docs/devel/testing.rst: add missing newlines after code block
[qemu/ar7.git] / hw / nvram / fw_cfg.c
blob946f765f7f791d126a83968f142adf3516bd3836
1 /*
2 * QEMU Firmware configuration device emulation
4 * Copyright (c) 2008 Gleb Natapov
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "hw/hw.h"
27 #include "sysemu/sysemu.h"
28 #include "sysemu/dma.h"
29 #include "hw/boards.h"
30 #include "hw/isa/isa.h"
31 #include "hw/nvram/fw_cfg.h"
32 #include "hw/sysbus.h"
33 #include "trace.h"
34 #include "qemu/error-report.h"
35 #include "qemu/option.h"
36 #include "qemu/config-file.h"
37 #include "qemu/cutils.h"
38 #include "qapi/error.h"
40 #define FW_CFG_FILE_SLOTS_DFLT 0x20
42 /* FW_CFG_VERSION bits */
43 #define FW_CFG_VERSION 0x01
44 #define FW_CFG_VERSION_DMA 0x02
46 /* FW_CFG_DMA_CONTROL bits */
47 #define FW_CFG_DMA_CTL_ERROR 0x01
48 #define FW_CFG_DMA_CTL_READ 0x02
49 #define FW_CFG_DMA_CTL_SKIP 0x04
50 #define FW_CFG_DMA_CTL_SELECT 0x08
51 #define FW_CFG_DMA_CTL_WRITE 0x10
53 #define FW_CFG_DMA_SIGNATURE 0x51454d5520434647ULL /* "QEMU CFG" */
55 struct FWCfgEntry {
56 uint32_t len;
57 bool allow_write;
58 uint8_t *data;
59 void *callback_opaque;
60 FWCfgCallback select_cb;
61 FWCfgWriteCallback write_cb;
64 #define JPG_FILE 0
65 #define BMP_FILE 1
67 static char *read_splashfile(char *filename, gsize *file_sizep,
68 int *file_typep)
70 GError *err = NULL;
71 gboolean res;
72 gchar *content;
73 int file_type;
74 unsigned int filehead;
75 int bmp_bpp;
77 res = g_file_get_contents(filename, &content, file_sizep, &err);
78 if (res == FALSE) {
79 error_report("failed to read splash file '%s'", filename);
80 g_error_free(err);
81 return NULL;
84 /* check file size */
85 if (*file_sizep < 30) {
86 goto error;
89 /* check magic ID */
90 filehead = ((content[0] & 0xff) + (content[1] << 8)) & 0xffff;
91 if (filehead == 0xd8ff) {
92 file_type = JPG_FILE;
93 } else if (filehead == 0x4d42) {
94 file_type = BMP_FILE;
95 } else {
96 goto error;
99 /* check BMP bpp */
100 if (file_type == BMP_FILE) {
101 bmp_bpp = (content[28] + (content[29] << 8)) & 0xffff;
102 if (bmp_bpp != 24) {
103 goto error;
107 /* return values */
108 *file_typep = file_type;
110 return content;
112 error:
113 error_report("splash file '%s' format not recognized; must be JPEG "
114 "or 24 bit BMP", filename);
115 g_free(content);
116 return NULL;
119 static void fw_cfg_bootsplash(FWCfgState *s)
121 int boot_splash_time = -1;
122 const char *boot_splash_filename = NULL;
123 char *p;
124 char *filename, *file_data;
125 gsize file_size;
126 int file_type;
127 const char *temp;
129 /* get user configuration */
130 QemuOptsList *plist = qemu_find_opts("boot-opts");
131 QemuOpts *opts = QTAILQ_FIRST(&plist->head);
132 if (opts != NULL) {
133 temp = qemu_opt_get(opts, "splash");
134 if (temp != NULL) {
135 boot_splash_filename = temp;
137 temp = qemu_opt_get(opts, "splash-time");
138 if (temp != NULL) {
139 p = (char *)temp;
140 boot_splash_time = strtol(p, &p, 10);
144 /* insert splash time if user configurated */
145 if (boot_splash_time >= 0) {
146 /* validate the input */
147 if (boot_splash_time > 0xffff) {
148 error_report("splash time is big than 65535, force it to 65535.");
149 boot_splash_time = 0xffff;
151 /* use little endian format */
152 qemu_extra_params_fw[0] = (uint8_t)(boot_splash_time & 0xff);
153 qemu_extra_params_fw[1] = (uint8_t)((boot_splash_time >> 8) & 0xff);
154 fw_cfg_add_file(s, "etc/boot-menu-wait", qemu_extra_params_fw, 2);
157 /* insert splash file if user configurated */
158 if (boot_splash_filename != NULL) {
159 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, boot_splash_filename);
160 if (filename == NULL) {
161 error_report("failed to find file '%s'.", boot_splash_filename);
162 return;
165 /* loading file data */
166 file_data = read_splashfile(filename, &file_size, &file_type);
167 if (file_data == NULL) {
168 g_free(filename);
169 return;
171 g_free(boot_splash_filedata);
172 boot_splash_filedata = (uint8_t *)file_data;
173 boot_splash_filedata_size = file_size;
175 /* insert data */
176 if (file_type == JPG_FILE) {
177 fw_cfg_add_file(s, "bootsplash.jpg",
178 boot_splash_filedata, boot_splash_filedata_size);
179 } else {
180 fw_cfg_add_file(s, "bootsplash.bmp",
181 boot_splash_filedata, boot_splash_filedata_size);
183 g_free(filename);
