scsi: esp: make cmdbuf big enough for maximum CDB size
[qemu/ar7.git] / target-arm / op_helper.c
blob35912a1192eea2fdd6355338ed6ce7abace85189
1 /*
2 * ARM helper routines
4 * Copyright (c) 2005-2007 CodeSourcery, LLC
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "exec/helper-proto.h"
22 #include "internals.h"
23 #include "exec/exec-all.h"
24 #include "exec/cpu_ldst.h"
26 #define SIGNBIT (uint32_t)0x80000000
27 #define SIGNBIT64 ((uint64_t)1 << 63)
29 static void raise_exception(CPUARMState *env, uint32_t excp,
30 uint32_t syndrome, uint32_t target_el)
32 CPUState *cs = CPU(arm_env_get_cpu(env));
34 assert(!excp_is_internal(excp));
35 cs->exception_index = excp;
36 env->exception.syndrome = syndrome;
37 env->exception.target_el = target_el;
38 cpu_loop_exit(cs);
41 static int exception_target_el(CPUARMState *env)
43 int target_el = MAX(1, arm_current_el(env));
45 /* No such thing as secure EL1 if EL3 is aarch32, so update the target EL
46 * to EL3 in this case.
48 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3) && target_el == 1) {
49 target_el = 3;
52 return target_el;
55 uint32_t HELPER(neon_tbl)(CPUARMState *env, uint32_t ireg, uint32_t def,
56 uint32_t rn, uint32_t maxindex)
58 uint32_t val;
59 uint32_t tmp;
60 int index;
61 int shift;
62 uint64_t *table;
63 table = (uint64_t *)&env->vfp.regs[rn];
64 val = 0;
65 for (shift = 0; shift < 32; shift += 8) {
66 index = (ireg >> shift) & 0xff;
67 if (index < maxindex) {
68 tmp = (table[index >> 3] >> ((index & 7) << 3)) & 0xff;
69 val |= tmp << shift;
70 } else {
71 val |= def & (0xff << shift);
74 return val;
77 #if !defined(CONFIG_USER_ONLY)
79 static inline uint32_t merge_syn_data_abort(uint32_t template_syn,
80 unsigned int target_el,
81 bool same_el,
82 bool s1ptw, int is_write,
83 int fsc)
85 uint32_t syn;
87 /* ISV is only set for data aborts routed to EL2 and
88 * never for stage-1 page table walks faulting on stage 2.
90 * Furthermore, ISV is only set for certain kinds of load/stores.
91 * If the template syndrome does not have ISV set, we should leave
92 * it cleared.
94 * See ARMv8 specs, D7-1974:
95 * ISS encoding for an exception from a Data Abort, the
96 * ISV field.
98 if (!(template_syn & ARM_EL_ISV) || target_el != 2 || s1ptw) {
99 syn = syn_data_abort_no_iss(same_el,
100 0, 0, s1ptw, is_write == 1, fsc);
101 } else {
102 /* Fields: IL, ISV, SAS, SSE, SRT, SF and AR come from the template
103 * syndrome created at translation time.
104 * Now we create the runtime syndrome with the remaining fields.
106 syn = syn_data_abort_with_iss(same_el,
107 0, 0, 0, 0, 0,
108 0, 0, s1ptw, is_write == 1, fsc,
109 false);
110 /* Merge the runtime syndrome with the template syndrome. */
111 syn |= template_syn;
113 return syn;
116 /* try to fill the TLB and return an exception if error. If retaddr is
117 * NULL, it means that the function was called in C code (i.e. not
118 * from generated code or from helper.c)
120 void tlb_fill(CPUState *cs, target_ulong addr, int is_write, int mmu_idx,
121 uintptr_t retaddr)
123 bool ret;
124 uint32_t fsr = 0;
125 ARMMMUFaultInfo fi = {};
127 ret = arm_tlb_fill(cs, addr, is_write, mmu_idx, &fsr, &fi);
128 if (unlikely(ret)) {
129 ARMCPU *cpu = ARM_CPU(cs);
130 CPUARMState *env = &cpu->env;
131 uint32_t syn, exc;
132 unsigned int target_el;
133 bool same_el;
135 if (retaddr) {
136 /* now we have a real cpu fault */
137 cpu_restore_state(cs, retaddr);
140 target_el = exception_target_el(env);
141 if (fi.stage2) {
142 target_el = 2;
143 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
145 same_el = arm_current_el(env) == target_el;
146 /* AArch64 syndrome does not have an LPAE bit */
147 syn = fsr & ~(1 << 9);
149 /* For insn and data aborts we assume there is no instruction syndrome
150 * information; this is always true for exceptions reported to EL1.
