hw/sparc64/sun4u: Fix introspection by converting prom instance_init to realize
[qemu/ar7.git] / accel / tcg / cpu-exec.c
blob4ef95d8dd30ff0a53d714e15dd1c345ec45700da
1 /*
2 * emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "trace.h"
22 #include "disas/disas.h"
23 #include "exec/exec-all.h"
24 #include "tcg.h"
25 #include "qemu/atomic.h"
26 #include "sysemu/qtest.h"
27 #include "qemu/timer.h"
28 #include "qemu/rcu.h"
29 #include "exec/tb-hash.h"
30 #include "exec/tb-lookup.h"
31 #include "exec/log.h"
32 #include "qemu/main-loop.h"
33 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY)
34 #include "hw/i386/apic.h"
35 #endif
36 #include "sysemu/cpus.h"
37 #include "sysemu/replay.h"
39 /* -icount align implementation. */
41 typedef struct SyncClocks {
42 int64_t diff_clk;
43 int64_t last_cpu_icount;
44 int64_t realtime_clock;
45 } SyncClocks;
47 #if !defined(CONFIG_USER_ONLY)
48 /* Allow the guest to have a max 3ms advance.
49 * The difference between the 2 clocks could therefore
50 * oscillate around 0.
52 #define VM_CLOCK_ADVANCE 3000000
53 #define THRESHOLD_REDUCE 1.5
54 #define MAX_DELAY_PRINT_RATE 2000000000LL
55 #define MAX_NB_PRINTS 100
57 static void align_clocks(SyncClocks *sc, const CPUState *cpu)
59 int64_t cpu_icount;
61 if (!icount_align_option) {
62 return;
65 cpu_icount = cpu->icount_extra + cpu->icount_decr.u16.low;
66 sc->diff_clk += cpu_icount_to_ns(sc->last_cpu_icount - cpu_icount);
67 sc->last_cpu_icount = cpu_icount;
69 if (sc->diff_clk > VM_CLOCK_ADVANCE) {
70 #ifndef _WIN32
71 struct timespec sleep_delay, rem_delay;
72 sleep_delay.tv_sec = sc->diff_clk / 1000000000LL;
73 sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL;
74 if (nanosleep(&sleep_delay, &rem_delay) < 0) {
75 sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec;
76 } else {
77 sc->diff_clk = 0;
79 #else
80 Sleep(sc->diff_clk / SCALE_MS);
81 sc->diff_clk = 0;
82 #endif
86 static void print_delay(const SyncClocks *sc)
88 static float threshold_delay;
89 static int64_t last_realtime_clock;
90 static int nb_prints;
92 if (icount_align_option &&
93 sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE &&
94 nb_prints < MAX_NB_PRINTS) {
95 if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) ||
96 (-sc->diff_clk / (float)1000000000LL <
97 (threshold_delay - THRESHOLD_REDUCE))) {
98 threshold_delay = (-sc->diff_clk / 1000000000LL) + 1;
99 printf("Warning: The guest is now late by %.1f to %.1f seconds\n",
100 threshold_delay - 1,
101 threshold_delay);
102 nb_prints++;
103 last_realtime_clock = sc->realtime_clock;
108 static void init_delay_params(SyncClocks *sc,
109 const CPUState *cpu)
111 if (!icount_align_option) {
112 return;
114 sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
115 sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock;
116 sc->last_cpu_icount = cpu->icount_extra + cpu->icount_decr.u16.low;
117 if (sc->diff_clk < max_delay) {
118 max_delay = sc->diff_clk;
120 if (sc->diff_clk > max_advance) {
121 max_advance = sc->diff_clk;
124 /* Print every 2s max if the guest is late. We limit the number
125 of printed messages to NB_PRINT_MAX(currently 100) */
126 print_delay(sc);
128 #else
129 static void align_clocks(SyncClocks *sc, const CPUState *cpu)
133 static void init_delay_params(SyncClocks *sc, const CPUState *cpu)
136 #endif /* CONFIG USER ONLY */
138 /* Execute a TB, and fix up the CPU state afterwards if necessary */
139 static inline tcg_target_ulong cpu_tb_exec(CPUState *cpu, TranslationBlock *itb)
141 CPUArchState *env = cpu->env_ptr;
142 uintptr_t ret;