187 static void fw_cfg_reboot(FWCfgState *s)
189 int reboot_timeout = -1;
190 char *p;
191 const char *temp;
193 /* get user configuration */
194 QemuOptsList *plist = qemu_find_opts("boot-opts");
195 QemuOpts *opts = QTAILQ_FIRST(&plist->head);
196 if (opts != NULL) {
197 temp = qemu_opt_get(opts, "reboot-timeout");
198 if (temp != NULL) {
199 p = (char *)temp;
200 reboot_timeout = strtol(p, &p, 10);
203 /* validate the input */
204 if (reboot_timeout > 0xffff) {
205 error_report("reboot timeout is larger than 65535, force it to 65535.");
206 reboot_timeout = 0xffff;
208 fw_cfg_add_file(s, "etc/boot-fail-wait", g_memdup(&reboot_timeout, 4), 4);
211 static void fw_cfg_write(FWCfgState *s, uint8_t value)
213 /* nothing, write support removed in QEMU v2.4+ */
216 static inline uint16_t fw_cfg_file_slots(const FWCfgState *s)
218 return s->file_slots;
221 /* Note: this function returns an exclusive limit. */
222 static inline uint32_t fw_cfg_max_entry(const FWCfgState *s)
224 return FW_CFG_FILE_FIRST + fw_cfg_file_slots(s);
227 static int fw_cfg_select(FWCfgState *s, uint16_t key)
229 int arch, ret;
230 FWCfgEntry *e;
232 s->cur_offset = 0;
233 if ((key & FW_CFG_ENTRY_MASK) >= fw_cfg_max_entry(s)) {
234 s->cur_entry = FW_CFG_INVALID;
235 ret = 0;
236 } else {
237 s->cur_entry = key;
238 ret = 1;
239 /* entry successfully selected, now run callback if present */
240 arch = !!(key & FW_CFG_ARCH_LOCAL);
241 e = &s->entries[arch][key & FW_CFG_ENTRY_MASK];
242 if (e->select_cb) {
243 e->select_cb(e->callback_opaque);
247 trace_fw_cfg_select(s, key, ret);
248 return ret;
251 static uint64_t fw_cfg_data_read(void *opaque, hwaddr addr, unsigned size)
253 FWCfgState *s = opaque;
254 int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
255 FWCfgEntry *e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
256 &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
257 uint64_t value = 0;
259 assert(size > 0 && size <= sizeof(value));
260 if (s->cur_entry != FW_CFG_INVALID && e->data && s->cur_offset < e->len) {
261 /* The least significant 'size' bytes of the return value are
262 * expected to contain a string preserving portion of the item
263 * data, padded with zeros on the right in case we run out early.
264 * In technical terms, we're composing the host-endian representation
265 * of the big endian interpretation of the fw_cfg string.
267 do {
268 value = (value << 8) | e->data[s->cur_offset++];
269 } while (--size && s->cur_offset < e->len);
270 /* If size is still not zero, we *did* run out early, so continue
271 * left-shifting, to add the appropriate number of padding zeros
272 * on the right.
274 value <<= 8 * size;
277 trace_fw_cfg_read(s, value);
278 return value;
281 static void fw_cfg_data_mem_write(void *opaque, hwaddr addr,
282 uint64_t value, unsigned size)
284 FWCfgState *s = opaque;
285 unsigned i = size;
287 do {
288 fw_cfg_write(s, value >> (8 * --i));
289 } while (i);
292 static void fw_cfg_dma_transfer(FWCfgState *s)
294 dma_addr_t len;
295 FWCfgDmaAccess dma;
296 int arch;
297 FWCfgEntry *e;
298 int read = 0, write = 0;
299 dma_addr_t dma_addr;
301 /* Reset the address before the next access */
302 dma_addr = s->dma_addr;
303 s->dma_addr = 0;
305 if (dma_memory_read(s->dma_as, dma_addr, &dma, sizeof(dma))) {
306 stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
307 FW_CFG_DMA_CTL_ERROR);
308 return;
311 dma.address = be64_to_cpu(dma.address);
312 dma.length = be32_to_cpu(dma.length);
313 dma.control = be32_to_cpu(dma.control);
315 if (dma.control & FW_CFG_DMA_CTL_SELECT) {
316 fw_cfg_select(s, dma.control >> 16);
319 arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
320 e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
321 &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
323 if (dma.control & FW_CFG_DMA_CTL_READ) {
324 read = 1;
325 write = 0;
326 } else if (dma.control & FW_CFG_DMA_CTL_WRITE) {
327 read = 0;
328 write = 1;
329 } else if (dma.control & FW_CFG_DMA_CTL_SKIP) {
330 read = 0;
331 write = 0;
332 } else {
333 dma.length = 0;
336 dma.control = 0;
338 while (dma.length > 0 && !(dma.control & FW_CFG_DMA_CTL_ERROR)) {
339 if (s->cur_entry == FW_CFG_INVALID || !e->data ||
340 s->cur_offset >= e->len) {
341 len = dma.length;
343 /* If the access is not a read access, it will be a skip access,
344 * tested before.
