block: Make errp the last parameter of bdrv_img_create
[qemu/ar7.git] / qemu-options.hx
blob9171bd5eecda5ee8f919193ff9ad9b2dc31a4226
1 HXCOMM Use DEFHEADING() to define headings in both help text and texi
2 HXCOMM Text between STEXI and ETEXI are copied to texi version and
3 HXCOMM discarded from C version
4 HXCOMM DEF(option, HAS_ARG/0, opt_enum, opt_help, arch_mask) is used to
5 HXCOMM construct option structures, enums and help message for specified
6 HXCOMM architectures.
7 HXCOMM HXCOMM can be used for comments, discarded from both texi and C
9 DEFHEADING(Standard options)
10 STEXI
11 @table @option
12 ETEXI
14 DEF("help", 0, QEMU_OPTION_h,
15 "-h or -help display this help and exit\n", QEMU_ARCH_ALL)
16 STEXI
17 @item -h
18 @findex -h
19 Display help and exit
20 ETEXI
22 DEF("version", 0, QEMU_OPTION_version,
23 "-version display version information and exit\n", QEMU_ARCH_ALL)
24 STEXI
25 @item -version
26 @findex -version
27 Display version information and exit
28 ETEXI
30 DEF("machine", HAS_ARG, QEMU_OPTION_machine, \
31 "-machine [type=]name[,prop[=value][,...]]\n"
32 " selects emulated machine ('-machine help' for list)\n"
33 " property accel=accel1[:accel2[:...]] selects accelerator\n"
34 " supported accelerators are kvm, xen, tcg (default: tcg)\n"
35 " kernel_irqchip=on|off|split controls accelerated irqchip support (default=off)\n"
36 " vmport=on|off|auto controls emulation of vmport (default: auto)\n"
37 " kvm_shadow_mem=size of KVM shadow MMU in bytes\n"
38 " dump-guest-core=on|off include guest memory in a core dump (default=on)\n"
39 " mem-merge=on|off controls memory merge support (default: on)\n"
40 " igd-passthru=on|off controls IGD GFX passthrough support (default=off)\n"
41 " aes-key-wrap=on|off controls support for AES key wrapping (default=on)\n"
42 " dea-key-wrap=on|off controls support for DEA key wrapping (default=on)\n"
43 " suppress-vmdesc=on|off disables self-describing migration (default=off)\n"
44 " nvdimm=on|off controls NVDIMM support (default=off)\n"
45 " enforce-config-section=on|off enforce configuration section migration (default=off)\n",
46 QEMU_ARCH_ALL)
47 STEXI
48 @item -machine [type=]@var{name}[,prop=@var{value}[,...]]
49 @findex -machine
50 Select the emulated machine by @var{name}. Use @code{-machine help} to list
51 available machines. Supported machine properties are:
52 @table @option
53 @item accel=@var{accels1}[:@var{accels2}[:...]]
54 This is used to enable an accelerator. Depending on the target architecture,
55 kvm, xen, or tcg can be available. By default, tcg is used. If there is more
56 than one accelerator specified, the next one is used if the previous one fails
57 to initialize.
58 @item kernel_irqchip=on|off
59 Controls in-kernel irqchip support for the chosen accelerator when available.
60 @item gfx_passthru=on|off
61 Enables IGD GFX passthrough support for the chosen machine when available.
62 @item vmport=on|off|auto
63 Enables emulation of VMWare IO port, for vmmouse etc. auto says to select the
64 value based on accel. For accel=xen the default is off otherwise the default
65 is on.
66 @item kvm_shadow_mem=size
67 Defines the size of the KVM shadow MMU.
68 @item dump-guest-core=on|off
69 Include guest memory in a core dump. The default is on.
70 @item mem-merge=on|off
71 Enables or disables memory merge support. This feature, when supported by
72 the host, de-duplicates identical memory pages among VMs instances
73 (enabled by default).
74 @item aes-key-wrap=on|off
75 Enables or disables AES key wrapping support on s390-ccw hosts. This feature
76 controls whether AES wrapping keys will be created to allow
77 execution of AES cryptographic functions. The default is on.
78 @item dea-key-wrap=on|off
79 Enables or disables DEA key wrapping support on s390-ccw hosts. This feature
80 controls whether DEA wrapping keys will be created to allow
81 execution of DEA cryptographic functions. The default is on.
82 @item nvdimm=on|off
83 Enables or disables NVDIMM support. The default is off.
84 @end table
85 ETEXI
87 HXCOMM Deprecated by -machine
88 DEF("M", HAS_ARG, QEMU_OPTION_M, "", QEMU_ARCH_ALL)
90 DEF("cpu", HAS_ARG, QEMU_OPTION_cpu,
91 "-cpu cpu select CPU ('-cpu help' for list)\n", QEMU_ARCH_ALL)
92 STEXI
93 @item -cpu @var{model}
94 @findex -cpu
95 Select CPU model (@code{-cpu help} for list and additional feature selection)
96 ETEXI
98 DEF("accel", HAS_ARG, QEMU_OPTION_accel,
99 "-accel [accel=]accelerator[,thread=single|multi]\n"
100 " select accelerator ('-accel help for list')\n"
101 " thread=single|multi (enable multi-threaded TCG)", QEMU_ARCH_ALL)
102 STEXI
103 @item -accel @var{name}[,prop=@var{value}[,...]]
104 @findex -accel
105 This is used to enable an accelerator. Depending on the target architecture,
106 kvm, xen, or tcg can be available. By default, tcg is used. If there is more
107 than one accelerator specified, the next one is used if the previous one fails
108 to initialize.
109 @table @option
110 @item thread=single|multi
111 Controls number of TCG threads. When the TCG is multi-threaded there will be one
112 thread per vCPU therefor taking advantage of additional host cores. The default
113 is to enable multi-threading where both the back-end and front-ends support it and
114 no incompatible TCG features have been enabled (e.g. icount/replay).
115 @end table
116 ETEXI
118 DEF("smp", HAS_ARG, QEMU_OPTION_smp,
119 "-smp [cpus=]n[,maxcpus=cpus][,cores=cores][,threads=threads][,sockets=sockets]\n"
120 " set the number of CPUs to 'n' [default=1]\n"
121 " maxcpus= maximum number of total cpus, including\n"
122 " offline CPUs for hotplug, etc\n"
123 " cores= number of CPU cores on one socket\n"
124 " threads= number of threads on one CPU core\n"
125 " sockets= number of discrete sockets in the system\n",
126 QEMU_ARCH_ALL)
127 STEXI
128 @item -smp [cpus=]@var{n}[,cores=@var{cores}][,threads=@var{threads}][,sockets=@var{sockets}][,maxcpus=@var{maxcpus}]
129 @findex -smp
130 Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
131 CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
132 to 4.
133 For the PC target, the number of @var{cores} per socket, the number
134 of @var{threads} per cores and the total number of @var{sockets} can be
135 specified. Missing values will be computed. If any on the three values is
136 given, the total number of CPUs @var{n} can be omitted. @var{maxcpus}
137 specifies the maximum number of hotpluggable CPUs.
138 ETEXI
140 DEF("numa", HAS_ARG, QEMU_OPTION_numa,
141 "-numa node[,mem=size][,cpus=firstcpu[-lastcpu]][,nodeid=node]\n"
142 "-numa node[,memdev=id][,cpus=firstcpu[-lastcpu]][,nodeid=node]\n", QEMU_ARCH_ALL)
143 STEXI
144 @item -numa node[,mem=@var{size}][,cpus=@var{firstcpu}[-@var{lastcpu}]][,nodeid=@var{node}]
145 @itemx -numa node[,memdev=@var{id}][,cpus=@var{firstcpu}[-@var{lastcpu}]][,nodeid=@var{node}]
146 @findex -numa
147 Define a NUMA node and assign RAM and VCPUs to it.
149 @var{firstcpu} and @var{lastcpu} are CPU indexes. Each
150 @samp{cpus} option represent a contiguous range of CPU indexes
151 (or a single VCPU if @var{lastcpu} is omitted). A non-contiguous
152 set of VCPUs can be represented by providing multiple @samp{cpus}
153 options. If @samp{cpus} is omitted on all nodes, VCPUs are automatically
154 split between them.
156 For example, the following option assigns VCPUs 0, 1, 2 and 5 to
157 a NUMA node:
158 @example
159 -numa node,cpus=0-2,cpus=5
160 @end example
162 @samp{mem} assigns a given RAM amount to a node. @samp{memdev}
163 assigns RAM from a given memory backend device to a node. If
164 @samp{mem} and @samp{memdev} are omitted in all nodes, RAM is
165 split equally between them.
167 @samp{mem} and @samp{memdev} are mutually exclusive. Furthermore,
168 if one node uses @samp{memdev}, all of them have to use it.
170 Note that the -@option{numa} option doesn't allocate any of the
171 specified resources, it just assigns existing resources to NUMA
172 nodes. This means that one still has to use the @option{-m},
173 @option{-smp} options to allocate RAM and VCPUs respectively.
175 ETEXI
177 DEF("add-fd", HAS_ARG, QEMU_OPTION_add_fd,
178 "-add-fd fd=fd,set=set[,opaque=opaque]\n"
179 " Add 'fd' to fd 'set'\n", QEMU_ARCH_ALL)
180 STEXI
181 @item -add-fd fd=@var{fd},set=@var{set}[,opaque=@var{opaque}]
182 @findex -add-fd
184 Add a file descriptor to an fd set. Valid options are:
186 @table @option
187 @item fd=@var{fd}
188 This option defines the file descriptor of which a duplicate is added to fd set.
189 The file descriptor cannot be stdin, stdout, or stderr.
190 @item set=@var{set}
191 This option defines the ID of the fd set to add the file descriptor to.
192 @item opaque=@var{opaque}
193 This option defines a free-form string that can be used to describe @var{fd}.
194 @end table
196 You can open an image using pre-opened file descriptors from an fd set:
197 @example
198 qemu-system-i386
199 -add-fd fd=3,set=2,opaque="rdwr:/path/to/file"
200 -add-fd fd=4,set=2,opaque="rdonly:/path/to/file"
201 -drive file=/dev/fdset/2,index=0,media=disk
202 @end example
203 ETEXI
205 DEF("set", HAS_ARG, QEMU_OPTION_set,
206 "-set group.id.arg=value\n"
207 " set <arg> parameter for item <id> of type <group>\n"
208 " i.e. -set drive.$id.file=/path/to/image\n", QEMU_ARCH_ALL)
209 STEXI
210 @item -set @var{group}.@var{id}.@var{arg}=@var{value}
211 @findex -set
212 Set parameter @var{arg} for item @var{id} of type @var{group}
213 ETEXI
215 DEF("global", HAS_ARG, QEMU_OPTION_global,
216 "-global driver.property=value\n"
217 "-global driver=driver,property=property,value=value\n"
218 " set a global default for a driver property\n",
219 QEMU_ARCH_ALL)
220 STEXI
221 @item -global @var{driver}.@var{prop}=@var{value}
222 @itemx -global driver=@var{driver},property=@var{property},value=@var{value}
223 @findex -global
224 Set default value of @var{driver}'s property @var{prop} to @var{value}, e.g.:
226 @example
227 qemu-system-i386 -global ide-drive.physical_block_size=4096 -drive file=file,if=ide,index=0,media=disk
228 @end example
230 In particular, you can use this to set driver properties for devices which are
231 created automatically by the machine model. To create a device which is not
232 created automatically and set properties on it, use -@option{device}.
234 -global @var{driver}.@var{prop}=@var{value} is shorthand for -global
235 driver=@var{driver},property=@var{prop},value=@var{value}. The
236 longhand syntax works even when @var{driver} contains a dot.
237 ETEXI
239 DEF("boot", HAS_ARG, QEMU_OPTION_boot,
240 "-boot [order=drives][,once=drives][,menu=on|off]\n"
241 " [,splash=sp_name][,splash-time=sp_time][,reboot-timeout=rb_time][,strict=on|off]\n"
242 " 'drives': floppy (a), hard disk (c), CD-ROM (d), network (n)\n"
243 " 'sp_name': the file's name that would be passed to bios as logo picture, if menu=on\n"
244 " 'sp_time': the period that splash picture last if menu=on, unit is ms\n"
245 " 'rb_timeout': the timeout before guest reboot when boot failed, unit is ms\n",
246 QEMU_ARCH_ALL)
247 STEXI
248 @item -boot [order=@var{drives}][,once=@var{drives}][,menu=on|off][,splash=@var{sp_name}][,splash-time=@var{sp_time}][,reboot-timeout=@var{rb_timeout}][,strict=on|off]
249 @findex -boot
250 Specify boot order @var{drives} as a string of drive letters. Valid
251 drive letters depend on the target architecture. The x86 PC uses: a, b
252 (floppy 1 and 2), c (first hard disk), d (first CD-ROM), n-p (Etherboot
253 from network adapter 1-4), hard disk boot is the default. To apply a
254 particular boot order only on the first startup, specify it via
255 @option{once}. Note that the @option{order} or @option{once} parameter
256 should not be used together with the @option{bootindex} property of
257 devices, since the firmware implementations normally do not support both
258 at the same time.
260 Interactive boot menus/prompts can be enabled via @option{menu=on} as far
261 as firmware/BIOS supports them. The default is non-interactive boot.
263 A splash picture could be passed to bios, enabling user to show it as logo,
264 when option splash=@var{sp_name} is given and menu=on, If firmware/BIOS
265 supports them. Currently Seabios for X86 system support it.
266 limitation: The splash file could be a jpeg file or a BMP file in 24 BPP
267 format(true color). The resolution should be supported by the SVGA mode, so
268 the recommended is 320x240, 640x480, 800x640.
270 A timeout could be passed to bios, guest will pause for @var{rb_timeout} ms
271 when boot failed, then reboot. If @var{rb_timeout} is '-1', guest will not
272 reboot, qemu passes '-1' to bios by default. Currently Seabios for X86
273 system support it.
275 Do strict boot via @option{strict=on} as far as firmware/BIOS
276 supports it. This only effects when boot priority is changed by
277 bootindex options. The default is non-strict boot.
279 @example
280 # try to boot from network first, then from hard disk
281 qemu-system-i386 -boot order=nc
282 # boot from CD-ROM first, switch back to default order after reboot
283 qemu-system-i386 -boot once=d
284 # boot with a splash picture for 5 seconds.
285 qemu-system-i386 -boot menu=on,splash=/root/boot.bmp,splash-time=5000
286 @end example
288 Note: The legacy format '-boot @var{drives}' is still supported but its
289 use is discouraged as it may be removed from future versions.
290 ETEXI
292 DEF("m", HAS_ARG, QEMU_OPTION_m,
293 "-m [size=]megs[,slots=n,maxmem=size]\n"
294 " configure guest RAM\n"
295 " size: initial amount of guest memory\n"
296 " slots: number of hotplug slots (default: none)\n"
297 " maxmem: maximum amount of guest memory (default: none)\n"
298 "NOTE: Some architectures might enforce a specific granularity\n",
299 QEMU_ARCH_ALL)
300 STEXI
301 @item -m [size=]@var{megs}[,slots=n,maxmem=size]
302 @findex -m
303 Sets guest startup RAM size to @var{megs} megabytes. Default is 128 MiB.
304 Optionally, a suffix of ``M'' or ``G'' can be used to signify a value in
305 megabytes or gigabytes respectively. Optional pair @var{slots}, @var{maxmem}
306 could be used to set amount of hotpluggable memory slots and maximum amount of
307 memory. Note that @var{maxmem} must be aligned to the page size.
309 For example, the following command-line sets the guest startup RAM size to
310 1GB, creates 3 slots to hotplug additional memory and sets the maximum
311 memory the guest can reach to 4GB:
313 @example
314 qemu-system-x86_64 -m 1G,slots=3,maxmem=4G
315 @end example
317 If @var{slots} and @var{maxmem} are not specified, memory hotplug won't
318 be enabled and the guest startup RAM will never increase.
319 ETEXI
321 DEF("mem-path", HAS_ARG, QEMU_OPTION_mempath,
322 "-mem-path FILE provide backing storage for guest RAM\n", QEMU_ARCH_ALL)
323 STEXI
324 @item -mem-path @var{path}
325 @findex -mem-path
326 Allocate guest RAM from a temporarily created file in @var{path}.
327 ETEXI
329 DEF("mem-prealloc", 0, QEMU_OPTION_mem_prealloc,
330 "-mem-prealloc preallocate guest memory (use with -mem-path)\n",
331 QEMU_ARCH_ALL)
332 STEXI
333 @item -mem-prealloc
334 @findex -mem-prealloc
335 Preallocate memory when using -mem-path.
336 ETEXI
338 DEF("k", HAS_ARG, QEMU_OPTION_k,
339 "-k language use keyboard layout (for example 'fr' for French)\n",
340 QEMU_ARCH_ALL)
341 STEXI
342 @item -k @var{language}
343 @findex -k
344 Use keyboard layout @var{language} (for example @code{fr} for
345 French). This option is only needed where it is not easy to get raw PC
346 keycodes (e.g. on Macs, with some X11 servers or with a VNC or curses
347 display). You don't normally need to use it on PC/Linux or PC/Windows
348 hosts.
350 The available layouts are:
351 @example
352 ar de-ch es fo fr-ca hu ja mk no pt-br sv
353 da en-gb et fr fr-ch is lt nl pl ru th
354 de en-us fi fr-be hr it lv nl-be pt sl tr
355 @end example
357 The default is @code{en-us}.
358 ETEXI
361 DEF("audio-help", 0, QEMU_OPTION_audio_help,
362 "-audio-help print list of audio drivers and their options\n",
363 QEMU_ARCH_ALL)
364 STEXI
365 @item -audio-help
366 @findex -audio-help
367 Will show the audio subsystem help: list of drivers, tunable
368 parameters.
369 ETEXI
371 DEF("soundhw", HAS_ARG, QEMU_OPTION_soundhw,
372 "-soundhw c1,... enable audio support\n"
373 " and only specified sound cards (comma separated list)\n"
374 " use '-soundhw help' to get the list of supported cards\n"
375 " use '-soundhw all' to enable all of them\n", QEMU_ARCH_ALL)
376 STEXI
377 @item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
378 @findex -soundhw
379 Enable audio and selected sound hardware. Use 'help' to print all
380 available sound hardware.
382 @example
383 qemu-system-i386 -soundhw sb16,adlib disk.img
384 qemu-system-i386 -soundhw es1370 disk.img
385 qemu-system-i386 -soundhw ac97 disk.img
386 qemu-system-i386 -soundhw hda disk.img
387 qemu-system-i386 -soundhw all disk.img
388 qemu-system-i386 -soundhw help
389 @end example
391 Note that Linux's i810_audio OSS kernel (for AC97) module might
392 require manually specifying clocking.
394 @example
395 modprobe i810_audio clocking=48000
396 @end example
397 ETEXI
399 DEF("balloon", HAS_ARG, QEMU_OPTION_balloon,
400 "-balloon none disable balloon device\n"
401 "-balloon virtio[,addr=str]\n"
402 " enable virtio balloon device (default)\n", QEMU_ARCH_ALL)
403 STEXI
404 @item -balloon none
405 @findex -balloon
406 Disable balloon device.
407 @item -balloon virtio[,addr=@var{addr}]
408 Enable virtio balloon device (default), optionally with PCI address
409 @var{addr}.
410 ETEXI
412 DEF("device", HAS_ARG, QEMU_OPTION_device,
413 "-device driver[,prop[=value][,...]]\n"
414 " add device (based on driver)\n"
415 " prop=value,... sets driver properties\n"
416 " use '-device help' to print all possible drivers\n"
417 " use '-device driver,help' to print all possible properties\n",
418 QEMU_ARCH_ALL)
419 STEXI
420 @item -device @var{driver}[,@var{prop}[=@var{value}][,...]]
421 @findex -device
422 Add device @var{driver}. @var{prop}=@var{value} sets driver
423 properties. Valid properties depend on the driver. To get help on
424 possible drivers and properties, use @code{-device help} and
425 @code{-device @var{driver},help}.
427 Some drivers are:
428 @item -device ipmi-bmc-sim,id=@var{id}[,slave_addr=@var{val}]
430 Add an IPMI BMC. This is a simulation of a hardware management
431 interface processor that normally sits on a system. It provides
432 a watchdog and the ability to reset and power control the system.
433 You need to connect this to an IPMI interface to make it useful
435 The IPMI slave address to use for the BMC. The default is 0x20.
436 This address is the BMC's address on the I2C network of management
437 controllers. If you don't know what this means, it is safe to ignore
440 @item -device ipmi-bmc-extern,id=@var{id},chardev=@var{id}[,slave_addr=@var{val}]
442 Add a connection to an external IPMI BMC simulator. Instead of
443 locally emulating the BMC like the above item, instead connect
444 to an external entity that provides the IPMI services.
446 A connection is made to an external BMC simulator. If you do this, it
447 is strongly recommended that you use the "reconnect=" chardev option
448 to reconnect to the simulator if the connection is lost. Note that if
449 this is not used carefully, it can be a security issue, as the
450 interface has the ability to send resets, NMIs, and power off the VM.
451 It's best if QEMU makes a connection to an external simulator running
452 on a secure port on localhost, so neither the simulator nor QEMU is
453 exposed to any outside network.
455 See the "lanserv/README.vm" file in the OpenIPMI library for more
456 details on the external interface.
458 @item -device isa-ipmi-kcs,bmc=@var{id}[,ioport=@var{val}][,irq=@var{val}]
460 Add a KCS IPMI interafce on the ISA bus. This also adds a
461 corresponding ACPI and SMBIOS entries, if appropriate.
463 @table @option
464 @item bmc=@var{id}
465 The BMC to connect to, one of ipmi-bmc-sim or ipmi-bmc-extern above.
466 @item ioport=@var{val}
467 Define the I/O address of the interface. The default is 0xca0 for KCS.
468 @item irq=@var{val}
469 Define the interrupt to use. The default is 5. To disable interrupts,
470 set this to 0.
471 @end table
473 @item -device isa-ipmi-bt,bmc=@var{id}[,ioport=@var{val}][,irq=@var{val}]
475 Like the KCS interface, but defines a BT interface. The default port is
476 0xe4 and the default interrupt is 5.
478 ETEXI
480 DEF("name", HAS_ARG, QEMU_OPTION_name,
481 "-name string1[,process=string2][,debug-threads=on|off]\n"
482 " set the name of the guest\n"
483 " string1 sets the window title and string2 the process name (on Linux)\n"
484 " When debug-threads is enabled, individual threads are given a separate name (on Linux)\n"
485 " NOTE: The thread names are for debugging and not a stable API.\n",
486 QEMU_ARCH_ALL)
487 STEXI
488 @item -name @var{name}
489 @findex -name
490 Sets the @var{name} of the guest.
491 This name will be displayed in the SDL window caption.
492 The @var{name} will also be used for the VNC server.
493 Also optionally set the top visible process name in Linux.
494 Naming of individual threads can also be enabled on Linux to aid debugging.
495 ETEXI
497 DEF("uuid", HAS_ARG, QEMU_OPTION_uuid,
498 "-uuid %08x-%04x-%04x-%04x-%012x\n"
499 " specify machine UUID\n", QEMU_ARCH_ALL)
500 STEXI
501 @item -uuid @var{uuid}
502 @findex -uuid
503 Set system UUID.
504 ETEXI
506 STEXI
507 @end table
508 ETEXI
509 DEFHEADING()
511 DEFHEADING(Block device options)
512 STEXI
513 @table @option
514 ETEXI
516 DEF("fda", HAS_ARG, QEMU_OPTION_fda,
517 "-fda/-fdb file use 'file' as floppy disk 0/1 image\n", QEMU_ARCH_ALL)
518 DEF("fdb", HAS_ARG, QEMU_OPTION_fdb, "", QEMU_ARCH_ALL)
519 STEXI
520 @item -fda @var{file}
521 @itemx -fdb @var{file}
522 @findex -fda
523 @findex -fdb
524 Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}).