143 TranslationBlock *last_tb;
144 int tb_exit;
145 uint8_t *tb_ptr = itb->tc.ptr;
147 qemu_log_mask_and_addr(CPU_LOG_EXEC, itb->pc,
148 "Trace %d: %p ["
149 TARGET_FMT_lx "/" TARGET_FMT_lx "/%#x] %s\n",
150 cpu->cpu_index, itb->tc.ptr,
151 itb->cs_base, itb->pc, itb->flags,
152 lookup_symbol(itb->pc));
154 #if defined(DEBUG_DISAS)
155 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)
156 && qemu_log_in_addr_range(itb->pc)) {
157 qemu_log_lock();
158 int flags = 0;
159 if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) {
160 flags |= CPU_DUMP_FPU;
162 #if defined(TARGET_I386)
163 flags |= CPU_DUMP_CCOP;
164 #endif
165 log_cpu_state(cpu, flags);
166 qemu_log_unlock();
168 #endif /* DEBUG_DISAS */
170 cpu->can_do_io = !use_icount;
171 ret = tcg_qemu_tb_exec(env, tb_ptr);
172 cpu->can_do_io = 1;
173 last_tb = (TranslationBlock *)(ret & ~TB_EXIT_MASK);
174 tb_exit = ret & TB_EXIT_MASK;
175 trace_exec_tb_exit(last_tb, tb_exit);
177 if (tb_exit > TB_EXIT_IDX1) {
178 /* We didn't start executing this TB (eg because the instruction
179 * counter hit zero); we must restore the guest PC to the address
180 * of the start of the TB.
182 CPUClass *cc = CPU_GET_CLASS(cpu);
183 qemu_log_mask_and_addr(CPU_LOG_EXEC, last_tb->pc,
184 "Stopped execution of TB chain before %p ["
185 TARGET_FMT_lx "] %s\n",
186 last_tb->tc.ptr, last_tb->pc,
187 lookup_symbol(last_tb->pc));
188 if (cc->synchronize_from_tb) {
189 cc->synchronize_from_tb(cpu, last_tb);
190 } else {
191 assert(cc->set_pc);
192 cc->set_pc(cpu, last_tb->pc);
195 return ret;
198 #ifndef CONFIG_USER_ONLY
199 /* Execute the code without caching the generated code. An interpreter
200 could be used if available. */
201 static void cpu_exec_nocache(CPUState *cpu, int max_cycles,
202 TranslationBlock *orig_tb, bool ignore_icount)
204 TranslationBlock *tb;
205 uint32_t cflags = curr_cflags() | CF_NOCACHE;
207 if (ignore_icount) {
208 cflags &= ~CF_USE_ICOUNT;
211 /* Should never happen.
212 We only end up here when an existing TB is too long. */
213 cflags |= MIN(max_cycles, CF_COUNT_MASK);
215 tb_lock();
216 tb = tb_gen_code(cpu, orig_tb->pc, orig_tb->cs_base,
217 orig_tb->flags, cflags);
218 tb->orig_tb = orig_tb;
219 tb_unlock();
221 /* execute the generated code */
222 trace_exec_tb_nocache(tb, tb->pc);
223 cpu_tb_exec(cpu, tb);
225 tb_lock();
226 tb_phys_invalidate(tb, -1);
227 tb_remove(tb);
228 tb_unlock();
230 #endif
232 void cpu_exec_step_atomic(CPUState *cpu)
234 CPUClass *cc = CPU_GET_CLASS(cpu);
235 TranslationBlock *tb;
236 target_ulong cs_base, pc;
237 uint32_t flags;
238 uint32_t cflags = 1;
239 uint32_t cf_mask = cflags & CF_HASH_MASK;
240 /* volatile because we modify it between setjmp and longjmp */
241 volatile bool in_exclusive_region = false;
243 if (sigsetjmp(cpu->jmp_env, 0) == 0) {
244 tb = tb_lookup__cpu_state(cpu, &pc, &cs_base, &flags, cf_mask);
245 if (tb == NULL) {
246 mmap_lock();
247 tb_lock();
248 tb = tb_htable_lookup(cpu, pc, cs_base, flags, cf_mask);
249 if (likely(tb == NULL)) {
250 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
252 tb_unlock();
253 mmap_unlock();
256 start_exclusive();
258 /* Since we got here, we know that parallel_cpus must be true. */
259 parallel_cpus = false;
260 in_exclusive_region = true;
261 cc->cpu_exec_enter(cpu);
262 /* execute the generated code */
263 trace_exec_tb(tb, pc);
264 cpu_tb_exec(cpu, tb);
265 cc->cpu_exec_exit(cpu);
266 } else {
267 /* We may have exited due to another problem here, so we need
268 * to reset any tb_locks we may have taken but didn't release.