346 if (read) {
347 if (dma_memory_set(s->dma_as, dma.address, 0, len)) {
348 dma.control |= FW_CFG_DMA_CTL_ERROR;
351 if (write) {
352 dma.control |= FW_CFG_DMA_CTL_ERROR;
354 } else {
355 if (dma.length <= (e->len - s->cur_offset)) {
356 len = dma.length;
357 } else {
358 len = (e->len - s->cur_offset);
361 /* If the access is not a read access, it will be a skip access,
362 * tested before.
364 if (read) {
365 if (dma_memory_write(s->dma_as, dma.address,
366 &e->data[s->cur_offset], len)) {
367 dma.control |= FW_CFG_DMA_CTL_ERROR;
370 if (write) {
371 if (!e->allow_write ||
372 len != dma.length ||
373 dma_memory_read(s->dma_as, dma.address,
374 &e->data[s->cur_offset], len)) {
375 dma.control |= FW_CFG_DMA_CTL_ERROR;
376 } else if (e->write_cb) {
377 e->write_cb(e->callback_opaque, s->cur_offset, len);
381 s->cur_offset += len;
384 dma.address += len;
385 dma.length -= len;
389 stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
390 dma.control);
392 trace_fw_cfg_read(s, 0);
395 static uint64_t fw_cfg_dma_mem_read(void *opaque, hwaddr addr,
396 unsigned size)
398 /* Return a signature value (and handle various read sizes) */
399 return extract64(FW_CFG_DMA_SIGNATURE, (8 - addr - size) * 8, size * 8);
402 static void fw_cfg_dma_mem_write(void *opaque, hwaddr addr,
403 uint64_t value, unsigned size)
405 FWCfgState *s = opaque;
407 if (size == 4) {
408 if (addr == 0) {
409 /* FWCfgDmaAccess high address */
410 s->dma_addr = value << 32;
411 } else if (addr == 4) {
412 /* FWCfgDmaAccess low address */
413 s->dma_addr |= value;
414 fw_cfg_dma_transfer(s);
416 } else if (size == 8 && addr == 0) {
417 s->dma_addr = value;
418 fw_cfg_dma_transfer(s);
422 static bool fw_cfg_dma_mem_valid(void *opaque, hwaddr addr,
423 unsigned size, bool is_write,
424 MemTxAttrs attrs)
426 return !is_write || ((size == 4 && (addr == 0 || addr == 4)) ||
427 (size == 8 && addr == 0));
430 static bool fw_cfg_data_mem_valid(void *opaque, hwaddr addr,
431 unsigned size, bool is_write,
432 MemTxAttrs attrs)
434 return addr == 0;
437 static uint64_t fw_cfg_ctl_mem_read(void *opaque, hwaddr addr, unsigned size)
439 return 0;
442 static void fw_cfg_ctl_mem_write(void *opaque, hwaddr addr,
443 uint64_t value, unsigned size)
445 fw_cfg_select(opaque, (uint16_t)value);
448 static bool fw_cfg_ctl_mem_valid(void *opaque, hwaddr addr,
449 unsigned size, bool is_write,
450 MemTxAttrs attrs)
452 return is_write && size == 2;
455 static void fw_cfg_comb_write(void *opaque, hwaddr addr,
456 uint64_t value, unsigned size)
458 switch (size) {
459 case 1:
460 fw_cfg_write(opaque, (uint8_t)value);
461 break;
462 case 2:
463 fw_cfg_select(opaque, (uint16_t)value);
464 break;
468 static bool fw_cfg_comb_valid(void *opaque, hwaddr addr,
469 unsigned size, bool is_write,
470 MemTxAttrs attrs)
472 return (size == 1) || (is_write && size == 2);
475 static const MemoryRegionOps fw_cfg_ctl_mem_ops = {
476 .read = fw_cfg_ctl_mem_read,
477 .write = fw_cfg_ctl_mem_write,
478 .endianness = DEVICE_BIG_ENDIAN,
479 .valid.accepts = fw_cfg_ctl_mem_valid,
482 static const MemoryRegionOps fw_cfg_data_mem_ops = {
483 .read = fw_cfg_data_read,
484 .write = fw_cfg_data_mem_write,
485 .endianness = DEVICE_BIG_ENDIAN,
486 .valid = {
487 .min_access_size = 1,
488 .max_access_size = 1,
489 .accepts = fw_cfg_data_mem_valid,
493 static const MemoryRegionOps fw_cfg_comb_mem_ops = {
494 .read = fw_cfg_data_read,
495 .write = fw_cfg_comb_write,
496 .endianness = DEVICE_LITTLE_ENDIAN,
497 .valid.accepts = fw_cfg_comb_valid,
500 static const MemoryRegionOps fw_cfg_dma_mem_ops = {
501 .read = fw_cfg_dma_mem_read,
502 .write = fw_cfg_dma_mem_write,
503 .endianness = DEVICE_BIG_ENDIAN,
504 .valid.accepts = fw_cfg_dma_mem_valid,
505 .valid.max_access_size = 8,
506 .impl.max_access_size = 8,
509 static void fw_cfg_reset(DeviceState *d)
511 FWCfgState *s = FW_CFG(d);
513 /* we never register a read callback for FW_CFG_SIGNATURE */
514 fw_cfg_select(s, FW_CFG_SIGNATURE);
