4 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
32 /* This check must be after config-host.h is included */
34 #include <sys/eventfd.h>
37 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
38 #define PAGE_SIZE TARGET_PAGE_SIZE
43 #define DPRINTF(fmt, ...) \
44 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
46 #define DPRINTF(fmt, ...) \
50 typedef struct KVMSlot
52 target_phys_addr_t start_addr
;
53 ram_addr_t memory_size
;
59 typedef struct kvm_dirty_log KVMDirtyLog
;
67 struct kvm_coalesced_mmio_ring
*coalesced_mmio_ring
;
68 bool coalesced_flush_in_progress
;
69 int broken_set_mem_region
;
72 int robust_singlestep
;
74 #ifdef KVM_CAP_SET_GUEST_DEBUG
75 struct kvm_sw_breakpoint_head kvm_sw_breakpoints
;
77 int irqchip_in_kernel
;
85 static const KVMCapabilityInfo kvm_required_capabilites
[] = {
86 KVM_CAP_INFO(USER_MEMORY
),
87 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS
),
91 static KVMSlot
*kvm_alloc_slot(KVMState
*s
)
95 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
96 if (s
->slots
[i
].memory_size
== 0) {
101 fprintf(stderr
, "%s: no free slot available\n", __func__
);
105 static KVMSlot
*kvm_lookup_matching_slot(KVMState
*s
,
106 target_phys_addr_t start_addr
,
107 target_phys_addr_t end_addr
)
111 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
112 KVMSlot
*mem
= &s
->slots
[i
];
114 if (start_addr
== mem
->start_addr
&&
115 end_addr
== mem
->start_addr
+ mem
->memory_size
) {
124 * Find overlapping slot with lowest start address
126 static KVMSlot
*kvm_lookup_overlapping_slot(KVMState
*s
,
127 target_phys_addr_t start_addr
,
128 target_phys_addr_t end_addr
)
130 KVMSlot
*found
= NULL
;
133 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
134 KVMSlot
*mem
= &s
->slots
[i
];
136 if (mem
->memory_size
== 0 ||
137 (found
&& found
->start_addr
< mem
->start_addr
)) {
141 if (end_addr
> mem
->start_addr
&&
142 start_addr
< mem
->start_addr
+ mem
->memory_size
) {
150 int kvm_physical_memory_addr_from_host(KVMState
*s
, void *ram
,
151 target_phys_addr_t
*phys_addr
)
155 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
156 KVMSlot
*mem
= &s
->slots
[i
];
158 if (ram
>= mem
->ram
&& ram
< mem
->ram
+ mem
->memory_size
) {
159 *phys_addr
= mem
->start_addr
+ (ram
- mem
->ram
);
167 static int kvm_set_user_memory_region(KVMState
*s
, KVMSlot
*slot
)
169 struct kvm_userspace_memory_region mem
;
171 mem
.slot
= slot
->slot
;
172 mem
.guest_phys_addr
= slot
->start_addr
;
173 mem
.memory_size
= slot
->memory_size
;
174 mem
.userspace_addr
= (unsigned long)slot
->ram
;
175 mem
.flags
= slot
->flags
;
176 if (s
->migration_log
) {
177 mem
.flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
179 return kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
182 static void kvm_reset_vcpu(void *opaque
)
184 CPUState
*env
= opaque
;
186 kvm_arch_reset_vcpu(env
);
189 int kvm_irqchip_in_kernel(void)
191 return kvm_state
->irqchip_in_kernel
;
194 int kvm_pit_in_kernel(void)
196 return kvm_state
->pit_in_kernel
;
199 int kvm_init_vcpu(CPUState
*env
)
201 KVMState
*s
= kvm_state
;
205 DPRINTF("kvm_init_vcpu\n");
207 ret
= kvm_vm_ioctl(s
, KVM_CREATE_VCPU
, env
->cpu_index
);
209 DPRINTF("kvm_create_vcpu failed\n");
215 env
->kvm_vcpu_dirty
= 1;
217 mmap_size
= kvm_ioctl(s
, KVM_GET_VCPU_MMAP_SIZE
, 0);
220 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
224 env
->kvm_run
= mmap(NULL
, mmap_size
, PROT_READ
| PROT_WRITE
, MAP_SHARED
,
226 if (env
->kvm_run
== MAP_FAILED
) {
228 DPRINTF("mmap'ing vcpu state failed\n");
232 if (s
->coalesced_mmio
&& !s
->coalesced_mmio_ring
) {
233 s
->coalesced_mmio_ring
=
234 (void *)env
->kvm_run
+ s
->coalesced_mmio
* PAGE_SIZE
;
237 ret
= kvm_arch_init_vcpu(env
);
239 qemu_register_reset(kvm_reset_vcpu
, env
);
240 kvm_arch_reset_vcpu(env