269 * The mmap_lock is dropped by tb_gen_code if it runs out of
270 * memory.
272 #ifndef CONFIG_SOFTMMU
273 tcg_debug_assert(!have_mmap_lock());
274 #endif
275 tb_lock_reset();
278 if (in_exclusive_region) {
279 /* We might longjump out of either the codegen or the
280 * execution, so must make sure we only end the exclusive
281 * region if we started it.
283 parallel_cpus = true;
284 end_exclusive();
288 struct tb_desc {
289 target_ulong pc;
290 target_ulong cs_base;
291 CPUArchState *env;
292 tb_page_addr_t phys_page1;
293 uint32_t flags;
294 uint32_t cf_mask;
295 uint32_t trace_vcpu_dstate;
298 static bool tb_cmp(const void *p, const void *d)
300 const TranslationBlock *tb = p;
301 const struct tb_desc *desc = d;
303 if (tb->pc == desc->pc &&
304 tb->page_addr[0] == desc->phys_page1 &&
305 tb->cs_base == desc->cs_base &&
306 tb->flags == desc->flags &&
307 tb->trace_vcpu_dstate == desc->trace_vcpu_dstate &&
308 (tb_cflags(tb) & (CF_HASH_MASK | CF_INVALID)) == desc->cf_mask) {
309 /* check next page if needed */
310 if (tb->page_addr[1] == -1) {
311 return true;
312 } else {
313 tb_page_addr_t phys_page2;
314 target_ulong virt_page2;
316 virt_page2 = (desc->pc & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
317 phys_page2 = get_page_addr_code(desc->env, virt_page2);
318 if (tb->page_addr[1] == phys_page2) {
319 return true;
323 return false;
326 TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc,
327 target_ulong cs_base, uint32_t flags,
328 uint32_t cf_mask)
330 tb_page_addr_t phys_pc;
331 struct tb_desc desc;
332 uint32_t h;
334 desc.env = (CPUArchState *)cpu->env_ptr;
335 desc.cs_base = cs_base;
336 desc.flags = flags;
337 desc.cf_mask = cf_mask;
338 desc.trace_vcpu_dstate = *cpu->trace_dstate;
339 desc.pc = pc;
340 phys_pc = get_page_addr_code(desc.env, pc);
341 desc.phys_page1 = phys_pc & TARGET_PAGE_MASK;
342 h = tb_hash_func(phys_pc, pc, flags, cf_mask, *cpu->trace_dstate);
343 return qht_lookup(&tb_ctx.htable, tb_cmp, &desc, h);
346 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr)
348 if (TCG_TARGET_HAS_direct_jump) {
349 uintptr_t offset = tb->jmp_target_arg[n];
350 uintptr_t tc_ptr = (uintptr_t)tb->tc.ptr;
351 tb_target_set_jmp_target(tc_ptr, tc_ptr + offset, addr);
352 } else {
353 tb->jmp_target_arg[n] = addr;
357 /* Called with tb_lock held. */
358 static inline void tb_add_jump(TranslationBlock *tb, int n,
359 TranslationBlock *tb_next)
361 assert(n < ARRAY_SIZE(tb->jmp_list_next));
362 if (tb->jmp_list_next[n]) {
363 /* Another thread has already done this while we were
364 * outside of the lock; nothing to do in this case */
365 return;
367 qemu_log_mask_and_addr(CPU_LOG_EXEC, tb->pc,
368 "Linking TBs %p [" TARGET_FMT_lx
369 "] index %d -> %p [" TARGET_FMT_lx "]\n",
370 tb->tc.ptr, tb->pc, n,
371 tb_next->tc.ptr, tb_next->pc);
373 /* patch the native jump address */
374 tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr);
376 /* add in TB jmp circular list */
377 tb->jmp_list_next[n] = tb_next->jmp_list_first;
378 tb_next->jmp_list_first = (uintptr_t)tb | n;
381 static inline TranslationBlock *tb_find(CPUState *cpu,
382 TranslationBlock *last_tb,
383 int tb_exit, uint32_t cf_mask)
385 TranslationBlock *tb;
386 target_ulong cs_base, pc;
387 uint32_t flags;
388 bool acquired_tb_lock = false;
390 tb = tb_lookup__cpu_state(cpu, &pc, &cs_base, &flags, cf_mask);
391 if (tb == NULL) {
392 /* mmap_lock is needed by tb_gen_code, and mmap_lock must be
393 * taken outside tb_lock. As system emulation is currently
394 * single threaded the locks are NOPs.