517 /* Save restore 32 bit int as uint16_t
518 This is a Big hack, but it is how the old state did it.
519 Or we broke compatibility in the state, or we can't use struct tm
522 static int get_uint32_as_uint16(QEMUFile *f, void *pv, size_t size,
523 VMStateField *field)
525 uint32_t *v = pv;
526 *v = qemu_get_be16(f);
527 return 0;
530 static int put_unused(QEMUFile *f, void *pv, size_t size, VMStateField *field,
531 QJSON *vmdesc)
533 fprintf(stderr, "uint32_as_uint16 is only used for backward compatibility.\n");
534 fprintf(stderr, "This functions shouldn't be called.\n");
536 return 0;
539 static const VMStateInfo vmstate_hack_uint32_as_uint16 = {
540 .name = "int32_as_uint16",
541 .get = get_uint32_as_uint16,
542 .put = put_unused,
545 #define VMSTATE_UINT16_HACK(_f, _s, _t) \
546 VMSTATE_SINGLE_TEST(_f, _s, _t, 0, vmstate_hack_uint32_as_uint16, uint32_t)
549 static bool is_version_1(void *opaque, int version_id)
551 return version_id == 1;
554 bool fw_cfg_dma_enabled(void *opaque)
556 FWCfgState *s = opaque;
558 return s->dma_enabled;
561 static const VMStateDescription vmstate_fw_cfg_dma = {
562 .name = "fw_cfg/dma",
563 .needed = fw_cfg_dma_enabled,
564 .fields = (VMStateField[]) {
565 VMSTATE_UINT64(dma_addr, FWCfgState),
566 VMSTATE_END_OF_LIST()
570 static const VMStateDescription vmstate_fw_cfg = {
571 .name = "fw_cfg",
572 .version_id = 2,
573 .minimum_version_id = 1,
574 .fields = (VMStateField[]) {
575 VMSTATE_UINT16(cur_entry, FWCfgState),
576 VMSTATE_UINT16_HACK(cur_offset, FWCfgState, is_version_1),
577 VMSTATE_UINT32_V(cur_offset, FWCfgState, 2),
578 VMSTATE_END_OF_LIST()
580 .subsections = (const VMStateDescription*[]) {
581 &vmstate_fw_cfg_dma,
582 NULL,
586 static void fw_cfg_add_bytes_callback(FWCfgState *s, uint16_t key,
587 FWCfgCallback select_cb,
588 FWCfgWriteCallback write_cb,
589 void *callback_opaque,
590 void *data, size_t len,
591 bool read_only)
593 int arch = !!(key & FW_CFG_ARCH_LOCAL);
595 key &= FW_CFG_ENTRY_MASK;
597 assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX);
598 assert(s->entries[arch][key].data == NULL); /* avoid key conflict */
600 s->entries[arch][key].data = data;
601 s->entries[arch][key].len = (uint32_t)len;
602 s->entries[arch][key].select_cb = select_cb;
603 s->entries[arch][key].write_cb = write_cb;
604 s->entries[arch][key].callback_opaque = callback_opaque;
605 s->entries[arch][key].allow_write = !read_only;
608 static void *fw_cfg_modify_bytes_read(FWCfgState *s, uint16_t key,
609 void *data, size_t len)
611 void *ptr;
612 int arch = !!(key & FW_CFG_ARCH_LOCAL);
614 key &= FW_CFG_ENTRY_MASK;
616 assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX);
618 /* return the old data to the function caller, avoid memory leak */
619 ptr = s->entries[arch][key].data;
620 s->entries[arch][key].data = data;
621 s->entries[arch][key].len = len;
622 s->entries[arch][key].callback_opaque = NULL;
623 s->entries[arch][key].allow_write = false;
625 return ptr;
628 void fw_cfg_add_bytes(FWCfgState *s, uint16_t key, void *data, size_t len)
630 fw_cfg_add_bytes_callback(s, key, NULL, NULL, NULL, data, len, true);
633 void fw_cfg_add_string(FWCfgState *s, uint16_t key, const char *value)
635 size_t sz = strlen(value) + 1;
637 fw_cfg_add_bytes(s, key, g_memdup(value, sz), sz);
640 void fw_cfg_add_i16(FWCfgState *s, uint16_t key, uint16_t value)
642 uint16_t *copy;
644 copy = g_malloc(sizeof(value));
645 *copy = cpu_to_le16(value);
646 fw_cfg_add_bytes(s, key, copy, sizeof(value));
649 void fw_cfg_modify_i16(FWCfgState *s, uint16_t key, uint16_t value)
651 uint16_t *copy, *old;
653 copy = g_malloc(sizeof(value));
