2 * QEMU Malta board support
4 * Copyright (c) 2006 Aurelien Jarno
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "qemu/bitops.h"
28 #include "qemu-common.h"
29 #include "qemu/datadir.h"
31 #include "hw/southbridge/piix.h"
32 #include "hw/isa/superio.h"
33 #include "hw/char/serial.h"
35 #include "hw/boards.h"
36 #include "hw/i2c/smbus_eeprom.h"
37 #include "hw/block/flash.h"
38 #include "hw/mips/mips.h"
39 #include "hw/mips/cpudevs.h"
40 #include "hw/pci/pci.h"
42 #include "hw/mips/bios.h"
45 #include "hw/loader.h"
47 #include "qom/object.h"
48 #include "hw/sysbus.h" /* SysBusDevice */
49 #include "qemu/host-utils.h"
50 #include "sysemu/qtest.h"
51 #include "sysemu/reset.h"
52 #include "sysemu/runstate.h"
53 #include "qapi/error.h"
54 #include "qemu/error-report.h"
55 #include "hw/misc/empty_slot.h"
56 #include "sysemu/kvm.h"
57 #include "semihosting/semihost.h"
58 #include "hw/mips/cps.h"
59 #include "hw/qdev-clock.h"
61 #define ENVP_PADDR 0x2000
62 #define ENVP_VADDR cpu_mips_phys_to_kseg0(NULL, ENVP_PADDR)
63 #define ENVP_NB_ENTRIES 16
64 #define ENVP_ENTRY_SIZE 256
66 /* Hardware addresses */
67 #define FLASH_ADDRESS 0x1e000000ULL
68 #define FPGA_ADDRESS 0x1f000000ULL
69 #define RESET_ADDRESS 0x1fc00000ULL
71 #define FLASH_SIZE 0x400000
77 MemoryRegion iomem_lo
; /* 0 - 0x900 */
78 MemoryRegion iomem_hi
; /* 0xa00 - 0x100000 */
92 #define TYPE_MIPS_MALTA "mips-malta"
93 OBJECT_DECLARE_SIMPLE_TYPE(MaltaState
, MIPS_MALTA
)
96 SysBusDevice parent_obj
;
100 qemu_irq i8259
[ISA_NUM_IRQS
];
103 static struct _loaderparams
{
104 int ram_size
, ram_low_size
;
105 const char *kernel_filename
;
106 const char *kernel_cmdline
;
107 const char *initrd_filename
;
111 static void malta_fpga_update_display(void *opaque
)
115 MaltaFPGAState
*s
= opaque
;
117 for (i
= 7 ; i
>= 0 ; i
--) {
118 if (s
->leds
& (1 << i
)) {
126 qemu_chr_fe_printf(&s
->display
, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n",
128 qemu_chr_fe_printf(&s
->display
, "\n\n\n\n|\e[31m%-8.8s\e[00m|",
133 * EEPROM 24C01 / 24C02 emulation.
135 * Emulation for serial EEPROMs:
136 * 24C01 - 1024 bit (128 x 8)
137 * 24C02 - 2048 bit (256 x 8)
139 * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
143 # define logout(fmt, ...) \
144 fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__)
146 # define logout(fmt, ...) ((void)0)
149 struct _eeprom24c0x_t
{
158 uint8_t contents
[256];
161 typedef struct _eeprom24c0x_t eeprom24c0x_t
;
163 static eeprom24c0x_t spd_eeprom
= {
166 0x80, 0x08, 0xFF, 0x0D, 0x0A, 0xFF, 0x40, 0x00,
168 0x01, 0x75, 0x54, 0x00, 0x82, 0x08, 0x00, 0x01,
170 0x8F, 0x04, 0x02, 0x01, 0x01, 0x00, 0x00, 0x00,
172 0x00, 0x00, 0x00, 0x14, 0x0F, 0x14, 0x2D, 0xFF,
174 0x15, 0x08, 0x15, 0x08, 0x00, 0x00, 0x00, 0x00,
176 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
178 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
180 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x12, 0xD0,
182 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
184 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
186 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
188 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
190 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
192 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
194 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
196 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x64, 0xF4,
200 static void generate_eeprom_spd(uint8_t *eeprom
, ram_addr_t ram_size
)
202 enum { SDR
= 0x4, DDR2
= 0x8 } type
;
203 uint8_t *spd
= spd_eeprom
.contents
;
205 uint16_t density
= 0;
208 /* work in terms of MB */
211 while ((ram_size
>= 4) && (nbanks
<= 2)) {
212 int sz_log2
= MIN(31 - clz32(ram_size
), 14);
214 density
|= 1 << (sz_log2
- 2);
215 ram_size
-= 1 << sz_log2
;
218 /* split to 2 banks if possible */
219 if ((nbanks
== 1) && (density
> 1)) {
224 if (density
& 0xff00) {
225 density
= (density
& 0xe0) | ((density
>> 8) & 0x1f);
227 } else if (!(density
& 0x1f)) {
234 warn_report("SPD cannot represent final " RAM_ADDR_FMT
"MB"
235 " of SDRAM", ram_size
);
238 /* fill in SPD memory information */
245 for (i
= 0; i
< 63; i
++) {
250 memcpy(eeprom
, spd
, sizeof(spd_eeprom
.contents
));
253 static void generate_eeprom_serial(uint8_t *eeprom
)
256 uint8_t mac
[6] = { 0x00 };
257 uint8_t sn
[5] = { 0x01, 0x23, 0x45, 0x67, 0x89 };
260 eeprom
[pos
++] = 0x01;
263 eeprom
[pos
++] = 0x02;
266 eeprom
[pos
++] = 0x01; /* MAC */
267 eeprom
[pos
++] = 0x06; /* length */
268 memcpy(&eeprom
[pos
], mac
, sizeof(mac
