hw/intc/arm_gicv3_its: Add trace events for table reads and writes
[qemu/ar7.git] / hw / mips / boston.c
blob59ca08b93a901ec5b1754c49acaada677de5b888
1 /*
2 * MIPS Boston development board emulation.
4 * Copyright (c) 2016 Imagination Technologies
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu/units.h"
23 #include "elf.h"
24 #include "hw/boards.h"
25 #include "hw/char/serial.h"
26 #include "hw/ide/pci.h"
27 #include "hw/ide/ahci.h"
28 #include "hw/loader.h"
29 #include "hw/loader-fit.h"
30 #include "hw/mips/bootloader.h"
31 #include "hw/mips/cps.h"
32 #include "hw/pci-host/xilinx-pcie.h"
33 #include "hw/qdev-clock.h"
34 #include "hw/qdev-properties.h"
35 #include "qapi/error.h"
36 #include "qemu/error-report.h"
37 #include "qemu/log.h"
38 #include "chardev/char.h"
39 #include "sysemu/device_tree.h"
40 #include "sysemu/sysemu.h"
41 #include "sysemu/qtest.h"
42 #include "sysemu/runstate.h"
44 #include <libfdt.h>
45 #include "qom/object.h"
47 #define TYPE_BOSTON "mips-boston"
48 typedef struct BostonState BostonState;
49 DECLARE_INSTANCE_CHECKER(BostonState, BOSTON,
50 TYPE_BOSTON)
52 #define FDT_IRQ_TYPE_NONE 0
53 #define FDT_IRQ_TYPE_LEVEL_HIGH 4
54 #define FDT_GIC_SHARED 0
55 #define FDT_GIC_LOCAL 1
56 #define FDT_BOSTON_CLK_SYS 1
57 #define FDT_BOSTON_CLK_CPU 2
58 #define FDT_PCI_IRQ_MAP_PINS 4
59 #define FDT_PCI_IRQ_MAP_DESCS 6
61 struct BostonState {
62 SysBusDevice parent_obj;
64 MachineState *mach;
65 MIPSCPSState cps;
66 SerialMM *uart;
67 Clock *cpuclk;
69 CharBackend lcd_display;
70 char lcd_content[8];
71 bool lcd_inited;
73 hwaddr kernel_entry;
74 hwaddr fdt_base;
77 enum {
78 BOSTON_LOWDDR,
79 BOSTON_PCIE0,
80 BOSTON_PCIE1,
81 BOSTON_PCIE2,
82 BOSTON_PCIE2_MMIO,
83 BOSTON_CM,
84 BOSTON_GIC,
85 BOSTON_CDMM,
86 BOSTON_CPC,
87 BOSTON_PLATREG,
88 BOSTON_UART,
89 BOSTON_LCD,
90 BOSTON_FLASH,
91 BOSTON_PCIE1_MMIO,
92 BOSTON_PCIE0_MMIO,
93 BOSTON_HIGHDDR,
96 static const MemMapEntry boston_memmap[] = {
97 [BOSTON_LOWDDR] = { 0x0, 0x10000000 },
98 [BOSTON_PCIE0] = { 0x10000000, 0x2000000 },
99 [BOSTON_PCIE1] = { 0x12000000, 0x2000000 },
100 [BOSTON_PCIE2] = { 0x14000000, 0x2000000 },
101 [BOSTON_PCIE2_MMIO] = { 0x16000000, 0x100000 },
102 [BOSTON_CM] = { 0x16100000, 0x20000 },
103 [BOSTON_GIC] = { 0x16120000, 0x20000 },
104 [BOSTON_CDMM] = { 0x16140000, 0x8000 },
105 [BOSTON_CPC] = { 0x16200000, 0x8000 },
106 [BOSTON_PLATREG] = { 0x17ffd000, 0x1000 },
107 [BOSTON_UART] = { 0x17ffe000, 0x20 },
108 [BOSTON_LCD] = { 0x17fff000, 0x8 },
109 [BOSTON_FLASH] = { 0x18000000, 0x8000000 },
110 [BOSTON_PCIE1_MMIO] = { 0x20000000, 0x20000000 },
111 [BOSTON_PCIE0_MMIO] = { 0x40000000, 0x40000000 },
112 [BOSTON_HIGHDDR] = { 0x80000000, 0x0 },
115 enum boston_plat_reg {
116 PLAT_FPGA_BUILD = 0x00,
117 PLAT_CORE_CL = 0x04,
118 PLAT_WRAPPER_CL = 0x08,
119 PLAT_SYSCLK_STATUS = 0x0c,
120 PLAT_SOFTRST_CTL = 0x10,
121 #define PLAT_SOFTRST_CTL_SYSRESET (1 << 4)
122 PLAT_DDR3_STATUS = 0x14,
123 #define PLAT_DDR3_STATUS_LOCKED (1 << 0)
124 #define PLAT_DDR3_STATUS_CALIBRATED (1 << 2)
125 PLAT_PCIE_STATUS = 0x18,
126 #define PLAT_PCIE_STATUS_PCIE0_LOCKED (1 << 0)
127 #define PLAT_PCIE_STATUS_PCIE1_LOCKED (1 << 8)
128 #define PLAT_PCIE_STATUS_PCIE2_LOCKED (1 << 16)
129 PLAT_FLASH_CTL = 0x1c,
130 PLAT_SPARE0 = 0x20,