);
247 * dirty pages logging control
250 static int kvm_mem_flags(KVMState
*s
, bool log_dirty
)
252 return log_dirty
? KVM_MEM_LOG_DIRTY_PAGES
: 0;
255 static int kvm_slot_dirty_pages_log_change(KVMSlot
*mem
, bool log_dirty
)
257 KVMState
*s
= kvm_state
;
258 int flags
, mask
= KVM_MEM_LOG_DIRTY_PAGES
;
261 old_flags
= mem
->flags
;
263 flags
= (mem
->flags
& ~mask
) | kvm_mem_flags(s
, log_dirty
);
266 /* If nothing changed effectively, no need to issue ioctl */
267 if (s
->migration_log
) {
268 flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
271 if (flags
== old_flags
) {
275 return kvm_set_user_memory_region(s
, mem
);
278 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr
,
279 ram_addr_t size
, bool log_dirty
)
281 KVMState
*s
= kvm_state
;
282 KVMSlot
*mem
= kvm_lookup_matching_slot(s
, phys_addr
, phys_addr
+ size
);
285 fprintf(stderr
, "BUG: %s: invalid parameters " TARGET_FMT_plx
"-"
286 TARGET_FMT_plx
"\n", __func__
, phys_addr
,
287 (target_phys_addr_t
)(phys_addr
+ size
- 1));
290 return kvm_slot_dirty_pages_log_change(mem
, log_dirty
);
293 static void kvm_log_start(MemoryListener
*listener
,
294 MemoryRegionSection
*section
)
298 r
= kvm_dirty_pages_log_change(section
->offset_within_address_space
,
299 section
->size
, true);
305 static void kvm_log_stop(MemoryListener
*listener
,
306 MemoryRegionSection
*section
)
310 r
= kvm_dirty_pages_log_change(section
->offset_within_address_space
,
311 section
->size
, false);
317 static int kvm_set_migration_log(int enable
)
319 KVMState
*s
= kvm_state
;
323 s
->migration_log
= enable
;
325 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
328 if (!mem
->memory_size
) {
331 if (!!(mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) == enable
) {
334 err
= kvm_set_user_memory_region(s
, mem
);
342 /* get kvm's dirty pages bitmap and update qemu's */
343 static int kvm_get_dirty_pages_log_range(MemoryRegionSection
*section
,
344 unsigned long *bitmap
)
347 unsigned long page_number
, addr
, addr1
, c
;
348 unsigned int len
= ((section
->size
/ TARGET_PAGE_SIZE
) + HOST_LONG_BITS
- 1) / HOST_LONG_BITS
;
351 * bitmap-traveling is faster than memory-traveling (for addr...)
352 * especially when most of the memory is not dirty.
354 for (i
= 0; i
< len
; i
++) {
355 if (bitmap
[i
] != 0) {
356 c
= leul_to_cpu(bitmap
[i
]);
360 page_number
= i
* HOST_LONG_BITS
+ j
;
361 addr1
= page_number
* TARGET_PAGE_SIZE
;
362 addr
= section
->offset_within_region
+ addr1
;
363 memory_region_set_dirty(section
->mr
, addr
);
370 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
373 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
374 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
375 * This means all bits are set to dirty.
377 * @start_add: start of logged region.
378 * @end_addr: end of logged region.
380 static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection
*section
)
382 KVMState
*s
= kvm_state
;
383 unsigned long size
, allocated_size
= 0;
387 target_phys_addr_t start_addr
= section
->offset_within_address_space
;
388 target_phys_addr_t end_addr
= start_addr
+ section
->size
;
390 d
.dirty_bitmap
= NULL
;
391 while (start_addr
< end_addr
) {
392 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, end_addr
);
397 /* XXX bad kernel interface alert
398 * For dirty bitmap, kernel allocates array of size aligned to
399 * bits-per-long. But for case when the kernel is 64bits and
400 * the userspace is 32bits, userspace can't align to the same
401 * bits-per-long, since sizeof(long) is different between kernel
402 * and user space. This way, userspace will provide buffer which
403 * may be 4 bytes less than the kernel will use, resulting in
404 * userspace memory corruption (which is not detectable by valgrind
405 * too, in most cases).