654 *copy = cpu_to_le16(value);
655 old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
656 g_free(old);
659 void fw_cfg_add_i32(FWCfgState *s, uint16_t key, uint32_t value)
661 uint32_t *copy;
663 copy = g_malloc(sizeof(value));
664 *copy = cpu_to_le32(value);
665 fw_cfg_add_bytes(s, key, copy, sizeof(value));
668 void fw_cfg_add_i64(FWCfgState *s, uint16_t key, uint64_t value)
670 uint64_t *copy;
672 copy = g_malloc(sizeof(value));
673 *copy = cpu_to_le64(value);
674 fw_cfg_add_bytes(s, key, copy, sizeof(value));
677 void fw_cfg_set_order_override(FWCfgState *s, int order)
679 assert(s->fw_cfg_order_override == 0);
680 s->fw_cfg_order_override = order;
683 void fw_cfg_reset_order_override(FWCfgState *s)
685 assert(s->fw_cfg_order_override != 0);
686 s->fw_cfg_order_override = 0;
690 * This is the legacy order list. For legacy systems, files are in
691 * the fw_cfg in the order defined below, by the "order" value. Note
692 * that some entries (VGA ROMs, NIC option ROMS, etc.) go into a
693 * specific area, but there may be more than one and they occur in the
694 * order that the user specifies them on the command line. Those are
695 * handled in a special manner, using the order override above.
697 * For non-legacy, the files are sorted by filename to avoid this kind
698 * of complexity in the future.
700 * This is only for x86, other arches don't implement versioning so
701 * they won't set legacy mode.
703 static struct {
704 const char *name;
705 int order;
706 } fw_cfg_order[] = {
707 { "etc/boot-menu-wait", 10 },
708 { "bootsplash.jpg", 11 },
709 { "bootsplash.bmp", 12 },
710 { "etc/boot-fail-wait", 15 },
711 { "etc/smbios/smbios-tables", 20 },
712 { "etc/smbios/smbios-anchor", 30 },
713 { "etc/e820", 40 },
714 { "etc/reserved-memory-end", 50 },
715 { "genroms/kvmvapic.bin", 55 },
716 { "genroms/linuxboot.bin", 60 },
717 { }, /* VGA ROMs from pc_vga_init come here, 70. */
718 { }, /* NIC option ROMs from pc_nic_init come here, 80. */
719 { "etc/system-states", 90 },
720 { }, /* User ROMs come here, 100. */
721 { }, /* Device FW comes here, 110. */
722 { "etc/extra-pci-roots", 120 },
723 { "etc/acpi/tables", 130 },
724 { "etc/table-loader", 140 },
725 { "etc/tpm/log", 150 },
726 { "etc/acpi/rsdp", 160 },
727 { "bootorder", 170 },
729 #define FW_CFG_ORDER_OVERRIDE_LAST 200
732 static int get_fw_cfg_order(FWCfgState *s, const char *name)
734 int i;
736 if (s->fw_cfg_order_override > 0) {
737 return s->fw_cfg_order_override;
740 for (i = 0; i < ARRAY_SIZE(fw_cfg_order); i++) {
741 if (fw_cfg_order[i].name == NULL) {
742 continue;
745 if (strcmp(name, fw_cfg_order[i].name) == 0) {
746 return fw_cfg_order[i].order;
750 /* Stick unknown stuff at the end. */
751 warn_report("Unknown firmware file in legacy mode: %s", name);
752 return FW_CFG_ORDER_OVERRIDE_LAST;
755 void fw_cfg_add_file_callback(FWCfgState *s, const char *filename,
756 FWCfgCallback select_cb,
757 FWCfgWriteCallback write_cb,
758 void *callback_opaque,
759 void *data, size_t len, bool read_only)
761 int i, index, count;
762 size_t dsize;
763 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
764 int order = 0;
766 if (!s->files) {
767 dsize = sizeof(uint32_t) + sizeof(FWCfgFile) * fw_cfg_file_slots(s);
768 s->files = g_malloc0(dsize);
769 fw_cfg_add_bytes(s, FW_CFG_FILE_DIR, s->files, dsize);
772 count = be32_to_cpu(s->files->count);
773 assert(count < fw_cfg_file_slots(s));
775 /* Find the insertion point. */
776 if (mc->legacy_fw_cfg_order) {
778 * Sort by order. For files with the same order, we keep them
779 * in the sequence in which they were added.