152 if (is_write == 2) {
153 syn = syn_insn_abort(same_el, 0, fi.s1ptw, syn);
154 exc = EXCP_PREFETCH_ABORT;
155 } else {
156 syn = merge_syn_data_abort(env->exception.syndrome, target_el,
157 same_el, fi.s1ptw, is_write, syn);
158 if (is_write == 1 && arm_feature(env, ARM_FEATURE_V6)) {
159 fsr |= (1 << 11);
161 exc = EXCP_DATA_ABORT;
164 env->exception.vaddress = addr;
165 env->exception.fsr = fsr;
166 raise_exception(env, exc, syn, target_el);
170 /* Raise a data fault alignment exception for the specified virtual address */
171 void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr, int is_write,
172 int is_user, uintptr_t retaddr)
174 ARMCPU *cpu = ARM_CPU(cs);
175 CPUARMState *env = &cpu->env;
176 int target_el;
177 bool same_el;
178 uint32_t syn;
180 if (retaddr) {
181 /* now we have a real cpu fault */
182 cpu_restore_state(cs, retaddr);
185 target_el = exception_target_el(env);
186 same_el = (arm_current_el(env) == target_el);
188 env->exception.vaddress = vaddr;
190 /* the DFSR for an alignment fault depends on whether we're using
191 * the LPAE long descriptor format, or the short descriptor format
193 if (arm_s1_regime_using_lpae_format(env, cpu_mmu_index(env, false))) {
194 env->exception.fsr = 0x21;
195 } else {
196 env->exception.fsr = 0x1;
199 if (is_write == 1 && arm_feature(env, ARM_FEATURE_V6)) {
200 env->exception.fsr |= (1 << 11);
203 syn = merge_syn_data_abort(env->exception.syndrome, target_el,
204 same_el, 0, is_write, 0x21);
205 raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
208 #endif /* !defined(CONFIG_USER_ONLY) */
210 uint32_t HELPER(add_setq)(CPUARMState *env, uint32_t a, uint32_t b)
212 uint32_t res = a + b;
213 if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT))
214 env->QF = 1;
215 return res;
218 uint32_t HELPER(add_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
220 uint32_t res = a + b;
221 if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) {
222 env->QF = 1;
223 res = ~(((int32_t)a >> 31) ^ SIGNBIT);
225 return res;
228 uint32_t HELPER(sub_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
230 uint32_t res = a - b;
231 if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) {
232 env->QF = 1;
233 res = ~(((int32_t)a >> 31) ^ SIGNBIT);
235 return res;
238 uint32_t HELPER(double_saturate)(CPUARMState *env, int32_t val)
240 uint32_t res;
241 if (val >= 0x40000000) {
242 res = ~SIGNBIT;
243 env->QF = 1;
244 } else if (val <= (int32_t)0xc0000000) {
245 res = SIGNBIT;
246 env->QF = 1;
247 } else {
248 res = val << 1;
250 return res;
253 uint32_t HELPER(add_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
255 uint32_t res = a + b;
256 if (res < a) {
257 env->QF = 1;
258 res = ~0;
260 return res;
263 uint32_t HELPER(sub_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
265 uint32_t res = a - b;
266 if (res > a) {
267 env->QF = 1;
268 res = 0;
270 return res;
273 /* Signed saturation. */
274 static inline uint32_t do_ssat(CPUARMState *env, int32_t val, int shift)
276 int32_t top;
277 uint32_t mask;
279 top = val >> shift;
280 mask = (1u << shift) - 1;
281 if (top > 0) {
282 env->QF = 1;
283 return mask;
284 } else if (top < -1) {
285 env->QF = 1;
286 return ~mask;
288 return val;
291 /* Unsigned saturation. */
292 static inline uint32_t do_usat(CPUARMState *env, int32_t val, int shift)
294 uint32_t max;
296 max = (1u << shift) - 1;
297 if (val < 0) {
298 env->QF = 1;
299 return 0;
300 } else if (val > max) {
301 env->QF = 1;
302 return max;
304 return val;
307 /* Signed saturate. */
308 uint32_t HELPER(ssat)(CPUARMState *env, uint32_t x, uint32_t shift)
310 return do_ssat(env, x, shift);
313 /* Dual halfword signed saturate. */
314 uint32_t HELPER(ssat16)(CPUARMState *env, uint32_t x, uint32_t shift)
316 uint32_t res;
318 res = (uint16_t)do_ssat(env, (int16_t)x, shift);
319 res |= do_ssat(env, ((int32_t)x) >> 16, shift) << 16;
320 return res;
323 /* Unsigned saturate. */
324 uint32_t HELPER(usat)(CPUARMState *env, uint32_t x, uint32_t shift)
326 return do_usat(env, x, shift);
329 /* Dual halfword unsigned saturate. */
330 uint32_t HELPER(usat16)(CPUARMState *env, uint32_t x, uint32_t shift)
332 uint32_t res;
334 res = (uint16_t)do_usat(env, (int16_t)x, shift);
335 res |= do_usat(env, ((int32_t)x) >> 16, shift) << 16;
336 return res;
339 void HELPER(setend)(CPUARMState *env)
341 env->uncached_cpsr ^= CPSR_E;
344 /* Function checks whether WFx (WFI/WFE) instructions are set up to be trapped.
345 * The function returns the target EL (1-3) if the instruction is to be trapped;
346 * otherwise it returns 0 indicating it is not trapped.
348 static inline int check_wfx_trap(CPUARMState *env, bool is_wfe)
350 int cur_el = arm_current_el(env);
351 uint64_t mask;
353 /* If we are currently in EL0 then we need to check if SCTLR is set up for
354 * WFx instructions being trapped to EL1. These trap bits don't exist in v7.