131 PLAT_SPARE1 = 0x24,
132 PLAT_SPARE2 = 0x28,
133 PLAT_SPARE3 = 0x2c,
134 PLAT_MMCM_DIV = 0x30,
135 #define PLAT_MMCM_DIV_CLK0DIV_SHIFT 0
136 #define PLAT_MMCM_DIV_INPUT_SHIFT 8
137 #define PLAT_MMCM_DIV_MUL_SHIFT 16
138 #define PLAT_MMCM_DIV_CLK1DIV_SHIFT 24
139 PLAT_BUILD_CFG = 0x34,
140 #define PLAT_BUILD_CFG_IOCU_EN (1 << 0)
141 #define PLAT_BUILD_CFG_PCIE0_EN (1 << 1)
142 #define PLAT_BUILD_CFG_PCIE1_EN (1 << 2)
143 #define PLAT_BUILD_CFG_PCIE2_EN (1 << 3)
144 PLAT_DDR_CFG = 0x38,
145 #define PLAT_DDR_CFG_SIZE (0xf << 0)
146 #define PLAT_DDR_CFG_MHZ (0xfff << 4)
147 PLAT_NOC_PCIE0_ADDR = 0x3c,
148 PLAT_NOC_PCIE1_ADDR = 0x40,
149 PLAT_NOC_PCIE2_ADDR = 0x44,
150 PLAT_SYS_CTL = 0x48,
153 static void boston_lcd_event(void *opaque, QEMUChrEvent event)
155 BostonState *s = opaque;
156 if (event == CHR_EVENT_OPENED && !s->lcd_inited) {
157 qemu_chr_fe_printf(&s->lcd_display, " ");
158 s->lcd_inited = true;
162 static uint64_t boston_lcd_read(void *opaque, hwaddr addr,
163 unsigned size)
165 BostonState *s = opaque;
166 uint64_t val = 0;
168 switch (size) {
169 case 8:
170 val |= (uint64_t)s->lcd_content[(addr + 7) & 0x7] << 56;
171 val |= (uint64_t)s->lcd_content[(addr + 6) & 0x7] << 48;
172 val |= (uint64_t)s->lcd_content[(addr + 5) & 0x7] << 40;
173 val |= (uint64_t)s->lcd_content[(addr + 4) & 0x7] << 32;
174 /* fall through */
175 case 4:
176 val |= (uint64_t)s->lcd_content[(addr + 3) & 0x7] << 24;
177 val |= (uint64_t)s->lcd_content[(addr + 2) & 0x7] << 16;
178 /* fall through */
179 case 2:
180 val |= (uint64_t)s->lcd_content[(addr + 1) & 0x7] << 8;
181 /* fall through */
182 case 1:
183 val |= (uint64_t)s->lcd_content[(addr + 0) & 0x7];
184 break;
187 return val;
190 static void boston_lcd_write(void *opaque, hwaddr addr,
191 uint64_t val, unsigned size)
193 BostonState *s = opaque;
195 switch (size) {
196 case 8:
197 s->lcd_content[(addr + 7) & 0x7] = val >> 56;
198 s->lcd_content[(addr + 6) & 0x7] = val >> 48;
199 s->lcd_content[(addr + 5) & 0x7] = val >> 40;
200 s->lcd_content[(addr + 4) & 0x7] = val >> 32;
201 /* fall through */
202 case 4:
203 s->lcd_content[(addr + 3) & 0x7] = val >> 24;
204 s->lcd_content[(addr + 2) & 0x7] = val >> 16;
205 /* fall through */
206 case 2:
207 s->lcd_content[(addr + 1) & 0x7] = val >> 8;
208 /* fall through */
209 case 1:
210 s->lcd_content[(addr + 0) & 0x7] = val;
211 break;
214 qemu_chr_fe_printf(&s->lcd_display,
215 "\r%-8.8s", s->lcd_content);
218 static const MemoryRegionOps boston_lcd_ops = {
219 .read = boston_lcd_read,
220 .write = boston_lcd_write,
221 .endianness = DEVICE_NATIVE_ENDIAN,
224 static uint64_t boston_platreg_read(void *opaque, hwaddr addr,
225 unsigned size)
227 BostonState *s = opaque;
228 uint32_t gic_freq, val;
230 if (size != 4) {
231 qemu_log_mask(LOG_UNIMP, "%uB platform register read\n", size);
232 return 0;
235 switch (addr & 0xffff) {
236 case PLAT_FPGA_BUILD:
237 case PLAT_CORE_CL:
238 case PLAT_WRAPPER_CL:
239 return 0;
240 case PLAT_DDR3_STATUS:
241 return PLAT_DDR3_STATUS_LOCKED | PLAT_DDR3_STATUS_CALIBRATED;
242 case PLAT_MMCM_DIV:
243 gic_freq = mips_gictimer_get_freq(s->cps.gic.gic_timer) / 1000000;
244 val = gic_freq << PLAT_MMCM_DIV_INPUT_SHIFT;
245 val |= 1 << PLAT_MMCM_DIV_MUL_SHIFT;