406 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
407 * a hope that sizeof(long) wont become >8 any time soon.
409 size
= ALIGN(((mem
->memory_size
) >> TARGET_PAGE_BITS
),
410 /*HOST_LONG_BITS*/ 64) / 8;
411 if (!d
.dirty_bitmap
) {
412 d
.dirty_bitmap
= g_malloc(size
);
413 } else if (size
> allocated_size
) {
414 d
.dirty_bitmap
= g_realloc(d
.dirty_bitmap
, size
);
416 allocated_size
= size
;
417 memset(d
.dirty_bitmap
, 0, allocated_size
);
421 if (kvm_vm_ioctl(s
, KVM_GET_DIRTY_LOG
, &d
) == -1) {
422 DPRINTF("ioctl failed %d\n", errno
);
427 kvm_get_dirty_pages_log_range(section
, d
.dirty_bitmap
);
428 start_addr
= mem
->start_addr
+ mem
->memory_size
;
430 g_free(d
.dirty_bitmap
);
435 int kvm_coalesce_mmio_region(target_phys_addr_t start
, ram_addr_t size
)
438 KVMState
*s
= kvm_state
;
440 if (s
->coalesced_mmio
) {
441 struct kvm_coalesced_mmio_zone zone
;
446 ret
= kvm_vm_ioctl(s
, KVM_REGISTER_COALESCED_MMIO
, &zone
);
452 int kvm_uncoalesce_mmio_region(target_phys_addr_t start
, ram_addr_t size
)
455 KVMState
*s
= kvm_state
;
457 if (s
->coalesced_mmio
) {
458 struct kvm_coalesced_mmio_zone zone
;
463 ret
= kvm_vm_ioctl(s
, KVM_UNREGISTER_COALESCED_MMIO
, &zone
);
469 int kvm_check_extension(KVMState
*s
, unsigned int extension
)
473 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
481 static int kvm_check_many_ioeventfds(void)
483 /* Userspace can use ioeventfd for io notification. This requires a host
484 * that supports eventfd(2) and an I/O thread; since eventfd does not
485 * support SIGIO it cannot interrupt the vcpu.
487 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
488 * can avoid creating too many ioeventfds.
490 #if defined(CONFIG_EVENTFD)
493 for (i
= 0; i
< ARRAY_SIZE(ioeventfds
); i
++) {
494 ioeventfds
[i
] = eventfd(0, EFD_CLOEXEC
);
495 if (ioeventfds
[i
] < 0) {
498 ret
= kvm_set_ioeventfd_pio_word(ioeventfds
[i
], 0, i
, true);
500 close(ioeventfds
[i
]);
505 /* Decide whether many devices are supported or not */
506 ret
= i
== ARRAY_SIZE(ioeventfds
);
509 kvm_set_ioeventfd_pio_word(ioeventfds
[i
], 0, i
, false);
510 close(ioeventfds
[i
]);
518 static const KVMCapabilityInfo
*
519 kvm_check_extension_list(KVMState
*s
, const KVMCapabilityInfo
*list
)
522 if (!kvm_check_extension(s
, list
->value
)) {
530 static void kvm_set_phys_mem(MemoryRegionSection
*section
, bool add
)
532 KVMState
*s
= kvm_state
;
535 MemoryRegion
*mr
= section
->mr
;
536 bool log_dirty
= memory_region_is_logging(mr
);
537 target_phys_addr_t start_addr
= section
->offset_within_address_space
;
538 ram_addr_t size
= section
->size
;
541 /* kvm works in page size chunks, but the function may be called
542 with sub-page size and unaligned start address. */
543 size
= TARGET_PAGE_ALIGN(size
);
544 start_addr
= TARGET_PAGE_ALIGN(start_addr
);
546 if (!memory_region_is_ram(mr
)) {
550 ram
= memory_region_get_ram_ptr(mr
) + section
->offset_within_region
;
553 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, start_addr
+ size
);
558 if (add
&& start_addr
>= mem
->start_addr
&&
559 (start_addr
+ size
<= mem
->start_addr
+ mem
->memory_size
) &&
560 (ram
- start_addr
== mem
->ram
- mem
->start_addr
)) {
561 /* The new slot fits into the existing one and comes with
562 * identical parameters - update flags and done. */
563 kvm_slot_dirty_pages_log_change(mem
, log_dirty
);
569 /* unregister the overlapping slot */
570 mem
->memory_size
= 0;
571 err
= kvm_set_user_memory_region(s
, mem
);
573 fprintf(stderr
, "%s: error unregistering overlapping slot: %s\n",
574 __func__
, strerror(-err
));
578 /* Workaround for older KVM versions: we can't join slots, even not by
579 * unregistering the previous ones and then registering the larger
580 * slot. We have to maintain the existing fragmentation. Sigh.
