test-qht: test qht_iter_remove
[qemu/ar7.git] / linux-user / elfload.c
blobe97c4cde49347dac90d821935386a19916b4cf2e
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
5 #include <sys/resource.h>
7 #include "qemu.h"
8 #include "disas/disas.h"
9 #include "qemu/path.h"
11 #ifdef _ARCH_PPC64
12 #undef ARCH_DLINFO
13 #undef ELF_PLATFORM
14 #undef ELF_HWCAP
15 #undef ELF_HWCAP2
16 #undef ELF_CLASS
17 #undef ELF_DATA
18 #undef ELF_ARCH
19 #endif
21 #define ELF_OSABI ELFOSABI_SYSV
23 /* from personality.h */
26 * Flags for bug emulation.
28 * These occupy the top three bytes.
30 enum {
31 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
32 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
33 descriptors (signal handling) */
34 MMAP_PAGE_ZERO = 0x0100000,
35 ADDR_COMPAT_LAYOUT = 0x0200000,
36 READ_IMPLIES_EXEC = 0x0400000,
37 ADDR_LIMIT_32BIT = 0x0800000,
38 SHORT_INODE = 0x1000000,
39 WHOLE_SECONDS = 0x2000000,
40 STICKY_TIMEOUTS = 0x4000000,
41 ADDR_LIMIT_3GB = 0x8000000,
45 * Personality types.
47 * These go in the low byte. Avoid using the top bit, it will
48 * conflict with error returns.
50 enum {
51 PER_LINUX = 0x0000,
52 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
53 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
54 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
55 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
56 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
57 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
58 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
59 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
60 PER_BSD = 0x0006,
61 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
62 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
63 PER_LINUX32 = 0x0008,
64 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
65 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
66 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
67 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
68 PER_RISCOS = 0x000c,
69 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
70 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
71 PER_OSF4 = 0x000f, /* OSF/1 v4 */
72 PER_HPUX = 0x0010,
73 PER_MASK = 0x00ff,
77 * Return the base personality without flags.
79 #define personality(pers) (pers & PER_MASK)
81 int info_is_fdpic(struct image_info *info)
83 return info->personality == PER_LINUX_FDPIC;
86 /* this flag is uneffective under linux too, should be deleted */
87 #ifndef MAP_DENYWRITE
88 #define MAP_DENYWRITE 0
89 #endif
91 /* should probably go in elf.h */
92 #ifndef ELIBBAD
93 #define ELIBBAD 80
94 #endif
96 #ifdef TARGET_WORDS_BIGENDIAN
97 #define ELF_DATA ELFDATA2MSB
98 #else
99 #define ELF_DATA ELFDATA2LSB
100 #endif
102 #ifdef TARGET_ABI_MIPSN32
103 typedef abi_ullong target_elf_greg_t;
104 #define tswapreg(ptr) tswap64(ptr)
105 #else
106 typedef abi_ulong target_elf_greg_t;
107 #define tswapreg(ptr) tswapal(ptr)
108 #endif
110 #ifdef USE_UID16
111 typedef abi_ushort target_uid_t;
112 typedef abi_ushort target_gid_t;
113 #else
114 typedef abi_uint target_uid_t;
115 typedef abi_uint target_gid_t;
116 #endif
117 typedef abi_int target_pid_t;
119 #ifdef TARGET_I386
121 #define ELF_PLATFORM get_elf_platform()
123 static const char *get_elf_platform(void)
125 static char elf_platform[] = "i386";
126 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
127 if (family > 6)
128 family = 6;
129 if (family >= 3)
130 elf_platform[1] = '0' + family;
131 return elf_platform;
134 #define ELF_HWCAP get_elf_hwcap()
136 static uint32_t get_elf_hwcap(void)
138 X86CPU *cpu = X86_CPU(thread_cpu);
140 return cpu->env.features[FEAT_1_EDX];
143 #ifdef TARGET_X86_64
144 #define ELF_START_MMAP 0x2aaaaab000ULL
146 #define ELF_CLASS ELFCLASS64
147 #define ELF_ARCH EM_X86_64
149 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
151 regs->rax = 0;
152 regs->rsp = infop->start_stack;
153 regs->rip = infop->entry;
156 #define ELF_NREG 27
157 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
160 * Note that ELF_NREG should be 29 as there should be place for
161 * TRAPNO and ERR "registers" as well but linux doesn't dump
162 * those.
164 * See linux kernel: arch/x86/include/asm/elf.h
166 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
168 (*regs)[0] = env->regs[15];
169 (*regs)[1] = env->regs[14];
170 (*regs)[2] = env->regs[13];
171 (*regs)[3] = env->regs[12];
172 (*regs)[4] = env->regs[R_EBP];
173 (*regs)[5] = env->regs[R_EBX];
174 (*regs)[6] = env->regs[11];
175 (*regs)[7] = env->regs[10];
176 (*regs)[8] = env->regs[9];
177 (*regs)[9] = env->regs[8];
178 (*regs)[10] = env->regs[R_EAX];
179 (*regs)[11] = env->regs[R_ECX];
180 (*regs)[12] = env->regs[R_EDX];
181 (*regs)[13] = env->regs[R_ESI];
182 (*regs)[14] = env->regs[R_EDI];
183 (*regs)[15] = env->regs[R_EAX]; /* XXX */
184 (*regs)[16] = env->eip;
185 (*regs)[17] = env->segs[R_CS].selector & 0xffff;
186 (*regs)[18] = env->eflags;
187 (*regs)[19] = env->regs[R_ESP];
188 (*regs)[20] = env->segs[R_SS].selector & 0xffff;
189 (*regs)[21] = env->segs[R_FS].selector & 0xffff;
190 (*regs)[22] = env->segs[R_GS].selector & 0xffff;
191 (*regs)[23] = env->segs[R_DS].selector & 0xffff;
192 (*regs)[24] = env->segs[R_ES].selector & 0xffff;
193 (*regs)[25] = env->segs[R_FS].selector & 0xffff;
194 (*regs)[26] = env->segs[R_GS].selector & 0xffff;
197 #else
199 #define ELF_START_MMAP 0x80000000
202 * This is used to ensure we don't load something for the wrong architecture.
204 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
207 * These are used to set parameters in the core dumps.
209 #define ELF_CLASS ELFCLASS32
210 #define ELF_ARCH EM_386
212 static inline void init_thread(struct target_pt_regs *regs,
213 struct image_info *infop)
215 regs->esp = infop->start_stack;
216 regs->eip = infop->entry;
218 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
219 starts %edx contains a pointer to a function which might be
220 registered using `atexit'. This provides a mean for the
221 dynamic linker to call DT_FINI functions for shared libraries
222 that have been loaded before the code runs.
224 A value of 0 tells we have no such handler. */
225 regs->edx = 0;
228 #define ELF_NREG 17
229 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
232 * Note that ELF_NREG should be 19 as there should be place for
233 * TRAPNO and ERR "registers" as well but linux doesn't dump
234 * those.
236 * See linux kernel: arch/x86/include/asm/elf.h
238 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
240 (*regs)[0] = env->regs[R_EBX];
241 (*regs)[1] = env->regs[R_ECX];
242 (*regs)[2] = env->regs[R_EDX];
243 (*regs)[3] = env->regs[R_ESI];
244 (*regs)[4] = env->regs[R_EDI];
245 (*regs)[5] = env->regs[R_EBP];
246 (*regs)[6] = env->regs[R_EAX];
247 (*regs)[7] = env->segs[R_DS].selector & 0xffff;
248 (*regs)[8] = env->segs[R_ES].selector & 0xffff;
249 (*regs)[9] = env->segs[R_FS].selector & 0xffff;
250 (*regs)[10] = env->segs[R_GS].selector & 0xffff;
251 (*regs)[11] = env->regs[R_EAX]; /* XXX */
252 (*regs)[12] = env->eip;
253 (*regs)[13] = env->segs[R_CS].selector & 0xffff;
254 (*regs)[14] = env->eflags;
255 (*regs)[15] = env->regs[R_ESP];
256 (*regs)[16] = env->segs[R_SS].selector & 0xffff;
258 #endif
260 #define USE_ELF_CORE_DUMP
261 #define ELF_EXEC_PAGESIZE 4096
263 #endif
265 #ifdef TARGET_ARM
267 #ifndef TARGET_AARCH64
268 /* 32 bit ARM definitions */
270 #define ELF_START_MMAP 0x80000000
272 #define ELF_ARCH EM_ARM
273 #define ELF_CLASS ELFCLASS32
275 static inline void init_thread(struct target_pt_regs *regs,
276 struct image_info *infop)
278 abi_long stack = infop->start_stack;
279 memset(regs, 0, sizeof(*regs));
281 regs->uregs[16] = ARM_CPU_MODE_USR;
282 if (infop->entry & 1) {
283 regs->uregs[16] |= CPSR_T;
285 regs->uregs[15] = infop->entry & 0xfffffffe;
286 regs->uregs[13] = infop->start_stack;
287 /* FIXME - what to for failure of get_user()? */
288 get_user_ual(regs->uregs[2], stack + 8); /* envp */
289 get_user_ual(regs->uregs[1], stack + 4); /* envp */
290 /* XXX: it seems that r0 is zeroed after ! */
291 regs->uregs[0] = 0;
292 /* For uClinux PIC binaries. */
293 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
294 regs->uregs[10] = infop->start_data;
296 /* Support ARM FDPIC. */
297 if (info_is_fdpic(infop)) {
298 /* As described in the ABI document, r7 points to the loadmap info
299 * prepared by the kernel. If an interpreter is needed, r8 points
300 * to the interpreter loadmap and r9 points to the interpreter
301 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
302 * r9 points to the main program PT_DYNAMIC info.
304 regs->uregs[7] = infop->loadmap_addr;
305 if (infop->interpreter_loadmap_addr) {
306 /* Executable is dynamically loaded. */
307 regs->uregs[8] = infop->interpreter_loadmap_addr;
308 regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
309 } else {
310 regs->uregs[8] = 0;
311 regs->uregs[9] = infop->pt_dynamic_addr;
316 #define ELF_NREG 18
317 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
319 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
321 (*regs)[0] = tswapreg(env->regs[0]);
322 (*regs)[1] = tswapreg(env->regs[1]);
323 (*regs)[2] = tswapreg(env->regs[2]);
324 (*regs)[3] = tswapreg(env->regs[3]);
325 (*regs)[4] = tswapreg(env->regs[4]);
326 (*regs)[5] = tswapreg(env->regs[5]);
327 (*regs)[6] = tswapreg(env->regs[6]);
328 (*regs)[7] = tswapreg(env->regs[7]);
329 (*regs)[8] = tswapreg(env->regs[8]);
330 (*regs)[9] = tswapreg(env->regs[9]);
331 (*regs)[10] = tswapreg(env->regs[10]);
332 (*regs)[11] = tswapreg(env->regs[11]);
333 (*regs)[12] = tswapreg(env->regs[12]);
334 (*regs)[13] = tswapreg(env->regs[13]);
335 (*regs)[14] = tswapreg(env->regs[14]);
336 (*regs)[15] = tswapreg(env->regs[15]);
338 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
339 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
342 #define USE_ELF_CORE_DUMP
343 #define ELF_EXEC_PAGESIZE 4096
345 enum
347 ARM_HWCAP_ARM_SWP = 1 << 0,
348 ARM_HWCAP_ARM_HALF = 1 << 1,
349 ARM_HWCAP_ARM_THUMB = 1 << 2,
350 ARM_HWCAP_ARM_26BIT = 1 << 3,
351 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
352 ARM_HWCAP_ARM_FPA = 1 << 5,
353 ARM_HWCAP_ARM_VFP = 1 << 6,
354 ARM_HWCAP_ARM_EDSP = 1 << 7,
355 ARM_HWCAP_ARM_JAVA = 1 << 8,
356 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
357 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
358 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
359 ARM_HWCAP_ARM_NEON = 1 << 12,
360 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
361 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
362 ARM_HWCAP_ARM_TLS = 1 << 15,
363 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
364 ARM_HWCAP_ARM_IDIVA = 1 << 17,
365 ARM_HWCAP_ARM_IDIVT = 1 << 18,
366 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
367 ARM_HWCAP_ARM_LPAE = 1 << 20,
368 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
371 enum {
372 ARM_HWCAP2_ARM_AES = 1 << 0,
373 ARM_HWCAP2_ARM_PMULL = 1 << 1,
374 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
375 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
376 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
379 /* The commpage only exists for 32 bit kernels */
381 /* Return 1 if the proposed guest space is suitable for the guest.
382 * Return 0 if the proposed guest space isn't suitable, but another
383 * address space should be tried.
384 * Return -1 if there is no way the proposed guest space can be
385 * valid regardless of the base.
386 * The guest code may leave a page mapped and populate it if the
387 * address is suitable.
389 static int init_guest_commpage(unsigned long guest_base,
390 unsigned long guest_size)
392 unsigned long real_start, test_page_addr;
394 /* We need to check that we can force a fault on access to the
395 * commpage at 0xffff0fxx
397 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
399 /* If the commpage lies within the already allocated guest space,
400 * then there is no way we can allocate it.