356 if (cur_el < 1 && arm_feature(env, ARM_FEATURE_V8)) {
357 int target_el;
359 mask = is_wfe ? SCTLR_nTWE : SCTLR_nTWI;
360 if (arm_is_secure_below_el3(env) && !arm_el_is_aa64(env, 3)) {
361 /* Secure EL0 and Secure PL1 is at EL3 */
362 target_el = 3;
363 } else {
364 target_el = 1;
367 if (!(env->cp15.sctlr_el[target_el] & mask)) {
368 return target_el;
372 /* We are not trapping to EL1; trap to EL2 if HCR_EL2 requires it
373 * No need for ARM_FEATURE check as if HCR_EL2 doesn't exist the
374 * bits will be zero indicating no trap.
376 if (cur_el < 2 && !arm_is_secure(env)) {
377 mask = (is_wfe) ? HCR_TWE : HCR_TWI;
378 if (env->cp15.hcr_el2 & mask) {
379 return 2;
383 /* We are not trapping to EL1 or EL2; trap to EL3 if SCR_EL3 requires it */
384 if (cur_el < 3) {
385 mask = (is_wfe) ? SCR_TWE : SCR_TWI;
386 if (env->cp15.scr_el3 & mask) {
387 return 3;
391 return 0;
394 void HELPER(wfi)(CPUARMState *env)
396 CPUState *cs = CPU(arm_env_get_cpu(env));
397 int target_el = check_wfx_trap(env, false);
399 if (cpu_has_work(cs)) {
400 /* Don't bother to go into our "low power state" if
401 * we would just wake up immediately.
403 return;
406 if (target_el) {
407 env->pc -= 4;
408 raise_exception(env, EXCP_UDEF, syn_wfx(1, 0xe, 0), target_el);
411 cs->exception_index = EXCP_HLT;
412 cs->halted = 1;
413 cpu_loop_exit(cs);
416 void HELPER(wfe)(CPUARMState *env)
418 /* This is a hint instruction that is semantically different
419 * from YIELD even though we currently implement it identically.
420 * Don't actually halt the CPU, just yield back to top
421 * level loop. This is not going into a "low power state"
422 * (ie halting until some event occurs), so we never take
423 * a configurable trap to a different exception level.
425 HELPER(yield)(env);
428 void HELPER(yield)(CPUARMState *env)
430 ARMCPU *cpu = arm_env_get_cpu(env);
431 CPUState *cs = CPU(cpu);
433 /* This is a non-trappable hint instruction that generally indicates
434 * that the guest is currently busy-looping. Yield control back to the
435 * top level loop so that a more deserving VCPU has a chance to run.
437 cs->exception_index = EXCP_YIELD;
438 cpu_loop_exit(cs);
441 /* Raise an internal-to-QEMU exception. This is limited to only
442 * those EXCP values which are special cases for QEMU to interrupt
443 * execution and not to be used for exceptions which are passed to
444 * the guest (those must all have syndrome information and thus should
445 * use exception_with_syndrome).
447 void HELPER(exception_internal)(CPUARMState *env, uint32_t excp)
449 CPUState *cs = CPU(arm_env_get_cpu(env));
451 assert(excp_is_internal(excp));
452 cs->exception_index = excp;
453 cpu_loop_exit(cs);
456 /* Raise an exception with the specified syndrome register value */
457 void HELPER(exception_with_syndrome)(CPUARMState *env, uint32_t excp,
458 uint32_t syndrome, uint32_t target_el)
460 raise_exception(env, excp, syndrome, target_el);
463 uint32_t HELPER(cpsr_read)(CPUARMState *env)
465 return cpsr_read(env) & ~(CPSR_EXEC | CPSR_RESERVED);
468 void HELPER(cpsr_write)(CPUARMState *env, uint32_t val, uint32_t mask)
470 cpsr_write(env, val, mask, CPSRWriteByInstr);
473 /* Write the CPSR for a 32-bit exception return */
474 void HELPER(cpsr_write_eret)(CPUARMState *env, uint32_t val)
476 cpsr_write(env, val, CPSR_ERET_MASK, CPSRWriteExceptionReturn);
479 /* Access to user mode registers from privileged modes. */
480 uint32_t HELPER(get_user_reg)(CPUARMState *env, uint32_t regno)
482 uint32_t val;
484 if (regno == 13) {
485 val = env->banked_r13[BANK_USRSYS];
486 } else if (regno == 14) {
487 val = env->banked_r14[BANK_USRSYS];
488 } else if (regno >= 8
489 && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
490 val = env->usr_regs[regno - 8];
491 } else {
492 val = env->regs[regno];
494 return val;
497 void HELPER(set_user_reg)(CPUARMState *env, uint32_t regno, uint32_t val)
499 if (regno == 13) {
500 env->banked_r13[BANK_USRSYS] = val;
501 } else if (regno == 14) {
502 env->banked_r14[BANK_USRSYS] = val;
503 } else if (regno >= 8
504 && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
505 env->usr_regs[regno - 8] = val;
506 } else {
507 env->regs[regno] = val;
511 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
513 if ((env->uncached_cpsr & CPSR_M) == mode) {
514 env->regs[13] = val;
515 } else {
516 env->banked_r13[bank_number(mode)] = val;
520 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
522 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_SYS) {
523 /* SRS instruction is UNPREDICTABLE from System mode; we UNDEF.
