target/arm: Restrict semi-hosting to TCG
[qemu/ar7.git] / target / arm / helper.c
blob055bf831a6168cba1d782127d79499ca9357ee55
1 /*
2 * ARM generic helpers.
4 * This code is licensed under the GNU GPL v2 or later.
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
8 #include "qemu/osdep.h"
9 #include "qemu/units.h"
10 #include "target/arm/idau.h"
11 #include "trace.h"
12 #include "cpu.h"
13 #include "internals.h"
14 #include "exec/gdbstub.h"
15 #include "exec/helper-proto.h"
16 #include "qemu/host-utils.h"
17 #include "sysemu/sysemu.h"
18 #include "qemu/bitops.h"
19 #include "qemu/crc32c.h"
20 #include "qemu/qemu-print.h"
21 #include "exec/exec-all.h"
22 #include "exec/cpu_ldst.h"
23 #include <zlib.h> /* For crc32 */
24 #include "hw/semihosting/semihost.h"
25 #include "sysemu/cpus.h"
26 #include "sysemu/kvm.h"
27 #include "qemu/range.h"
28 #include "qapi/qapi-commands-machine-target.h"
29 #include "qapi/error.h"
30 #include "qemu/guest-random.h"
31 #ifdef CONFIG_TCG
32 #include "arm_ldst.h"
33 #endif
35 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
37 #ifndef CONFIG_USER_ONLY
39 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
40 MMUAccessType access_type, ARMMMUIdx mmu_idx,
41 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
42 target_ulong *page_size_ptr,
43 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
44 #endif
46 static void switch_mode(CPUARMState *env, int mode);
48 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
50 int nregs;
52 /* VFP data registers are always little-endian. */
53 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
54 if (reg < nregs) {
55 stq_le_p(buf, *aa32_vfp_dreg(env, reg));
56 return 8;
58 if (arm_feature(env, ARM_FEATURE_NEON)) {
59 /* Aliases for Q regs. */
60 nregs += 16;
61 if (reg < nregs) {
62 uint64_t *q = aa32_vfp_qreg(env, reg - 32);
63 stq_le_p(buf, q[0]);
64 stq_le_p(buf + 8, q[1]);
65 return 16;
68 switch (reg - nregs) {
69 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
70 case 1: stl_p(buf, vfp_get_fpscr(env)); return 4;
71 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
73 return 0;
76 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
78 int nregs;
80 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
81 if (reg < nregs) {
82 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf);
83 return 8;
85 if (arm_feature(env, ARM_FEATURE_NEON)) {
86 nregs += 16;
87 if (reg < nregs) {
88 uint64_t *q = aa32_vfp_qreg(env, reg - 32);
89 q[0] = ldq_le_p(buf);
90 q[1] = ldq_le_p(buf + 8);
91 return 16;
94 switch (reg - nregs) {
95 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
96 case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4;
97 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
99 return 0;
102 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
104 switch (reg) {
105 case 0 ... 31:
106 /* 128 bit FP register */
108 uint64_t *q = aa64_vfp_qreg(env, reg);
109 stq_le_p(buf, q[0]);
110 stq_le_p(buf + 8, q[1]);
111 return 16;
113 case 32:
114 /* FPSR */
115 stl_p(buf, vfp_get_fpsr(env));
116 return 4;
117 case 33:
118 /* FPCR */
119 stl_p(buf, vfp_get_fpcr(env));
120 return 4;
121 default:
122 return 0;
126 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
128 switch (reg) {
129 case 0 ... 31:
130 /* 128 bit FP register */
132 uint64_t *q = aa64_vfp_qreg(env, reg);
133 q[0] = ldq_le_p(buf);
134 q[1] = ldq_le_p(buf + 8);
135 return 16;
137 case 32:
138 /* FPSR */
139 vfp_set_fpsr(env, ldl_p(buf));
140 return 4;
141 case 33:
142 /* FPCR */
143 vfp_set_fpcr(env, ldl_p(buf));
144 return 4;
145 default:
146 return 0;
150 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
152 assert(ri->fieldoffset);
153 if (cpreg_field_is_64bit(ri)) {
154 return CPREG_FIELD64(env, ri);
155 } else {
156 return CPREG_FIELD32(env, ri);
160 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
161 uint64_t value)
163 assert(ri->fieldoffset);
164 if (cpreg_field_is_64bit(ri)) {
165 CPREG_FIELD64(env, ri) = value;
166 } else {
167 CPREG_FIELD32(env, ri) = value;
171 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
173 return (char *)env + ri->fieldoffset;
176 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
178 /* Raw read of a coprocessor register (as needed for migration, etc). */
179 if (ri->type & ARM_CP_CONST) {
180 return ri->resetvalue;
181 } else if (ri->raw_readfn) {
182 return ri->raw_readfn(env, ri);
183 } else if (ri->readfn) {
184 return ri->readfn(env, ri);
185 } else {
186 return raw_read(env, ri);
190 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
191 uint64_t v)
193 /* Raw write of a coprocessor register (as needed for migration, etc).