396 mmap_lock();
397 tb_lock();
398 acquired_tb_lock = true;
400 /* There's a chance that our desired tb has been translated while
401 * taking the locks so we check again inside the lock.
403 tb = tb_htable_lookup(cpu, pc, cs_base, flags, cf_mask);
404 if (likely(tb == NULL)) {
405 /* if no translated code available, then translate it now */
406 tb = tb_gen_code(cpu, pc, cs_base, flags, cf_mask);
409 mmap_unlock();
410 /* We add the TB in the virtual pc hash table for the fast lookup */
411 atomic_set(&cpu->tb_jmp_cache[tb_jmp_cache_hash_func(pc)], tb);
413 #ifndef CONFIG_USER_ONLY
414 /* We don't take care of direct jumps when address mapping changes in
415 * system emulation. So it's not safe to make a direct jump to a TB
416 * spanning two pages because the mapping for the second page can change.
418 if (tb->page_addr[1] != -1) {
419 last_tb = NULL;
421 #endif
422 /* See if we can patch the calling TB. */
423 if (last_tb && !qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) {
424 if (!acquired_tb_lock) {
425 tb_lock();
426 acquired_tb_lock = true;
428 if (!(tb->cflags & CF_INVALID)) {
429 tb_add_jump(last_tb, tb_exit, tb);
432 if (acquired_tb_lock) {
433 tb_unlock();
435 return tb;
438 static inline bool cpu_handle_halt(CPUState *cpu)
440 if (cpu->halted) {
441 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY)
442 if ((cpu->interrupt_request & CPU_INTERRUPT_POLL)
443 && replay_interrupt()) {
444 X86CPU *x86_cpu = X86_CPU(cpu);
445 qemu_mutex_lock_iothread();
446 apic_poll_irq(x86_cpu->apic_state);
447 cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL);
448 qemu_mutex_unlock_iothread();
450 #endif
451 if (!cpu_has_work(cpu)) {
452 return true;
455 cpu->halted = 0;
458 return false;
461 static inline void cpu_handle_debug_exception(CPUState *cpu)
463 CPUClass *cc = CPU_GET_CLASS(cpu);
464 CPUWatchpoint *wp;
466 if (!cpu->watchpoint_hit) {
467 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
468 wp->flags &= ~BP_WATCHPOINT_HIT;
472 cc->debug_excp_handler(cpu);
475 static inline bool cpu_handle_exception(CPUState *cpu, int *ret)
477 if (cpu->exception_index < 0) {
478 #ifndef CONFIG_USER_ONLY
479 if (replay_has_exception()
480 && cpu->icount_decr.u16.low + cpu->icount_extra == 0) {
481 /* try to cause an exception pending in the log */
482 cpu_exec_nocache(cpu, 1, tb_find(cpu, NULL, 0, curr_cflags()), true);
484 #endif
485 if (cpu->exception_index < 0) {
486 return false;
490 if (cpu->exception_index >= EXCP_INTERRUPT) {
491 /* exit request from the cpu execution loop */
492 *ret = cpu->exception_index;
493 if (*ret == EXCP_DEBUG) {
494 cpu_handle_debug_exception(cpu);
496 cpu->exception_index = -1;
497 return true;
498 } else {
499 #if defined(CONFIG_USER_ONLY)
500 /* if user mode only, we simulate a fake exception
501 which will be handled outside the cpu execution
502 loop */
503 #if defined(TARGET_I386)
504 CPUClass *cc = CPU_GET_CLASS(cpu);
505 cc->do_interrupt(cpu);
506 #endif
507 *ret = cpu->exception_index;
508 cpu->exception_index = -1;
509 return true;
510 #else
511 if (replay_exception()) {
512 CPUClass *cc = CPU_GET_CLASS(cpu);
513 qemu_mutex_lock_iothread();
514 cc->do_interrupt(cpu);
515 qemu_mutex_unlock_iothread();
516 cpu->exception_index = -1;
517 } else if (!replay_has_interrupt()) {
518 /* give a chance to iothread in replay mode */
519 *ret = EXCP_INTERRUPT;
520 return true;
522 #endif
525 return false;
528 static inline bool cpu_handle_interrupt(CPUState *cpu,
529 TranslationBlock **last_tb)
531 CPUClass *cc = CPU_GET_CLASS(cpu);
533 /* Clear the interrupt flag now since we're processing
534 * cpu->interrupt_request and cpu->exit_request.