));
272 eeprom
[pos
++] = 0x02; /* serial */
273 eeprom
[pos
++] = 0x05; /* length */
274 memcpy(&eeprom
[pos
], sn
, sizeof(sn
));
279 for (i
= 0; i
< pos
; i
++) {
280 eeprom
[pos
] += eeprom
[i
];
284 static uint8_t eeprom24c0x_read(eeprom24c0x_t
*eeprom
)
286 logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
287 eeprom
->tick
, eeprom
->scl
, eeprom
->sda
, eeprom
->data
);
291 static void eeprom24c0x_write(eeprom24c0x_t
*eeprom
, int scl
, int sda
)
293 if (eeprom
->scl
&& scl
&& (eeprom
->sda
!= sda
)) {
294 logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
295 eeprom
->tick
, eeprom
->scl
, scl
, eeprom
->sda
, sda
,
296 sda
? "stop" : "start");
301 } else if (eeprom
->tick
== 0 && !eeprom
->ack
) {
302 /* Waiting for start. */
303 logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
304 eeprom
->tick
, eeprom
->scl
, scl
, eeprom
->sda
, sda
);
305 } else if (!eeprom
->scl
&& scl
) {
306 logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
307 eeprom
->tick
, eeprom
->scl
, scl
, eeprom
->sda
, sda
);
309 logout("\ti2c ack bit = 0\n");
312 } else if (eeprom
->sda
== sda
) {
313 uint8_t bit
= (sda
!= 0);
314 logout("\ti2c bit = %d\n", bit
);
315 if (eeprom
->tick
< 9) {
316 eeprom
->command
<<= 1;
317 eeprom
->command
+= bit
;
319 if (eeprom
->tick
== 9) {
320 logout("\tcommand 0x%04x, %s\n", eeprom
->command
,
321 bit
? "read" : "write");
324 } else if (eeprom
->tick
< 17) {
325 if (eeprom
->command
& 1) {
326 sda
= ((eeprom
->data
& 0x80) != 0);
328 eeprom
->address
<<= 1;
329 eeprom
->address
+= bit
;
332 if (eeprom
->tick
== 17) {
333 eeprom
->data
= eeprom
->contents
[eeprom
->address
];
334 logout("\taddress 0x%04x, data 0x%02x\n",
335 eeprom
->address
, eeprom
->data
);
339 } else if (eeprom
->tick
>= 17) {
343 logout("\tsda changed with raising scl\n");
346 logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom
->tick
, eeprom
->scl
,
347 scl
, eeprom
->sda
, sda
);
353 static uint64_t malta_fpga_read(void *opaque
, hwaddr addr
,
356 MaltaFPGAState
*s
= opaque
;
360 saddr
= (addr
& 0xfffff);
364 /* SWITCH Register */
369 /* STATUS Register */
371 #ifdef TARGET_WORDS_BIGENDIAN
383 /* LEDBAR Register */
388 /* BRKRES Register */
393 /* UART Registers are handled directly by the serial device */
400 /* XXX: implement a real I2C controller */
404 /* IN = OUT until a real I2C control is implemented */
412 /* I2CINP Register */
414 val
= ((s
->i2cin
& ~1) | eeprom24c0x_read(&spd_eeprom
));
422 /* I2COUT Register */
427 /* I2CSEL Register */
433 qemu_log_mask(LOG_GUEST_ERROR
,
434 "malta_fpga_read: Bad register addr 0x%"HWADDR_PRIX
"\n",
441 static void malta_fpga_write(void *opaque
, hwaddr addr
,
442 uint64_t val
, unsigned size
)
444 MaltaFPGAState
*s
= opaque
;
447 saddr
= (addr
& 0xfffff);
451 /* SWITCH Register */
459 /* LEDBAR Register */
461 s
->leds
= val
& 0xff;
462 malta_fpga_update_display(s
);
465 /* ASCIIWORD Register */
467 snprintf(s
->display_text
, 9, "%08X", (uint32_t)val
);
468 malta_fpga_update_display(s
);
471 /* ASCIIPOS0 to ASCIIPOS7 Registers */
480 s
->display_text
[(saddr
- 0x00418) >> 3] = (char) val
;
481 malta_fpga_update_display(s
);
484 /* SOFTRES Register */
487 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET
);
491 /* BRKRES Register */
496 /* UART Registers are handled directly by the serial device */
500 s
->gpout
= val
& 0xff;
505 s
->i2coe
= val
& 0x03;
508 /* I2COUT Register */
510 eeprom24c0x_write(&spd_eeprom
, val
& 0x02, val
& 0x01);
514 /* I2CSEL Register */
516 s
->i2csel
= val
& 0x01;
520 qemu_log_mask(LOG_GUEST_ERROR
,
521 "malta_fpga_write: Bad register addr 0x%"HWADDR_PRIX
"\n",
527 static const MemoryRegionOps malta_fpga_ops
= {
528 .read
= malta_fpga_read
,
529 .write
= malta_fpga_write
,
530 .endianness
= DEVICE_NATIVE_ENDIAN
,
533 static void malta_fpga_reset(void *opaque
)
535 MaltaFPGAState
*s
= opaque
;
545 s
->display_text
[8] = '\0';
546 snprintf(s
->display_text
, 9, " ");
549 static void malta_fgpa_display_event(void *opaque
, QEMUChrEvent event
)
551 MaltaFPGAState
*s
= opaque
;
553 if (event
== CHR_EVENT_OPENED
&& !s
->display_inited
) {
554 qemu_chr_fe_printf(&s
->display
, "\e[HMalta LEDBAR\r\n");
555 qemu_chr_fe_printf(&s
->display
, "+--------+\r\n");
556 qemu_chr_fe_printf(&s
->display
, "+ +\r\n");
557 qemu_chr_fe_printf(&s
->display
, "+--------+\r\n");
558 qemu_chr_fe_printf(&s
->display
, "\n");
559 qemu_chr_fe_printf(&s
->display
, "Malta ASCII\r\n");
560 qemu_chr_fe_printf(&s
->display
, "+--------+\r\n");
561 qemu_chr_fe_printf(&s
