
8537 return strcmp(name_a, name_b);
8541 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
8543 ObjectClass *oc = data;
8544 const char *typename;
8545 char *name;
8547 typename = object_class_get_name(oc);
8548 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
8549 qemu_printf(" %s\n", name);
8550 g_free(name);
8553 void arm_cpu_list(void)
8555 GSList *list;
8557 list = object_class_get_list(TYPE_ARM_CPU, false);
8558 list = g_slist_sort(list, arm_cpu_list_compare);
8559 qemu_printf("Available CPUs:\n");
8560 g_slist_foreach(list, arm_cpu_list_entry, NULL);
8561 g_slist_free(list);
8564 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
8566 ObjectClass *oc = data;
8567 CpuDefinitionInfoList **cpu_list = user_data;
8568 CpuDefinitionInfo *info;
8569 const char *typename;
8571 typename = object_class_get_name(oc);
8572 info = g_malloc0(sizeof(*info));
8573 info->name = g_strndup(typename,
8574 strlen(typename) - strlen("-" TYPE_ARM_CPU));
8575 info->q_typename = g_strdup(typename);
8577 QAPI_LIST_PREPEND(*cpu_list, info);
8580 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
8582 CpuDefinitionInfoList *cpu_list = NULL;
8583 GSList *list;
8585 list = object_class_get_list(TYPE_ARM_CPU, false);
8586 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
8587 g_slist_free(list);
8589 return cpu_list;
8593 * Private utility function for define_one_arm_cp_reg_with_opaque():
8594 * add a single reginfo struct to the hash table.
8596 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
8597 void *opaque, CPState state,
8598 CPSecureState secstate,
8599 int crm, int opc1, int opc2,
8600 const char *name)
8602 CPUARMState *env = &cpu->env;
8603 uint32_t key;
8604 ARMCPRegInfo *r2;
8605 bool is64 = r->type & ARM_CP_64BIT;
8606 bool ns = secstate & ARM_CP_SECSTATE_NS;
8607 int cp = r->cp;
8608 size_t name_len;
8609 bool make_const;
8611 switch (state) {
8612 case ARM_CP_STATE_AA32:
8613 /* We assume it is a cp15 register if the .cp field is left unset. */
8614 if (cp == 0 && r->state == ARM_CP_STATE_BOTH) {
8615 cp = 15;
8617 key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2);
8618 break;
8619 case ARM_CP_STATE_AA64:
8621 * To allow abbreviation of ARMCPRegInfo definitions, we treat
8622 * cp == 0 as equivalent to the value for "standard guest-visible
8623 * sysreg". STATE_BOTH definitions are also always "standard sysreg"
8624 * in their AArch64 view (the .cp value may be non-zero for the
8625 * benefit of the AArch32 view).
8627 if (cp == 0 || r->state == ARM_CP_STATE_BOTH) {
8628 cp = CP_REG_ARM64_SYSREG_CP;
8630 key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2);
8631 break;
8632 default:
8633 g_assert_not_reached();
8636 /* Overriding of an existing definition must be explicitly requested. */
8637 if (!(r->type & ARM_CP_OVERRIDE)) {
8638 const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key);
8639 if (oldreg) {
8640 assert(oldreg->type & ARM_CP_OVERRIDE);
8645 * Eliminate registers that are not present because the EL is missing.
8646 * Doing this here makes it easier to put all registers for a given
8647 * feature into the same ARMCPRegInfo array and define them all at once.
8649 make_const = false;
8650 if (arm_feature(env, ARM_FEATURE_EL3)) {
8652 * An EL2 register without EL2 but with EL3 is (usually) RES0.
8653 * See rule RJFFP in section D1.1.3 of DDI0487H.a.
8655 int min_el = ctz32(r->access) / 2;
8656 if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) {
8657 if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) {
8658 return;
8660 make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP);
8662 } else {
8663 CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2)
8664 ? PL2_RW : PL1_RW);
8665 if ((r->access & max_el) == 0) {
8666 return;
8670 /* Combine cpreg and name into one allocation. */
8671 name_len = strlen(name) + 1;
8672 r2 = g_malloc(sizeof(*r2) + name_len);
8673 *r2 = *r;
8674 r2->name = memcpy(r2 + 1, name, name_len);
8677 * Update fields to match the instantiation, overwiting wildcards
8678 * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH.
8680 r2->cp = cp;
8681 r2->crm = crm;
8682 r2->opc1 = opc1;
8683 r2->opc2 = opc2;
8684 r2->state = state;
8685 r2->secure = secstate;
8686 if (opaque) {
8687 r2->opaque = opaque;
8690 if (make_const) {
8691 /* This should not have been a very special register to begin. */
8692 int old_special = r2->type & ARM_CP_SPECIAL_MASK;
8693 assert(old_special == 0 || old_special == ARM_CP_NOP);
8695 * Set the special function to CONST, retaining the other flags.
8696 * This is important for e.g. ARM_CP_SVE so that we still
8697 * take the SVE trap if CPTR_EL3.EZ == 0.
8699 r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST;
8701 * Usually, these registers become RES0, but there are a few
8702 * special cases like VPIDR_EL2 which have a constant non-zero
8703 * value with writes ignored.
8705 if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) {
8706 r2->resetvalue = 0;
8709 * ARM_CP_CONST has precedence, so removing the callbacks and
8710 * offsets are not strictly necessary, but it is potentially
8711 * less confusing to debug later.
8713 r2->readfn = NULL;
8714 r2->writefn = NULL;
8715 r2->raw_readfn = NULL;
8716 r2->raw_writefn = NULL;
8717 r2->resetfn = NULL;
8718 r2->fieldoffset = 0;
8719 r2->bank_fieldoffsets[0] = 0;
8720 r2->bank_fieldoffsets[1] = 0;
8721 } else {
8722 bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1];
8724 if (isbanked) {
8726 * Register is banked (using both entries in array).
8727 * Overwriting fieldoffset as the array is only used to define
8728 * banked registers but later only fieldoffset is used.
8730 r2->fieldoffset = r->bank_fieldoffsets[ns];
8732 if (state == ARM_CP_STATE_AA32) {
8733 if (isbanked) {
8735 * If the register is banked then we don't need to migrate or
8736 * reset the 32-bit instance in certain cases:
8738 * 1) If the register has both 32-bit and 64-bit instances
8739 * then we can count on the 64-bit instance taking care
8740 * of the non-secure bank.
8741 * 2) If ARMv8 is enabled then we can count on a 64-bit
8742 * version taking care of the secure bank. This requires
8743 * that separate 32 and 64-bit definitions are provided.
8745 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
8746 (arm_feature(env, ARM_FEATURE_V8) && !ns)) {
8747 r2->type |= ARM_CP_ALIAS;
8749 } else if ((secstate != r->secure) && !ns) {
8751 * The register is not banked so we only want to allow
8752 * migration of the non-secure instance.
8754 r2->type |= ARM_CP_ALIAS;
8757 if (HOST_BIG_ENDIAN &&
8758 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) {
8759 r2->fieldoffset += sizeof(uint32_t);
8765 * By convention, for wildcarded registers only the first
8766 * entry is used for migration; the others are marked as
8767 * ALIAS so we don't try to transfer the register
8768 * multiple times. Special registers (ie NOP/WFI) are
8769 * never migratable and not even raw-accessible.
8771 if (r2->type & ARM_CP_SPECIAL_MASK) {
8772 r2->type |= ARM_CP_NO_RAW;
8774 if (((r->crm == CP_ANY) && crm != 0) ||
8775 ((r->opc1 == CP_ANY) && opc1 != 0) ||
8776 ((r->opc2 == CP_ANY) && opc2 != 0)) {
8777 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
8781 * Check that raw accesses are either forbidden or handled. Note that
8782 * we can't assert this earlier because the setup of fieldoffset for
8783 * banked registers has to be done first.
8785 if (!(r2->type & ARM_CP_NO_RAW)) {
8786 assert(!raw_accessors_invalid(r2));
8789 g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2);
8793 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
8794 const ARMCPRegInfo *r, void *opaque)
8796 /* Define implementations of coprocessor registers.
8797 * We store these in a hashtable because typically
8798 * there are less than 150 registers in a space which
8799 * is 16*16*16*8*8 = 262144 in size.
8800 * Wildcarding is supported for the crm, opc1 and opc2 fields.
8801 * If a register is defined twice then the second definition is
8802 * used, so this can be used to define some generic registers and
8803 * then override them with implementation specific variations.
8804 * At least one of the original and the second definition should
8805 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
8806 * against accidental use.
8808 * The state field defines whether the register is to be
8809 * visible in the AArch32 or AArch64 execution state. If the
8810 * state is set to ARM_CP_STATE_BOTH then we synthesise a
8811 * reginfo structure for the AArch32 view, which sees the lower
8812 * 32 bits of the 64 bit register.
8814 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
8815 * be wildcarded. AArch64 registers are always considered to be 64
8816 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
8817 * the register, if any.
8819 int crm, opc1, opc2;
8820 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
8821 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
8822 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
8823 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
8824 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
8825 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
8826 CPState state;
8828 /* 64 bit registers have only CRm and Opc1 fields */
8829 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
8830 /* op0 only exists in the AArch64 encodings */
8831 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
8832 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
8833 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
8835 * This API is only for Arm's system coprocessors (14 and 15) or
8836 * (M-profile or v7A-and-earlier only) for implementation defined
8837 * coprocessors in the range 0..7. Our decode assumes this, since
8838 * 8..13 can be used for other insns including VFP and Neon. See
8839 * valid_cp() in translate.c. Assert here that we haven't tried
8840 * to use an invalid coprocessor number.
8842 switch (r->state) {
8843 case ARM_CP_STATE_BOTH:
8844 /* 0 has a special meaning, but otherwise the same rules as AA32. */
8845 if (r->cp == 0) {
8846 break;
8848 /* fall through */
8849 case ARM_CP_STATE_AA32:
8850 if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
8851 !arm_feature(&cpu->env, ARM_FEATURE_M)) {
8852 assert(r->cp >= 14 && r->cp <= 15);
8853 } else {
8854 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
8856 break;
8857 case ARM_CP_STATE_AA64:
8858 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
8859 break;
8860 default:
8861 g_assert_not_reached();
8863 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
8864 * encodes a minimum access level for the register. We roll this
8865 * runtime check into our general permission check code, so check
8866 * here that the reginfo's specified permissions are strict enough
8867 * to encompass the generic architectural permission check.
8869 if (r->state != ARM_CP_STATE_AA32) {
8870 CPAccessRights mask;
8871 switch (r->opc1) {
8872 case 0:
8873 /* min_EL EL1, but some accessible to EL0 via kernel ABI */
8874 mask = PL0U_R | PL1_RW;
8875 break;
8876 case 1: case 2:
8877 /* min_EL EL1 */
8878 mask = PL1_RW;
8879 break;
8880 case 3:
8881 /* min_EL EL0 */
8882 mask = PL0_RW;
8883 break;
8884 case 4:
8885 case 5:
8886 /* min_EL EL2 */
8887 mask = PL2_RW;
8888 break;
8889 case 6:
8890 /* min_EL EL3 */
8891 mask = PL3_RW;
8892 break;
8893 case 7:
8894 /* min_EL EL1, secure mode only (we don't check the latter) */
8895 mask = PL1_RW;
8896 break;
8897 default:
8898 /* broken reginfo with out-of-range opc1 */
8899 g_assert_not_reached();
8901 /* assert our permissions are not too lax (stricter is fine) */
8902 assert((r->access & ~mask) == 0);
8905 /* Check that the register definition has enough info to handle
8906 * reads and writes if they are permitted.
8908 if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) {
8909 if (r->access & PL3_R) {
8910 assert((r->fieldoffset ||
8911 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
8912 r->readfn);
8914 if (r->access & PL3_W) {
8915 assert((r->fieldoffset ||
8916 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
8917 r->writefn);
8921 for (crm = crmmin; crm <= crmmax; crm++) {
8922 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
8923 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
8924 for (state = ARM_CP_STATE_AA32;
8925 state <= ARM_CP_STATE_AA64; state++) {
8926 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
8927 continue;
8929 if (state == ARM_CP_STATE_AA32) {
8930 /* Under AArch32 CP registers can be common
8931 * (same for secure and non-secure world) or banked.
8933 char *name;
8935 switch (r->secure) {
8936 case ARM_CP_SECSTATE_S:
8937 case ARM_CP_SECSTATE_NS:
8938 add_cpreg_to_hashtable(cpu, r, opaque, state,
8939 r->secure, crm, opc1, opc2,
8940 r->name);
8941 break;
8942 case ARM_CP_SECSTATE_BOTH:
8943 name = g_strdup_printf("%s_S", r->name);
8944 add_cpreg_to_hashtable(cpu, r, opaque, state,
8945 ARM_CP_SECSTATE_S,
8946 crm, opc1, opc2, name);
8947 g_free(name);
8948 add_cpreg_to_hashtable(cpu, r, opaque, state,
8949 ARM_CP_SECSTATE_NS,
8950 crm, opc1, opc2, r->name);
8951 break;
8952 default:
8953 g_assert_not_reached();
8955 } else {
8956 /* AArch64 registers get mapped to non-secure instance
8957 * of AArch32 */
8958 add_cpreg_to_hashtable(cpu, r, opaque, state,
8959 ARM_CP_SECSTATE_NS,
8960 crm, opc1, opc2, r->name);
8968 /* Define a whole list of registers */
8969 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs,
8970 void *opaque, size_t len)
8972 size_t i;
8973 for (i = 0; i < len; ++i) {
8974 define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque);
8979 * Modify ARMCPRegInfo for access from userspace.
8981 * This is a data driven modification directed by
8982 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
8983 * user-space cannot alter any values and dynamic values pertaining to
8984 * execution state are hidden from user space view anyway.
8986 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len,
8987 const ARMCPRegUserSpaceInfo *mods,
8988 size_t mods_len)
8990 for (size_t mi = 0; mi < mods_len; ++mi) {
8991 const ARMCPRegUserSpaceInfo *m = mods + mi;
8992 GPatternSpec *pat = NULL;
8994 if (m->is_glob) {
8995 pat = g_pattern_spec_new(m->name);
8997 for (size_t ri = 0; ri < regs_len; ++ri) {
8998 ARMCPRegInfo *r = regs + ri;
9000 if (pat && g_pattern_match_string(pat, r->name)) {
9001 r->type = ARM_CP_CONST;
9002 r->access = PL0U_R;
9003 r->resetvalue = 0;
9004 /* continue */
9005 } else if (strcmp(r->name, m->name) == 0) {
9006 r->type = ARM_CP_CONST;
9007 r->access = PL0U_R;
9008 r->resetvalue &= m->exported_bits;
9009 r->resetvalue |= m->fixed_bits;
9010 break;
9013 if (pat) {
9014 g_pattern_spec_free(pat);
9019 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
9021 return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp);
9024 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
9025 uint64_t value)
9027 /* Helper coprocessor write function for write-ignore registers */
9030 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
9032 /* Helper coprocessor write function for read-as-zero registers */
9033 return 0;
9036 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
9038 /* Helper coprocessor reset function for do-nothing-on-reset registers */
9041 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
9043 /* Return true if it is not valid for us to switch to
9044 * this CPU mode (ie all the UNPREDICTABLE cases in
9045 * the ARM ARM CPSRWriteByInstr pseudocode).
9048 /* Changes to or from Hyp via MSR and CPS are illegal. */
9049 if (write_type == CPSRWriteByInstr &&
9050 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
9051 mode == ARM_CPU_MODE_HYP)) {
9052 return 1;
9055 switch (mode) {
9056 case ARM_CPU_MODE_USR:
9057 return 0;
9058 case ARM_CPU_MODE_SYS:
9059 case ARM_CPU_MODE_SVC:
9060 case ARM_CPU_MODE_ABT:
9061 case ARM_CPU_MODE_UND:
9062 case ARM_CPU_MODE_IRQ:
9063 case ARM_CPU_MODE_FIQ:
9064 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
9065 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
9067 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
9068 * and CPS are treated as illegal mode changes.
9070 if (write_type == CPSRWriteByInstr &&
9071 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
9072 (arm_hcr_el2_eff(env) & HCR_TGE)) {
9073 return 1;
9075 return 0;
9076 case ARM_CPU_MODE_HYP:
9077 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2;
9078 case ARM_CPU_MODE_MON:
9079 return arm_current_el(env) < 3;
9080 default:
9081 return 1;
9085 uint32_t cpsr_read(CPUARMState *env)
9087 int ZF;
9088 ZF = (env->ZF == 0);
9089 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
9090 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
9091 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
9092 | ((env->condexec_bits & 0xfc) << 8)
9093 | (env->GE << 16) | (env->daif & CPSR_AIF);
9096 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
9097 CPSRWriteType write_type)
9099 uint32_t changed_daif;
9100 bool rebuild_hflags = (write_type != CPSRWriteRaw) &&
9101 (mask & (CPSR_M | CPSR_E | CPSR_IL));
9103 if (mask & CPSR_NZCV) {
9104 env->ZF = (~val) & CPSR_Z;
9105 env->NF = val;
9106 env->CF = (val >> 29) & 1;
9107 env->VF = (val << 3) & 0x80000000;
9109 if (mask & CPSR_Q)
9110 env->QF = ((val & CPSR_Q) != 0);
9111 if (mask & CPSR_T)
9112 env->thumb = ((val & CPSR_T) != 0);
9113 if (mask & CPSR_IT_0_1) {
9114 env->condexec_bits &= ~3;
9115 env->condexec_bits |= (val >> 25) & 3;
9117 if (mask & CPSR_IT_2_7) {
9118 env->condexec_bits &= 3;
9119 env->condexec_bits |= (val >> 8) & 0xfc;
9121 if (mask & CPSR_GE) {
9122 env->GE = (val >> 16) & 0xf;
9125 /* In a V7 implementation that includes the security extensions but does
9126 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
9127 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
9128 * bits respectively.
9130 * In a V8 implementation, it is permitted for privileged software to
9131 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
9133 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
9134 arm_feature(env, ARM_FEATURE_EL3) &&
9135 !arm_feature(env, ARM_FEATURE_EL2) &&
9136 !arm_is_secure(env)) {
9138 changed_daif = (env->daif ^ val) & mask;
9140 if (changed_daif & CPSR_A) {
9141 /* Check to see if we are allowed to change the masking of async
9142 * abort exceptions from a non-secure state.
9144 if (!(env->cp15.scr_el3 & SCR_AW)) {
9145 qemu_log_mask(LOG_GUEST_ERROR,
9146 "Ignoring attempt to switch CPSR_A flag from "
9147 "non-secure world with SCR.AW bit clear\n");
9148 mask &= ~CPSR_A;
9152 if (changed_daif & CPSR_F) {
9153 /* Check to see if we are allowed to change the masking of FIQ
9154 * exceptions from a non-secure state.
9156 if (!(env->cp15.scr_el3 & SCR_FW)) {
9157 qemu_log_mask(LOG_GUEST_ERROR,
9158 "Ignoring attempt to switch CPSR_F flag from "
9159 "non-secure world with SCR.FW bit clear\n");
9160 mask &= ~CPSR_F;
9163 /* Check whether non-maskable FIQ (NMFI) support is enabled.
9164 * If this bit is set software is not allowed to mask
9165 * FIQs, but is allowed to set CPSR_F to 0.
9167 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
9168 (val & CPSR_F)) {
9169 qemu_log_mask(LOG_GUEST_ERROR,
9170 "Ignoring attempt to enable CPSR_F flag "
9171 "(non-maskable FIQ [NMFI] support enabled)\n");
9172 mask &= ~CPSR_F;
9177 env->daif &= ~(CPSR_AIF & mask);
9178 env->daif |= val & CPSR_AIF & mask;
9180 if (write_type != CPSRWriteRaw &&
9181 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
9182 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
9183 /* Note that we can only get here in USR mode if this is a
9184 * gdb stub write; for this case we follow the architectural
9185 * behaviour for guest writes in USR mode of ignoring an attempt
9186 * to switch mode. (Those are caught by translate.c for writes
9187 * triggered by guest instructions.)
9189 mask &= ~CPSR_M;
9190 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
9191 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
9192 * v7, and has defined behaviour in v8:
9193 * + leave CPSR.M untouched
9194 * + allow changes to the other CPSR fields
9195 * + set PSTATE.IL
9196 * For user changes via the GDB stub, we don't set PSTATE.IL,
9197 * as this would be unnecessarily harsh for a user error.