525 ETEXI
527 DEF("hda", HAS_ARG, QEMU_OPTION_hda,
528 "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n", QEMU_ARCH_ALL)
529 DEF("hdb", HAS_ARG, QEMU_OPTION_hdb, "", QEMU_ARCH_ALL)
530 DEF("hdc", HAS_ARG, QEMU_OPTION_hdc,
531 "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n", QEMU_ARCH_ALL)
532 DEF("hdd", HAS_ARG, QEMU_OPTION_hdd, "", QEMU_ARCH_ALL)
533 STEXI
534 @item -hda @var{file}
535 @itemx -hdb @var{file}
536 @itemx -hdc @var{file}
537 @itemx -hdd @var{file}
538 @findex -hda
539 @findex -hdb
540 @findex -hdc
541 @findex -hdd
542 Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
543 ETEXI
545 DEF("cdrom", HAS_ARG, QEMU_OPTION_cdrom,
546 "-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n",
547 QEMU_ARCH_ALL)
548 STEXI
549 @item -cdrom @var{file}
550 @findex -cdrom
551 Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
552 @option{-cdrom} at the same time). You can use the host CD-ROM by
553 using @file{/dev/cdrom} as filename (@pxref{host_drives}).
554 ETEXI
556 DEF("blockdev", HAS_ARG, QEMU_OPTION_blockdev,
557 "-blockdev [driver=]driver[,node-name=N][,discard=ignore|unmap]\n"
558 " [,cache.direct=on|off][,cache.no-flush=on|off]\n"
559 " [,read-only=on|off][,detect-zeroes=on|off|unmap]\n"
560 " [,driver specific parameters...]\n"
561 " configure a block backend\n", QEMU_ARCH_ALL)
563 DEF("drive", HAS_ARG, QEMU_OPTION_drive,
564 "-drive [file=file][,if=type][,bus=n][,unit=m][,media=d][,index=i]\n"
565 " [,cyls=c,heads=h,secs=s[,trans=t]][,snapshot=on|off]\n"
566 " [,cache=writethrough|writeback|none|directsync|unsafe][,format=f]\n"
567 " [,serial=s][,addr=A][,rerror=ignore|stop|report]\n"
568 " [,werror=ignore|stop|report|enospc][,id=name][,aio=threads|native]\n"
569 " [,readonly=on|off][,copy-on-read=on|off]\n"
570 " [,discard=ignore|unmap][,detect-zeroes=on|off|unmap]\n"
571 " [[,bps=b]|[[,bps_rd=r][,bps_wr=w]]]\n"
572 " [[,iops=i]|[[,iops_rd=r][,iops_wr=w]]]\n"
573 " [[,bps_max=bm]|[[,bps_rd_max=rm][,bps_wr_max=wm]]]\n"
574 " [[,iops_max=im]|[[,iops_rd_max=irm][,iops_wr_max=iwm]]]\n"
575 " [[,iops_size=is]]\n"
576 " [[,group=g]]\n"
577 " use 'file' as a drive image\n", QEMU_ARCH_ALL)
578 STEXI
579 @item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
580 @findex -drive
582 Define a new drive. Valid options are:
584 @table @option
585 @item file=@var{file}
586 This option defines which disk image (@pxref{disk_images}) to use with
587 this drive. If the filename contains comma, you must double it
588 (for instance, "file=my,,file" to use file "my,file").
590 Special files such as iSCSI devices can be specified using protocol
591 specific URLs. See the section for "Device URL Syntax" for more information.
592 @item if=@var{interface}
593 This option defines on which type on interface the drive is connected.
594 Available types are: ide, scsi, sd, mtd, floppy, pflash, virtio.
595 @item bus=@var{bus},unit=@var{unit}
596 These options define where is connected the drive by defining the bus number and
597 the unit id.
598 @item index=@var{index}
599 This option defines where is connected the drive by using an index in the list
600 of available connectors of a given interface type.
601 @item media=@var{media}
602 This option defines the type of the media: disk or cdrom.
603 @item cyls=@var{c},heads=@var{h},secs=@var{s}[,trans=@var{t}]
604 These options have the same definition as they have in @option{-hdachs}.
605 @item snapshot=@var{snapshot}
606 @var{snapshot} is "on" or "off" and controls snapshot mode for the given drive
607 (see @option{-snapshot}).
608 @item cache=@var{cache}
609 @var{cache} is "none", "writeback", "unsafe", "directsync" or "writethrough" and controls how the host cache is used to access block data.
610 @item aio=@var{aio}
611 @var{aio} is "threads", or "native" and selects between pthread based disk I/O and native Linux AIO.
612 @item discard=@var{discard}
613 @var{discard} is one of "ignore" (or "off") or "unmap" (or "on") and controls whether @dfn{discard} (also known as @dfn{trim} or @dfn{unmap}) requests are ignored or passed to the filesystem. Some machine types may not support discard requests.
614 @item format=@var{format}
615 Specify which disk @var{format} will be used rather than detecting
616 the format. Can be used to specify format=raw to avoid interpreting
617 an untrusted format header.
618 @item serial=@var{serial}
619 This option specifies the serial number to assign to the device.
620 @item addr=@var{addr}
621 Specify the controller's PCI address (if=virtio only).
622 @item werror=@var{action},rerror=@var{action}
623 Specify which @var{action} to take on write and read errors. Valid actions are:
624 "ignore" (ignore the error and try to continue), "stop" (pause QEMU),
625 "report" (report the error to the guest), "enospc" (pause QEMU only if the
626 host disk is full; report the error to the guest otherwise).
627 The default setting is @option{werror=enospc} and @option{rerror=report}.
628 @item readonly
629 Open drive @option{file} as read-only. Guest write attempts will fail.
630 @item copy-on-read=@var{copy-on-read}
631 @var{copy-on-read} is "on" or "off" and enables whether to copy read backing
632 file sectors into the image file.
633 @item detect-zeroes=@var{detect-zeroes}
634 @var{detect-zeroes} is "off", "on" or "unmap" and enables the automatic
635 conversion of plain zero writes by the OS to driver specific optimized
636 zero write commands. You may even choose "unmap" if @var{discard} is set
637 to "unmap" to allow a zero write to be converted to an UNMAP operation.
638 @item bps=@var{b},bps_rd=@var{r},bps_wr=@var{w}
639 Specify bandwidth throttling limits in bytes per second, either for all request
640 types or for reads or writes only. Small values can lead to timeouts or hangs
641 inside the guest. A safe minimum for disks is 2 MB/s.
642 @item bps_max=@var{bm},bps_rd_max=@var{rm},bps_wr_max=@var{wm}
643 Specify bursts in bytes per second, either for all request types or for reads
644 or writes only. Bursts allow the guest I/O to spike above the limit
645 temporarily.
646 @item iops=@var{i},iops_rd=@var{r},iops_wr=@var{w}
647 Specify request rate limits in requests per second, either for all request
648 types or for reads or writes only.
649 @item iops_max=@var{bm},iops_rd_max=@var{rm},iops_wr_max=@var{wm}
650 Specify bursts in requests per second, either for all request types or for reads
651 or writes only. Bursts allow the guest I/O to spike above the limit
652 temporarily.
653 @item iops_size=@var{is}
654 Let every @var{is} bytes of a request count as a new request for iops
655 throttling purposes. Use this option to prevent guests from circumventing iops
656 limits by sending fewer but larger requests.
657 @item group=@var{g}
658 Join a throttling quota group with given name @var{g}. All drives that are
659 members of the same group are accounted for together. Use this option to
660 prevent guests from circumventing throttling limits by using many small disks
661 instead of a single larger disk.
662 @end table
664 By default, the @option{cache=writeback} mode is used. It will report data
665 writes as completed as soon as the data is present in the host page cache.
666 This is safe as long as your guest OS makes sure to correctly flush disk caches
667 where needed. If your guest OS does not handle volatile disk write caches
668 correctly and your host crashes or loses power, then the guest may experience
669 data corruption.
671 For such guests, you should consider using @option{cache=writethrough}. This
672 means that the host page cache will be used to read and write data, but write
673 notification will be sent to the guest only after QEMU has made sure to flush
674 each write to the disk. Be aware that this has a major impact on performance.
676 The host page cache can be avoided entirely with @option{cache=none}. This will
677 attempt to do disk IO directly to the guest's memory. QEMU may still perform
678 an internal copy of the data. Note that this is considered a writeback mode and
679 the guest OS must handle the disk write cache correctly in order to avoid data
680 corruption on host crashes.
682 The host page cache can be avoided while only sending write notifications to
683 the guest when the data has been flushed to the disk using
684 @option{cache=directsync}.
686 In case you don't care about data integrity over host failures, use
687 @option{cache=unsafe}. This option tells QEMU that it never needs to write any
688 data to the disk but can instead keep things in cache. If anything goes wrong,
689 like your host losing power, the disk storage getting disconnected accidentally,
690 etc. your image will most probably be rendered unusable. When using
691 the @option{-snapshot} option, unsafe caching is always used.
693 Copy-on-read avoids accessing the same backing file sectors repeatedly and is
694 useful when the backing file is over a slow network. By default copy-on-read
695 is off.
697 Instead of @option{-cdrom} you can use:
698 @example
699 qemu-system-i386 -drive file=file,index=2,media=cdrom
700 @end example
702 Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
703 use:
704 @example
705 qemu-system-i386 -drive file=file,index=0,media=disk
706 qemu-system-i386 -drive file=file,index=1,media=disk
707 qemu-system-i386 -drive file=file,index=2,media=disk
708 qemu-system-i386 -drive file=file,index=3,media=disk
709 @end example
711 You can open an image using pre-opened file descriptors from an fd set:
712 @example
713 qemu-system-i386
714 -add-fd fd=3,set=2,opaque="rdwr:/path/to/file"
715 -add-fd fd=4,set=2,opaque="rdonly:/path/to/file"
716 -drive file=/dev/fdset/2,index=0,media=disk
717 @end example
719 You can connect a CDROM to the slave of ide0:
720 @example
721 qemu-system-i386 -drive file=file,if=ide,index=1,media=cdrom
722 @end example
724 If you don't specify the "file=" argument, you define an empty drive:
725 @example
726 qemu-system-i386 -drive if=ide,index=1,media=cdrom
727 @end example
729 Instead of @option{-fda}, @option{-fdb}, you can use:
730 @example
731 qemu-system-i386 -drive file=file,index=0,if=floppy
732 qemu-system-i386 -drive file=file,index=1,if=floppy
733 @end example
735 By default, @var{interface} is "ide" and @var{index} is automatically
736 incremented:
737 @example
738 qemu-system-i386 -drive file=a -drive file=b"
739 @end example
740 is interpreted like:
741 @example
742 qemu-system-i386 -hda a -hdb b
743 @end example
744 ETEXI
746 DEF("mtdblock", HAS_ARG, QEMU_OPTION_mtdblock,
747 "-mtdblock file use 'file' as on-board Flash memory image\n",
748 QEMU_ARCH_ALL)
749 STEXI
750 @item -mtdblock @var{file}
751 @findex -mtdblock
752 Use @var{file} as on-board Flash memory image.
753 ETEXI
755 DEF("sd", HAS_ARG, QEMU_OPTION_sd,
756 "-sd file use 'file' as SecureDigital card image\n", QEMU_ARCH_ALL)
757 STEXI
758 @item -sd @var{file}
759 @findex -sd
760 Use @var{file} as SecureDigital card image.
761 ETEXI
763 DEF("pflash", HAS_ARG, QEMU_OPTION_pflash,
764 "-pflash file use 'file' as a parallel flash image\n", QEMU_ARCH_ALL)
765 STEXI
766 @item -pflash @var{file}
767 @findex -pflash
768 Use @var{file} as a parallel flash image.
769 ETEXI
771 DEF("snapshot", 0, QEMU_OPTION_snapshot,
772 "-snapshot write to temporary files instead of disk image files\n",
773 QEMU_ARCH_ALL)
774 STEXI
775 @item -snapshot
776 @findex -snapshot
777 Write to temporary files instead of disk image files. In this case,
778 the raw disk image you use is not written back. You can however force
779 the write back by pressing @key{C-a s} (@pxref{disk_images}).
780 ETEXI
782 DEF("hdachs", HAS_ARG, QEMU_OPTION_hdachs, \
783 "-hdachs c,h,s[,t]\n" \
784 " force hard disk 0 physical geometry and the optional BIOS\n" \
785 " translation (t=none or lba) (usually QEMU can guess them)\n",
786 QEMU_ARCH_ALL)
787 STEXI
788 @item -hdachs @var{c},@var{h},@var{s},[,@var{t}]
789 @findex -hdachs
790 Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
791 @var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
792 translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
793 all those parameters. This option is useful for old MS-DOS disk
794 images.
795 ETEXI
797 DEF("fsdev", HAS_ARG, QEMU_OPTION_fsdev,
798 "-fsdev fsdriver,id=id[,path=path,][security_model={mapped-xattr|mapped-file|passthrough|none}]\n"
799 " [,writeout=immediate][,readonly][,socket=socket|sock_fd=sock_fd]\n"
800 " [[,throttling.bps-total=b]|[[,throttling.bps-read=r][,throttling.bps-write=w]]]\n"
801 " [[,throttling.iops-total=i]|[[,throttling.iops-read=r][,throttling.iops-write=w]]]\n"
802 " [[,throttling.bps-total-max=bm]|[[,throttling.bps-read-max=rm][,throttling.bps-write-max=wm]]]\n"
803 " [[,throttling.iops-total-max=im]|[[,throttling.iops-read-max=irm][,throttling.iops-write-max=iwm]]]\n"
804 " [[,throttling.iops-size=is]]\n",
805 QEMU_ARCH_ALL)
807 STEXI
809 @item -fsdev @var{fsdriver},id=@var{id},path=@var{path},[security_model=@var{security_model}][,writeout=@var{writeout}][,readonly][,socket=@var{socket}|sock_fd=@var{sock_fd}]
810 @findex -fsdev
811 Define a new file system device. Valid options are:
812 @table @option
813 @item @var{fsdriver}
814 This option specifies the fs driver backend to use.
815 Currently "local", "handle" and "proxy" file system drivers are supported.
816 @item id=@var{id}
817 Specifies identifier for this device
818 @item path=@var{path}
819 Specifies the export path for the file system device. Files under
820 this path will be available to the 9p client on the guest.
821 @item security_model=@var{security_model}
822 Specifies the security model to be used for this export path.
823 Supported security models are "passthrough", "mapped-xattr", "mapped-file" and "none".
824 In "passthrough" security model, files are stored using the same
825 credentials as they are created on the guest. This requires QEMU
826 to run as root. In "mapped-xattr" security model, some of the file
827 attributes like uid, gid, mode bits and link target are stored as
828 file attributes. For "mapped-file" these attributes are stored in the
829 hidden .virtfs_metadata directory. Directories exported by this security model cannot
830 interact with other unix tools. "none" security model is same as
831 passthrough except the sever won't report failures if it fails to
832 set file attributes like ownership. Security model is mandatory
833 only for local fsdriver. Other fsdrivers (like handle, proxy) don't take
834 security model as a parameter.
835 @item writeout=@var{writeout}
836 This is an optional argument. The only supported value is "immediate".
837 This means that host page cache will be used to read and write data but
838 write notification will be sent to the guest only when the data has been
839 reported as written by the storage subsystem.
840 @item readonly
841 Enables exporting 9p share as a readonly mount for guests. By default
842 read-write access is given.
843 @item socket=@var{socket}
844 Enables proxy filesystem driver to use passed socket file for communicating
845 with virtfs-proxy-helper
846 @item sock_fd=@var{sock_fd}
847 Enables proxy filesystem driver to use passed socket descriptor for
848 communicating with virtfs-proxy-helper. Usually a helper like libvirt
849 will create socketpair and pass one of the fds as sock_fd
850 @end table
852 -fsdev option is used along with -device driver "virtio-9p-pci".
853 @item -device virtio-9p-pci,fsdev=@var{id},mount_tag=@var{mount_tag}
854 Options for virtio-9p-pci driver are:
855 @table @option
856 @item fsdev=@var{id}
857 Specifies the id value specified along with -fsdev option
858 @item mount_tag=@var{mount_tag}
859 Specifies the tag name to be used by the guest to mount this export point
860 @end table
862 ETEXI
864 DEF("virtfs", HAS_ARG, QEMU_OPTION_virtfs,
865 "-virtfs local,path=path,mount_tag=tag,security_model=[mapped-xattr|mapped-file|passthrough|none]\n"
866 " [,writeout=immediate][,readonly][,socket=socket|sock_fd=sock_fd]\n",
867 QEMU_ARCH_ALL)
869 STEXI
871 @item -virtfs @var{fsdriver}[,path=@var{path}],mount_tag=@var{mount_tag}[,security_model=@var{security_model}][,writeout=@var{writeout}][,readonly][,socket=@var{socket}|sock_fd=@var{sock_fd}]
872 @findex -virtfs
874 The general form of a Virtual File system pass-through options are:
875 @table @option
876 @item @var{fsdriver}
877 This option specifies the fs driver backend to use.
878 Currently "local", "handle" and "proxy" file system drivers are supported.
879 @item id=@var{id}
880 Specifies identifier for this device
881 @item path=@var{path}
882 Specifies the export path for the file system device. Files under
883 this path will be available to the 9p client on the guest.
884 @item security_model=@var{security_model}
885 Specifies the security model to be used for this export path.
886 Supported security models are "passthrough", "mapped-xattr", "mapped-file" and "none".
887 In "passthrough" security model, files are stored using the same
888 credentials as they are created on the guest. This requires QEMU
889 to run as root. In "mapped-xattr" security model, some of the file
890 attributes like uid, gid, mode bits and link target are stored as
891 file attributes. For "mapped-file" these attributes are stored in the
892 hidden .virtfs_metadata directory. Directories exported by this security model cannot
893 interact with other unix tools. "none" security model is same as
894 passthrough except the sever won't report failures if it fails to
895 set file attributes like ownership. Security model is mandatory only
896 for local fsdriver. Other fsdrivers (like handle, proxy) don't take security
897 model as a parameter.
898 @item writeout=@var{writeout}
899 This is an optional argument. The only supported value is "immediate".
900 This means that host page cache will be used to read and write data but
901 write notification will be sent to the guest only when the data has been
902 reported as written by the storage subsystem.
903 @item readonly
904 Enables exporting 9p share as a readonly mount for guests. By default
905 read-write access is given.
906 @item socket=@var{socket}
907 Enables proxy filesystem driver to use passed socket file for
908 communicating with virtfs-proxy-helper. Usually a helper like libvirt
909 will create socketpair and pass one of the fds as sock_fd
910 @item sock_fd
911 Enables proxy filesystem driver to use passed 'sock_fd' as the socket
912 descriptor for interfacing with virtfs-proxy-helper
913 @end table
914 ETEXI
916 DEF("virtfs_synth", 0, QEMU_OPTION_virtfs_synth,
917 "-virtfs_synth Create synthetic file system image\n",
918 QEMU_ARCH_ALL)
919 STEXI
920 @item -virtfs_synth
921 @findex -virtfs_synth
922 Create synthetic file system image
923 ETEXI
925 STEXI
926 @end table
927 ETEXI
928 DEFHEADING()
930 DEFHEADING(USB options)
931 STEXI
932 @table @option
933 ETEXI
935 DEF("usb", 0, QEMU_OPTION_usb,
936 "-usb enable the USB driver (will be the default soon)\n",
937 QEMU_ARCH_ALL)
938 STEXI
939 @item -usb
940 @findex -usb
941 Enable the USB driver (will be the default soon)
942 ETEXI
944 DEF("usbdevice", HAS_ARG, QEMU_OPTION_usbdevice,
945 "-usbdevice name add the host or guest USB device 'name'\n",
946 QEMU_ARCH_ALL)
947 STEXI
949 @item -usbdevice @var{devname}
950 @findex -usbdevice
951 Add the USB device @var{devname}. @xref{usb_devices}.
953 @table @option
955 @item mouse
956 Virtual Mouse. This will override the PS/2 mouse emulation when activated.
958 @item tablet
959 Pointer device that uses absolute coordinates (like a touchscreen). This
960 means QEMU is able to report the mouse position without having to grab the
961 mouse. Also overrides the PS/2 mouse emulation when activated.
963 @item disk:[format=@var{format}]:@var{file}
964 Mass storage device based on file. The optional @var{format} argument
965 will be used rather than detecting the format. Can be used to specify
966 @code{format=raw} to avoid interpreting an untrusted format header.
968 @item host:@var{bus}.@var{addr}
969 Pass through the host device identified by @var{bus}.@var{addr} (Linux only).
971 @item host:@var{vendor_id}:@var{product_id}
972 Pass through the host device identified by @var{vendor_id}:@var{product_id}
973 (Linux only).
975 @item serial:[vendorid=@var{vendor_id}][,productid=@var{product_id}]:@var{dev}
976 Serial converter to host character device @var{dev}, see @code{-serial} for the
977 available devices.
979 @item braille
980 Braille device. This will use BrlAPI to display the braille output on a real
981 or fake device.
983 @item net:@var{options}
984 Network adapter that supports CDC ethernet and RNDIS protocols.
986 @end table
987 ETEXI
989 STEXI
990 @end table
991 ETEXI
992 DEFHEADING()
994 DEFHEADING(Display options)
995 STEXI
996 @table @option
997 ETEXI
999 DEF("display", HAS_ARG, QEMU_OPTION_display,
1000 "-display sdl[,frame=on|off][,alt_grab=on|off][,ctrl_grab=on|off]\n"
1001 " [,window_close=on|off][,gl=on|off]\n"
1002 "-display gtk[,grab_on_hover=on|off][,gl=on|off]|\n"
1003 "-display vnc=<display>[,<optargs>]\n"
1004 "-display curses\n"
1005 "-display none"
1006 " select display type\n"
1007 "The default display is equivalent to\n"
1008 #if defined(CONFIG_GTK)
1009 "\t\"-display gtk\"\n"
1010 #elif defined(CONFIG_SDL)
1011 "\t\"-display sdl\"\n"
1012 #elif defined(CONFIG_COCOA)
1013 "\t\"-display cocoa\"\n"
1014 #elif defined(CONFIG_VNC)
1015 "\t\"-vnc localhost:0,to=99,id=default\"\n"
1016 #else
1017 "\t\"-display none\"\n"
1018 #endif
1019 , QEMU_ARCH_ALL)
1020 STEXI
1021 @item -display @var{type}
1022 @findex -display
1023 Select type of display to use. This option is a replacement for the
1024 old style -sdl/-curses/... options. Valid values for @var{type} are
1025 @table @option
1026 @item sdl
1027 Display video output via SDL (usually in a separate graphics
1028 window; see the SDL documentation for other possibilities).
1029 @item curses
1030 Display video output via curses. For graphics device models which
1031 support a text mode, QEMU can display this output using a
1032 curses/ncurses interface. Nothing is displayed when the graphics
1033 device is in graphical mode or if the graphics device does not support
1034 a text mode. Generally only the VGA device models support text mode.
1035 @item none
1036 Do not display video output. The guest will still see an emulated
1037 graphics card, but its output will not be displayed to the QEMU
1038 user. This option differs from the -nographic option in that it
1039 only affects what is done with video output; -nographic also changes
1040 the destination of the serial and parallel port data.