524 * Other UNPREDICTABLE and UNDEF cases were caught at translate time.
526 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
527 exception_target_el(env));
530 if ((env->uncached_cpsr & CPSR_M) == mode) {
531 return env->regs[13];
532 } else {
533 return env->banked_r13[bank_number(mode)];
537 static void msr_mrs_banked_exc_checks(CPUARMState *env, uint32_t tgtmode,
538 uint32_t regno)
540 /* Raise an exception if the requested access is one of the UNPREDICTABLE
541 * cases; otherwise return. This broadly corresponds to the pseudocode
542 * BankedRegisterAccessValid() and SPSRAccessValid(),
543 * except that we have already handled some cases at translate time.
545 int curmode = env->uncached_cpsr & CPSR_M;
547 if (curmode == tgtmode) {
548 goto undef;
551 if (tgtmode == ARM_CPU_MODE_USR) {
552 switch (regno) {
553 case 8 ... 12:
554 if (curmode != ARM_CPU_MODE_FIQ) {
555 goto undef;
557 break;
558 case 13:
559 if (curmode == ARM_CPU_MODE_SYS) {
560 goto undef;
562 break;
563 case 14:
564 if (curmode == ARM_CPU_MODE_HYP || curmode == ARM_CPU_MODE_SYS) {
565 goto undef;
567 break;
568 default:
569 break;
573 if (tgtmode == ARM_CPU_MODE_HYP) {
574 switch (regno) {
575 case 17: /* ELR_Hyp */
576 if (curmode != ARM_CPU_MODE_HYP && curmode != ARM_CPU_MODE_MON) {
577 goto undef;
579 break;
580 default:
581 if (curmode != ARM_CPU_MODE_MON) {
582 goto undef;
584 break;
588 return;
590 undef:
591 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
592 exception_target_el(env));
595 void HELPER(msr_banked)(CPUARMState *env, uint32_t value, uint32_t tgtmode,
596 uint32_t regno)
598 msr_mrs_banked_exc_checks(env, tgtmode, regno);
600 switch (regno) {
601 case 16: /* SPSRs */
602 env->banked_spsr[bank_number(tgtmode)] = value;
603 break;
604 case 17: /* ELR_Hyp */
605 env->elr_el[2] = value;
606 break;
607 case 13:
608 env->banked_r13[bank_number(tgtmode)] = value;
609 break;
610 case 14:
611 env->banked_r14[bank_number(tgtmode)] = value;
612 break;
613 case 8 ... 12:
614 switch (tgtmode) {
615 case ARM_CPU_MODE_USR:
616 env->usr_regs[regno - 8] = value;
617 break;
618 case ARM_CPU_MODE_FIQ:
619 env->fiq_regs[regno - 8] = value;
620 break;
621 default:
622 g_assert_not_reached();
624 break;
625 default:
626 g_assert_not_reached();
630 uint32_t HELPER(mrs_banked)(CPUARMState *env, uint32_t tgtmode, uint32_t regno)
632 msr_mrs_banked_exc_checks(env, tgtmode, regno);
634 switch (regno) {
635 case 16: /* SPSRs */
636 return env->banked_spsr[bank_number(tgtmode)];
637 case 17: /* ELR_Hyp */
638 return env->elr_el[2];
639 case 13:
640 return env->banked_r13[bank_number(tgtmode)];
641 case 14:
642 return env->banked_r14[bank_number(tgtmode)];
643 case 8 ... 12:
644 switch (tgtmode) {
645 case ARM_CPU_MODE_USR:
646 return env->usr_regs[regno - 8];
647 case ARM_CPU_MODE_FIQ:
648 return env->fiq_regs[regno - 8];
649 default:
650 g_assert_not_reached();
652 default:
653 g_assert_not_reached();
657 void HELPER(access_check_cp_reg)(CPUARMState *env, void *rip, uint32_t syndrome,
658 uint32_t isread)
660 const ARMCPRegInfo *ri = rip;
661 int target_el;
663 if (arm_feature(env, ARM_FEATURE_XSCALE) && ri->cp < 14
664 && extract32(env->cp15.c15_cpar, ri->cp, 1) == 0) {
665 raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env));
668 if (!ri->accessfn) {
669 return;
672 switch (ri->accessfn(env, ri, isread)) {
673 case CP_ACCESS_OK:
674 return;
675 case CP_ACCESS_TRAP:
676 target_el = exception_target_el(env);
677 break;
678 case CP_ACCESS_TRAP_EL2:
679 /* Requesting a trap to EL2 when we're in EL3 or S-EL0/1 is
680 * a bug in the access function.
682 assert(!arm_is_secure(env) && arm_current_el(env) != 3);
683 target_el = 2;
684 break;
685 case CP_ACCESS_TRAP_EL3:
686 target_el = 3;
687 break;
688 case CP_ACCESS_TRAP_UNCATEGORIZED:
689 target_el = exception_target_el(env);
690 syndrome = syn_uncategorized();
691 break;
692 case CP_ACCESS_TRAP_UNCATEGORIZED_EL2:
693 target_el = 2;
694 syndrome = syn_uncategorized();
695 break;
696 case CP_ACCESS_TRAP_UNCATEGORIZED_EL3:
697 target_el = 3;
698 syndrome = syn_uncategorized();
699 break;
700 case CP_ACCESS_TRAP_FP_EL2:
701 target_el = 2;
702 /* Since we are an implementation that takes exceptions on a trapped
703 * conditional insn only if the insn has passed its condition code
704 * check, we take the IMPDEF choice to always report CV=1 COND=0xe
705 * (which is also the required value for AArch64 traps).