582 * This workaround assumes that the new slot starts at the same
583 * address as the first existing one. If not or if some overlapping
584 * slot comes around later, we will fail (not seen in practice so far)
585 * - and actually require a recent KVM version. */
586 if (s
->broken_set_mem_region
&&
587 old
.start_addr
== start_addr
&& old
.memory_size
< size
&& add
) {
588 mem
= kvm_alloc_slot(s
);
589 mem
->memory_size
= old
.memory_size
;
590 mem
->start_addr
= old
.start_addr
;
592 mem
->flags
= kvm_mem_flags(s
, log_dirty
);
594 err
= kvm_set_user_memory_region(s
, mem
);
596 fprintf(stderr
, "%s: error updating slot: %s\n", __func__
,
601 start_addr
+= old
.memory_size
;
602 ram
+= old
.memory_size
;
603 size
-= old
.memory_size
;
607 /* register prefix slot */
608 if (old
.start_addr
< start_addr
) {
609 mem
= kvm_alloc_slot(s
);
610 mem
->memory_size
= start_addr
- old
.start_addr
;
611 mem
->start_addr
= old
.start_addr
;
613 mem
->flags
= kvm_mem_flags(s
, log_dirty
);
615 err
= kvm_set_user_memory_region(s
, mem
);
617 fprintf(stderr
, "%s: error registering prefix slot: %s\n",
618 __func__
, strerror(-err
));
620 fprintf(stderr
, "%s: This is probably because your kernel's " \
621 "PAGE_SIZE is too big. Please try to use 4k " \
622 "PAGE_SIZE!\n", __func__
);
628 /* register suffix slot */
629 if (old
.start_addr
+ old
.memory_size
> start_addr
+ size
) {
630 ram_addr_t size_delta
;
632 mem
= kvm_alloc_slot(s
);
633 mem
->start_addr
= start_addr
+ size
;
634 size_delta
= mem
->start_addr
- old
.start_addr
;
635 mem
->memory_size
= old
.memory_size
- size_delta
;
636 mem
->ram
= old
.ram
+ size_delta
;
637 mem
->flags
= kvm_mem_flags(s
, log_dirty
);
639 err
= kvm_set_user_memory_region(s
, mem
);
641 fprintf(stderr
, "%s: error registering suffix slot: %s\n",
642 __func__
, strerror(-err
));
648 /* in case the KVM bug workaround already "consumed" the new slot */
655 mem
= kvm_alloc_slot(s
);
656 mem
->memory_size
= size
;
657 mem
->start_addr
= start_addr
;
659 mem
->flags
= kvm_mem_flags(s
, log_dirty
);
661 err
= kvm_set_user_memory_region(s
, mem
);
663 fprintf(stderr
, "%s: error registering slot: %s\n", __func__
,
669 static void kvm_region_add(MemoryListener
*listener
,
670 MemoryRegionSection
*section
)
672 kvm_set_phys_mem(section
, true);
675 static void kvm_region_del(MemoryListener
*listener
,
676 MemoryRegionSection
*section
)
678 kvm_set_phys_mem(section
, false);
681 static void kvm_log_sync(MemoryListener
*listener
,
682 MemoryRegionSection
*section
)
686 r
= kvm_physical_sync_dirty_bitmap(section
);
692 static void kvm_log_global_start(struct MemoryListener
*listener
)
696 r
= kvm_set_migration_log(1);
700 static void kvm_log_global_stop(struct MemoryListener
*listener
)
704 r
= kvm_set_migration_log(0);
708 static MemoryListener kvm_memory_listener
= {
709 .region_add
= kvm_region_add
,
710 .region_del
= kvm_region_del
,
711 .log_start
= kvm_log_start
,
712 .log_stop
= kvm_log_stop
,
713 .log_sync
= kvm_log_sync
,
714 .log_global_start
= kvm_log_global_start
,
715 .log_global_stop
= kvm_log_global_stop
,
718 static void kvm_handle_interrupt(CPUState
*env
, int mask
)
720 env