402 * You may be thinking that that this check is redundant because
403 * we already validated the guest size against MAX_RESERVED_VA;
404 * but if qemu_host_page_mask is unusually large, then
405 * test_page_addr may be lower.
407 if (test_page_addr >= guest_base
408 && test_page_addr < (guest_base + guest_size)) {
409 return -1;
412 /* Note it needs to be writeable to let us initialise it */
413 real_start = (unsigned long)
414 mmap((void *)test_page_addr, qemu_host_page_size,
415 PROT_READ | PROT_WRITE,
416 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
418 /* If we can't map it then try another address */
419 if (real_start == -1ul) {
420 return 0;
423 if (real_start != test_page_addr) {
424 /* OS didn't put the page where we asked - unmap and reject */
425 munmap((void *)real_start, qemu_host_page_size);
426 return 0;
429 /* Leave the page mapped
430 * Populate it (mmap should have left it all 0'd)
433 /* Kernel helper versions */
434 __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
436 /* Now it's populated make it RO */
437 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
438 perror("Protecting guest commpage");
439 exit(-1);
442 return 1; /* All good */
445 #define ELF_HWCAP get_elf_hwcap()
446 #define ELF_HWCAP2 get_elf_hwcap2()
448 static uint32_t get_elf_hwcap(void)
450 ARMCPU *cpu = ARM_CPU(thread_cpu);
451 uint32_t hwcaps = 0;
453 hwcaps |= ARM_HWCAP_ARM_SWP;
454 hwcaps |= ARM_HWCAP_ARM_HALF;
455 hwcaps |= ARM_HWCAP_ARM_THUMB;
456 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
458 /* probe for the extra features */
459 #define GET_FEATURE(feat, hwcap) \
460 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
461 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
462 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
463 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
464 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
465 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
466 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
467 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
468 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
469 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
470 GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA);
471 GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT);
472 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
473 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
474 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
475 * to our VFP_FP16 feature bit.
477 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
478 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
480 return hwcaps;
483 static uint32_t get_elf_hwcap2(void)
485 ARMCPU *cpu = ARM_CPU(thread_cpu);
486 uint32_t hwcaps = 0;
488 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES);
489 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL);
490 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1);
491 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2);
492 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32);
493 return hwcaps;
496 #undef GET_FEATURE
498 #else
499 /* 64 bit ARM definitions */
500 #define ELF_START_MMAP 0x80000000
502 #define ELF_ARCH EM_AARCH64
503 #define ELF_CLASS ELFCLASS64
504 #define ELF_PLATFORM "aarch64"
506 static inline void init_thread(struct target_pt_regs *regs,
507 struct image_info *infop)
509 abi_long stack = infop->start_stack;
510 memset(regs, 0, sizeof(*regs));
512 regs->pc = infop->entry & ~0x3ULL;
513 regs->sp = stack;
516 #define ELF_NREG 34
517 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
519 static void elf_core_copy_regs(target_elf_gregset_t *regs,
520 const CPUARMState *env)
522 int i;
524 for (i = 0; i < 32; i++) {
525 (*regs)[i] = tswapreg(env->xregs[i]);
527 (*regs)[32] = tswapreg(env->pc);
528 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
531 #define USE_ELF_CORE_DUMP
532 #define ELF_EXEC_PAGESIZE 4096
534 enum {
535 ARM_HWCAP_A64_FP = 1 << 0,
536 ARM_HWCAP_A64_ASIMD = 1 << 1,
537 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
538 ARM_HWCAP_A64_AES = 1 << 3,
539 ARM_HWCAP_A64_PMULL = 1 << 4,
540 ARM_HWCAP_A64_SHA1 = 1 << 5,
541 ARM_HWCAP_A64_SHA2 = 1 << 6,
542 ARM_HWCAP_A64_CRC32 = 1 << 7,
543 ARM_HWCAP_A64_ATOMICS = 1 << 8,
544 ARM_HWCAP_A64_FPHP = 1 << 9,
545 ARM_HWCAP_A64_ASIMDHP = 1 << 10,
546 ARM_HWCAP_A64_CPUID = 1 << 11,
547 ARM_HWCAP_A64_ASIMDRDM = 1 << 12,
548 ARM_HWCAP_A64_JSCVT = 1 << 13,
549 ARM_HWCAP_A64_FCMA = 1 << 14,
550 ARM_HWCAP_A64_LRCPC = 1 << 15,
551 ARM_HWCAP_A64_DCPOP = 1 << 16,
552 ARM_HWCAP_A64_SHA3 = 1 << 17,
553 ARM_HWCAP_A64_SM3 = 1 << 18,
554 ARM_HWCAP_A64_SM4 = 1 << 19,
555 ARM_HWCAP_A64_ASIMDDP = 1 << 20,
556 ARM_HWCAP_A64_SHA512 = 1 << 21,
557 ARM_HWCAP_A64_SVE = 1 << 22,
560 #define ELF_HWCAP get_elf_hwcap()
562 static uint32_t get_elf_hwcap(void)
564 ARMCPU *cpu = ARM_CPU(thread_cpu);
565 uint32_t hwcaps = 0;
567 hwcaps |= ARM_HWCAP_A64_FP;
568 hwcaps |= ARM_HWCAP_A64_ASIMD;
570 /* probe for the extra features */
571 #define GET_FEATURE(feat, hwcap) \
572 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
573 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES);
574 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL);
575 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1);
576 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2);
577 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32);
578 GET_FEATURE(ARM_FEATURE_V8_SHA3, ARM_HWCAP_A64_SHA3);
579 GET_FEATURE(ARM_FEATURE_V8_SM3, ARM_HWCAP_A64_SM3);
580 GET_FEATURE(ARM_FEATURE_V8_SM4, ARM_HWCAP_A64_SM4);
581 GET_FEATURE(ARM_FEATURE_V8_SHA512, ARM_HWCAP_A64_SHA512);
582 GET_FEATURE(ARM_FEATURE_V8_FP16,
583 ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
584 GET_FEATURE(ARM_FEATURE_V8_ATOMICS, ARM_HWCAP_A64_ATOMICS);
585 GET_FEATURE(ARM_FEATURE_V8_RDM, ARM_HWCAP_A64_ASIMDRDM);
586 GET_FEATURE(ARM_FEATURE_V8_DOTPROD, ARM_HWCAP_A64_ASIMDDP);
587 GET_FEATURE(ARM_FEATURE_V8_FCMA, ARM_HWCAP_A64_FCMA);
588 GET_FEATURE(ARM_FEATURE_SVE, ARM_HWCAP_A64_SVE);
589 #undef GET_FEATURE
591 return hwcaps;
594 #endif /* not TARGET_AARCH64 */
595 #endif /* TARGET_ARM */
597 #ifdef TARGET_SPARC
598 #ifdef TARGET_SPARC64
600 #define ELF_START_MMAP 0x80000000
601 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
602 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
603 #ifndef TARGET_ABI32
604 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
605 #else
606 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
607 #endif
609 #define ELF_CLASS ELFCLASS64
610 #define ELF_ARCH EM_SPARCV9
612 #define STACK_BIAS 2047
614 static inline void init_thread(struct target_pt_regs *regs,
615 struct image_info *infop)
617 #ifndef TARGET_ABI32
618 regs->tstate = 0;
619 #endif
620 regs->pc = infop->entry;
621 regs->npc = regs->pc + 4;
622 regs->y = 0;
623 #ifdef TARGET_ABI32
624 regs->u_regs[14] = infop->start_stack - 16 * 4;
625 #else
626 if (personality(infop->personality) == PER_LINUX32)
627 regs->u_regs[14] = infop->start_stack - 16 * 4;
628 else
629 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
630 #endif
633 #else
634 #define ELF_START_MMAP 0x80000000
635 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
636 | HWCAP_SPARC_MULDIV)
638 #define ELF_CLASS ELFCLASS32
639 #define ELF_ARCH EM_SPARC
641 static inline void init_thread(struct target_pt_regs *regs,
642 struct image_info *infop)
644 regs->psr = 0;
645 regs->pc = infop->entry;
646 regs->npc = regs->pc + 4;
647 regs->y = 0;
648 regs->u_regs[14] = infop->start_stack - 16 * 4;
651 #endif
652 #endif
654 #ifdef TARGET_PPC
656 #define ELF_MACHINE PPC_ELF_MACHINE
657 #define ELF_START_MMAP 0x80000000
659 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
661 #define elf_check_arch(x) ( (x) == EM_PPC64 )
663 #define ELF_CLASS ELFCLASS64
665 #else
667 #define ELF_CLASS ELFCLASS32
669 #endif
671 #define ELF_ARCH EM_PPC
673 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
674 See arch/powerpc/include/asm/cputable.h. */
675 enum {
676 QEMU_PPC_FEATURE_32 = 0x80000000,
677 QEMU_PPC_FEATURE_64 = 0x40000000,
678 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
679 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
680 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
681 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
682 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
683 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
684 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
685 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
686 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
687 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
688 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
689 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
690 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
691 QEMU_PPC_FEATURE_CELL = 0x00010000,
692 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
693 QEMU_PPC_FEATURE_SMT = 0x00004000,
694 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
695 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
696 QEMU_PPC_FEATURE_PA6T = 0x00000800,
697 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
698 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
699 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
700 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
701 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
703 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
704 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
706 /* Feature definitions in AT_HWCAP2. */
707 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
708 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
709 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
710 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
711 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
712 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
713 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
716 #define ELF_HWCAP get_elf_hwcap()
718 static uint32_t get_elf_hwcap(void)
720 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
721 uint32_t features = 0;
723 /* We don't have to be terribly complete here; the high points are
724 Altivec/FP/SPE support. Anything else is just a bonus. */
725 #define GET_FEATURE(flag, feature) \
726 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
727 #define GET_FEATURE2(flags, feature) \
728 do { \
729 if ((cpu->env.insns_flags2 & flags) == flags) { \
730 features |= feature; \
732 } while (0)
733 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
734 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
735 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
736 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
737 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
738 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
739 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
740 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
741 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
742 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
743 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
744 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
745 QEMU_PPC_FEATURE_ARCH_2_06);
746 #undef GET_FEATURE
747 #undef GET_FEATURE2
749 return features;
752 #define ELF_HWCAP2 get_elf_hwcap2()
754 static uint32_t get_elf_hwcap2(void)
756 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
757 uint32_t features = 0;
759 #define GET_FEATURE(flag, feature) \
760 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
761 #define GET_FEATURE2(flag, feature) \
762 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
764 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
765 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
766 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
767 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07);
768 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00);
770 #undef GET_FEATURE
771 #undef GET_FEATURE2
773 return features;
777 * The requirements here are:
778 * - keep the final alignment of sp (sp & 0xf)
779 * - make sure the 32-bit value at the first 16 byte aligned position of
780 * AUXV is greater than 16 for glibc compatibility.
781 * AT_IGNOREPPC is used for that.