194 * Note that constant registers are treated as write-ignored; the
195 * caller should check for success by whether a readback gives the
196 * value written.
198 if (ri->type & ARM_CP_CONST) {
199 return;
200 } else if (ri->raw_writefn) {
201 ri->raw_writefn(env, ri, v);
202 } else if (ri->writefn) {
203 ri->writefn(env, ri, v);
204 } else {
205 raw_write(env, ri, v);
209 static int arm_gdb_get_sysreg(CPUARMState *env, uint8_t *buf, int reg)
211 ARMCPU *cpu = env_archcpu(env);
212 const ARMCPRegInfo *ri;
213 uint32_t key;
215 key = cpu->dyn_xml.cpregs_keys[reg];
216 ri = get_arm_cp_reginfo(cpu->cp_regs, key);
217 if (ri) {
218 if (cpreg_field_is_64bit(ri)) {
219 return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri));
220 } else {
221 return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri));
224 return 0;
227 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg)
229 return 0;
232 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
234 /* Return true if the regdef would cause an assertion if you called
235 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
236 * program bug for it not to have the NO_RAW flag).
237 * NB that returning false here doesn't necessarily mean that calling
238 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
239 * read/write access functions which are safe for raw use" from "has
240 * read/write access functions which have side effects but has forgotten
241 * to provide raw access functions".
242 * The tests here line up with the conditions in read/write_raw_cp_reg()
243 * and assertions in raw_read()/raw_write().
245 if ((ri->type & ARM_CP_CONST) ||
246 ri->fieldoffset ||
247 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
248 return false;
250 return true;
253 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
255 /* Write the coprocessor state from cpu->env to the (index,value) list. */
256 int i;
257 bool ok = true;
259 for (i = 0; i < cpu->cpreg_array_len; i++) {
260 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
261 const ARMCPRegInfo *ri;
262 uint64_t newval;
264 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
265 if (!ri) {
266 ok = false;
267 continue;
269 if (ri->type & ARM_CP_NO_RAW) {
270 continue;
273 newval = read_raw_cp_reg(&cpu->env, ri);
274 if (kvm_sync) {
276 * Only sync if the previous list->cpustate sync succeeded.
277 * Rather than tracking the success/failure state for every
278 * item in the list, we just recheck "does the raw write we must
279 * have made in write_list_to_cpustate() read back OK" here.
281 uint64_t oldval = cpu->cpreg_values[i];
283 if (oldval == newval) {
284 continue;
287 write_raw_cp_reg(&cpu->env, ri, oldval);
288 if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
289 continue;
292 write_raw_cp_reg(&cpu->env, ri, newval);
294 cpu->cpreg_values[i] = newval;
296 return ok;
299 bool write_list_to_cpustate(ARMCPU *cpu)
301 int i;
302 bool ok = true;
304 for (i = 0; i < cpu->cpreg_array_len; i++) {
305 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
306 uint64_t v = cpu->cpreg_values[i];
307 const ARMCPRegInfo *ri;
309 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
310 if (!ri) {
311 ok = false;
312 continue;
314 if (ri->type & ARM_CP_NO_RAW) {
315 continue;
317 /* Write value and confirm it reads back as written
318 * (to catch read-only registers and partially read-only
319 * registers where the incoming migration value doesn't match)
321 write_raw_cp_reg(&cpu->env, ri, v);
322 if (read_raw_cp_reg(&cpu->env, ri) != v) {
323 ok = false;
326 return ok;
329 static void add_cpreg_to_list(gpointer key, gpointer opaque)
331 ARMCPU *cpu = opaque;
332 uint64_t regidx;
333 const ARMCPRegInfo *ri;
335 regidx = *(uint32_t *)key;
336 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
338 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
339 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
340 /* The value array need not be initialized at this point */
341 cpu->cpreg_array_len++;
345 static void count_cpreg(gpointer key, gpointer opaque)
347 ARMCPU *cpu = opaque;
348 uint64_t regidx;
349 const ARMCPRegInfo *ri;
351 regidx = *(uint32_t *)key;
352 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
354 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
355 cpu->cpreg_array_len++;
359 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
361 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
362 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
364 if (aidx > bidx) {
365 return 1;
367 if (aidx < bidx) {
368 return -1;
370 return 0;
373 void init_cpreg_list(ARMCPU *cpu)
375 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
376 * Note that we require cpreg_tuples[] to be sorted by key ID.