707 syndrome = syn_fp_access_trap(1, 0xe, false);
708 break;
709 case CP_ACCESS_TRAP_FP_EL3:
710 target_el = 3;
711 syndrome = syn_fp_access_trap(1, 0xe, false);
712 break;
713 default:
714 g_assert_not_reached();
717 raise_exception(env, EXCP_UDEF, syndrome, target_el);
720 void HELPER(set_cp_reg)(CPUARMState *env, void *rip, uint32_t value)
722 const ARMCPRegInfo *ri = rip;
724 ri->writefn(env, ri, value);
727 uint32_t HELPER(get_cp_reg)(CPUARMState *env, void *rip)
729 const ARMCPRegInfo *ri = rip;
731 return ri->readfn(env, ri);
734 void HELPER(set_cp_reg64)(CPUARMState *env, void *rip, uint64_t value)
736 const ARMCPRegInfo *ri = rip;
738 ri->writefn(env, ri, value);
741 uint64_t HELPER(get_cp_reg64)(CPUARMState *env, void *rip)
743 const ARMCPRegInfo *ri = rip;
745 return ri->readfn(env, ri);
748 void HELPER(msr_i_pstate)(CPUARMState *env, uint32_t op, uint32_t imm)
750 /* MSR_i to update PSTATE. This is OK from EL0 only if UMA is set.
751 * Note that SPSel is never OK from EL0; we rely on handle_msr_i()
752 * to catch that case at translate time.
754 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
755 uint32_t syndrome = syn_aa64_sysregtrap(0, extract32(op, 0, 3),
756 extract32(op, 3, 3), 4,
757 imm, 0x1f, 0);
758 raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env));
761 switch (op) {
762 case 0x05: /* SPSel */
763 update_spsel(env, imm);
764 break;
765 case 0x1e: /* DAIFSet */
766 env->daif |= (imm << 6) & PSTATE_DAIF;
767 break;
768 case 0x1f: /* DAIFClear */
769 env->daif &= ~((imm << 6) & PSTATE_DAIF);
770 break;
771 default:
772 g_assert_not_reached();
776 void HELPER(clear_pstate_ss)(CPUARMState *env)
778 env->pstate &= ~PSTATE_SS;
781 void HELPER(pre_hvc)(CPUARMState *env)
783 ARMCPU *cpu = arm_env_get_cpu(env);
784 int cur_el = arm_current_el(env);
785 /* FIXME: Use actual secure state. */
786 bool secure = false;
787 bool undef;
789 if (arm_is_psci_call(cpu, EXCP_HVC)) {
790 /* If PSCI is enabled and this looks like a valid PSCI call then
791 * that overrides the architecturally mandated HVC behaviour.
793 return;
796 if (!arm_feature(env, ARM_FEATURE_EL2)) {
797 /* If EL2 doesn't exist, HVC always UNDEFs */
798 undef = true;
799 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
800 /* EL3.HCE has priority over EL2.HCD. */
801 undef = !(env->cp15.scr_el3 & SCR_HCE);
802 } else {
803 undef = env->cp15.hcr_el2 & HCR_HCD;
806 /* In ARMv7 and ARMv8/AArch32, HVC is undef in secure state.
807 * For ARMv8/AArch64, HVC is allowed in EL3.
808 * Note that we've already trapped HVC from EL0 at translation
809 * time.
811 if (secure && (!is_a64(env) || cur_el == 1)) {
812 undef = true;
815 if (undef) {
816 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
817 exception_target_el(env));
821 void HELPER(pre_smc)(CPUARMState *env, uint32_t syndrome)
823 ARMCPU *cpu = arm_env_get_cpu(env);
824 int cur_el = arm_current_el(env);
825 bool secure = arm_is_secure(env);
826 bool smd = env->cp15.scr_el3 & SCR_SMD;
827 /* On ARMv8 with EL3 AArch64, SMD applies to both S and NS state.
828 * On ARMv8 with EL3 AArch32, or ARMv7 with the Virtualization
829 * extensions, SMD only applies to NS state.
830 * On ARMv7 without the Virtualization extensions, the SMD bit
831 * doesn't exist, but we forbid the guest to set it to 1 in scr_write(),
832 * so we need not special case this here.
834 bool undef = arm_feature(env, ARM_FEATURE_AARCH64) ? smd : smd && !secure;
836 if (arm_is_psci_call(cpu, EXCP_SMC)) {
837 /* If PSCI is enabled and this looks like a valid PSCI call then
838 * that overrides the architecturally mandated SMC behaviour.