782 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
783 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
785 #define DLINFO_ARCH_ITEMS 5
786 #define ARCH_DLINFO \
787 do { \
788 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
789 /* \
790 * Handle glibc compatibility: these magic entries must \
791 * be at the lowest addresses in the final auxv. \
792 */ \
793 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
794 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
795 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
796 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
797 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
798 } while (0)
800 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
802 _regs->gpr[1] = infop->start_stack;
803 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
804 if (get_ppc64_abi(infop) < 2) {
805 uint64_t val;
806 get_user_u64(val, infop->entry + 8);
807 _regs->gpr[2] = val + infop->load_bias;
808 get_user_u64(val, infop->entry);
809 infop->entry = val + infop->load_bias;
810 } else {
811 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
813 #endif
814 _regs->nip = infop->entry;
817 /* See linux kernel: arch/powerpc/include/asm/elf.h. */
818 #define ELF_NREG 48
819 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
821 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
823 int i;
824 target_ulong ccr = 0;
826 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
827 (*regs)[i] = tswapreg(env->gpr[i]);
830 (*regs)[32] = tswapreg(env->nip);
831 (*regs)[33] = tswapreg(env->msr);
832 (*regs)[35] = tswapreg(env->ctr);
833 (*regs)[36] = tswapreg(env->lr);
834 (*regs)[37] = tswapreg(env->xer);
836 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
837 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
839 (*regs)[38] = tswapreg(ccr);
842 #define USE_ELF_CORE_DUMP
843 #define ELF_EXEC_PAGESIZE 4096
845 #endif
847 #ifdef TARGET_MIPS
849 #define ELF_START_MMAP 0x80000000
851 #ifdef TARGET_MIPS64
852 #define ELF_CLASS ELFCLASS64
853 #else
854 #define ELF_CLASS ELFCLASS32
855 #endif
856 #define ELF_ARCH EM_MIPS
858 #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS)
860 static inline void init_thread(struct target_pt_regs *regs,
861 struct image_info *infop)
863 regs->cp0_status = 2 << CP0St_KSU;
864 regs->cp0_epc = infop->entry;
865 regs->regs[29] = infop->start_stack;
868 /* See linux kernel: arch/mips/include/asm/elf.h. */
869 #define ELF_NREG 45
870 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
872 /* See linux kernel: arch/mips/include/asm/reg.h. */
873 enum {
874 #ifdef TARGET_MIPS64
875 TARGET_EF_R0 = 0,
876 #else
877 TARGET_EF_R0 = 6,
878 #endif
879 TARGET_EF_R26 = TARGET_EF_R0 + 26,
880 TARGET_EF_R27 = TARGET_EF_R0 + 27,
881 TARGET_EF_LO = TARGET_EF_R0 + 32,
882 TARGET_EF_HI = TARGET_EF_R0 + 33,
883 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
884 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
885 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
886 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
889 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
890 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
892 int i;
894 for (i = 0; i < TARGET_EF_R0; i++) {
895 (*regs)[i] = 0;
897 (*regs)[TARGET_EF_R0] = 0;
899 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
900 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
903 (*regs)[TARGET_EF_R26] = 0;
904 (*regs)[TARGET_EF_R27] = 0;
905 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
906 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
907 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
908 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
909 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
910 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
913 #define USE_ELF_CORE_DUMP
914 #define ELF_EXEC_PAGESIZE 4096
916 /* See arch/mips/include/uapi/asm/hwcap.h. */
917 enum {
918 HWCAP_MIPS_R6 = (1 << 0),
919 HWCAP_MIPS_MSA = (1 << 1),
922 #define ELF_HWCAP get_elf_hwcap()
924 static uint32_t get_elf_hwcap(void)
926 MIPSCPU *cpu = MIPS_CPU(thread_cpu);
927 uint32_t hwcaps = 0;
929 #define GET_FEATURE(flag, hwcap) \
930 do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0)
932 GET_FEATURE(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6);
933 GET_FEATURE(ASE_MSA, HWCAP_MIPS_MSA);
935 #undef GET_FEATURE
937 return hwcaps;
940 #endif /* TARGET_MIPS */
942 #ifdef TARGET_MICROBLAZE
944 #define ELF_START_MMAP 0x80000000
946 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
948 #define ELF_CLASS ELFCLASS32
949 #define ELF_ARCH EM_MICROBLAZE
951 static inline void init_thread(struct target_pt_regs *regs,
952 struct image_info *infop)
954 regs->pc = infop->entry;
955 regs->r1 = infop->start_stack;
959 #define ELF_EXEC_PAGESIZE 4096
961 #define USE_ELF_CORE_DUMP
962 #define ELF_NREG 38
963 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
965 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
966 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
968 int i, pos = 0;
970 for (i = 0; i < 32; i++) {
971 (*regs)[pos++] = tswapreg(env->regs[i]);
974 for (i = 0; i < 6; i++) {
975 (*regs)[pos++] = tswapreg(env->sregs[i]);
979 #endif /* TARGET_MICROBLAZE */
981 #ifdef TARGET_NIOS2
983 #define ELF_START_MMAP 0x80000000
985 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
987 #define ELF_CLASS ELFCLASS32
988 #define ELF_ARCH EM_ALTERA_NIOS2
990 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
992 regs->ea = infop->entry;
993 regs->sp = infop->start_stack;
994 regs->estatus = 0x3;
997 #define ELF_EXEC_PAGESIZE 4096
999 #define USE_ELF_CORE_DUMP
1000 #define ELF_NREG 49
1001 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1003 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1004 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1005 const CPUNios2State *env)
1007 int i;
1009 (*regs)[0] = -1;
1010 for (i = 1; i < 8; i++) /* r0-r7 */
1011 (*regs)[i] = tswapreg(env->regs[i + 7]);
1013 for (i = 8; i < 16; i++) /* r8-r15 */
1014 (*regs)[i] = tswapreg(env->regs[i - 8]);
1016 for (i = 16; i < 24; i++) /* r16-r23 */
1017 (*regs)[i] = tswapreg(env->regs[i + 7]);
1018 (*regs)[24] = -1; /* R_ET */
1019 (*regs)[25] = -1; /* R_BT */
1020 (*regs)[26] = tswapreg(env->regs[R_GP]);
1021 (*regs)[27] = tswapreg(env->regs[R_SP]);
1022 (*regs)[28] = tswapreg(env->regs[R_FP]);
1023 (*regs)[29] = tswapreg(env->regs[R_EA]);
1024 (*regs)[30] = -1; /* R_SSTATUS */
1025 (*regs)[31] = tswapreg(env->regs[R_RA]);
1027 (*regs)[32] = tswapreg(env->regs[R_PC]);
1029 (*regs)[33] = -1; /* R_STATUS */
1030 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1032 for (i = 35; i < 49; i++) /* ... */
1033 (*regs)[i] = -1;
1036 #endif /* TARGET_NIOS2 */
1038 #ifdef TARGET_OPENRISC
1040 #define ELF_START_MMAP 0x08000000
1042 #define ELF_ARCH EM_OPENRISC
1043 #define ELF_CLASS ELFCLASS32
1044 #define ELF_DATA ELFDATA2MSB
1046 static inline void init_thread(struct target_pt_regs *regs,
1047 struct image_info *infop)
1049 regs->pc = infop->entry;
1050 regs->gpr[1] = infop->start_stack;
1053 #define USE_ELF_CORE_DUMP
1054 #define ELF_EXEC_PAGESIZE 8192
1056 /* See linux kernel arch/openrisc/include/asm/elf.h. */
1057 #define ELF_NREG 34 /* gprs and pc, sr */
1058 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1060 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1061 const CPUOpenRISCState *env)
1063 int i;
1065 for (i = 0; i < 32; i++) {
1066 (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1068 (*regs)[32] = tswapreg(env->pc);
1069 (*regs)[33] = tswapreg(cpu_get_sr(env));
1071 #define ELF_HWCAP 0
1072 #define ELF_PLATFORM NULL
1074 #endif /* TARGET_OPENRISC */
1076 #ifdef TARGET_SH4
1078 #define ELF_START_MMAP 0x80000000
1080 #define ELF_CLASS ELFCLASS32
1081 #define ELF_ARCH EM_SH
1083 static inline void init_thread(struct target_pt_regs *regs,
1084 struct image_info *infop)
1086 /* Check other registers XXXXX */
1087 regs->pc = infop->entry;
1088 regs->regs[15] = infop->start_stack;
1091 /* See linux kernel: arch/sh/include/asm/elf.h. */
1092 #define ELF_NREG 23
1093 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1095 /* See linux kernel: arch/sh/include/asm/ptrace.h. */
1096 enum {
1097 TARGET_REG_PC = 16,
1098 TARGET_REG_PR = 17,
1099 TARGET_REG_SR = 18,
1100 TARGET_REG_GBR = 19,
1101 TARGET_REG_MACH = 20,
1102 TARGET_REG_MACL = 21,
1103 TARGET_REG_SYSCALL = 22
1106 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1107 const CPUSH4State *env)
1109 int i;
1111 for (i = 0; i < 16; i++) {
1112 (*regs)[i] = tswapreg(env->gregs[i]);
1115 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1116 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1117 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1118 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1119 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1120 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1121 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1124 #define USE_ELF_CORE_DUMP
1125 #define ELF_EXEC_PAGESIZE 4096
1127 enum {
1128 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
1129 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
1130 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1131 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
1132 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
1133 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
1134 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
1135 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
1136 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
1137 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
1140 #define ELF_HWCAP get_elf_hwcap()
1142 static uint32_t get_elf_hwcap(void)
1144 SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1145 uint32_t hwcap = 0;
1147 hwcap |= SH_CPU_HAS_FPU;
1149 if (cpu->env.features & SH_FEATURE_SH4A) {
1150 hwcap |= SH_CPU_HAS_LLSC;
1153 return hwcap;
1156 #endif
1158 #ifdef TARGET_CRIS
1160 #define ELF_START_MMAP 0x80000000
1162 #define ELF_CLASS ELFCLASS32
1163 #define ELF_ARCH EM_CRIS
1165 static inline void init_thread(struct target_pt_regs *regs,
1166 struct image_info *infop)
1168 regs->erp = infop->entry;
1171 #define ELF_EXEC_PAGESIZE 8192
1173 #endif
1175 #ifdef TARGET_M68K
1177 #define ELF_START_MMAP 0x80000000
1179 #define ELF_CLASS ELFCLASS32
1180 #define ELF_ARCH EM_68K
1182 /* ??? Does this need to do anything?
1183 #define ELF_PLAT_INIT(_r) */
1185 static inline void init_thread(struct target_pt_regs *regs,
1186 struct image_info *infop)
1188 regs->usp = infop->start_stack;
1189 regs->sr = 0;
1190 regs->pc = infop->entry;
1193 /* See linux kernel: arch/m68k/include/asm/elf.h. */
1194 #define ELF_NREG 20
1195 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1197 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1199 (*regs)[0] = tswapreg(env->dregs[1]);
1200 (*regs)[1] = tswapreg(env->dregs[2]);
1201 (*regs)[2] = tswapreg(env->dregs[3]);
1202 (*regs)[3] = tswapreg(env->dregs[4]);
1203 (*regs)[4] = tswapreg(env->dregs[5]);
1204 (*regs)[5] = tswapreg(env->dregs[6]);
1205 (*regs)[6] = tswapreg(env->dregs[7]);
1206 (*regs)[7] = tswapreg(env->aregs[0]);
1207 (*regs)[8] = tswapreg(env->aregs[1]);
1208 (*regs)[9] = tswapreg(env->aregs[2]);
1209 (*regs)[10] = tswapreg(env->aregs[3]);
1210 (*regs)[11] = tswapreg(env->aregs[4]);
1211 (*regs)[12] = tswapreg(env->aregs[5]);
1212 (*regs)[13] = tswapreg(env->aregs[6]);
1213 (*regs)[14] = tswapreg(env->dregs[0]);
1214 (*regs)[15] = tswapreg(env->aregs[7]);
1215 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1216 (*regs)[17] = tswapreg(env->sr);
1217 (*regs)[18] = tswapreg(env->pc);
1218 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1221 #define USE_ELF_CORE_DUMP
1222 #define ELF_EXEC_PAGESIZE 8192
1224 #endif
1226 #ifdef TARGET_ALPHA
1228 #define ELF_START_MMAP (0x30000000000ULL)
1230 #define ELF_CLASS ELFCLASS64
1231 #define ELF_ARCH EM_ALPHA
1233 static inline void init_thread(struct target_pt_regs *regs,
1234 struct image_info *infop)
1236 regs->pc = infop->entry;
1237 regs->ps = 8;
1238 regs->usp = infop->start_stack;
1241 #define ELF_EXEC_PAGESIZE 8192
1243 #endif /* TARGET_ALPHA */
1245 #ifdef TARGET_S390X
1247 #define ELF_START_MMAP (0x20000000000ULL)
1249 #define ELF_CLASS ELFCLASS64
1250 #define ELF_DATA ELFDATA2MSB
1251 #define ELF_ARCH EM_S390
1253 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1255 regs->psw.addr = infop->entry;
1256 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1257 regs->gprs[15] = infop->start_stack;
1260 #endif /* TARGET_S390X */
1262 #ifdef TARGET_TILEGX
1264 /* 42 bits real used address, a half for user mode */
1265 #define ELF_START_MMAP (0x00000020000000000ULL)
1267 #define elf_check_arch(x) ((x) == EM_TILEGX)
1269 #define ELF_CLASS ELFCLASS64
1270 #define ELF_DATA ELFDATA2LSB
1271 #define ELF_ARCH EM_TILEGX
1273 static inline void init_thread(struct target_pt_regs *regs,
1274 struct image_info *infop)
1276 regs->pc = infop->entry;
1277 regs->sp = infop->start_stack;
1281 #define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */
1283 #endif /* TARGET_TILEGX */
1285 #ifdef TARGET_RISCV
1287 #define ELF_START_MMAP 0x80000000
1288 #define ELF_ARCH EM_RISCV
1290 #ifdef TARGET_RISCV32
1291 #define ELF_CLASS ELFCLASS32
1292 #else
1293 #define ELF_CLASS ELFCLASS64
1294 #endif
1296 static inline void init_thread(struct target_pt_regs *regs,
1297 struct image_info *infop)
1299 regs->sepc = infop->entry;
1300 regs->sp = infop->start_stack;
1303 #define ELF_EXEC_PAGESIZE 4096
1305 #endif /* TARGET_RISCV */
1307 #ifdef TARGET_HPPA
1309 #define ELF_START_MMAP 0x80000000
1310 #define ELF_CLASS ELFCLASS32
1311 #define ELF_ARCH EM_PARISC
1312 #define ELF_PLATFORM "PARISC"
1313 #define STACK_GROWS_DOWN 0
1314 #define STACK_ALIGNMENT 64
1316 static inline void init_thread(struct target_pt_regs *regs,
1317 struct image_info *infop)
1319 regs->iaoq[0] = infop->entry;
1320 regs->iaoq[1] = infop->entry + 4;