1041 @item gtk
1042 Display video output in a GTK window. This interface provides drop-down
1043 menus and other UI elements to configure and control the VM during
1044 runtime.
1045 @item vnc
1046 Start a VNC server on display <arg>
1047 @end table
1048 ETEXI
1050 DEF("nographic", 0, QEMU_OPTION_nographic,
1051 "-nographic disable graphical output and redirect serial I/Os to console\n",
1052 QEMU_ARCH_ALL)
1053 STEXI
1054 @item -nographic
1055 @findex -nographic
1056 Normally, if QEMU is compiled with graphical window support, it displays
1057 output such as guest graphics, guest console, and the QEMU monitor in a
1058 window. With this option, you can totally disable graphical output so
1059 that QEMU is a simple command line application. The emulated serial port
1060 is redirected on the console and muxed with the monitor (unless
1061 redirected elsewhere explicitly). Therefore, you can still use QEMU to
1062 debug a Linux kernel with a serial console. Use @key{C-a h} for help on
1063 switching between the console and monitor.
1064 ETEXI
1066 DEF("curses", 0, QEMU_OPTION_curses,
1067 "-curses shorthand for -display curses\n",
1068 QEMU_ARCH_ALL)
1069 STEXI
1070 @item -curses
1071 @findex -curses
1072 Normally, if QEMU is compiled with graphical window support, it displays
1073 output such as guest graphics, guest console, and the QEMU monitor in a
1074 window. With this option, QEMU can display the VGA output when in text
1075 mode using a curses/ncurses interface. Nothing is displayed in graphical
1076 mode.
1077 ETEXI
1079 DEF("no-frame", 0, QEMU_OPTION_no_frame,
1080 "-no-frame open SDL window without a frame and window decorations\n",
1081 QEMU_ARCH_ALL)
1082 STEXI
1083 @item -no-frame
1084 @findex -no-frame
1085 Do not use decorations for SDL windows and start them using the whole
1086 available screen space. This makes the using QEMU in a dedicated desktop
1087 workspace more convenient.
1088 ETEXI
1090 DEF("alt-grab", 0, QEMU_OPTION_alt_grab,
1091 "-alt-grab use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n",
1092 QEMU_ARCH_ALL)
1093 STEXI
1094 @item -alt-grab
1095 @findex -alt-grab
1096 Use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt). Note that this also
1097 affects the special keys (for fullscreen, monitor-mode switching, etc).
1098 ETEXI
1100 DEF("ctrl-grab", 0, QEMU_OPTION_ctrl_grab,
1101 "-ctrl-grab use Right-Ctrl to grab mouse (instead of Ctrl-Alt)\n",
1102 QEMU_ARCH_ALL)
1103 STEXI
1104 @item -ctrl-grab
1105 @findex -ctrl-grab
1106 Use Right-Ctrl to grab mouse (instead of Ctrl-Alt). Note that this also
1107 affects the special keys (for fullscreen, monitor-mode switching, etc).
1108 ETEXI
1110 DEF("no-quit", 0, QEMU_OPTION_no_quit,
1111 "-no-quit disable SDL window close capability\n", QEMU_ARCH_ALL)
1112 STEXI
1113 @item -no-quit
1114 @findex -no-quit
1115 Disable SDL window close capability.
1116 ETEXI
1118 DEF("sdl", 0, QEMU_OPTION_sdl,
1119 "-sdl shorthand for -display sdl\n", QEMU_ARCH_ALL)
1120 STEXI
1121 @item -sdl
1122 @findex -sdl
1123 Enable SDL.
1124 ETEXI
1126 DEF("spice", HAS_ARG, QEMU_OPTION_spice,
1127 "-spice [port=port][,tls-port=secured-port][,x509-dir=<dir>]\n"
1128 " [,x509-key-file=<file>][,x509-key-password=<file>]\n"
1129 " [,x509-cert-file=<file>][,x509-cacert-file=<file>]\n"
1130 " [,x509-dh-key-file=<file>][,addr=addr][,ipv4|ipv6|unix]\n"
1131 " [,tls-ciphers=<list>]\n"
1132 " [,tls-channel=[main|display|cursor|inputs|record|playback]]\n"
1133 " [,plaintext-channel=[main|display|cursor|inputs|record|playback]]\n"
1134 " [,sasl][,password=<secret>][,disable-ticketing]\n"
1135 " [,image-compression=[auto_glz|auto_lz|quic|glz|lz|off]]\n"
1136 " [,jpeg-wan-compression=[auto|never|always]]\n"
1137 " [,zlib-glz-wan-compression=[auto|never|always]]\n"
1138 " [,streaming-video=[off|all|filter]][,disable-copy-paste]\n"
1139 " [,disable-agent-file-xfer][,agent-mouse=[on|off]]\n"
1140 " [,playback-compression=[on|off]][,seamless-migration=[on|off]]\n"
1141 " [,gl=[on|off]][,rendernode=<file>]\n"
1142 " enable spice\n"
1143 " at least one of {port, tls-port} is mandatory\n",
1144 QEMU_ARCH_ALL)
1145 STEXI
1146 @item -spice @var{option}[,@var{option}[,...]]
1147 @findex -spice
1148 Enable the spice remote desktop protocol. Valid options are
1150 @table @option
1152 @item port=<nr>
1153 Set the TCP port spice is listening on for plaintext channels.
1155 @item addr=<addr>
1156 Set the IP address spice is listening on. Default is any address.
1158 @item ipv4
1159 @itemx ipv6
1160 @itemx unix
1161 Force using the specified IP version.
1163 @item password=<secret>
1164 Set the password you need to authenticate.
1166 @item sasl
1167 Require that the client use SASL to authenticate with the spice.
1168 The exact choice of authentication method used is controlled from the
1169 system / user's SASL configuration file for the 'qemu' service. This
1170 is typically found in /etc/sasl2/qemu.conf. If running QEMU as an
1171 unprivileged user, an environment variable SASL_CONF_PATH can be used
1172 to make it search alternate locations for the service config.
1173 While some SASL auth methods can also provide data encryption (eg GSSAPI),
1174 it is recommended that SASL always be combined with the 'tls' and
1175 'x509' settings to enable use of SSL and server certificates. This
1176 ensures a data encryption preventing compromise of authentication
1177 credentials.
1179 @item disable-ticketing
1180 Allow client connects without authentication.
1182 @item disable-copy-paste
1183 Disable copy paste between the client and the guest.
1185 @item disable-agent-file-xfer
1186 Disable spice-vdagent based file-xfer between the client and the guest.
1188 @item tls-port=<nr>
1189 Set the TCP port spice is listening on for encrypted channels.
1191 @item x509-dir=<dir>
1192 Set the x509 file directory. Expects same filenames as -vnc $display,x509=$dir
1194 @item x509-key-file=<file>
1195 @itemx x509-key-password=<file>
1196 @itemx x509-cert-file=<file>
1197 @itemx x509-cacert-file=<file>
1198 @itemx x509-dh-key-file=<file>
1199 The x509 file names can also be configured individually.
1201 @item tls-ciphers=<list>
1202 Specify which ciphers to use.
1204 @item tls-channel=[main|display|cursor|inputs|record|playback]
1205 @itemx plaintext-channel=[main|display|cursor|inputs|record|playback]
1206 Force specific channel to be used with or without TLS encryption. The
1207 options can be specified multiple times to configure multiple
1208 channels. The special name "default" can be used to set the default
1209 mode. For channels which are not explicitly forced into one mode the
1210 spice client is allowed to pick tls/plaintext as he pleases.
1212 @item image-compression=[auto_glz|auto_lz|quic|glz|lz|off]
1213 Configure image compression (lossless).
1214 Default is auto_glz.
1216 @item jpeg-wan-compression=[auto|never|always]
1217 @itemx zlib-glz-wan-compression=[auto|never|always]
1218 Configure wan image compression (lossy for slow links).
1219 Default is auto.
1221 @item streaming-video=[off|all|filter]
1222 Configure video stream detection. Default is off.
1224 @item agent-mouse=[on|off]
1225 Enable/disable passing mouse events via vdagent. Default is on.
1227 @item playback-compression=[on|off]
1228 Enable/disable audio stream compression (using celt 0.5.1). Default is on.
1230 @item seamless-migration=[on|off]
1231 Enable/disable spice seamless migration. Default is off.
1233 @item gl=[on|off]
1234 Enable/disable OpenGL context. Default is off.
1236 @item rendernode=<file>
1237 DRM render node for OpenGL rendering. If not specified, it will pick
1238 the first available. (Since 2.9)
1240 @end table
1241 ETEXI
1243 DEF("portrait", 0, QEMU_OPTION_portrait,
1244 "-portrait rotate graphical output 90 deg left (only PXA LCD)\n",
1245 QEMU_ARCH_ALL)
1246 STEXI
1247 @item -portrait
1248 @findex -portrait
1249 Rotate graphical output 90 deg left (only PXA LCD).
1250 ETEXI
1252 DEF("rotate", HAS_ARG, QEMU_OPTION_rotate,
1253 "-rotate <deg> rotate graphical output some deg left (only PXA LCD)\n",
1254 QEMU_ARCH_ALL)
1255 STEXI
1256 @item -rotate @var{deg}
1257 @findex -rotate
1258 Rotate graphical output some deg left (only PXA LCD).
1259 ETEXI
1261 DEF("vga", HAS_ARG, QEMU_OPTION_vga,
1262 "-vga [std|cirrus|vmware|qxl|xenfb|tcx|cg3|virtio|none]\n"
1263 " select video card type\n", QEMU_ARCH_ALL)
1264 STEXI
1265 @item -vga @var{type}
1266 @findex -vga
1267 Select type of VGA card to emulate. Valid values for @var{type} are
1268 @table @option
1269 @item cirrus
1270 Cirrus Logic GD5446 Video card. All Windows versions starting from
1271 Windows 95 should recognize and use this graphic card. For optimal
1272 performances, use 16 bit color depth in the guest and the host OS.
1273 (This card was the default before QEMU 2.2)
1274 @item std
1275 Standard VGA card with Bochs VBE extensions. If your guest OS
1276 supports the VESA 2.0 VBE extensions (e.g. Windows XP) and if you want
1277 to use high resolution modes (>= 1280x1024x16) then you should use
1278 this option. (This card is the default since QEMU 2.2)
1279 @item vmware
1280 VMWare SVGA-II compatible adapter. Use it if you have sufficiently
1281 recent XFree86/XOrg server or Windows guest with a driver for this
1282 card.
1283 @item qxl
1284 QXL paravirtual graphic card. It is VGA compatible (including VESA
1285 2.0 VBE support). Works best with qxl guest drivers installed though.
1286 Recommended choice when using the spice protocol.
1287 @item tcx
1288 (sun4m only) Sun TCX framebuffer. This is the default framebuffer for
1289 sun4m machines and offers both 8-bit and 24-bit colour depths at a
1290 fixed resolution of 1024x768.
1291 @item cg3
1292 (sun4m only) Sun cgthree framebuffer. This is a simple 8-bit framebuffer
1293 for sun4m machines available in both 1024x768 (OpenBIOS) and 1152x900 (OBP)
1294 resolutions aimed at people wishing to run older Solaris versions.
1295 @item virtio
1296 Virtio VGA card.
1297 @item none
1298 Disable VGA card.
1299 @end table
1300 ETEXI
1302 DEF("full-screen", 0, QEMU_OPTION_full_screen,
1303 "-full-screen start in full screen\n", QEMU_ARCH_ALL)
1304 STEXI
1305 @item -full-screen
1306 @findex -full-screen
1307 Start in full screen.
1308 ETEXI
1310 DEF("g", 1, QEMU_OPTION_g ,
1311 "-g WxH[xDEPTH] Set the initial graphical resolution and depth\n",
1312 QEMU_ARCH_PPC | QEMU_ARCH_SPARC)
1313 STEXI
1314 @item -g @var{width}x@var{height}[x@var{depth}]
1315 @findex -g
1316 Set the initial graphical resolution and depth (PPC, SPARC only).
1317 ETEXI
1319 DEF("vnc", HAS_ARG, QEMU_OPTION_vnc ,
1320 "-vnc <display> shorthand for -display vnc=<display>\n", QEMU_ARCH_ALL)
1321 STEXI
1322 @item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
1323 @findex -vnc
1324 Normally, if QEMU is compiled with graphical window support, it displays
1325 output such as guest graphics, guest console, and the QEMU monitor in a
1326 window. With this option, you can have QEMU listen on VNC display
1327 @var{display} and redirect the VGA display over the VNC session. It is
1328 very useful to enable the usb tablet device when using this option
1329 (option @option{-usbdevice tablet}). When using the VNC display, you
1330 must use the @option{-k} parameter to set the keyboard layout if you are
1331 not using en-us. Valid syntax for the @var{display} is
1333 @table @option
1335 @item to=@var{L}
1337 With this option, QEMU will try next available VNC @var{display}s, until the
1338 number @var{L}, if the origianlly defined "-vnc @var{display}" is not
1339 available, e.g. port 5900+@var{display} is already used by another
1340 application. By default, to=0.
1342 @item @var{host}:@var{d}
1344 TCP connections will only be allowed from @var{host} on display @var{d}.
1345 By convention the TCP port is 5900+@var{d}. Optionally, @var{host} can
1346 be omitted in which case the server will accept connections from any host.
1348 @item unix:@var{path}
1350 Connections will be allowed over UNIX domain sockets where @var{path} is the
1351 location of a unix socket to listen for connections on.
1353 @item none
1355 VNC is initialized but not started. The monitor @code{change} command
1356 can be used to later start the VNC server.
1358 @end table
1360 Following the @var{display} value there may be one or more @var{option} flags
1361 separated by commas. Valid options are
1363 @table @option
1365 @item reverse
1367 Connect to a listening VNC client via a ``reverse'' connection. The
1368 client is specified by the @var{display}. For reverse network
1369 connections (@var{host}:@var{d},@code{reverse}), the @var{d} argument
1370 is a TCP port number, not a display number.
1372 @item websocket
1374 Opens an additional TCP listening port dedicated to VNC Websocket connections.
1375 If a bare @var{websocket} option is given, the Websocket port is
1376 5700+@var{display}. An alternative port can be specified with the
1377 syntax @code{websocket}=@var{port}.
1379 If @var{host} is specified connections will only be allowed from this host.
1380 It is possible to control the websocket listen address independently, using
1381 the syntax @code{websocket}=@var{host}:@var{port}.
1383 If no TLS credentials are provided, the websocket connection runs in
1384 unencrypted mode. If TLS credentials are provided, the websocket connection
1385 requires encrypted client connections.
1387 @item password
1389 Require that password based authentication is used for client connections.
1391 The password must be set separately using the @code{set_password} command in
1392 the @ref{pcsys_monitor}. The syntax to change your password is:
1393 @code{set_password <protocol> <password>} where <protocol> could be either
1394 "vnc" or "spice".
1396 If you would like to change <protocol> password expiration, you should use
1397 @code{expire_password <protocol> <expiration-time>} where expiration time could
1398 be one of the following options: now, never, +seconds or UNIX time of
1399 expiration, e.g. +60 to make password expire in 60 seconds, or 1335196800
1400 to make password expire on "Mon Apr 23 12:00:00 EDT 2012" (UNIX time for this
1401 date and time).
1403 You can also use keywords "now" or "never" for the expiration time to
1404 allow <protocol> password to expire immediately or never expire.
1406 @item tls-creds=@var{ID}
1408 Provides the ID of a set of TLS credentials to use to secure the
1409 VNC server. They will apply to both the normal VNC server socket
1410 and the websocket socket (if enabled). Setting TLS credentials
1411 will cause the VNC server socket to enable the VeNCrypt auth
1412 mechanism. The credentials should have been previously created
1413 using the @option{-object tls-creds} argument.
1415 The @option{tls-creds} parameter obsoletes the @option{tls},
1416 @option{x509}, and @option{x509verify} options, and as such
1417 it is not permitted to set both new and old type options at
1418 the same time.
1420 @item tls
1422 Require that client use TLS when communicating with the VNC server. This
1423 uses anonymous TLS credentials so is susceptible to a man-in-the-middle
1424 attack. It is recommended that this option be combined with either the
1425 @option{x509} or @option{x509verify} options.
1427 This option is now deprecated in favor of using the @option{tls-creds}
1428 argument.
1430 @item x509=@var{/path/to/certificate/dir}
1432 Valid if @option{tls} is specified. Require that x509 credentials are used
1433 for negotiating the TLS session. The server will send its x509 certificate
1434 to the client. It is recommended that a password be set on the VNC server
1435 to provide authentication of the client when this is used. The path following
1436 this option specifies where the x509 certificates are to be loaded from.
1437 See the @ref{vnc_security} section for details on generating certificates.
1439 This option is now deprecated in favour of using the @option{tls-creds}
1440 argument.
1442 @item x509verify=@var{/path/to/certificate/dir}
1444 Valid if @option{tls} is specified. Require that x509 credentials are used
1445 for negotiating the TLS session. The server will send its x509 certificate
1446 to the client, and request that the client send its own x509 certificate.
1447 The server will validate the client's certificate against the CA certificate,
1448 and reject clients when validation fails. If the certificate authority is
1449 trusted, this is a sufficient authentication mechanism. You may still wish
1450 to set a password on the VNC server as a second authentication layer. The
1451 path following this option specifies where the x509 certificates are to
1452 be loaded from. See the @ref{vnc_security} section for details on generating
1453 certificates.
1455 This option is now deprecated in favour of using the @option{tls-creds}
1456 argument.
1458 @item sasl
1460 Require that the client use SASL to authenticate with the VNC server.
1461 The exact choice of authentication method used is controlled from the
1462 system / user's SASL configuration file for the 'qemu' service. This
1463 is typically found in /etc/sasl2/qemu.conf. If running QEMU as an
1464 unprivileged user, an environment variable SASL_CONF_PATH can be used
1465 to make it search alternate locations for the service config.
1466 While some SASL auth methods can also provide data encryption (eg GSSAPI),
1467 it is recommended that SASL always be combined with the 'tls' and
1468 'x509' settings to enable use of SSL and server certificates. This
1469 ensures a data encryption preventing compromise of authentication
1470 credentials. See the @ref{vnc_security} section for details on using
1471 SASL authentication.
1473 @item acl
1475 Turn on access control lists for checking of the x509 client certificate
1476 and SASL party. For x509 certs, the ACL check is made against the
1477 certificate's distinguished name. This is something that looks like
1478 @code{C=GB,O=ACME,L=Boston,CN=bob}. For SASL party, the ACL check is
1479 made against the username, which depending on the SASL plugin, may
1480 include a realm component, eg @code{bob} or @code{bob@@EXAMPLE.COM}.
1481 When the @option{acl} flag is set, the initial access list will be
1482 empty, with a @code{deny} policy. Thus no one will be allowed to
1483 use the VNC server until the ACLs have been loaded. This can be
1484 achieved using the @code{acl} monitor command.
1486 @item lossy
1488 Enable lossy compression methods (gradient, JPEG, ...). If this
1489 option is set, VNC client may receive lossy framebuffer updates
1490 depending on its encoding settings. Enabling this option can save
1491 a lot of bandwidth at the expense of quality.
1493 @item non-adaptive
1495 Disable adaptive encodings. Adaptive encodings are enabled by default.
1496 An adaptive encoding will try to detect frequently updated screen regions,
1497 and send updates in these regions using a lossy encoding (like JPEG).
1498 This can be really helpful to save bandwidth when playing videos. Disabling
1499 adaptive encodings restores the original static behavior of encodings
1500 like Tight.
1502 @item share=[allow-exclusive|force-shared|ignore]
1504 Set display sharing policy. 'allow-exclusive' allows clients to ask
1505 for exclusive access. As suggested by the rfb spec this is
1506 implemented by dropping other connections. Connecting multiple
1507 clients in parallel requires all clients asking for a shared session
1508 (vncviewer: -shared switch). This is the default. 'force-shared'
1509 disables exclusive client access. Useful for shared desktop sessions,
1510 where you don't want someone forgetting specify -shared disconnect
1511 everybody else. 'ignore' completely ignores the shared flag and
1512 allows everybody connect unconditionally. Doesn't conform to the rfb
1513 spec but is traditional QEMU behavior.
1515 @item key-delay-ms
1517 Set keyboard delay, for key down and key up events, in milliseconds.
1518 Default is 1. Keyboards are low-bandwidth devices, so this slowdown
1519 can help the device and guest to keep up and not lose events in case
1520 events are arriving in bulk. Possible causes for the latter are flaky
1521 network connections, or scripts for automated testing.
1523 @end table
1524 ETEXI
1526 STEXI
1527 @end table
1528 ETEXI
1529 ARCHHEADING(, QEMU_ARCH_I386)
1531 ARCHHEADING(i386 target only, QEMU_ARCH_I386)
1532 STEXI
1533 @table @option
1534 ETEXI
1536 DEF("win2k-hack", 0, QEMU_OPTION_win2k_hack,
1537 "-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n",
1538 QEMU_ARCH_I386)
1539 STEXI
1540 @item -win2k-hack
1541 @findex -win2k-hack
1542 Use it when installing Windows 2000 to avoid a disk full bug. After
1543 Windows 2000 is installed, you no longer need this option (this option
1544 slows down the IDE transfers).
1545 ETEXI
1547 HXCOMM Deprecated by -rtc
1548 DEF("rtc-td-hack", 0, QEMU_OPTION_rtc_td_hack, "", QEMU_ARCH_I386)
1550 DEF("no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk,
1551 "-no-fd-bootchk disable boot signature checking for floppy disks\n",
1552 QEMU_ARCH_I386)
1553 STEXI
1554 @item -no-fd-bootchk
1555 @findex -no-fd-bootchk
1556 Disable boot signature checking for floppy disks in BIOS. May
1557 be needed to boot from old floppy disks.
1558 ETEXI
1560 DEF("no-acpi", 0, QEMU_OPTION_no_acpi,
1561 "-no-acpi disable ACPI\n", QEMU_ARCH_I386 | QEMU_ARCH_ARM)
1562 STEXI
1563 @item -no-acpi
1564 @findex -no-acpi
1565 Disable ACPI (Advanced Configuration and Power Interface) support. Use
1566 it if your guest OS complains about ACPI problems (PC target machine
1567 only).
1568 ETEXI
1570 DEF("no-hpet", 0, QEMU_OPTION_no_hpet,
1571 "-no-hpet disable HPET\n", QEMU_ARCH_I386)
1572 STEXI
1573 @item -no-hpet
1574 @findex -no-hpet
1575 Disable HPET support.
1576 ETEXI
1578 DEF("acpitable", HAS_ARG, QEMU_OPTION_acpitable,
1579 "-acpitable [sig=str][,rev=n][,oem_id=str][,oem_table_id=str][,oem_rev=n][,asl_compiler_id=str][,asl_compiler_rev=n][,{data|file}=file1[:file2]...]\n"
1580 " ACPI table description\n", QEMU_ARCH_I386)
1581 STEXI
1582 @item -acpitable [sig=@var{str}][,rev=@var{n}][,oem_id=@var{str}][,oem_table_id=@var{str}][,oem_rev=@var{n}] [,asl_compiler_id=@var{str}][,asl_compiler_rev=@var{n}][,data=@var{file1}[:@var{file2}]...]
1583 @findex -acpitable
1584 Add ACPI table with specified header fields and context from specified files.
1585 For file=, take whole ACPI table from the specified files, including all
1586 ACPI headers (possible overridden by other options).
1587 For data=, only data
1588 portion of the table is used, all header information is specified in the
1589 command line.