840 return;
843 if (!arm_feature(env, ARM_FEATURE_EL3)) {
844 /* If we have no EL3 then SMC always UNDEFs */
845 undef = true;
846 } else if (!secure && cur_el == 1 && (env->cp15.hcr_el2 & HCR_TSC)) {
847 /* In NS EL1, HCR controlled routing to EL2 has priority over SMD. */
848 raise_exception(env, EXCP_HYP_TRAP, syndrome, 2);
851 if (undef) {
852 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
853 exception_target_el(env));
857 static int el_from_spsr(uint32_t spsr)
859 /* Return the exception level that this SPSR is requesting a return to,
860 * or -1 if it is invalid (an illegal return)
862 if (spsr & PSTATE_nRW) {
863 switch (spsr & CPSR_M) {
864 case ARM_CPU_MODE_USR:
865 return 0;
866 case ARM_CPU_MODE_HYP:
867 return 2;
868 case ARM_CPU_MODE_FIQ:
869 case ARM_CPU_MODE_IRQ:
870 case ARM_CPU_MODE_SVC:
871 case ARM_CPU_MODE_ABT:
872 case ARM_CPU_MODE_UND:
873 case ARM_CPU_MODE_SYS:
874 return 1;
875 case ARM_CPU_MODE_MON:
876 /* Returning to Mon from AArch64 is never possible,
877 * so this is an illegal return.
879 default:
880 return -1;
882 } else {
883 if (extract32(spsr, 1, 1)) {
884 /* Return with reserved M[1] bit set */
885 return -1;
887 if (extract32(spsr, 0, 4) == 1) {
888 /* return to EL0 with M[0] bit set */
889 return -1;
891 return extract32(spsr, 2, 2);
895 void HELPER(exception_return)(CPUARMState *env)
897 int cur_el = arm_current_el(env);
898 unsigned int spsr_idx = aarch64_banked_spsr_index(cur_el);
899 uint32_t spsr = env->banked_spsr[spsr_idx];
900 int new_el;
901 bool return_to_aa64 = (spsr & PSTATE_nRW) == 0;
903 aarch64_save_sp(env, cur_el);
905 env->exclusive_addr = -1;
907 /* We must squash the PSTATE.SS bit to zero unless both of the
908 * following hold:
909 * 1. debug exceptions are currently disabled
910 * 2. singlestep will be active in the EL we return to
911 * We check 1 here and 2 after we've done the pstate/cpsr write() to
912 * transition to the EL we're going to.
914 if (arm_generate_debug_exceptions(env)) {
915 spsr &= ~PSTATE_SS;
918 new_el = el_from_spsr(spsr);
919 if (new_el == -1) {
920 goto illegal_return;
922 if (new_el > cur_el
923 || (new_el == 2 && !arm_feature(env, ARM_FEATURE_EL2))) {
924 /* Disallow return to an EL which is unimplemented or higher
925 * than the current one.
927 goto illegal_return;
930 if (new_el != 0 && arm_el_is_aa64(env, new_el) != return_to_aa64) {
931 /* Return to an EL which is configured for a different register width */
932 goto illegal_return;
935 if (new_el == 2 && arm_is_secure_below_el3(env)) {
936 /* Return to the non-existent secure-EL2 */
937 goto illegal_return;
940 if (new_el == 1 && (env->cp15.hcr_el2 & HCR_TGE)
941 && !arm_is_secure_below_el3(env)) {
942 goto illegal_return;
945 if (!return_to_aa64) {
946 env->aarch64 = 0;
947 /* We do a raw CPSR write because aarch64_sync_64_to_32()
948 * will sort the register banks out for us, and we've already
949 * caught all the bad-mode cases in el_from_spsr().
951 cpsr_write(env, spsr, ~0, CPSRWriteRaw);
952 if (!arm_singlestep_active(env)) {
953 env->uncached_cpsr &= ~PSTATE_SS;
955 aarch64_sync_64_to_32(env);
957 if (spsr & CPSR_T) {
958 env->regs[15] = env->elr_el[cur_el] & ~0x1;
959 } else {
960 env->regs[15] = env->elr_el[cur_el] & ~0x3;
962 } else {
963 env->aarch64 = 1;
964 pstate_write(env, spsr);
965 if (!arm_singlestep_active(env)) {
966 env->pstate &= ~PSTATE_SS;
968 aarch64_restore_sp(env, new_el);
969 env->pc = env->elr_el[cur_el];
972 return;
974 illegal_return:
975 /* Illegal return events of various kinds have architecturally
976 * mandated behaviour:
977 * restore NZCV and DAIF from SPSR_ELx
978 * set PSTATE.IL
979 * restore PC from ELR_ELx
980 * no change to exception level, execution state or stack pointer
982 env->pstate |= PSTATE_IL;
983 env->pc = env->elr_el[cur_el];
984 spsr &= PSTATE_NZCV | PSTATE_DAIF;
985 spsr |= pstate_read(env) & ~(PSTATE_NZCV | PSTATE_DAIF);
986 pstate_write(env, spsr);
987 if (!arm_singlestep_active(env)) {
988 env->pstate &= ~PSTATE_SS;
992 /* Return true if the linked breakpoint entry lbn passes its checks */
993 static bool linked_bp_matches(ARMCPU *cpu, int lbn)
995 CPUARMState *env = &cpu->env;
996 uint64_t bcr = env->cp15.dbgbcr[lbn];
997 int brps = extract32(cpu->dbgdidr, 24, 4);
998 int ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
999 int bt;
1000 uint32_t contextidr;
1002 /* Links to unimplemented or non-context aware breakpoints are
1003 * CONSTRAINED UNPREDICTABLE: either behave as if disabled, or
1004 * as if linked to an UNKNOWN context-aware breakpoint (in which
1005 * case DBGWCR<n>_EL1.LBN must indicate that breakpoint).