->display
, "+ +\r\n");
562 qemu_chr_fe_printf(&s
->display
, "+--------+\r\n");
563 s
->display_inited
= true;
567 static MaltaFPGAState
*malta_fpga_init(MemoryRegion
*address_space
,
568 hwaddr base
, qemu_irq uart_irq
, Chardev
*uart_chr
)
573 s
= g_new0(MaltaFPGAState
, 1);
575 memory_region_init_io(&s
->iomem
, NULL
, &malta_fpga_ops
, s
,
576 "malta-fpga", 0x100000);
577 memory_region_init_alias(&s
->iomem_lo
, NULL
, "malta-fpga",
578 &s
->iomem
, 0, 0x900);
579 memory_region_init_alias(&s
->iomem_hi
, NULL
, "malta-fpga",
580 &s
->iomem
, 0xa00, 0x100000 - 0xa00);
582 memory_region_add_subregion(address_space
, base
, &s
->iomem_lo
);
583 memory_region_add_subregion(address_space
, base
+ 0xa00, &s
->iomem_hi
);
585 chr
= qemu_chr_new("fpga", "vc:320x200", NULL
);
586 qemu_chr_fe_init(&s
->display
, chr
, NULL
);
587 qemu_chr_fe_set_handlers(&s
->display
, NULL
, NULL
,
588 malta_fgpa_display_event
, NULL
, s
, NULL
, true);
590 s
->uart
= serial_mm_init(address_space
, base
+ 0x900, 3, uart_irq
,
591 230400, uart_chr
, DEVICE_NATIVE_ENDIAN
);
594 qemu_register_reset(malta_fpga_reset
, s
);
599 /* Network support */
600 static void network_init(PCIBus
*pci_bus
)
604 for (i
= 0; i
< nb_nics
; i
++) {
605 NICInfo
*nd
= &nd_table
[i
];
606 const char *default_devaddr
= NULL
;
608 if (i
== 0 && (!nd
->model
|| strcmp(nd
->model
, "pcnet") == 0))
609 /* The malta board has a PCNet card using PCI SLOT 11 */
610 default_devaddr
= "0b";
612 pci_nic_init_nofail(nd
, pci_bus
, "pcnet", default_devaddr
);
616 static void write_bootloader_nanomips(uint8_t *base
, uint64_t run_addr
,
617 uint64_t kernel_entry
)
621 /* Small bootloader */
622 p
= (uint16_t *)base
;
624 #define NM_HI1(VAL) (((VAL) >> 16) & 0x1f)
625 #define NM_HI2(VAL) \
626 (((VAL) & 0xf000) | (((VAL) >> 19) & 0xffc) | (((VAL) >> 31) & 0x1))
627 #define NM_LO(VAL) ((VAL) & 0xfff)
629 stw_p(p
++, 0x2800); stw_p(p
++, 0x001c);
631 stw_p(p
++, 0x8000); stw_p(p
++, 0xc000);
633 stw_p(p
++, 0x8000); stw_p(p
++, 0xc000);
635 stw_p(p
++, 0x8000); stw_p(p
++, 0xc000);
637 stw_p(p
++, 0x8000); stw_p(p
++, 0xc000);
639 stw_p(p
++, 0x8000); stw_p(p
++, 0xc000);
641 stw_p(p
++, 0x8000); stw_p(p
++, 0xc000);
643 stw_p(p
++, 0x8000); stw_p(p
++, 0xc000);
647 if (semihosting_get_argc()) {
648 /* Preserve a0 content as arguments have been passed */
649 stw_p(p
++, 0x8000); stw_p(p
++, 0xc000);
652 stw_p(p
++, 0x0080); stw_p(p
++, 0x0002);
656 stw_p(p
++, 0xe3a0 | NM_HI1(ENVP_VADDR
- 64));
658 stw_p(p
++, NM_HI2(ENVP_VADDR
- 64));
659 /* lui sp,%hi(ENVP_VADDR - 64) */
661 stw_p(p
++, 0x83bd); stw_p(p
++, NM_LO(ENVP_VADDR
- 64));
662 /* ori sp,sp,%lo(ENVP_VADDR - 64) */
664 stw_p(p
++, 0xe0a0 | NM_HI1(ENVP_VADDR
));
666 stw_p(p
++, NM_HI2(ENVP_VADDR
));
667 /* lui a1,%hi(ENVP_VADDR) */
669 stw_p(p
++, 0x80a5); stw_p(p
++, NM_LO(ENVP_VADDR
));
670 /* ori a1,a1,%lo(ENVP_VADDR) */
672 stw_p(p
++, 0xe0c0 | NM_HI1(ENVP_VADDR
+ 8));
674 stw_p(p
++, NM_HI2(ENVP_VADDR
+ 8));
675 /* lui a2,%hi(ENVP_VADDR + 8) */
677 stw_p(p
++, 0x80c6); stw_p(p
++, NM_LO(ENVP_VADDR
+ 8));
678 /* ori a2,a2,%lo(ENVP_VADDR + 8) */
680 stw_p(p
++, 0xe0e0 | NM_HI1(loaderparams
.ram_low_size
));
682 stw_p(p
++, NM_HI2(loaderparams
.ram_low_size
));
683 /* lui a3,%hi(loaderparams.ram_low_size) */
685 stw_p(p
++, 0x80e7); stw_p(p
++, NM_LO(loaderparams
.ram_low_size
));
686 /* ori a3,a3,%lo(loaderparams.ram_low_size) */
689 * Load BAR registers as done by YAMON:
691 * - set up PCI0 I/O BARs from 0x18000000 to 0x181fffff
692 * - set up PCI0 MEM0 at 0x10000000, size 0x8000000
693 * - set up PCI0 MEM1 at 0x18200000, size 0xbe00000
696 stw_p(p
++, 0xe040); stw_p(p
++, 0x0681);
697 /* lui t1, %hi(0xb4000000) */
699 #ifdef TARGET_WORDS_BIGENDIAN
701 stw_p(p
++, 0xe020); stw_p(p
++, 0x0be1);
702 /* lui t0, %hi(0xdf000000) */
704 /* 0x68 corresponds to GT_ISD (from hw/mips/gt64xxx_pci.c) */
705 stw_p(p
++, 0x8422); stw_p(p
++, 0x9068);
706 /* sw t0, 0x68(t1) */
708 stw_p(p
++, 0xe040); stw_p(p
++, 0x077d);
709 /* lui t1, %hi(0xbbe00000) */
711 stw_p(p
++, 0xe020); stw_p(p
++, 0x0801);
712 /* lui t0, %hi(0xc0000000) */
714 /* 0x48 corresponds to GT_PCI0IOLD */
715 stw_p(p
++, 0x8422); stw_p(p
++, 0x9048);
716 /* sw t0, 0x48(t1) */
718 stw_p(p
++, 0xe020); stw_p(p
++, 0x0800);
719 /* lui t0, %hi(0x40000000) */
721 /* 0x50 corresponds to GT_PCI0IOHD */
722 stw_p(p
++, 0x8422); stw_p(p
++, 0x9050);
723 /* sw t0, 0x50(t1) */
725 stw_p(p
++, 0xe020); stw_p(p
++, 0x0001);
726 /* lui t0, %hi(0x80000000) */
728 /* 0x58 corresponds to GT_PCI0M0LD */
729 stw_p(p