1590 If a SLIC table is supplied to QEMU, then the SLIC's oem_id and oem_table_id
1591 fields will override the same in the RSDT and the FADT (a.k.a. FACP), in order
1592 to ensure the field matches required by the Microsoft SLIC spec and the ACPI
1593 spec.
1594 ETEXI
1596 DEF("smbios", HAS_ARG, QEMU_OPTION_smbios,
1597 "-smbios file=binary\n"
1598 " load SMBIOS entry from binary file\n"
1599 "-smbios type=0[,vendor=str][,version=str][,date=str][,release=%d.%d]\n"
1600 " [,uefi=on|off]\n"
1601 " specify SMBIOS type 0 fields\n"
1602 "-smbios type=1[,manufacturer=str][,product=str][,version=str][,serial=str]\n"
1603 " [,uuid=uuid][,sku=str][,family=str]\n"
1604 " specify SMBIOS type 1 fields\n"
1605 "-smbios type=2[,manufacturer=str][,product=str][,version=str][,serial=str]\n"
1606 " [,asset=str][,location=str]\n"
1607 " specify SMBIOS type 2 fields\n"
1608 "-smbios type=3[,manufacturer=str][,version=str][,serial=str][,asset=str]\n"
1609 " [,sku=str]\n"
1610 " specify SMBIOS type 3 fields\n"
1611 "-smbios type=4[,sock_pfx=str][,manufacturer=str][,version=str][,serial=str]\n"
1612 " [,asset=str][,part=str]\n"
1613 " specify SMBIOS type 4 fields\n"
1614 "-smbios type=17[,loc_pfx=str][,bank=str][,manufacturer=str][,serial=str]\n"
1615 " [,asset=str][,part=str][,speed=%d]\n"
1616 " specify SMBIOS type 17 fields\n",
1617 QEMU_ARCH_I386 | QEMU_ARCH_ARM)
1618 STEXI
1619 @item -smbios file=@var{binary}
1620 @findex -smbios
1621 Load SMBIOS entry from binary file.
1623 @item -smbios type=0[,vendor=@var{str}][,version=@var{str}][,date=@var{str}][,release=@var{%d.%d}][,uefi=on|off]
1624 Specify SMBIOS type 0 fields
1626 @item -smbios type=1[,manufacturer=@var{str}][,product=@var{str}][,version=@var{str}][,serial=@var{str}][,uuid=@var{uuid}][,sku=@var{str}][,family=@var{str}]
1627 Specify SMBIOS type 1 fields
1629 @item -smbios type=2[,manufacturer=@var{str}][,product=@var{str}][,version=@var{str}][,serial=@var{str}][,asset=@var{str}][,location=@var{str}][,family=@var{str}]
1630 Specify SMBIOS type 2 fields
1632 @item -smbios type=3[,manufacturer=@var{str}][,version=@var{str}][,serial=@var{str}][,asset=@var{str}][,sku=@var{str}]
1633 Specify SMBIOS type 3 fields
1635 @item -smbios type=4[,sock_pfx=@var{str}][,manufacturer=@var{str}][,version=@var{str}][,serial=@var{str}][,asset=@var{str}][,part=@var{str}]
1636 Specify SMBIOS type 4 fields
1638 @item -smbios type=17[,loc_pfx=@var{str}][,bank=@var{str}][,manufacturer=@var{str}][,serial=@var{str}][,asset=@var{str}][,part=@var{str}][,speed=@var{%d}]
1639 Specify SMBIOS type 17 fields
1640 ETEXI
1642 STEXI
1643 @end table
1644 ETEXI
1645 DEFHEADING()
1647 DEFHEADING(Network options)
1648 STEXI
1649 @table @option
1650 ETEXI
1652 HXCOMM Legacy slirp options (now moved to -net user):
1653 #ifdef CONFIG_SLIRP
1654 DEF("tftp", HAS_ARG, QEMU_OPTION_tftp, "", QEMU_ARCH_ALL)
1655 DEF("bootp", HAS_ARG, QEMU_OPTION_bootp, "", QEMU_ARCH_ALL)
1656 DEF("redir", HAS_ARG, QEMU_OPTION_redir, "", QEMU_ARCH_ALL)
1657 #ifndef _WIN32
1658 DEF("smb", HAS_ARG, QEMU_OPTION_smb, "", QEMU_ARCH_ALL)
1659 #endif
1660 #endif
1662 DEF("netdev", HAS_ARG, QEMU_OPTION_netdev,
1663 #ifdef CONFIG_SLIRP
1664 "-netdev user,id=str[,ipv4[=on|off]][,net=addr[/mask]][,host=addr]\n"
1665 " [,ipv6[=on|off]][,ipv6-net=addr[/int]][,ipv6-host=addr]\n"
1666 " [,restrict=on|off][,hostname=host][,dhcpstart=addr]\n"
1667 " [,dns=addr][,ipv6-dns=addr][,dnssearch=domain][,tftp=dir]\n"
1668 " [,bootfile=f][,hostfwd=rule][,guestfwd=rule]"
1669 #ifndef _WIN32
1670 "[,smb=dir[,smbserver=addr]]\n"
1671 #endif
1672 " configure a user mode network backend with ID 'str',\n"
1673 " its DHCP server and optional services\n"
1674 #endif
1675 #ifdef _WIN32
1676 "-netdev tap,id=str,ifname=name\n"
1677 " configure a host TAP network backend with ID 'str'\n"
1678 #else
1679 "-netdev tap,id=str[,fd=h][,fds=x:y:...:z][,ifname=name][,script=file][,downscript=dfile]\n"
1680 " [,br=bridge][,helper=helper][,sndbuf=nbytes][,vnet_hdr=on|off][,vhost=on|off]\n"
1681 " [,vhostfd=h][,vhostfds=x:y:...:z][,vhostforce=on|off][,queues=n]\n"
1682 " [,poll-us=n]\n"
1683 " configure a host TAP network backend with ID 'str'\n"
1684 " connected to a bridge (default=" DEFAULT_BRIDGE_INTERFACE ")\n"
1685 " use network scripts 'file' (default=" DEFAULT_NETWORK_SCRIPT ")\n"
1686 " to configure it and 'dfile' (default=" DEFAULT_NETWORK_DOWN_SCRIPT ")\n"
1687 " to deconfigure it\n"
1688 " use '[down]script=no' to disable script execution\n"
1689 " use network helper 'helper' (default=" DEFAULT_BRIDGE_HELPER ") to\n"
1690 " configure it\n"
1691 " use 'fd=h' to connect to an already opened TAP interface\n"
1692 " use 'fds=x:y:...:z' to connect to already opened multiqueue capable TAP interfaces\n"
1693 " use 'sndbuf=nbytes' to limit the size of the send buffer (the\n"
1694 " default is disabled 'sndbuf=0' to enable flow control set 'sndbuf=1048576')\n"
1695 " use vnet_hdr=off to avoid enabling the IFF_VNET_HDR tap flag\n"
1696 " use vnet_hdr=on to make the lack of IFF_VNET_HDR support an error condition\n"
1697 " use vhost=on to enable experimental in kernel accelerator\n"
1698 " (only has effect for virtio guests which use MSIX)\n"
1699 " use vhostforce=on to force vhost on for non-MSIX virtio guests\n"
1700 " use 'vhostfd=h' to connect to an already opened vhost net device\n"
1701 " use 'vhostfds=x:y:...:z to connect to multiple already opened vhost net devices\n"
1702 " use 'queues=n' to specify the number of queues to be created for multiqueue TAP\n"
1703 " use 'poll-us=n' to speciy the maximum number of microseconds that could be\n"
1704 " spent on busy polling for vhost net\n"
1705 "-netdev bridge,id=str[,br=bridge][,helper=helper]\n"
1706 " configure a host TAP network backend with ID 'str' that is\n"
1707 " connected to a bridge (default=" DEFAULT_BRIDGE_INTERFACE ")\n"
1708 " using the program 'helper (default=" DEFAULT_BRIDGE_HELPER ")\n"
1709 #endif
1710 #ifdef __linux__
1711 "-netdev l2tpv3,id=str,src=srcaddr,dst=dstaddr[,srcport=srcport][,dstport=dstport]\n"
1712 " [,rxsession=rxsession],txsession=txsession[,ipv6=on/off][,udp=on/off]\n"
1713 " [,cookie64=on/off][,counter][,pincounter][,txcookie=txcookie]\n"
1714 " [,rxcookie=rxcookie][,offset=offset]\n"
1715 " configure a network backend with ID 'str' connected to\n"
1716 " an Ethernet over L2TPv3 pseudowire.\n"
1717 " Linux kernel 3.3+ as well as most routers can talk\n"
1718 " L2TPv3. This transport allows connecting a VM to a VM,\n"
1719 " VM to a router and even VM to Host. It is a nearly-universal\n"
1720 " standard (RFC3391). Note - this implementation uses static\n"
1721 " pre-configured tunnels (same as the Linux kernel).\n"
1722 " use 'src=' to specify source address\n"
1723 " use 'dst=' to specify destination address\n"
1724 " use 'udp=on' to specify udp encapsulation\n"
1725 " use 'srcport=' to specify source udp port\n"
1726 " use 'dstport=' to specify destination udp port\n"
1727 " use 'ipv6=on' to force v6\n"
1728 " L2TPv3 uses cookies to prevent misconfiguration as\n"
1729 " well as a weak security measure\n"
1730 " use 'rxcookie=0x012345678' to specify a rxcookie\n"
1731 " use 'txcookie=0x012345678' to specify a txcookie\n"
1732 " use 'cookie64=on' to set cookie size to 64 bit, otherwise 32\n"
1733 " use 'counter=off' to force a 'cut-down' L2TPv3 with no counter\n"
1734 " use 'pincounter=on' to work around broken counter handling in peer\n"
1735 " use 'offset=X' to add an extra offset between header and data\n"
1736 #endif
1737 "-netdev socket,id=str[,fd=h][,listen=[host]:port][,connect=host:port]\n"
1738 " configure a network backend to connect to another network\n"
1739 " using a socket connection\n"
1740 "-netdev socket,id=str[,fd=h][,mcast=maddr:port[,localaddr=addr]]\n"
1741 " configure a network backend to connect to a multicast maddr and port\n"
1742 " use 'localaddr=addr' to specify the host address to send packets from\n"
1743 "-netdev socket,id=str[,fd=h][,udp=host:port][,localaddr=host:port]\n"
1744 " configure a network backend to connect to another network\n"
1745 " using an UDP tunnel\n"
1746 #ifdef CONFIG_VDE
1747 "-netdev vde,id=str[,sock=socketpath][,port=n][,group=groupname][,mode=octalmode]\n"
1748 " configure a network backend to connect to port 'n' of a vde switch\n"
1749 " running on host and listening for incoming connections on 'socketpath'.\n"
1750 " Use group 'groupname' and mode 'octalmode' to change default\n"
1751 " ownership and permissions for communication port.\n"
1752 #endif
1753 #ifdef CONFIG_NETMAP
1754 "-netdev netmap,id=str,ifname=name[,devname=nmname]\n"
1755 " attach to the existing netmap-enabled network interface 'name', or to a\n"
1756 " VALE port (created on the fly) called 'name' ('nmname' is name of the \n"
1757 " netmap device, defaults to '/dev/netmap')\n"
1758 #endif
1759 "-netdev vhost-user,id=str,chardev=dev[,vhostforce=on|off]\n"
1760 " configure a vhost-user network, backed by a chardev 'dev'\n"
1761 "-netdev hubport,id=str,hubid=n\n"
1762 " configure a hub port on QEMU VLAN 'n'\n", QEMU_ARCH_ALL)
1763 DEF("net", HAS_ARG, QEMU_OPTION_net,
1764 "-net nic[,vlan=n][,macaddr=mac][,model=type][,name=str][,addr=str][,vectors=v]\n"
1765 " old way to create a new NIC and connect it to VLAN 'n'\n"
1766 " (use the '-device devtype,netdev=str' option if possible instead)\n"
1767 "-net dump[,vlan=n][,file=f][,len=n]\n"
1768 " dump traffic on vlan 'n' to file 'f' (max n bytes per packet)\n"
1769 "-net none use it alone to have zero network devices. If no -net option\n"
1770 " is provided, the default is '-net nic -net user'\n"
1771 "-net ["
1772 #ifdef CONFIG_SLIRP
1773 "user|"
1774 #endif
1775 "tap|"
1776 "bridge|"
1777 #ifdef CONFIG_VDE
1778 "vde|"
1779 #endif
1780 #ifdef CONFIG_NETMAP
1781 "netmap|"
1782 #endif
1783 "socket][,vlan=n][,option][,option][,...]\n"
1784 " old way to initialize a host network interface\n"
1785 " (use the -netdev option if possible instead)\n", QEMU_ARCH_ALL)
1786 STEXI
1787 @item -net nic[,vlan=@var{n}][,macaddr=@var{mac}][,model=@var{type}] [,name=@var{name}][,addr=@var{addr}][,vectors=@var{v}]
1788 @findex -net
1789 Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
1790 = 0 is the default). The NIC is an e1000 by default on the PC
1791 target. Optionally, the MAC address can be changed to @var{mac}, the
1792 device address set to @var{addr} (PCI cards only),
1793 and a @var{name} can be assigned for use in monitor commands.
1794 Optionally, for PCI cards, you can specify the number @var{v} of MSI-X vectors
1795 that the card should have; this option currently only affects virtio cards; set
1796 @var{v} = 0 to disable MSI-X. If no @option{-net} option is specified, a single
1797 NIC is created. QEMU can emulate several different models of network card.
1798 Valid values for @var{type} are
1799 @code{virtio}, @code{i82551}, @code{i82557b}, @code{i82559er},
1800 @code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
1801 @code{e1000}, @code{smc91c111}, @code{lance} and @code{mcf_fec}.
1802 Not all devices are supported on all targets. Use @code{-net nic,model=help}
1803 for a list of available devices for your target.
1805 @item -netdev user,id=@var{id}[,@var{option}][,@var{option}][,...]
1806 @findex -netdev
1807 @item -net user[,@var{option}][,@var{option}][,...]
1808 Use the user mode network stack which requires no administrator
1809 privilege to run. Valid options are:
1811 @table @option
1812 @item vlan=@var{n}
1813 Connect user mode stack to VLAN @var{n} (@var{n} = 0 is the default).
1815 @item id=@var{id}
1816 @itemx name=@var{name}
1817 Assign symbolic name for use in monitor commands.
1819 @option{ipv4} and @option{ipv6} specify that either IPv4 or IPv6 must
1820 be enabled. If neither is specified both protocols are enabled.
1822 @item net=@var{addr}[/@var{mask}]
1823 Set IP network address the guest will see. Optionally specify the netmask,
1824 either in the form a.b.c.d or as number of valid top-most bits. Default is
1825 10.0.2.0/24.
1827 @item host=@var{addr}
1828 Specify the guest-visible address of the host. Default is the 2nd IP in the
1829 guest network, i.e. x.x.x.2.
1831 @item ipv6-net=@var{addr}[/@var{int}]
1832 Set IPv6 network address the guest will see (default is fec0::/64). The
1833 network prefix is given in the usual hexadecimal IPv6 address
1834 notation. The prefix size is optional, and is given as the number of
1835 valid top-most bits (default is 64).
1837 @item ipv6-host=@var{addr}
1838 Specify the guest-visible IPv6 address of the host. Default is the 2nd IPv6 in
1839 the guest network, i.e. xxxx::2.
1841 @item restrict=on|off
1842 If this option is enabled, the guest will be isolated, i.e. it will not be
1843 able to contact the host and no guest IP packets will be routed over the host
1844 to the outside. This option does not affect any explicitly set forwarding rules.
1846 @item hostname=@var{name}
1847 Specifies the client hostname reported by the built-in DHCP server.
1849 @item dhcpstart=@var{addr}
1850 Specify the first of the 16 IPs the built-in DHCP server can assign. Default
1851 is the 15th to 31st IP in the guest network, i.e. x.x.x.15 to x.x.x.31.
1853 @item dns=@var{addr}
1854 Specify the guest-visible address of the virtual nameserver. The address must
1855 be different from the host address. Default is the 3rd IP in the guest network,
1856 i.e. x.x.x.3.
1858 @item ipv6-dns=@var{addr}
1859 Specify the guest-visible address of the IPv6 virtual nameserver. The address
1860 must be different from the host address. Default is the 3rd IP in the guest
1861 network, i.e. xxxx::3.
1863 @item dnssearch=@var{domain}
1864 Provides an entry for the domain-search list sent by the built-in
1865 DHCP server. More than one domain suffix can be transmitted by specifying
1866 this option multiple times. If supported, this will cause the guest to
1867 automatically try to append the given domain suffix(es) in case a domain name
1868 can not be resolved.
1870 Example:
1871 @example
1872 qemu -net user,dnssearch=mgmt.example.org,dnssearch=example.org [...]
1873 @end example
1875 @item tftp=@var{dir}
1876 When using the user mode network stack, activate a built-in TFTP
1877 server. The files in @var{dir} will be exposed as the root of a TFTP server.
1878 The TFTP client on the guest must be configured in binary mode (use the command
1879 @code{bin} of the Unix TFTP client).
1881 @item bootfile=@var{file}
1882 When using the user mode network stack, broadcast @var{file} as the BOOTP
1883 filename. In conjunction with @option{tftp}, this can be used to network boot
1884 a guest from a local directory.
1886 Example (using pxelinux):
1887 @example
1888 qemu-system-i386 -hda linux.img -boot n -net user,tftp=/path/to/tftp/files,bootfile=/pxelinux.0
1889 @end example
1891 @item smb=@var{dir}[,smbserver=@var{addr}]
1892 When using the user mode network stack, activate a built-in SMB
1893 server so that Windows OSes can access to the host files in @file{@var{dir}}
1894 transparently. The IP address of the SMB server can be set to @var{addr}. By
1895 default the 4th IP in the guest network is used, i.e. x.x.x.4.
1897 In the guest Windows OS, the line:
1898 @example
1899 10.0.2.4 smbserver
1900 @end example
1901 must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
1902 or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
1904 Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
1906 Note that a SAMBA server must be installed on the host OS.
1907 QEMU was tested successfully with smbd versions from Red Hat 9,
1908 Fedora Core 3 and OpenSUSE 11.x.
1910 @item hostfwd=[tcp|udp]:[@var{hostaddr}]:@var{hostport}-[@var{guestaddr}]:@var{guestport}
1911 Redirect incoming TCP or UDP connections to the host port @var{hostport} to
1912 the guest IP address @var{guestaddr} on guest port @var{guestport}. If
1913 @var{guestaddr} is not specified, its value is x.x.x.15 (default first address
1914 given by the built-in DHCP server). By specifying @var{hostaddr}, the rule can
1915 be bound to a specific host interface. If no connection type is set, TCP is
1916 used. This option can be given multiple times.
1918 For example, to redirect host X11 connection from screen 1 to guest
1919 screen 0, use the following:
1921 @example
1922 # on the host
1923 qemu-system-i386 -net user,hostfwd=tcp:127.0.0.1:6001-:6000 [...]
1924 # this host xterm should open in the guest X11 server
1925 xterm -display :1
1926 @end example
1928 To redirect telnet connections from host port 5555 to telnet port on
1929 the guest, use the following:
1931 @example
1932 # on the host
1933 qemu-system-i386 -net user,hostfwd=tcp::5555-:23 [...]
1934 telnet localhost 5555
1935 @end example
1937 Then when you use on the host @code{telnet localhost 5555}, you
1938 connect to the guest telnet server.
1940 @item guestfwd=[tcp]:@var{server}:@var{port}-@var{dev}
1941 @itemx guestfwd=[tcp]:@var{server}:@var{port}-@var{cmd:command}
1942 Forward guest TCP connections to the IP address @var{server} on port @var{port}
1943 to the character device @var{dev} or to a program executed by @var{cmd:command}
1944 which gets spawned for each connection. This option can be given multiple times.
1946 You can either use a chardev directly and have that one used throughout QEMU's
1947 lifetime, like in the following example:
1949 @example
1950 # open 10.10.1.1:4321 on bootup, connect 10.0.2.100:1234 to it whenever
1951 # the guest accesses it
1952 qemu -net user,guestfwd=tcp:10.0.2.100:1234-tcp:10.10.1.1:4321 [...]
1953 @end example
1955 Or you can execute a command on every TCP connection established by the guest,
1956 so that QEMU behaves similar to an inetd process for that virtual server:
1958 @example
1959 # call "netcat 10.10.1.1 4321" on every TCP connection to 10.0.2.100:1234
1960 # and connect the TCP stream to its stdin/stdout
1961 qemu -net 'user,guestfwd=tcp:10.0.2.100:1234-cmd:netcat 10.10.1.1 4321'
1962 @end example
1964 @end table
1966 Note: Legacy stand-alone options -tftp, -bootp, -smb and -redir are still
1967 processed and applied to -net user. Mixing them with the new configuration
1968 syntax gives undefined results. Their use for new applications is discouraged
1969 as they will be removed from future versions.
1971 @item -netdev tap,id=@var{id}[,fd=@var{h}][,ifname=@var{name}][,script=@var{file}][,downscript=@var{dfile}][,br=@var{bridge}][,helper=@var{helper}]
1972 @itemx -net tap[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,ifname=@var{name}][,script=@var{file}][,downscript=@var{dfile}][,br=@var{bridge}][,helper=@var{helper}]
1973 Connect the host TAP network interface @var{name} to VLAN @var{n}.
1975 Use the network script @var{file} to configure it and the network script
1976 @var{dfile} to deconfigure it. If @var{name} is not provided, the OS
1977 automatically provides one. The default network configure script is
1978 @file{/etc/qemu-ifup} and the default network deconfigure script is
1979 @file{/etc/qemu-ifdown}. Use @option{script=no} or @option{downscript=no}
1980 to disable script execution.
1982 If running QEMU as an unprivileged user, use the network helper
1983 @var{helper} to configure the TAP interface and attach it to the bridge.
1984 The default network helper executable is @file{/path/to/qemu-bridge-helper}
1985 and the default bridge device is @file{br0}.
1987 @option{fd}=@var{h} can be used to specify the handle of an already
1988 opened host TAP interface.
1990 Examples:
1992 @example
1993 #launch a QEMU instance with the default network script
1994 qemu-system-i386 linux.img -net nic -net tap
1995 @end example
1997 @example
1998 #launch a QEMU instance with two NICs, each one connected
1999 #to a TAP device
2000 qemu-system-i386 linux.img \
2001 -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
2002 -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
2003 @end example
2005 @example
2006 #launch a QEMU instance with the default network helper to
2007 #connect a TAP device to bridge br0
2008 qemu-system-i386 linux.img \
2009 -net nic -net tap,"helper=/path/to/qemu-bridge-helper"
2010 @end example
2012 @item -netdev bridge,id=@var{id}[,br=@var{bridge}][,helper=@var{helper}]
2013 @itemx -net bridge[,vlan=@var{n}][,name=@var{name}][,br=@var{bridge}][,helper=@var{helper}]
2014 Connect a host TAP network interface to a host bridge device.
2016 Use the network helper @var{helper} to configure the TAP interface and
2017 attach it to the bridge. The default network helper executable is
2018 @file{/path/to/qemu-bridge-helper} and the default bridge
2019 device is @file{br0}.