246 val |= 1 << PLAT_MMCM_DIV_CLK0DIV_SHIFT;
247 val |= 1 << PLAT_MMCM_DIV_CLK1DIV_SHIFT;
248 return val;
249 case PLAT_BUILD_CFG:
250 val = PLAT_BUILD_CFG_PCIE0_EN;
251 val |= PLAT_BUILD_CFG_PCIE1_EN;
252 val |= PLAT_BUILD_CFG_PCIE2_EN;
253 return val;
254 case PLAT_DDR_CFG:
255 val = s->mach->ram_size / GiB;
256 assert(!(val & ~PLAT_DDR_CFG_SIZE));
257 val |= PLAT_DDR_CFG_MHZ;
258 return val;
259 default:
260 qemu_log_mask(LOG_UNIMP, "Read platform register 0x%" HWADDR_PRIx "\n",
261 addr & 0xffff);
262 return 0;
266 static void boston_platreg_write(void *opaque, hwaddr addr,
267 uint64_t val, unsigned size)
269 if (size != 4) {
270 qemu_log_mask(LOG_UNIMP, "%uB platform register write\n", size);
271 return;
274 switch (addr & 0xffff) {
275 case PLAT_FPGA_BUILD:
276 case PLAT_CORE_CL:
277 case PLAT_WRAPPER_CL:
278 case PLAT_DDR3_STATUS:
279 case PLAT_PCIE_STATUS:
280 case PLAT_MMCM_DIV:
281 case PLAT_BUILD_CFG:
282 case PLAT_DDR_CFG:
283 /* read only */
284 break;
285 case PLAT_SOFTRST_CTL:
286 if (val & PLAT_SOFTRST_CTL_SYSRESET) {
287 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
289 break;
290 default:
291 qemu_log_mask(LOG_UNIMP, "Write platform register 0x%" HWADDR_PRIx
292 " = 0x%" PRIx64 "\n", addr & 0xffff, val);
293 break;
297 static const MemoryRegionOps boston_platreg_ops = {
298 .read = boston_platreg_read,
299 .write = boston_platreg_write,
300 .endianness = DEVICE_NATIVE_ENDIAN,
303 static void mips_boston_instance_init(Object *obj)
305 BostonState *s = BOSTON(obj);
307 s->cpuclk = qdev_init_clock_out(DEVICE(obj), "cpu-refclk");
308 clock_set_hz(s->cpuclk, 1000000000); /* 1 GHz */
311 static const TypeInfo boston_device = {
312 .name = TYPE_BOSTON,
313 .parent = TYPE_SYS_BUS_DEVICE,
314 .instance_size = sizeof(BostonState),
315 .instance_init = mips_boston_instance_init,
318 static void boston_register_types(void)
320 type_register_static(&boston_device);
322 type_init(boston_register_types)
324 static void gen_firmware(uint32_t *p, hwaddr kernel_entry, hwaddr fdt_addr)
326 uint64_t regaddr;
328 /* Move CM GCRs */
329 regaddr = cpu_mips_phys_to_kseg1(NULL, GCR_BASE_ADDR + GCR_BASE_OFS),
330 bl_gen_write_ulong(&p, regaddr,
331 boston_memmap[BOSTON_CM].base);
333 /* Move & enable GIC GCRs */
334 regaddr = cpu_mips_phys_to_kseg1(NULL, boston_memmap[BOSTON_CM].base
335 + GCR_GIC_BASE_OFS),
336 bl_gen_write_ulong(&p, regaddr,
337 boston_memmap[BOSTON_GIC].base | GCR_GIC_BASE_GICEN_MSK);
339 /* Move & enable CPC GCRs */
340 regaddr = cpu_mips_phys_to_kseg1(NULL, boston_memmap[BOSTON_CM].base
341 + GCR_CPC_BASE_OFS),
342 bl_gen_write_ulong(&p, regaddr,
343 boston_memmap[BOSTON_CPC].base | GCR_CPC_BASE_CPCEN_MSK);
346 * Setup argument registers to follow the UHI boot protocol:
348 * a0/$4 = -2
349 * a1/$5 = virtual address of FDT
350 * a2/$6 = 0
351 * a3/$7 = 0
353 bl_gen_jump_kernel(&p, 0, (int32_t)-2, fdt_addr, 0, 0, kernel_entry);
356 static const void *boston_fdt_filter(void *opaque, const void *fdt_orig,
357 const void *match_data, hwaddr *load_addr)
359 BostonState *s = BOSTON(opaque);
360 MachineState *machine = s->mach;
361 const char *cmdline;
362 int err;
363 size_t ram_low_sz, ram_high_sz;
364 size_t fdt_sz = fdt_totalsize(fdt_orig) * 2;
365 g_autofree void *fdt = g_malloc0(fdt_sz);