->interrupt_request
|= mask
;
722 if (!qemu_cpu_is_self(env
)) {
729 static const char upgrade_note
[] =
730 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
731 "(see http://sourceforge.net/projects/kvm).\n";
733 const KVMCapabilityInfo
*missing_cap
;
737 s
= g_malloc0(sizeof(KVMState
));
739 #ifdef KVM_CAP_SET_GUEST_DEBUG
740 QTAILQ_INIT(&s
->kvm_sw_breakpoints
);
742 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
743 s
->slots
[i
].slot
= i
;
746 s
->fd
= qemu_open("/dev/kvm", O_RDWR
);
748 fprintf(stderr
, "Could not access KVM kernel module: %m\n");
753 ret
= kvm_ioctl(s
, KVM_GET_API_VERSION
, 0);
754 if (ret
< KVM_API_VERSION
) {
758 fprintf(stderr
, "kvm version too old\n");
762 if (ret
> KVM_API_VERSION
) {
764 fprintf(stderr
, "kvm version not supported\n");
768 s
->vmfd
= kvm_ioctl(s
, KVM_CREATE_VM
, 0);
771 fprintf(stderr
, "Please add the 'switch_amode' kernel parameter to "
772 "your host kernel command line\n");
778 missing_cap
= kvm_check_extension_list(s
, kvm_required_capabilites
);
781 kvm_check_extension_list(s
, kvm_arch_required_capabilities
);
785 fprintf(stderr
, "kvm does not support %s\n%s",
786 missing_cap
->name
, upgrade_note
);
790 s
->coalesced_mmio
= kvm_check_extension(s
, KVM_CAP_COALESCED_MMIO
);
792 s
->broken_set_mem_region
= 1;
793 ret
= kvm_check_extension(s
, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
);
795 s
->broken_set_mem_region
= 0;
798 #ifdef KVM_CAP_VCPU_EVENTS
799 s
->vcpu_events
= kvm_check_extension(s
, KVM_CAP_VCPU_EVENTS
);
802 s
->robust_singlestep
=
803 kvm_check_extension(s
, KVM_CAP_X86_ROBUST_SINGLESTEP
);
805 #ifdef KVM_CAP_DEBUGREGS
806 s
->debugregs
= kvm_check_extension(s
, KVM_CAP_DEBUGREGS
);
810 s
->xsave
= kvm_check_extension(s
, KVM_CAP_XSAVE
);
814 s
->xcrs
= kvm_check_extension(s
, KVM_CAP_XCRS
);
817 ret
= kvm_arch_init(s
);
823 memory_listener_register(&kvm_memory_listener
);
825 s
->many_ioeventfds
= kvm_check_many_ioeventfds();
827 cpu_interrupt_handler
= kvm_handle_interrupt
;
845 static void kvm_handle_io(uint16_t port
, void *data
, int direction
, int size
,
851 for (i
= 0; i
< count
; i
++) {
852 if (direction
== KVM_EXIT_IO_IN
) {
855 stb_p(ptr
, cpu_inb(port
));
858 stw_p(ptr
, cpu_inw(port
));
861 stl_p(ptr
, cpu_inl(port
));
867 cpu_outb(port
, ldub_p(ptr
));
870 cpu_outw(port
, lduw_p(ptr
));
873 cpu_outl(port
, ldl_p(ptr
));
882 static int kvm_handle_internal_error(CPUState
*env
, struct kvm_run
*run
)
884 fprintf(stderr
, "KVM internal error.");
885 if (kvm_check_extension(kvm_state
, KVM_CAP_INTERNAL_ERROR_DATA
)) {
888 fprintf(stderr
, " Suberror: %d\n", run
->internal
.suberror
);
889 for (i
= 0; i
< run
->internal
.ndata
; ++i
) {
890 fprintf(stderr
, "extra data[%d]: %"PRIx64
"\n",
891 i
, (uint64_t)run
->internal
.data
[i
]);
894 fprintf(stderr
, "\n");
896 if (run
->internal
.suberror
== KVM_INTERNAL_ERROR_EMULATION
) {
897 fprintf(stderr
, "emulation failure\n");
898 if (!kvm_arch_stop_on_emulation_error(env
)) {
899 cpu_dump_state(env
, stderr
, fprintf
, CPU_DUMP_CODE
);
900 return EXCP_INTERRUPT
;
903 /* FIXME: Should trigger a qmp message to let management know
904 * something went wrong.