535 * Ensure zeroing happens before reading cpu->exit_request or
536 * cpu->interrupt_request (see also smp_wmb in cpu_exit())
538 atomic_mb_set(&cpu->icount_decr.u16.high, 0);
540 if (unlikely(atomic_read(&cpu->interrupt_request))) {
541 int interrupt_request;
542 qemu_mutex_lock_iothread();
543 interrupt_request = cpu->interrupt_request;
544 if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) {
545 /* Mask out external interrupts for this step. */
546 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
548 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
549 cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
550 cpu->exception_index = EXCP_DEBUG;
551 qemu_mutex_unlock_iothread();
552 return true;
554 if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) {
555 /* Do nothing */
556 } else if (interrupt_request & CPU_INTERRUPT_HALT) {
557 replay_interrupt();
558 cpu->interrupt_request &= ~CPU_INTERRUPT_HALT;
559 cpu->halted = 1;
560 cpu->exception_index = EXCP_HLT;
561 qemu_mutex_unlock_iothread();
562 return true;
564 #if defined(TARGET_I386)
565 else if (interrupt_request & CPU_INTERRUPT_INIT) {
566 X86CPU *x86_cpu = X86_CPU(cpu);
567 CPUArchState *env = &x86_cpu->env;
568 replay_interrupt();
569 cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0);
570 do_cpu_init(x86_cpu);
571 cpu->exception_index = EXCP_HALTED;
572 qemu_mutex_unlock_iothread();
573 return true;
575 #else
576 else if (interrupt_request & CPU_INTERRUPT_RESET) {
577 replay_interrupt();
578 cpu_reset(cpu);
579 qemu_mutex_unlock_iothread();
580 return true;
582 #endif
583 /* The target hook has 3 exit conditions:
584 False when the interrupt isn't processed,
585 True when it is, and we should restart on a new TB,
586 and via longjmp via cpu_loop_exit. */
587 else {
588 if (cc->cpu_exec_interrupt(cpu, interrupt_request)) {
589 replay_interrupt();
590 cpu->exception_index = -1;
591 *last_tb = NULL;
593 /* The target hook may have updated the 'cpu->interrupt_request';
594 * reload the 'interrupt_request' value */
595 interrupt_request = cpu->interrupt_request;
597 if (interrupt_request & CPU_INTERRUPT_EXITTB) {
598 cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
599 /* ensure that no TB jump will be modified as
600 the program flow was changed */
601 *last_tb = NULL;
604 /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */
605 qemu_mutex_unlock_iothread();
608 /* Finally, check if we need to exit to the main loop. */
609 if (unlikely(atomic_read(&cpu->exit_request)
610 || (use_icount && cpu->icount_decr.u16.low + cpu->icount_extra == 0))) {
611 atomic_set(&cpu->exit_request, 0);
612 if (cpu->exception_index == -1) {
613 cpu->exception_index = EXCP_INTERRUPT;
615 return true;
618 return false;
621 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb,
622 TranslationBlock **last_tb, int *tb_exit)
624 uintptr_t ret;
625 int32_t insns_left;
627 trace_exec_tb(tb, tb->pc);
628 ret = cpu_tb_exec(cpu, tb);
629 tb = (TranslationBlock *)(ret & ~TB_EXIT_MASK);
630 *tb_exit = ret & TB_EXIT_MASK;
631 if (*tb_exit != TB_EXIT_REQUESTED) {
632 *last_tb = tb;
633 return;
636 *last_tb = NULL;
637 insns_left = atomic_read(&cpu->icount_decr.u32);
638 if (insns_left < 0) {
639 /* Something asked us to stop executing chained TBs; just
640 * continue round the main loop. Whatever requested the exit
641 * will also have set something else (eg exit_request or
642 * interrupt_request) which will be handled by
643 * cpu_handle_interrupt. cpu_handle_interrupt will also
644 * clear cpu->icount_decr.u16.high.