781 order = get_fw_cfg_order(s, filename);
782 for (index = count;
783 index > 0 && order < s->entry_order[index - 1];
784 index--);
785 } else {
786 /* Sort by file name. */
787 for (index = count;
788 index > 0 && strcmp(filename, s->files->f[index - 1].name) < 0;
789 index--);
793 * Move all the entries from the index point and after down one
794 * to create a slot for the new entry. Because calculations are
795 * being done with the index, make it so that "i" is the current
796 * index and "i - 1" is the one being copied from, thus the
797 * unusual start and end in the for statement.
799 for (i = count; i > index; i--) {
800 s->files->f[i] = s->files->f[i - 1];
801 s->files->f[i].select = cpu_to_be16(FW_CFG_FILE_FIRST + i);
802 s->entries[0][FW_CFG_FILE_FIRST + i] =
803 s->entries[0][FW_CFG_FILE_FIRST + i - 1];
804 s->entry_order[i] = s->entry_order[i - 1];
807 memset(&s->files->f[index], 0, sizeof(FWCfgFile));
808 memset(&s->entries[0][FW_CFG_FILE_FIRST + index], 0, sizeof(FWCfgEntry));
810 pstrcpy(s->files->f[index].name, sizeof(s->files->f[index].name), filename);
811 for (i = 0; i <= count; i++) {
812 if (i != index &&
813 strcmp(s->files->f[index].name, s->files->f[i].name) == 0) {
814 error_report("duplicate fw_cfg file name: %s",
815 s->files->f[index].name);
816 exit(1);
820 fw_cfg_add_bytes_callback(s, FW_CFG_FILE_FIRST + index,
821 select_cb, write_cb,
822 callback_opaque, data, len,
823 read_only);
825 s->files->f[index].size = cpu_to_be32(len);
826 s->files->f[index].select = cpu_to_be16(FW_CFG_FILE_FIRST + index);
827 s->entry_order[index] = order;
828 trace_fw_cfg_add_file(s, index, s->files->f[index].name, len);
830 s->files->count = cpu_to_be32(count+1);
833 void fw_cfg_add_file(FWCfgState *s, const char *filename,
834 void *data, size_t len)
836 fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true);
839 void *fw_cfg_modify_file(FWCfgState *s, const char *filename,
840 void *data, size_t len)
842 int i, index;
843 void *ptr = NULL;
845 assert(s->files);
847 index = be32_to_cpu(s->files->count);
849 for (i = 0; i < index; i++) {
850 if (strcmp(filename, s->files->f[i].name) == 0) {
851 ptr = fw_cfg_modify_bytes_read(s, FW_CFG_FILE_FIRST + i,
852 data, len);
853 s->files->f[i].size = cpu_to_be32(len);
854 return ptr;
858 assert(index < fw_cfg_file_slots(s));
860 /* add new one */
861 fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true);
862 return NULL;
865 static void fw_cfg_machine_reset(void *opaque)
867 void *ptr;
868 size_t len;
869 FWCfgState *s = opaque;
870 char *bootindex = get_boot_devices_list(&len);
872 ptr = fw_cfg_modify_file(s, "bootorder", (uint8_t *)bootindex, len);
873 g_free(ptr);
876 static void fw_cfg_machine_ready(struct Notifier *n, void *data)
878 FWCfgState *s = container_of(n, FWCfgState, machine_ready);
879 qemu_register_reset(fw_cfg_machine_reset, s);
884 static void fw_cfg_common_realize(DeviceState *dev, Error **errp)
886 FWCfgState *s = FW_CFG(dev);
887 MachineState *machine = MACHINE(qdev_get_machine());
888 uint32_t version = FW_CFG_VERSION;
890 if (!fw_cfg_find()) {
891 error_setg(errp, "at most one %s device is permitted", TYPE_FW_CFG);
892 return;
895 fw_cfg_add_bytes(s, FW_CFG_SIGNATURE, (char *)"QEMU", 4);
896 fw_cfg_add_bytes(s, FW_CFG_UUID, &qemu_uuid, 16);
897 fw_cfg_add_i16(s, FW_CFG_NOGRAPHIC, (uint16_t)!machine->enable_graphics);
898 fw_cfg_add_i16(s, FW_CFG_BOOT_MENU, (uint16_t)boot_menu);
899 fw_cfg_bootsplash(s);
900 fw_cfg_reboot(s);
902 if (s->dma_enabled) {
903 version |= FW_CFG_VERSION_DMA;