9199 mask &= ~CPSR_M;
9200 if (write_type != CPSRWriteByGDBStub &&
9201 arm_feature(env, ARM_FEATURE_V8)) {
9202 mask |= CPSR_IL;
9203 val |= CPSR_IL;
9205 qemu_log_mask(LOG_GUEST_ERROR,
9206 "Illegal AArch32 mode switch attempt from %s to %s\n",
9207 aarch32_mode_name(env->uncached_cpsr),
9208 aarch32_mode_name(val));
9209 } else {
9210 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
9211 write_type == CPSRWriteExceptionReturn ?
9212 "Exception return from AArch32" :
9213 "AArch32 mode switch from",
9214 aarch32_mode_name(env->uncached_cpsr),
9215 aarch32_mode_name(val), env->regs[15]);
9216 switch_mode(env, val & CPSR_M);
9219 mask &= ~CACHED_CPSR_BITS;
9220 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
9221 if (rebuild_hflags) {
9222 arm_rebuild_hflags(env);
9226 /* Sign/zero extend */
9227 uint32_t HELPER(sxtb16)(uint32_t x)
9229 uint32_t res;
9230 res = (uint16_t)(int8_t)x;
9231 res |= (uint32_t)(int8_t)(x >> 16) << 16;
9232 return res;
9235 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra)
9238 * Take a division-by-zero exception if necessary; otherwise return
9239 * to get the usual non-trapping division behaviour (result of 0)
9241 if (arm_feature(env, ARM_FEATURE_M)
9242 && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) {
9243 raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra);
9247 uint32_t HELPER(uxtb16)(uint32_t x)
9249 uint32_t res;
9250 res = (uint16_t)(uint8_t)x;
9251 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
9252 return res;
9255 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den)
9257 if (den == 0) {
9258 handle_possible_div0_trap(env, GETPC());
9259 return 0;
9261 if (num == INT_MIN && den == -1) {
9262 return INT_MIN;
9264 return num / den;
9267 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den)
9269 if (den == 0) {
9270 handle_possible_div0_trap(env, GETPC());
9271 return 0;
9273 return num / den;
9276 uint32_t HELPER(rbit)(uint32_t x)
9278 return revbit32(x);
9281 #ifdef CONFIG_USER_ONLY
9283 static void switch_mode(CPUARMState *env, int mode)
9285 ARMCPU *cpu = env_archcpu(env);
9287 if (mode != ARM_CPU_MODE_USR) {
9288 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
9292 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
9293 uint32_t cur_el, bool secure)
9295 return 1;
9298 void aarch64_sync_64_to_32(CPUARMState *env)
9300 g_assert_not_reached();
9303 #else
9305 static void switch_mode(CPUARMState *env, int mode)
9307 int old_mode;
9308 int i;
9310 old_mode = env->uncached_cpsr & CPSR_M;
9311 if (mode == old_mode)
9312 return;
9314 if (old_mode == ARM_CPU_MODE_FIQ) {
9315 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
9316 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
9317 } else if (mode == ARM_CPU_MODE_FIQ) {
9318 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
9319 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
9322 i = bank_number(old_mode);
9323 env->banked_r13[i] = env->regs[13];
9324 env->banked_spsr[i] = env->spsr;
9326 i = bank_number(mode);
9327 env->regs[13] = env->banked_r13[i];
9328 env->spsr = env->banked_spsr[i];
9330 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
9331 env->regs[14] = env->banked_r14[r14_bank_number(mode)];
9334 /* Physical Interrupt Target EL Lookup Table
9336 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
9338 * The below multi-dimensional table is used for looking up the target
9339 * exception level given numerous condition criteria. Specifically, the
9340 * target EL is based on SCR and HCR routing controls as well as the
9341 * currently executing EL and secure state.
9343 * Dimensions:
9344 * target_el_table[2][2][2][2][2][4]
9345 * | | | | | +--- Current EL
9346 * | | | | +------ Non-secure(0)/Secure(1)
9347 * | | | +--------- HCR mask override
9348 * | | +------------ SCR exec state control
9349 * | +--------------- SCR mask override
9350 * +------------------ 32-bit(0)/64-bit(1) EL3
9352 * The table values are as such:
9353 * 0-3 = EL0-EL3
9354 * -1 = Cannot occur
9356 * The ARM ARM target EL table includes entries indicating that an "exception
9357 * is not taken". The two cases where this is applicable are:
9358 * 1) An exception is taken from EL3 but the SCR does not have the exception
9359 * routed to EL3.
9360 * 2) An exception is taken from EL2 but the HCR does not have the exception
9361 * routed to EL2.
9362 * In these two cases, the below table contain a target of EL1. This value is
9363 * returned as it is expected that the consumer of the table data will check
9364 * for "target EL >= current EL" to ensure the exception is not taken.
9366 * SCR HCR
9367 * 64 EA AMO From
9368 * BIT IRQ IMO Non-secure Secure
9369 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
9371 static const int8_t target_el_table[2][2][2][2][2][4] = {
9372 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
9373 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
9374 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
9375 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
9376 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
9377 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
9378 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
9379 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
9380 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
9381 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},},
9382 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },},
9383 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},},
9384 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
9385 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
9386 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},
9387 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},},
9391 * Determine the target EL for physical exceptions
9393 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
9394 uint32_t cur_el, bool secure)
9396 CPUARMState *env = cs->env_ptr;
9397 bool rw;
9398 bool scr;
9399 bool hcr;
9400 int target_el;
9401 /* Is the highest EL AArch64? */
9402 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
9403 uint64_t hcr_el2;
9405 if (arm_feature(env, ARM_FEATURE_EL3)) {
9406 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
9407 } else {
9408 /* Either EL2 is the highest EL (and so the EL2 register width
9409 * is given by is64); or there is no EL2 or EL3, in which case
9410 * the value of 'rw' does not affect the table lookup anyway.
9412 rw = is64;
9415 hcr_el2 = arm_hcr_el2_eff(env);
9416 switch (excp_idx) {
9417 case EXCP_IRQ:
9418 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
9419 hcr = hcr_el2 & HCR_IMO;
9420 break;
9421 case EXCP_FIQ:
9422 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
9423 hcr = hcr_el2 & HCR_FMO;
9424 break;
9425 default:
9426 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
9427 hcr = hcr_el2 & HCR_AMO;
9428 break;
9432 * For these purposes, TGE and AMO/IMO/FMO both force the
9433 * interrupt to EL2. Fold TGE into the bit extracted above.
9435 hcr |= (hcr_el2 & HCR_TGE) != 0;
9437 /* Perform a table-lookup for the target EL given the current state */
9438 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
9440 assert(target_el > 0);
9442 return target_el;
9445 void arm_log_exception(CPUState *cs)
9447 int idx = cs->exception_index;
9449 if (qemu_loglevel_mask(CPU_LOG_INT)) {
9450 const char *exc = NULL;
9451 static const char * const excnames[] = {
9452 [EXCP_UDEF] = "Undefined Instruction",
9453 [EXCP_SWI] = "SVC",
9454 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
9455 [EXCP_DATA_ABORT] = "Data Abort",
9456 [EXCP_IRQ] = "IRQ",
9457 [EXCP_FIQ] = "FIQ",
9458 [EXCP_BKPT] = "Breakpoint",
9459 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
9460 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
9461 [EXCP_HVC] = "Hypervisor Call",
9462 [EXCP_HYP_TRAP] = "Hypervisor Trap",
9463 [EXCP_SMC] = "Secure Monitor Call",
9464 [EXCP_VIRQ] = "Virtual IRQ",
9465 [EXCP_VFIQ] = "Virtual FIQ",
9466 [EXCP_SEMIHOST] = "Semihosting call",
9467 [EXCP_NOCP] = "v7M NOCP UsageFault",
9468 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
9469 [EXCP_STKOF] = "v8M STKOF UsageFault",
9470 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
9471 [EXCP_LSERR] = "v8M LSERR UsageFault",
9472 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
9473 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault",
9474 [EXCP_VSERR] = "Virtual SERR",
9477 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
9478 exc = excnames[idx];
9480 if (!exc) {
9481 exc = "unknown";
9483 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n",
9484 idx, exc, cs->cpu_index);
9489 * Function used to synchronize QEMU's AArch64 register set with AArch32
9490 * register set. This is necessary when switching between AArch32 and AArch64
9491 * execution state.
9493 void aarch64_sync_32_to_64(CPUARMState *env)
9495 int i;
9496 uint32_t mode = env->uncached_cpsr & CPSR_M;
9498 /* We can blanket copy R[0:7] to X[0:7] */
9499 for (i = 0; i < 8; i++) {
9500 env->xregs[i] = env->regs[i];
9504 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
9505 * Otherwise, they come from the banked user regs.
9507 if (mode == ARM_CPU_MODE_FIQ) {
9508 for (i = 8; i < 13; i++) {
9509 env->xregs[i] = env->usr_regs[i - 8];
9511 } else {
9512 for (i = 8; i < 13; i++) {
9513 env->xregs[i] = env->regs[i];
9518 * Registers x13-x23 are the various mode SP and FP registers. Registers
9519 * r13 and r14 are only copied if we are in that mode, otherwise we copy
9520 * from the mode banked register.
9522 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9523 env->xregs[13] = env->regs[13];
9524 env->xregs[14] = env->regs[14];
9525 } else {
9526 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
9527 /* HYP is an exception in that it is copied from r14 */
9528 if (mode == ARM_CPU_MODE_HYP) {
9529 env->xregs[14] = env->regs[14];
9530 } else {
9531 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
9535 if (mode == ARM_CPU_MODE_HYP) {
9536 env->xregs[15] = env->regs[13];
9537 } else {
9538 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
9541 if (mode == ARM_CPU_MODE_IRQ) {
9542 env->xregs[16] = env->regs[14];
9543 env->xregs[17] = env->regs[13];
9544 } else {
9545 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
9546 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
9549 if (mode == ARM_CPU_MODE_SVC) {
9550 env->xregs[18] = env->regs[14];
9551 env->xregs[19] = env->regs[13];
9552 } else {
9553 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
9554 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
9557 if (mode == ARM_CPU_MODE_ABT) {
9558 env->xregs[20] = env->regs[14];
9559 env->xregs[21] = env->regs[13];
9560 } else {
9561 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
9562 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
9565 if (mode == ARM_CPU_MODE_UND) {
9566 env->xregs[22] = env->regs[14];
9567 env->xregs[23] = env->regs[13];
9568 } else {
9569 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
9570 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
9574 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
9575 * mode, then we can copy from r8-r14. Otherwise, we copy from the
9576 * FIQ bank for r8-r14.
9578 if (mode == ARM_CPU_MODE_FIQ) {
9579 for (i = 24; i < 31; i++) {
9580 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
9582 } else {
9583 for (i = 24; i < 29; i++) {
9584 env->xregs[i] = env->fiq_regs[i - 24];
9586 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
9587 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
9590 env->pc = env->regs[15];
9594 * Function used to synchronize QEMU's AArch32 register set with AArch64
9595 * register set. This is necessary when switching between AArch32 and AArch64
9596 * execution state.
9598 void aarch64_sync_64_to_32(CPUARMState *env)
9600 int i;
9601 uint32_t mode = env->uncached_cpsr & CPSR_M;
9603 /* We can blanket copy X[0:7] to R[0:7] */
9604 for (i = 0; i < 8; i++) {
9605 env->regs[i] = env->xregs[i];
9609 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
9610 * Otherwise, we copy x8-x12 into the banked user regs.
9612 if (mode == ARM_CPU_MODE_FIQ) {
9613 for (i = 8; i < 13; i++) {
9614 env->usr_regs[i - 8] = env->xregs[i];
9616 } else {
9617 for (i = 8; i < 13; i++) {
9618 env->regs[i] = env->xregs[i];
9623 * Registers r13 & r14 depend on the current mode.
9624 * If we are in a given mode, we copy the corresponding x registers to r13
9625 * and r14. Otherwise, we copy the x register to the banked r13 and r14
9626 * for the mode.
9628 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9629 env->regs[13] = env->xregs[13];
9630 env->regs[14] = env->xregs[14];
9631 } else {
9632 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
9635 * HYP is an exception in that it does not have its own banked r14 but
9636 * shares the USR r14
9638 if (mode == ARM_CPU_MODE_HYP) {
9639 env->regs[14] = env->xregs[14];
9640 } else {
9641 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
9645 if (mode == ARM_CPU_MODE_HYP) {
9646 env->regs[13] = env->xregs[15];
9647 } else {
9648 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
9651 if (mode == ARM_CPU_MODE_IRQ) {
9652 env->regs[14] = env->xregs[16];
9653 env->regs[13] = env->xregs[17];
9654 } else {
9655 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
9656 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
9659 if (mode == ARM_CPU_MODE_SVC) {
9660 env->regs[14] = env->xregs[18];
9661 env->regs[13] = env->xregs[19];
9662 } else {
9663 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
9664 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
9667 if (mode == ARM_CPU_MODE_ABT) {
9668 env->regs[14] = env->xregs[20];
9669 env->regs[13] = env->xregs[21];
9670 } else {
9671 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
9672 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
9675 if (mode == ARM_CPU_MODE_UND) {
9676 env->regs[14] = env->xregs[22];
9677 env->regs[13] = env->xregs[23];
9678 } else {
9679 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
9680 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
9683 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
9684 * mode, then we can copy to r8-r14. Otherwise, we copy to the
9685 * FIQ bank for r8-r14.
9687 if (mode == ARM_CPU_MODE_FIQ) {
9688 for (i = 24; i < 31; i++) {
9689 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
9691 } else {
9692 for (i = 24; i < 29; i++) {
9693 env->fiq_regs[i - 24] = env->xregs[i];
9695 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
9696 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
9699 env->regs[15] = env->pc;
9702 static void take_aarch32_exception(CPUARMState *env, int new_mode,
9703 uint32_t mask, uint32_t offset,
9704 uint32_t newpc)
9706 int new_el;
9708 /* Change the CPU state so as to actually take the exception. */
9709 switch_mode(env, new_mode);
9712 * For exceptions taken to AArch32 we must clear the SS bit in both
9713 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
9715 env->pstate &= ~PSTATE_SS;
9716 env->spsr = cpsr_read(env);
9717 /* Clear IT bits. */
9718 env->condexec_bits = 0;
9719 /* Switch to the new mode, and to the correct instruction set. */
9720 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
9722 /* This must be after mode switching. */
9723 new_el = arm_current_el(env);
9725 /* Set new mode endianness */
9726 env->uncached_cpsr &= ~CPSR_E;
9727 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
9728 env->uncached_cpsr |= CPSR_E;
9730 /* J and IL must always be cleared for exception entry */
9731 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
9732 env->daif |= mask;
9734 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) {
9735 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) {
9736 env->uncached_cpsr |= CPSR_SSBS;
9737 } else {
9738 env->uncached_cpsr &= ~CPSR_SSBS;
9742 if (new_mode == ARM_CPU_MODE_HYP) {
9743 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
9744 env->elr_el[2] = env->regs[15];
9745 } else {
9746 /* CPSR.PAN is normally preserved preserved unless... */
9747 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
9748 switch (new_el) {
9749 case 3:
9750 if (!arm_is_secure_below_el3(env)) {
9751 /* ... the target is EL3, from non-secure state. */
9752 env->uncached_cpsr &= ~CPSR_PAN;
9753 break;
9755 /* ... the target is EL3, from secure state ... */
9756 /* fall through */
9757 case 1:
9758 /* ... the target is EL1 and SCTLR.SPAN is 0. */
9759 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
9760 env->uncached_cpsr |= CPSR_PAN;
9762 break;
9766 * this is a lie, as there was no c1_sys on V4T/V5, but who cares
9767 * and we should just guard the thumb mode on V4
9769 if (arm_feature(env, ARM_FEATURE_V4T)) {
9770 env->thumb =
9771 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
9773 env->regs[14] = env->regs[15] + offset;
9775 env->regs[15] = newpc;
9776 arm_rebuild_hflags(env);
9779 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
9782 * Handle exception entry to Hyp mode; this is sufficiently
9783 * different to entry to other AArch32 modes that we handle it
9784 * separately here.
9786 * The vector table entry used is always the 0x14 Hyp mode entry point,
9787 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp.
9788 * The offset applied to the preferred return address is always zero
9789 * (see DDI0487C.a section G1.12.3).
9790 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
9792 uint32_t addr, mask;
9793 ARMCPU *cpu = ARM_CPU(cs);
9794 CPUARMState *env = &cpu->env;
9796 switch (cs->exception_index) {
9797 case EXCP_UDEF:
9798 addr = 0x04;
9799 break;
9800 case EXCP_SWI:
9801 addr = 0x08;
9802 break;
9803 case EXCP_BKPT:
9804 /* Fall through to prefetch abort. */
9805 case EXCP_PREFETCH_ABORT:
9806 env->cp15.ifar_s = env->exception.vaddress;
9807 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
9808 (uint32_t)env->exception.vaddress);
9809 addr = 0x0c;
9810 break;
9811 case EXCP_DATA_ABORT:
9812 env->cp15.dfar_s = env->exception.vaddress;
9813 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
9814 (uint32_t)env->exception.vaddress);
9815 addr = 0x10;
9816 break;
9817 case EXCP_IRQ:
9818 addr = 0x18;
9819 break;
9820 case EXCP_FIQ:
9821 addr = 0x1c;
9822 break;
9823 case EXCP_HVC:
9824 addr = 0x08;
9825 break;
9826 case EXCP_HYP_TRAP:
9827 addr = 0x14;
9828 break;
9829 default:
9830 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9833 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
9834 if (!arm_feature(env, ARM_FEATURE_V8)) {
9836 * QEMU syndrome values are v8-style. v7 has the IL bit
9837 * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
9838 * If this is a v7 CPU, squash the IL bit in those cases.
9840 if (cs->exception_index == EXCP_PREFETCH_ABORT ||
9841 (cs->exception_index == EXCP_DATA_ABORT &&
9842 !(env->exception.syndrome & ARM_EL_ISV)) ||
9843 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
9844 env->exception.syndrome &= ~ARM_EL_IL;
9847 env->cp15.esr_el[2] = env->exception.syndrome;
9850 if (arm_current_el(env) != 2 && addr < 0x14) {
9851 addr = 0x14;
9854 mask = 0;
9855 if (!(env->cp15.scr_el3 & SCR_EA)) {
9856 mask |= CPSR_A;
9858 if (!(env->cp15.scr_el3 & SCR_IRQ)) {
9859 mask |= CPSR_I;
9861 if (!(env->cp15.scr_el3 & SCR_FIQ)) {
9862 mask |= CPSR_F;
9865 addr += env->cp15.hvbar;
9867 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
9870 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
9872 ARMCPU *cpu = ARM_CPU(cs);
9873 CPUARMState *env = &cpu->env;
9874 uint32_t addr;
9875 uint32_t mask;
9876 int new_mode;
9877 uint32_t offset;
9878 uint32_t moe;
9880 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
9881 switch (syn_get_ec(env->exception.syndrome)) {
9882 case EC_BREAKPOINT:
9883 case EC_BREAKPOINT_SAME_EL:
9884 moe = 1;
9885 break;
9886 case EC_WATCHPOINT:
9887 case EC_WATCHPOINT_SAME_EL:
9888 moe = 10;
9889 break;
9890 case EC_AA32_BKPT:
9891 moe = 3;
9892 break;
9893 case EC_VECTORCATCH:
9894 moe = 5;
9895 break;
9896 default:
9897 moe = 0;
9898 break;
9901 if (moe) {
9902 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
9905 if (env->exception.target_el == 2) {
9906 arm_cpu_do_interrupt_aarch32_hyp(cs);
9907 return;
9910 switch (cs->exception_index) {
9911 case EXCP_UDEF:
9912 new_mode = ARM_CPU_MODE_UND;
9913 addr = 0x04;
9914 mask = CPSR_I;
9915 if (env->thumb)
9916 offset = 2;
9917 else
9918 offset = 4;
9919 break;
9920 case EXCP_SWI:
9921 new_mode = ARM_CPU_MODE_SVC;
9922 addr = 0x08;
9923 mask = CPSR_I;
9924 /* The PC already points to the next instruction. */
9925 offset = 0;
9926 break;
9927 case EXCP_BKPT:
9928 /* Fall through to prefetch abort. */
9929 case EXCP_PREFETCH_ABORT:
9930 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
9931 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
9932 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
9933 env->exception.fsr, (uint32_t)env->exception.vaddress);
9934 new_mode = ARM_CPU_MODE_ABT;
9935 addr = 0x0c;
9936 mask = CPSR_A | CPSR_I;
9937 offset = 4;
9938 break;
9939 case EXCP_DATA_ABORT:
9940 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
9941 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
9942 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
9943 env->exception.fsr,
9944 (uint32_t)env->exception.vaddress);
9945 new_mode = ARM_CPU_MODE_ABT;
9946 addr = 0x10;
9947 mask = CPSR_A | CPSR_I;
9948 offset = 8;
9949 break;
9950 case EXCP_IRQ:
9951 new_mode = ARM_CPU_MODE_IRQ;
9952 addr = 0x18;
9953 /* Disable IRQ and imprecise data aborts. */
9954 mask = CPSR_A | CPSR_I;
9955 offset = 4;
9956 if (env->cp15.scr_el3 & SCR_IRQ) {
9957 /* IRQ routed to monitor mode */
9958 new_mode = ARM_CPU_MODE_MON;
9959 mask |= CPSR_F;
9961 break;
9962 case EXCP_FIQ:
9963 new_mode = ARM_CPU_MODE_FIQ;
9964 addr = 0x1c;
9965 /* Disable FIQ, IRQ and imprecise data aborts. */
9966 mask = CPSR_A | CPSR_I | CPSR_F;
9967 if (env->cp15.scr_el3 & SCR_FIQ) {
9968 /* FIQ routed to monitor mode */
9969 new_mode = ARM_CPU_MODE_MON;
9971 offset = 4;
9972 break;
9973 case EXCP_VIRQ:
9974 new_mode = ARM_CPU_MODE_IRQ;
9975 addr = 0x18;
9976 /* Disable IRQ and imprecise data aborts. */
9977 mask = CPSR_A | CPSR_I;
9978 offset = 4;
9979 break;
9980 case EXCP_VFIQ:
9981 new_mode = ARM_CPU_MODE_FIQ;
9982 addr = 0x1c;
9983 /* Disable FIQ, IRQ and imprecise data aborts. */
9984 mask = CPSR_A | CPSR_I | CPSR_F;
9985 offset = 4;
9986 break;
9987 case EXCP_VSERR:
9990 * Note that this is reported as a data abort, but the DFAR
9991 * has an UNKNOWN value. Construct the SError syndrome from
9992 * AET and ExT fields.