1321 regs->gr[23] = 0;
1322 regs->gr[24] = infop->arg_start;
1323 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1324 /* The top-of-stack contains a linkage buffer. */
1325 regs->gr[30] = infop->start_stack + 64;
1326 regs->gr[31] = infop->entry;
1329 #endif /* TARGET_HPPA */
1331 #ifdef TARGET_XTENSA
1333 #define ELF_START_MMAP 0x20000000
1335 #define ELF_CLASS ELFCLASS32
1336 #define ELF_ARCH EM_XTENSA
1338 static inline void init_thread(struct target_pt_regs *regs,
1339 struct image_info *infop)
1341 regs->windowbase = 0;
1342 regs->windowstart = 1;
1343 regs->areg[1] = infop->start_stack;
1344 regs->pc = infop->entry;
1347 /* See linux kernel: arch/xtensa/include/asm/elf.h. */
1348 #define ELF_NREG 128
1349 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1351 enum {
1352 TARGET_REG_PC,
1353 TARGET_REG_PS,
1354 TARGET_REG_LBEG,
1355 TARGET_REG_LEND,
1356 TARGET_REG_LCOUNT,
1357 TARGET_REG_SAR,
1358 TARGET_REG_WINDOWSTART,
1359 TARGET_REG_WINDOWBASE,
1360 TARGET_REG_THREADPTR,
1361 TARGET_REG_AR0 = 64,
1364 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1365 const CPUXtensaState *env)
1367 unsigned i;
1369 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1370 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1371 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1372 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1373 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1374 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1375 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1376 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1377 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1378 xtensa_sync_phys_from_window((CPUXtensaState *)env);
1379 for (i = 0; i < env->config->nareg; ++i) {
1380 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1384 #define USE_ELF_CORE_DUMP
1385 #define ELF_EXEC_PAGESIZE 4096
1387 #endif /* TARGET_XTENSA */
1389 #ifndef ELF_PLATFORM
1390 #define ELF_PLATFORM (NULL)
1391 #endif
1393 #ifndef ELF_MACHINE
1394 #define ELF_MACHINE ELF_ARCH
1395 #endif
1397 #ifndef elf_check_arch
1398 #define elf_check_arch(x) ((x) == ELF_ARCH)
1399 #endif
1401 #ifndef ELF_HWCAP
1402 #define ELF_HWCAP 0
1403 #endif
1405 #ifndef STACK_GROWS_DOWN
1406 #define STACK_GROWS_DOWN 1
1407 #endif
1409 #ifndef STACK_ALIGNMENT
1410 #define STACK_ALIGNMENT 16
1411 #endif
1413 #ifdef TARGET_ABI32
1414 #undef ELF_CLASS
1415 #define ELF_CLASS ELFCLASS32
1416 #undef bswaptls
1417 #define bswaptls(ptr) bswap32s(ptr)
1418 #endif
1420 #include "elf.h"
1422 struct exec
1424 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
1425 unsigned int a_text; /* length of text, in bytes */
1426 unsigned int a_data; /* length of data, in bytes */
1427 unsigned int a_bss; /* length of uninitialized data area, in bytes */
1428 unsigned int a_syms; /* length of symbol table data in file, in bytes */
1429 unsigned int a_entry; /* start address */
1430 unsigned int a_trsize; /* length of relocation info for text, in bytes */
1431 unsigned int a_drsize; /* length of relocation info for data, in bytes */
1435 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1436 #define OMAGIC 0407
1437 #define NMAGIC 0410
1438 #define ZMAGIC 0413
1439 #define QMAGIC 0314
1441 /* Necessary parameters */
1442 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
1443 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1444 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1445 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1447 #define DLINFO_ITEMS 15
1449 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1451 memcpy(to, from, n);
1454 #ifdef BSWAP_NEEDED
1455 static void bswap_ehdr(struct elfhdr *ehdr)
1457 bswap16s(&ehdr->e_type); /* Object file type */
1458 bswap16s(&ehdr->e_machine); /* Architecture */
1459 bswap32s(&ehdr->e_version); /* Object file version */
1460 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1461 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1462 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1463 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1464 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1465 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1466 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1467 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1468 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1469 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
1472 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1474 int i;
1475 for (i = 0; i < phnum; ++i, ++phdr) {
1476 bswap32s(&phdr->p_type); /* Segment type */
1477 bswap32s(&phdr->p_flags); /* Segment flags */
1478 bswaptls(&phdr->p_offset); /* Segment file offset */
1479 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
1480 bswaptls(&phdr->p_paddr); /* Segment physical address */
1481 bswaptls(&phdr->p_filesz); /* Segment size in file */
1482 bswaptls(&phdr->p_memsz); /* Segment size in memory */
1483 bswaptls(&phdr->p_align); /* Segment alignment */
1487 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1489 int i;
1490 for (i = 0; i < shnum; ++i, ++shdr) {
1491 bswap32s(&shdr->sh_name);
1492 bswap32s(&shdr->sh_type);
1493 bswaptls(&shdr->sh_flags);
1494 bswaptls(&shdr->sh_addr);
1495 bswaptls(&shdr->sh_offset);
1496 bswaptls(&shdr->sh_size);
1497 bswap32s(&shdr->sh_link);
1498 bswap32s(&shdr->sh_info);
1499 bswaptls(&shdr->sh_addralign);
1500 bswaptls(&shdr->sh_entsize);
1504 static void bswap_sym(struct elf_sym *sym)
1506 bswap32s(&sym->st_name);
1507 bswaptls(&sym->st_value);
1508 bswaptls(&sym->st_size);
1509 bswap16s(&sym->st_shndx);
1511 #else
1512 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1513 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1514 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1515 static inline void bswap_sym(struct elf_sym *sym) { }
1516 #endif
1518 #ifdef USE_ELF_CORE_DUMP
1519 static int elf_core_dump(int, const CPUArchState *);
1520 #endif /* USE_ELF_CORE_DUMP */
1521 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1523 /* Verify the portions of EHDR within E_IDENT for the target.
1524 This can be performed before bswapping the entire header. */
1525 static bool elf_check_ident(struct elfhdr *ehdr)
1527 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1528 && ehdr->e_ident[EI_MAG1] == ELFMAG1
1529 && ehdr->e_ident[EI_MAG2] == ELFMAG2
1530 && ehdr->e_ident[EI_MAG3] == ELFMAG3
1531 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1532 && ehdr->e_ident[EI_DATA] == ELF_DATA
1533 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1536 /* Verify the portions of EHDR outside of E_IDENT for the target.
1537 This has to wait until after bswapping the header. */
1538 static bool elf_check_ehdr(struct elfhdr *ehdr)
1540 return (elf_check_arch(ehdr->e_machine)
1541 && ehdr->e_ehsize == sizeof(struct elfhdr)
1542 && ehdr->e_phentsize == sizeof(struct elf_phdr)
1543 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1547 * 'copy_elf_strings()' copies argument/envelope strings from user
1548 * memory to free pages in kernel mem. These are in a format ready
1549 * to be put directly into the top of new user memory.
1552 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1553 abi_ulong p, abi_ulong stack_limit)
1555 char *tmp;
1556 int len, i;
1557 abi_ulong top = p;
1559 if (!p) {
1560 return 0; /* bullet-proofing */
1563 if (STACK_GROWS_DOWN) {
1564 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1565 for (i = argc - 1; i >= 0; --i) {
1566 tmp = argv[i];
1567 if (!tmp) {
1568 fprintf(stderr, "VFS: argc is wrong");
1569 exit(-1);
1571 len = strlen(tmp) + 1;
1572 tmp += len;
1574 if (len > (p - stack_limit)) {
1575 return 0;
1577 while (len) {
1578 int bytes_to_copy = (len > offset) ? offset : len;
1579 tmp -= bytes_to_copy;
1580 p -= bytes_to_copy;
1581 offset -= bytes_to_copy;
1582 len -= bytes_to_copy;
1584 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1586 if (offset == 0) {
1587 memcpy_to_target(p, scratch, top - p);
1588 top = p;
1589 offset = TARGET_PAGE_SIZE;
1593 if (p != top) {
1594 memcpy_to_target(p, scratch + offset, top - p);
1596 } else {
1597 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1598 for (i = 0; i < argc; ++i) {
1599 tmp = argv[i];
1600 if (!tmp) {
1601 fprintf(stderr, "VFS: argc is wrong");
1602 exit(-1);
1604 len = strlen(tmp) + 1;
1605 if (len > (stack_limit - p)) {
1606 return 0;
1608 while (len) {
1609 int bytes_to_copy = (len > remaining) ? remaining : len;
1611 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1613 tmp += bytes_to_copy;
1614 remaining -= bytes_to_copy;
1615 p += bytes_to_copy;
1616 len -= bytes_to_copy;
1618 if (remaining == 0) {
1619 memcpy_to_target(top, scratch, p - top);
1620 top = p;
1621 remaining = TARGET_PAGE_SIZE;
1625 if (p != top) {
1626 memcpy_to_target(top, scratch, p - top);
1630 return p;
1633 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1634 * argument/environment space. Newer kernels (>2.6.33) allow more,
1635 * dependent on stack size, but guarantee at least 32 pages for
1636 * backwards compatibility.
1638 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1640 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1641 struct image_info *info)
1643 abi_ulong size, error, guard;
1645 size = guest_stack_size;
1646 if (size < STACK_LOWER_LIMIT) {
1647 size = STACK_LOWER_LIMIT;
1649 guard = TARGET_PAGE_SIZE;
1650 if (guard < qemu_real_host_page_size) {
1651 guard = qemu_real_host_page_size;
1654 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1655 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1656 if (error == -1) {
1657 perror("mmap stack");
1658 exit(-1);
1661 /* We reserve one extra page at the top of the stack as guard. */
1662 if (STACK_GROWS_DOWN) {
1663 target_mprotect(error, guard, PROT_NONE);
1664 info->stack_limit = error + guard;
1665 return info->stack_limit + size - sizeof(void *);
1666 } else {
1667 target_mprotect(error + size, guard, PROT_NONE);
1668 info->stack_limit = error + size;
1669 return error;
1673 /* Map and zero the bss. We need to explicitly zero any fractional pages
1674 after the data section (i.e. bss). */
1675 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1677 uintptr_t host_start, host_map_start, host_end;
1679 last_bss = TARGET_PAGE_ALIGN(last_bss);
1681 /* ??? There is confusion between qemu_real_host_page_size and
1682 qemu_host_page_size here and elsewhere in target_mmap, which
1683 may lead to the end of the data section mapping from the file
1684 not being mapped. At least there was an explicit test and
1685 comment for that here, suggesting that "the file size must
1686 be known". The comment probably pre-dates the introduction
1687 of the fstat system call in target_mmap which does in fact
1688 find out the size. What isn't clear is if the workaround
1689 here is still actually needed. For now, continue with it,
1690 but merge it with the "normal" mmap that would allocate the bss. */
1692 host_start = (uintptr_t) g2h(elf_bss);
1693 host_end = (uintptr_t) g2h(last_bss);
1694 host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1696 if (host_map_start < host_end) {
1697 void *p = mmap((void *)host_map_start, host_end - host_map_start,
1698 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1699 if (p == MAP_FAILED) {
1700 perror("cannot mmap brk");
1701 exit(-1);
1705 /* Ensure that the bss page(s) are valid */
1706 if ((page_get_flags(last_bss-1) & prot) != prot) {
1707 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1710 if (host_start < host_map_start) {
1711 memset((void *)host_start, 0, host_map_start - host_start);
1715 #ifdef TARGET_ARM
1716 static int elf_is_fdpic(struct elfhdr *exec)
1718 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1720 #else
1721 /* Default implementation, always false. */
1722 static int elf_is_fdpic(struct elfhdr *exec)
1724 return 0;
1726 #endif
1728 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1730 uint16_t n;
1731 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1733 /* elf32_fdpic_loadseg */
1734 n = info->nsegs;
1735 while (n--) {
1736 sp -= 12;
1737 put_user_u32(loadsegs[n].addr, sp+0);
1738 put_user_u32(loadsegs[n].p_vaddr, sp+4);
1739 put_user_u32(loadsegs[n].p_memsz, sp+8);
1742 /* elf32_fdpic_loadmap */
1743 sp -= 4;
1744 put_user_u16(0, sp+0); /* version */
1745 put_user_u16(info->nsegs, sp+2); /* nsegs */
1747 info->personality = PER_LINUX_FDPIC;
1748 info->loadmap_addr = sp;
1750 return sp;
1753 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1754 struct elfhdr *exec,
1755 struct image_info *info,
1756 struct image_info *interp_info)
1758 abi_ulong sp;
1759 abi_ulong u_argc, u_argv, u_envp, u_auxv;
1760 int size;
1761 int i;
1762 abi_ulong u_rand_bytes;
1763 uint8_t k_rand_bytes[16];
1764 abi_ulong u_platform;
1765 const char *k_platform;
1766 const int n = sizeof(elf_addr_t);
1768 sp = p;
1770 /* Needs to be before we load the env/argc/... */
1771 if (elf_is_fdpic(exec)) {
1772 /* Need 4 byte alignment for these structs */
1773 sp &= ~3;
1774 sp = loader_build_fdpic_loadmap(info, sp);
1775 info->other_info = interp_info;
1776 if (interp_info) {
1777 interp_info->other_info = info;
1778 sp = loader_build_fdpic_loadmap(interp_info, sp);
1779 info->interpreter_loadmap_addr = interp_info->loadmap_addr;
1780 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
1781 } else {
1782 info->interpreter_loadmap_addr = 0;
1783 info->interpreter_pt_dynamic_addr = 0;
1787 u_platform = 0;
1788 k_platform = ELF_PLATFORM;
1789 if (k_platform) {
1790 size_t len = strlen(k_platform) + 1;
1791 if (STACK_GROWS_DOWN) {
1792 sp -= (len + n - 1) & ~(n - 1);
1793 u_platform = sp;
1794 /* FIXME - check return value of memcpy_to_target() for failure */
1795 memcpy_to_target(sp, k_platform, len);
1796 } else {
1797 memcpy_to_target(sp, k_platform, len);
1798 u_platform = sp;
1799 sp += len + 1;
1803 /* Provide 16 byte alignment for the PRNG, and basic alignment for
1804 * the argv and envp pointers.