2021 Examples:
2023 @example
2024 #launch a QEMU instance with the default network helper to
2025 #connect a TAP device to bridge br0
2026 qemu-system-i386 linux.img -net bridge -net nic,model=virtio
2027 @end example
2029 @example
2030 #launch a QEMU instance with the default network helper to
2031 #connect a TAP device to bridge qemubr0
2032 qemu-system-i386 linux.img -net bridge,br=qemubr0 -net nic,model=virtio
2033 @end example
2035 @item -netdev socket,id=@var{id}[,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
2036 @itemx -net socket[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}] [,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
2038 Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
2039 machine using a TCP socket connection. If @option{listen} is
2040 specified, QEMU waits for incoming connections on @var{port}
2041 (@var{host} is optional). @option{connect} is used to connect to
2042 another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
2043 specifies an already opened TCP socket.
2045 Example:
2046 @example
2047 # launch a first QEMU instance
2048 qemu-system-i386 linux.img \
2049 -net nic,macaddr=52:54:00:12:34:56 \
2050 -net socket,listen=:1234
2051 # connect the VLAN 0 of this instance to the VLAN 0
2052 # of the first instance
2053 qemu-system-i386 linux.img \
2054 -net nic,macaddr=52:54:00:12:34:57 \
2055 -net socket,connect=127.0.0.1:1234
2056 @end example
2058 @item -netdev socket,id=@var{id}[,fd=@var{h}][,mcast=@var{maddr}:@var{port}[,localaddr=@var{addr}]]
2059 @itemx -net socket[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,mcast=@var{maddr}:@var{port}[,localaddr=@var{addr}]]
2061 Create a VLAN @var{n} shared with another QEMU virtual
2062 machines using a UDP multicast socket, effectively making a bus for
2063 every QEMU with same multicast address @var{maddr} and @var{port}.
2064 NOTES:
2065 @enumerate
2066 @item
2067 Several QEMU can be running on different hosts and share same bus (assuming
2068 correct multicast setup for these hosts).
2069 @item
2070 mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
2071 @url{http://user-mode-linux.sf.net}.
2072 @item
2073 Use @option{fd=h} to specify an already opened UDP multicast socket.
2074 @end enumerate
2076 Example:
2077 @example
2078 # launch one QEMU instance
2079 qemu-system-i386 linux.img \
2080 -net nic,macaddr=52:54:00:12:34:56 \
2081 -net socket,mcast=230.0.0.1:1234
2082 # launch another QEMU instance on same "bus"
2083 qemu-system-i386 linux.img \
2084 -net nic,macaddr=52:54:00:12:34:57 \
2085 -net socket,mcast=230.0.0.1:1234
2086 # launch yet another QEMU instance on same "bus"
2087 qemu-system-i386 linux.img \
2088 -net nic,macaddr=52:54:00:12:34:58 \
2089 -net socket,mcast=230.0.0.1:1234
2090 @end example
2092 Example (User Mode Linux compat.):
2093 @example
2094 # launch QEMU instance (note mcast address selected
2095 # is UML's default)
2096 qemu-system-i386 linux.img \
2097 -net nic,macaddr=52:54:00:12:34:56 \
2098 -net socket,mcast=239.192.168.1:1102
2099 # launch UML
2100 /path/to/linux ubd0=/path/to/root_fs eth0=mcast
2101 @end example
2103 Example (send packets from host's 1.2.3.4):
2104 @example
2105 qemu-system-i386 linux.img \
2106 -net nic,macaddr=52:54:00:12:34:56 \
2107 -net socket,mcast=239.192.168.1:1102,localaddr=1.2.3.4
2108 @end example
2110 @item -netdev l2tpv3,id=@var{id},src=@var{srcaddr},dst=@var{dstaddr}[,srcport=@var{srcport}][,dstport=@var{dstport}],txsession=@var{txsession}[,rxsession=@var{rxsession}][,ipv6][,udp][,cookie64][,counter][,pincounter][,txcookie=@var{txcookie}][,rxcookie=@var{rxcookie}][,offset=@var{offset}]
2111 @itemx -net l2tpv3[,vlan=@var{n}][,name=@var{name}],src=@var{srcaddr},dst=@var{dstaddr}[,srcport=@var{srcport}][,dstport=@var{dstport}],txsession=@var{txsession}[,rxsession=@var{rxsession}][,ipv6][,udp][,cookie64][,counter][,pincounter][,txcookie=@var{txcookie}][,rxcookie=@var{rxcookie}][,offset=@var{offset}]
2112 Connect VLAN @var{n} to L2TPv3 pseudowire. L2TPv3 (RFC3391) is a popular
2113 protocol to transport Ethernet (and other Layer 2) data frames between
2114 two systems. It is present in routers, firewalls and the Linux kernel
2115 (from version 3.3 onwards).
2117 This transport allows a VM to communicate to another VM, router or firewall directly.
2119 @item src=@var{srcaddr}
2120 source address (mandatory)
2121 @item dst=@var{dstaddr}
2122 destination address (mandatory)
2123 @item udp
2124 select udp encapsulation (default is ip).
2125 @item srcport=@var{srcport}
2126 source udp port.
2127 @item dstport=@var{dstport}
2128 destination udp port.
2129 @item ipv6
2130 force v6, otherwise defaults to v4.
2131 @item rxcookie=@var{rxcookie}
2132 @itemx txcookie=@var{txcookie}
2133 Cookies are a weak form of security in the l2tpv3 specification.
2134 Their function is mostly to prevent misconfiguration. By default they are 32
2135 bit.
2136 @item cookie64
2137 Set cookie size to 64 bit instead of the default 32
2138 @item counter=off
2139 Force a 'cut-down' L2TPv3 with no counter as in
2140 draft-mkonstan-l2tpext-keyed-ipv6-tunnel-00
2141 @item pincounter=on
2142 Work around broken counter handling in peer. This may also help on
2143 networks which have packet reorder.
2144 @item offset=@var{offset}
2145 Add an extra offset between header and data
2147 For example, to attach a VM running on host 4.3.2.1 via L2TPv3 to the bridge br-lan
2148 on the remote Linux host 1.2.3.4:
2149 @example
2150 # Setup tunnel on linux host using raw ip as encapsulation
2151 # on 1.2.3.4
2152 ip l2tp add tunnel remote 4.3.2.1 local 1.2.3.4 tunnel_id 1 peer_tunnel_id 1 \
2153 encap udp udp_sport 16384 udp_dport 16384
2154 ip l2tp add session tunnel_id 1 name vmtunnel0 session_id \
2155 0xFFFFFFFF peer_session_id 0xFFFFFFFF
2156 ifconfig vmtunnel0 mtu 1500
2157 ifconfig vmtunnel0 up
2158 brctl addif br-lan vmtunnel0
2161 # on 4.3.2.1
2162 # launch QEMU instance - if your network has reorder or is very lossy add ,pincounter
2164 qemu-system-i386 linux.img -net nic -net l2tpv3,src=4.2.3.1,dst=1.2.3.4,udp,srcport=16384,dstport=16384,rxsession=0xffffffff,txsession=0xffffffff,counter
2167 @end example
2169 @item -netdev vde,id=@var{id}[,sock=@var{socketpath}][,port=@var{n}][,group=@var{groupname}][,mode=@var{octalmode}]
2170 @itemx -net vde[,vlan=@var{n}][,name=@var{name}][,sock=@var{socketpath}] [,port=@var{n}][,group=@var{groupname}][,mode=@var{octalmode}]
2171 Connect VLAN @var{n} to PORT @var{n} of a vde switch running on host and
2172 listening for incoming connections on @var{socketpath}. Use GROUP @var{groupname}
2173 and MODE @var{octalmode} to change default ownership and permissions for
2174 communication port. This option is only available if QEMU has been compiled
2175 with vde support enabled.
2177 Example:
2178 @example
2179 # launch vde switch
2180 vde_switch -F -sock /tmp/myswitch
2181 # launch QEMU instance
2182 qemu-system-i386 linux.img -net nic -net vde,sock=/tmp/myswitch
2183 @end example
2185 @item -netdev hubport,id=@var{id},hubid=@var{hubid}
2187 Create a hub port on QEMU "vlan" @var{hubid}.
2189 The hubport netdev lets you connect a NIC to a QEMU "vlan" instead of a single
2190 netdev. @code{-net} and @code{-device} with parameter @option{vlan} create the
2191 required hub automatically.
2193 @item -netdev vhost-user,chardev=@var{id}[,vhostforce=on|off][,queues=n]
2195 Establish a vhost-user netdev, backed by a chardev @var{id}. The chardev should
2196 be a unix domain socket backed one. The vhost-user uses a specifically defined
2197 protocol to pass vhost ioctl replacement messages to an application on the other
2198 end of the socket. On non-MSIX guests, the feature can be forced with
2199 @var{vhostforce}. Use 'queues=@var{n}' to specify the number of queues to
2200 be created for multiqueue vhost-user.
2202 Example:
2203 @example
2204 qemu -m 512 -object memory-backend-file,id=mem,size=512M,mem-path=/hugetlbfs,share=on \
2205 -numa node,memdev=mem \
2206 -chardev socket,id=chr0,path=/path/to/socket \
2207 -netdev type=vhost-user,id=net0,chardev=chr0 \
2208 -device virtio-net-pci,netdev=net0
2209 @end example
2211 @item -net dump[,vlan=@var{n}][,file=@var{file}][,len=@var{len}]
2212 Dump network traffic on VLAN @var{n} to file @var{file} (@file{qemu-vlan0.pcap} by default).
2213 At most @var{len} bytes (64k by default) per packet are stored. The file format is
2214 libpcap, so it can be analyzed with tools such as tcpdump or Wireshark.
2215 Note: For devices created with '-netdev', use '-object filter-dump,...' instead.
2217 @item -net none
2218 Indicate that no network devices should be configured. It is used to
2219 override the default configuration (@option{-net nic -net user}) which
2220 is activated if no @option{-net} options are provided.
2221 ETEXI
2223 STEXI
2224 @end table
2225 ETEXI
2226 DEFHEADING()
2228 DEFHEADING(Character device options)
2229 STEXI
2231 The general form of a character device option is:
2232 @table @option
2233 ETEXI
2235 DEF("chardev", HAS_ARG, QEMU_OPTION_chardev,
2236 "-chardev help\n"
2237 "-chardev null,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2238 "-chardev socket,id=id[,host=host],port=port[,to=to][,ipv4][,ipv6][,nodelay][,reconnect=seconds]\n"
2239 " [,server][,nowait][,telnet][,reconnect=seconds][,mux=on|off]\n"
2240 " [,logfile=PATH][,logappend=on|off][,tls-creds=ID] (tcp)\n"
2241 "-chardev socket,id=id,path=path[,server][,nowait][,telnet][,reconnect=seconds]\n"
2242 " [,mux=on|off][,logfile=PATH][,logappend=on|off] (unix)\n"
2243 "-chardev udp,id=id[,host=host],port=port[,localaddr=localaddr]\n"
2244 " [,localport=localport][,ipv4][,ipv6][,mux=on|off]\n"
2245 " [,logfile=PATH][,logappend=on|off]\n"
2246 "-chardev msmouse,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2247 "-chardev vc,id=id[[,width=width][,height=height]][[,cols=cols][,rows=rows]]\n"
2248 " [,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2249 "-chardev ringbuf,id=id[,size=size][,logfile=PATH][,logappend=on|off]\n"
2250 "-chardev file,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2251 "-chardev pipe,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2252 #ifdef _WIN32
2253 "-chardev console,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2254 "-chardev serial,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2255 #else
2256 "-chardev pty,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2257 "-chardev stdio,id=id[,mux=on|off][,signal=on|off][,logfile=PATH][,logappend=on|off]\n"
2258 #endif
2259 #ifdef CONFIG_BRLAPI
2260 "-chardev braille,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2261 #endif
2262 #if defined(__linux__) || defined(__sun__) || defined(__FreeBSD__) \
2263 || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__DragonFly__)
2264 "-chardev serial,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2265 "-chardev tty,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2266 #endif
2267 #if defined(__linux__) || defined(__FreeBSD__) || defined(__DragonFly__)
2268 "-chardev parallel,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2269 "-chardev parport,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2270 #endif
2271 #if defined(CONFIG_SPICE)
2272 "-chardev spicevmc,id=id,name=name[,debug=debug][,logfile=PATH][,logappend=on|off]\n"
2273 "-chardev spiceport,id=id,name=name[,debug=debug][,logfile=PATH][,logappend=on|off]\n"
2274 #endif
2275 , QEMU_ARCH_ALL
2278 STEXI
2279 @item -chardev @var{backend} ,id=@var{id} [,mux=on|off] [,@var{options}]
2280 @findex -chardev
2281 Backend is one of:
2282 @option{null},
2283 @option{socket},
2284 @option{udp},
2285 @option{msmouse},
2286 @option{vc},
2287 @option{ringbuf},
2288 @option{file},
2289 @option{pipe},
2290 @option{console},
2291 @option{serial},
2292 @option{pty},
2293 @option{stdio},
2294 @option{braille},
2295 @option{tty},
2296 @option{parallel},
2297 @option{parport},
2298 @option{spicevmc}.
2299 @option{spiceport}.
2300 The specific backend will determine the applicable options.
2302 Use "-chardev help" to print all available chardev backend types.
2304 All devices must have an id, which can be any string up to 127 characters long.
2305 It is used to uniquely identify this device in other command line directives.
2307 A character device may be used in multiplexing mode by multiple front-ends.
2308 Specify @option{mux=on} to enable this mode.
2309 A multiplexer is a "1:N" device, and here the "1" end is your specified chardev
2310 backend, and the "N" end is the various parts of QEMU that can talk to a chardev.
2311 If you create a chardev with @option{id=myid} and @option{mux=on}, QEMU will
2312 create a multiplexer with your specified ID, and you can then configure multiple
2313 front ends to use that chardev ID for their input/output. Up to four different
2314 front ends can be connected to a single multiplexed chardev. (Without
2315 multiplexing enabled, a chardev can only be used by a single front end.)
2316 For instance you could use this to allow a single stdio chardev to be used by
2317 two serial ports and the QEMU monitor:
2319 @example
2320 -chardev stdio,mux=on,id=char0 \
2321 -mon chardev=char0,mode=readline \
2322 -serial chardev:char0 \
2323 -serial chardev:char0
2324 @end example
2326 You can have more than one multiplexer in a system configuration; for instance
2327 you could have a TCP port multiplexed between UART 0 and UART 1, and stdio
2328 multiplexed between the QEMU monitor and a parallel port:
2330 @example
2331 -chardev stdio,mux=on,id=char0 \
2332 -mon chardev=char0,mode=readline \
2333 -parallel chardev:char0 \
2334 -chardev tcp,...,mux=on,id=char1 \
2335 -serial chardev:char1 \
2336 -serial chardev:char1
2337 @end example
2339 When you're using a multiplexed character device, some escape sequences are
2340 interpreted in the input. @xref{mux_keys, Keys in the character backend
2341 multiplexer}.
2343 Note that some other command line options may implicitly create multiplexed
2344 character backends; for instance @option{-serial mon:stdio} creates a
2345 multiplexed stdio backend connected to the serial port and the QEMU monitor,
2346 and @option{-nographic} also multiplexes the console and the monitor to
2347 stdio.
2349 There is currently no support for multiplexing in the other direction
2350 (where a single QEMU front end takes input and output from multiple chardevs).
2352 Every backend supports the @option{logfile} option, which supplies the path
2353 to a file to record all data transmitted via the backend. The @option{logappend}
2354 option controls whether the log file will be truncated or appended to when
2355 opened.
2357 Further options to each backend are described below.
2359 @item -chardev null ,id=@var{id}
2360 A void device. This device will not emit any data, and will drop any data it
2361 receives. The null backend does not take any options.
2363 @item -chardev socket ,id=@var{id} [@var{TCP options} or @var{unix options}] [,server] [,nowait] [,telnet] [,reconnect=@var{seconds}] [,tls-creds=@var{id}]
2365 Create a two-way stream socket, which can be either a TCP or a unix socket. A
2366 unix socket will be created if @option{path} is specified. Behaviour is
2367 undefined if TCP options are specified for a unix socket.
2369 @option{server} specifies that the socket shall be a listening socket.
2371 @option{nowait} specifies that QEMU should not block waiting for a client to
2372 connect to a listening socket.
2374 @option{telnet} specifies that traffic on the socket should interpret telnet
2375 escape sequences.
2377 @option{reconnect} sets the timeout for reconnecting on non-server sockets when
2378 the remote end goes away. qemu will delay this many seconds and then attempt
2379 to reconnect. Zero disables reconnecting, and is the default.
2381 @option{tls-creds} requests enablement of the TLS protocol for encryption,
2382 and specifies the id of the TLS credentials to use for the handshake. The
2383 credentials must be previously created with the @option{-object tls-creds}
2384 argument.
2386 TCP and unix socket options are given below:
2388 @table @option
2390 @item TCP options: port=@var{port} [,host=@var{host}] [,to=@var{to}] [,ipv4] [,ipv6] [,nodelay]
2392 @option{host} for a listening socket specifies the local address to be bound.
2393 For a connecting socket species the remote host to connect to. @option{host} is
2394 optional for listening sockets. If not specified it defaults to @code{0.0.0.0}.
2396 @option{port} for a listening socket specifies the local port to be bound. For a
2397 connecting socket specifies the port on the remote host to connect to.
2398 @option{port} can be given as either a port number or a service name.
2399 @option{port} is required.
2401 @option{to} is only relevant to listening sockets. If it is specified, and
2402 @option{port} cannot be bound, QEMU will attempt to bind to subsequent ports up
2403 to and including @option{to} until it succeeds. @option{to} must be specified
2404 as a port number.
2406 @option{ipv4} and @option{ipv6} specify that either IPv4 or IPv6 must be used.
2407 If neither is specified the socket may use either protocol.
2409 @option{nodelay} disables the Nagle algorithm.
2411 @item unix options: path=@var{path}
2413 @option{path} specifies the local path of the unix socket. @option{path} is
2414 required.
2416 @end table
2418 @item -chardev udp ,id=@var{id} [,host=@var{host}] ,port=@var{port} [,localaddr=@var{localaddr}] [,localport=@var{localport}] [,ipv4] [,ipv6]
2420 Sends all traffic from the guest to a remote host over UDP.
2422 @option{host} specifies the remote host to connect to. If not specified it
2423 defaults to @code{localhost}.
2425 @option{port} specifies the port on the remote host to connect to. @option{port}
2426 is required.
2428 @option{localaddr} specifies the local address to bind to. If not specified it
2429 defaults to @code{0.0.0.0}.
2431 @option{localport} specifies the local port to bind to. If not specified any
2432 available local port will be used.
2434 @option{ipv4} and @option{ipv6} specify that either IPv4 or IPv6 must be used.
2435 If neither is specified the device may use either protocol.
2437 @item -chardev msmouse ,id=@var{id}
2439 Forward QEMU's emulated msmouse events to the guest. @option{msmouse} does not
2440 take any options.
2442 @item -chardev vc ,id=@var{id} [[,width=@var{width}] [,height=@var{height}]] [[,cols=@var{cols}] [,rows=@var{rows}]]
2444 Connect to a QEMU text console. @option{vc} may optionally be given a specific
2445 size.
2447 @option{width} and @option{height} specify the width and height respectively of
2448 the console, in pixels.
2450 @option{cols} and @option{rows} specify that the console be sized to fit a text
2451 console with the given dimensions.
2453 @item -chardev ringbuf ,id=@var{id} [,size=@var{size}]
2455 Create a ring buffer with fixed size @option{size}.
2456 @var{size} must be a power of two and defaults to @code{64K}.
2458 @item -chardev file ,id=@var{id} ,path=@var{path}
2460 Log all traffic received from the guest to a file.
2462 @option{path} specifies the path of the file to be opened. This file will be
2463 created if it does not already exist, and overwritten if it does. @option{path}
2464 is required.
2466 @item -chardev pipe ,id=@var{id} ,path=@var{path}
2468 Create a two-way connection to the guest. The behaviour differs slightly between
2469 Windows hosts and other hosts:
2471 On Windows, a single duplex pipe will be created at
2472 @file{\\.pipe\@option{path}}.
2474 On other hosts, 2 pipes will be created called @file{@option{path}.in} and
2475 @file{@option{path}.out}. Data written to @file{@option{path}.in} will be
2476 received by the guest. Data written by the guest can be read from
2477 @file{@option{path}.out}. QEMU will not create these fifos, and requires them to
2478 be present.
2480 @option{path} forms part of the pipe path as described above. @option{path} is
2481 required.
2483 @item -chardev console ,id=@var{id}
2485 Send traffic from the guest to QEMU's standard output. @option{console} does not
2486 take any options.
2488 @option{console} is only available on Windows hosts.
2490 @item -chardev serial ,id=@var{id} ,path=@option{path}
2492 Send traffic from the guest to a serial device on the host.
2494 On Unix hosts serial will actually accept any tty device,
2495 not only serial lines.
2497 @option{path} specifies the name of the serial device to open.
2499 @item -chardev pty ,id=@var{id}
2501 Create a new pseudo-terminal on the host and connect to it. @option{pty} does
2502 not take any options.
2504 @option{pty} is not available on Windows hosts.
2506 @item -chardev stdio ,id=@var{id} [,signal=on|off]
2507 Connect to standard input and standard output of the QEMU process.
2509 @option{signal} controls if signals are enabled on the terminal, that includes
2510 exiting QEMU with the key sequence @key{Control-c}. This option is enabled by
2511 default, use @option{signal=off} to disable it.
2513 @item -chardev braille ,id=@var{id}
2515 Connect to a local BrlAPI server. @option{braille} does not take any options.
2517 @item -chardev tty ,id=@var{id} ,path=@var{path}
2519 @option{tty} is only available on Linux, Sun, FreeBSD, NetBSD, OpenBSD and
2520 DragonFlyBSD hosts. It is an alias for @option{serial}.
2522 @option{path} specifies the path to the tty. @option{path} is required.
2524 @item -chardev parallel ,id=@var{id} ,path=@var{path}
2525 @itemx -chardev parport ,id=@var{id} ,path=@var{path}
2527 @option{parallel} is only available on Linux, FreeBSD and DragonFlyBSD hosts.
2529 Connect to a local parallel port.
2531 @option{path} specifies the path to the parallel port device. @option{path} is
2532 required.
2534 @item -chardev spicevmc ,id=@var{id} ,debug=@var{debug}, name=@var{name}
2536 @option{spicevmc} is only available when spice support is built in.
2538 @option{debug} debug level for spicevmc
2540 @option{name} name of spice channel to connect to
2542 Connect to a spice virtual machine channel, such as vdiport.
2544 @item -chardev spiceport ,id=@var{id} ,debug=@var{debug}, name=@var{name}
2546 @option{spiceport} is only available when spice support is built in.
2548 @option{debug} debug level for spicevmc
2550 @option{name} name of spice port to connect to
2552 Connect to a spice port, allowing a Spice client to handle the traffic
2553 identified by a name (preferably a fqdn).
2554 ETEXI
2556 STEXI
2557 @end table
2558 ETEXI
2559 DEFHEADING()
2561 DEFHEADING(Device URL Syntax)
2562 STEXI
2564 In addition to using normal file images for the emulated storage devices,
2565 QEMU can also use networked resources such as iSCSI devices. These are
2566 specified using a special URL syntax.
2568 @table @option
2569 @item iSCSI
2570 iSCSI support allows QEMU to access iSCSI resources directly and use as
2571 images for the guest storage. Both disk and cdrom images are supported.
2573 Syntax for specifying iSCSI LUNs is
2574 ``iscsi://<target-ip>[:<port>]/<target-iqn>/<lun>''
2576 By default qemu will use the iSCSI initiator-name
2577 'iqn.2008-11.org.linux-kvm[:<name>]' but this can also be set from the command
2578 line or a configuration file.