++, 0x8422); stw_p(p
++, 0x9058);
730 /* sw t0, 0x58(t1) */
732 stw_p(p
++, 0xe020); stw_p(p
++, 0x07e0);
733 /* lui t0, %hi(0x3f000000) */
735 /* 0x60 corresponds to GT_PCI0M0HD */
736 stw_p(p
++, 0x8422); stw_p(p
++, 0x9060);
737 /* sw t0, 0x60(t1) */
739 stw_p(p
++, 0xe020); stw_p(p
++, 0x0821);
740 /* lui t0, %hi(0xc1000000) */
742 /* 0x80 corresponds to GT_PCI0M1LD */
743 stw_p(p
++, 0x8422); stw_p(p
++, 0x9080);
744 /* sw t0, 0x80(t1) */
746 stw_p(p
++, 0xe020); stw_p(p
++, 0x0bc0);
747 /* lui t0, %hi(0x5e000000) */
751 stw_p(p
++, 0x0020); stw_p(p
++, 0x00df);
752 /* addiu[32] t0, $0, 0xdf */
754 /* 0x68 corresponds to GT_ISD */
755 stw_p(p
++, 0x8422); stw_p(p
++, 0x9068);
756 /* sw t0, 0x68(t1) */
758 /* Use kseg2 remapped address 0x1be00000 */
759 stw_p(p
++, 0xe040); stw_p(p
++, 0x077d);
760 /* lui t1, %hi(0xbbe00000) */
762 stw_p(p
++, 0x0020); stw_p(p
++, 0x00c0);
763 /* addiu[32] t0, $0, 0xc0 */
765 /* 0x48 corresponds to GT_PCI0IOLD */
766 stw_p(p
++, 0x8422); stw_p(p
++, 0x9048);
767 /* sw t0, 0x48(t1) */
769 stw_p(p
++, 0x0020); stw_p(p
++, 0x0040);
770 /* addiu[32] t0, $0, 0x40 */
772 /* 0x50 corresponds to GT_PCI0IOHD */
773 stw_p(p
++, 0x8422); stw_p(p
++, 0x9050);
774 /* sw t0, 0x50(t1) */
776 stw_p(p
++, 0x0020); stw_p(p
++, 0x0080);
777 /* addiu[32] t0, $0, 0x80 */
779 /* 0x58 corresponds to GT_PCI0M0LD */
780 stw_p(p
++, 0x8422); stw_p(p
++, 0x9058);
781 /* sw t0, 0x58(t1) */
783 stw_p(p
++, 0x0020); stw_p(p
++, 0x003f);
784 /* addiu[32] t0, $0, 0x3f */
786 /* 0x60 corresponds to GT_PCI0M0HD */
787 stw_p(p
++, 0x8422); stw_p(p
++, 0x9060);
788 /* sw t0, 0x60(t1) */
790 stw_p(p
++, 0x0020); stw_p(p
++, 0x00c1);
791 /* addiu[32] t0, $0, 0xc1 */
793 /* 0x80 corresponds to GT_PCI0M1LD */
794 stw_p(p
++, 0x8422); stw_p(p
++, 0x9080);
795 /* sw t0, 0x80(t1) */
797 stw_p(p
++, 0x0020); stw_p(p
++, 0x005e);
798 /* addiu[32] t0, $0, 0x5e */
802 /* 0x88 corresponds to GT_PCI0M1HD */
803 stw_p(p
++, 0x8422); stw_p(p
++, 0x9088);
804 /* sw t0, 0x88(t1) */
806 stw_p(p
++, 0xe320 | NM_HI1(kernel_entry
));
808 stw_p(p
++, NM_HI2(kernel_entry
));
809 /* lui t9,%hi(kernel_entry) */
811 stw_p(p
++, 0x8339); stw_p(p
++, NM_LO(kernel_entry
));
812 /* ori t9,t9,%lo(kernel_entry) */
814 stw_p(p
++, 0x4bf9); stw_p(p
++, 0x0000);
819 * ROM and pseudo bootloader
821 * The following code implements a very very simple bootloader. It first
822 * loads the registers a0 to a3 to the values expected by the OS, and
823 * then jump at the kernel address.
825 * The bootloader should pass the locations of the kernel arguments and
826 * environment variables tables. Those tables contain the 32-bit address
827 * of NULL terminated strings. The environment variables table should be
828 * terminated by a NULL address.
830 * For a simpler implementation, the number of kernel arguments is fixed
831 * to two (the name of the kernel and the command line), and the two
832 * tables are actually the same one.
834 * The registers a0 to a3 should contain the following values:
835 * a0 - number of kernel arguments
836 * a1 - 32-bit address of the kernel arguments table
837 * a2 - 32-bit address of the environment variables table
838 * a3 - RAM size in bytes
840 static void write_bootloader(uint8_t *base
, uint64_t run_addr
,
841 uint64_t kernel_entry
)
845 /* Small bootloader */
846 p
= (uint32_t *)base
;
848 stl_p(p
++, 0x08000000 | /* j 0x1fc00580 */
849 ((run_addr
+ 0x580) & 0x0fffffff) >> 2);
850 stl_p(p
++, 0x00000000); /* nop */
852 /* YAMON service vector */
853 stl_p(base
+ 0x500, run_addr
+ 0x0580); /* start: */
854 stl_p(base
+ 0x504, run_addr
+ 0x083c); /* print_count: */
855 stl_p(base
+ 0x520, run_addr
+ 0x0580); /* start: */
856 stl_p(base
+ 0x52c, run_addr
+ 0x0800); /* flush_cache: */
857 stl_p(base
+ 0x534, run_addr
+ 0x0808); /* print: */
858 stl_p(base
+ 0x538, run_addr
+ 0x0800); /* reg_cpu_isr: */
859 stl_p(base
+ 0x53c, run_addr
+ 0x0800); /* unred_cpu_isr: */
860 stl_p(base
+ 0x540, run_addr
+ 0x0800); /* reg_ic_isr: */
861 stl_p(base
+ 0x544, run_addr
+ 0x0800); /* unred_ic_isr: */
862 stl_p(base
+ 0x548, run_addr
+ 0x0800); /* reg_esr: */
863 stl_p(base
+ 0x54c, run_addr
+ 0x0800); /* unreg_esr: */
864 stl_p(base
+ 0x550, run_addr
+ 0x0800); /* getchar: */
865 stl_p(base
+ 0x554, run_addr
+ 0x0800); /* syscon_read: */
868 /* Second part of the bootloader */
869 p
= (uint32_t *) (base
+ 0x580);
871 if (semihosting_get_argc()) {
872 /* Preserve a0 content as arguments have been passed */
873 stl_p(p
++, 0x00000000); /* nop */
875 stl_p(p