1806 if (STACK_GROWS_DOWN) {
1807 sp = QEMU_ALIGN_DOWN(sp, 16);
1808 } else {
1809 sp = QEMU_ALIGN_UP(sp, 16);
1813 * Generate 16 random bytes for userspace PRNG seeding (not
1814 * cryptically secure but it's not the aim of QEMU).
1816 for (i = 0; i < 16; i++) {
1817 k_rand_bytes[i] = rand();
1819 if (STACK_GROWS_DOWN) {
1820 sp -= 16;
1821 u_rand_bytes = sp;
1822 /* FIXME - check return value of memcpy_to_target() for failure */
1823 memcpy_to_target(sp, k_rand_bytes, 16);
1824 } else {
1825 memcpy_to_target(sp, k_rand_bytes, 16);
1826 u_rand_bytes = sp;
1827 sp += 16;
1830 size = (DLINFO_ITEMS + 1) * 2;
1831 if (k_platform)
1832 size += 2;
1833 #ifdef DLINFO_ARCH_ITEMS
1834 size += DLINFO_ARCH_ITEMS * 2;
1835 #endif
1836 #ifdef ELF_HWCAP2
1837 size += 2;
1838 #endif
1839 info->auxv_len = size * n;
1841 size += envc + argc + 2;
1842 size += 1; /* argc itself */
1843 size *= n;
1845 /* Allocate space and finalize stack alignment for entry now. */
1846 if (STACK_GROWS_DOWN) {
1847 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
1848 sp = u_argc;
1849 } else {
1850 u_argc = sp;
1851 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
1854 u_argv = u_argc + n;
1855 u_envp = u_argv + (argc + 1) * n;
1856 u_auxv = u_envp + (envc + 1) * n;
1857 info->saved_auxv = u_auxv;
1858 info->arg_start = u_argv;
1859 info->arg_end = u_argv + argc * n;
1861 /* This is correct because Linux defines
1862 * elf_addr_t as Elf32_Off / Elf64_Off
1864 #define NEW_AUX_ENT(id, val) do { \
1865 put_user_ual(id, u_auxv); u_auxv += n; \
1866 put_user_ual(val, u_auxv); u_auxv += n; \
1867 } while(0)
1869 #ifdef ARCH_DLINFO
1871 * ARCH_DLINFO must come first so platform specific code can enforce
1872 * special alignment requirements on the AUXV if necessary (eg. PPC).
1874 ARCH_DLINFO;
1875 #endif
1876 /* There must be exactly DLINFO_ITEMS entries here, or the assert
1877 * on info->auxv_len will trigger.
1879 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
1880 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1881 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1882 if ((info->alignment & ~qemu_host_page_mask) != 0) {
1883 /* Target doesn't support host page size alignment */
1884 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
1885 } else {
1886 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
1887 qemu_host_page_size)));
1889 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
1890 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
1891 NEW_AUX_ENT(AT_ENTRY, info->entry);
1892 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1893 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1894 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1895 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1896 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1897 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
1898 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
1899 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
1901 #ifdef ELF_HWCAP2
1902 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
1903 #endif
1905 if (u_platform) {
1906 NEW_AUX_ENT(AT_PLATFORM, u_platform);
1908 NEW_AUX_ENT (AT_NULL, 0);
1909 #undef NEW_AUX_ENT
1911 /* Check that our initial calculation of the auxv length matches how much
1912 * we actually put into it.
1914 assert(info->auxv_len == u_auxv - info->saved_auxv);
1916 put_user_ual(argc, u_argc);
1918 p = info->arg_strings;
1919 for (i = 0; i < argc; ++i) {
1920 put_user_ual(p, u_argv);
1921 u_argv += n;
1922 p += target_strlen(p) + 1;
1924 put_user_ual(0, u_argv);
1926 p = info->env_strings;
1927 for (i = 0; i < envc; ++i) {
1928 put_user_ual(p, u_envp);
1929 u_envp += n;
1930 p += target_strlen(p) + 1;
1932 put_user_ual(0, u_envp);
1934 return sp;
1937 unsigned long init_guest_space(unsigned long host_start,
1938 unsigned long host_size,
1939 unsigned long guest_start,
1940 bool fixed)
1942 unsigned long current_start, aligned_start;
1943 int flags;
1945 assert(host_start || host_size);
1947 /* If just a starting address is given, then just verify that
1948 * address. */
1949 if (host_start && !host_size) {
1950 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
1951 if (init_guest_commpage(host_start, host_size) != 1) {
1952 return (unsigned long)-1;
1954 #endif
1955 return host_start;
1958 /* Setup the initial flags and start address. */
1959 current_start = host_start & qemu_host_page_mask;
1960 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
1961 if (fixed) {
1962 flags |= MAP_FIXED;
1965 /* Otherwise, a non-zero size region of memory needs to be mapped
1966 * and validated. */
1968 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
1969 /* On 32-bit ARM, we need to map not just the usable memory, but
1970 * also the commpage. Try to find a suitable place by allocating
1971 * a big chunk for all of it. If host_start, then the naive
1972 * strategy probably does good enough.
1974 if (!host_start) {
1975 unsigned long guest_full_size, host_full_size, real_start;
1977 guest_full_size =
1978 (0xffff0f00 & qemu_host_page_mask) + qemu_host_page_size;
1979 host_full_size = guest_full_size - guest_start;
1980 real_start = (unsigned long)
1981 mmap(NULL, host_full_size, PROT_NONE, flags, -1, 0);
1982 if (real_start == (unsigned long)-1) {
1983 if (host_size < host_full_size - qemu_host_page_size) {
1984 /* We failed to map a continous segment, but we're
1985 * allowed to have a gap between the usable memory and
1986 * the commpage where other things can be mapped.
1987 * This sparseness gives us more flexibility to find
1988 * an address range.
1990 goto naive;
1992 return (unsigned long)-1;
1994 munmap((void *)real_start, host_full_size);
1995 if (real_start & ~qemu_host_page_mask) {
1996 /* The same thing again, but with an extra qemu_host_page_size
1997 * so that we can shift around alignment.
1999 unsigned long real_size = host_full_size + qemu_host_page_size;
2000 real_start = (unsigned long)
2001 mmap(NULL, real_size, PROT_NONE, flags, -1, 0);
2002 if (real_start == (unsigned long)-1) {
2003 if (host_size < host_full_size - qemu_host_page_size) {
2004 goto naive;
2006 return (unsigned long)-1;
2008 munmap((void *)real_start, real_size);
2009 real_start = HOST_PAGE_ALIGN(real_start);
2011 current_start = real_start;
2013 naive:
2014 #endif
2016 while (1) {
2017 unsigned long real_start, real_size, aligned_size;
2018 aligned_size = real_size = host_size;
2020 /* Do not use mmap_find_vma here because that is limited to the
2021 * guest address space. We are going to make the
2022 * guest address space fit whatever we're given.
2024 real_start = (unsigned long)
2025 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
2026 if (real_start == (unsigned long)-1) {
2027 return (unsigned long)-1;
2030 /* Check to see if the address is valid. */
2031 if (host_start && real_start != current_start) {
2032 goto try_again;
2035 /* Ensure the address is properly aligned. */
2036 if (real_start & ~qemu_host_page_mask) {
2037 /* Ideally, we adjust like
2039 * pages: [ ][ ][ ][ ][ ]
2040 * old: [ real ]
2041 * [ aligned ]
2042 * new: [ real ]
2043 * [ aligned ]
2045 * But if there is something else mapped right after it,
2046 * then obviously it won't have room to grow, and the
2047 * kernel will put the new larger real someplace else with
2048 * unknown alignment (if we made it to here, then
2049 * fixed=false). Which is why we grow real by a full page
2050 * size, instead of by part of one; so that even if we get
2051 * moved, we can still guarantee alignment. But this does
2052 * mean that there is a padding of < 1 page both before
2053 * and after the aligned range; the "after" could could
2054 * cause problems for ARM emulation where it could butt in
2055 * to where we need to put the commpage.
2057 munmap((void *)real_start, host_size);
2058 real_size = aligned_size + qemu_host_page_size;
2059 real_start = (unsigned long)
2060 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
2061 if (real_start == (unsigned long)-1) {
2062 return (unsigned long)-1;
2064 aligned_start = HOST_PAGE_ALIGN(real_start);
2065 } else {
2066 aligned_start = real_start;
2069 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
2070 /* On 32-bit ARM, we need to also be able to map the commpage. */
2071 int valid = init_guest_commpage(aligned_start - guest_start,
2072 aligned_size + guest_start);
2073 if (valid == -1) {
2074 munmap((void *)real_start, real_size);
2075 return (unsigned long)-1;
2076 } else if (valid == 0) {
2077 goto try_again;
2079 #endif
2081 /* If nothing has said `return -1` or `goto try_again` yet,
2082 * then the address we have is good.
2084 break;
2086 try_again:
2087 /* That address didn't work. Unmap and try a different one.
2088 * The address the host picked because is typically right at
2089 * the top of the host address space and leaves the guest with
2090 * no usable address space. Resort to a linear search. We
2091 * already compensated for mmap_min_addr, so this should not
2092 * happen often. Probably means we got unlucky and host
2093 * address space randomization put a shared library somewhere
2094 * inconvenient.
2096 * This is probably a good strategy if host_start, but is
2097 * probably a bad strategy if not, which means we got here
2098 * because of trouble with ARM commpage setup.
2100 munmap((void *)real_start, real_size);
2101 current_start += qemu_host_page_size;
2102 if (host_start == current_start) {
2103 /* Theoretically possible if host doesn't have any suitably
2104 * aligned areas. Normally the first mmap will fail.
2106 return (unsigned long)-1;
2110 qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size);
2112 return aligned_start;
2115 static void probe_guest_base(const char *image_name,
2116 abi_ulong loaddr, abi_ulong hiaddr)
2118 /* Probe for a suitable guest base address, if the user has not set
2119 * it explicitly, and set guest_base appropriately.
2120 * In case of error we will print a suitable message and exit.
2122 const char *errmsg;
2123 if (!have_guest_base && !reserved_va) {
2124 unsigned long host_start, real_start, host_size;
2126 /* Round addresses to page boundaries. */
2127 loaddr &= qemu_host_page_mask;
2128 hiaddr = HOST_PAGE_ALIGN(hiaddr);
2130 if (loaddr < mmap_min_addr) {
2131 host_start = HOST_PAGE_ALIGN(mmap_min_addr);
2132 } else {
2133 host_start = loaddr;
2134 if (host_start != loaddr) {
2135 errmsg = "Address overflow loading ELF binary";
2136 goto exit_errmsg;
2139 host_size = hiaddr - loaddr;
2141 /* Setup the initial guest memory space with ranges gleaned from
2142 * the ELF image that is being loaded.
2144 real_start = init_guest_space(host_start, host_size, loaddr, false);
2145 if (real_start == (unsigned long)-1) {
2146 errmsg = "Unable to find space for application";
2147 goto exit_errmsg;
2149 guest_base = real_start - loaddr;
2151 qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x"
2152 TARGET_ABI_FMT_lx " to 0x%lx\n",
2153 loaddr, real_start);
2155 return;
2157 exit_errmsg:
2158 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2159 exit(-1);
2163 /* Load an ELF image into the address space.
2165 IMAGE_NAME is the filename of the image, to use in error messages.
2166 IMAGE_FD is the open file descriptor for the image.
2168 BPRM_BUF is a copy of the beginning of the file; this of course
2169 contains the elf file header at offset 0. It is assumed that this
2170 buffer is sufficiently aligned to present no problems to the host
2171 in accessing data at aligned offsets within the buffer.