9994 ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, };
9996 if (extended_addresses_enabled(env)) {
9997 env->exception.fsr = arm_fi_to_lfsc(&fi);
9998 } else {
9999 env->exception.fsr = arm_fi_to_sfsc(&fi);
10001 env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000;
10002 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
10003 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n",
10004 env->exception.fsr);
10006 new_mode = ARM_CPU_MODE_ABT;
10007 addr = 0x10;
10008 mask = CPSR_A | CPSR_I;
10009 offset = 8;
10011 break;
10012 case EXCP_SMC:
10013 new_mode = ARM_CPU_MODE_MON;
10014 addr = 0x08;
10015 mask = CPSR_A | CPSR_I | CPSR_F;
10016 offset = 0;
10017 break;
10018 default:
10019 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10020 return; /* Never happens. Keep compiler happy. */
10023 if (new_mode == ARM_CPU_MODE_MON) {
10024 addr += env->cp15.mvbar;
10025 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
10026 /* High vectors. When enabled, base address cannot be remapped. */
10027 addr += 0xffff0000;
10028 } else {
10029 /* ARM v7 architectures provide a vector base address register to remap
10030 * the interrupt vector table.
10031 * This register is only followed in non-monitor mode, and is banked.
10032 * Note: only bits 31:5 are valid.
10034 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
10037 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
10038 env->cp15.scr_el3 &= ~SCR_NS;
10041 take_aarch32_exception(env, new_mode, mask, offset, addr);
10044 static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
10047 * Return the register number of the AArch64 view of the AArch32
10048 * register @aarch32_reg. The CPUARMState CPSR is assumed to still
10049 * be that of the AArch32 mode the exception came from.
10051 int mode = env->uncached_cpsr & CPSR_M;
10053 switch (aarch32_reg) {
10054 case 0 ... 7:
10055 return aarch32_reg;
10056 case 8 ... 12:
10057 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
10058 case 13:
10059 switch (mode) {
10060 case ARM_CPU_MODE_USR:
10061 case ARM_CPU_MODE_SYS:
10062 return 13;
10063 case ARM_CPU_MODE_HYP:
10064 return 15;
10065 case ARM_CPU_MODE_IRQ:
10066 return 17;
10067 case ARM_CPU_MODE_SVC:
10068 return 19;
10069 case ARM_CPU_MODE_ABT:
10070 return 21;
10071 case ARM_CPU_MODE_UND:
10072 return 23;
10073 case ARM_CPU_MODE_FIQ:
10074 return 29;
10075 default:
10076 g_assert_not_reached();
10078 case 14:
10079 switch (mode) {
10080 case ARM_CPU_MODE_USR:
10081 case ARM_CPU_MODE_SYS:
10082 case ARM_CPU_MODE_HYP:
10083 return 14;
10084 case ARM_CPU_MODE_IRQ:
10085 return 16;
10086 case ARM_CPU_MODE_SVC:
10087 return 18;
10088 case ARM_CPU_MODE_ABT:
10089 return 20;
10090 case ARM_CPU_MODE_UND:
10091 return 22;
10092 case ARM_CPU_MODE_FIQ:
10093 return 30;
10094 default:
10095 g_assert_not_reached();
10097 case 15:
10098 return 31;
10099 default:
10100 g_assert_not_reached();
10104 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env)
10106 uint32_t ret = cpsr_read(env);
10108 /* Move DIT to the correct location for SPSR_ELx */
10109 if (ret & CPSR_DIT) {
10110 ret &= ~CPSR_DIT;
10111 ret |= PSTATE_DIT;
10113 /* Merge PSTATE.SS into SPSR_ELx */
10114 ret |= env->pstate & PSTATE_SS;
10116 return ret;
10119 static bool syndrome_is_sync_extabt(uint32_t syndrome)
10121 /* Return true if this syndrome value is a synchronous external abort */
10122 switch (syn_get_ec(syndrome)) {
10123 case EC_INSNABORT:
10124 case EC_INSNABORT_SAME_EL:
10125 case EC_DATAABORT:
10126 case EC_DATAABORT_SAME_EL:
10127 /* Look at fault status code for all the synchronous ext abort cases */
10128 switch (syndrome & 0x3f) {
10129 case 0x10:
10130 case 0x13:
10131 case 0x14:
10132 case 0x15:
10133 case 0x16:
10134 case 0x17:
10135 return true;
10136 default:
10137 return false;
10139 default:
10140 return false;
10144 /* Handle exception entry to a target EL which is using AArch64 */
10145 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
10147 ARMCPU *cpu = ARM_CPU(cs);
10148 CPUARMState *env = &cpu->env;
10149 unsigned int new_el = env->exception.target_el;
10150 target_ulong addr = env->cp15.vbar_el[new_el];
10151 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
10152 unsigned int old_mode;
10153 unsigned int cur_el = arm_current_el(env);
10154 int rt;
10157 * Note that new_el can never be 0. If cur_el is 0, then
10158 * el0_a64 is is_a64(), else el0_a64 is ignored.
10160 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
10162 if (cur_el < new_el) {
10163 /* Entry vector offset depends on whether the implemented EL
10164 * immediately lower than the target level is using AArch32 or AArch64
10166 bool is_aa64;
10167 uint64_t hcr;
10169 switch (new_el) {
10170 case 3:
10171 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
10172 break;
10173 case 2:
10174 hcr = arm_hcr_el2_eff(env);
10175 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
10176 is_aa64 = (hcr & HCR_RW) != 0;
10177 break;
10179 /* fall through */
10180 case 1:
10181 is_aa64 = is_a64(env);
10182 break;
10183 default:
10184 g_assert_not_reached();
10187 if (is_aa64) {
10188 addr += 0x400;
10189 } else {
10190 addr += 0x600;
10192 } else if (pstate_read(env) & PSTATE_SP) {
10193 addr += 0x200;
10196 switch (cs->exception_index) {
10197 case EXCP_PREFETCH_ABORT:
10198 case EXCP_DATA_ABORT:
10200 * FEAT_DoubleFault allows synchronous external aborts taken to EL3
10201 * to be taken to the SError vector entrypoint.
10203 if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) &&
10204 syndrome_is_sync_extabt(env->exception.syndrome)) {
10205 addr += 0x180;
10207 env->cp15.far_el[new_el] = env->exception.vaddress;
10208 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
10209 env->cp15.far_el[new_el]);
10210 /* fall through */
10211 case EXCP_BKPT:
10212 case EXCP_UDEF:
10213 case EXCP_SWI:
10214 case EXCP_HVC:
10215 case EXCP_HYP_TRAP:
10216 case EXCP_SMC:
10217 switch (syn_get_ec(env->exception.syndrome)) {
10218 case EC_ADVSIMDFPACCESSTRAP:
10220 * QEMU internal FP/SIMD syndromes from AArch32 include the
10221 * TA and coproc fields which are only exposed if the exception
10222 * is taken to AArch32 Hyp mode. Mask them out to get a valid
10223 * AArch64 format syndrome.
10225 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
10226 break;
10227 case EC_CP14RTTRAP:
10228 case EC_CP15RTTRAP:
10229 case EC_CP14DTTRAP:
10231 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
10232 * the raw register field from the insn; when taking this to
10233 * AArch64 we must convert it to the AArch64 view of the register
10234 * number. Notice that we read a 4-bit AArch32 register number and
10235 * write back a 5-bit AArch64 one.
10237 rt = extract32(env->exception.syndrome, 5, 4);
10238 rt = aarch64_regnum(env, rt);
10239 env->exception.syndrome = deposit32(env->exception.syndrome,
10240 5, 5, rt);
10241 break;
10242 case EC_CP15RRTTRAP:
10243 case EC_CP14RRTTRAP:
10244 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
10245 rt = extract32(env->exception.syndrome, 5, 4);
10246 rt = aarch64_regnum(env, rt);
10247 env->exception.syndrome = deposit32(env->exception.syndrome,
10248 5, 5, rt);
10249 rt = extract32(env->exception.syndrome, 10, 4);
10250 rt = aarch64_regnum(env, rt);
10251 env->exception.syndrome = deposit32(env->exception.syndrome,
10252 10, 5, rt);
10253 break;
10255 env->cp15.esr_el[new_el] = env->exception.syndrome;
10256 break;
10257 case EXCP_IRQ:
10258 case EXCP_VIRQ:
10259 addr += 0x80;
10260 break;
10261 case EXCP_FIQ:
10262 case EXCP_VFIQ:
10263 addr += 0x100;
10264 break;
10265 case EXCP_VSERR:
10266 addr += 0x180;
10267 /* Construct the SError syndrome from IDS and ISS fields. */
10268 env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff);
10269 env->cp15.esr_el[new_el] = env->exception.syndrome;
10270 break;
10271 default:
10272 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10275 if (is_a64(env)) {
10276 old_mode = pstate_read(env);
10277 aarch64_save_sp(env, arm_current_el(env));
10278 env->elr_el[new_el] = env->pc;
10279 } else {
10280 old_mode = cpsr_read_for_spsr_elx(env);
10281 env->elr_el[new_el] = env->regs[15];
10283 aarch64_sync_32_to_64(env);
10285 env->condexec_bits = 0;
10287 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
10289 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
10290 env->elr_el[new_el]);
10292 if (cpu_isar_feature(aa64_pan, cpu)) {
10293 /* The value of PSTATE.PAN is normally preserved, except when ... */
10294 new_mode |= old_mode & PSTATE_PAN;
10295 switch (new_el) {
10296 case 2:
10297 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */
10298 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
10299 != (HCR_E2H | HCR_TGE)) {
10300 break;
10302 /* fall through */
10303 case 1:
10304 /* ... the target is EL1 ... */
10305 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */
10306 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
10307 new_mode |= PSTATE_PAN;
10309 break;
10312 if (cpu_isar_feature(aa64_mte, cpu)) {
10313 new_mode |= PSTATE_TCO;
10316 if (cpu_isar_feature(aa64_ssbs, cpu)) {
10317 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) {
10318 new_mode |= PSTATE_SSBS;
10319 } else {
10320 new_mode &= ~PSTATE_SSBS;
10324 pstate_write(env, PSTATE_DAIF | new_mode);
10325 env->aarch64 = true;
10326 aarch64_restore_sp(env, new_el);
10327 helper_rebuild_hflags_a64(env, new_el);
10329 env->pc = addr;
10331 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
10332 new_el, env->pc, pstate_read(env));
10336 * Do semihosting call and set the appropriate return value. All the
10337 * permission and validity checks have been done at translate time.
10339 * We only see semihosting exceptions in TCG only as they are not
10340 * trapped to the hypervisor in KVM.
10342 #ifdef CONFIG_TCG
10343 static void handle_semihosting(CPUState *cs)
10345 ARMCPU *cpu = ARM_CPU(cs);
10346 CPUARMState *env = &cpu->env;
10348 if (is_a64(env)) {
10349 qemu_log_mask(CPU_LOG_INT,
10350 "...handling as semihosting call 0x%" PRIx64 "\n",
10351 env->xregs[0]);
10352 env->xregs[0] = do_common_semihosting(cs);
10353 env->pc += 4;
10354 } else {
10355 qemu_log_mask(CPU_LOG_INT,
10356 "...handling as semihosting call 0x%x\n",
10357 env->regs[0]);
10358 env->regs[0] = do_common_semihosting(cs);
10359 env->regs[15] += env->thumb ? 2 : 4;
10362 #endif
10364 /* Handle a CPU exception for A and R profile CPUs.
10365 * Do any appropriate logging, handle PSCI calls, and then hand off
10366 * to the AArch64-entry or AArch32-entry function depending on the
10367 * target exception level's register width.
10369 * Note: this is used for both TCG (as the do_interrupt tcg op),
10370 * and KVM to re-inject guest debug exceptions, and to
10371 * inject a Synchronous-External-Abort.
10373 void arm_cpu_do_interrupt(CPUState *cs)
10375 ARMCPU *cpu = ARM_CPU(cs);
10376 CPUARMState *env = &cpu->env;
10377 unsigned int new_el = env->exception.target_el;
10379 assert(!arm_feature(env, ARM_FEATURE_M));
10381 arm_log_exception(cs);
10382 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
10383 new_el);
10384 if (qemu_loglevel_mask(CPU_LOG_INT)
10385 && !excp_is_internal(cs->exception_index)) {
10386 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
10387 syn_get_ec(env->exception.syndrome),
10388 env->exception.syndrome);
10391 if (arm_is_psci_call(cpu, cs->exception_index)) {
10392 arm_handle_psci_call(cpu);
10393 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
10394 return;
10398 * Semihosting semantics depend on the register width of the code
10399 * that caused the exception, not the target exception level, so
10400 * must be handled here.
10402 #ifdef CONFIG_TCG
10403 if (cs->exception_index == EXCP_SEMIHOST) {
10404 handle_semihosting(cs);
10405 return;
10407 #endif
10409 /* Hooks may change global state so BQL should be held, also the
10410 * BQL needs to be held for any modification of
10411 * cs->interrupt_request.
10413 g_assert(qemu_mutex_iothread_locked());
10415 arm_call_pre_el_change_hook(cpu);
10417 assert(!excp_is_internal(cs->exception_index));
10418 if (arm_el_is_aa64(env, new_el)) {
10419 arm_cpu_do_interrupt_aarch64(cs);
10420 } else {
10421 arm_cpu_do_interrupt_aarch32(cs);
10424 arm_call_el_change_hook(cpu);
10426 if (!kvm_enabled()) {
10427 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
10430 #endif /* !CONFIG_USER_ONLY */
10432 uint64_t arm_sctlr(CPUARMState *env, int el)
10434 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
10435 if (el == 0) {
10436 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
10437 el = (mmu_idx == ARMMMUIdx_E20_0 || mmu_idx == ARMMMUIdx_SE20_0)
10438 ? 2 : 1;
10440 return env->cp15.sctlr_el[el];
10443 /* Return the SCTLR value which controls this address translation regime */
10444 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
10446 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
10449 #ifndef CONFIG_USER_ONLY
10451 /* Return true if the specified stage of address translation is disabled */
10452 static inline bool regime_translation_disabled(CPUARMState *env,
10453 ARMMMUIdx mmu_idx)
10455 uint64_t hcr_el2;
10457 if (arm_feature(env, ARM_FEATURE_M)) {
10458 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
10459 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
10460 case R_V7M_MPU_CTRL_ENABLE_MASK:
10461 /* Enabled, but not for HardFault and NMI */
10462 return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
10463 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
10464 /* Enabled for all cases */
10465 return false;
10466 case 0:
10467 default:
10468 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
10469 * we warned about that in armv7m_nvic.c when the guest set it.
10471 return true;
10475 hcr_el2 = arm_hcr_el2_eff(env);
10477 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
10478 /* HCR.DC means HCR.VM behaves as 1 */
10479 return (hcr_el2 & (HCR_DC | HCR_VM)) == 0;
10482 if (hcr_el2 & HCR_TGE) {
10483 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
10484 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
10485 return true;
10489 if ((hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
10490 /* HCR.DC means SCTLR_EL1.M behaves as 0 */
10491 return true;
10494 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
10497 static inline bool regime_translation_big_endian(CPUARMState *env,
10498 ARMMMUIdx mmu_idx)
10500 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
10503 /* Return the TTBR associated with this translation regime */
10504 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
10505 int ttbrn)
10507 if (mmu_idx == ARMMMUIdx_Stage2) {
10508 return env->cp15.vttbr_el2;
10510 if (mmu_idx == ARMMMUIdx_Stage2_S) {
10511 return env->cp15.vsttbr_el2;
10513 if (ttbrn == 0) {
10514 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
10515 } else {
10516 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
10520 #endif /* !CONFIG_USER_ONLY */
10522 /* Convert a possible stage1+2 MMU index into the appropriate
10523 * stage 1 MMU index
10525 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
10527 switch (mmu_idx) {
10528 case ARMMMUIdx_SE10_0:
10529 return ARMMMUIdx_Stage1_SE0;
10530 case ARMMMUIdx_SE10_1:
10531 return ARMMMUIdx_Stage1_SE1;
10532 case ARMMMUIdx_SE10_1_PAN:
10533 return ARMMMUIdx_Stage1_SE1_PAN;
10534 case ARMMMUIdx_E10_0:
10535 return ARMMMUIdx_Stage1_E0;
10536 case ARMMMUIdx_E10_1:
10537 return ARMMMUIdx_Stage1_E1;
10538 case ARMMMUIdx_E10_1_PAN:
10539 return ARMMMUIdx_Stage1_E1_PAN;
10540 default:
10541 return mmu_idx;
10545 /* Return true if the translation regime is using LPAE format page tables */
10546 static inline bool regime_using_lpae_format(CPUARMState *env,
10547 ARMMMUIdx mmu_idx)
10549 int el = regime_el(env, mmu_idx);
10550 if (el == 2 || arm_el_is_aa64(env, el)) {
10551 return true;
10553 if (arm_feature(env, ARM_FEATURE_LPAE)
10554 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
10555 return true;
10557 return false;
10560 /* Returns true if the stage 1 translation regime is using LPAE format page
10561 * tables. Used when raising alignment exceptions, whose FSR changes depending
10562 * on whether the long or short descriptor format is in use. */
10563 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
10565 mmu_idx = stage_1_mmu_idx(mmu_idx);
10567 return regime_using_lpae_format(env, mmu_idx);
10570 #ifndef CONFIG_USER_ONLY
10571 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
10573 switch (mmu_idx) {
10574 case ARMMMUIdx_SE10_0:
10575 case ARMMMUIdx_E20_0:
10576 case ARMMMUIdx_SE20_0:
10577 case ARMMMUIdx_Stage1_E0:
10578 case ARMMMUIdx_Stage1_SE0:
10579 case ARMMMUIdx_MUser:
10580 case ARMMMUIdx_MSUser:
10581 case ARMMMUIdx_MUserNegPri:
10582 case ARMMMUIdx_MSUserNegPri:
10583 return true;
10584 default:
10585 return false;
10586 case ARMMMUIdx_E10_0:
10587 case ARMMMUIdx_E10_1:
10588 case ARMMMUIdx_E10_1_PAN:
10589 g_assert_not_reached();
10593 /* Translate section/page access permissions to page
10594 * R/W protection flags
10596 * @env: CPUARMState
10597 * @mmu_idx: MMU index indicating required translation regime
10598 * @ap: The 3-bit access permissions (AP[2:0])
10599 * @domain_prot: The 2-bit domain access permissions
10601 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
10602 int ap, int domain_prot)
10604 bool is_user = regime_is_user(env, mmu_idx);
10606 if (domain_prot == 3) {
10607 return PAGE_READ | PAGE_WRITE;
10610 switch (ap) {
10611 case 0:
10612 if (arm_feature(env, ARM_FEATURE_V7)) {
10613 return 0;
10615 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
10616 case SCTLR_S:
10617 return is_user ? 0 : PAGE_READ;
10618 case SCTLR_R:
10619 return PAGE_READ;
10620 default:
10621 return 0;
10623 case 1:
10624 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
10625 case 2:
10626 if (is_user) {
10627 return PAGE_READ;
10628 } else {
10629 return PAGE_READ | PAGE_WRITE;
10631 case 3:
10632 return PAGE_READ | PAGE_WRITE;
10633 case 4: /* Reserved. */
10634 return 0;
10635 case 5:
10636 return is_user ? 0 : PAGE_READ;
10637 case 6:
10638 return PAGE_READ;
10639 case 7:
10640 if (!arm_feature(env, ARM_FEATURE_V6K)) {
10641 return 0;
10643 return PAGE_READ;
10644 default:
10645 g_assert_not_reached();
10649 /* Translate section/page access permissions to page
10650 * R/W protection flags.