367 err = fdt_open_into(fdt_orig, fdt, fdt_sz);
368 if (err) {
369 fprintf(stderr, "unable to open FDT\n");
370 return NULL;
373 cmdline = (machine->kernel_cmdline && machine->kernel_cmdline[0])
374 ? machine->kernel_cmdline : " ";
375 err = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline);
376 if (err < 0) {
377 fprintf(stderr, "couldn't set /chosen/bootargs\n");
378 return NULL;
381 ram_low_sz = MIN(256 * MiB, machine->ram_size);
382 ram_high_sz = machine->ram_size - ram_low_sz;
383 qemu_fdt_setprop_sized_cells(fdt, "/memory@0", "reg",
384 1, boston_memmap[BOSTON_LOWDDR].base, 1, ram_low_sz,
385 1, boston_memmap[BOSTON_HIGHDDR].base + ram_low_sz,
386 1, ram_high_sz);
388 fdt = g_realloc(fdt, fdt_totalsize(fdt));
389 qemu_fdt_dumpdtb(fdt, fdt_sz);
391 s->fdt_base = *load_addr;
393 return g_steal_pointer(&fdt);
396 static const void *boston_kernel_filter(void *opaque, const void *kernel,
397 hwaddr *load_addr, hwaddr *entry_addr)
399 BostonState *s = BOSTON(opaque);
401 s->kernel_entry = *entry_addr;
403 return kernel;
406 static const struct fit_loader_match boston_matches[] = {
407 { "img,boston" },
408 { NULL },
411 static const struct fit_loader boston_fit_loader = {
412 .matches = boston_matches,
413 .addr_to_phys = cpu_mips_kseg0_to_phys,
414 .fdt_filter = boston_fdt_filter,
415 .kernel_filter = boston_kernel_filter,
418 static inline XilinxPCIEHost *
419 xilinx_pcie_init(MemoryRegion *sys_mem, uint32_t bus_nr,
420 hwaddr cfg_base, uint64_t cfg_size,
421 hwaddr mmio_base, uint64_t mmio_size,
422 qemu_irq irq, bool link_up)
424 DeviceState *dev;
425 MemoryRegion *cfg, *mmio;
427 dev = qdev_new(TYPE_XILINX_PCIE_HOST);
429 qdev_prop_set_uint32(dev, "bus_nr", bus_nr);
430 qdev_prop_set_uint64(dev, "cfg_base", cfg_base);
431 qdev_prop_set_uint64(dev, "cfg_size", cfg_size);
432 qdev_prop_set_uint64(dev, "mmio_base", mmio_base);
433 qdev_prop_set_uint64(dev, "mmio_size", mmio_size);
434 qdev_prop_set_bit(dev, "link_up", link_up);
436 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
438 cfg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
439 memory_region_add_subregion_overlap(sys_mem, cfg_base, cfg, 0);
441 mmio = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
442 memory_region_add_subregion_overlap(sys_mem, 0, mmio, 0);
444 qdev_connect_gpio_out_named(dev, "interrupt_out", 0, irq);
446 return XILINX_PCIE_HOST(dev);
450 static void fdt_create_pcie(void *fdt, int gic_ph, int irq, hwaddr reg_base,
451 hwaddr reg_size, hwaddr mmio_base, hwaddr mmio_size)
453 int i;
454 char *name, *intc_name;
455 uint32_t intc_ph;
456 uint32_t interrupt_map[FDT_PCI_IRQ_MAP_PINS][FDT_PCI_IRQ_MAP_DESCS];
458 intc_ph = qemu_fdt_alloc_phandle(fdt);
459 name = g_strdup_printf("/soc/pci@%" HWADDR_PRIx, reg_base);
460 qemu_fdt_add_subnode(fdt, name);
461 qemu_fdt_setprop_string(fdt, name, "compatible",
462 "xlnx,axi-pcie-host-1.00.a");
463 qemu_fdt_setprop_string(fdt, name, "device_type", "pci");
464 qemu_fdt_setprop_cells(fdt, name, "reg", reg_base, reg_size);
466 qemu_fdt_setprop_cell(fdt, name, "#address-cells", 3);
467 qemu_fdt_setprop_cell(fdt, name, "#size-cells", 2);
468 qemu_fdt_setprop_cell(fdt, name, "#interrupt-cells", 1);
470 qemu_fdt_setprop_cell(fdt, name, "interrupt-parent", gic_ph);