2173 On return: INFO values will be filled in, as necessary or available. */
2175 static void load_elf_image(const char *image_name, int image_fd,
2176 struct image_info *info, char **pinterp_name,
2177 char bprm_buf[BPRM_BUF_SIZE])
2179 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2180 struct elf_phdr *phdr;
2181 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2182 int i, retval;
2183 const char *errmsg;
2185 /* First of all, some simple consistency checks */
2186 errmsg = "Invalid ELF image for this architecture";
2187 if (!elf_check_ident(ehdr)) {
2188 goto exit_errmsg;
2190 bswap_ehdr(ehdr);
2191 if (!elf_check_ehdr(ehdr)) {
2192 goto exit_errmsg;
2195 i = ehdr->e_phnum * sizeof(struct elf_phdr);
2196 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2197 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2198 } else {
2199 phdr = (struct elf_phdr *) alloca(i);
2200 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2201 if (retval != i) {
2202 goto exit_read;
2205 bswap_phdr(phdr, ehdr->e_phnum);
2207 info->nsegs = 0;
2208 info->pt_dynamic_addr = 0;
2210 mmap_lock();
2212 /* Find the maximum size of the image and allocate an appropriate
2213 amount of memory to handle that. */
2214 loaddr = -1, hiaddr = 0;
2215 info->alignment = 0;
2216 for (i = 0; i < ehdr->e_phnum; ++i) {
2217 if (phdr[i].p_type == PT_LOAD) {
2218 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
2219 if (a < loaddr) {
2220 loaddr = a;
2222 a = phdr[i].p_vaddr + phdr[i].p_memsz;
2223 if (a > hiaddr) {
2224 hiaddr = a;
2226 ++info->nsegs;
2227 info->alignment |= phdr[i].p_align;
2231 load_addr = loaddr;
2232 if (ehdr->e_type == ET_DYN) {
2233 /* The image indicates that it can be loaded anywhere. Find a
2234 location that can hold the memory space required. If the
2235 image is pre-linked, LOADDR will be non-zero. Since we do
2236 not supply MAP_FIXED here we'll use that address if and
2237 only if it remains available. */
2238 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2239 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
2240 -1, 0);
2241 if (load_addr == -1) {
2242 goto exit_perror;
2244 } else if (pinterp_name != NULL) {
2245 /* This is the main executable. Make sure that the low
2246 address does not conflict with MMAP_MIN_ADDR or the
2247 QEMU application itself. */
2248 probe_guest_base(image_name, loaddr, hiaddr);
2250 load_bias = load_addr - loaddr;
2252 if (elf_is_fdpic(ehdr)) {
2253 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
2254 g_malloc(sizeof(*loadsegs) * info->nsegs);
2256 for (i = 0; i < ehdr->e_phnum; ++i) {
2257 switch (phdr[i].p_type) {
2258 case PT_DYNAMIC:
2259 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2260 break;
2261 case PT_LOAD:
2262 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2263 loadsegs->p_vaddr = phdr[i].p_vaddr;
2264 loadsegs->p_memsz = phdr[i].p_memsz;
2265 ++loadsegs;
2266 break;
2271 info->load_bias = load_bias;
2272 info->load_addr = load_addr;
2273 info->entry = ehdr->e_entry + load_bias;
2274 info->start_code = -1;
2275 info->end_code = 0;
2276 info->start_data = -1;
2277 info->end_data = 0;
2278 info->brk = 0;
2279 info->elf_flags = ehdr->e_flags;
2281 for (i = 0; i < ehdr->e_phnum; i++) {
2282 struct elf_phdr *eppnt = phdr + i;
2283 if (eppnt->p_type == PT_LOAD) {
2284 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
2285 int elf_prot = 0;
2287 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ;
2288 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
2289 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
2291 vaddr = load_bias + eppnt->p_vaddr;
2292 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2293 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2295 error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
2296 elf_prot, MAP_PRIVATE | MAP_FIXED,
2297 image_fd, eppnt->p_offset - vaddr_po);
2298 if (error == -1) {
2299 goto exit_perror;
2302 vaddr_ef = vaddr + eppnt->p_filesz;
2303 vaddr_em = vaddr + eppnt->p_memsz;
2305 /* If the load segment requests extra zeros (e.g. bss), map it. */
2306 if (vaddr_ef < vaddr_em) {
2307 zero_bss(vaddr_ef, vaddr_em, elf_prot);
2310 /* Find the full program boundaries. */
2311 if (elf_prot & PROT_EXEC) {
2312 if (vaddr < info->start_code) {
2313 info->start_code = vaddr;
2315 if (vaddr_ef > info->end_code) {
2316 info->end_code = vaddr_ef;
2319 if (elf_prot & PROT_WRITE) {
2320 if (vaddr < info->start_data) {
2321 info->start_data = vaddr;
2323 if (vaddr_ef > info->end_data) {
2324 info->end_data = vaddr_ef;
2326 if (vaddr_em > info->brk) {
2327 info->brk = vaddr_em;
2330 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2331 char *interp_name;
2333 if (*pinterp_name) {
2334 errmsg = "Multiple PT_INTERP entries";
2335 goto exit_errmsg;
2337 interp_name = malloc(eppnt->p_filesz);
2338 if (!interp_name) {
2339 goto exit_perror;
2342 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2343 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2344 eppnt->p_filesz);
2345 } else {
2346 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2347 eppnt->p_offset);
2348 if (retval != eppnt->p_filesz) {
2349 goto exit_perror;
2352 if (interp_name[eppnt->p_filesz - 1] != 0) {
2353 errmsg = "Invalid PT_INTERP entry";
2354 goto exit_errmsg;
2356 *pinterp_name = interp_name;
2360 if (info->end_data == 0) {
2361 info->start_data = info->end_code;
2362 info->end_data = info->end_code;
2363 info->brk = info->end_code;
2366 if (qemu_log_enabled()) {
2367 load_symbols(ehdr, image_fd, load_bias);
2370 mmap_unlock();
2372 close(image_fd);
2373 return;
2375 exit_read:
2376 if (retval >= 0) {
2377 errmsg = "Incomplete read of file header";
2378 goto exit_errmsg;
2380 exit_perror:
2381 errmsg = strerror(errno);
2382 exit_errmsg:
2383 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2384 exit(-1);
2387 static void load_elf_interp(const char *filename, struct image_info *info,
2388 char bprm_buf[BPRM_BUF_SIZE])
2390 int fd, retval;
2392 fd = open(path(filename), O_RDONLY);
2393 if (fd < 0) {
2394 goto exit_perror;
2397 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2398 if (retval < 0) {
2399 goto exit_perror;
2401 if (retval < BPRM_BUF_SIZE) {
2402 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2405 load_elf_image(filename, fd, info, NULL, bprm_buf);
2406 return;
2408 exit_perror:
2409 fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2410 exit(-1);
2413 static int symfind(const void *s0, const void *s1)
2415 target_ulong addr = *(target_ulong *)s0;
2416 struct elf_sym *sym = (struct elf_sym *)s1;
2417 int result = 0;
2418 if (addr < sym->st_value) {
2419 result = -1;
2420 } else if (addr >= sym->st_value + sym->st_size) {
2421 result = 1;
2423 return result;
2426 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2428 #if ELF_CLASS == ELFCLASS32
2429 struct elf_sym *syms = s->disas_symtab.elf32;
2430 #else
2431 struct elf_sym *syms = s->disas_symtab.elf64;
2432 #endif
2434 // binary search
2435 struct elf_sym *sym;
2437 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2438 if (sym != NULL) {
2439 return s->disas_strtab + sym->st_name;
2442 return "";
2445 /* FIXME: This should use elf_ops.h */
2446 static int symcmp(const void *s0, const void *s1)
2448 struct elf_sym *sym0 = (struct elf_sym *)s0;
2449 struct elf_sym *sym1 = (struct elf_sym *)s1;
2450 return (sym0->st_value < sym1->st_value)
2451 ? -1
2452 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2455 /* Best attempt to load symbols from this ELF object. */
2456 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
2458 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2459 uint64_t segsz;
2460 struct elf_shdr *shdr;
2461 char *strings = NULL;
2462 struct syminfo *s = NULL;
2463 struct elf_sym *new_syms, *syms = NULL;
2465 shnum = hdr->e_shnum;
2466 i = shnum * sizeof(struct elf_shdr);
2467 shdr = (struct elf_shdr *)alloca(i);
2468 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2469 return;
2472 bswap_shdr(shdr, shnum);
2473 for (i = 0; i < shnum; ++i) {
2474 if (shdr[i].sh_type == SHT_SYMTAB) {
2475 sym_idx = i;
2476 str_idx = shdr[i].sh_link;
2477 goto found;
2481 /* There will be no symbol table if the file was stripped. */
2482 return;
2484 found:
2485 /* Now know where the strtab and symtab are. Snarf them. */
2486 s = g_try_new(struct syminfo, 1);
2487 if (!s) {
2488 goto give_up;
2491 segsz = shdr[str_idx].sh_size;
2492 s->disas_strtab = strings = g_try_malloc(segsz);
2493 if (!strings ||
2494 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
2495 goto give_up;
2498 segsz = shdr[sym_idx].sh_size;
2499 syms = g_try_malloc(segsz);
2500 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
2501 goto give_up;
2504 if (segsz / sizeof(struct elf_sym) > INT_MAX) {
2505 /* Implausibly large symbol table: give up rather than ploughing
2506 * on with the number of symbols calculation overflowing
2508 goto give_up;
2510 nsyms = segsz / sizeof(struct elf_sym);
2511 for (i = 0; i < nsyms; ) {
2512 bswap_sym(syms + i);
2513 /* Throw away entries which we do not need. */
2514 if (syms[i].st_shndx == SHN_UNDEF
2515 || syms[i].st_shndx >= SHN_LORESERVE
2516 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2517 if (i < --nsyms) {
2518 syms[i] = syms[nsyms];
2520 } else {
2521 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
2522 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
2523 syms[i].st_value &= ~(target_ulong)1;
2524 #endif
2525 syms[i].st_value += load_bias;
2526 i++;
2530 /* No "useful" symbol. */
2531 if (nsyms == 0) {
2532 goto give_up;
2535 /* Attempt to free the storage associated with the local symbols
2536 that we threw away. Whether or not this has any effect on the
2537 memory allocation depends on the malloc implementation and how
2538 many symbols we managed to discard. */
2539 new_syms = g_try_renew(struct elf_sym, syms, nsyms);
2540 if (new_syms == NULL) {
2541 goto give_up;
2543 syms = new_syms;
2545 qsort(syms, nsyms, sizeof(*syms), symcmp);
2547 s->disas_num_syms = nsyms;
2548 #if ELF_CLASS == ELFCLASS32
2549 s->disas_symtab.elf32 = syms;
2550 #else
2551 s->disas_symtab.elf64 = syms;
2552 #endif
2553 s->lookup_symbol = lookup_symbolxx;
2554 s->next = syminfos;
2555 syminfos = s;
2557 return;
2559 give_up:
2560 g_free(s);
2561 g_free(strings);
2562 g_free(syms);
2565 uint32_t get_elf_eflags(int fd)
2567 struct elfhdr ehdr;
2568 off_t offset;
2569 int ret;
2571 /* Read ELF header */
2572 offset = lseek(fd, 0, SEEK_SET);
2573 if (offset == (off_t) -1) {
2574 return 0;
2576 ret = read(fd, &ehdr, sizeof(ehdr));
2577 if (ret < sizeof(ehdr)) {
2578 return 0;
2580 offset = lseek(fd, offset, SEEK_SET);
2581 if (offset == (off_t) -1) {
2582 return 0;
2585 /* Check ELF signature */
2586 if (!elf_check_ident(&ehdr)) {
2587 return 0;
2590 /* check header */
2591 bswap_ehdr(&ehdr);
2592 if (!elf_check_ehdr(&ehdr)) {
2593 return 0;
2596 /* return architecture id */
2597 return ehdr.e_flags;
2600 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
2602 struct image_info interp_info;
2603 struct elfhdr elf_ex;
2604 char *elf_interpreter = NULL;
2605 char *scratch;
2607 info->start_mmap = (abi_ulong)ELF_START_MMAP;
2609 load_elf_image(bprm->filename, bprm->fd, info,
2610 &elf_interpreter, bprm->buf);
2612 /* ??? We need a copy of the elf header for passing to create_elf_tables.