378 GList *keys;
379 int arraylen;
381 keys = g_hash_table_get_keys(cpu->cp_regs);
382 keys = g_list_sort(keys, cpreg_key_compare);
384 cpu->cpreg_array_len = 0;
386 g_list_foreach(keys, count_cpreg, cpu);
388 arraylen = cpu->cpreg_array_len;
389 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
390 cpu->cpreg_values = g_new(uint64_t, arraylen);
391 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
392 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
393 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
394 cpu->cpreg_array_len = 0;
396 g_list_foreach(keys, add_cpreg_to_list, cpu);
398 assert(cpu->cpreg_array_len == arraylen);
400 g_list_free(keys);
404 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
405 * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
407 * access_el3_aa32ns: Used to check AArch32 register views.
408 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
410 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
411 const ARMCPRegInfo *ri,
412 bool isread)
414 bool secure = arm_is_secure_below_el3(env);
416 assert(!arm_el_is_aa64(env, 3));
417 if (secure) {
418 return CP_ACCESS_TRAP_UNCATEGORIZED;
420 return CP_ACCESS_OK;
423 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
424 const ARMCPRegInfo *ri,
425 bool isread)
427 if (!arm_el_is_aa64(env, 3)) {
428 return access_el3_aa32ns(env, ri, isread);
430 return CP_ACCESS_OK;
433 /* Some secure-only AArch32 registers trap to EL3 if used from
434 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
435 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
436 * We assume that the .access field is set to PL1_RW.
438 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
439 const ARMCPRegInfo *ri,
440 bool isread)
442 if (arm_current_el(env) == 3) {
443 return CP_ACCESS_OK;
445 if (arm_is_secure_below_el3(env)) {
446 return CP_ACCESS_TRAP_EL3;
448 /* This will be EL1 NS and EL2 NS, which just UNDEF */
449 return CP_ACCESS_TRAP_UNCATEGORIZED;
452 /* Check for traps to "powerdown debug" registers, which are controlled
453 * by MDCR.TDOSA
455 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
456 bool isread)
458 int el = arm_current_el(env);
459 bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) ||
460 (env->cp15.mdcr_el2 & MDCR_TDE) ||
461 (arm_hcr_el2_eff(env) & HCR_TGE);
463 if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) {
464 return CP_ACCESS_TRAP_EL2;
466 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
467 return CP_ACCESS_TRAP_EL3;
469 return CP_ACCESS_OK;
472 /* Check for traps to "debug ROM" registers, which are controlled
473 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
475 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
476 bool isread)
478 int el = arm_current_el(env);
479 bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) ||
480 (env->cp15.mdcr_el2 & MDCR_TDE) ||
481 (arm_hcr_el2_eff(env) & HCR_TGE);
483 if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) {
484 return CP_ACCESS_TRAP_EL2;
486 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
487 return CP_ACCESS_TRAP_EL3;
489 return CP_ACCESS_OK;
492 /* Check for traps to general debug registers, which are controlled
493 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
495 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
496 bool isread)
498 int el = arm_current_el(env);
499 bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) ||
500 (env->cp15.mdcr_el2 & MDCR_TDE) ||
501 (arm_hcr_el2_eff(env) & HCR_TGE);
503 if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) {
504 return CP_ACCESS_TRAP_EL2;
506 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
507 return CP_ACCESS_TRAP_EL3;
509 return CP_ACCESS_OK;
512 /* Check for traps to performance monitor registers, which are controlled
513 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
515 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
516 bool isread)
518 int el = arm_current_el(env);
520 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
521 && !arm_is_secure_below_el3(env)) {
522 return CP_ACCESS_TRAP_EL2;
524 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
525 return CP_ACCESS_TRAP_EL3;
527 return CP_ACCESS_OK;
530 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
532 ARMCPU *cpu = env_archcpu(env);
534 raw_write(env, ri, value);
535 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
538 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
540 ARMCPU *cpu = env_archcpu(env);
542 if (raw_read(env, ri) != value) {
543 /* Unlike real hardware the qemu TLB uses virtual addresses,
544 * not modified virtual addresses, so this causes a TLB flush.
546 tlb_flush(CPU(cpu));
547 raw_write(env, ri, value);
551 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
552 uint64_t value)
554 ARMCPU *cpu = env_archcpu(env);
556 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
557 && !extended_addresses_enabled(env)) {
558 /* For VMSA (when not using the LPAE long descriptor page table
559 * format) this register includes the ASID, so do a TLB flush.