909 void kvm_flush_coalesced_mmio_buffer(void)
911 KVMState
*s
= kvm_state
;
913 if (s
->coalesced_flush_in_progress
) {
917 s
->coalesced_flush_in_progress
= true;
919 if (s
->coalesced_mmio_ring
) {
920 struct kvm_coalesced_mmio_ring
*ring
= s
->coalesced_mmio_ring
;
921 while (ring
->first
!= ring
->last
) {
922 struct kvm_coalesced_mmio
*ent
;
924 ent
= &ring
->coalesced_mmio
[ring
->first
];
926 cpu_physical_memory_write(ent
->phys_addr
, ent
->data
, ent
->len
);
928 ring
->first
= (ring
->first
+ 1) % KVM_COALESCED_MMIO_MAX
;
932 s
->coalesced_flush_in_progress
= false;
935 static void do_kvm_cpu_synchronize_state(void *_env
)
937 CPUState
*env
= _env
;
939 if (!env
->kvm_vcpu_dirty
) {
940 kvm_arch_get_registers(env
);
941 env
->kvm_vcpu_dirty
= 1;
945 void kvm_cpu_synchronize_state(CPUState
*env
)
947 if (!env
->kvm_vcpu_dirty
) {
948 run_on_cpu(env
, do_kvm_cpu_synchronize_state
, env
);
952 void kvm_cpu_synchronize_post_reset(CPUState
*env
)
954 kvm_arch_put_registers(env
, KVM_PUT_RESET_STATE
);
955 env
->kvm_vcpu_dirty
= 0;
958 void kvm_cpu_synchronize_post_init(CPUState
*env
)
960 kvm_arch_put_registers(env
, KVM_PUT_FULL_STATE
);
961 env
->kvm_vcpu_dirty
= 0;
964 int kvm_cpu_exec(CPUState
*env
)
966 struct kvm_run
*run
= env
->kvm_run
;
969 DPRINTF("kvm_cpu_exec()\n");
971 if (kvm_arch_process_async_events(env
)) {
972 env
->exit_request
= 0;
976 cpu_single_env
= env
;
979 if (env
->kvm_vcpu_dirty
) {
980 kvm_arch_put_registers(env
, KVM_PUT_RUNTIME_STATE
);
981 env
->kvm_vcpu_dirty
= 0;
984 kvm_arch_pre_run(env
, run
);
985 if (env
->exit_request
) {
986 DPRINTF("interrupt exit requested\n");
988 * KVM requires us to reenter the kernel after IO exits to complete
989 * instruction emulation. This self-signal will ensure that we
992 qemu_cpu_kick_self();
994 cpu_single_env
= NULL
;
995 qemu_mutex_unlock_iothread();
997 run_ret
= kvm_vcpu_ioctl(env
, KVM_RUN
, 0);
999 qemu_mutex_lock_iothread();
1000 cpu_single_env
= env
;
1001 kvm_arch_post_run(env
, run
);
1003 kvm_flush_coalesced_mmio_buffer();
1006 if (run_ret
== -EINTR
|| run_ret
== -EAGAIN
) {
1007 DPRINTF("io window exit\n");
1008 ret
= EXCP_INTERRUPT
;
1011 fprintf(stderr
, "error: kvm run failed %s\n",
1012 strerror(-run_ret
));
1016 switch (run
->exit_reason
) {
1018 DPRINTF("handle_io\n");
1019 kvm_handle_io(run
->io
.port
,
1020 (uint8_t *)run
+ run
->io
.data_offset
,
1027 DPRINTF("handle_mmio\n");
1028 cpu_physical_memory_rw(run
->mmio
.phys_addr
,
1031 run
->mmio
.is_write
);
1034 case KVM_EXIT_IRQ_WINDOW_OPEN
:
1035 DPRINTF("irq_window_open\n");
1036 ret
= EXCP_INTERRUPT
;
1038 case KVM_EXIT_SHUTDOWN
:
1039 DPRINTF("shutdown\n");
1040 qemu_system_reset_request();
1041 ret
= EXCP_INTERRUPT
;
1043 case KVM_EXIT_UNKNOWN
:
1044 fprintf(stderr
, "KVM: unknown exit, hardware reason %" PRIx64
"\n",
1045 (uint64_t)run
->hw
.hardware_exit_reason
);
1048 case KVM_EXIT_INTERNAL_ERROR
:
1049 ret
= kvm_handle_internal_error(env
, run
);
1052 DPRINTF("kvm_arch_handle_exit\n");
1053 ret
= kvm_arch_handle_exit(env
, run
);
1059 cpu_dump_state(env
, stderr
, fprintf
, CPU_DUMP_CODE
);
1060 vm_stop(RUN_STATE_INTERNAL_ERROR
);
1063 env
->exit_request
= 0;
1064 cpu_single_env
= NULL
;
1068 int kvm_ioctl(KVMState
*s
, int type
, ...)