2613 If we do nothing, we'll have overwritten this when we re-use bprm->buf
2614 when we load the interpreter. */
2615 elf_ex = *(struct elfhdr *)bprm->buf;
2617 /* Do this so that we can load the interpreter, if need be. We will
2618 change some of these later */
2619 bprm->p = setup_arg_pages(bprm, info);
2621 scratch = g_new0(char, TARGET_PAGE_SIZE);
2622 if (STACK_GROWS_DOWN) {
2623 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2624 bprm->p, info->stack_limit);
2625 info->file_string = bprm->p;
2626 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2627 bprm->p, info->stack_limit);
2628 info->env_strings = bprm->p;
2629 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2630 bprm->p, info->stack_limit);
2631 info->arg_strings = bprm->p;
2632 } else {
2633 info->arg_strings = bprm->p;
2634 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2635 bprm->p, info->stack_limit);
2636 info->env_strings = bprm->p;
2637 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2638 bprm->p, info->stack_limit);
2639 info->file_string = bprm->p;
2640 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2641 bprm->p, info->stack_limit);
2644 g_free(scratch);
2646 if (!bprm->p) {
2647 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2648 exit(-1);
2651 if (elf_interpreter) {
2652 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
2654 /* If the program interpreter is one of these two, then assume
2655 an iBCS2 image. Otherwise assume a native linux image. */
2657 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2658 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2659 info->personality = PER_SVR4;
2661 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
2662 and some applications "depend" upon this behavior. Since
2663 we do not have the power to recompile these, we emulate
2664 the SVr4 behavior. Sigh. */
2665 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
2666 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2670 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2671 info, (elf_interpreter ? &interp_info : NULL));
2672 info->start_stack = bprm->p;
2674 /* If we have an interpreter, set that as the program's entry point.
2675 Copy the load_bias as well, to help PPC64 interpret the entry
2676 point as a function descriptor. Do this after creating elf tables
2677 so that we copy the original program entry point into the AUXV. */
2678 if (elf_interpreter) {
2679 info->load_bias = interp_info.load_bias;
2680 info->entry = interp_info.entry;
2681 free(elf_interpreter);
2684 #ifdef USE_ELF_CORE_DUMP
2685 bprm->core_dump = &elf_core_dump;
2686 #endif
2688 return 0;
2691 #ifdef USE_ELF_CORE_DUMP
2693 * Definitions to generate Intel SVR4-like core files.
2694 * These mostly have the same names as the SVR4 types with "target_elf_"
2695 * tacked on the front to prevent clashes with linux definitions,
2696 * and the typedef forms have been avoided. This is mostly like
2697 * the SVR4 structure, but more Linuxy, with things that Linux does
2698 * not support and which gdb doesn't really use excluded.
2700 * Fields we don't dump (their contents is zero) in linux-user qemu
2701 * are marked with XXX.
2703 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2705 * Porting ELF coredump for target is (quite) simple process. First you
2706 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2707 * the target resides):
2709 * #define USE_ELF_CORE_DUMP
2711 * Next you define type of register set used for dumping. ELF specification
2712 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2714 * typedef <target_regtype> target_elf_greg_t;
2715 * #define ELF_NREG <number of registers>
2716 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2718 * Last step is to implement target specific function that copies registers
2719 * from given cpu into just specified register set. Prototype is:
2721 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2722 * const CPUArchState *env);
2724 * Parameters:
2725 * regs - copy register values into here (allocated and zeroed by caller)
2726 * env - copy registers from here
2728 * Example for ARM target is provided in this file.
2731 /* An ELF note in memory */
2732 struct memelfnote {
2733 const char *name;
2734 size_t namesz;
2735 size_t namesz_rounded;
2736 int type;
2737 size_t datasz;
2738 size_t datasz_rounded;
2739 void *data;
2740 size_t notesz;
2743 struct target_elf_siginfo {
2744 abi_int si_signo; /* signal number */
2745 abi_int si_code; /* extra code */
2746 abi_int si_errno; /* errno */
2749 struct target_elf_prstatus {
2750 struct target_elf_siginfo pr_info; /* Info associated with signal */
2751 abi_short pr_cursig; /* Current signal */
2752 abi_ulong pr_sigpend; /* XXX */
2753 abi_ulong pr_sighold; /* XXX */
2754 target_pid_t pr_pid;
2755 target_pid_t pr_ppid;
2756 target_pid_t pr_pgrp;
2757 target_pid_t pr_sid;
2758 struct target_timeval pr_utime; /* XXX User time */
2759 struct target_timeval pr_stime; /* XXX System time */
2760 struct target_timeval pr_cutime; /* XXX Cumulative user time */
2761 struct target_timeval pr_cstime; /* XXX Cumulative system time */
2762 target_elf_gregset_t pr_reg; /* GP registers */
2763 abi_int pr_fpvalid; /* XXX */
2766 #define ELF_PRARGSZ (80) /* Number of chars for args */
2768 struct target_elf_prpsinfo {
2769 char pr_state; /* numeric process state */
2770 char pr_sname; /* char for pr_state */
2771 char pr_zomb; /* zombie */
2772 char pr_nice; /* nice val */
2773 abi_ulong pr_flag; /* flags */
2774 target_uid_t pr_uid;
2775 target_gid_t pr_gid;
2776 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
2777 /* Lots missing */
2778 char pr_fname[16]; /* filename of executable */
2779 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2782 /* Here is the structure in which status of each thread is captured. */
2783 struct elf_thread_status {
2784 QTAILQ_ENTRY(elf_thread_status) ets_link;
2785 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
2786 #if 0
2787 elf_fpregset_t fpu; /* NT_PRFPREG */
2788 struct task_struct *thread;
2789 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
2790 #endif
2791 struct memelfnote notes[1];
2792 int num_notes;
2795 struct elf_note_info {
2796 struct memelfnote *notes;
2797 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
2798 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
2800 QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
2801 #if 0
2803 * Current version of ELF coredump doesn't support
2804 * dumping fp regs etc.
2806 elf_fpregset_t *fpu;
2807 elf_fpxregset_t *xfpu;
2808 int thread_status_size;
2809 #endif
2810 int notes_size;
2811 int numnote;
2814 struct vm_area_struct {
2815 target_ulong vma_start; /* start vaddr of memory region */
2816 target_ulong vma_end; /* end vaddr of memory region */
2817 abi_ulong vma_flags; /* protection etc. flags for the region */
2818 QTAILQ_ENTRY(vm_area_struct) vma_link;
2821 struct mm_struct {
2822 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
2823 int mm_count; /* number of mappings */
2826 static struct mm_struct *vma_init(void);
2827 static void vma_delete(struct mm_struct *);
2828 static int vma_add_mapping(struct mm_struct *, target_ulong,
2829 target_ulong, abi_ulong);
2830 static int vma_get_mapping_count(const struct mm_struct *);
2831 static struct vm_area_struct *vma_first(const struct mm_struct *);
2832 static struct vm_area_struct *vma_next(struct vm_area_struct *);
2833 static abi_ulong vma_dump_size(const struct vm_area_struct *);
2834 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2835 unsigned long flags);
2837 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2838 static void fill_note(struct memelfnote *, const char *, int,
2839 unsigned int, void *);
2840 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2841 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
2842 static void fill_auxv_note(struct memelfnote *, const TaskState *);
2843 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2844 static size_t note_size(const struct memelfnote *);
2845 static void free_note_info(struct elf_note_info *);
2846 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2847 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
2848 static int core_dump_filename(const TaskState *, char *, size_t);
2850 static int dump_write(int, const void *, size_t);
2851 static int write_note(struct memelfnote *, int);
2852 static int write_note_info(struct elf_note_info *, int);
2854 #ifdef BSWAP_NEEDED
2855 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
2857 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2858 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2859 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
2860 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
2861 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
2862 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
2863 prstatus->pr_pid = tswap32(prstatus->pr_pid);
2864 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2865 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2866 prstatus->pr_sid = tswap32(prstatus->pr_sid);
2867 /* cpu times are not filled, so we skip them */
2868 /* regs should be in correct format already */
2869 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2872 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
2874 psinfo->pr_flag = tswapal(psinfo->pr_flag);
2875 psinfo->pr_uid = tswap16(psinfo->pr_uid);
2876 psinfo->pr_gid = tswap16(psinfo->pr_gid);
2877 psinfo->pr_pid = tswap32(psinfo->pr_pid);
2878 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2879 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2880 psinfo->pr_sid = tswap32(psinfo->pr_sid);
2883 static void bswap_note(struct elf_note *en)
2885 bswap32s(&en->n_namesz);
2886 bswap32s(&en->n_descsz);
2887 bswap32s(&en->n_type);
2889 #else
2890 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2891 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2892 static inline void bswap_note(struct elf_note *en) { }
2893 #endif /* BSWAP_NEEDED */
2896 * Minimal support for linux memory regions. These are needed
2897 * when we are finding out what memory exactly belongs to
2898 * emulated process. No locks needed here, as long as
2899 * thread that received the signal is stopped.
2902 static struct mm_struct *vma_init(void)
2904 struct mm_struct *mm;
2906 if ((mm = g_malloc(sizeof (*mm))) == NULL)
2907 return (NULL);
2909 mm->mm_count = 0;
2910 QTAILQ_INIT(&mm->mm_mmap);
2912 return (mm);
2915 static void vma_delete(struct mm_struct *mm)
2917 struct vm_area_struct *vma;
2919 while ((vma = vma_first(mm)) != NULL) {
2920 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
2921 g_free(vma);
2923 g_free(mm);
2926 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
2927 target_ulong end, abi_ulong flags)
2929 struct vm_area_struct *vma;
2931 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
2932 return (-1);
2934 vma->vma_start = start;
2935 vma->vma_end = end;
2936 vma->vma_flags = flags;
2938 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
2939 mm->mm_count++;
2941 return (0);
2944 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
2946 return (QTAILQ_FIRST(&mm->mm_mmap));
2949 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
2951 return (QTAILQ_NEXT(vma, vma_link));
2954 static int vma_get_mapping_count(const struct mm_struct *mm)
2956 return (mm->mm_count);
2960 * Calculate file (dump) size of given memory region.
2962 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
2964 /* if we cannot even read the first page, skip it */
2965 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
2966 return (0);
2969 * Usually we don't dump executable pages as they contain
2970 * non-writable code that debugger can read directly from
2971 * target library etc. However, thread stacks are marked
2972 * also executable so we read in first page of given region
2973 * and check whether it contains elf header. If there is
2974 * no elf header, we dump it.
2976 if (vma->vma_flags & PROT_EXEC) {
2977 char page[TARGET_PAGE_SIZE];
2979 copy_from_user(page, vma->vma_start, sizeof (page));
2980 if ((page[EI_MAG0] == ELFMAG0) &&
2981 (page[EI_MAG1] == ELFMAG1) &&
2982 (page[EI_MAG2] == ELFMAG2) &&
2983 (page[EI_MAG3] == ELFMAG3)) {
2985 * Mappings are possibly from ELF binary. Don't dump
2986 * them.
2988 return (0);
2992 return (vma->vma_end - vma->vma_start);
2995 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2996 unsigned long flags)
2998 struct mm_struct *mm = (struct mm_struct *)priv;
3000 vma_add_mapping(mm, start, end, flags);
3001 return (0);
3004 static void fill_note(struct memelfnote *note, const char *name, int type,
3005 unsigned int sz, void *data)
3007 unsigned int namesz;
3009 namesz = strlen(name) + 1;
3010 note->name = name;
3011 note->namesz = namesz;
3012 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3013 note->type = type;
3014 note->datasz = sz;
3015 note->datasz_rounded = roundup(sz, sizeof (int32_t));
3017 note->data = data;
3020 * We calculate rounded up note size here as specified by
3021 * ELF document.
3023 note->notesz = sizeof (struct elf_note) +
3024 note->namesz_rounded + note->datasz_rounded;
3027 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
3028 uint32_t flags)
3030 (void) memset(elf, 0, sizeof(*elf));
3032 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3033 elf->e_ident[EI_CLASS] = ELF_CLASS;
3034 elf->e_ident[EI_DATA] = ELF_DATA;
3035 elf->e_ident[EI_VERSION] = EV_CURRENT;
3036 elf->e_ident[EI_OSABI] = ELF_OSABI;
3038 elf->e_type = ET_CORE;
3039 elf->e_machine = machine;
3040 elf->e_version = EV_CURRENT;
3041 elf->e_phoff = sizeof(struct elfhdr);
3042 elf->e_flags = flags;
3043 elf->e_ehsize = sizeof(struct elfhdr);
3044 elf->e_phentsize = sizeof(struct elf_phdr);
3045 elf->e_phnum = segs;
3047 bswap_ehdr(elf);
3050 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3052 phdr->p_type = PT_NOTE;
3053 phdr->p_offset = offset;
3054 phdr->p_vaddr = 0;
3055 phdr->p_paddr = 0;
3056 phdr->p_filesz = sz;
3057 phdr->p_memsz = 0;
3058 phdr->p_flags = 0;
3059 phdr->p_align = 0;
3061 bswap_phdr(phdr, 1);
3064 static size_t note_size(const struct memelfnote *note)
3066 return (note->notesz);
3069 static void fill_prstatus(struct target_elf_prstatus *prstatus,
3070 const TaskState *ts, int signr)
3072 (void) memset(prstatus, 0, sizeof (*prstatus));
3073 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3074 prstatus->pr_pid = ts->ts_tid;
3075 prstatus->pr_ppid = getppid();
3076 prstatus->pr_pgrp = getpgrp();
3077 prstatus->pr_sid = getsid(0);
3079 bswap_prstatus(prstatus);
3082 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
3084 char *base_filename;
3085 unsigned int i, len;
3087 (void) memset(psinfo, 0, sizeof (*psinfo));
3089 len = ts->info->arg_end - ts->info->arg_start;
3090 if (len >= ELF_PRARGSZ)
3091 len = ELF_PRARGSZ - 1;
3092 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
3093 return -EFAULT;
3094 for (i = 0; i < len; i++)
3095 if (psinfo->pr_psargs[i] == 0)
3096 psinfo->pr_psargs[i] = ' ';
3097 psinfo->pr_psargs[len] = 0;
3099 psinfo->pr_pid = getpid();
3100 psinfo->pr_ppid = getppid();
3101 psinfo->pr_pgrp = getpgrp();
3102 psinfo->pr_sid = getsid(0);
3103 psinfo->pr_uid = getuid();
3104 psinfo->pr_gid = getgid();
3106 base_filename = g_path_get_basename(ts->bprm->filename);
3108 * Using strncpy here is fine: at max-length,
3109 * this field is not NUL-terminated.