906 fw_cfg_add_i32(s, FW_CFG_ID, version);
908 s->machine_ready.notify = fw_cfg_machine_ready;
909 qemu_add_machine_init_done_notifier(&s->machine_ready);
912 FWCfgState *fw_cfg_init_io_dma(uint32_t iobase, uint32_t dma_iobase,
913 AddressSpace *dma_as)
915 DeviceState *dev;
916 SysBusDevice *sbd;
917 FWCfgIoState *ios;
918 FWCfgState *s;
919 bool dma_requested = dma_iobase && dma_as;
921 dev = qdev_create(NULL, TYPE_FW_CFG_IO);
922 if (!dma_requested) {
923 qdev_prop_set_bit(dev, "dma_enabled", false);
926 object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
927 OBJECT(dev), NULL);
928 qdev_init_nofail(dev);
930 sbd = SYS_BUS_DEVICE(dev);
931 ios = FW_CFG_IO(dev);
932 sysbus_add_io(sbd, iobase, &ios->comb_iomem);
934 s = FW_CFG(dev);
936 if (s->dma_enabled) {
937 /* 64 bits for the address field */
938 s->dma_as = dma_as;
939 s->dma_addr = 0;
940 sysbus_add_io(sbd, dma_iobase, &s->dma_iomem);
943 return s;
946 FWCfgState *fw_cfg_init_io(uint32_t iobase)
948 return fw_cfg_init_io_dma(iobase, 0, NULL);
951 FWCfgState *fw_cfg_init_mem_wide(hwaddr ctl_addr,
952 hwaddr data_addr, uint32_t data_width,
953 hwaddr dma_addr, AddressSpace *dma_as)
955 DeviceState *dev;
956 SysBusDevice *sbd;
957 FWCfgState *s;
958 bool dma_requested = dma_addr && dma_as;
960 dev = qdev_create(NULL, TYPE_FW_CFG_MEM);
961 qdev_prop_set_uint32(dev, "data_width", data_width);
962 if (!dma_requested) {
963 qdev_prop_set_bit(dev, "dma_enabled", false);
966 object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
967 OBJECT(dev), NULL);
968 qdev_init_nofail(dev);
970 sbd = SYS_BUS_DEVICE(dev);
971 sysbus_mmio_map(sbd, 0, ctl_addr);
972 sysbus_mmio_map(sbd, 1, data_addr);
974 s = FW_CFG(dev);
976 if (s->dma_enabled) {
977 s->dma_as = dma_as;
978 s->dma_addr = 0;
979 sysbus_mmio_map(sbd, 2, dma_addr);
982 return s;
985 FWCfgState *fw_cfg_init_mem(hwaddr ctl_addr, hwaddr data_addr)
987 return fw_cfg_init_mem_wide(ctl_addr, data_addr,
988 fw_cfg_data_mem_ops.valid.max_access_size,
989 0, NULL);
993 FWCfgState *fw_cfg_find(void)
995 /* Returns NULL unless there is exactly one fw_cfg device */
996 return FW_CFG(object_resolve_path_type("", TYPE_FW_CFG, NULL));
1000 static void fw_cfg_class_init(ObjectClass *klass, void *data)
1002 DeviceClass *dc = DEVICE_CLASS(klass);
1004 dc->reset = fw_cfg_reset;
1005 dc->vmsd = &vmstate_fw_cfg;
1008 static const TypeInfo fw_cfg_info = {
1009 .name = TYPE_FW_CFG,
1010 .parent = TYPE_SYS_BUS_DEVICE,
1011 .abstract = true,
1012 .instance_size = sizeof(FWCfgState),
1013 .class_init = fw_cfg_class_init,
1016 static void fw_cfg_file_slots_allocate(FWCfgState *s, Error **errp)
1018 uint16_t file_slots_max;
1020 if (fw_cfg_file_slots(s) < FW_CFG_FILE_SLOTS_MIN) {
1021 error_setg(errp, "\"file_slots\" must be at least 0x%x",
1022 FW_CFG_FILE_SLOTS_MIN);
1023 return;
1026 /* (UINT16_MAX & FW_CFG_ENTRY_MASK) is the highest inclusive selector value
1027 * that we permit. The actual (exclusive) value coming from the
1028 * configuration is (FW_CFG_FILE_FIRST + fw_cfg_file_slots(s)). */
1029 file_slots_max = (UINT16_MAX & FW_CFG_ENTRY_MASK) - FW_CFG_FILE_FIRST + 1;
1030 if (fw_cfg_file_slots(s) > file_slots_max) {
1031 error_setg(errp, "\"file_slots\" must not exceed 0x%" PRIx16,
1032 file_slots_max);
1033 return;
1036 s->entries[0] = g_new0(FWCfgEntry, fw_cfg_max_entry(s));
1037 s->entries[1] = g_new0(FWCfgEntry, fw_cfg_max_entry(s));
1038 s->entry_order = g_new0(int, fw_cfg_max_entry(s));
1041 static Property fw_cfg_io_properties[] = {
1042 DEFINE_PROP_BOOL("dma_enabled", FWCfgIoState, parent_obj.dma_enabled,