1075 arg
= va_arg(ap
, void *);
1078 ret
= ioctl(s
->fd
, type
, arg
);
1085 int kvm_vm_ioctl(KVMState
*s
, int type
, ...)
1092 arg
= va_arg(ap
, void *);
1095 ret
= ioctl(s
->vmfd
, type
, arg
);
1102 int kvm_vcpu_ioctl(CPUState
*env
, int type
, ...)
1109 arg
= va_arg(ap
, void *);
1112 ret
= ioctl(env
->kvm_fd
, type
, arg
);
1119 int kvm_has_sync_mmu(void)
1121 return kvm_check_extension(kvm_state
, KVM_CAP_SYNC_MMU
);
1124 int kvm_has_vcpu_events(void)
1126 return kvm_state
->vcpu_events
;
1129 int kvm_has_robust_singlestep(void)
1131 return kvm_state
->robust_singlestep
;
1134 int kvm_has_debugregs(void)
1136 return kvm_state
->debugregs
;
1139 int kvm_has_xsave(void)
1141 return kvm_state
->xsave
;
1144 int kvm_has_xcrs(void)
1146 return kvm_state
->xcrs
;
1149 int kvm_has_many_ioeventfds(void)
1151 if (!kvm_enabled()) {
1154 return kvm_state
->many_ioeventfds
;
1157 void kvm_setup_guest_memory(void *start
, size_t size
)
1159 if (!kvm_has_sync_mmu()) {
1160 int ret
= qemu_madvise(start
, size
, QEMU_MADV_DONTFORK
);
1163 perror("qemu_madvise");
1165 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1171 #ifdef KVM_CAP_SET_GUEST_DEBUG
1172 struct kvm_sw_breakpoint
*kvm_find_sw_breakpoint(CPUState
*env
,
1175 struct kvm_sw_breakpoint
*bp
;
1177 QTAILQ_FOREACH(bp
, &env
->kvm_state
->kvm_sw_breakpoints
, entry
) {
1185 int kvm_sw_breakpoints_active(CPUState
*env
)
1187 return !QTAILQ_EMPTY(&env
->kvm_state
->kvm_sw_breakpoints
);
1190 struct kvm_set_guest_debug_data
{
1191 struct kvm_guest_debug dbg
;
1196 static void kvm_invoke_set_guest_debug(void *data
)
1198 struct kvm_set_guest_debug_data
*dbg_data
= data
;
1199 CPUState
*env
= dbg_data
->env
;
1201 dbg_data
->err
= kvm_vcpu_ioctl(env
, KVM_SET_GUEST_DEBUG
, &dbg_data
->dbg
);
1204 int kvm_update_guest_debug(CPUState
*env
, unsigned long reinject_trap
)
1206 struct kvm_set_guest_debug_data data
;
1208 data
.dbg
.control
= reinject_trap
;
1210 if (env
->singlestep_enabled
) {
1211 data
.dbg
.control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_SINGLESTEP
;
1213 kvm_arch_update_guest_debug(env
, &data
.dbg
);
1216 run_on_cpu(env
, kvm_invoke_set_guest_debug
, &data
);
1220 int kvm_insert_breakpoint(CPUState
*current_env
, target_ulong addr
,
1221 target_ulong len
, int type
)
1223 struct kvm_sw_breakpoint
*bp
;
1227 if (type
== GDB_BREAKPOINT_SW
) {
1228 bp
= kvm_find_sw_breakpoint(current_env
, addr
);
1234 bp
= g_malloc(sizeof(struct kvm_sw_breakpoint
));
1241 err
= kvm_arch_insert_sw_breakpoint(current_env
, bp
);
1247 QTAILQ_INSERT_HEAD(¤t_env
->kvm_state
->kvm_sw_breakpoints
,
1250 err
= kvm_arch_insert_hw_breakpoint(addr
, len
, type
);
1256 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1257 err
= kvm_update_guest_debug(env
, 0);
1265 int kvm_remove_breakpoint(CPUState
*current_env
, target_ulong addr
,
1266 target_ulong len