++, 0x24040002); /* addiu a0, zero, 2 */
878 /* lui sp, high(ENVP_VADDR) */
879 stl_p(p
++, 0x3c1d0000 | (((ENVP_VADDR
- 64) >> 16) & 0xffff));
880 /* ori sp, sp, low(ENVP_VADDR) */
881 stl_p(p
++, 0x37bd0000 | ((ENVP_VADDR
- 64) & 0xffff));
882 /* lui a1, high(ENVP_VADDR) */
883 stl_p(p
++, 0x3c050000 | ((ENVP_VADDR
>> 16) & 0xffff));
884 /* ori a1, a1, low(ENVP_VADDR) */
885 stl_p(p
++, 0x34a50000 | (ENVP_VADDR
& 0xffff));
886 /* lui a2, high(ENVP_VADDR + 8) */
887 stl_p(p
++, 0x3c060000 | (((ENVP_VADDR
+ 8) >> 16) & 0xffff));
888 /* ori a2, a2, low(ENVP_VADDR + 8) */
889 stl_p(p
++, 0x34c60000 | ((ENVP_VADDR
+ 8) & 0xffff));
890 /* lui a3, high(ram_low_size) */
891 stl_p(p
++, 0x3c070000 | (loaderparams
.ram_low_size
>> 16));
892 /* ori a3, a3, low(ram_low_size) */
893 stl_p(p
++, 0x34e70000 | (loaderparams
.ram_low_size
& 0xffff));
895 /* Load BAR registers as done by YAMON */
896 stl_p(p
++, 0x3c09b400); /* lui t1, 0xb400 */
898 #ifdef TARGET_WORDS_BIGENDIAN
899 stl_p(p
++, 0x3c08df00); /* lui t0, 0xdf00 */
901 stl_p(p
++, 0x340800df); /* ori t0, r0, 0x00df */
903 stl_p(p
++, 0xad280068); /* sw t0, 0x0068(t1) */
905 stl_p(p
++, 0x3c09bbe0); /* lui t1, 0xbbe0 */
907 #ifdef TARGET_WORDS_BIGENDIAN
908 stl_p(p
++, 0x3c08c000); /* lui t0, 0xc000 */
910 stl_p(p
++, 0x340800c0); /* ori t0, r0, 0x00c0 */
912 stl_p(p
++, 0xad280048); /* sw t0, 0x0048(t1) */
913 #ifdef TARGET_WORDS_BIGENDIAN
914 stl_p(p
++, 0x3c084000); /* lui t0, 0x4000 */
916 stl_p(p
++, 0x34080040); /* ori t0, r0, 0x0040 */
918 stl_p(p
++, 0xad280050); /* sw t0, 0x0050(t1) */
920 #ifdef TARGET_WORDS_BIGENDIAN
921 stl_p(p
++, 0x3c088000); /* lui t0, 0x8000 */
923 stl_p(p
++, 0x34080080); /* ori t0, r0, 0x0080 */
925 stl_p(p
++, 0xad280058); /* sw t0, 0x0058(t1) */
926 #ifdef TARGET_WORDS_BIGENDIAN
927 stl_p(p
++, 0x3c083f00); /* lui t0, 0x3f00 */
929 stl_p(p
++, 0x3408003f); /* ori t0, r0, 0x003f */
931 stl_p(p
++, 0xad280060); /* sw t0, 0x0060(t1) */
933 #ifdef TARGET_WORDS_BIGENDIAN
934 stl_p(p
++, 0x3c08c100); /* lui t0, 0xc100 */
936 stl_p(p
++, 0x340800c1); /* ori t0, r0, 0x00c1 */
938 stl_p(p
++, 0xad280080); /* sw t0, 0x0080(t1) */
939 #ifdef TARGET_WORDS_BIGENDIAN
940 stl_p(p
++, 0x3c085e00); /* lui t0, 0x5e00 */
942 stl_p(p
++, 0x3408005e); /* ori t0, r0, 0x005e */
944 stl_p(p
++, 0xad280088); /* sw t0, 0x0088(t1) */
946 /* Jump to kernel code */
947 stl_p(p
++, 0x3c1f0000 |
948 ((kernel_entry
>> 16) & 0xffff)); /* lui ra, high(kernel_entry) */
949 stl_p(p
++, 0x37ff0000 |
950 (kernel_entry
& 0xffff)); /* ori ra, ra, low(kernel_entry) */
951 stl_p(p
++, 0x03e00009); /* jalr ra */
952 stl_p(p
++, 0x00000000); /* nop */
954 /* YAMON subroutines */
955 p
= (uint32_t *) (base
+ 0x800);
956 stl_p(p
++, 0x03e00009); /* jalr ra */
957 stl_p(p
++, 0x24020000); /* li v0,0 */
958 /* 808 YAMON print */
959 stl_p(p
++, 0x03e06821); /* move t5,ra */
960 stl_p(p
++, 0x00805821); /* move t3,a0 */
961 stl_p(p
++, 0x00a05021); /* move t2,a1 */
962 stl_p(p
++, 0x91440000); /* lbu a0,0(t2) */
963 stl_p(p
++, 0x254a0001); /* addiu t2,t2,1 */
964 stl_p(p
++, 0x10800005); /* beqz a0,834 */
965 stl_p(p
++, 0x00000000); /* nop */
966 stl_p(p
++, 0x0ff0021c); /* jal 870 */
967 stl_p(p
++, 0x00000000); /* nop */
968 stl_p(p
++, 0x1000fff9); /* b 814 */
969 stl_p(p
++, 0x00000000); /* nop */
970 stl_p(p
++, 0x01a00009); /* jalr t5 */
971 stl_p(p
++, 0x01602021); /* move a0,t3 */
972 /* 0x83c YAMON print_count */
973 stl_p(p
++, 0x03e06821); /* move t5,ra */
974 stl_p(p
++, 0x00805821); /* move t3,a0 */
975 stl_p(p
++, 0x00a05021); /* move t2,a1 */
976 stl_p(p
++, 0x00c06021); /* move t4,a2 */
977 stl_p(p
++, 0x91440000); /* lbu a0,0(t2) */
978 stl_p(p
++, 0x0ff0021c); /* jal 870 */
979 stl_p(p
++, 0x00000000); /* nop */
980 stl_p(p
++, 0x254a0001); /* addiu t2,t2,1 */
981 stl_p(p
++, 0x258cffff); /* addiu t4,t4,-1 */
982 stl_p(p
++, 0x1580fffa); /* bnez t4,84c */
983 stl_p(p
++, 0x00000000); /* nop */
984 stl_p(p
++, 0x01a00009); /* jalr t5 */
985 stl_p(p
++, 0x01602021); /* move a0,t3 */
987 stl_p(p
++, 0x3c08b800); /* lui t0,0xb400 */
988 stl_p(p
++, 0x350803f8); /* ori t0,t0,0x3f8 */
989 stl_p(p
++, 0x91090005); /* lbu t1,5(t0) */
990 stl_p(p
++, 0x00000000); /* nop */
991 stl_p(p
++, 0x31290040); /* andi t1,t1,0x40 */
992 stl_p(p
++, 0x1120fffc); /* beqz t1,878 <outch+0x8> */
993 stl_p(p
++, 0x00000000); /* nop */
994 stl_p(p
++, 0x03e00009); /* jalr ra */
995 stl_p(p
++, 0xa1040000); /* sb a0,0(t0) */
999 static void GCC_FMT_ATTR(3, 4) prom_set(uint32_t *prom_buf
, int index
,
1000 const char *string
, ...)