1043 true),
1044 DEFINE_PROP_UINT16("x-file-slots", FWCfgIoState, parent_obj.file_slots,
1045 FW_CFG_FILE_SLOTS_DFLT),
1046 DEFINE_PROP_END_OF_LIST(),
1049 static void fw_cfg_io_realize(DeviceState *dev, Error **errp)
1051 FWCfgIoState *s = FW_CFG_IO(dev);
1052 Error *local_err = NULL;
1054 fw_cfg_file_slots_allocate(FW_CFG(s), &local_err);
1055 if (local_err) {
1056 error_propagate(errp, local_err);
1057 return;
1060 /* when using port i/o, the 8-bit data register ALWAYS overlaps
1061 * with half of the 16-bit control register. Hence, the total size
1062 * of the i/o region used is FW_CFG_CTL_SIZE */
1063 memory_region_init_io(&s->comb_iomem, OBJECT(s), &fw_cfg_comb_mem_ops,
1064 FW_CFG(s), "fwcfg", FW_CFG_CTL_SIZE);
1066 if (FW_CFG(s)->dma_enabled) {
1067 memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
1068 &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
1069 sizeof(dma_addr_t));
1072 fw_cfg_common_realize(dev, errp);
1075 static void fw_cfg_io_class_init(ObjectClass *klass, void *data)
1077 DeviceClass *dc = DEVICE_CLASS(klass);
1079 dc->realize = fw_cfg_io_realize;
1080 dc->props = fw_cfg_io_properties;
1083 static const TypeInfo fw_cfg_io_info = {
1084 .name = TYPE_FW_CFG_IO,
1085 .parent = TYPE_FW_CFG,
1086 .instance_size = sizeof(FWCfgIoState),
1087 .class_init = fw_cfg_io_class_init,
1091 static Property fw_cfg_mem_properties[] = {
1092 DEFINE_PROP_UINT32("data_width", FWCfgMemState, data_width, -1),
1093 DEFINE_PROP_BOOL("dma_enabled", FWCfgMemState, parent_obj.dma_enabled,
1094 true),
1095 DEFINE_PROP_UINT16("x-file-slots", FWCfgMemState, parent_obj.file_slots,
1096 FW_CFG_FILE_SLOTS_DFLT),
1097 DEFINE_PROP_END_OF_LIST(),
1100 static void fw_cfg_mem_realize(DeviceState *dev, Error **errp)
1102 FWCfgMemState *s = FW_CFG_MEM(dev);
1103 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1104 const MemoryRegionOps *data_ops = &fw_cfg_data_mem_ops;
1105 Error *local_err = NULL;
1107 fw_cfg_file_slots_allocate(FW_CFG(s), &local_err);
1108 if (local_err) {
1109 error_propagate(errp, local_err);
1110 return;
1113 memory_region_init_io(&s->ctl_iomem, OBJECT(s), &fw_cfg_ctl_mem_ops,
1114 FW_CFG(s), "fwcfg.ctl", FW_CFG_CTL_SIZE);
1115 sysbus_init_mmio(sbd, &s->ctl_iomem);
1117 if (s->data_width > data_ops->valid.max_access_size) {
1118 s->wide_data_ops = *data_ops;
1120 s->wide_data_ops.valid.max_access_size = s->data_width;
1121 s->wide_data_ops.impl.max_access_size = s->data_width;
1122 data_ops = &s->wide_data_ops;
1124 memory_region_init_io(&s->data_iomem, OBJECT(s), data_ops, FW_CFG(s),
1125 "fwcfg.data", data_ops->valid.max_access_size);
1126 sysbus_init_mmio(sbd, &s->data_iomem);
1128 if (FW_CFG(s)->dma_enabled) {
1129 memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
1130 &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
1131 sizeof(dma_addr_t));
1132 sysbus_init_mmio(sbd, &FW_CFG(s)->dma_iomem);
1135 fw_cfg_common_realize(dev, errp);
1138 static void fw_cfg_mem_class_init(ObjectClass *klass, void *data)
1140 DeviceClass *dc = DEVICE_CLASS(klass);
1142 dc->realize = fw_cfg_mem_realize;
1143 dc->props = fw_cfg_mem_properties;
1146 static const TypeInfo fw_cfg_mem_info = {
1147 .name = TYPE_FW_CFG_MEM,
1148 .parent = TYPE_FW_CFG,
1149 .instance_size = sizeof(FWCfgMemState),
1150 .class_init = fw_cfg_mem_class_init,
1154 static void fw_cfg_register_types(void)
1156 type_register_static(&fw_cfg_info);
1157 type_register_static(&fw_cfg_io_info);
1158 type_register_static(&fw_cfg_mem_info);
1161 type_init(fw_cfg_register_types)