10652 * @ap: The 2-bit simple AP (AP[2:1])
10653 * @is_user: TRUE if accessing from PL0
10655 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
10657 switch (ap) {
10658 case 0:
10659 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
10660 case 1:
10661 return PAGE_READ | PAGE_WRITE;
10662 case 2:
10663 return is_user ? 0 : PAGE_READ;
10664 case 3:
10665 return PAGE_READ;
10666 default:
10667 g_assert_not_reached();
10671 static inline int
10672 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
10674 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
10677 /* Translate S2 section/page access permissions to protection flags
10679 * @env: CPUARMState
10680 * @s2ap: The 2-bit stage2 access permissions (S2AP)
10681 * @xn: XN (execute-never) bits
10682 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
10684 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
10686 int prot = 0;
10688 if (s2ap & 1) {
10689 prot |= PAGE_READ;
10691 if (s2ap & 2) {
10692 prot |= PAGE_WRITE;
10695 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
10696 switch (xn) {
10697 case 0:
10698 prot |= PAGE_EXEC;
10699 break;
10700 case 1:
10701 if (s1_is_el0) {
10702 prot |= PAGE_EXEC;
10704 break;
10705 case 2:
10706 break;
10707 case 3:
10708 if (!s1_is_el0) {
10709 prot |= PAGE_EXEC;
10711 break;
10712 default:
10713 g_assert_not_reached();
10715 } else {
10716 if (!extract32(xn, 1, 1)) {
10717 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
10718 prot |= PAGE_EXEC;
10722 return prot;
10725 /* Translate section/page access permissions to protection flags
10727 * @env: CPUARMState
10728 * @mmu_idx: MMU index indicating required translation regime
10729 * @is_aa64: TRUE if AArch64
10730 * @ap: The 2-bit simple AP (AP[2:1])
10731 * @ns: NS (non-secure) bit
10732 * @xn: XN (execute-never) bit
10733 * @pxn: PXN (privileged execute-never) bit
10735 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
10736 int ap, int ns, int xn, int pxn)
10738 bool is_user = regime_is_user(env, mmu_idx);
10739 int prot_rw, user_rw;
10740 bool have_wxn;
10741 int wxn = 0;
10743 assert(mmu_idx != ARMMMUIdx_Stage2);
10744 assert(mmu_idx != ARMMMUIdx_Stage2_S);
10746 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
10747 if (is_user) {
10748 prot_rw = user_rw;
10749 } else {
10750 if (user_rw && regime_is_pan(env, mmu_idx)) {
10751 /* PAN forbids data accesses but doesn't affect insn fetch */
10752 prot_rw = 0;
10753 } else {
10754 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
10758 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
10759 return prot_rw;
10762 /* TODO have_wxn should be replaced with
10763 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
10764 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
10765 * compatible processors have EL2, which is required for [U]WXN.
10767 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
10769 if (have_wxn) {
10770 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
10773 if (is_aa64) {
10774 if (regime_has_2_ranges(mmu_idx) && !is_user) {
10775 xn = pxn || (user_rw & PAGE_WRITE);
10777 } else if (arm_feature(env, ARM_FEATURE_V7)) {
10778 switch (regime_el(env, mmu_idx)) {
10779 case 1:
10780 case 3:
10781 if (is_user) {
10782 xn = xn || !(user_rw & PAGE_READ);
10783 } else {
10784 int uwxn = 0;
10785 if (have_wxn) {
10786 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
10788 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
10789 (uwxn && (user_rw & PAGE_WRITE));
10791 break;
10792 case 2:
10793 break;
10795 } else {
10796 xn = wxn = 0;
10799 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
10800 return prot_rw;
10802 return prot_rw | PAGE_EXEC;
10805 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
10806 uint32_t *table, uint32_t address)
10808 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
10809 TCR *tcr = regime_tcr(env, mmu_idx);
10811 if (address & tcr->mask) {
10812 if (tcr->raw_tcr & TTBCR_PD1) {
10813 /* Translation table walk disabled for TTBR1 */
10814 return false;
10816 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
10817 } else {
10818 if (tcr->raw_tcr & TTBCR_PD0) {
10819 /* Translation table walk disabled for TTBR0 */
10820 return false;
10822 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
10824 *table |= (address >> 18) & 0x3ffc;
10825 return true;
10828 static bool ptw_attrs_are_device(CPUARMState *env, ARMCacheAttrs cacheattrs)
10831 * For an S1 page table walk, the stage 1 attributes are always
10832 * some form of "this is Normal memory". The combined S1+S2
10833 * attributes are therefore only Device if stage 2 specifies Device.
10834 * With HCR_EL2.FWB == 0 this is when descriptor bits [5:4] are 0b00,
10835 * ie when cacheattrs.attrs bits [3:2] are 0b00.
10836 * With HCR_EL2.FWB == 1 this is when descriptor bit [4] is 0, ie
10837 * when cacheattrs.attrs bit [2] is 0.
10839 assert(cacheattrs.is_s2_format);
10840 if (arm_hcr_el2_eff(env) & HCR_FWB) {
10841 return (cacheattrs.attrs & 0x4) == 0;
10842 } else {
10843 return (cacheattrs.attrs & 0xc) == 0;
10847 /* Translate a S1 pagetable walk through S2 if needed. */
10848 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
10849 hwaddr addr, bool *is_secure,
10850 ARMMMUFaultInfo *fi)
10852 if (arm_mmu_idx_is_stage1_of_2(mmu_idx) &&
10853 !regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
10854 target_ulong s2size;
10855 hwaddr s2pa;
10856 int s2prot;
10857 int ret;
10858 ARMMMUIdx s2_mmu_idx = *is_secure ? ARMMMUIdx_Stage2_S
10859 : ARMMMUIdx_Stage2;
10860 ARMCacheAttrs cacheattrs = {};
10861 MemTxAttrs txattrs = {};
10863 ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, s2_mmu_idx, false,
10864 &s2pa, &txattrs, &s2prot, &s2size, fi,
10865 &cacheattrs);
10866 if (ret) {
10867 assert(fi->type != ARMFault_None);
10868 fi->s2addr = addr;
10869 fi->stage2 = true;
10870 fi->s1ptw = true;
10871 fi->s1ns = !*is_secure;
10872 return ~0;
10874 if ((arm_hcr_el2_eff(env) & HCR_PTW) &&
10875 ptw_attrs_are_device(env, cacheattrs)) {
10877 * PTW set and S1 walk touched S2 Device memory:
10878 * generate Permission fault.
10880 fi->type = ARMFault_Permission;
10881 fi->s2addr = addr;
10882 fi->stage2 = true;
10883 fi->s1ptw = true;
10884 fi->s1ns = !*is_secure;
10885 return ~0;
10888 if (arm_is_secure_below_el3(env)) {
10889 /* Check if page table walk is to secure or non-secure PA space. */
10890 if (*is_secure) {
10891 *is_secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW);
10892 } else {
10893 *is_secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW);
10895 } else {
10896 assert(!*is_secure);
10899 addr = s2pa;
10901 return addr;
10904 /* All loads done in the course of a page table walk go through here. */
10905 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10906 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10908 ARMCPU *cpu = ARM_CPU(cs);
10909 CPUARMState *env = &cpu->env;
10910 MemTxAttrs attrs = {};
10911 MemTxResult result = MEMTX_OK;
10912 AddressSpace *as;
10913 uint32_t data;
10915 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi);
10916 attrs.secure = is_secure;
10917 as = arm_addressspace(cs, attrs);
10918 if (fi->s1ptw) {
10919 return 0;
10921 if (regime_translation_big_endian(env, mmu_idx)) {
10922 data = address_space_ldl_be(as, addr, attrs, &result);
10923 } else {
10924 data = address_space_ldl_le(as, addr, attrs, &result);
10926 if (result == MEMTX_OK) {
10927 return data;
10929 fi->type = ARMFault_SyncExternalOnWalk;
10930 fi->ea = arm_extabort_type(result);
10931 return 0;
10934 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10935 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10937 ARMCPU *cpu = ARM_CPU(cs);
10938 CPUARMState *env = &cpu->env;
10939 MemTxAttrs attrs = {};
10940 MemTxResult result = MEMTX_OK;
10941 AddressSpace *as;
10942 uint64_t data;
10944 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi);
10945 attrs.secure = is_secure;
10946 as = arm_addressspace(cs, attrs);
10947 if (fi->s1ptw) {
10948 return 0;
10950 if (regime_translation_big_endian(env, mmu_idx)) {
10951 data = address_space_ldq_be(as, addr, attrs, &result);
10952 } else {
10953 data = address_space_ldq_le(as, addr, attrs, &result);
10955 if (result == MEMTX_OK) {
10956 return data;
10958 fi->type = ARMFault_SyncExternalOnWalk;
10959 fi->ea = arm_extabort_type(result);
10960 return 0;
10963 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
10964 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10965 hwaddr *phys_ptr, int *prot,
10966 target_ulong *page_size,
10967 ARMMMUFaultInfo *fi)
10969 CPUState *cs = env_cpu(env);
10970 int level = 1;
10971 uint32_t table;
10972 uint32_t desc;
10973 int type;
10974 int ap;
10975 int domain = 0;
10976 int domain_prot;
10977 hwaddr phys_addr;
10978 uint32_t dacr;
10980 /* Pagetable walk. */
10981 /* Lookup l1 descriptor. */
10982 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
10983 /* Section translation fault if page walk is disabled by PD0 or PD1 */
10984 fi->type = ARMFault_Translation;
10985 goto do_fault;
10987 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10988 mmu_idx, fi);
10989 if (fi->type != ARMFault_None) {
10990 goto do_fault;
10992 type = (desc & 3);
10993 domain = (desc >> 5) & 0x0f;
10994 if (regime_el(env, mmu_idx) == 1) {
10995 dacr = env->cp15.dacr_ns;
10996 } else {
10997 dacr = env->cp15.dacr_s;
10999 domain_prot = (dacr >> (domain * 2)) & 3;
11000 if (type == 0) {
11001 /* Section translation fault. */
11002 fi->type = ARMFault_Translation;
11003 goto do_fault;
11005 if (type != 2) {
11006 level = 2;
11008 if (domain_prot == 0 || domain_prot == 2) {
11009 fi->type = ARMFault_Domain;
11010 goto do_fault;
11012 if (type == 2) {
11013 /* 1Mb section. */
11014 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
11015 ap = (desc >> 10) & 3;
11016 *page_size = 1024 * 1024;
11017 } else {
11018 /* Lookup l2 entry. */
11019 if (type == 1) {
11020 /* Coarse pagetable. */
11021 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
11022 } else {
11023 /* Fine pagetable. */
11024 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
11026 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
11027 mmu_idx, fi);
11028 if (fi->type != ARMFault_None) {
11029 goto do_fault;
11031 switch (desc & 3) {
11032 case 0: /* Page translation fault. */
11033 fi->type = ARMFault_Translation;
11034 goto do_fault;
11035 case 1: /* 64k page. */
11036 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
11037 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
11038 *page_size = 0x10000;
11039 break;
11040 case 2: /* 4k page. */
11041 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
11042 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
11043 *page_size = 0x1000;
11044 break;
11045 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
11046 if (type == 1) {
11047 /* ARMv6/XScale extended small page format */
11048 if (arm_feature(env, ARM_FEATURE_XSCALE)
11049 || arm_feature(env, ARM_FEATURE_V6)) {
11050 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
11051 *page_size = 0x1000;
11052 } else {
11053 /* UNPREDICTABLE in ARMv5; we choose to take a
11054 * page translation fault.
11056 fi->type = ARMFault_Translation;
11057 goto do_fault;
11059 } else {
11060 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
11061 *page_size = 0x400;
11063 ap = (desc >> 4) & 3;
11064 break;
11065 default:
11066 /* Never happens, but compiler isn't smart enough to tell. */
11067 g_assert_not_reached();
11070 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
11071 *prot |= *prot ? PAGE_EXEC : 0;
11072 if (!(*prot & (1 << access_type))) {
11073 /* Access permission fault. */
11074 fi->type = ARMFault_Permission;
11075 goto do_fault;
11077 *phys_ptr = phys_addr;
11078 return false;
11079 do_fault:
11080 fi->domain = domain;
11081 fi->level = level;
11082 return true;
11085 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
11086 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11087 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
11088 target_ulong *page_size, ARMMMUFaultInfo *fi)
11090 CPUState *cs = env_cpu(env);
11091 ARMCPU *cpu = env_archcpu(env);
11092 int level = 1;
11093 uint32_t table;
11094 uint32_t desc;
11095 uint32_t xn;
11096 uint32_t pxn = 0;
11097 int type;
11098 int ap;
11099 int domain = 0;
11100 int domain_prot;
11101 hwaddr phys_addr;
11102 uint32_t dacr;
11103 bool ns;
11105 /* Pagetable walk. */
11106 /* Lookup l1 descriptor. */
11107 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
11108 /* Section translation fault if page walk is disabled by PD0 or PD1 */
11109 fi->type = ARMFault_Translation;
11110 goto do_fault;
11112 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
11113 mmu_idx, fi);
11114 if (fi->type != ARMFault_None) {
11115 goto do_fault;
11117 type = (desc & 3);
11118 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) {
11119 /* Section translation fault, or attempt to use the encoding
11120 * which is Reserved on implementations without PXN.
11122 fi->type = ARMFault_Translation;
11123 goto do_fault;
11125 if ((type == 1) || !(desc & (1 << 18))) {
11126 /* Page or Section. */
11127 domain = (desc >> 5) & 0x0f;
11129 if (regime_el(env, mmu_idx) == 1) {
11130 dacr = env->cp15.dacr_ns;
11131 } else {
11132 dacr = env->cp15.dacr_s;
11134 if (type == 1) {
11135 level = 2;
11137 domain_prot = (dacr >> (domain * 2)) & 3;
11138 if (domain_prot == 0 || domain_prot == 2) {
11139 /* Section or Page domain fault */
11140 fi->type = ARMFault_Domain;
11141 goto do_fault;
11143 if (type != 1) {
11144 if (desc & (1 << 18)) {
11145 /* Supersection. */
11146 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
11147 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
11148 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
11149 *page_size = 0x1000000;
11150 } else {
11151 /* Section. */
11152 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
11153 *page_size = 0x100000;
11155 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
11156 xn = desc & (1 << 4);
11157 pxn = desc & 1;
11158 ns = extract32(desc, 19, 1);
11159 } else {
11160 if (cpu_isar_feature(aa32_pxn, cpu)) {
11161 pxn = (desc >> 2) & 1;
11163 ns = extract32(desc, 3, 1);
11164 /* Lookup l2 entry. */
11165 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
11166 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
11167 mmu_idx, fi);
11168 if (fi->type != ARMFault_None) {
11169 goto do_fault;
11171 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
11172 switch (desc & 3) {
11173 case 0: /* Page translation fault. */
11174 fi->type = ARMFault_Translation;
11175 goto do_fault;
11176 case 1: /* 64k page. */
11177 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
11178 xn = desc & (1 << 15);
11179 *page_size = 0x10000;
11180 break;
11181 case 2: case 3: /* 4k page. */
11182 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
11183 xn = desc & 1;
11184 *page_size = 0x1000;
11185 break;
11186 default:
11187 /* Never happens, but compiler isn't smart enough to tell. */
11188 g_assert_not_reached();
11191 if (domain_prot == 3) {
11192 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11193 } else {
11194 if (pxn && !regime_is_user(env, mmu_idx)) {
11195 xn = 1;
11197 if (xn && access_type == MMU_INST_FETCH) {
11198 fi->type = ARMFault_Permission;
11199 goto do_fault;
11202 if (arm_feature(env, ARM_FEATURE_V6K) &&
11203 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
11204 /* The simplified model uses AP[0] as an access control bit. */
11205 if ((ap & 1) == 0) {
11206 /* Access flag fault. */
11207 fi->type = ARMFault_AccessFlag;
11208 goto do_fault;
11210 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
11211 } else {
11212 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
11214 if (*prot && !xn) {
11215 *prot |= PAGE_EXEC;
11217 if (!(*prot & (1 << access_type))) {
11218 /* Access permission fault. */
11219 fi->type = ARMFault_Permission;
11220 goto do_fault;
11223 if (ns) {
11224 /* The NS bit will (as required by the architecture) have no effect if
11225 * the CPU doesn't support TZ or this is a non-secure translation
11226 * regime, because the attribute will already be non-secure.
11228 attrs->secure = false;
11230 *phys_ptr = phys_addr;
11231 return false;
11232 do_fault:
11233 fi->domain = domain;
11234 fi->level = level;
11235 return true;
11239 * check_s2_mmu_setup
11240 * @cpu: ARMCPU
11241 * @is_aa64: True if the translation regime is in AArch64 state
11242 * @startlevel: Suggested starting level
11243 * @inputsize: Bitsize of IPAs
11244 * @stride: Page-table stride (See the ARM ARM)
11246 * Returns true if the suggested S2 translation parameters are OK and
11247 * false otherwise.
11249 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
11250 int inputsize, int stride, int outputsize)
11252 const int grainsize = stride + 3;
11253 int startsizecheck;
11256 * Negative levels are usually not allowed...
11257 * Except for FEAT_LPA2, 4k page table, 52-bit address space, which
11258 * begins with level -1. Note that previous feature tests will have
11259 * eliminated this combination if it is not enabled.
11261 if (level < (inputsize == 52 && stride == 9 ? -1 : 0)) {
11262 return false;
11265 startsizecheck = inputsize - ((3 - level) * stride + grainsize);
11266 if (startsizecheck < 1 || startsizecheck > stride + 4) {
11267 return false;
11270 if (is_aa64) {
11271 switch (stride) {
11272 case 13: /* 64KB Pages. */
11273 if (level == 0 || (level == 1 && outputsize <= 42)) {
11274 return false;
11276 break;
11277 case 11: /* 16KB Pages. */
11278 if (level == 0 || (level == 1 && outputsize <= 40)) {
11279 return false;
11281 break;
11282 case 9: /* 4KB Pages. */
11283 if (level == 0 && outputsize <= 42) {
11284 return false;
11286 break;
11287 default:
11288 g_assert_not_reached();
11291 /* Inputsize checks. */
11292 if (inputsize > outputsize &&
11293 (arm_el_is_aa64(&cpu->env, 1) || inputsize > 40)) {
11294 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
11295 return false;
11297 } else {
11298 /* AArch32 only supports 4KB pages. Assert on that. */
11299 assert(stride == 9);
11301 if (level == 0) {
11302 return false;
11305 return true;
11308 /* Translate from the 4-bit stage 2 representation of
11309 * memory attributes (without cache-allocation hints) to
11310 * the 8-bit representation of the stage 1 MAIR registers
11311 * (which includes allocation hints).