471 qemu_fdt_setprop_cells(fdt, name, "interrupts", FDT_GIC_SHARED, irq,
472 FDT_IRQ_TYPE_LEVEL_HIGH);
474 qemu_fdt_setprop_cells(fdt, name, "ranges", 0x02000000, 0, mmio_base,
475 mmio_base, 0, mmio_size);
476 qemu_fdt_setprop_cells(fdt, name, "bus-range", 0x00, 0xff);
480 intc_name = g_strdup_printf("%s/interrupt-controller", name);
481 qemu_fdt_add_subnode(fdt, intc_name);
482 qemu_fdt_setprop(fdt, intc_name, "interrupt-controller", NULL, 0);
483 qemu_fdt_setprop_cell(fdt, intc_name, "#address-cells", 0);
484 qemu_fdt_setprop_cell(fdt, intc_name, "#interrupt-cells", 1);
485 qemu_fdt_setprop_cell(fdt, intc_name, "phandle", intc_ph);
487 qemu_fdt_setprop_cells(fdt, name, "interrupt-map-mask", 0, 0, 0, 7);
488 for (i = 0; i < FDT_PCI_IRQ_MAP_PINS; i++) {
489 uint32_t *irqmap = interrupt_map[i];
491 irqmap[0] = cpu_to_be32(0);
492 irqmap[1] = cpu_to_be32(0);
493 irqmap[2] = cpu_to_be32(0);
494 irqmap[3] = cpu_to_be32(i + 1);
495 irqmap[4] = cpu_to_be32(intc_ph);
496 irqmap[5] = cpu_to_be32(i + 1);
498 qemu_fdt_setprop(fdt, name, "interrupt-map",
499 &interrupt_map, sizeof(interrupt_map));
501 g_free(intc_name);
502 g_free(name);
505 static const void *create_fdt(BostonState *s,
506 const MemMapEntry *memmap, int *dt_size)
508 void *fdt;
509 int cpu;
510 MachineState *mc = s->mach;
511 uint32_t platreg_ph, gic_ph, clk_ph;
512 char *name, *gic_name, *platreg_name, *stdout_name;
513 static const char * const syscon_compat[2] = {
514 "img,boston-platform-regs", "syscon"
517 fdt = create_device_tree(dt_size);
518 if (!fdt) {
519 error_report("create_device_tree() failed");
520 exit(1);
523 platreg_ph = qemu_fdt_alloc_phandle(fdt);
524 gic_ph = qemu_fdt_alloc_phandle(fdt);
525 clk_ph = qemu_fdt_alloc_phandle(fdt);
527 qemu_fdt_setprop_string(fdt, "/", "model", "img,boston");
528 qemu_fdt_setprop_string(fdt, "/", "compatible", "img,boston");
529 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x1);
530 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x1);
533 qemu_fdt_add_subnode(fdt, "/cpus");
534 qemu_fdt_setprop_cell(fdt, "/cpus", "#size-cells", 0x0);
535 qemu_fdt_setprop_cell(fdt, "/cpus", "#address-cells", 0x1);
537 for (cpu = 0; cpu < mc->smp.cpus; cpu++) {
538 name = g_strdup_printf("/cpus/cpu@%d", cpu);
539 qemu_fdt_add_subnode(fdt, name);
540 qemu_fdt_setprop_string(fdt, name, "compatible", "img,mips");
541 qemu_fdt_setprop_string(fdt, name, "status", "okay");
542 qemu_fdt_setprop_cell(fdt, name, "reg", cpu);
543 qemu_fdt_setprop_string(fdt, name, "device_type", "cpu");
544 qemu_fdt_setprop_cells(fdt, name, "clocks", clk_ph, FDT_BOSTON_CLK_CPU);
545 g_free(name);
548 qemu_fdt_add_subnode(fdt, "/soc");
549 qemu_fdt_setprop(fdt, "/soc", "ranges", NULL, 0);
550 qemu_fdt_setprop_string(fdt, "/soc", "compatible", "simple-bus");
551 qemu_fdt_setprop_cell(fdt, "/soc", "#size-cells", 0x1);
552 qemu_fdt_setprop_cell(fdt, "/soc", "#address-cells", 0x1);
554 fdt_create_pcie(fdt, gic_ph, 2,
555 memmap[BOSTON_PCIE0].base, memmap[BOSTON_PCIE0].size,
556 memmap[BOSTON_PCIE0_MMIO].base, memmap[BOSTON_PCIE0_MMIO].size);
558 fdt_create_pcie(fdt, gic_ph, 1,
559 memmap[BOSTON_PCIE1].base, memmap[BOSTON_PCIE1].size,
560 memmap[BOSTON_PCIE1_MMIO].base, memmap[BOSTON_PCIE1_MMIO].size);
562 fdt_create_pcie(fdt, gic_ph, 0,