1003 uint32_t table_addr
;
1005 if (index
>= ENVP_NB_ENTRIES
) {
1009 if (string
== NULL
) {
1010 prom_buf
[index
] = 0;
1014 table_addr
= sizeof(uint32_t) * ENVP_NB_ENTRIES
+ index
* ENVP_ENTRY_SIZE
;
1015 prom_buf
[index
] = tswap32(ENVP_VADDR
+ table_addr
);
1017 va_start(ap
, string
);
1018 vsnprintf((char *)prom_buf
+ table_addr
, ENVP_ENTRY_SIZE
, string
, ap
);
1023 static uint64_t load_kernel(void)
1025 uint64_t kernel_entry
, kernel_high
, initrd_size
;
1027 ram_addr_t initrd_offset
;
1032 uint64_t (*xlate_to_kseg0
) (void *opaque
, uint64_t addr
);
1034 #ifdef TARGET_WORDS_BIGENDIAN
1040 kernel_size
= load_elf(loaderparams
.kernel_filename
, NULL
,
1041 cpu_mips_kseg0_to_phys
, NULL
,
1042 &kernel_entry
, NULL
,
1043 &kernel_high
, NULL
, big_endian
, EM_MIPS
,
1045 if (kernel_size
< 0) {
1046 error_report("could not load kernel '%s': %s",
1047 loaderparams
.kernel_filename
,
1048 load_elf_strerror(kernel_size
));
1052 /* Check where the kernel has been linked */
1053 if (kernel_entry
& 0x80000000ll
) {
1054 if (kvm_enabled()) {
1055 error_report("KVM guest kernels must be linked in useg. "
1056 "Did you forget to enable CONFIG_KVM_GUEST?");
1060 xlate_to_kseg0
= cpu_mips_phys_to_kseg0
;
1062 /* if kernel entry is in useg it is probably a KVM T&E kernel */
1063 mips_um_ksegs_enable();
1065 xlate_to_kseg0
= cpu_mips_kvm_um_phys_to_kseg0
;
1071 if (loaderparams
.initrd_filename
) {
1072 initrd_size
= get_image_size(loaderparams
.initrd_filename
);
1073 if (initrd_size
> 0) {
1075 * The kernel allocates the bootmap memory in the low memory after
1076 * the initrd. It takes at most 128kiB for 2GB RAM and 4kiB
1079 initrd_offset
= ROUND_UP(loaderparams
.ram_low_size
1080 - (initrd_size
+ 128 * KiB
),
1082 if (kernel_high
>= initrd_offset
) {
1083 error_report("memory too small for initial ram disk '%s'",
1084 loaderparams
.initrd_filename
);
1087 initrd_size
= load_image_targphys(loaderparams
.initrd_filename
,
1089 loaderparams
.ram_size
- initrd_offset
);
1091 if (initrd_size
== (target_ulong
) -1) {
1092 error_report("could not load initial ram disk '%s'",
1093 loaderparams
.initrd_filename
);
1098 /* Setup prom parameters. */
1099 prom_size
= ENVP_NB_ENTRIES
* (sizeof(int32_t) + ENVP_ENTRY_SIZE
);
1100 prom_buf
= g_malloc(prom_size
);
1102 prom_set(prom_buf
, prom_index
++, "%s", loaderparams
.kernel_filename
);
1103 if (initrd_size
> 0) {
1104 prom_set(prom_buf
, prom_index
++,
1105 "rd_start=0x%" PRIx64
" rd_size=%" PRId64
" %s",
1106 xlate_to_kseg0(NULL
, initrd_offset
),
1107 initrd_size
, loaderparams
.kernel_cmdline
);
1109 prom_set(prom_buf
, prom_index
++, "%s", loaderparams
.kernel_cmdline
);
1112 prom_set(prom_buf
, prom_index
++, "memsize");
1113 prom_set(prom_buf
, prom_index
++, "%u", loaderparams
.ram_low_size
);
1115 prom_set(prom_buf
, prom_index
++, "ememsize");
1116 prom_set(prom_buf
, prom_index
++, "%u", loaderparams
.ram_size
);
1118 prom_set(prom_buf
, prom_index
++, "modetty0");
1119 prom_set(prom_buf
, prom_index
++, "38400n8r");
1120 prom_set(prom_buf
, prom_index
++, NULL
);
1122 rom_add_blob_fixed("prom", prom_buf
, prom_size
, ENVP_PADDR
);
1125 return kernel_entry
;
1128 static void malta_mips_config(MIPSCPU
*cpu
)
1130 MachineState
*ms
= MACHINE(qdev_get_machine());
1131 unsigned int smp_cpus
= ms
->smp
.cpus
;
1132 CPUMIPSState
*env
= &cpu
->env
;
1133 CPUState
*cs
= CPU(cpu
);
1135 if (ase_mt_available(env
)) {
1136 env
->mvp
->CP0_MVPConf0
= deposit32(env
->mvp
->CP0_MVPConf0
,
1138 smp_cpus
* cs
->nr_threads
- 1);
1139 env
->mvp
->CP0_MVPConf0
= deposit32(env
->mvp
->CP0_MVPConf0
,
1140 CP0MVPC0_PVPE
, 4, smp_cpus
- 1);
1144 static void main_cpu_reset(void *opaque
)
1146 MIPSCPU
*cpu
= opaque
;
1147 CPUMIPSState
*env
= &cpu
->env
;
1149 cpu_reset(CPU(cpu
));
1152 * The bootloader does not need to be rewritten as it is located in a
1153 * read only location. The kernel location and the arguments table
1154 * location does not change.