11313 * ref: shared/translation/attrs/S2AttrDecode()
11314 * .../S2ConvertAttrsHints()
11316 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
11318 uint8_t hiattr = extract32(s2attrs, 2, 2);
11319 uint8_t loattr = extract32(s2attrs, 0, 2);
11320 uint8_t hihint = 0, lohint = 0;
11322 if (hiattr != 0) { /* normal memory */
11323 if (arm_hcr_el2_eff(env) & HCR_CD) { /* cache disabled */
11324 hiattr = loattr = 1; /* non-cacheable */
11325 } else {
11326 if (hiattr != 1) { /* Write-through or write-back */
11327 hihint = 3; /* RW allocate */
11329 if (loattr != 1) { /* Write-through or write-back */
11330 lohint = 3; /* RW allocate */
11335 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
11337 #endif /* !CONFIG_USER_ONLY */
11339 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */
11340 static const uint8_t pamax_map[] = {
11341 [0] = 32,
11342 [1] = 36,
11343 [2] = 40,
11344 [3] = 42,
11345 [4] = 44,
11346 [5] = 48,
11347 [6] = 52,
11350 /* The cpu-specific constant value of PAMax; also used by hw/arm/virt. */
11351 unsigned int arm_pamax(ARMCPU *cpu)
11353 unsigned int parange =
11354 FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
11357 * id_aa64mmfr0 is a read-only register so values outside of the
11358 * supported mappings can be considered an implementation error.
11360 assert(parange < ARRAY_SIZE(pamax_map));
11361 return pamax_map[parange];
11364 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
11366 if (regime_has_2_ranges(mmu_idx)) {
11367 return extract64(tcr, 37, 2);
11368 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11369 return 0; /* VTCR_EL2 */
11370 } else {
11371 /* Replicate the single TBI bit so we always have 2 bits. */
11372 return extract32(tcr, 20, 1) * 3;
11376 static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
11378 if (regime_has_2_ranges(mmu_idx)) {
11379 return extract64(tcr, 51, 2);
11380 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11381 return 0; /* VTCR_EL2 */
11382 } else {
11383 /* Replicate the single TBID bit so we always have 2 bits. */
11384 return extract32(tcr, 29, 1) * 3;
11388 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
11390 if (regime_has_2_ranges(mmu_idx)) {
11391 return extract64(tcr, 57, 2);
11392 } else {
11393 /* Replicate the single TCMA bit so we always have 2 bits. */
11394 return extract32(tcr, 30, 1) * 3;
11398 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
11399 ARMMMUIdx mmu_idx, bool data)
11401 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
11402 bool epd, hpd, using16k, using64k, tsz_oob, ds;
11403 int select, tsz, tbi, max_tsz, min_tsz, ps, sh;
11404 ARMCPU *cpu = env_archcpu(env);
11406 if (!regime_has_2_ranges(mmu_idx)) {
11407 select = 0;
11408 tsz = extract32(tcr, 0, 6);
11409 using64k = extract32(tcr, 14, 1);
11410 using16k = extract32(tcr, 15, 1);
11411 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11412 /* VTCR_EL2 */
11413 hpd = false;
11414 } else {
11415 hpd = extract32(tcr, 24, 1);
11417 epd = false;
11418 sh = extract32(tcr, 12, 2);
11419 ps = extract32(tcr, 16, 3);
11420 ds = extract64(tcr, 32, 1);
11421 } else {
11423 * Bit 55 is always between the two regions, and is canonical for
11424 * determining if address tagging is enabled.
11426 select = extract64(va, 55, 1);
11427 if (!select) {
11428 tsz = extract32(tcr, 0, 6);
11429 epd = extract32(tcr, 7, 1);
11430 sh = extract32(tcr, 12, 2);
11431 using64k = extract32(tcr, 14, 1);
11432 using16k = extract32(tcr, 15, 1);
11433 hpd = extract64(tcr, 41, 1);
11434 } else {
11435 int tg = extract32(tcr, 30, 2);
11436 using16k = tg == 1;
11437 using64k = tg == 3;
11438 tsz = extract32(tcr, 16, 6);
11439 epd = extract32(tcr, 23, 1);
11440 sh = extract32(tcr, 28, 2);
11441 hpd = extract64(tcr, 42, 1);
11443 ps = extract64(tcr, 32, 3);
11444 ds = extract64(tcr, 59, 1);
11447 if (cpu_isar_feature(aa64_st, cpu)) {
11448 max_tsz = 48 - using64k;
11449 } else {
11450 max_tsz = 39;
11454 * DS is RES0 unless FEAT_LPA2 is supported for the given page size;
11455 * adjust the effective value of DS, as documented.
11457 min_tsz = 16;
11458 if (using64k) {
11459 if (cpu_isar_feature(aa64_lva, cpu)) {
11460 min_tsz = 12;
11462 ds = false;
11463 } else if (ds) {
11464 switch (mmu_idx) {
11465 case ARMMMUIdx_Stage2:
11466 case ARMMMUIdx_Stage2_S:
11467 if (using16k) {
11468 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu);
11469 } else {
11470 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu);
11472 break;
11473 default:
11474 if (using16k) {
11475 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu);
11476 } else {
11477 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu);
11479 break;
11481 if (ds) {
11482 min_tsz = 12;
11486 if (tsz > max_tsz) {
11487 tsz = max_tsz;
11488 tsz_oob = true;
11489 } else if (tsz < min_tsz) {
11490 tsz = min_tsz;
11491 tsz_oob = true;
11492 } else {
11493 tsz_oob = false;
11496 /* Present TBI as a composite with TBID. */
11497 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
11498 if (!data) {
11499 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
11501 tbi = (tbi >> select) & 1;
11503 return (ARMVAParameters) {
11504 .tsz = tsz,
11505 .ps = ps,
11506 .sh = sh,
11507 .select = select,
11508 .tbi = tbi,
11509 .epd = epd,
11510 .hpd = hpd,
11511 .using16k = using16k,
11512 .using64k = using64k,
11513 .tsz_oob = tsz_oob,
11514 .ds = ds,
11518 #ifndef CONFIG_USER_ONLY
11519 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
11520 ARMMMUIdx mmu_idx)
11522 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
11523 uint32_t el = regime_el(env, mmu_idx);
11524 int select, tsz;
11525 bool epd, hpd;
11527 assert(mmu_idx != ARMMMUIdx_Stage2_S);
11529 if (mmu_idx == ARMMMUIdx_Stage2) {
11530 /* VTCR */
11531 bool sext = extract32(tcr, 4, 1);
11532 bool sign = extract32(tcr, 3, 1);
11535 * If the sign-extend bit is not the same as t0sz[3], the result
11536 * is unpredictable. Flag this as a guest error.
11538 if (sign != sext) {
11539 qemu_log_mask(LOG_GUEST_ERROR,
11540 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
11542 tsz = sextract32(tcr, 0, 4) + 8;
11543 select = 0;
11544 hpd = false;
11545 epd = false;
11546 } else if (el == 2) {
11547 /* HTCR */
11548 tsz = extract32(tcr, 0, 3);
11549 select = 0;
11550 hpd = extract64(tcr, 24, 1);
11551 epd = false;
11552 } else {
11553 int t0sz = extract32(tcr, 0, 3);
11554 int t1sz = extract32(tcr, 16, 3);
11556 if (t1sz == 0) {
11557 select = va > (0xffffffffu >> t0sz);
11558 } else {
11559 /* Note that we will detect errors later. */
11560 select = va >= ~(0xffffffffu >> t1sz);
11562 if (!select) {
11563 tsz = t0sz;
11564 epd = extract32(tcr, 7, 1);
11565 hpd = extract64(tcr, 41, 1);
11566 } else {
11567 tsz = t1sz;
11568 epd = extract32(tcr, 23, 1);
11569 hpd = extract64(tcr, 42, 1);
11571 /* For aarch32, hpd0 is not enabled without t2e as well. */
11572 hpd &= extract32(tcr, 6, 1);
11575 return (ARMVAParameters) {
11576 .tsz = tsz,
11577 .select = select,
11578 .epd = epd,
11579 .hpd = hpd,
11584 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format
11586 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
11587 * prot and page_size may not be filled in, and the populated fsr value provides
11588 * information on why the translation aborted, in the format of a long-format
11589 * DFSR/IFSR fault register, with the following caveats:
11590 * * the WnR bit is never set (the caller must do this).
11592 * @env: CPUARMState
11593 * @address: virtual address to get physical address for
11594 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
11595 * @mmu_idx: MMU index indicating required translation regime
11596 * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page table
11597 * walk), must be true if this is stage 2 of a stage 1+2 walk for an
11598 * EL0 access). If @mmu_idx is anything else, @s1_is_el0 is ignored.
11599 * @phys_ptr: set to the physical address corresponding to the virtual address
11600 * @attrs: set to the memory transaction attributes to use
11601 * @prot: set to the permissions for the page containing phys_ptr
11602 * @page_size_ptr: set to the size of the page containing phys_ptr
11603 * @fi: set to fault info if the translation fails
11604 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
11606 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address,
11607 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11608 bool s1_is_el0,
11609 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
11610 target_ulong *page_size_ptr,
11611 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
11613 ARMCPU *cpu = env_archcpu(env);
11614 CPUState *cs = CPU(cpu);
11615 /* Read an LPAE long-descriptor translation table. */
11616 ARMFaultType fault_type = ARMFault_Translation;
11617 uint32_t level;
11618 ARMVAParameters param;
11619 uint64_t ttbr;
11620 hwaddr descaddr, indexmask, indexmask_grainsize;
11621 uint32_t tableattrs;
11622 target_ulong page_size;
11623 uint32_t attrs;
11624 int32_t stride;
11625 int addrsize, inputsize, outputsize;
11626 TCR *tcr = regime_tcr(env, mmu_idx);
11627 int ap, ns, xn, pxn;
11628 uint32_t el = regime_el(env, mmu_idx);
11629 uint64_t descaddrmask;
11630 bool aarch64 = arm_el_is_aa64(env, el);
11631 bool guarded = false;
11633 /* TODO: This code does not support shareability levels. */
11634 if (aarch64) {
11635 int ps;
11637 param = aa64_va_parameters(env, address, mmu_idx,
11638 access_type != MMU_INST_FETCH);
11639 level = 0;
11642 * If TxSZ is programmed to a value larger than the maximum,
11643 * or smaller than the effective minimum, it is IMPLEMENTATION
11644 * DEFINED whether we behave as if the field were programmed
11645 * within bounds, or if a level 0 Translation fault is generated.
11647 * With FEAT_LVA, fault on less than minimum becomes required,
11648 * so our choice is to always raise the fault.
11650 if (param.tsz_oob) {
11651 fault_type = ARMFault_Translation;
11652 goto do_fault;
11655 addrsize = 64 - 8 * param.tbi;
11656 inputsize = 64 - param.tsz;
11659 * Bound PS by PARANGE to find the effective output address size.
11660 * ID_AA64MMFR0 is a read-only register so values outside of the
11661 * supported mappings can be considered an implementation error.
11663 ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
11664 ps = MIN(ps, param.ps);
11665 assert(ps < ARRAY_SIZE(pamax_map));
11666 outputsize = pamax_map[ps];
11667 } else {
11668 param = aa32_va_parameters(env, address, mmu_idx);
11669 level = 1;
11670 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
11671 inputsize = addrsize - param.tsz;
11672 outputsize = 40;
11676 * We determined the region when collecting the parameters, but we
11677 * have not yet validated that the address is valid for the region.
11678 * Extract the top bits and verify that they all match select.
11680 * For aa32, if inputsize == addrsize, then we have selected the
11681 * region by exclusion in aa32_va_parameters and there is no more
11682 * validation to do here.
11684 if (inputsize < addrsize) {
11685 target_ulong top_bits = sextract64(address, inputsize,
11686 addrsize - inputsize);
11687 if (-top_bits != param.select) {
11688 /* The gap between the two regions is a Translation fault */
11689 fault_type = ARMFault_Translation;
11690 goto do_fault;
11694 if (param.using64k) {
11695 stride = 13;
11696 } else if (param.using16k) {
11697 stride = 11;
11698 } else {
11699 stride = 9;
11702 /* Note that QEMU ignores shareability and cacheability attributes,
11703 * so we don't need to do anything with the SH, ORGN, IRGN fields
11704 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
11705 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
11706 * implement any ASID-like capability so we can ignore it (instead
11707 * we will always flush the TLB any time the ASID is changed).
11709 ttbr = regime_ttbr(env, mmu_idx, param.select);
11711 /* Here we should have set up all the parameters for the translation:
11712 * inputsize, ttbr, epd, stride, tbi
11715 if (param.epd) {
11716 /* Translation table walk disabled => Translation fault on TLB miss
11717 * Note: This is always 0 on 64-bit EL2 and EL3.
11719 goto do_fault;
11722 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) {
11723 /* The starting level depends on the virtual address size (which can
11724 * be up to 48 bits) and the translation granule size. It indicates
11725 * the number of strides (stride bits at a time) needed to
11726 * consume the bits of the input address. In the pseudocode this is:
11727 * level = 4 - RoundUp((inputsize - grainsize) / stride)
11728 * where their 'inputsize' is our 'inputsize', 'grainsize' is
11729 * our 'stride + 3' and 'stride' is our 'stride'.
11730 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
11731 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
11732 * = 4 - (inputsize - 4) / stride;
11734 level = 4 - (inputsize - 4) / stride;
11735 } else {
11736 /* For stage 2 translations the starting level is specified by the
11737 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
11739 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
11740 uint32_t sl2 = extract64(tcr->raw_tcr, 33, 1);
11741 uint32_t startlevel;
11742 bool ok;
11744 /* SL2 is RES0 unless DS=1 & 4kb granule. */
11745 if (param.ds && stride == 9 && sl2) {
11746 if (sl0 != 0) {
11747 level = 0;
11748 fault_type = ARMFault_Translation;
11749 goto do_fault;
11751 startlevel = -1;
11752 } else if (!aarch64 || stride == 9) {
11753 /* AArch32 or 4KB pages */
11754 startlevel = 2 - sl0;
11756 if (cpu_isar_feature(aa64_st, cpu)) {
11757 startlevel &= 3;
11759 } else {
11760 /* 16KB or 64KB pages */
11761 startlevel = 3 - sl0;
11764 /* Check that the starting level is valid. */
11765 ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
11766 inputsize, stride, outputsize);
11767 if (!ok) {
11768 fault_type = ARMFault_Translation;
11769 goto do_fault;
11771 level = startlevel;
11774 indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3);
11775 indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level)));
11777 /* Now we can extract the actual base address from the TTBR */
11778 descaddr = extract64(ttbr, 0, 48);
11781 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR.
11783 * Otherwise, if the base address is out of range, raise AddressSizeFault.
11784 * In the pseudocode, this is !IsZero(baseregister<47:outputsize>),
11785 * but we've just cleared the bits above 47, so simplify the test.
11787 if (outputsize > 48) {
11788 descaddr |= extract64(ttbr, 2, 4) << 48;
11789 } else if (descaddr >> outputsize) {
11790 level = 0;
11791 fault_type = ARMFault_AddressSize;
11792 goto do_fault;
11796 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR
11797 * and also to mask out CnP (bit 0) which could validly be non-zero.
11799 descaddr &= ~indexmask;
11802 * For AArch32, the address field in the descriptor goes up to bit 39
11803 * for both v7 and v8. However, for v8 the SBZ bits [47:40] must be 0
11804 * or an AddressSize fault is raised. So for v8 we extract those SBZ
11805 * bits as part of the address, which will be checked via outputsize.
11806 * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2;
11807 * the highest bits of a 52-bit output are placed elsewhere.
11809 if (param.ds) {
11810 descaddrmask = MAKE_64BIT_MASK(0, 50);
11811 } else if (arm_feature(env, ARM_FEATURE_V8)) {
11812 descaddrmask = MAKE_64BIT_MASK(0, 48);
11813 } else {
11814 descaddrmask = MAKE_64BIT_MASK(0, 40);
11816 descaddrmask &= ~indexmask_grainsize;
11818 /* Secure accesses start with the page table in secure memory and
11819 * can be downgraded to non-secure at any step. Non-secure accesses
11820 * remain non-secure. We implement this by just ORing in the NSTable/NS
11821 * bits at each step.
11823 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
11824 for (;;) {
11825 uint64_t descriptor;
11826 bool nstable;
11828 descaddr |= (address >> (stride * (4 - level))) & indexmask;
11829 descaddr &= ~7ULL;
11830 nstable = extract32(tableattrs, 4, 1);
11831 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
11832 if (fi->type != ARMFault_None) {
11833 goto do_fault;
11836 if (!(descriptor & 1) ||
11837 (!(descriptor & 2) && (level == 3))) {
11838 /* Invalid, or the Reserved level 3 encoding */
11839 goto do_fault;
11842 descaddr = descriptor & descaddrmask;
11845 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12]
11846 * of descriptor. For FEAT_LPA2 and effective DS, bits [51:50] of
11847 * descaddr are in [9:8]. Otherwise, if descaddr is out of range,
11848 * raise AddressSizeFault.
11850 if (outputsize > 48) {
11851 if (param.ds) {
11852 descaddr |= extract64(descriptor, 8, 2) << 50;
11853 } else {
11854 descaddr |= extract64(descriptor, 12, 4) << 48;
11856 } else if (descaddr >> outputsize) {
11857 fault_type = ARMFault_AddressSize;
11858 goto do_fault;
11861 if ((descriptor & 2) && (level < 3)) {
11862 /* Table entry. The top five bits are attributes which may
11863 * propagate down through lower levels of the table (and
11864 * which are all arranged so that 0 means "no effect", so
11865 * we can gather them up by ORing in the bits at each level).
11867 tableattrs |= extract64(descriptor, 59, 5);
11868 level++;
11869 indexmask = indexmask_grainsize;
11870 continue;
11873 * Block entry at level 1 or 2, or page entry at level 3.
11874 * These are basically the same thing, although the number
11875 * of bits we pull in from the vaddr varies. Note that although
11876 * descaddrmask masks enough of the low bits of the descriptor
11877 * to give a correct page or table address, the address field
11878 * in a block descriptor is smaller; so we need to explicitly
11879 * clear the lower bits here before ORing in the low vaddr bits.
11881 page_size = (1ULL << ((stride * (4 - level)) + 3));
11882 descaddr &= ~(page_size - 1);
11883 descaddr |= (address & (page_size - 1));
11884 /* Extract attributes from the descriptor */
11885 attrs = extract64(descriptor, 2, 10)
11886 | (extract64(descriptor, 52, 12) << 10);
11888 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11889 /* Stage 2 table descriptors do not include any attribute fields */
11890 break;
11892 /* Merge in attributes from table descriptors */
11893 attrs |= nstable << 3; /* NS */
11894 guarded = extract64(descriptor, 50, 1); /* GP */
11895 if (param.hpd) {
11896 /* HPD disables all the table attributes except NSTable. */
11897 break;
11899 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
11900 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
11901 * means "force PL1 access only", which means forcing AP[1] to 0.
11903 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */
11904 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */
11905 break;
11907 /* Here descaddr is the final physical address, and attributes
11908 * are all in attrs.
11910 fault_type = ARMFault_AccessFlag;
11911 if ((attrs & (1 << 8)) == 0) {
11912 /* Access flag */
11913 goto do_fault;
11916 ap = extract32(attrs, 4, 2);
11918 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11919 ns = mmu_idx == ARMMMUIdx_Stage2;
11920 xn = extract32(attrs, 11, 2);
11921 *prot = get_S2prot(env, ap, xn, s1_is_el0);
11922 } else {
11923 ns = extract32(attrs, 3, 1);
11924 xn = extract32(attrs, 12, 1);
11925 pxn = extract32(attrs, 11, 1);
11926 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
11929 fault_type = ARMFault_Permission;
11930 if (!(*prot & (1 << access_type))) {
11931 goto do_fault;
11934 if (ns) {
11935 /* The NS bit will (as required by the architecture) have no effect if
11936 * the CPU doesn't support TZ or this is a non-secure translation
11937 * regime, because the attribute will already be non-secure.
11939 txattrs->secure = false;
11941 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */
11942 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) {
11943 arm_tlb_bti_gp(txattrs) = true;
11946 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11947 cacheattrs->is_s2_format = true;
11948 cacheattrs->attrs = extract32(attrs, 0, 4);
11949 } else {
11950 /* Index into MAIR registers for cache attributes */
11951 uint8_t attrindx = extract32(attrs, 0, 3);
11952 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
11953 assert(attrindx <= 7);
11954 cacheattrs->is_s2_format = false;
11955 cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
11959 * For FEAT_LPA2 and effective DS, the SH field in the attributes
11960 * was re-purposed for output address bits. The SH attribute in
11961 * that case comes from TCR_ELx, which we extracted earlier.