1006 * We choose the former.
1008 if (lbn > brps || lbn < (brps - ctx_cmps)) {
1009 return false;
1012 bcr = env->cp15.dbgbcr[lbn];
1014 if (extract64(bcr, 0, 1) == 0) {
1015 /* Linked breakpoint disabled : generate no events */
1016 return false;
1019 bt = extract64(bcr, 20, 4);
1021 /* We match the whole register even if this is AArch32 using the
1022 * short descriptor format (in which case it holds both PROCID and ASID),
1023 * since we don't implement the optional v7 context ID masking.
1025 contextidr = extract64(env->cp15.contextidr_el[1], 0, 32);
1027 switch (bt) {
1028 case 3: /* linked context ID match */
1029 if (arm_current_el(env) > 1) {
1030 /* Context matches never fire in EL2 or (AArch64) EL3 */
1031 return false;
1033 return (contextidr == extract64(env->cp15.dbgbvr[lbn], 0, 32));
1034 case 5: /* linked address mismatch (reserved in AArch64) */
1035 case 9: /* linked VMID match (reserved if no EL2) */
1036 case 11: /* linked context ID and VMID match (reserved if no EL2) */
1037 default:
1038 /* Links to Unlinked context breakpoints must generate no
1039 * events; we choose to do the same for reserved values too.
1041 return false;
1044 return false;
1047 static bool bp_wp_matches(ARMCPU *cpu, int n, bool is_wp)
1049 CPUARMState *env = &cpu->env;
1050 uint64_t cr;
1051 int pac, hmc, ssc, wt, lbn;
1052 /* Note that for watchpoints the check is against the CPU security
1053 * state, not the S/NS attribute on the offending data access.
1055 bool is_secure = arm_is_secure(env);
1056 int access_el = arm_current_el(env);
1058 if (is_wp) {
1059 CPUWatchpoint *wp = env->cpu_watchpoint[n];
1061 if (!wp || !(wp->flags & BP_WATCHPOINT_HIT)) {
1062 return false;
1064 cr = env->cp15.dbgwcr[n];
1065 if (wp->hitattrs.user) {
1066 /* The LDRT/STRT/LDT/STT "unprivileged access" instructions should
1067 * match watchpoints as if they were accesses done at EL0, even if
1068 * the CPU is at EL1 or higher.
1070 access_el = 0;
1072 } else {
1073 uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
1075 if (!env->cpu_breakpoint[n] || env->cpu_breakpoint[n]->pc != pc) {
1076 return false;
1078 cr = env->cp15.dbgbcr[n];
1080 /* The WATCHPOINT_HIT flag guarantees us that the watchpoint is
1081 * enabled and that the address and access type match; for breakpoints
1082 * we know the address matched; check the remaining fields, including
1083 * linked breakpoints. We rely on WCR and BCR having the same layout
1084 * for the LBN, SSC, HMC, PAC/PMC and is-linked fields.
1085 * Note that some combinations of {PAC, HMC, SSC} are reserved and
1086 * must act either like some valid combination or as if the watchpoint
1087 * were disabled. We choose the former, and use this together with
1088 * the fact that EL3 must always be Secure and EL2 must always be
1089 * Non-Secure to simplify the code slightly compared to the full
1090 * table in the ARM ARM.
1092 pac = extract64(cr, 1, 2);
1093 hmc = extract64(cr, 13, 1);
1094 ssc = extract64(cr, 14, 2);
1096 switch (ssc) {
1097 case 0:
1098 break;
1099 case 1:
1100 case 3:
1101 if (is_secure) {
1102 return false;
1104 break;
1105 case 2:
1106 if (!is_secure) {
1107 return false;
1109 break;
1112 switch (access_el) {
1113 case 3:
1114 case 2:
1115 if (!hmc) {
1116 return false;
1118 break;
1119 case 1:
1120 if (extract32(pac, 0, 1) == 0) {
1121 return false;
1123 break;
1124 case 0:
1125 if (extract32(pac, 1, 1) == 0) {
1126 return false;
1128 break;
1129 default:
1130 g_assert_not_reached();
1133 wt = extract64(cr, 20, 1);
1134 lbn = extract64(cr, 16, 4);
1136 if (wt && !linked_bp_matches(cpu, lbn)) {
1137 return false;
1140 return true;
1143 static bool check_watchpoints(ARMCPU *cpu)
1145 CPUARMState *env = &cpu->env;
1146 int n;
1148 /* If watchpoints are disabled globally or we can't take debug
1149 * exceptions here then watchpoint firings are ignored.
1151 if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
1152 || !arm_generate_debug_exceptions(env)) {
1153 return false;
1156 for (n = 0; n < ARRAY_SIZE(env->cpu_watchpoint); n++) {
1157 if (bp_wp_matches(cpu, n, true)) {
1158 return true;
1161 return false;
1164 static bool check_breakpoints(ARMCPU *cpu)
1166 CPUARMState *env = &cpu->env;
1167 int n;
1169 /* If breakpoints are disabled globally or we can't take debug
1170 * exceptions here then breakpoint firings are ignored.