563 memmap[BOSTON_PCIE2].base, memmap[BOSTON_PCIE2].size,
564 memmap[BOSTON_PCIE2_MMIO].base, memmap[BOSTON_PCIE2_MMIO].size);
566 /* GIC with it's timer node */
567 gic_name = g_strdup_printf("/soc/interrupt-controller@%" HWADDR_PRIx,
568 memmap[BOSTON_GIC].base);
569 qemu_fdt_add_subnode(fdt, gic_name);
570 qemu_fdt_setprop_string(fdt, gic_name, "compatible", "mti,gic");
571 qemu_fdt_setprop_cells(fdt, gic_name, "reg", memmap[BOSTON_GIC].base,
572 memmap[BOSTON_GIC].size);
573 qemu_fdt_setprop(fdt, gic_name, "interrupt-controller", NULL, 0);
574 qemu_fdt_setprop_cell(fdt, gic_name, "#interrupt-cells", 3);
575 qemu_fdt_setprop_cell(fdt, gic_name, "phandle", gic_ph);
577 name = g_strdup_printf("%s/timer", gic_name);
578 qemu_fdt_add_subnode(fdt, name);
579 qemu_fdt_setprop_string(fdt, name, "compatible", "mti,gic-timer");
580 qemu_fdt_setprop_cells(fdt, name, "interrupts", FDT_GIC_LOCAL, 1,
581 FDT_IRQ_TYPE_NONE);
582 qemu_fdt_setprop_cells(fdt, name, "clocks", clk_ph, FDT_BOSTON_CLK_CPU);
583 g_free(name);
584 g_free(gic_name);
586 /* CDMM node */
587 name = g_strdup_printf("/soc/cdmm@%" HWADDR_PRIx, memmap[BOSTON_CDMM].base);
588 qemu_fdt_add_subnode(fdt, name);
589 qemu_fdt_setprop_string(fdt, name, "compatible", "mti,mips-cdmm");
590 qemu_fdt_setprop_cells(fdt, name, "reg", memmap[BOSTON_CDMM].base,
591 memmap[BOSTON_CDMM].size);
592 g_free(name);
594 /* CPC node */
595 name = g_strdup_printf("/soc/cpc@%" HWADDR_PRIx, memmap[BOSTON_CPC].base);
596 qemu_fdt_add_subnode(fdt, name);
597 qemu_fdt_setprop_string(fdt, name, "compatible", "mti,mips-cpc");
598 qemu_fdt_setprop_cells(fdt, name, "reg", memmap[BOSTON_CPC].base,
599 memmap[BOSTON_CPC].size);
600 g_free(name);
602 /* platreg and it's clk node */
603 platreg_name = g_strdup_printf("/soc/system-controller@%" HWADDR_PRIx,
604 memmap[BOSTON_PLATREG].base);
605 qemu_fdt_add_subnode(fdt, platreg_name);
606 qemu_fdt_setprop_string_array(fdt, platreg_name, "compatible",
607 (char **)&syscon_compat,
608 ARRAY_SIZE(syscon_compat));
609 qemu_fdt_setprop_cells(fdt, platreg_name, "reg",
610 memmap[BOSTON_PLATREG].base,
611 memmap[BOSTON_PLATREG].size);
612 qemu_fdt_setprop_cell(fdt, platreg_name, "phandle", platreg_ph);
614 name = g_strdup_printf("%s/clock", platreg_name);
615 qemu_fdt_add_subnode(fdt, name);
616 qemu_fdt_setprop_string(fdt, name, "compatible", "img,boston-clock");
617 qemu_fdt_setprop_cell(fdt, name, "#clock-cells", 1);
618 qemu_fdt_setprop_cell(fdt, name, "phandle", clk_ph);
619 g_free(name);
620 g_free(platreg_name);
622 /* reboot node */
623 name = g_strdup_printf("/soc/reboot");
624 qemu_fdt_add_subnode(fdt, name);
625 qemu_fdt_setprop_string(fdt, name, "compatible", "syscon-reboot");
626 qemu_fdt_setprop_cell(fdt, name, "regmap", platreg_ph);
627 qemu_fdt_setprop_cell(fdt, name, "offset", 0x10);
628 qemu_fdt_setprop_cell(fdt, name, "mask", 0x10);
629 g_free(name);
631 /* uart node */
632 name = g_strdup_printf("/soc/uart@%" HWADDR_PRIx, memmap[BOSTON_UART].base);
633 qemu_fdt_add_subnode(fdt, name);
634 qemu_fdt_setprop_string(fdt, name, "compatible", "ns16550a");
635 qemu_fdt_setprop_cells(fdt, name, "reg", memmap[BOSTON_UART].base,
636 memmap[BOSTON_UART].size);
637 qemu_fdt_setprop_cell(fdt, name, "reg-shift", 0x2);