1156 if (loaderparams
.kernel_filename
) {
1157 env
->CP0_Status
&= ~(1 << CP0St_ERL
);
1160 malta_mips_config(cpu
);
1162 if (kvm_enabled()) {
1163 /* Start running from the bootloader we wrote to end of RAM */
1164 env
->active_tc
.PC
= 0x40000000 + loaderparams
.ram_low_size
;
1168 static void create_cpu_without_cps(MachineState
*ms
, MaltaState
*s
,
1169 qemu_irq
*cbus_irq
, qemu_irq
*i8259_irq
)
1175 for (i
= 0; i
< ms
->smp
.cpus
; i
++) {
1176 cpu
= mips_cpu_create_with_clock(ms
->cpu_type
, s
->cpuclk
);
1178 /* Init internal devices */
1179 cpu_mips_irq_init_cpu(cpu
);
1180 cpu_mips_clock_init(cpu
);
1181 qemu_register_reset(main_cpu_reset
, cpu
);
1184 cpu
= MIPS_CPU(first_cpu
);
1186 *i8259_irq
= env
->irq
[2];
1187 *cbus_irq
= env
->irq
[4];
1190 static void create_cps(MachineState
*ms
, MaltaState
*s
,
1191 qemu_irq
*cbus_irq
, qemu_irq
*i8259_irq
)
1193 object_initialize_child(OBJECT(s
), "cps", &s
->cps
, TYPE_MIPS_CPS
);
1194 object_property_set_str(OBJECT(&s
->cps
), "cpu-type", ms
->cpu_type
,
1196 object_property_set_int(OBJECT(&s
->cps
), "num-vp", ms
->smp
.cpus
,
1198 qdev_connect_clock_in(DEVICE(&s
->cps
), "clk-in", s
->cpuclk
);
1199 sysbus_realize(SYS_BUS_DEVICE(&s
->cps
), &error_fatal
);
1201 sysbus_mmio_map_overlap(SYS_BUS_DEVICE(&s
->cps
), 0, 0, 1);
1203 *i8259_irq
= get_cps_irq(&s
->cps
, 3);
1207 static void mips_create_cpu(MachineState
*ms
, MaltaState
*s
,
1208 qemu_irq
*cbus_irq
, qemu_irq
*i8259_irq
)
1210 if ((ms
->smp
.cpus
> 1) && cpu_type_supports_cps_smp(ms
->cpu_type
)) {
1211 create_cps(ms
, s
, cbus_irq
, i8259_irq
);
1213 create_cpu_without_cps(ms
, s
, cbus_irq
, i8259_irq
);
1218 void mips_malta_init(MachineState
*machine
)
1220 ram_addr_t ram_size
= machine
->ram_size
;
1221 ram_addr_t ram_low_size
;
1222 const char *kernel_filename
= machine
->kernel_filename
;
1223 const char *kernel_cmdline
= machine
->kernel_cmdline
;
1224 const char *initrd_filename
= machine
->initrd_filename
;
1227 MemoryRegion
*system_memory
= get_system_memory();
1228 MemoryRegion
*ram_low_preio
= g_new(MemoryRegion
, 1);
1229 MemoryRegion
*ram_low_postio
;
1230 MemoryRegion
*bios
, *bios_copy
= g_new(MemoryRegion
, 1);
1231 const size_t smbus_eeprom_size
= 8 * 256;
1232 uint8_t *smbus_eeprom_buf
= g_malloc0(smbus_eeprom_size
);
1233 uint64_t kernel_entry
, bootloader_run_addr
;
1236 qemu_irq cbus_irq
, i8259_irq
;
1244 s
= MIPS_MALTA(qdev_new(TYPE_MIPS_MALTA
));
1245 sysbus_realize_and_unref(SYS_BUS_DEVICE(s
), &error_fatal
);
1248 mips_create_cpu(machine
, s
, &cbus_irq
, &i8259_irq
);
1251 if (ram_size
> 2 * GiB
) {
1252 error_report("Too much memory for this machine: %" PRId64
"MB,"
1253 " maximum 2048MB", ram_size
/ MiB
);
1257 /* register RAM at high address where it is undisturbed by IO */
1258 memory_region_add_subregion(system_memory
, 0x80000000, machine
->ram
);
1260 /* alias for pre IO hole access */
1261 memory_region_init_alias(ram_low_preio
, NULL
, "mips_malta_low_preio.ram",
1262 machine
->ram
, 0, MIN(ram_size
, 256 * MiB
));
1263 memory_region_add_subregion(system_memory
, 0, ram_low_preio
);
1265 /* alias for post IO hole access, if there is enough RAM */
1266 if (ram_size
> 512 * MiB
) {
1267 ram_low_postio
= g_new(MemoryRegion
, 1);
1268 memory_region_init_alias(ram_low_postio
, NULL
,
1269 "mips_malta_low_postio.ram",
1270 machine
->ram
, 512 * MiB
,
1271 ram_size
- 512 * MiB
);
1272 memory_region_add_subregion(system_memory
, 512 * MiB
,
1276 #ifdef TARGET_WORDS_BIGENDIAN
1284 /* The CBUS UART is attached to the MIPS CPU INT2 pin, ie interrupt 4 */
1285 malta_fpga_init(system_memory
, FPGA_ADDRESS
, cbus_irq
, serial_hd(2));
1287 /* Load firmware in flash / BIOS. */
1288 dinfo
= drive_get(IF_PFLASH
, 0, fl_idx
);
1289 fl
= pflash_cfi01_register(FLASH_ADDRESS
, "mips_malta.bios",
1291 dinfo
? blk_by_legacy_dinfo(dinfo
) : NULL
,
1293 4, 0x0000, 0x0000, 0x0000, 0x0000, be
);
1294 bios
= pflash_cfi01_get_memory(fl
);
1296 if (kernel_filename
) {
1297 ram_low_size
= MIN(ram_size
, 256 * MiB
);
1298 /* For KVM we reserve 1MB of RAM for running bootloader */
1299 if (kvm_enabled()) {
1300 ram_low_size
-= 0x100000;
1301 bootloader_run_addr
= cpu_mips_kvm_um_phys_to_kseg0(NULL
, ram_low_size
);
1303 bootloader_run_addr
= cpu_mips_phys_to_kseg0(NULL
, RESET_ADDRESS
);
1306 /* Write a small bootloader to the flash location. */
1307 loaderparams
.ram_size
= ram_size
;
1308 loaderparams
.ram_low_size
= ram_low_size
;
1309 loaderparams
.kernel_filename