2580 Since version Qemu 2.4 it is possible to specify a iSCSI request timeout to detect
2581 stalled requests and force a reestablishment of the session. The timeout
2582 is specified in seconds. The default is 0 which means no timeout. Libiscsi
2583 1.15.0 or greater is required for this feature.
2585 Example (without authentication):
2586 @example
2587 qemu-system-i386 -iscsi initiator-name=iqn.2001-04.com.example:my-initiator \
2588 -cdrom iscsi://192.0.2.1/iqn.2001-04.com.example/2 \
2589 -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1
2590 @end example
2592 Example (CHAP username/password via URL):
2593 @example
2594 qemu-system-i386 -drive file=iscsi://user%password@@192.0.2.1/iqn.2001-04.com.example/1
2595 @end example
2597 Example (CHAP username/password via environment variables):
2598 @example
2599 LIBISCSI_CHAP_USERNAME="user" \
2600 LIBISCSI_CHAP_PASSWORD="password" \
2601 qemu-system-i386 -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1
2602 @end example
2604 iSCSI support is an optional feature of QEMU and only available when
2605 compiled and linked against libiscsi.
2606 ETEXI
2607 DEF("iscsi", HAS_ARG, QEMU_OPTION_iscsi,
2608 "-iscsi [user=user][,password=password]\n"
2609 " [,header-digest=CRC32C|CR32C-NONE|NONE-CRC32C|NONE\n"
2610 " [,initiator-name=initiator-iqn][,id=target-iqn]\n"
2611 " [,timeout=timeout]\n"
2612 " iSCSI session parameters\n", QEMU_ARCH_ALL)
2613 STEXI
2615 iSCSI parameters such as username and password can also be specified via
2616 a configuration file. See qemu-doc for more information and examples.
2618 @item NBD
2619 QEMU supports NBD (Network Block Devices) both using TCP protocol as well
2620 as Unix Domain Sockets.
2622 Syntax for specifying a NBD device using TCP
2623 ``nbd:<server-ip>:<port>[:exportname=<export>]''
2625 Syntax for specifying a NBD device using Unix Domain Sockets
2626 ``nbd:unix:<domain-socket>[:exportname=<export>]''
2629 Example for TCP
2630 @example
2631 qemu-system-i386 --drive file=nbd:192.0.2.1:30000
2632 @end example
2634 Example for Unix Domain Sockets
2635 @example
2636 qemu-system-i386 --drive file=nbd:unix:/tmp/nbd-socket
2637 @end example
2639 @item SSH
2640 QEMU supports SSH (Secure Shell) access to remote disks.
2642 Examples:
2643 @example
2644 qemu-system-i386 -drive file=ssh://user@@host/path/to/disk.img
2645 qemu-system-i386 -drive file.driver=ssh,file.user=user,file.host=host,file.port=22,file.path=/path/to/disk.img
2646 @end example
2648 Currently authentication must be done using ssh-agent. Other
2649 authentication methods may be supported in future.
2651 @item Sheepdog
2652 Sheepdog is a distributed storage system for QEMU.
2653 QEMU supports using either local sheepdog devices or remote networked
2654 devices.
2656 Syntax for specifying a sheepdog device
2657 @example
2658 sheepdog[+tcp|+unix]://[host:port]/vdiname[?socket=path][#snapid|#tag]
2659 @end example
2661 Example
2662 @example
2663 qemu-system-i386 --drive file=sheepdog://192.0.2.1:30000/MyVirtualMachine
2664 @end example
2666 See also @url{https://sheepdog.github.io/sheepdog/}.
2668 @item GlusterFS
2669 GlusterFS is a user space distributed file system.
2670 QEMU supports the use of GlusterFS volumes for hosting VM disk images using
2671 TCP, Unix Domain Sockets and RDMA transport protocols.
2673 Syntax for specifying a VM disk image on GlusterFS volume is
2674 @example
2676 URI:
2677 gluster[+type]://[host[:port]]/volume/path[?socket=...][,debug=N][,logfile=...]
2679 JSON:
2680 'json:@{"driver":"qcow2","file":@{"driver":"gluster","volume":"testvol","path":"a.img","debug":N,"logfile":"...",
2681 @ "server":[@{"type":"tcp","host":"...","port":"..."@},
2682 @ @{"type":"unix","socket":"..."@}]@}@}'
2683 @end example
2686 Example
2687 @example
2688 URI:
2689 qemu-system-x86_64 --drive file=gluster://192.0.2.1/testvol/a.img,
2690 @ file.debug=9,file.logfile=/var/log/qemu-gluster.log
2692 JSON:
2693 qemu-system-x86_64 'json:@{"driver":"qcow2",
2694 @ "file":@{"driver":"gluster",
2695 @ "volume":"testvol","path":"a.img",
2696 @ "debug":9,"logfile":"/var/log/qemu-gluster.log",
2697 @ "server":[@{"type":"tcp","host":"1.2.3.4","port":24007@},
2698 @ @{"type":"unix","socket":"/var/run/glusterd.socket"@}]@}@}'
2699 qemu-system-x86_64 -drive driver=qcow2,file.driver=gluster,file.volume=testvol,file.path=/path/a.img,
2700 @ file.debug=9,file.logfile=/var/log/qemu-gluster.log,
2701 @ file.server.0.type=tcp,file.server.0.host=1.2.3.4,file.server.0.port=24007,
2702 @ file.server.1.type=unix,file.server.1.socket=/var/run/glusterd.socket
2703 @end example
2705 See also @url{http://www.gluster.org}.
2707 @item HTTP/HTTPS/FTP/FTPS
2708 QEMU supports read-only access to files accessed over http(s) and ftp(s).
2710 Syntax using a single filename:
2711 @example
2712 <protocol>://[<username>[:<password>]@@]<host>/<path>
2713 @end example
2715 where:
2716 @table @option
2717 @item protocol
2718 'http', 'https', 'ftp', or 'ftps'.
2720 @item username
2721 Optional username for authentication to the remote server.
2723 @item password
2724 Optional password for authentication to the remote server.
2726 @item host
2727 Address of the remote server.
2729 @item path
2730 Path on the remote server, including any query string.
2731 @end table
2733 The following options are also supported:
2734 @table @option
2735 @item url
2736 The full URL when passing options to the driver explicitly.
2738 @item readahead
2739 The amount of data to read ahead with each range request to the remote server.
2740 This value may optionally have the suffix 'T', 'G', 'M', 'K', 'k' or 'b'. If it
2741 does not have a suffix, it will be assumed to be in bytes. The value must be a
2742 multiple of 512 bytes. It defaults to 256k.
2744 @item sslverify
2745 Whether to verify the remote server's certificate when connecting over SSL. It
2746 can have the value 'on' or 'off'. It defaults to 'on'.
2748 @item cookie
2749 Send this cookie (it can also be a list of cookies separated by ';') with
2750 each outgoing request. Only supported when using protocols such as HTTP
2751 which support cookies, otherwise ignored.
2753 @item timeout
2754 Set the timeout in seconds of the CURL connection. This timeout is the time
2755 that CURL waits for a response from the remote server to get the size of the
2756 image to be downloaded. If not set, the default timeout of 5 seconds is used.
2757 @end table
2759 Note that when passing options to qemu explicitly, @option{driver} is the value
2760 of <protocol>.
2762 Example: boot from a remote Fedora 20 live ISO image
2763 @example
2764 qemu-system-x86_64 --drive media=cdrom,file=http://dl.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly
2766 qemu-system-x86_64 --drive media=cdrom,file.driver=http,file.url=http://dl.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly
2767 @end example
2769 Example: boot from a remote Fedora 20 cloud image using a local overlay for
2770 writes, copy-on-read, and a readahead of 64k
2771 @example
2772 qemu-img create -f qcow2 -o backing_file='json:@{"file.driver":"http",, "file.url":"https://dl.fedoraproject.org/pub/fedora/linux/releases/20/Images/x86_64/Fedora-x86_64-20-20131211.1-sda.qcow2",, "file.readahead":"64k"@}' /tmp/Fedora-x86_64-20-20131211.1-sda.qcow2
2774 qemu-system-x86_64 -drive file=/tmp/Fedora-x86_64-20-20131211.1-sda.qcow2,copy-on-read=on
2775 @end example
2777 Example: boot from an image stored on a VMware vSphere server with a self-signed
2778 certificate using a local overlay for writes, a readahead of 64k and a timeout
2779 of 10 seconds.
2780 @example
2781 qemu-img create -f qcow2 -o backing_file='json:@{"file.driver":"https",, "file.url":"https://user:password@@vsphere.example.com/folder/test/test-flat.vmdk?dcPath=Datacenter&dsName=datastore1",, "file.sslverify":"off",, "file.readahead":"64k",, "file.timeout":10@}' /tmp/test.qcow2
2783 qemu-system-x86_64 -drive file=/tmp/test.qcow2
2784 @end example
2785 ETEXI
2787 STEXI
2788 @end table
2789 ETEXI
2791 DEFHEADING(Bluetooth(R) options)
2792 STEXI
2793 @table @option
2794 ETEXI
2796 DEF("bt", HAS_ARG, QEMU_OPTION_bt, \
2797 "-bt hci,null dumb bluetooth HCI - doesn't respond to commands\n" \
2798 "-bt hci,host[:id]\n" \
2799 " use host's HCI with the given name\n" \
2800 "-bt hci[,vlan=n]\n" \
2801 " emulate a standard HCI in virtual scatternet 'n'\n" \
2802 "-bt vhci[,vlan=n]\n" \
2803 " add host computer to virtual scatternet 'n' using VHCI\n" \
2804 "-bt device:dev[,vlan=n]\n" \
2805 " emulate a bluetooth device 'dev' in scatternet 'n'\n",
2806 QEMU_ARCH_ALL)
2807 STEXI
2808 @item -bt hci[...]
2809 @findex -bt
2810 Defines the function of the corresponding Bluetooth HCI. -bt options
2811 are matched with the HCIs present in the chosen machine type. For
2812 example when emulating a machine with only one HCI built into it, only
2813 the first @code{-bt hci[...]} option is valid and defines the HCI's
2814 logic. The Transport Layer is decided by the machine type. Currently
2815 the machines @code{n800} and @code{n810} have one HCI and all other
2816 machines have none.
2818 @anchor{bt-hcis}
2819 The following three types are recognized:
2821 @table @option
2822 @item -bt hci,null
2823 (default) The corresponding Bluetooth HCI assumes no internal logic
2824 and will not respond to any HCI commands or emit events.
2826 @item -bt hci,host[:@var{id}]
2827 (@code{bluez} only) The corresponding HCI passes commands / events
2828 to / from the physical HCI identified by the name @var{id} (default:
2829 @code{hci0}) on the computer running QEMU. Only available on @code{bluez}
2830 capable systems like Linux.
2832 @item -bt hci[,vlan=@var{n}]
2833 Add a virtual, standard HCI that will participate in the Bluetooth
2834 scatternet @var{n} (default @code{0}). Similarly to @option{-net}
2835 VLANs, devices inside a bluetooth network @var{n} can only communicate
2836 with other devices in the same network (scatternet).
2837 @end table
2839 @item -bt vhci[,vlan=@var{n}]
2840 (Linux-host only) Create a HCI in scatternet @var{n} (default 0) attached
2841 to the host bluetooth stack instead of to the emulated target. This
2842 allows the host and target machines to participate in a common scatternet
2843 and communicate. Requires the Linux @code{vhci} driver installed. Can
2844 be used as following:
2846 @example
2847 qemu-system-i386 [...OPTIONS...] -bt hci,vlan=5 -bt vhci,vlan=5
2848 @end example
2850 @item -bt device:@var{dev}[,vlan=@var{n}]
2851 Emulate a bluetooth device @var{dev} and place it in network @var{n}
2852 (default @code{0}). QEMU can only emulate one type of bluetooth devices
2853 currently:
2855 @table @option
2856 @item keyboard
2857 Virtual wireless keyboard implementing the HIDP bluetooth profile.
2858 @end table
2859 ETEXI
2861 STEXI
2862 @end table
2863 ETEXI
2864 DEFHEADING()
2866 #ifdef CONFIG_TPM
2867 DEFHEADING(TPM device options)
2869 DEF("tpmdev", HAS_ARG, QEMU_OPTION_tpmdev, \
2870 "-tpmdev passthrough,id=id[,path=path][,cancel-path=path]\n"
2871 " use path to provide path to a character device; default is /dev/tpm0\n"
2872 " use cancel-path to provide path to TPM's cancel sysfs entry; if\n"
2873 " not provided it will be searched for in /sys/class/misc/tpm?/device\n",
2874 QEMU_ARCH_ALL)
2875 STEXI
2877 The general form of a TPM device option is:
2878 @table @option
2880 @item -tpmdev @var{backend} ,id=@var{id} [,@var{options}]
2881 @findex -tpmdev
2882 Backend type must be:
2883 @option{passthrough}.
2885 The specific backend type will determine the applicable options.
2886 The @code{-tpmdev} option creates the TPM backend and requires a
2887 @code{-device} option that specifies the TPM frontend interface model.
2889 Options to each backend are described below.
2891 Use 'help' to print all available TPM backend types.
2892 @example
2893 qemu -tpmdev help
2894 @end example
2896 @item -tpmdev passthrough, id=@var{id}, path=@var{path}, cancel-path=@var{cancel-path}
2898 (Linux-host only) Enable access to the host's TPM using the passthrough
2899 driver.
2901 @option{path} specifies the path to the host's TPM device, i.e., on
2902 a Linux host this would be @code{/dev/tpm0}.
2903 @option{path} is optional and by default @code{/dev/tpm0} is used.
2905 @option{cancel-path} specifies the path to the host TPM device's sysfs
2906 entry allowing for cancellation of an ongoing TPM command.
2907 @option{cancel-path} is optional and by default QEMU will search for the
2908 sysfs entry to use.
2910 Some notes about using the host's TPM with the passthrough driver:
2912 The TPM device accessed by the passthrough driver must not be
2913 used by any other application on the host.
2915 Since the host's firmware (BIOS/UEFI) has already initialized the TPM,
2916 the VM's firmware (BIOS/UEFI) will not be able to initialize the
2917 TPM again and may therefore not show a TPM-specific menu that would
2918 otherwise allow the user to configure the TPM, e.g., allow the user to
2919 enable/disable or activate/deactivate the TPM.
2920 Further, if TPM ownership is released from within a VM then the host's TPM
2921 will get disabled and deactivated. To enable and activate the
2922 TPM again afterwards, the host has to be rebooted and the user is
2923 required to enter the firmware's menu to enable and activate the TPM.
2924 If the TPM is left disabled and/or deactivated most TPM commands will fail.
2926 To create a passthrough TPM use the following two options:
2927 @example
2928 -tpmdev passthrough,id=tpm0 -device tpm-tis,tpmdev=tpm0
2929 @end example
2930 Note that the @code{-tpmdev} id is @code{tpm0} and is referenced by
2931 @code{tpmdev=tpm0} in the device option.
2933 @end table
2935 ETEXI
2937 DEFHEADING()
2939 #endif
2941 DEFHEADING(Linux/Multiboot boot specific)
2942 STEXI
2944 When using these options, you can use a given Linux or Multiboot
2945 kernel without installing it in the disk image. It can be useful
2946 for easier testing of various kernels.
2948 @table @option
2949 ETEXI
2951 DEF("kernel", HAS_ARG, QEMU_OPTION_kernel, \
2952 "-kernel bzImage use 'bzImage' as kernel image\n", QEMU_ARCH_ALL)
2953 STEXI
2954 @item -kernel @var{bzImage}
2955 @findex -kernel
2956 Use @var{bzImage} as kernel image. The kernel can be either a Linux kernel
2957 or in multiboot format.
2958 ETEXI
2960 DEF("append", HAS_ARG, QEMU_OPTION_append, \
2961 "-append cmdline use 'cmdline' as kernel command line\n", QEMU_ARCH_ALL)
2962 STEXI
2963 @item -append @var{cmdline}
2964 @findex -append
2965 Use @var{cmdline} as kernel command line
2966 ETEXI
2968 DEF("initrd", HAS_ARG, QEMU_OPTION_initrd, \
2969 "-initrd file use 'file' as initial ram disk\n", QEMU_ARCH_ALL)
2970 STEXI
2971 @item -initrd @var{file}
2972 @findex -initrd
2973 Use @var{file} as initial ram disk.
2975 @item -initrd "@var{file1} arg=foo,@var{file2}"
2977 This syntax is only available with multiboot.
2979 Use @var{file1} and @var{file2} as modules and pass arg=foo as parameter to the
2980 first module.
2981 ETEXI
2983 DEF("dtb", HAS_ARG, QEMU_OPTION_dtb, \
2984 "-dtb file use 'file' as device tree image\n", QEMU_ARCH_ALL)
2985 STEXI
2986 @item -dtb @var{file}
2987 @findex -dtb
2988 Use @var{file} as a device tree binary (dtb) image and pass it to the kernel
2989 on boot.
2990 ETEXI
2992 STEXI
2993 @end table
2994 ETEXI
2995 DEFHEADING()
2997 DEFHEADING(Debug/Expert options)
2998 STEXI
2999 @table @option
3000 ETEXI
3002 DEF("fw_cfg", HAS_ARG, QEMU_OPTION_fwcfg,
3003 "-fw_cfg [name=]<name>,file=<file>\n"
3004 " add named fw_cfg entry with contents from file\n"
3005 "-fw_cfg [name=]<name>,string=<str>\n"
3006 " add named fw_cfg entry with contents from string\n",
3007 QEMU_ARCH_ALL)
3008 STEXI
3010 @item -fw_cfg [name=]@var{name},file=@var{file}
3011 @findex -fw_cfg
3012 Add named fw_cfg entry with contents from file @var{file}.
3014 @item -fw_cfg [name=]@var{name},string=@var{str}
3015 Add named fw_cfg entry with contents from string @var{str}.
3017 The terminating NUL character of the contents of @var{str} will not be
3018 included as part of the fw_cfg item data. To insert contents with
3019 embedded NUL characters, you have to use the @var{file} parameter.
3021 The fw_cfg entries are passed by QEMU through to the guest.
3023 Example:
3024 @example
3025 -fw_cfg name=opt/com.mycompany/blob,file=./my_blob.bin
3026 @end example
3027 creates an fw_cfg entry named opt/com.mycompany/blob with contents
3028 from ./my_blob.bin.
3030 ETEXI
3032 DEF("serial", HAS_ARG, QEMU_OPTION_serial, \
3033 "-serial dev redirect the serial port to char device 'dev'\n",
3034 QEMU_ARCH_ALL)
3035 STEXI
3036 @item -serial @var{dev}
3037 @findex -serial
3038 Redirect the virtual serial port to host character device
3039 @var{dev}. The default device is @code{vc} in graphical mode and
3040 @code{stdio} in non graphical mode.
3042 This option can be used several times to simulate up to 4 serial
3043 ports.
3045 Use @code{-serial none} to disable all serial ports.
3047 Available character devices are:
3048 @table @option
3049 @item vc[:@var{W}x@var{H}]
3050 Virtual console. Optionally, a width and height can be given in pixel with
3051 @example
3052 vc:800x600
3053 @end example
3054 It is also possible to specify width or height in characters:
3055 @example
3056 vc:80Cx24C
3057 @end example
3058 @item pty
3059 [Linux only] Pseudo TTY (a new PTY is automatically allocated)
3060 @item none
3061 No device is allocated.
3062 @item null
3063 void device
3064 @item chardev:@var{id}
3065 Use a named character device defined with the @code{-chardev} option.
3066 @item /dev/XXX
3067 [Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
3068 parameters are set according to the emulated ones.
3069 @item /dev/parport@var{N}
3070 [Linux only, parallel port only] Use host parallel port
3071 @var{N}. Currently SPP and EPP parallel port features can be used.
3072 @item file:@var{filename}
3073 Write output to @var{filename}. No character can be read.
3074 @item stdio
3075 [Unix only] standard input/output
3076 @item pipe:@var{filename}
3077 name pipe @var{filename}
3078 @item COM@var{n}
3079 [Windows only] Use host serial port @var{n}
3080 @item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
3081 This implements UDP Net Console.
3082 When @var{remote_host} or @var{src_ip} are not specified
3083 they default to @code{0.0.0.0}.
3084 When not using a specified @var{src_port} a random port is automatically chosen.
3086 If you just want a simple readonly console you can use @code{netcat} or
3087 @code{nc}, by starting QEMU with: @code{-serial udp::4555} and nc as:
3088 @code{nc -u -l -p 4555}. Any time QEMU writes something to that port it
3089 will appear in the netconsole session.
3091 If you plan to send characters back via netconsole or you want to stop
3092 and start QEMU a lot of times, you should have QEMU use the same
3093 source port each time by using something like @code{-serial
3094 udp::4555@@:4556} to QEMU. Another approach is to use a patched
3095 version of netcat which can listen to a TCP port and send and receive
3096 characters via udp. If you have a patched version of netcat which
3097 activates telnet remote echo and single char transfer, then you can
3098 use the following options to set up a netcat redirector to allow
3099 telnet on port 5555 to access the QEMU port.
3100 @table @code
3101 @item QEMU Options:
3102 -serial udp::4555@@:4556
3103 @item netcat options:
3104 -u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
3105 @item telnet options:
3106 localhost 5555
3107 @end table
3109 @item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay][,reconnect=@var{seconds}]
3110 The TCP Net Console has two modes of operation. It can send the serial
3111 I/O to a location or wait for a connection from a location. By default
3112 the TCP Net Console is sent to @var{host} at the @var{port}. If you use
3113 the @var{server} option QEMU will wait for a client socket application
3114 to connect to the port before continuing, unless the @code{nowait}
3115 option was specified. The @code{nodelay} option disables the Nagle buffering
3116 algorithm. The @code{reconnect} option only applies if @var{noserver} is
3117 set, if the connection goes down it will attempt to reconnect at the
3118 given interval. If @var{host} is omitted, 0.0.0.0 is assumed. Only
3119 one TCP connection at a time is accepted. You can use @code{telnet} to
3120 connect to the corresponding character device.
3121 @table @code
3122 @item Example to send tcp console to 192.168.0.2 port 4444
3123 -serial tcp:192.168.0.2:4444
3124 @item Example to listen and wait on port 4444 for connection
3125 -serial tcp::4444,server
3126 @item Example to not wait and listen on ip 192.168.0.100 port 4444
3127 -serial tcp:192.168.0.100:4444,server,nowait
3128 @end table
3130 @item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
3131 The telnet protocol is used instead of raw tcp sockets. The options
3132 work the same as if you had specified @code{-serial tcp}. The
3133 difference is that the port acts like a telnet server or client using
3134 telnet option negotiation. This will also allow you to send the
3135 MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
3136 sequence. Typically in unix telnet you do it with Control-] and then
3137 type "send break" followed by pressing the enter key.
3139 @item unix:@var{path}[,server][,nowait][,reconnect=@var{seconds}]
3140 A unix domain socket is used instead of a tcp socket. The option works the
3141 same as if you had specified @code{-serial tcp} except the unix domain socket
3142 @var{path} is used for connections.
3144 @item mon:@var{dev_string}
3145 This is a special option to allow the monitor to be multiplexed onto
3146 another serial port. The monitor is accessed with key sequence of
3147 @key{Control-a} and then pressing @key{c}.
3148 @var{dev_string} should be any one of the serial devices specified
3149 above. An example to multiplex the monitor onto a telnet server
3150 listening on port 4444 would be:
3151 @table @code
3152 @item -serial mon:telnet::4444,server,nowait
3153 @end table
3154 When the monitor is multiplexed to stdio in this way, Ctrl+C will not terminate
3155 QEMU any more but will be passed to the guest instead.
3157 @item braille
3158 Braille device. This will use BrlAPI to display the braille output on a real
3159 or fake device.