638 qemu_fdt_setprop_cell(fdt, name, "interrupt-parent", gic_ph);
639 qemu_fdt_setprop_cells(fdt, name, "interrupts", FDT_GIC_SHARED, 3,
640 FDT_IRQ_TYPE_LEVEL_HIGH);
641 qemu_fdt_setprop_cells(fdt, name, "clocks", clk_ph, FDT_BOSTON_CLK_SYS);
643 qemu_fdt_add_subnode(fdt, "/chosen");
644 stdout_name = g_strdup_printf("%s:115200", name);
645 qemu_fdt_setprop_string(fdt, "/chosen", "stdout-path", stdout_name);
646 g_free(stdout_name);
647 g_free(name);
649 /* lcd node */
650 name = g_strdup_printf("/soc/lcd@%" HWADDR_PRIx, memmap[BOSTON_LCD].base);
651 qemu_fdt_add_subnode(fdt, name);
652 qemu_fdt_setprop_string(fdt, name, "compatible", "img,boston-lcd");
653 qemu_fdt_setprop_cells(fdt, name, "reg", memmap[BOSTON_LCD].base,
654 memmap[BOSTON_LCD].size);
655 g_free(name);
657 name = g_strdup_printf("/memory@0");
658 qemu_fdt_add_subnode(fdt, name);
659 qemu_fdt_setprop_string(fdt, name, "device_type", "memory");
660 g_free(name);
662 return fdt;
665 static void boston_mach_init(MachineState *machine)
667 DeviceState *dev;
668 BostonState *s;
669 MemoryRegion *flash, *ddr_low_alias, *lcd, *platreg;
670 MemoryRegion *sys_mem = get_system_memory();
671 XilinxPCIEHost *pcie2;
672 PCIDevice *ahci;
673 DriveInfo *hd[6];
674 Chardev *chr;
675 int fw_size, fit_err;
677 if ((machine->ram_size % GiB) ||
678 (machine->ram_size > (2 * GiB))) {
679 error_report("Memory size must be 1GB or 2GB");
680 exit(1);
683 dev = qdev_new(TYPE_BOSTON);
684 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
686 s = BOSTON(dev);
687 s->mach = machine;
689 if (!cpu_type_supports_cps_smp(machine->cpu_type)) {
690 error_report("Boston requires CPUs which support CPS");
691 exit(1);
694 object_initialize_child(OBJECT(machine), "cps", &s->cps, TYPE_MIPS_CPS);
695 object_property_set_str(OBJECT(&s->cps), "cpu-type", machine->cpu_type,
696 &error_fatal);
697 object_property_set_int(OBJECT(&s->cps), "num-vp", machine->smp.cpus,
698 &error_fatal);
699 qdev_connect_clock_in(DEVICE(&s->cps), "clk-in",
700 qdev_get_clock_out(dev, "cpu-refclk"));
701 sysbus_realize(SYS_BUS_DEVICE(&s->cps), &error_fatal);
703 sysbus_mmio_map_overlap(SYS_BUS_DEVICE(&s->cps), 0, 0, 1);
705 flash = g_new(MemoryRegion, 1);
706 memory_region_init_rom(flash, NULL, "boston.flash",
707 boston_memmap[BOSTON_FLASH].size, &error_fatal);
708 memory_region_add_subregion_overlap(sys_mem,
709 boston_memmap[BOSTON_FLASH].base,
710 flash, 0);
712 memory_region_add_subregion_overlap(sys_mem,
713 boston_memmap[BOSTON_HIGHDDR].base,
714 machine->ram, 0);
716 ddr_low_alias = g_new(MemoryRegion, 1);
717 memory_region_init_alias(ddr_low_alias, NULL, "boston_low.ddr",
718 machine->ram, 0,
719 MIN(machine->ram_size, (256 * MiB)));
720 memory_region_add_subregion_overlap(sys_mem, 0, ddr_low_alias, 0);
722 xilinx_pcie_init(sys_mem, 0,
723 boston_memmap[BOSTON_PCIE0].base,
724 boston_memmap[BOSTON_PCIE0].size,
725 boston_memmap[BOSTON_PCIE0_MMIO].base,
726 boston_memmap[BOSTON_PCIE0_MMIO].size,
727 get_cps_irq(&s->cps, 2), false);
729 xilinx_pcie_init(sys_mem, 1,
730 boston_memmap[BOSTON_PCIE1].base,
731 boston_memmap[BOSTON_PCIE1].size,
732 boston_memmap[BOSTON_PCIE1_MMIO].base,
733 boston_memmap[BOSTON_PCIE1_MMIO].size,
734 get_cps_irq(&s->cps, 1), false);