11963 if (param.ds) {
11964 cacheattrs->shareability = param.sh;
11965 } else {
11966 cacheattrs->shareability = extract32(attrs, 6, 2);
11969 *phys_ptr = descaddr;
11970 *page_size_ptr = page_size;
11971 return false;
11973 do_fault:
11974 fi->type = fault_type;
11975 fi->level = level;
11976 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
11977 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2 ||
11978 mmu_idx == ARMMMUIdx_Stage2_S);
11979 fi->s1ns = mmu_idx == ARMMMUIdx_Stage2;
11980 return true;
11983 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
11984 ARMMMUIdx mmu_idx,
11985 int32_t address, int *prot)
11987 if (!arm_feature(env, ARM_FEATURE_M)) {
11988 *prot = PAGE_READ | PAGE_WRITE;
11989 switch (address) {
11990 case 0xF0000000 ... 0xFFFFFFFF:
11991 if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
11992 /* hivecs execing is ok */
11993 *prot |= PAGE_EXEC;
11995 break;
11996 case 0x00000000 ... 0x7FFFFFFF:
11997 *prot |= PAGE_EXEC;
11998 break;
12000 } else {
12001 /* Default system address map for M profile cores.
12002 * The architecture specifies which regions are execute-never;
12003 * at the MPU level no other checks are defined.
12005 switch (address) {
12006 case 0x00000000 ... 0x1fffffff: /* ROM */
12007 case 0x20000000 ... 0x3fffffff: /* SRAM */
12008 case 0x60000000 ... 0x7fffffff: /* RAM */
12009 case 0x80000000 ... 0x9fffffff: /* RAM */
12010 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
12011 break;
12012 case 0x40000000 ... 0x5fffffff: /* Peripheral */
12013 case 0xa0000000 ... 0xbfffffff: /* Device */
12014 case 0xc0000000 ... 0xdfffffff: /* Device */
12015 case 0xe0000000 ... 0xffffffff: /* System */
12016 *prot = PAGE_READ | PAGE_WRITE;
12017 break;
12018 default:
12019 g_assert_not_reached();
12024 static bool pmsav7_use_background_region(ARMCPU *cpu,
12025 ARMMMUIdx mmu_idx, bool is_user)
12027 /* Return true if we should use the default memory map as a
12028 * "background" region if there are no hits against any MPU regions.
12030 CPUARMState *env = &cpu->env;
12032 if (is_user) {
12033 return false;
12036 if (arm_feature(env, ARM_FEATURE_M)) {
12037 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
12038 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
12039 } else {
12040 return regime_sctlr(env, mmu_idx) & SCTLR_BR;
12044 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
12046 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
12047 return arm_feature(env, ARM_FEATURE_M) &&
12048 extract32(address, 20, 12) == 0xe00;
12051 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
12053 /* True if address is in the M profile system region
12054 * 0xe0000000 - 0xffffffff
12056 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
12059 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
12060 MMUAccessType access_type, ARMMMUIdx mmu_idx,
12061 hwaddr *phys_ptr, int *prot,
12062 target_ulong *page_size,
12063 ARMMMUFaultInfo *fi)
12065 ARMCPU *cpu = env_archcpu(env);
12066 int n;
12067 bool is_user = regime_is_user(env, mmu_idx);
12069 *phys_ptr = address;
12070 *page_size = TARGET_PAGE_SIZE;
12071 *prot = 0;
12073 if (regime_translation_disabled(env, mmu_idx) ||
12074 m_is_ppb_region(env, address)) {
12075 /* MPU disabled or M profile PPB access: use default memory map.
12076 * The other case which uses the default memory map in the
12077 * v7M ARM ARM pseudocode is exception vector reads from the vector
12078 * table. In QEMU those accesses are done in arm_v7m_load_vector(),
12079 * which always does a direct read using address_space_ldl(), rather
12080 * than going via this function, so we don't need to check that here.
12082 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
12083 } else { /* MPU enabled */
12084 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
12085 /* region search */
12086 uint32_t base = env->pmsav7.drbar[n];
12087 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
12088 uint32_t rmask;
12089 bool srdis = false;
12091 if (!(env->pmsav7.drsr[n] & 0x1)) {
12092 continue;
12095 if (!rsize) {
12096 qemu_log_mask(LOG_GUEST_ERROR,
12097 "DRSR[%d]: Rsize field cannot be 0\n", n);
12098 continue;
12100 rsize++;
12101 rmask = (1ull << rsize) - 1;
12103 if (base & rmask) {
12104 qemu_log_mask(LOG_GUEST_ERROR,
12105 "DRBAR[%d]: 0x%" PRIx32 " misaligned "
12106 "to DRSR region size, mask = 0x%" PRIx32 "\n",
12107 n, base, rmask);
12108 continue;
12111 if (address < base || address > base + rmask) {
12113 * Address not in this region. We must check whether the
12114 * region covers addresses in the same page as our address.
12115 * In that case we must not report a size that covers the
12116 * whole page for a subsequent hit against a different MPU
12117 * region or the background region, because it would result in
12118 * incorrect TLB hits for subsequent accesses to addresses that
12119 * are in this MPU region.
12121 if (ranges_overlap(base, rmask,
12122 address & TARGET_PAGE_MASK,
12123 TARGET_PAGE_SIZE)) {
12124 *page_size = 1;
12126 continue;
12129 /* Region matched */
12131 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
12132 int i, snd;
12133 uint32_t srdis_mask;
12135 rsize -= 3; /* sub region size (power of 2) */
12136 snd = ((address - base) >> rsize) & 0x7;
12137 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
12139 srdis_mask = srdis ? 0x3 : 0x0;
12140 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
12141 /* This will check in groups of 2, 4 and then 8, whether
12142 * the subregion bits are consistent. rsize is incremented
12143 * back up to give the region size, considering consistent
12144 * adjacent subregions as one region. Stop testing if rsize
12145 * is already big enough for an entire QEMU page.
12147 int snd_rounded = snd & ~(i - 1);
12148 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
12149 snd_rounded + 8, i);
12150 if (srdis_mask ^ srdis_multi) {
12151 break;
12153 srdis_mask = (srdis_mask << i) | srdis_mask;
12154 rsize++;
12157 if (srdis) {
12158 continue;
12160 if (rsize < TARGET_PAGE_BITS) {
12161 *page_size = 1 << rsize;
12163 break;
12166 if (n == -1) { /* no hits */
12167 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
12168 /* background fault */
12169 fi->type = ARMFault_Background;
12170 return true;
12172 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
12173 } else { /* a MPU hit! */
12174 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
12175 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
12177 if (m_is_system_region(env, address)) {
12178 /* System space is always execute never */
12179 xn = 1;
12182 if (is_user) { /* User mode AP bit decoding */
12183 switch (ap) {
12184 case 0:
12185 case 1:
12186 case 5:
12187 break; /* no access */
12188 case 3:
12189 *prot |= PAGE_WRITE;
12190 /* fall through */
12191 case 2:
12192 case 6:
12193 *prot |= PAGE_READ | PAGE_EXEC;
12194 break;
12195 case 7:
12196 /* for v7M, same as 6; for R profile a reserved value */
12197 if (arm_feature(env, ARM_FEATURE_M)) {
12198 *prot |= PAGE_READ | PAGE_EXEC;
12199 break;
12201 /* fall through */
12202 default:
12203 qemu_log_mask(LOG_GUEST_ERROR,
12204 "DRACR[%d]: Bad value for AP bits: 0x%"
12205 PRIx32 "\n", n, ap);
12207 } else { /* Priv. mode AP bits decoding */
12208 switch (ap) {
12209 case 0:
12210 break; /* no access */
12211 case 1:
12212 case 2:
12213 case 3:
12214 *prot |= PAGE_WRITE;
12215 /* fall through */
12216 case 5:
12217 case 6:
12218 *prot |= PAGE_READ | PAGE_EXEC;
12219 break;
12220 case 7:
12221 /* for v7M, same as 6; for R profile a reserved value */
12222 if (arm_feature(env, ARM_FEATURE_M)) {
12223 *prot |= PAGE_READ | PAGE_EXEC;
12224 break;
12226 /* fall through */
12227 default:
12228 qemu_log_mask(LOG_GUEST_ERROR,
12229 "DRACR[%d]: Bad value for AP bits: 0x%"
12230 PRIx32 "\n", n, ap);
12234 /* execute never */
12235 if (xn) {
12236 *prot &= ~PAGE_EXEC;
12241 fi->type = ARMFault_Permission;
12242 fi->level = 1;
12243 return !(*prot & (1 << access_type));
12246 static bool v8m_is_sau_exempt(CPUARMState *env,
12247 uint32_t address, MMUAccessType access_type)
12249 /* The architecture specifies that certain address ranges are
12250 * exempt from v8M SAU/IDAU checks.
12252 return
12253 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
12254 (address >= 0xe0000000 && address <= 0xe0002fff) ||
12255 (address >= 0xe000e000 && address <= 0xe000efff) ||
12256 (address >= 0xe002e000 && address <= 0xe002efff) ||
12257 (address >= 0xe0040000 && address <= 0xe0041fff) ||
12258 (address >= 0xe00ff000 && address <= 0xe00fffff);
12261 void v8m_security_lookup(CPUARMState *env, uint32_t address,
12262 MMUAccessType access_type, ARMMMUIdx mmu_idx,
12263 V8M_SAttributes *sattrs)
12265 /* Look up the security attributes for this address. Compare the
12266 * pseudocode SecurityCheck() function.
12267 * We assume the caller has zero-initialized *sattrs.
12269 ARMCPU *cpu = env_archcpu(env);
12270 int r;
12271 bool idau_exempt = false, idau_ns = true, idau_nsc = true;
12272 int idau_region = IREGION_NOTVALID;
12273 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
12274 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
12276 if (cpu->idau) {
12277 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
12278 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
12280 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
12281 &idau_nsc);
12284 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
12285 /* 0xf0000000..0xffffffff is always S for insn fetches */
12286 return;
12289 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
12290 sattrs->ns = !regime_is_secure(env, mmu_idx);
12291 return;
12294 if (idau_region != IREGION_NOTVALID) {
12295 sattrs->irvalid = true;
12296 sattrs->iregion = idau_region;
12299 switch (env->sau.ctrl & 3) {
12300 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
12301 break;
12302 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
12303 sattrs->ns = true;
12304 break;
12305 default: /* SAU.ENABLE == 1 */
12306 for (r = 0; r < cpu->sau_sregion; r++) {
12307 if (env->sau.rlar[r] & 1) {
12308 uint32_t base = env->sau.rbar[r] & ~0x1f;
12309 uint32_t limit = env->sau.rlar[r] | 0x1f;
12311 if (base <= address && limit >= address) {
12312 if (base > addr_page_base || limit < addr_page_limit) {
12313 sattrs->subpage = true;
12315 if (sattrs->srvalid) {
12316 /* If we hit in more than one region then we must report
12317 * as Secure, not NS-Callable, with no valid region
12318 * number info.
12320 sattrs->ns = false;
12321 sattrs->nsc = false;
12322 sattrs->sregion = 0;
12323 sattrs->srvalid = false;
12324 break;
12325 } else {
12326 if (env->sau.rlar[r] & 2) {
12327 sattrs->nsc = true;
12328 } else {
12329 sattrs->ns = true;
12331 sattrs->srvalid = true;
12332 sattrs->sregion = r;
12334 } else {
12336 * Address not in this region. We must check whether the
12337 * region covers addresses in the same page as our address.
12338 * In that case we must not report a size that covers the
12339 * whole page for a subsequent hit against a different MPU
12340 * region or the background region, because it would result
12341 * in incorrect TLB hits for subsequent accesses to
12342 * addresses that are in this MPU region.
12344 if (limit >= base &&
12345 ranges_overlap(base, limit - base + 1,
12346 addr_page_base,
12347 TARGET_PAGE_SIZE)) {
12348 sattrs->subpage = true;
12353 break;
12357 * The IDAU will override the SAU lookup results if it specifies
12358 * higher security than the SAU does.
12360 if (!idau_ns) {
12361 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
12362 sattrs->ns = false;
12363 sattrs->nsc = idau_nsc;
12368 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
12369 MMUAccessType access_type, ARMMMUIdx mmu_idx,
12370 hwaddr *phys_ptr, MemTxAttrs *txattrs,
12371 int *prot, bool *is_subpage,
12372 ARMMMUFaultInfo *fi, uint32_t *mregion)
12374 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
12375 * that a full phys-to-virt translation does).
12376 * mregion is (if not NULL) set to the region number which matched,
12377 * or -1 if no region number is returned (MPU off, address did not
12378 * hit a region, address hit in multiple regions).
12379 * We set is_subpage to true if the region hit doesn't cover the
12380 * entire TARGET_PAGE the address is within.
12382 ARMCPU *cpu = env_archcpu(env);
12383 bool is_user = regime_is_user(env, mmu_idx);
12384 uint32_t secure = regime_is_secure(env, mmu_idx);
12385 int n;
12386 int matchregion = -1;
12387 bool hit = false;
12388 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
12389 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
12391 *is_subpage = false;
12392 *phys_ptr = address;
12393 *prot = 0;
12394 if (mregion) {
12395 *mregion = -1;
12398 /* Unlike the ARM ARM pseudocode, we don't need to check whether this
12399 * was an exception vector read from the vector table (which is always
12400 * done using the default system address map), because those accesses
12401 * are done in arm_v7m_load_vector(), which always does a direct
12402 * read using address_space_ldl(), rather than going via this function.
12404 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
12405 hit = true;
12406 } else if (m_is_ppb_region(env, address)) {
12407 hit = true;
12408 } else {
12409 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
12410 hit = true;
12413 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
12414 /* region search */
12415 /* Note that the base address is bits [31:5] from the register
12416 * with bits [4:0] all zeroes, but the limit address is bits
12417 * [31:5] from the register with bits [4:0] all ones.
12419 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
12420 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
12422 if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
12423 /* Region disabled */
12424 continue;
12427 if (address < base || address > limit) {
12429 * Address not in this region. We must check whether the
12430 * region covers addresses in the same page as our address.
12431 * In that case we must not report a size that covers the
12432 * whole page for a subsequent hit against a different MPU
12433 * region or the background region, because it would result in
12434 * incorrect TLB hits for subsequent accesses to addresses that
12435 * are in this MPU region.
12437 if (limit >= base &&
12438 ranges_overlap(base, limit - base + 1,
12439 addr_page_base,
12440 TARGET_PAGE_SIZE)) {
12441 *is_subpage = true;
12443 continue;
12446 if (base > addr_page_base || limit < addr_page_limit) {
12447 *is_subpage = true;
12450 if (matchregion != -1) {
12451 /* Multiple regions match -- always a failure (unlike
12452 * PMSAv7 where highest-numbered-region wins)
12454 fi->type = ARMFault_Permission;
12455 fi->level = 1;
12456 return true;
12459 matchregion = n;
12460 hit = true;
12464 if (!hit) {
12465 /* background fault */
12466 fi->type = ARMFault_Background;
12467 return true;
12470 if (matchregion == -1) {
12471 /* hit using the background region */
12472 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
12473 } else {
12474 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
12475 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
12476 bool pxn = false;
12478 if (arm_feature(env, ARM_FEATURE_V8_1M)) {
12479 pxn = extract32(env->pmsav8.rlar[secure][matchregion], 4, 1);
12482 if (m_is_system_region(env, address)) {
12483 /* System space is always execute never */
12484 xn = 1;
12487 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
12488 if (*prot && !xn && !(pxn && !is_user)) {
12489 *prot |= PAGE_EXEC;
12491 /* We don't need to look the attribute up in the MAIR0/MAIR1
12492 * registers because that only tells us about cacheability.
12494 if (mregion) {
12495 *mregion = matchregion;
12499 fi->type = ARMFault_Permission;
12500 fi->level = 1;
12501 return !(*prot & (1 << access_type));
12505 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
12506 MMUAccessType access_type, ARMMMUIdx mmu_idx,
12507 hwaddr *phys_ptr, MemTxAttrs *txattrs,
12508 int *prot, target_ulong *page_size,
12509 ARMMMUFaultInfo *fi)
12511 uint32_t secure = regime_is_secure(env, mmu_idx);
12512 V8M_SAttributes sattrs = {};
12513 bool ret;
12514 bool mpu_is_subpage;
12516 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
12517 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
12518 if (access_type == MMU_INST_FETCH) {
12519 /* Instruction fetches always use the MMU bank and the
12520 * transaction attribute determined by the fetch address,
12521 * regardless of CPU state. This is painful for QEMU
12522 * to handle, because it would mean we need to encode
12523 * into the mmu_idx not just the (user, negpri) information
12524 * for the current security state but also that for the
12525 * other security state, which would balloon the number
12526 * of mmu_idx values needed alarmingly.
12527 * Fortunately we can avoid this because it's not actually
12528 * possible to arbitrarily execute code from memory with
12529 * the wrong security attribute: it will always generate
12530 * an exception of some kind or another, apart from the
12531 * special case of an NS CPU executing an SG instruction
12532 * in S&NSC memory. So we always just fail the translation
12533 * here and sort things out in the exception handler
12534 * (including possibly emulating an SG instruction).
12536 if (sattrs.ns != !secure) {
12537 if (sattrs.nsc) {
12538 fi->type = ARMFault_QEMU_NSCExec;
12539 } else {
12540 fi->type = ARMFault_QEMU_SFault;
12542 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
12543 *phys_ptr = address;
12544 *prot = 0;
12545 return true;
12547 } else {
12548 /* For data accesses we always use the MMU bank indicated
12549 * by the current CPU state, but the security attributes
12550 * might downgrade a secure access to nonsecure.
12552 if (sattrs.ns) {
12553 txattrs->secure = false;
12554 } else if (!secure) {
12555 /* NS access to S memory must fault.
12556 * Architecturally we should first check whether the
12557 * MPU information for this address indicates that we
12558 * are doing an unaligned access to Device memory, which
12559 * should generate a UsageFault instead. QEMU does not
12560 * currently check for that kind of unaligned access though.
12561 * If we added it we would need to do so as a special case
12562 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
12564 fi->type = ARMFault_QEMU_SFault;
12565 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
12566 *phys_ptr = address;
12567 *prot = 0;
12568 return true;
12573 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
12574 txattrs, prot, &mpu_is_subpage, fi, NULL);
12575 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE;
12576 return ret;
12579 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
12580 MMUAccessType access_type, ARMMMUIdx mmu_idx,
12581 hwaddr *phys_ptr, int *prot,
12582 ARMMMUFaultInfo *fi)
12584 int n;
12585 uint32_t mask;
12586 uint32_t base;
12587 bool is_user = regime_is_user(env, mmu_idx);
12589 if (regime_translation_disabled(env, mmu_idx)) {
12590 /* MPU disabled. */
12591 *phys_ptr = address;
12592 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
12593 return false;
12596 *phys_ptr = address;
12597 for (n = 7; n >= 0; n--) {
12598 base = env->cp15.c6_region[n];
12599 if ((base & 1) == 0) {
12600 continue;
12602 mask = 1 << ((base >> 1) & 0x1f);
12603 /* Keep this shift separate from the above to avoid an
12604 (undefined) << 32. */
12605 mask = (mask << 1) - 1;
12606 if (((base ^ address) & ~mask) == 0) {
12607 break;
12610 if (n < 0) {
12611 fi->type = ARMFault_Background;
12612 return true;
12615 if (access_type == MMU_INST_FETCH) {
12616 mask = env->cp15.pmsav5_insn_ap;
12617 } else {
12618 mask = env->cp15.pmsav5_data_ap;
12620 mask = (mask >> (n * 4)) & 0xf;
12621 switch (mask) {
12622 case 0:
12623 fi->type = ARMFault_Permission;
12624 fi->level = 1;
12625 return true;
12626 case 1:
12627 if (is_user) {
12628 fi->type = ARMFault_Permission;
12629 fi->level = 1;
12630 return true;
12632 *prot = PAGE_READ | PAGE_WRITE;
12633 break;
12634 case 2:
12635 *prot = PAGE_READ;
12636 if (!is_user) {
12637 *prot |= PAGE_WRITE;
12639 break;
12640 case 3:
12641 *prot = PAGE_READ | PAGE_WRITE;
12642 break;
12643 case 5:
12644 if (is_user) {
12645 fi->type = ARMFault_Permission;
12646 fi->level = 1;
12647 return true;
12649 *prot = PAGE_READ;
12650 break;
12651 case 6:
12652 *prot = PAGE_READ;
12653 break;
12654 default:
12655 /* Bad permission. */
12656 fi->type = ARMFault_Permission;
12657 fi->level = 1;
12658 return true;
12660 *prot |= PAGE_EXEC;
12661 return false;
12664 /* Combine either inner or outer cacheability attributes for normal
12665 * memory, according to table D4-42 and pseudocode procedure
12666 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
12668 * NB: only stage 1 includes allocation hints (RW bits), leading to
12669 * some asymmetry.