3111 (void) strncpy(psinfo->pr_fname, base_filename,
3112 sizeof(psinfo->pr_fname));
3114 g_free(base_filename);
3115 bswap_psinfo(psinfo);
3116 return (0);
3119 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3121 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3122 elf_addr_t orig_auxv = auxv;
3123 void *ptr;
3124 int len = ts->info->auxv_len;
3127 * Auxiliary vector is stored in target process stack. It contains
3128 * {type, value} pairs that we need to dump into note. This is not
3129 * strictly necessary but we do it here for sake of completeness.
3132 /* read in whole auxv vector and copy it to memelfnote */
3133 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3134 if (ptr != NULL) {
3135 fill_note(note, "CORE", NT_AUXV, len, ptr);
3136 unlock_user(ptr, auxv, len);
3141 * Constructs name of coredump file. We have following convention
3142 * for the name:
3143 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3145 * Returns 0 in case of success, -1 otherwise (errno is set).
3147 static int core_dump_filename(const TaskState *ts, char *buf,
3148 size_t bufsize)
3150 char timestamp[64];
3151 char *base_filename = NULL;
3152 struct timeval tv;
3153 struct tm tm;
3155 assert(bufsize >= PATH_MAX);
3157 if (gettimeofday(&tv, NULL) < 0) {
3158 (void) fprintf(stderr, "unable to get current timestamp: %s",
3159 strerror(errno));
3160 return (-1);
3163 base_filename = g_path_get_basename(ts->bprm->filename);
3164 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
3165 localtime_r(&tv.tv_sec, &tm));
3166 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
3167 base_filename, timestamp, (int)getpid());
3168 g_free(base_filename);
3170 return (0);
3173 static int dump_write(int fd, const void *ptr, size_t size)
3175 const char *bufp = (const char *)ptr;
3176 ssize_t bytes_written, bytes_left;
3177 struct rlimit dumpsize;
3178 off_t pos;
3180 bytes_written = 0;
3181 getrlimit(RLIMIT_CORE, &dumpsize);
3182 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3183 if (errno == ESPIPE) { /* not a seekable stream */
3184 bytes_left = size;
3185 } else {
3186 return pos;
3188 } else {
3189 if (dumpsize.rlim_cur <= pos) {
3190 return -1;
3191 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3192 bytes_left = size;
3193 } else {
3194 size_t limit_left=dumpsize.rlim_cur - pos;
3195 bytes_left = limit_left >= size ? size : limit_left ;
3200 * In normal conditions, single write(2) should do but
3201 * in case of socket etc. this mechanism is more portable.
3203 do {
3204 bytes_written = write(fd, bufp, bytes_left);
3205 if (bytes_written < 0) {
3206 if (errno == EINTR)
3207 continue;
3208 return (-1);
3209 } else if (bytes_written == 0) { /* eof */
3210 return (-1);
3212 bufp += bytes_written;
3213 bytes_left -= bytes_written;
3214 } while (bytes_left > 0);
3216 return (0);
3219 static int write_note(struct memelfnote *men, int fd)
3221 struct elf_note en;
3223 en.n_namesz = men->namesz;
3224 en.n_type = men->type;
3225 en.n_descsz = men->datasz;
3227 bswap_note(&en);
3229 if (dump_write(fd, &en, sizeof(en)) != 0)
3230 return (-1);
3231 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3232 return (-1);
3233 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
3234 return (-1);
3236 return (0);
3239 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
3241 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3242 TaskState *ts = (TaskState *)cpu->opaque;
3243 struct elf_thread_status *ets;
3245 ets = g_malloc0(sizeof (*ets));
3246 ets->num_notes = 1; /* only prstatus is dumped */
3247 fill_prstatus(&ets->prstatus, ts, 0);
3248 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3249 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
3250 &ets->prstatus);
3252 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
3254 info->notes_size += note_size(&ets->notes[0]);
3257 static void init_note_info(struct elf_note_info *info)
3259 /* Initialize the elf_note_info structure so that it is at
3260 * least safe to call free_note_info() on it. Must be
3261 * called before calling fill_note_info().
3263 memset(info, 0, sizeof (*info));
3264 QTAILQ_INIT(&info->thread_list);
3267 static int fill_note_info(struct elf_note_info *info,
3268 long signr, const CPUArchState *env)
3270 #define NUMNOTES 3
3271 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3272 TaskState *ts = (TaskState *)cpu->opaque;
3273 int i;
3275 info->notes = g_new0(struct memelfnote, NUMNOTES);
3276 if (info->notes == NULL)
3277 return (-ENOMEM);
3278 info->prstatus = g_malloc0(sizeof (*info->prstatus));
3279 if (info->prstatus == NULL)
3280 return (-ENOMEM);
3281 info->psinfo = g_malloc0(sizeof (*info->psinfo));
3282 if (info->prstatus == NULL)
3283 return (-ENOMEM);
3286 * First fill in status (and registers) of current thread
3287 * including process info & aux vector.
3289 fill_prstatus(info->prstatus, ts, signr);
3290 elf_core_copy_regs(&info->prstatus->pr_reg, env);
3291 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
3292 sizeof (*info->prstatus), info->prstatus);
3293 fill_psinfo(info->psinfo, ts);
3294 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
3295 sizeof (*info->psinfo), info->psinfo);
3296 fill_auxv_note(&info->notes[2], ts);
3297 info->numnote = 3;
3299 info->notes_size = 0;
3300 for (i = 0; i < info->numnote; i++)
3301 info->notes_size += note_size(&info->notes[i]);
3303 /* read and fill status of all threads */
3304 cpu_list_lock();
3305 CPU_FOREACH(cpu) {
3306 if (cpu == thread_cpu) {
3307 continue;
3309 fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
3311 cpu_list_unlock();
3313 return (0);
3316 static void free_note_info(struct elf_note_info *info)
3318 struct elf_thread_status *ets;
3320 while (!QTAILQ_EMPTY(&info->thread_list)) {
3321 ets = QTAILQ_FIRST(&info->thread_list);
3322 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
3323 g_free(ets);
3326 g_free(info->prstatus);
3327 g_free(info->psinfo);
3328 g_free(info->notes);
3331 static int write_note_info(struct elf_note_info *info, int fd)
3333 struct elf_thread_status *ets;
3334 int i, error = 0;
3336 /* write prstatus, psinfo and auxv for current thread */
3337 for (i = 0; i < info->numnote; i++)
3338 if ((error = write_note(&info->notes[i], fd)) != 0)
3339 return (error);
3341 /* write prstatus for each thread */
3342 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
3343 if ((error = write_note(&ets->notes[0], fd)) != 0)
3344 return (error);
3347 return (0);
3351 * Write out ELF coredump.
3353 * See documentation of ELF object file format in:
3354 * http://www.caldera.com/developers/devspecs/gabi41.pdf
3356 * Coredump format in linux is following:
3358 * 0 +----------------------+ \
3359 * | ELF header | ET_CORE |
3360 * +----------------------+ |
3361 * | ELF program headers | |--- headers
3362 * | - NOTE section | |
3363 * | - PT_LOAD sections | |
3364 * +----------------------+ /
3365 * | NOTEs: |
3366 * | - NT_PRSTATUS |
3367 * | - NT_PRSINFO |
3368 * | - NT_AUXV |
3369 * +----------------------+ <-- aligned to target page
3370 * | Process memory dump |
3371 * : :
3372 * . .
3373 * : :
3374 * | |
3375 * +----------------------+
3377 * NT_PRSTATUS -> struct elf_prstatus (per thread)
3378 * NT_PRSINFO -> struct elf_prpsinfo
3379 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3381 * Format follows System V format as close as possible. Current
3382 * version limitations are as follows:
3383 * - no floating point registers are dumped
3385 * Function returns 0 in case of success, negative errno otherwise.
3387 * TODO: make this work also during runtime: it should be
3388 * possible to force coredump from running process and then
3389 * continue processing. For example qemu could set up SIGUSR2
3390 * handler (provided that target process haven't registered
3391 * handler for that) that does the dump when signal is received.
3393 static int elf_core_dump(int signr, const CPUArchState *env)
3395 const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3396 const TaskState *ts = (const TaskState *)cpu->opaque;
3397 struct vm_area_struct *vma = NULL;
3398 char corefile[PATH_MAX];
3399 struct elf_note_info info;
3400 struct elfhdr elf;
3401 struct elf_phdr phdr;
3402 struct rlimit dumpsize;
3403 struct mm_struct *mm = NULL;
3404 off_t offset = 0, data_offset = 0;
3405 int segs = 0;
3406 int fd = -1;
3408 init_note_info(&info);
3410 errno = 0;
3411 getrlimit(RLIMIT_CORE, &dumpsize);
3412 if (dumpsize.rlim_cur == 0)
3413 return 0;
3415 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3416 return (-errno);
3418 if ((fd = open(corefile, O_WRONLY | O_CREAT,
3419 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
3420 return (-errno);
3423 * Walk through target process memory mappings and
3424 * set up structure containing this information. After
3425 * this point vma_xxx functions can be used.
3427 if ((mm = vma_init()) == NULL)
3428 goto out;
3430 walk_memory_regions(mm, vma_walker);
3431 segs = vma_get_mapping_count(mm);
3434 * Construct valid coredump ELF header. We also
3435 * add one more segment for notes.
3437 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3438 if (dump_write(fd, &elf, sizeof (elf)) != 0)
3439 goto out;
3441 /* fill in the in-memory version of notes */
3442 if (fill_note_info(&info, signr, env) < 0)
3443 goto out;
3445 offset += sizeof (elf); /* elf header */
3446 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
3448 /* write out notes program header */
3449 fill_elf_note_phdr(&phdr, info.notes_size, offset);
3451 offset += info.notes_size;
3452 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3453 goto out;
3456 * ELF specification wants data to start at page boundary so
3457 * we align it here.
3459 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
3462 * Write program headers for memory regions mapped in
3463 * the target process.
3465 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3466 (void) memset(&phdr, 0, sizeof (phdr));
3468 phdr.p_type = PT_LOAD;
3469 phdr.p_offset = offset;
3470 phdr.p_vaddr = vma->vma_start;
3471 phdr.p_paddr = 0;
3472 phdr.p_filesz = vma_dump_size(vma);
3473 offset += phdr.p_filesz;
3474 phdr.p_memsz = vma->vma_end - vma->vma_start;
3475 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3476 if (vma->vma_flags & PROT_WRITE)
3477 phdr.p_flags |= PF_W;
3478 if (vma->vma_flags & PROT_EXEC)
3479 phdr.p_flags |= PF_X;
3480 phdr.p_align = ELF_EXEC_PAGESIZE;
3482 bswap_phdr(&phdr, 1);
3483 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
3484 goto out;
3489 * Next we write notes just after program headers. No
3490 * alignment needed here.
3492 if (write_note_info(&info, fd) < 0)
3493 goto out;
3495 /* align data to page boundary */
3496 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3497 goto out;
3500 * Finally we can dump process memory into corefile as well.
3502 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3503 abi_ulong addr;
3504 abi_ulong end;
3506 end = vma->vma_start + vma_dump_size(vma);
3508 for (addr = vma->vma_start; addr < end;
3509 addr += TARGET_PAGE_SIZE) {
3510 char page[TARGET_PAGE_SIZE];
3511 int error;
3514 * Read in page from target process memory and
3515 * write it to coredump file.
3517 error = copy_from_user(page, addr, sizeof (page));
3518 if (error != 0) {
3519 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
3520 addr);
3521 errno = -error;
3522 goto out;
3524 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3525 goto out;
3529 out:
3530 free_note_info(&info);
3531 if (mm != NULL)
3532 vma_delete(mm);
3533 (void) close(fd);
3535 if (errno != 0)
3536 return (-errno);
3537 return (0);
3539 #endif /* USE_ELF_CORE_DUMP */
3541 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3543 init_thread(regs, infop);