3161 @item msmouse
3162 Three button serial mouse. Configure the guest to use Microsoft protocol.
3163 @end table
3164 ETEXI
3166 DEF("parallel", HAS_ARG, QEMU_OPTION_parallel, \
3167 "-parallel dev redirect the parallel port to char device 'dev'\n",
3168 QEMU_ARCH_ALL)
3169 STEXI
3170 @item -parallel @var{dev}
3171 @findex -parallel
3172 Redirect the virtual parallel port to host device @var{dev} (same
3173 devices as the serial port). On Linux hosts, @file{/dev/parportN} can
3174 be used to use hardware devices connected on the corresponding host
3175 parallel port.
3177 This option can be used several times to simulate up to 3 parallel
3178 ports.
3180 Use @code{-parallel none} to disable all parallel ports.
3181 ETEXI
3183 DEF("monitor", HAS_ARG, QEMU_OPTION_monitor, \
3184 "-monitor dev redirect the monitor to char device 'dev'\n",
3185 QEMU_ARCH_ALL)
3186 STEXI
3187 @item -monitor @var{dev}
3188 @findex -monitor
3189 Redirect the monitor to host device @var{dev} (same devices as the
3190 serial port).
3191 The default device is @code{vc} in graphical mode and @code{stdio} in
3192 non graphical mode.
3193 Use @code{-monitor none} to disable the default monitor.
3194 ETEXI
3195 DEF("qmp", HAS_ARG, QEMU_OPTION_qmp, \
3196 "-qmp dev like -monitor but opens in 'control' mode\n",
3197 QEMU_ARCH_ALL)
3198 STEXI
3199 @item -qmp @var{dev}
3200 @findex -qmp
3201 Like -monitor but opens in 'control' mode.
3202 ETEXI
3203 DEF("qmp-pretty", HAS_ARG, QEMU_OPTION_qmp_pretty, \
3204 "-qmp-pretty dev like -qmp but uses pretty JSON formatting\n",
3205 QEMU_ARCH_ALL)
3206 STEXI
3207 @item -qmp-pretty @var{dev}
3208 @findex -qmp-pretty
3209 Like -qmp but uses pretty JSON formatting.
3210 ETEXI
3212 DEF("mon", HAS_ARG, QEMU_OPTION_mon, \
3213 "-mon [chardev=]name[,mode=readline|control]\n", QEMU_ARCH_ALL)
3214 STEXI
3215 @item -mon [chardev=]name[,mode=readline|control]
3216 @findex -mon
3217 Setup monitor on chardev @var{name}.
3218 ETEXI
3220 DEF("debugcon", HAS_ARG, QEMU_OPTION_debugcon, \
3221 "-debugcon dev redirect the debug console to char device 'dev'\n",
3222 QEMU_ARCH_ALL)
3223 STEXI
3224 @item -debugcon @var{dev}
3225 @findex -debugcon
3226 Redirect the debug console to host device @var{dev} (same devices as the
3227 serial port). The debug console is an I/O port which is typically port
3228 0xe9; writing to that I/O port sends output to this device.
3229 The default device is @code{vc} in graphical mode and @code{stdio} in
3230 non graphical mode.
3231 ETEXI
3233 DEF("pidfile", HAS_ARG, QEMU_OPTION_pidfile, \
3234 "-pidfile file write PID to 'file'\n", QEMU_ARCH_ALL)
3235 STEXI
3236 @item -pidfile @var{file}
3237 @findex -pidfile
3238 Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
3239 from a script.
3240 ETEXI
3242 DEF("singlestep", 0, QEMU_OPTION_singlestep, \
3243 "-singlestep always run in singlestep mode\n", QEMU_ARCH_ALL)
3244 STEXI
3245 @item -singlestep
3246 @findex -singlestep
3247 Run the emulation in single step mode.
3248 ETEXI
3250 DEF("S", 0, QEMU_OPTION_S, \
3251 "-S freeze CPU at startup (use 'c' to start execution)\n",
3252 QEMU_ARCH_ALL)
3253 STEXI
3254 @item -S
3255 @findex -S
3256 Do not start CPU at startup (you must type 'c' in the monitor).
3257 ETEXI
3259 DEF("realtime", HAS_ARG, QEMU_OPTION_realtime,
3260 "-realtime [mlock=on|off]\n"
3261 " run qemu with realtime features\n"
3262 " mlock=on|off controls mlock support (default: on)\n",
3263 QEMU_ARCH_ALL)
3264 STEXI
3265 @item -realtime mlock=on|off
3266 @findex -realtime
3267 Run qemu with realtime features.
3268 mlocking qemu and guest memory can be enabled via @option{mlock=on}
3269 (enabled by default).
3270 ETEXI
3272 DEF("gdb", HAS_ARG, QEMU_OPTION_gdb, \
3273 "-gdb dev wait for gdb connection on 'dev'\n", QEMU_ARCH_ALL)
3274 STEXI
3275 @item -gdb @var{dev}
3276 @findex -gdb
3277 Wait for gdb connection on device @var{dev} (@pxref{gdb_usage}). Typical
3278 connections will likely be TCP-based, but also UDP, pseudo TTY, or even
3279 stdio are reasonable use case. The latter is allowing to start QEMU from
3280 within gdb and establish the connection via a pipe:
3281 @example
3282 (gdb) target remote | exec qemu-system-i386 -gdb stdio ...
3283 @end example
3284 ETEXI
3286 DEF("s", 0, QEMU_OPTION_s, \
3287 "-s shorthand for -gdb tcp::" DEFAULT_GDBSTUB_PORT "\n",
3288 QEMU_ARCH_ALL)
3289 STEXI
3290 @item -s
3291 @findex -s
3292 Shorthand for -gdb tcp::1234, i.e. open a gdbserver on TCP port 1234
3293 (@pxref{gdb_usage}).
3294 ETEXI
3296 DEF("d", HAS_ARG, QEMU_OPTION_d, \
3297 "-d item1,... enable logging of specified items (use '-d help' for a list of log items)\n",
3298 QEMU_ARCH_ALL)
3299 STEXI
3300 @item -d @var{item1}[,...]
3301 @findex -d
3302 Enable logging of specified items. Use '-d help' for a list of log items.
3303 ETEXI
3305 DEF("D", HAS_ARG, QEMU_OPTION_D, \
3306 "-D logfile output log to logfile (default stderr)\n",
3307 QEMU_ARCH_ALL)
3308 STEXI
3309 @item -D @var{logfile}
3310 @findex -D
3311 Output log in @var{logfile} instead of to stderr
3312 ETEXI
3314 DEF("dfilter", HAS_ARG, QEMU_OPTION_DFILTER, \
3315 "-dfilter range,.. filter debug output to range of addresses (useful for -d cpu,exec,etc..)\n",
3316 QEMU_ARCH_ALL)
3317 STEXI
3318 @item -dfilter @var{range1}[,...]
3319 @findex -dfilter
3320 Filter debug output to that relevant to a range of target addresses. The filter
3321 spec can be either @var{start}+@var{size}, @var{start}-@var{size} or
3322 @var{start}..@var{end} where @var{start} @var{end} and @var{size} are the
3323 addresses and sizes required. For example:
3324 @example
3325 -dfilter 0x8000..0x8fff,0xffffffc000080000+0x200,0xffffffc000060000-0x1000
3326 @end example
3327 Will dump output for any code in the 0x1000 sized block starting at 0x8000 and
3328 the 0x200 sized block starting at 0xffffffc000080000 and another 0x1000 sized
3329 block starting at 0xffffffc00005f000.
3330 ETEXI
3332 DEF("L", HAS_ARG, QEMU_OPTION_L, \
3333 "-L path set the directory for the BIOS, VGA BIOS and keymaps\n",
3334 QEMU_ARCH_ALL)
3335 STEXI
3336 @item -L @var{path}
3337 @findex -L
3338 Set the directory for the BIOS, VGA BIOS and keymaps.
3340 To list all the data directories, use @code{-L help}.
3341 ETEXI
3343 DEF("bios", HAS_ARG, QEMU_OPTION_bios, \
3344 "-bios file set the filename for the BIOS\n", QEMU_ARCH_ALL)
3345 STEXI
3346 @item -bios @var{file}
3347 @findex -bios
3348 Set the filename for the BIOS.
3349 ETEXI
3351 DEF("enable-kvm", 0, QEMU_OPTION_enable_kvm, \
3352 "-enable-kvm enable KVM full virtualization support\n", QEMU_ARCH_ALL)
3353 STEXI
3354 @item -enable-kvm
3355 @findex -enable-kvm
3356 Enable KVM full virtualization support. This option is only available
3357 if KVM support is enabled when compiling.
3358 ETEXI
3360 DEF("enable-hax", 0, QEMU_OPTION_enable_hax, \
3361 "-enable-hax enable HAX virtualization support\n", QEMU_ARCH_I386)
3362 STEXI
3363 @item -enable-hax
3364 @findex -enable-hax
3365 Enable HAX (Hardware-based Acceleration eXecution) support. This option
3366 is only available if HAX support is enabled when compiling. HAX is only
3367 applicable to MAC and Windows platform, and thus does not conflict with
3368 KVM.
3369 ETEXI
3371 DEF("xen-domid", HAS_ARG, QEMU_OPTION_xen_domid,
3372 "-xen-domid id specify xen guest domain id\n", QEMU_ARCH_ALL)
3373 DEF("xen-create", 0, QEMU_OPTION_xen_create,
3374 "-xen-create create domain using xen hypercalls, bypassing xend\n"
3375 " warning: should not be used when xend is in use\n",
3376 QEMU_ARCH_ALL)
3377 DEF("xen-attach", 0, QEMU_OPTION_xen_attach,
3378 "-xen-attach attach to existing xen domain\n"
3379 " xend will use this when starting QEMU\n",
3380 QEMU_ARCH_ALL)
3381 STEXI
3382 @item -xen-domid @var{id}
3383 @findex -xen-domid
3384 Specify xen guest domain @var{id} (XEN only).
3385 @item -xen-create
3386 @findex -xen-create
3387 Create domain using xen hypercalls, bypassing xend.
3388 Warning: should not be used when xend is in use (XEN only).
3389 @item -xen-attach
3390 @findex -xen-attach
3391 Attach to existing xen domain.
3392 xend will use this when starting QEMU (XEN only).
3393 ETEXI
3395 DEF("no-reboot", 0, QEMU_OPTION_no_reboot, \
3396 "-no-reboot exit instead of rebooting\n", QEMU_ARCH_ALL)
3397 STEXI
3398 @item -no-reboot
3399 @findex -no-reboot
3400 Exit instead of rebooting.
3401 ETEXI
3403 DEF("no-shutdown", 0, QEMU_OPTION_no_shutdown, \
3404 "-no-shutdown stop before shutdown\n", QEMU_ARCH_ALL)
3405 STEXI
3406 @item -no-shutdown
3407 @findex -no-shutdown
3408 Don't exit QEMU on guest shutdown, but instead only stop the emulation.
3409 This allows for instance switching to monitor to commit changes to the
3410 disk image.
3411 ETEXI
3413 DEF("loadvm", HAS_ARG, QEMU_OPTION_loadvm, \
3414 "-loadvm [tag|id]\n" \
3415 " start right away with a saved state (loadvm in monitor)\n",
3416 QEMU_ARCH_ALL)
3417 STEXI
3418 @item -loadvm @var{file}
3419 @findex -loadvm
3420 Start right away with a saved state (@code{loadvm} in monitor)
3421 ETEXI
3423 #ifndef _WIN32
3424 DEF("daemonize", 0, QEMU_OPTION_daemonize, \
3425 "-daemonize daemonize QEMU after initializing\n", QEMU_ARCH_ALL)
3426 #endif
3427 STEXI
3428 @item -daemonize
3429 @findex -daemonize
3430 Daemonize the QEMU process after initialization. QEMU will not detach from
3431 standard IO until it is ready to receive connections on any of its devices.
3432 This option is a useful way for external programs to launch QEMU without having
3433 to cope with initialization race conditions.
3434 ETEXI
3436 DEF("option-rom", HAS_ARG, QEMU_OPTION_option_rom, \
3437 "-option-rom rom load a file, rom, into the option ROM space\n",
3438 QEMU_ARCH_ALL)
3439 STEXI
3440 @item -option-rom @var{file}
3441 @findex -option-rom
3442 Load the contents of @var{file} as an option ROM.
3443 This option is useful to load things like EtherBoot.
3444 ETEXI
3446 HXCOMM Silently ignored for compatibility
3447 DEF("clock", HAS_ARG, QEMU_OPTION_clock, "", QEMU_ARCH_ALL)
3449 HXCOMM Options deprecated by -rtc
3450 DEF("localtime", 0, QEMU_OPTION_localtime, "", QEMU_ARCH_ALL)
3451 DEF("startdate", HAS_ARG, QEMU_OPTION_startdate, "", QEMU_ARCH_ALL)
3453 DEF("rtc", HAS_ARG, QEMU_OPTION_rtc, \
3454 "-rtc [base=utc|localtime|date][,clock=host|rt|vm][,driftfix=none|slew]\n" \
3455 " set the RTC base and clock, enable drift fix for clock ticks (x86 only)\n",
3456 QEMU_ARCH_ALL)
3458 STEXI
3460 @item -rtc [base=utc|localtime|@var{date}][,clock=host|vm][,driftfix=none|slew]
3461 @findex -rtc
3462 Specify @option{base} as @code{utc} or @code{localtime} to let the RTC start at the current
3463 UTC or local time, respectively. @code{localtime} is required for correct date in
3464 MS-DOS or Windows. To start at a specific point in time, provide @var{date} in the
3465 format @code{2006-06-17T16:01:21} or @code{2006-06-17}. The default base is UTC.
3467 By default the RTC is driven by the host system time. This allows using of the
3468 RTC as accurate reference clock inside the guest, specifically if the host
3469 time is smoothly following an accurate external reference clock, e.g. via NTP.
3470 If you want to isolate the guest time from the host, you can set @option{clock}
3471 to @code{rt} instead. To even prevent it from progressing during suspension,
3472 you can set it to @code{vm}.
3474 Enable @option{driftfix} (i386 targets only) if you experience time drift problems,
3475 specifically with Windows' ACPI HAL. This option will try to figure out how
3476 many timer interrupts were not processed by the Windows guest and will
3477 re-inject them.
3478 ETEXI
3480 DEF("icount", HAS_ARG, QEMU_OPTION_icount, \
3481 "-icount [shift=N|auto][,align=on|off][,sleep=on|off,rr=record|replay,rrfile=<filename>,rrsnapshot=<snapshot>]\n" \
3482 " enable virtual instruction counter with 2^N clock ticks per\n" \
3483 " instruction, enable aligning the host and virtual clocks\n" \
3484 " or disable real time cpu sleeping\n", QEMU_ARCH_ALL)
3485 STEXI
3486 @item -icount [shift=@var{N}|auto][,rr=record|replay,rrfile=@var{filename},rrsnapshot=@var{snapshot}]
3487 @findex -icount
3488 Enable virtual instruction counter. The virtual cpu will execute one
3489 instruction every 2^@var{N} ns of virtual time. If @code{auto} is specified
3490 then the virtual cpu speed will be automatically adjusted to keep virtual
3491 time within a few seconds of real time.
3493 When the virtual cpu is sleeping, the virtual time will advance at default
3494 speed unless @option{sleep=on|off} is specified.
3495 With @option{sleep=on|off}, the virtual time will jump to the next timer deadline
3496 instantly whenever the virtual cpu goes to sleep mode and will not advance
3497 if no timer is enabled. This behavior give deterministic execution times from
3498 the guest point of view.
3500 Note that while this option can give deterministic behavior, it does not
3501 provide cycle accurate emulation. Modern CPUs contain superscalar out of
3502 order cores with complex cache hierarchies. The number of instructions
3503 executed often has little or no correlation with actual performance.
3505 @option{align=on} will activate the delay algorithm which will try
3506 to synchronise the host clock and the virtual clock. The goal is to
3507 have a guest running at the real frequency imposed by the shift option.
3508 Whenever the guest clock is behind the host clock and if
3509 @option{align=on} is specified then we print a message to the user
3510 to inform about the delay.
3511 Currently this option does not work when @option{shift} is @code{auto}.
3512 Note: The sync algorithm will work for those shift values for which
3513 the guest clock runs ahead of the host clock. Typically this happens
3514 when the shift value is high (how high depends on the host machine).
3516 When @option{rr} option is specified deterministic record/replay is enabled.
3517 Replay log is written into @var{filename} file in record mode and
3518 read from this file in replay mode.
3520 Option rrsnapshot is used to create new vm snapshot named @var{snapshot}
3521 at the start of execution recording. In replay mode this option is used
3522 to load the initial VM state.
3523 ETEXI
3525 DEF("watchdog", HAS_ARG, QEMU_OPTION_watchdog, \
3526 "-watchdog model\n" \
3527 " enable virtual hardware watchdog [default=none]\n",
3528 QEMU_ARCH_ALL)
3529 STEXI
3530 @item -watchdog @var{model}
3531 @findex -watchdog
3532 Create a virtual hardware watchdog device. Once enabled (by a guest
3533 action), the watchdog must be periodically polled by an agent inside
3534 the guest or else the guest will be restarted. Choose a model for
3535 which your guest has drivers.
3537 The @var{model} is the model of hardware watchdog to emulate. Use
3538 @code{-watchdog help} to list available hardware models. Only one
3539 watchdog can be enabled for a guest.
3541 The following models may be available:
3542 @table @option
3543 @item ib700
3544 iBASE 700 is a very simple ISA watchdog with a single timer.
3545 @item i6300esb
3546 Intel 6300ESB I/O controller hub is a much more featureful PCI-based
3547 dual-timer watchdog.
3548 @item diag288
3549 A virtual watchdog for s390x backed by the diagnose 288 hypercall
3550 (currently KVM only).
3551 @end table
3552 ETEXI
3554 DEF("watchdog-action", HAS_ARG, QEMU_OPTION_watchdog_action, \
3555 "-watchdog-action reset|shutdown|poweroff|pause|debug|none\n" \
3556 " action when watchdog fires [default=reset]\n",
3557 QEMU_ARCH_ALL)
3558 STEXI
3559 @item -watchdog-action @var{action}
3560 @findex -watchdog-action
3562 The @var{action} controls what QEMU will do when the watchdog timer
3563 expires.
3564 The default is
3565 @code{reset} (forcefully reset the guest).
3566 Other possible actions are:
3567 @code{shutdown} (attempt to gracefully shutdown the guest),
3568 @code{poweroff} (forcefully poweroff the guest),
3569 @code{pause} (pause the guest),
3570 @code{debug} (print a debug message and continue), or
3571 @code{none} (do nothing).
3573 Note that the @code{shutdown} action requires that the guest responds
3574 to ACPI signals, which it may not be able to do in the sort of
3575 situations where the watchdog would have expired, and thus
3576 @code{-watchdog-action shutdown} is not recommended for production use.
3578 Examples:
3580 @table @code
3581 @item -watchdog i6300esb -watchdog-action pause
3582 @itemx -watchdog ib700
3583 @end table
3584 ETEXI
3586 DEF("echr", HAS_ARG, QEMU_OPTION_echr, \
3587 "-echr chr set terminal escape character instead of ctrl-a\n",
3588 QEMU_ARCH_ALL)
3589 STEXI
3591 @item -echr @var{numeric_ascii_value}
3592 @findex -echr
3593 Change the escape character used for switching to the monitor when using
3594 monitor and serial sharing. The default is @code{0x01} when using the
3595 @code{-nographic} option. @code{0x01} is equal to pressing
3596 @code{Control-a}. You can select a different character from the ascii
3597 control keys where 1 through 26 map to Control-a through Control-z. For
3598 instance you could use the either of the following to change the escape
3599 character to Control-t.
3600 @table @code
3601 @item -echr 0x14
3602 @itemx -echr 20
3603 @end table
3604 ETEXI
3606 DEF("virtioconsole", HAS_ARG, QEMU_OPTION_virtiocon, \
3607 "-virtioconsole c\n" \
3608 " set virtio console\n", QEMU_ARCH_ALL)
3609 STEXI
3610 @item -virtioconsole @var{c}
3611 @findex -virtioconsole
3612 Set virtio console.
3614 This option is maintained for backward compatibility.
3616 Please use @code{-device virtconsole} for the new way of invocation.
3617 ETEXI
3619 DEF("show-cursor", 0, QEMU_OPTION_show_cursor, \
3620 "-show-cursor show cursor\n", QEMU_ARCH_ALL)
3621 STEXI
3622 @item -show-cursor
3623 @findex -show-cursor
3624 Show cursor.
3625 ETEXI
3627 DEF("tb-size", HAS_ARG, QEMU_OPTION_tb_size, \
3628 "-tb-size n set TB size\n", QEMU_ARCH_ALL)
3629 STEXI
3630 @item -tb-size @var{n}
3631 @findex -tb-size
3632 Set TB size.
3633 ETEXI
3635 DEF("incoming", HAS_ARG, QEMU_OPTION_incoming, \
3636 "-incoming tcp:[host]:port[,to=maxport][,ipv4][,ipv6]\n" \
3637 "-incoming rdma:host:port[,ipv4][,ipv6]\n" \
3638 "-incoming unix:socketpath\n" \
3639 " prepare for incoming migration, listen on\n" \
3640 " specified protocol and socket address\n" \
3641 "-incoming fd:fd\n" \
3642 "-incoming exec:cmdline\n" \
3643 " accept incoming migration on given file descriptor\n" \
3644 " or from given external command\n" \
3645 "-incoming defer\n" \
3646 " wait for the URI to be specified via migrate_incoming\n",
3647 QEMU_ARCH_ALL)
3648 STEXI
3649 @item -incoming tcp:[@var{host}]:@var{port}[,to=@var{maxport}][,ipv4][,ipv6]
3650 @itemx -incoming rdma:@var{host}:@var{port}[,ipv4][,ipv6]
3651 @findex -incoming
3652 Prepare for incoming migration, listen on a given tcp port.
3654 @item -incoming unix:@var{socketpath}
3655 Prepare for incoming migration, listen on a given unix socket.
3657 @item -incoming fd:@var{fd}
3658 Accept incoming migration from a given filedescriptor.
3660 @item -incoming exec:@var{cmdline}
3661 Accept incoming migration as an output from specified external command.
3663 @item -incoming defer
3664 Wait for the URI to be specified via migrate_incoming. The monitor can
3665 be used to change settings (such as migration parameters) prior to issuing
3666 the migrate_incoming to allow the migration to begin.
3667 ETEXI
3669 DEF("only-migratable", 0, QEMU_OPTION_only_migratable, \
3670 "-only-migratable allow only migratable devices\n", QEMU_ARCH_ALL)
3671 STEXI
3672 @item -only-migratable
3673 @findex -only-migratable
3674 Only allow migratable devices. Devices will not be allowed to enter an
3675 unmigratable state.
3676 ETEXI
3678 DEF("nodefaults", 0, QEMU_OPTION_nodefaults, \
3679 "-nodefaults don't create default devices\n", QEMU_ARCH_ALL)
3680 STEXI
3681 @item -nodefaults
3682 @findex -nodefaults
3683 Don't create default devices. Normally, QEMU sets the default devices like serial
3684 port, parallel port, virtual console, monitor device, VGA adapter, floppy and
3685 CD-ROM drive and others. The @code{-nodefaults} option will disable all those
3686 default devices.