= kernel_filename
;
1310 loaderparams
.kernel_cmdline
= kernel_cmdline
;
1311 loaderparams
.initrd_filename
= initrd_filename
;
1312 kernel_entry
= load_kernel();
1314 if (!cpu_type_supports_isa(machine
->cpu_type
, ISA_NANOMIPS32
)) {
1315 write_bootloader(memory_region_get_ram_ptr(bios
),
1316 bootloader_run_addr
, kernel_entry
);
1318 write_bootloader_nanomips(memory_region_get_ram_ptr(bios
),
1319 bootloader_run_addr
, kernel_entry
);
1321 if (kvm_enabled()) {
1322 /* Write the bootloader code @ the end of RAM, 1MB reserved */
1323 write_bootloader(memory_region_get_ram_ptr(ram_low_preio
) +
1325 bootloader_run_addr
, kernel_entry
);
1328 target_long bios_size
= FLASH_SIZE
;
1329 /* The flash region isn't executable from a KVM guest */
1330 if (kvm_enabled()) {
1331 error_report("KVM enabled but no -kernel argument was specified. "
1332 "Booting from flash is not supported with KVM.");
1335 /* Load firmware from flash. */
1337 /* Load a BIOS image. */
1338 filename
= qemu_find_file(QEMU_FILE_TYPE_BIOS
,
1339 machine
->firmware
?: BIOS_FILENAME
);
1341 bios_size
= load_image_targphys(filename
, FLASH_ADDRESS
,
1347 if ((bios_size
< 0 || bios_size
> BIOS_SIZE
) &&
1348 machine
->firmware
&& !qtest_enabled()) {
1349 error_report("Could not load MIPS bios '%s'", machine
->firmware
);
1354 * In little endian mode the 32bit words in the bios are swapped,
1355 * a neat trick which allows bi-endian firmware.
1357 #ifndef TARGET_WORDS_BIGENDIAN
1359 uint32_t *end
, *addr
;
1360 const size_t swapsize
= MIN(bios_size
, 0x3e0000);
1361 addr
= rom_ptr(FLASH_ADDRESS
, swapsize
);
1363 addr
= memory_region_get_ram_ptr(bios
);
1365 end
= (void *)addr
+ swapsize
;
1366 while (addr
< end
) {
1375 * Map the BIOS at a 2nd physical location, as on the real board.
1376 * Copy it so that we can patch in the MIPS revision, which cannot be
1377 * handled by an overlapping region as the resulting ROM code subpage
1378 * regions are not executable.
1380 memory_region_init_ram(bios_copy
, NULL
, "bios.1fc", BIOS_SIZE
,
1382 if (!rom_copy(memory_region_get_ram_ptr(bios_copy
),
1383 FLASH_ADDRESS
, BIOS_SIZE
)) {
1384 memcpy(memory_region_get_ram_ptr(bios_copy
),
1385 memory_region_get_ram_ptr(bios
), BIOS_SIZE
);
1387 memory_region_set_readonly(bios_copy
, true);
1388 memory_region_add_subregion(system_memory
, RESET_ADDRESS
, bios_copy
);
1390 /* Board ID = 0x420 (Malta Board with CoreLV) */
1391 stl_p(memory_region_get_ram_ptr(bios_copy
) + 0x10, 0x00000420);
1394 pci_bus
= gt64120_register(s
->i8259
);
1396 * The whole address space decoded by the GT-64120A doesn't generate
1397 * exception when accessing invalid memory. Create an empty slot to
1398 * emulate this feature.
1400 empty_slot_init("GT64120", 0, 0x20000000);
1403 dev
= piix4_create(pci_bus
, &isa_bus
, &smbus
);
1405 /* Interrupt controller */
1406 qdev_connect_gpio_out_named(dev
, "intr", 0, i8259_irq
);
1407 for (int i
= 0; i
< ISA_NUM_IRQS
; i
++) {
1408 s
->i8259
[i
] = qdev_get_gpio_in_named(dev
, "isa", i
);
1411 /* generate SPD EEPROM data */
1412 generate_eeprom_spd(&smbus_eeprom_buf
[0 * 256], ram_size
);
1413 generate_eeprom_serial(&smbus_eeprom_buf
[6 * 256]);
1414 smbus_eeprom_init(smbus
, 8, smbus_eeprom_buf
, smbus_eeprom_size
);
1415 g_free(smbus_eeprom_buf
);
1417 /* Super I/O: SMS FDC37M817 */
1418 isa_create_simple(isa_bus
, TYPE_FDC37M81X_SUPERIO
);
1421 network_init(pci_bus
);
1423 /* Optional PCI video card */
1424 pci_vga_init(pci_bus
);
1427 static void mips_malta_instance_init(Object
*obj
)
1429 MaltaState
*s
= MIPS_MALTA(obj
);
1431 s
->cpuclk
= qdev_init_clock_out(DEVICE(obj
), "cpu-refclk");
1432 clock_set_hz(s
->cpuclk
, 320000000); /* 320 MHz */
1435 static const TypeInfo mips_malta_device
= {
1436 .name
= TYPE_MIPS_MALTA
,
1437 .parent
= TYPE_SYS_BUS_DEVICE
,
1438 .instance_size
= sizeof(MaltaState
),
1439 .instance_init
= mips_malta_instance_init
,
1442 static void mips_malta_machine_init(MachineClass
*mc
)
1444 mc
->desc
= "MIPS Malta Core LV";
1445 mc
->init
= mips_malta_init
;
1446 mc
->block_default_type
= IF_IDE
;
1448 mc
->is_default
= true;
1449 #ifdef TARGET_MIPS64
1450 mc
->default_cpu_type
= MIPS_CPU_TYPE_NAME("20Kc");
1452 mc
->default_cpu_type
= MIPS_CPU_TYPE_NAME("24Kf");
1454 mc
->default_ram_id
= "mips_malta.ram";
1457 DEFINE_MACHINE("malta", mips_malta_machine_init
)
1459 static void mips_malta_register_types(void)
1461 type_register_static(&mips_malta_device
);
1464 type_init(mips_malta_register_types
)