12671 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
12673 if (s1 == 4 || s2 == 4) {
12674 /* non-cacheable has precedence */
12675 return 4;
12676 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
12677 /* stage 1 write-through takes precedence */
12678 return s1;
12679 } else if (extract32(s2, 2, 2) == 2) {
12680 /* stage 2 write-through takes precedence, but the allocation hint
12681 * is still taken from stage 1
12683 return (2 << 2) | extract32(s1, 0, 2);
12684 } else { /* write-back */
12685 return s1;
12690 * Combine the memory type and cacheability attributes of
12691 * s1 and s2 for the HCR_EL2.FWB == 0 case, returning the
12692 * combined attributes in MAIR_EL1 format.
12694 static uint8_t combined_attrs_nofwb(CPUARMState *env,
12695 ARMCacheAttrs s1, ARMCacheAttrs s2)
12697 uint8_t s1lo, s2lo, s1hi, s2hi, s2_mair_attrs, ret_attrs;
12699 s2_mair_attrs = convert_stage2_attrs(env, s2.attrs);
12701 s1lo = extract32(s1.attrs, 0, 4);
12702 s2lo = extract32(s2_mair_attrs, 0, 4);
12703 s1hi = extract32(s1.attrs, 4, 4);
12704 s2hi = extract32(s2_mair_attrs, 4, 4);
12706 /* Combine memory type and cacheability attributes */
12707 if (s1hi == 0 || s2hi == 0) {
12708 /* Device has precedence over normal */
12709 if (s1lo == 0 || s2lo == 0) {
12710 /* nGnRnE has precedence over anything */
12711 ret_attrs = 0;
12712 } else if (s1lo == 4 || s2lo == 4) {
12713 /* non-Reordering has precedence over Reordering */
12714 ret_attrs = 4; /* nGnRE */
12715 } else if (s1lo == 8 || s2lo == 8) {
12716 /* non-Gathering has precedence over Gathering */
12717 ret_attrs = 8; /* nGRE */
12718 } else {
12719 ret_attrs = 0xc; /* GRE */
12721 } else { /* Normal memory */
12722 /* Outer/inner cacheability combine independently */
12723 ret_attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
12724 | combine_cacheattr_nibble(s1lo, s2lo);
12726 return ret_attrs;
12729 static uint8_t force_cacheattr_nibble_wb(uint8_t attr)
12732 * Given the 4 bits specifying the outer or inner cacheability
12733 * in MAIR format, return a value specifying Normal Write-Back,
12734 * with the allocation and transient hints taken from the input
12735 * if the input specified some kind of cacheable attribute.
12737 if (attr == 0 || attr == 4) {
12739 * 0 == an UNPREDICTABLE encoding
12740 * 4 == Non-cacheable
12741 * Either way, force Write-Back RW allocate non-transient
12743 return 0xf;
12745 /* Change WriteThrough to WriteBack, keep allocation and transient hints */
12746 return attr | 4;
12750 * Combine the memory type and cacheability attributes of
12751 * s1 and s2 for the HCR_EL2.FWB == 1 case, returning the
12752 * combined attributes in MAIR_EL1 format.
12754 static uint8_t combined_attrs_fwb(CPUARMState *env,
12755 ARMCacheAttrs s1, ARMCacheAttrs s2)
12757 switch (s2.attrs) {
12758 case 7:
12759 /* Use stage 1 attributes */
12760 return s1.attrs;
12761 case 6:
12763 * Force Normal Write-Back. Note that if S1 is Normal cacheable
12764 * then we take the allocation hints from it; otherwise it is
12765 * RW allocate, non-transient.
12767 if ((s1.attrs & 0xf0) == 0) {
12768 /* S1 is Device */
12769 return 0xff;
12771 /* Need to check the Inner and Outer nibbles separately */
12772 return force_cacheattr_nibble_wb(s1.attrs & 0xf) |
12773 force_cacheattr_nibble_wb(s1.attrs >> 4) << 4;
12774 case 5:
12775 /* If S1 attrs are Device, use them; otherwise Normal Non-cacheable */
12776 if ((s1.attrs & 0xf0) == 0) {
12777 return s1.attrs;
12779 return 0x44;
12780 case 0 ... 3:
12781 /* Force Device, of subtype specified by S2 */
12782 return s2.attrs << 2;
12783 default:
12785 * RESERVED values (including RES0 descriptor bit [5] being nonzero);
12786 * arbitrarily force Device.
12788 return 0;
12792 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
12793 * and CombineS1S2Desc()
12795 * @env: CPUARMState
12796 * @s1: Attributes from stage 1 walk
12797 * @s2: Attributes from stage 2 walk
12799 static ARMCacheAttrs combine_cacheattrs(CPUARMState *env,
12800 ARMCacheAttrs s1, ARMCacheAttrs s2)
12802 ARMCacheAttrs ret;
12803 bool tagged = false;
12805 assert(s2.is_s2_format && !s1.is_s2_format);
12806 ret.is_s2_format = false;
12808 if (s1.attrs == 0xf0) {
12809 tagged = true;
12810 s1.attrs = 0xff;
12813 /* Combine shareability attributes (table D4-43) */
12814 if (s1.shareability == 2 || s2.shareability == 2) {
12815 /* if either are outer-shareable, the result is outer-shareable */
12816 ret.shareability = 2;
12817 } else if (s1.shareability == 3 || s2.shareability == 3) {
12818 /* if either are inner-shareable, the result is inner-shareable */
12819 ret.shareability = 3;
12820 } else {
12821 /* both non-shareable */
12822 ret.shareability = 0;
12825 /* Combine memory type and cacheability attributes */
12826 if (arm_hcr_el2_eff(env) & HCR_FWB) {
12827 ret.attrs = combined_attrs_fwb(env, s1, s2);
12828 } else {
12829 ret.attrs = combined_attrs_nofwb(env, s1, s2);
12833 * Any location for which the resultant memory type is any
12834 * type of Device memory is always treated as Outer Shareable.
12835 * Any location for which the resultant memory type is Normal
12836 * Inner Non-cacheable, Outer Non-cacheable is always treated
12837 * as Outer Shareable.
12838 * TODO: FEAT_XS adds another value (0x40) also meaning iNCoNC
12840 if ((ret.attrs & 0xf0) == 0 || ret.attrs == 0x44) {
12841 ret.shareability = 2;
12844 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */
12845 if (tagged && ret.attrs == 0xff) {
12846 ret.attrs = 0xf0;
12849 return ret;
12853 /* get_phys_addr - get the physical address for this virtual address
12855 * Find the physical address corresponding to the given virtual address,
12856 * by doing a translation table walk on MMU based systems or using the
12857 * MPU state on MPU based systems.
12859 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
12860 * prot and page_size may not be filled in, and the populated fsr value provides
12861 * information on why the translation aborted, in the format of a
12862 * DFSR/IFSR fault register, with the following caveats:
12863 * * we honour the short vs long DFSR format differences.
12864 * * the WnR bit is never set (the caller must do this).
12865 * * for PSMAv5 based systems we don't bother to return a full FSR format
12866 * value.
12868 * @env: CPUARMState
12869 * @address: virtual address to get physical address for
12870 * @access_type: 0 for read, 1 for write, 2 for execute
12871 * @mmu_idx: MMU index indicating required translation regime
12872 * @phys_ptr: set to the physical address corresponding to the virtual address
12873 * @attrs: set to the memory transaction attributes to use
12874 * @prot: set to the permissions for the page containing phys_ptr
12875 * @page_size: set to the size of the page containing phys_ptr
12876 * @fi: set to fault info if the translation fails
12877 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
12879 bool get_phys_addr(CPUARMState *env, target_ulong address,
12880 MMUAccessType access_type, ARMMMUIdx mmu_idx,
12881 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
12882 target_ulong *page_size,
12883 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
12885 ARMMMUIdx s1_mmu_idx = stage_1_mmu_idx(mmu_idx);
12887 if (mmu_idx != s1_mmu_idx) {
12888 /* Call ourselves recursively to do the stage 1 and then stage 2
12889 * translations if mmu_idx is a two-stage regime.
12891 if (arm_feature(env, ARM_FEATURE_EL2)) {
12892 hwaddr ipa;
12893 int s2_prot;
12894 int ret;
12895 bool ipa_secure;
12896 ARMCacheAttrs cacheattrs2 = {};
12897 ARMMMUIdx s2_mmu_idx;
12898 bool is_el0;
12900 ret = get_phys_addr(env, address, access_type, s1_mmu_idx, &ipa,
12901 attrs, prot, page_size, fi, cacheattrs);
12903 /* If S1 fails or S2 is disabled, return early. */
12904 if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
12905 *phys_ptr = ipa;
12906 return ret;
12909 ipa_secure = attrs->secure;
12910 if (arm_is_secure_below_el3(env)) {
12911 if (ipa_secure) {
12912 attrs->secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW);
12913 } else {
12914 attrs->secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW);
12916 } else {
12917 assert(!ipa_secure);
12920 s2_mmu_idx = attrs->secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
12921 is_el0 = mmu_idx == ARMMMUIdx_E10_0 || mmu_idx == ARMMMUIdx_SE10_0;
12923 /* S1 is done. Now do S2 translation. */
12924 ret = get_phys_addr_lpae(env, ipa, access_type, s2_mmu_idx, is_el0,
12925 phys_ptr, attrs, &s2_prot,
12926 page_size, fi, &cacheattrs2);
12927 fi->s2addr = ipa;
12928 /* Combine the S1 and S2 perms. */
12929 *prot &= s2_prot;
12931 /* If S2 fails, return early. */
12932 if (ret) {
12933 return ret;
12936 /* Combine the S1 and S2 cache attributes. */
12937 if (arm_hcr_el2_eff(env) & HCR_DC) {
12939 * HCR.DC forces the first stage attributes to
12940 * Normal Non-Shareable,
12941 * Inner Write-Back Read-Allocate Write-Allocate,
12942 * Outer Write-Back Read-Allocate Write-Allocate.
12943 * Do not overwrite Tagged within attrs.
12945 if (cacheattrs->attrs != 0xf0) {
12946 cacheattrs->attrs = 0xff;
12948 cacheattrs->shareability = 0;
12950 *cacheattrs = combine_cacheattrs(env, *cacheattrs, cacheattrs2);
12952 /* Check if IPA translates to secure or non-secure PA space. */
12953 if (arm_is_secure_below_el3(env)) {
12954 if (ipa_secure) {
12955 attrs->secure =
12956 !(env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW));
12957 } else {
12958 attrs->secure =
12959 !((env->cp15.vtcr_el2.raw_tcr & (VTCR_NSA | VTCR_NSW))
12960 || (env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW)));
12963 return 0;
12964 } else {
12966 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
12968 mmu_idx = stage_1_mmu_idx(mmu_idx);
12972 /* The page table entries may downgrade secure to non-secure, but
12973 * cannot upgrade an non-secure translation regime's attributes
12974 * to secure.
12976 attrs->secure = regime_is_secure(env, mmu_idx);
12977 attrs->user = regime_is_user(env, mmu_idx);
12979 /* Fast Context Switch Extension. This doesn't exist at all in v8.
12980 * In v7 and earlier it affects all stage 1 translations.
12982 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
12983 && !arm_feature(env, ARM_FEATURE_V8)) {
12984 if (regime_el(env, mmu_idx) == 3) {
12985 address += env->cp15.fcseidr_s;
12986 } else {
12987 address += env->cp15.fcseidr_ns;
12991 if (arm_feature(env, ARM_FEATURE_PMSA)) {
12992 bool ret;
12993 *page_size = TARGET_PAGE_SIZE;
12995 if (arm_feature(env, ARM_FEATURE_V8)) {
12996 /* PMSAv8 */
12997 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
12998 phys_ptr, attrs, prot, page_size, fi);
12999 } else if (arm_feature(env, ARM_FEATURE_V7)) {
13000 /* PMSAv7 */
13001 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
13002 phys_ptr, prot, page_size, fi);
13003 } else {
13004 /* Pre-v7 MPU */
13005 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
13006 phys_ptr, prot, fi);
13008 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
13009 " mmu_idx %u -> %s (prot %c%c%c)\n",
13010 access_type == MMU_DATA_LOAD ? "reading" :
13011 (access_type == MMU_DATA_STORE ? "writing" : "execute"),
13012 (uint32_t)address, mmu_idx,
13013 ret ? "Miss" : "Hit",
13014 *prot & PAGE_READ ? 'r' : '-',
13015 *prot & PAGE_WRITE ? 'w' : '-',
13016 *prot & PAGE_EXEC ? 'x' : '-');
13018 return ret;
13021 /* Definitely a real MMU, not an MPU */
13023 if (regime_translation_disabled(env, mmu_idx)) {
13024 uint64_t hcr;
13025 uint8_t memattr;
13028 * MMU disabled. S1 addresses within aa64 translation regimes are
13029 * still checked for bounds -- see AArch64.TranslateAddressS1Off.
13031 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) {
13032 int r_el = regime_el(env, mmu_idx);
13033 if (arm_el_is_aa64(env, r_el)) {
13034 int pamax = arm_pamax(env_archcpu(env));
13035 uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr;
13036 int addrtop, tbi;
13038 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
13039 if (access_type == MMU_INST_FETCH) {
13040 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
13042 tbi = (tbi >> extract64(address, 55, 1)) & 1;
13043 addrtop = (tbi ? 55 : 63);
13045 if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
13046 fi->type = ARMFault_AddressSize;
13047 fi->level = 0;
13048 fi->stage2 = false;
13049 return 1;
13053 * When TBI is disabled, we've just validated that all of the
13054 * bits above PAMax are zero, so logically we only need to
13055 * clear the top byte for TBI. But it's clearer to follow
13056 * the pseudocode set of addrdesc.paddress.
13058 address = extract64(address, 0, 52);
13061 *phys_ptr = address;
13062 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
13063 *page_size = TARGET_PAGE_SIZE;
13065 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */
13066 hcr = arm_hcr_el2_eff(env);
13067 cacheattrs->shareability = 0;
13068 cacheattrs->is_s2_format = false;
13069 if (hcr & HCR_DC) {
13070 if (hcr & HCR_DCT) {
13071 memattr = 0xf0; /* Tagged, Normal, WB, RWA */
13072 } else {
13073 memattr = 0xff; /* Normal, WB, RWA */
13075 } else if (access_type == MMU_INST_FETCH) {
13076 if (regime_sctlr(env, mmu_idx) & SCTLR_I) {
13077 memattr = 0xee; /* Normal, WT, RA, NT */
13078 } else {
13079 memattr = 0x44; /* Normal, NC, No */
13081 cacheattrs->shareability = 2; /* outer sharable */
13082 } else {
13083 memattr = 0x00; /* Device, nGnRnE */
13085 cacheattrs->attrs = memattr;
13086 return 0;
13089 if (regime_using_lpae_format(env, mmu_idx)) {
13090 return get_phys_addr_lpae(env, address, access_type, mmu_idx, false,
13091 phys_ptr, attrs, prot, page_size,
13092 fi, cacheattrs);
13093 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
13094 return get_phys_addr_v6(env, address, access_type, mmu_idx,
13095 phys_ptr, attrs, prot, page_size, fi);
13096 } else {
13097 return get_phys_addr_v5(env, address, access_type, mmu_idx,
13098 phys_ptr, prot, page_size, fi);
13102 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
13103 MemTxAttrs *attrs)
13105 ARMCPU *cpu = ARM_CPU(cs);
13106 CPUARMState *env = &cpu->env;
13107 hwaddr phys_addr;
13108 target_ulong page_size;
13109 int prot;
13110 bool ret;
13111 ARMMMUFaultInfo fi = {};
13112 ARMMMUIdx mmu_idx = arm_mmu_idx(env);
13113 ARMCacheAttrs cacheattrs = {};
13115 *attrs = (MemTxAttrs) {};
13117 ret = get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &phys_addr,
13118 attrs, &prot, &page_size, &fi, &cacheattrs);
13120 if (ret) {
13121 return -1;
13123 return phys_addr;
13126 #endif
13128 /* Note that signed overflow is undefined in C. The following routines are
13129 careful to use unsigned types where modulo arithmetic is required.
13130 Failure to do so _will_ break on newer gcc. */
13132 /* Signed saturating arithmetic. */
13134 /* Perform 16-bit signed saturating addition. */
13135 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
13137 uint16_t res;
13139 res = a + b;
13140 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
13141 if (a & 0x8000)
13142 res = 0x8000;
13143 else
13144 res = 0x7fff;
13146 return res;
13149 /* Perform 8-bit signed saturating addition. */
13150 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
13152 uint8_t res;
13154 res = a + b;
13155 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
13156 if (a & 0x80)
13157 res = 0x80;
13158 else
13159 res = 0x7f;
13161 return res;
13164 /* Perform 16-bit signed saturating subtraction. */
13165 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
13167 uint16_t res;
13169 res = a - b;
13170 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
13171 if (a & 0x8000)
13172 res = 0x8000;
13173 else
13174 res = 0x7fff;
13176 return res;
13179 /* Perform 8-bit signed saturating subtraction. */
13180 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
13182 uint8_t res;
13184 res = a - b;
13185 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
13186 if (a & 0x80)
13187 res = 0x80;
13188 else
13189 res = 0x7f;
13191 return res;
13194 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
13195 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
13196 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
13197 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
13198 #define PFX q
13200 #include "op_addsub.h"
13202 /* Unsigned saturating arithmetic. */
13203 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
13205 uint16_t res;
13206 res = a + b;
13207 if (res < a)
13208 res = 0xffff;
13209 return res;
13212 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
13214 if (a > b)
13215 return a - b;
13216 else
13217 return 0;
13220 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
13222 uint8_t res;
13223 res = a + b;
13224 if (res < a)
13225 res = 0xff;
13226 return res;
13229 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
13231 if (a > b)
13232 return a - b;
13233 else
13234 return 0;
13237 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
13238 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
13239 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
13240 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
13241 #define PFX uq
13243 #include "op_addsub.h"
13245 /* Signed modulo arithmetic. */
13246 #define SARITH16(a, b, n, op) do { \
13247 int32_t sum; \
13248 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
13249 RESULT(sum, n, 16); \
13250 if (sum >= 0) \
13251 ge |= 3 << (n * 2); \
13252 } while(0)
13254 #define SARITH8(a, b, n, op) do { \
13255 int32_t sum; \
13256 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
13257 RESULT(sum, n, 8); \
13258 if (sum >= 0) \
13259 ge |= 1 << n; \
13260 } while(0)
13263 #define ADD16(a, b, n) SARITH16(a, b, n, +)
13264 #define SUB16(a, b, n) SARITH16(a, b, n, -)
13265 #define ADD8(a, b, n) SARITH8(a, b, n, +)
13266 #define SUB8(a, b, n) SARITH8(a, b, n, -)
13267 #define PFX s
13268 #define ARITH_GE
13270 #include "op_addsub.h"
13272 /* Unsigned modulo arithmetic. */
13273 #define ADD16(a, b, n) do { \
13274 uint32_t sum; \
13275 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
13276 RESULT(sum, n, 16); \
13277 if ((sum >> 16) == 1) \
13278 ge |= 3 << (n * 2); \
13279 } while(0)
13281 #define ADD8(a, b, n) do { \
13282 uint32_t sum; \
13283 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
13284 RESULT(sum, n, 8); \
13285 if ((sum >> 8) == 1) \
13286 ge |= 1 << n; \
13287 } while(0)
13289 #define SUB16(a, b, n) do { \
13290 uint32_t sum; \
13291 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
13292 RESULT(sum, n, 16); \
13293 if ((sum >> 16) == 0) \
13294 ge |= 3 << (n * 2); \
13295 } while(0)
13297 #define SUB8(a, b, n) do { \
13298 uint32_t sum; \
13299 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
13300 RESULT(sum, n, 8); \
13301 if ((sum >> 8) == 0) \
13302 ge |= 1 << n; \
13303 } while(0)
13305 #define PFX u
13306 #define ARITH_GE
13308 #include "op_addsub.h"
13310 /* Halved signed arithmetic. */
13311 #define ADD16(a, b, n) \
13312 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
13313 #define SUB16(a, b, n) \
13314 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
13315 #define ADD8(a, b, n) \
13316 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
13317 #define SUB8(a, b, n) \
13318 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
13319 #define PFX sh
13321 #include "op_addsub.h"
13323 /* Halved unsigned arithmetic. */
13324 #define ADD16(a, b, n) \
13325 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
13326 #define SUB16(a, b, n) \
13327 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
13328 #define ADD8(a, b, n) \
13329 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
13330 #define SUB8(a, b, n) \
13331 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
13332 #define PFX uh
13334 #include "op_addsub.h"
13336 static inline uint8_t do_usad(uint8_t a, uint8_t b)
13338 if (a > b)
13339 return a - b;
13340 else
13341 return b - a;
13344 /* Unsigned sum of absolute byte differences. */
13345 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
13347 uint32_t sum;
13348 sum = do_usad(a, b);
13349 sum += do_usad(a >> 8, b >> 8);
13350 sum += do_usad(a >> 16, b >> 16);
13351 sum += do_usad(a >> 24, b >> 24);
13352 return sum;
13355 /* For ARMv6 SEL instruction. */
13356 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
13358 uint32_t mask;
13360 mask = 0;
13361 if (flags & 1)
13362 mask |= 0xff;
13363 if (flags & 2)
13364 mask |= 0xff00;
13365 if (flags & 4)
13366 mask |= 0xff0000;
13367 if (flags & 8)
13368 mask |= 0xff000000;
13369 return (a & mask) | (b & ~mask);
13372 /* CRC helpers.