3687 ETEXI
3689 #ifndef _WIN32
3690 DEF("chroot", HAS_ARG, QEMU_OPTION_chroot, \
3691 "-chroot dir chroot to dir just before starting the VM\n",
3692 QEMU_ARCH_ALL)
3693 #endif
3694 STEXI
3695 @item -chroot @var{dir}
3696 @findex -chroot
3697 Immediately before starting guest execution, chroot to the specified
3698 directory. Especially useful in combination with -runas.
3699 ETEXI
3701 #ifndef _WIN32
3702 DEF("runas", HAS_ARG, QEMU_OPTION_runas, \
3703 "-runas user change to user id user just before starting the VM\n",
3704 QEMU_ARCH_ALL)
3705 #endif
3706 STEXI
3707 @item -runas @var{user}
3708 @findex -runas
3709 Immediately before starting guest execution, drop root privileges, switching
3710 to the specified user.
3711 ETEXI
3713 DEF("prom-env", HAS_ARG, QEMU_OPTION_prom_env,
3714 "-prom-env variable=value\n"
3715 " set OpenBIOS nvram variables\n",
3716 QEMU_ARCH_PPC | QEMU_ARCH_SPARC)
3717 STEXI
3718 @item -prom-env @var{variable}=@var{value}
3719 @findex -prom-env
3720 Set OpenBIOS nvram @var{variable} to given @var{value} (PPC, SPARC only).
3721 ETEXI
3722 DEF("semihosting", 0, QEMU_OPTION_semihosting,
3723 "-semihosting semihosting mode\n",
3724 QEMU_ARCH_ARM | QEMU_ARCH_M68K | QEMU_ARCH_XTENSA | QEMU_ARCH_LM32 |
3725 QEMU_ARCH_MIPS)
3726 STEXI
3727 @item -semihosting
3728 @findex -semihosting
3729 Enable semihosting mode (ARM, M68K, Xtensa, MIPS only).
3730 ETEXI
3731 DEF("semihosting-config", HAS_ARG, QEMU_OPTION_semihosting_config,
3732 "-semihosting-config [enable=on|off][,target=native|gdb|auto][,arg=str[,...]]\n" \
3733 " semihosting configuration\n",
3734 QEMU_ARCH_ARM | QEMU_ARCH_M68K | QEMU_ARCH_XTENSA | QEMU_ARCH_LM32 |
3735 QEMU_ARCH_MIPS)
3736 STEXI
3737 @item -semihosting-config [enable=on|off][,target=native|gdb|auto][,arg=str[,...]]
3738 @findex -semihosting-config
3739 Enable and configure semihosting (ARM, M68K, Xtensa, MIPS only).
3740 @table @option
3741 @item target=@code{native|gdb|auto}
3742 Defines where the semihosting calls will be addressed, to QEMU (@code{native})
3743 or to GDB (@code{gdb}). The default is @code{auto}, which means @code{gdb}
3744 during debug sessions and @code{native} otherwise.
3745 @item arg=@var{str1},arg=@var{str2},...
3746 Allows the user to pass input arguments, and can be used multiple times to build
3747 up a list. The old-style @code{-kernel}/@code{-append} method of passing a
3748 command line is still supported for backward compatibility. If both the
3749 @code{--semihosting-config arg} and the @code{-kernel}/@code{-append} are
3750 specified, the former is passed to semihosting as it always takes precedence.
3751 @end table
3752 ETEXI
3753 DEF("old-param", 0, QEMU_OPTION_old_param,
3754 "-old-param old param mode\n", QEMU_ARCH_ARM)
3755 STEXI
3756 @item -old-param
3757 @findex -old-param (ARM)
3758 Old param mode (ARM only).
3759 ETEXI
3761 DEF("sandbox", HAS_ARG, QEMU_OPTION_sandbox, \
3762 "-sandbox <arg> Enable seccomp mode 2 system call filter (default 'off').\n",
3763 QEMU_ARCH_ALL)
3764 STEXI
3765 @item -sandbox @var{arg}
3766 @findex -sandbox
3767 Enable Seccomp mode 2 system call filter. 'on' will enable syscall filtering and 'off' will
3768 disable it. The default is 'off'.
3769 ETEXI
3771 DEF("readconfig", HAS_ARG, QEMU_OPTION_readconfig,
3772 "-readconfig <file>\n", QEMU_ARCH_ALL)
3773 STEXI
3774 @item -readconfig @var{file}
3775 @findex -readconfig
3776 Read device configuration from @var{file}. This approach is useful when you want to spawn
3777 QEMU process with many command line options but you don't want to exceed the command line
3778 character limit.
3779 ETEXI
3780 DEF("writeconfig", HAS_ARG, QEMU_OPTION_writeconfig,
3781 "-writeconfig <file>\n"
3782 " read/write config file\n", QEMU_ARCH_ALL)
3783 STEXI
3784 @item -writeconfig @var{file}
3785 @findex -writeconfig
3786 Write device configuration to @var{file}. The @var{file} can be either filename to save
3787 command line and device configuration into file or dash @code{-}) character to print the
3788 output to stdout. This can be later used as input file for @code{-readconfig} option.
3789 ETEXI
3790 DEF("nodefconfig", 0, QEMU_OPTION_nodefconfig,
3791 "-nodefconfig\n"
3792 " do not load default config files at startup\n",
3793 QEMU_ARCH_ALL)
3794 STEXI
3795 @item -nodefconfig
3796 @findex -nodefconfig
3797 Normally QEMU loads configuration files from @var{sysconfdir} and @var{datadir} at startup.
3798 The @code{-nodefconfig} option will prevent QEMU from loading any of those config files.
3799 ETEXI
3800 DEF("no-user-config", 0, QEMU_OPTION_nouserconfig,
3801 "-no-user-config\n"
3802 " do not load user-provided config files at startup\n",
3803 QEMU_ARCH_ALL)
3804 STEXI
3805 @item -no-user-config
3806 @findex -no-user-config
3807 The @code{-no-user-config} option makes QEMU not load any of the user-provided
3808 config files on @var{sysconfdir}, but won't make it skip the QEMU-provided config
3809 files from @var{datadir}.
3810 ETEXI
3811 DEF("trace", HAS_ARG, QEMU_OPTION_trace,
3812 "-trace [[enable=]<pattern>][,events=<file>][,file=<file>]\n"
3813 " specify tracing options\n",
3814 QEMU_ARCH_ALL)
3815 STEXI
3816 HXCOMM This line is not accurate, as some sub-options are backend-specific but
3817 HXCOMM HX does not support conditional compilation of text.
3818 @item -trace [[enable=]@var{pattern}][,events=@var{file}][,file=@var{file}]
3819 @findex -trace
3820 @include qemu-option-trace.texi
3821 ETEXI
3823 HXCOMM Internal use
3824 DEF("qtest", HAS_ARG, QEMU_OPTION_qtest, "", QEMU_ARCH_ALL)
3825 DEF("qtest-log", HAS_ARG, QEMU_OPTION_qtest_log, "", QEMU_ARCH_ALL)
3827 #ifdef __linux__
3828 DEF("enable-fips", 0, QEMU_OPTION_enablefips,
3829 "-enable-fips enable FIPS 140-2 compliance\n",
3830 QEMU_ARCH_ALL)
3831 #endif
3832 STEXI
3833 @item -enable-fips
3834 @findex -enable-fips
3835 Enable FIPS 140-2 compliance mode.
3836 ETEXI
3838 HXCOMM Deprecated by -machine accel=tcg property
3839 DEF("no-kvm", 0, QEMU_OPTION_no_kvm, "", QEMU_ARCH_I386)
3841 HXCOMM Deprecated by kvm-pit driver properties
3842 DEF("no-kvm-pit-reinjection", 0, QEMU_OPTION_no_kvm_pit_reinjection,
3843 "", QEMU_ARCH_I386)
3845 HXCOMM Deprecated (ignored)
3846 DEF("no-kvm-pit", 0, QEMU_OPTION_no_kvm_pit, "", QEMU_ARCH_I386)
3848 HXCOMM Deprecated by -machine kernel_irqchip=on|off property
3849 DEF("no-kvm-irqchip", 0, QEMU_OPTION_no_kvm_irqchip, "", QEMU_ARCH_I386)
3851 HXCOMM Deprecated (ignored)
3852 DEF("tdf", 0, QEMU_OPTION_tdf,"", QEMU_ARCH_ALL)
3854 DEF("msg", HAS_ARG, QEMU_OPTION_msg,
3855 "-msg timestamp[=on|off]\n"
3856 " change the format of messages\n"
3857 " on|off controls leading timestamps (default:on)\n",
3858 QEMU_ARCH_ALL)
3859 STEXI
3860 @item -msg timestamp[=on|off]
3861 @findex -msg
3862 prepend a timestamp to each log message.(default:on)
3863 ETEXI
3865 DEF("dump-vmstate", HAS_ARG, QEMU_OPTION_dump_vmstate,
3866 "-dump-vmstate <file>\n"
3867 " Output vmstate information in JSON format to file.\n"
3868 " Use the scripts/vmstate-static-checker.py file to\n"
3869 " check for possible regressions in migration code\n"
3870 " by comparing two such vmstate dumps.\n",
3871 QEMU_ARCH_ALL)
3872 STEXI
3873 @item -dump-vmstate @var{file}
3874 @findex -dump-vmstate
3875 Dump json-encoded vmstate information for current machine type to file
3876 in @var{file}
3877 ETEXI
3879 STEXI
3880 @end table
3881 ETEXI
3882 DEFHEADING()
3883 DEFHEADING(Generic object creation)
3884 STEXI
3885 @table @option
3886 ETEXI
3888 DEF("object", HAS_ARG, QEMU_OPTION_object,
3889 "-object TYPENAME[,PROP1=VALUE1,...]\n"
3890 " create a new object of type TYPENAME setting properties\n"
3891 " in the order they are specified. Note that the 'id'\n"
3892 " property must be set. These objects are placed in the\n"
3893 " '/objects' path.\n",
3894 QEMU_ARCH_ALL)
3895 STEXI
3896 @item -object @var{typename}[,@var{prop1}=@var{value1},...]
3897 @findex -object
3898 Create a new object of type @var{typename} setting properties
3899 in the order they are specified. Note that the 'id'
3900 property must be set. These objects are placed in the
3901 '/objects' path.
3903 @table @option
3905 @item -object memory-backend-file,id=@var{id},size=@var{size},mem-path=@var{dir},share=@var{on|off}
3907 Creates a memory file backend object, which can be used to back
3908 the guest RAM with huge pages. The @option{id} parameter is a
3909 unique ID that will be used to reference this memory region
3910 when configuring the @option{-numa} argument. The @option{size}
3911 option provides the size of the memory region, and accepts
3912 common suffixes, eg @option{500M}. The @option{mem-path} provides
3913 the path to either a shared memory or huge page filesystem mount.
3914 The @option{share} boolean option determines whether the memory
3915 region is marked as private to QEMU, or shared. The latter allows
3916 a co-operating external process to access the QEMU memory region.
3918 @item -object rng-random,id=@var{id},filename=@var{/dev/random}
3920 Creates a random number generator backend which obtains entropy from
3921 a device on the host. The @option{id} parameter is a unique ID that
3922 will be used to reference this entropy backend from the @option{virtio-rng}
3923 device. The @option{filename} parameter specifies which file to obtain
3924 entropy from and if omitted defaults to @option{/dev/random}.
3926 @item -object rng-egd,id=@var{id},chardev=@var{chardevid}
3928 Creates a random number generator backend which obtains entropy from
3929 an external daemon running on the host. The @option{id} parameter is
3930 a unique ID that will be used to reference this entropy backend from
3931 the @option{virtio-rng} device. The @option{chardev} parameter is
3932 the unique ID of a character device backend that provides the connection
3933 to the RNG daemon.
3935 @item -object tls-creds-anon,id=@var{id},endpoint=@var{endpoint},dir=@var{/path/to/cred/dir},verify-peer=@var{on|off}
3937 Creates a TLS anonymous credentials object, which can be used to provide
3938 TLS support on network backends. The @option{id} parameter is a unique
3939 ID which network backends will use to access the credentials. The
3940 @option{endpoint} is either @option{server} or @option{client} depending
3941 on whether the QEMU network backend that uses the credentials will be
3942 acting as a client or as a server. If @option{verify-peer} is enabled
3943 (the default) then once the handshake is completed, the peer credentials
3944 will be verified, though this is a no-op for anonymous credentials.
3946 The @var{dir} parameter tells QEMU where to find the credential
3947 files. For server endpoints, this directory may contain a file
3948 @var{dh-params.pem} providing diffie-hellman parameters to use
3949 for the TLS server. If the file is missing, QEMU will generate
3950 a set of DH parameters at startup. This is a computationally
3951 expensive operation that consumes random pool entropy, so it is
3952 recommended that a persistent set of parameters be generated
3953 upfront and saved.
3955 @item -object tls-creds-x509,id=@var{id},endpoint=@var{endpoint},dir=@var{/path/to/cred/dir},verify-peer=@var{on|off},passwordid=@var{id}
3957 Creates a TLS anonymous credentials object, which can be used to provide
3958 TLS support on network backends. The @option{id} parameter is a unique
3959 ID which network backends will use to access the credentials. The
3960 @option{endpoint} is either @option{server} or @option{client} depending
3961 on whether the QEMU network backend that uses the credentials will be
3962 acting as a client or as a server. If @option{verify-peer} is enabled
3963 (the default) then once the handshake is completed, the peer credentials
3964 will be verified. With x509 certificates, this implies that the clients
3965 must be provided with valid client certificates too.
3967 The @var{dir} parameter tells QEMU where to find the credential
3968 files. For server endpoints, this directory may contain a file
3969 @var{dh-params.pem} providing diffie-hellman parameters to use
3970 for the TLS server. If the file is missing, QEMU will generate
3971 a set of DH parameters at startup. This is a computationally
3972 expensive operation that consumes random pool entropy, so it is
3973 recommended that a persistent set of parameters be generated
3974 upfront and saved.
3976 For x509 certificate credentials the directory will contain further files
3977 providing the x509 certificates. The certificates must be stored
3978 in PEM format, in filenames @var{ca-cert.pem}, @var{ca-crl.pem} (optional),
3979 @var{server-cert.pem} (only servers), @var{server-key.pem} (only servers),
3980 @var{client-cert.pem} (only clients), and @var{client-key.pem} (only clients).
3982 For the @var{server-key.pem} and @var{client-key.pem} files which
3983 contain sensitive private keys, it is possible to use an encrypted
3984 version by providing the @var{passwordid} parameter. This provides
3985 the ID of a previously created @code{secret} object containing the
3986 password for decryption.
3988 @item -object filter-buffer,id=@var{id},netdev=@var{netdevid},interval=@var{t}[,queue=@var{all|rx|tx}][,status=@var{on|off}]
3990 Interval @var{t} can't be 0, this filter batches the packet delivery: all
3991 packets arriving in a given interval on netdev @var{netdevid} are delayed
3992 until the end of the interval. Interval is in microseconds.
3993 @option{status} is optional that indicate whether the netfilter is
3994 on (enabled) or off (disabled), the default status for netfilter will be 'on'.
3996 queue @var{all|rx|tx} is an option that can be applied to any netfilter.
3998 @option{all}: the filter is attached both to the receive and the transmit
3999 queue of the netdev (default).
4001 @option{rx}: the filter is attached to the receive queue of the netdev,
4002 where it will receive packets sent to the netdev.
4004 @option{tx}: the filter is attached to the transmit queue of the netdev,
4005 where it will receive packets sent by the netdev.
4007 @item -object filter-mirror,id=@var{id},netdev=@var{netdevid},outdev=@var{chardevid}[,queue=@var{all|rx|tx}]
4009 filter-mirror on netdev @var{netdevid},mirror net packet to chardev
4010 @var{chardevid}
4012 @item -object filter-redirector,id=@var{id},netdev=@var{netdevid},indev=@var{chardevid},
4013 outdev=@var{chardevid}[,queue=@var{all|rx|tx}]
4015 filter-redirector on netdev @var{netdevid},redirect filter's net packet to chardev
4016 @var{chardevid},and redirect indev's packet to filter.
4017 Create a filter-redirector we need to differ outdev id from indev id, id can not
4018 be the same. we can just use indev or outdev, but at least one of indev or outdev
4019 need to be specified.
4021 @item -object filter-rewriter,id=@var{id},netdev=@var{netdevid},rewriter-mode=@var{mode}[,queue=@var{all|rx|tx}]
4023 Filter-rewriter is a part of COLO project.It will rewrite tcp packet to
4024 secondary from primary to keep secondary tcp connection,and rewrite
4025 tcp packet to primary from secondary make tcp packet can be handled by
4026 client.
4028 usage:
4029 colo secondary:
4030 -object filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0
4031 -object filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1
4032 -object filter-rewriter,id=rew0,netdev=hn0,queue=all
4034 @item -object filter-dump,id=@var{id},netdev=@var{dev}[,file=@var{filename}][,maxlen=@var{len}]
4036 Dump the network traffic on netdev @var{dev} to the file specified by
4037 @var{filename}. At most @var{len} bytes (64k by default) per packet are stored.
4038 The file format is libpcap, so it can be analyzed with tools such as tcpdump
4039 or Wireshark.
4041 @item -object colo-compare,id=@var{id},primary_in=@var{chardevid},secondary_in=@var{chardevid},
4042 outdev=@var{chardevid}
4044 Colo-compare gets packet from primary_in@var{chardevid} and secondary_in@var{chardevid}, than compare primary packet with
4045 secondary packet. If the packets are same, we will output primary
4046 packet to outdev@var{chardevid}, else we will notify colo-frame
4047 do checkpoint and send primary packet to outdev@var{chardevid}.
4049 we must use it with the help of filter-mirror and filter-redirector.
4051 @example
4053 primary:
4054 -netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,downscript=/etc/qemu-ifdown
4055 -device e1000,id=e0,netdev=hn0,mac=52:a4:00:12:78:66
4056 -chardev socket,id=mirror0,host=3.3.3.3,port=9003,server,nowait
4057 -chardev socket,id=compare1,host=3.3.3.3,port=9004,server,nowait
4058 -chardev socket,id=compare0,host=3.3.3.3,port=9001,server,nowait
4059 -chardev socket,id=compare0-0,host=3.3.3.3,port=9001
4060 -chardev socket,id=compare_out,host=3.3.3.3,port=9005,server,nowait
4061 -chardev socket,id=compare_out0,host=3.3.3.3,port=9005
4062 -object filter-mirror,id=m0,netdev=hn0,queue=tx,outdev=mirror0
4063 -object filter-redirector,netdev=hn0,id=redire0,queue=rx,indev=compare_out
4064 -object filter-redirector,netdev=hn0,id=redire1,queue=rx,outdev=compare0
4065 -object colo-compare,id=comp0,primary_in=compare0-0,secondary_in=compare1,outdev=compare_out0
4067 secondary:
4068 -netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,down script=/etc/qemu-ifdown
4069 -device e1000,netdev=hn0,mac=52:a4:00:12:78:66
4070 -chardev socket,id=red0,host=3.3.3.3,port=9003
4071 -chardev socket,id=red1,host=3.3.3.3,port=9004
4072 -object filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0
4073 -object filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1
4075 @end example
4077 If you want to know the detail of above command line, you can read
4078 the colo-compare git log.
4080 @item -object cryptodev-backend-builtin,id=@var{id}[,queues=@var{queues}]
4082 Creates a cryptodev backend which executes crypto opreation from
4083 the QEMU cipher APIS. The @var{id} parameter is
4084 a unique ID that will be used to reference this cryptodev backend from
4085 the @option{virtio-crypto} device. The @var{queues} parameter is optional,
4086 which specify the queue number of cryptodev backend, the default of
4087 @var{queues} is 1.
4089 @example
4091 # qemu-system-x86_64 \
4092 [...] \
4093 -object cryptodev-backend-builtin,id=cryptodev0 \
4094 -device virtio-crypto-pci,id=crypto0,cryptodev=cryptodev0 \
4095 [...]
4096 @end example
4098 @item -object secret,id=@var{id},data=@var{string},format=@var{raw|base64}[,keyid=@var{secretid},iv=@var{string}]
4099 @item -object secret,id=@var{id},file=@var{filename},format=@var{raw|base64}[,keyid=@var{secretid},iv=@var{string}]
4101 Defines a secret to store a password, encryption key, or some other sensitive
4102 data. The sensitive data can either be passed directly via the @var{data}
4103 parameter, or indirectly via the @var{file} parameter. Using the @var{data}
4104 parameter is insecure unless the sensitive data is encrypted.
4106 The sensitive data can be provided in raw format (the default), or base64.
4107 When encoded as JSON, the raw format only supports valid UTF-8 characters,
4108 so base64 is recommended for sending binary data. QEMU will convert from
4109 which ever format is provided to the format it needs internally. eg, an
4110 RBD password can be provided in raw format, even though it will be base64
4111 encoded when passed onto the RBD sever.
4113 For added protection, it is possible to encrypt the data associated with
4114 a secret using the AES-256-CBC cipher. Use of encryption is indicated
4115 by providing the @var{keyid} and @var{iv} parameters. The @var{keyid}
4116 parameter provides the ID of a previously defined secret that contains
4117 the AES-256 decryption key. This key should be 32-bytes long and be
4118 base64 encoded. The @var{iv} parameter provides the random initialization
4119 vector used for encryption of this particular secret and should be a
4120 base64 encrypted string of the 16-byte IV.
4122 The simplest (insecure) usage is to provide the secret inline
4124 @example
4126 # $QEMU -object secret,id=sec0,data=letmein,format=raw
4128 @end example
4130 The simplest secure usage is to provide the secret via a file
4132 # echo -n "letmein" > mypasswd.txt
4133 # $QEMU -object secret,id=sec0,file=mypasswd.txt,format=raw
4135 For greater security, AES-256-CBC should be used. To illustrate usage,
4136 consider the openssl command line tool which can encrypt the data. Note
4137 that when encrypting, the plaintext must be padded to the cipher block
4138 size (32 bytes) using the standard PKCS#5/6 compatible padding algorithm.
4140 First a master key needs to be created in base64 encoding:
4142 @example
4143 # openssl rand -base64 32 > key.b64
4144 # KEY=$(base64 -d key.b64 | hexdump -v -e '/1 "%02X"')
4145 @end example
4147 Each secret to be encrypted needs to have a random initialization vector
4148 generated. These do not need to be kept secret
4150 @example
4151 # openssl rand -base64 16 > iv.b64
4152 # IV=$(base64 -d iv.b64 | hexdump -v -e '/1 "%02X"')
4153 @end example
4155 The secret to be defined can now be encrypted, in this case we're
4156 telling openssl to base64 encode the result, but it could be left
4157 as raw bytes if desired.
4159 @example
4160 # SECRET=$(echo -n "letmein" |
4161 openssl enc -aes-256-cbc -a -K $KEY -iv $IV)
4162 @end example
4164 When launching QEMU, create a master secret pointing to @code{key.b64}
4165 and specify that to be used to decrypt the user password. Pass the
4166 contents of @code{iv.b64} to the second secret
4168 @example
4169 # $QEMU \
4170 -object secret,id=secmaster0,format=base64,file=key.b64 \
4171 -object secret,id=sec0,keyid=secmaster0,format=base64,\
4172 data=$SECRET,iv=$(<iv.b64)
4173 @end example
4175 @end table
4177 ETEXI
4180 HXCOMM This is the last statement. Insert new options before this line!
4181 STEXI
4182 @end table
4183 ETEXI