646 return;
649 /* Instruction counter expired. */
650 assert(use_icount);
651 #ifndef CONFIG_USER_ONLY
652 /* Ensure global icount has gone forward */
653 cpu_update_icount(cpu);
654 /* Refill decrementer and continue execution. */
655 insns_left = MIN(0xffff, cpu->icount_budget);
656 cpu->icount_decr.u16.low = insns_left;
657 cpu->icount_extra = cpu->icount_budget - insns_left;
658 if (!cpu->icount_extra) {
659 /* Execute any remaining instructions, then let the main loop
660 * handle the next event.
662 if (insns_left > 0) {
663 cpu_exec_nocache(cpu, insns_left, tb, false);
666 #endif
669 /* main execution loop */
671 int cpu_exec(CPUState *cpu)
673 CPUClass *cc = CPU_GET_CLASS(cpu);
674 int ret;
675 SyncClocks sc = { 0 };
677 /* replay_interrupt may need current_cpu */
678 current_cpu = cpu;
680 if (cpu_handle_halt(cpu)) {
681 return EXCP_HALTED;
684 rcu_read_lock();
686 cc->cpu_exec_enter(cpu);
688 /* Calculate difference between guest clock and host clock.
689 * This delay includes the delay of the last cycle, so
690 * what we have to do is sleep until it is 0. As for the
691 * advance/delay we gain here, we try to fix it next time.
693 init_delay_params(&sc, cpu);
695 /* prepare setjmp context for exception handling */
696 if (sigsetjmp(cpu->jmp_env, 0) != 0) {
697 #if defined(__clang__) || !QEMU_GNUC_PREREQ(4, 6)
698 /* Some compilers wrongly smash all local variables after
699 * siglongjmp. There were bug reports for gcc 4.5.0 and clang.
700 * Reload essential local variables here for those compilers.
701 * Newer versions of gcc would complain about this code (-Wclobbered). */
702 cpu = current_cpu;
703 cc = CPU_GET_CLASS(cpu);
704 #else /* buggy compiler */
705 /* Assert that the compiler does not smash local variables. */
706 g_assert(cpu == current_cpu);
707 g_assert(cc == CPU_GET_CLASS(cpu));
708 #endif /* buggy compiler */
709 tb_lock_reset();
710 if (qemu_mutex_iothread_locked()) {
711 qemu_mutex_unlock_iothread();
715 /* if an exception is pending, we execute it here */
716 while (!cpu_handle_exception(cpu, &ret)) {
717 TranslationBlock *last_tb = NULL;
718 int tb_exit = 0;
720 while (!cpu_handle_interrupt(cpu, &last_tb)) {
721 uint32_t cflags = cpu->cflags_next_tb;
722 TranslationBlock *tb;
724 /* When requested, use an exact setting for cflags for the next
725 execution. This is used for icount, precise smc, and stop-
726 after-access watchpoints. Since this request should never
727 have CF_INVALID set, -1 is a convenient invalid value that
728 does not require tcg headers for cpu_common_reset. */
729 if (cflags == -1) {
730 cflags = curr_cflags();
731 } else {
732 cpu->cflags_next_tb = -1;
735 tb = tb_find(cpu, last_tb, tb_exit, cflags);
736 cpu_loop_exec_tb(cpu, tb, &last_tb, &tb_exit);
737 /* Try to align the host and virtual clocks
738 if the guest is in advance */
739 align_clocks(&sc, cpu);
743 cc->cpu_exec_exit(cpu);
744 rcu_read_unlock();
746 return ret;