1172 if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
1173 || !arm_generate_debug_exceptions(env)) {
1174 return false;
1177 for (n = 0; n < ARRAY_SIZE(env->cpu_breakpoint); n++) {
1178 if (bp_wp_matches(cpu, n, false)) {
1179 return true;
1182 return false;
1185 void HELPER(check_breakpoints)(CPUARMState *env)
1187 ARMCPU *cpu = arm_env_get_cpu(env);
1189 if (check_breakpoints(cpu)) {
1190 HELPER(exception_internal(env, EXCP_DEBUG));
1194 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp)
1196 /* Called by core code when a CPU watchpoint fires; need to check if this
1197 * is also an architectural watchpoint match.
1199 ARMCPU *cpu = ARM_CPU(cs);
1201 return check_watchpoints(cpu);
1204 void arm_debug_excp_handler(CPUState *cs)
1206 /* Called by core code when a watchpoint or breakpoint fires;
1207 * need to check which one and raise the appropriate exception.
1209 ARMCPU *cpu = ARM_CPU(cs);
1210 CPUARMState *env = &cpu->env;
1211 CPUWatchpoint *wp_hit = cs->watchpoint_hit;
1213 if (wp_hit) {
1214 if (wp_hit->flags & BP_CPU) {
1215 bool wnr = (wp_hit->flags & BP_WATCHPOINT_HIT_WRITE) != 0;
1216 bool same_el = arm_debug_target_el(env) == arm_current_el(env);
1218 cs->watchpoint_hit = NULL;
1220 if (extended_addresses_enabled(env)) {
1221 env->exception.fsr = (1 << 9) | 0x22;
1222 } else {
1223 env->exception.fsr = 0x2;
1225 env->exception.vaddress = wp_hit->hitaddr;
1226 raise_exception(env, EXCP_DATA_ABORT,
1227 syn_watchpoint(same_el, 0, wnr),
1228 arm_debug_target_el(env));
1230 } else {
1231 uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
1232 bool same_el = (arm_debug_target_el(env) == arm_current_el(env));
1234 /* (1) GDB breakpoints should be handled first.
1235 * (2) Do not raise a CPU exception if no CPU breakpoint has fired,
1236 * since singlestep is also done by generating a debug internal
1237 * exception.
1239 if (cpu_breakpoint_test(cs, pc, BP_GDB)
1240 || !cpu_breakpoint_test(cs, pc, BP_CPU)) {
1241 return;
1244 if (extended_addresses_enabled(env)) {
1245 env->exception.fsr = (1 << 9) | 0x22;
1246 } else {
1247 env->exception.fsr = 0x2;
1249 /* FAR is UNKNOWN, so doesn't need setting */
1250 raise_exception(env, EXCP_PREFETCH_ABORT,
1251 syn_breakpoint(same_el),
1252 arm_debug_target_el(env));
1256 /* ??? Flag setting arithmetic is awkward because we need to do comparisons.
1257 The only way to do that in TCG is a conditional branch, which clobbers
1258 all our temporaries. For now implement these as helper functions. */
1260 /* Similarly for variable shift instructions. */
1262 uint32_t HELPER(shl_cc)(CPUARMState *env, uint32_t x, uint32_t i)
1264 int shift = i & 0xff;
1265 if (shift >= 32) {
1266 if (shift == 32)
1267 env->CF = x & 1;
1268 else
1269 env->CF = 0;
1270 return 0;
1271 } else if (shift != 0) {
1272 env->CF = (x >> (32 - shift)) & 1;
1273 return x << shift;
1275 return x;
1278 uint32_t HELPER(shr_cc)(CPUARMState *env, uint32_t x, uint32_t i)
1280 int shift = i & 0xff;
1281 if (shift >= 32) {
1282 if (shift == 32)
1283 env->CF = (x >> 31) & 1;
1284 else
1285 env->CF = 0;
1286 return 0;
1287 } else if (shift != 0) {
1288 env->CF = (x >> (shift - 1)) & 1;
1289 return x >> shift;
1291 return x;
1294 uint32_t HELPER(sar_cc)(CPUARMState *env, uint32_t x, uint32_t i)
1296 int shift = i & 0xff;
1297 if (shift >= 32) {
1298 env->CF = (x >> 31) & 1;
1299 return (int32_t)x >> 31;
1300 } else if (shift != 0) {
1301 env->CF = (x >> (shift - 1)) & 1;
1302 return (int32_t)x >> shift;
1304 return x;
1307 uint32_t HELPER(ror_cc)(CPUARMState *env, uint32_t x, uint32_t i)
1309 int shift1, shift;
1310 shift1 = i & 0xff;
1311 shift = shift1 & 0x1f;
1312 if (shift == 0) {
1313 if (shift1 != 0)
1314 env->CF = (x >> 31) & 1;
1315 return x;
1316 } else {
1317 env->CF = (x >> (shift - 1)) & 1;
1318 return ((uint32_t)x >> shift) | (x << (32 - shift));