736 pcie2 = xilinx_pcie_init(sys_mem, 2,
737 boston_memmap[BOSTON_PCIE2].base,
738 boston_memmap[BOSTON_PCIE2].size,
739 boston_memmap[BOSTON_PCIE2_MMIO].base,
740 boston_memmap[BOSTON_PCIE2_MMIO].size,
741 get_cps_irq(&s->cps, 0), true);
743 platreg = g_new(MemoryRegion, 1);
744 memory_region_init_io(platreg, NULL, &boston_platreg_ops, s,
745 "boston-platregs",
746 boston_memmap[BOSTON_PLATREG].size);
747 memory_region_add_subregion_overlap(sys_mem,
748 boston_memmap[BOSTON_PLATREG].base, platreg, 0);
750 s->uart = serial_mm_init(sys_mem, boston_memmap[BOSTON_UART].base, 2,
751 get_cps_irq(&s->cps, 3), 10000000,
752 serial_hd(0), DEVICE_NATIVE_ENDIAN);
754 lcd = g_new(MemoryRegion, 1);
755 memory_region_init_io(lcd, NULL, &boston_lcd_ops, s, "boston-lcd", 0x8);
756 memory_region_add_subregion_overlap(sys_mem,
757 boston_memmap[BOSTON_LCD].base, lcd, 0);
759 chr = qemu_chr_new("lcd", "vc:320x240", NULL);
760 qemu_chr_fe_init(&s->lcd_display, chr, NULL);
761 qemu_chr_fe_set_handlers(&s->lcd_display, NULL, NULL,
762 boston_lcd_event, NULL, s, NULL, true);
764 ahci = pci_create_simple_multifunction(&PCI_BRIDGE(&pcie2->root)->sec_bus,
765 PCI_DEVFN(0, 0),
766 true, TYPE_ICH9_AHCI);
767 g_assert(ARRAY_SIZE(hd) == ahci_get_num_ports(ahci));
768 ide_drive_get(hd, ahci_get_num_ports(ahci));
769 ahci_ide_create_devs(ahci, hd);
771 if (machine->firmware) {
772 fw_size = load_image_targphys(machine->firmware,
773 0x1fc00000, 4 * MiB);
774 if (fw_size == -1) {
775 error_report("unable to load firmware image '%s'",
776 machine->firmware);
777 exit(1);
779 } else if (machine->kernel_filename) {
780 uint64_t kernel_entry, kernel_high;
781 ssize_t kernel_size;
783 kernel_size = load_elf(machine->kernel_filename, NULL,
784 cpu_mips_kseg0_to_phys, NULL,
785 &kernel_entry, NULL, &kernel_high,
786 NULL, 0, EM_MIPS, 1, 0);
788 if (kernel_size > 0) {
789 int dt_size;
790 g_autofree const void *dtb_file_data, *dtb_load_data;
791 hwaddr dtb_paddr = QEMU_ALIGN_UP(kernel_high, 64 * KiB);
792 hwaddr dtb_vaddr = cpu_mips_phys_to_kseg0(NULL, dtb_paddr);
794 s->kernel_entry = kernel_entry;
795 if (machine->dtb) {
796 dtb_file_data = load_device_tree(machine->dtb, &dt_size);
797 } else {
798 dtb_file_data = create_fdt(s, boston_memmap, &dt_size);
801 dtb_load_data = boston_fdt_filter(s, dtb_file_data,
802 NULL, &dtb_vaddr);
804 /* Calculate real fdt size after filter */
805 dt_size = fdt_totalsize(dtb_load_data);
806 rom_add_blob_fixed("dtb", dtb_load_data, dt_size, dtb_paddr);
807 } else {
808 /* Try to load file as FIT */
809 fit_err = load_fit(&boston_fit_loader, machine->kernel_filename, s);
810 if (fit_err) {
811 error_report("unable to load kernel image");
812 exit(1);
816 gen_firmware(memory_region_get_ram_ptr(flash) + 0x7c00000,
817 s->kernel_entry, s->fdt_base);
818 } else if (!qtest_enabled()) {
819 error_report("Please provide either a -kernel or -bios argument");
820 exit(1);
824 static void boston_mach_class_init(MachineClass *mc)
826 mc->desc = "MIPS Boston";
827 mc->init = boston_mach_init;
828 mc->block_default_type = IF_IDE;
829 mc->default_ram_size = 1 * GiB;
830 mc->default_ram_id = "boston.ddr";
831 mc->max_cpus = 16;
832 mc->default_cpu_type = MIPS_CPU_TYPE_NAME("I6400");
835 DEFINE_MACHINE("boston", boston_mach_class_init)