13373 * The upper bytes of val (above the number specified by 'bytes') must have
13374 * been zeroed out by the caller.
13376 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
13378 uint8_t buf[4];
13380 stl_le_p(buf, val);
13382 /* zlib crc32 converts the accumulator and output to one's complement. */
13383 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
13386 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
13388 uint8_t buf[4];
13390 stl_le_p(buf, val);
13392 /* Linux crc32c converts the output to one's complement. */
13393 return crc32c(acc, buf, bytes) ^ 0xffffffff;
13396 /* Return the exception level to which FP-disabled exceptions should
13397 * be taken, or 0 if FP is enabled.
13399 int fp_exception_el(CPUARMState *env, int cur_el)
13401 #ifndef CONFIG_USER_ONLY
13402 uint64_t hcr_el2;
13404 /* CPACR and the CPTR registers don't exist before v6, so FP is
13405 * always accessible
13407 if (!arm_feature(env, ARM_FEATURE_V6)) {
13408 return 0;
13411 if (arm_feature(env, ARM_FEATURE_M)) {
13412 /* CPACR can cause a NOCP UsageFault taken to current security state */
13413 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
13414 return 1;
13417 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
13418 if (!extract32(env->v7m.nsacr, 10, 1)) {
13419 /* FP insns cause a NOCP UsageFault taken to Secure */
13420 return 3;
13424 return 0;
13427 hcr_el2 = arm_hcr_el2_eff(env);
13429 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
13430 * 0, 2 : trap EL0 and EL1/PL1 accesses
13431 * 1 : trap only EL0 accesses
13432 * 3 : trap no accesses
13433 * This register is ignored if E2H+TGE are both set.
13435 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
13436 int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN);
13438 switch (fpen) {
13439 case 0:
13440 case 2:
13441 if (cur_el == 0 || cur_el == 1) {
13442 /* Trap to PL1, which might be EL1 or EL3 */
13443 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
13444 return 3;
13446 return 1;
13448 if (cur_el == 3 && !is_a64(env)) {
13449 /* Secure PL1 running at EL3 */
13450 return 3;
13452 break;
13453 case 1:
13454 if (cur_el == 0) {
13455 return 1;
13457 break;
13458 case 3:
13459 break;
13464 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
13465 * to control non-secure access to the FPU. It doesn't have any
13466 * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
13468 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
13469 cur_el <= 2 && !arm_is_secure_below_el3(env))) {
13470 if (!extract32(env->cp15.nsacr, 10, 1)) {
13471 /* FP insns act as UNDEF */
13472 return cur_el == 2 ? 2 : 1;
13477 * CPTR_EL2 is present in v7VE or v8, and changes format
13478 * with HCR_EL2.E2H (regardless of TGE).
13480 if (cur_el <= 2) {
13481 if (hcr_el2 & HCR_E2H) {
13482 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) {
13483 case 1:
13484 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) {
13485 break;
13487 /* fall through */
13488 case 0:
13489 case 2:
13490 return 2;
13492 } else if (arm_is_el2_enabled(env)) {
13493 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) {
13494 return 2;
13499 /* CPTR_EL3 : present in v8 */
13500 if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) {
13501 /* Trap all FP ops to EL3 */
13502 return 3;
13504 #endif
13505 return 0;
13508 /* Return the exception level we're running at if this is our mmu_idx */
13509 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
13511 if (mmu_idx & ARM_MMU_IDX_M) {
13512 return mmu_idx & ARM_MMU_IDX_M_PRIV;
13515 switch (mmu_idx) {
13516 case ARMMMUIdx_E10_0:
13517 case ARMMMUIdx_E20_0:
13518 case ARMMMUIdx_SE10_0:
13519 case ARMMMUIdx_SE20_0:
13520 return 0;
13521 case ARMMMUIdx_E10_1:
13522 case ARMMMUIdx_E10_1_PAN:
13523 case ARMMMUIdx_SE10_1:
13524 case ARMMMUIdx_SE10_1_PAN:
13525 return 1;
13526 case ARMMMUIdx_E2:
13527 case ARMMMUIdx_E20_2:
13528 case ARMMMUIdx_E20_2_PAN:
13529 case ARMMMUIdx_SE2:
13530 case ARMMMUIdx_SE20_2:
13531 case ARMMMUIdx_SE20_2_PAN:
13532 return 2;
13533 case ARMMMUIdx_SE3:
13534 return 3;
13535 default:
13536 g_assert_not_reached();
13540 #ifndef CONFIG_TCG
13541 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
13543 g_assert_not_reached();
13545 #endif
13547 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
13549 ARMMMUIdx idx;
13550 uint64_t hcr;
13552 if (arm_feature(env, ARM_FEATURE_M)) {
13553 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
13556 /* See ARM pseudo-function ELIsInHost. */
13557 switch (el) {
13558 case 0:
13559 hcr = arm_hcr_el2_eff(env);
13560 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
13561 idx = ARMMMUIdx_E20_0;
13562 } else {
13563 idx = ARMMMUIdx_E10_0;
13565 break;
13566 case 1:
13567 if (env->pstate & PSTATE_PAN) {
13568 idx = ARMMMUIdx_E10_1_PAN;
13569 } else {
13570 idx = ARMMMUIdx_E10_1;
13572 break;
13573 case 2:
13574 /* Note that TGE does not apply at EL2. */
13575 if (arm_hcr_el2_eff(env) & HCR_E2H) {
13576 if (env->pstate & PSTATE_PAN) {
13577 idx = ARMMMUIdx_E20_2_PAN;
13578 } else {
13579 idx = ARMMMUIdx_E20_2;
13581 } else {
13582 idx = ARMMMUIdx_E2;
13584 break;
13585 case 3:
13586 return ARMMMUIdx_SE3;
13587 default:
13588 g_assert_not_reached();
13591 if (arm_is_secure_below_el3(env)) {
13592 idx &= ~ARM_MMU_IDX_A_NS;
13595 return idx;
13598 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
13600 return arm_mmu_idx_el(env, arm_current_el(env));
13603 #ifndef CONFIG_USER_ONLY
13604 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
13606 return stage_1_mmu_idx(arm_mmu_idx(env));
13608 #endif
13610 static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el,
13611 ARMMMUIdx mmu_idx,
13612 CPUARMTBFlags flags)
13614 DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el);
13615 DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx));
13617 if (arm_singlestep_active(env)) {
13618 DP_TBFLAG_ANY(flags, SS_ACTIVE, 1);
13620 return flags;
13623 static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el,
13624 ARMMMUIdx mmu_idx,
13625 CPUARMTBFlags flags)
13627 bool sctlr_b = arm_sctlr_b(env);
13629 if (sctlr_b) {
13630 DP_TBFLAG_A32(flags, SCTLR__B, 1);
13632 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) {
13633 DP_TBFLAG_ANY(flags, BE_DATA, 1);
13635 DP_TBFLAG_A32(flags, NS, !access_secure_reg(env));
13637 return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
13640 static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el,
13641 ARMMMUIdx mmu_idx)
13643 CPUARMTBFlags flags = {};
13644 uint32_t ccr = env->v7m.ccr[env->v7m.secure];
13646 /* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */
13647 if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) {
13648 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
13651 if (arm_v7m_is_handler_mode(env)) {
13652 DP_TBFLAG_M32(flags, HANDLER, 1);
13656 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN
13657 * is suppressing them because the requested execution priority
13658 * is less than 0.
13660 if (arm_feature(env, ARM_FEATURE_V8) &&
13661 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
13662 (ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
13663 DP_TBFLAG_M32(flags, STACKCHECK, 1);
13666 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
13669 static CPUARMTBFlags rebuild_hflags_aprofile(CPUARMState *env)
13671 CPUARMTBFlags flags = {};
13673 DP_TBFLAG_ANY(flags, DEBUG_TARGET_EL, arm_debug_target_el(env));
13674 return flags;
13677 static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el,
13678 ARMMMUIdx mmu_idx)
13680 CPUARMTBFlags flags = rebuild_hflags_aprofile(env);
13681 int el = arm_current_el(env);
13683 if (arm_sctlr(env, el) & SCTLR_A) {
13684 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
13687 if (arm_el_is_aa64(env, 1)) {
13688 DP_TBFLAG_A32(flags, VFPEN, 1);
13691 if (el < 2 && env->cp15.hstr_el2 &&
13692 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
13693 DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1);
13696 if (env->uncached_cpsr & CPSR_IL) {
13697 DP_TBFLAG_ANY(flags, PSTATE__IL, 1);
13700 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
13703 static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el,
13704 ARMMMUIdx mmu_idx)
13706 CPUARMTBFlags flags = rebuild_hflags_aprofile(env);
13707 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
13708 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
13709 uint64_t sctlr;
13710 int tbii, tbid;
13712 DP_TBFLAG_ANY(flags, AARCH64_STATE, 1);
13714 /* Get control bits for tagged addresses. */
13715 tbid = aa64_va_parameter_tbi(tcr, mmu_idx);
13716 tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx);
13718 DP_TBFLAG_A64(flags, TBII, tbii);
13719 DP_TBFLAG_A64(flags, TBID, tbid);
13721 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) {
13722 int sve_el = sve_exception_el(env, el);
13723 uint32_t zcr_len;
13726 * If SVE is disabled, but FP is enabled,
13727 * then the effective len is 0.
13729 if (sve_el != 0 && fp_el == 0) {
13730 zcr_len = 0;
13731 } else {
13732 zcr_len = sve_zcr_len_for_el(env, el);
13734 DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el);
13735 DP_TBFLAG_A64(flags, ZCR_LEN, zcr_len);
13738 sctlr = regime_sctlr(env, stage1);
13740 if (sctlr & SCTLR_A) {
13741 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
13744 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) {
13745 DP_TBFLAG_ANY(flags, BE_DATA, 1);
13748 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) {
13750 * In order to save space in flags, we record only whether
13751 * pauth is "inactive", meaning all insns are implemented as
13752 * a nop, or "active" when some action must be performed.
13753 * The decision of which action to take is left to a helper.
13755 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
13756 DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1);
13760 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
13761 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */
13762 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
13763 DP_TBFLAG_A64(flags, BT, 1);
13767 /* Compute the condition for using AccType_UNPRIV for LDTR et al. */
13768 if (!(env->pstate & PSTATE_UAO)) {
13769 switch (mmu_idx) {
13770 case ARMMMUIdx_E10_1:
13771 case ARMMMUIdx_E10_1_PAN:
13772 case ARMMMUIdx_SE10_1:
13773 case ARMMMUIdx_SE10_1_PAN:
13774 /* TODO: ARMv8.3-NV */
13775 DP_TBFLAG_A64(flags, UNPRIV, 1);
13776 break;
13777 case ARMMMUIdx_E20_2:
13778 case ARMMMUIdx_E20_2_PAN:
13779 case ARMMMUIdx_SE20_2:
13780 case ARMMMUIdx_SE20_2_PAN:
13782 * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is
13783 * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR.
13785 if (env->cp15.hcr_el2 & HCR_TGE) {
13786 DP_TBFLAG_A64(flags, UNPRIV, 1);
13788 break;
13789 default:
13790 break;
13794 if (env->pstate & PSTATE_IL) {
13795 DP_TBFLAG_ANY(flags, PSTATE__IL, 1);
13798 if (cpu_isar_feature(aa64_mte, env_archcpu(env))) {
13800 * Set MTE_ACTIVE if any access may be Checked, and leave clear
13801 * if all accesses must be Unchecked:
13802 * 1) If no TBI, then there are no tags in the address to check,
13803 * 2) If Tag Check Override, then all accesses are Unchecked,
13804 * 3) If Tag Check Fail == 0, then Checked access have no effect,
13805 * 4) If no Allocation Tag Access, then all accesses are Unchecked.
13807 if (allocation_tag_access_enabled(env, el, sctlr)) {
13808 DP_TBFLAG_A64(flags, ATA, 1);
13809 if (tbid
13810 && !(env->pstate & PSTATE_TCO)
13811 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) {
13812 DP_TBFLAG_A64(flags, MTE_ACTIVE, 1);
13815 /* And again for unprivileged accesses, if required. */
13816 if (EX_TBFLAG_A64(flags, UNPRIV)
13817 && tbid
13818 && !(env->pstate & PSTATE_TCO)
13819 && (sctlr & SCTLR_TCF0)
13820 && allocation_tag_access_enabled(env, 0, sctlr)) {
13821 DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1);
13823 /* Cache TCMA as well as TBI. */
13824 DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx));
13827 return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
13830 static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env)
13832 int el = arm_current_el(env);
13833 int fp_el = fp_exception_el(env, el);
13834 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13836 if (is_a64(env)) {
13837 return rebuild_hflags_a64(env, el, fp_el, mmu_idx);
13838 } else if (arm_feature(env, ARM_FEATURE_M)) {
13839 return rebuild_hflags_m32(env, fp_el, mmu_idx);
13840 } else {
13841 return rebuild_hflags_a32(env, fp_el, mmu_idx);
13845 void arm_rebuild_hflags(CPUARMState *env)
13847 env->hflags = rebuild_hflags_internal(env);
13851 * If we have triggered a EL state change we can't rely on the
13852 * translator having passed it to us, we need to recompute.
13854 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env)
13856 int el = arm_current_el(env);
13857 int fp_el = fp_exception_el(env, el);
13858 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13860 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
13863 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el)
13865 int fp_el = fp_exception_el(env, el);
13866 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13868 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
13872 * If we have triggered a EL state change we can't rely on the
13873 * translator having passed it to us, we need to recompute.
13875 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env)
13877 int el = arm_current_el(env);
13878 int fp_el = fp_exception_el(env, el);
13879 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13880 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
13883 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el)
13885 int fp_el = fp_exception_el(env, el);
13886 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13888 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
13891 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el)
13893 int fp_el = fp_exception_el(env, el);
13894 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13896 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx);
13899 static inline void assert_hflags_rebuild_correctly(CPUARMState *env)
13901 #ifdef CONFIG_DEBUG_TCG
13902 CPUARMTBFlags c = env->hflags;
13903 CPUARMTBFlags r = rebuild_hflags_internal(env);
13905 if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) {
13906 fprintf(stderr, "TCG hflags mismatch "
13907 "(current:(0x%08x,0x" TARGET_FMT_lx ")"
13908 " rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n",
13909 c.flags, c.flags2, r.flags, r.flags2);
13910 abort();
13912 #endif
13915 static bool mve_no_pred(CPUARMState *env)
13918 * Return true if there is definitely no predication of MVE
13919 * instructions by VPR or LTPSIZE. (Returning false even if there
13920 * isn't any predication is OK; generated code will just be
13921 * a little worse.)
13922 * If the CPU does not implement MVE then this TB flag is always 0.
13924 * NOTE: if you change this logic, the "recalculate s->mve_no_pred"
13925 * logic in gen_update_fp_context() needs to be updated to match.
13927 * We do not include the effect of the ECI bits here -- they are
13928 * tracked in other TB flags. This simplifies the logic for
13929 * "when did we emit code that changes the MVE_NO_PRED TB flag
13930 * and thus need to end the TB?".
13932 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) {
13933 return false;
13935 if (env->v7m.vpr) {
13936 return false;
13938 if (env->v7m.ltpsize < 4) {
13939 return false;
13941 return true;
13944 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
13945 target_ulong *cs_base, uint32_t *pflags)
13947 CPUARMTBFlags flags;
13949 assert_hflags_rebuild_correctly(env);
13950 flags = env->hflags;
13952 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) {
13953 *pc = env->pc;
13954 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
13955 DP_TBFLAG_A64(flags, BTYPE, env->btype);
13957 } else {
13958 *pc = env->regs[15];
13960 if (arm_feature(env, ARM_FEATURE_M)) {
13961 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
13962 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
13963 != env->v7m.secure) {
13964 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1);
13967 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
13968 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
13969 (env->v7m.secure &&
13970 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
13972 * ASPEN is set, but FPCA/SFPA indicate that there is no
13973 * active FP context; we must create a new FP context before
13974 * executing any FP insn.
13976 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1);
13979 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
13980 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
13981 DP_TBFLAG_M32(flags, LSPACT, 1);
13984 if (mve_no_pred(env)) {
13985 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1);
13987 } else {
13989 * Note that XSCALE_CPAR shares bits with VECSTRIDE.
13990 * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
13992 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
13993 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar);
13994 } else {
13995 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len);
13996 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride);
13998 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
13999 DP_TBFLAG_A32(flags, VFPEN, 1);
14003 DP_TBFLAG_AM32(flags, THUMB, env->thumb);
14004 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits);
14008 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
14009 * states defined in the ARM ARM for software singlestep:
14010 * SS_ACTIVE PSTATE.SS State
14011 * 0 x Inactive (the TB flag for SS is always 0)
14012 * 1 0 Active-pending
14013 * 1 1 Active-not-pending
14014 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB.
14016 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) {
14017 DP_TBFLAG_ANY(flags, PSTATE__SS, 1);
14020 *pflags = flags.flags;
14021 *cs_base = flags.flags2;
14024 #ifdef TARGET_AARCH64
14026 * The manual says that when SVE is enabled and VQ is widened the
14027 * implementation is allowed to zero the previously inaccessible
14028 * portion of the registers. The corollary to that is that when
14029 * SVE is enabled and VQ is narrowed we are also allowed to zero
14030 * the now inaccessible portion of the registers.
14032 * The intent of this is that no predicate bit beyond VQ is ever set.
14033 * Which means that some operations on predicate registers themselves
14034 * may operate on full uint64_t or even unrolled across the maximum
14035 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally
14036 * may well be cheaper than conditionals to restrict the operation
14037 * to the relevant portion of a uint16_t[16].
14039 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
14041 int i, j;
14042 uint64_t pmask;
14044 assert(vq >= 1 && vq <= ARM_MAX_VQ);
14045 assert(vq <= env_archcpu(env)->sve_max_vq);
14047 /* Zap the high bits of the zregs. */
14048 for (i = 0; i < 32; i++) {
14049 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
14052 /* Zap the high bits of the pregs and ffr. */
14053 pmask = 0;
14054 if (vq & 3) {
14055 pmask = ~(-1ULL << (16 * (vq & 3)));
14057 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
14058 for (i = 0; i < 17; ++i) {
14059 env->vfp.pregs[i].p[j] &= pmask;
14061 pmask = 0;
14066 * Notice a change in SVE vector size when changing EL.
14068 void aarch64_sve_change_el(CPUARMState *env, int old_el,
14069 int new_el, bool el0_a64)
14071 ARMCPU *cpu = env_archcpu(env);
14072 int old_len, new_len;
14073 bool old_a64, new_a64;
14075 /* Nothing to do if no SVE. */
14076 if (!cpu_isar_feature(aa64_sve, cpu)) {
14077 return;
14080 /* Nothing to do if FP is disabled in either EL. */
14081 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
14082 return;
14086 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
14087 * at ELx, or not available because the EL is in AArch32 state, then
14088 * for all purposes other than a direct read, the ZCR_ELx.LEN field
14089 * has an effective value of 0".
14091 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
14092 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
14093 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that
14094 * we already have the correct register contents when encountering the
14095 * vq0->vq0 transition between EL0->EL1.
14097 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
14098 old_len = (old_a64 && !sve_exception_el(env, old_el)
14099 ? sve_zcr_len_for_el(env, old_el) : 0);
14100 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
14101 new_len = (new_a64 && !sve_exception_el(env, new_el)
14102 ? sve_zcr_len_for_el(env, new_el) : 0);
14104 /* When changing vector length, clear inaccessible state. */
14105 if (new_len < old_len) {
14106 aarch64_sve_narrow_vq(env, new_len + 1);
14109 #endif