, int type
)
1268 struct kvm_sw_breakpoint
*bp
;
1272 if (type
== GDB_BREAKPOINT_SW
) {
1273 bp
= kvm_find_sw_breakpoint(current_env
, addr
);
1278 if (bp
->use_count
> 1) {
1283 err
= kvm_arch_remove_sw_breakpoint(current_env
, bp
);
1288 QTAILQ_REMOVE(¤t_env
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
1291 err
= kvm_arch_remove_hw_breakpoint(addr
, len
, type
);
1297 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1298 err
= kvm_update_guest_debug(env
, 0);
1306 void kvm_remove_all_breakpoints(CPUState
*current_env
)
1308 struct kvm_sw_breakpoint
*bp
, *next
;
1309 KVMState
*s
= current_env
->kvm_state
;
1312 QTAILQ_FOREACH_SAFE(bp
, &s
->kvm_sw_breakpoints
, entry
, next
) {
1313 if (kvm_arch_remove_sw_breakpoint(current_env
, bp
) != 0) {
1314 /* Try harder to find a CPU that currently sees the breakpoint. */
1315 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1316 if (kvm_arch_remove_sw_breakpoint(env
, bp
) == 0) {
1322 kvm_arch_remove_all_hw_breakpoints();
1324 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1325 kvm_update_guest_debug(env
, 0);
1329 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1331 int kvm_update_guest_debug(CPUState
*env
, unsigned long reinject_trap
)
1336 int kvm_insert_breakpoint(CPUState
*current_env
, target_ulong addr
,
1337 target_ulong len
, int type
)
1342 int kvm_remove_breakpoint(CPUState
*current_env
, target_ulong addr
,
1343 target_ulong len
, int type
)
1348 void kvm_remove_all_breakpoints(CPUState
*current_env
)
1351 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1353 int kvm_set_signal_mask(CPUState
*env
, const sigset_t
*sigset
)
1355 struct kvm_signal_mask
*sigmask
;
1359 return kvm_vcpu_ioctl(env
, KVM_SET_SIGNAL_MASK
, NULL
);
1362 sigmask
= g_malloc(sizeof(*sigmask
) + sizeof(*sigset
));
1365 memcpy(sigmask
->sigset
, sigset
, sizeof(*sigset
));
1366 r
= kvm_vcpu_ioctl(env
, KVM_SET_SIGNAL_MASK
, sigmask
);
1372 int kvm_set_ioeventfd_mmio_long(int fd
, uint32_t addr
, uint32_t val
, bool assign
)
1375 struct kvm_ioeventfd iofd
;
1377 iofd
.datamatch
= val
;
1380 iofd
.flags
= KVM_IOEVENTFD_FLAG_DATAMATCH
;
1383 if (!kvm_enabled()) {
1388 iofd
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
1391 ret
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &iofd
);
1400 int kvm_set_ioeventfd_pio_word(int fd
, uint16_t addr
, uint16_t val
, bool assign
)
1402 struct kvm_ioeventfd kick
= {
1406 .flags
= KVM_IOEVENTFD_FLAG_DATAMATCH
| KVM_IOEVENTFD_FLAG_PIO
,
1410 if (!kvm_enabled()) {
1414 kick
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
1416 r
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &kick
);
1423 int kvm_on_sigbus_vcpu(CPUState
*env
, int code
, void *addr
)
1425 return kvm_arch_on_sigbus_vcpu(env
, code
, addr
);
1428 int kvm_on_sigbus(int code
, void *addr
)
1430 return kvm_arch_on_sigbus(code
, addr
);