560 * For PMSA it is purely a process ID and no action is needed.
562 tlb_flush(CPU(cpu));
564 raw_write(env, ri, value);
567 /* IS variants of TLB operations must affect all cores */
568 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
569 uint64_t value)
571 CPUState *cs = env_cpu(env);
573 tlb_flush_all_cpus_synced(cs);
576 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
577 uint64_t value)
579 CPUState *cs = env_cpu(env);
581 tlb_flush_all_cpus_synced(cs);
584 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
585 uint64_t value)
587 CPUState *cs = env_cpu(env);
589 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
592 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
593 uint64_t value)
595 CPUState *cs = env_cpu(env);
597 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
601 * Non-IS variants of TLB operations are upgraded to
602 * IS versions if we are at NS EL1 and HCR_EL2.FB is set to
603 * force broadcast of these operations.
605 static bool tlb_force_broadcast(CPUARMState *env)
607 return (env->cp15.hcr_el2 & HCR_FB) &&
608 arm_current_el(env) == 1 && arm_is_secure_below_el3(env);
611 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
612 uint64_t value)
614 /* Invalidate all (TLBIALL) */
615 ARMCPU *cpu = env_archcpu(env);
617 if (tlb_force_broadcast(env)) {
618 tlbiall_is_write(env, NULL, value);
619 return;
622 tlb_flush(CPU(cpu));
625 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
626 uint64_t value)
628 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
629 ARMCPU *cpu = env_archcpu(env);
631 if (tlb_force_broadcast(env)) {
632 tlbimva_is_write(env, NULL, value);
633 return;
636 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
639 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
640 uint64_t value)
642 /* Invalidate by ASID (TLBIASID) */
643 ARMCPU *cpu = env_archcpu(env);
645 if (tlb_force_broadcast(env)) {
646 tlbiasid_is_write(env, NULL, value);
647 return;
650 tlb_flush(CPU(cpu));
653 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
654 uint64_t value)
656 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
657 ARMCPU *cpu = env_archcpu(env);
659 if (tlb_force_broadcast(env)) {
660 tlbimvaa_is_write(env, NULL, value);
661 return;
664 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
667 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
668 uint64_t value)
670 CPUState *cs = env_cpu(env);
672 tlb_flush_by_mmuidx(cs,
673 ARMMMUIdxBit_S12NSE1 |
674 ARMMMUIdxBit_S12NSE0 |
675 ARMMMUIdxBit_S2NS);
678 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
679 uint64_t value)
681 CPUState *cs = env_cpu(env);
683 tlb_flush_by_mmuidx_all_cpus_synced(cs,
684 ARMMMUIdxBit_S12NSE1 |
685 ARMMMUIdxBit_S12NSE0 |
686 ARMMMUIdxBit_S2NS);
689 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
690 uint64_t value)
692 /* Invalidate by IPA. This has to invalidate any structures that
693 * contain only stage 2 translation information, but does not need
694 * to apply to structures that contain combined stage 1 and stage 2
695 * translation information.
696 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
698 CPUState *cs = env_cpu(env);
699 uint64_t pageaddr;
701 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
702 return;
705 pageaddr = sextract64(value << 12, 0, 40);
707 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
710 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
711 uint64_t value)
713 CPUState *cs = env_cpu(env);
714 uint64_t pageaddr;
716 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
717 return;
720 pageaddr = sextract64(value << 12, 0, 40);
722 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
723 ARMMMUIdxBit_S2NS);
726 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
727 uint64_t value)
729 CPUState *cs = env_cpu(env);
731 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
734 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
735 uint64_t value)
737 CPUState *cs = env_cpu(env);
739 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
742 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
743 uint64_t value)
745 CPUState *cs = env_cpu(env);
746 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
748 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
751 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
752 uint64_t value)
754 CPUState *cs = env_cpu(env);
755 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
757 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
758 ARMMMUIdxBit_S1E2);
761 static const ARMCPRegInfo cp_reginfo[] = {
762 /* Define the secure and non-secure FCSE identifier CP registers
763 * separately because there is no secure bank in V8 (no _EL3). This allows
764 * the secure register to be properly reset and migrated. There is also no
765 * v8 EL1 version of the register so the non-secure instance stands alone.
767 { .name = "FCSEIDR",
768 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
769 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
770 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
771 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
772 { .name = "FCSEIDR_S",
773 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
774 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
775 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
776 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
777 /* Define the secure and non-secure context identifier CP registers
778 * separately because there is no secure bank in V8 (no _EL3). This allows
779 * the secure register to be properly reset and migrated. In the
780 * non-secure case, the 32-bit register will have reset and migration
781 * disabled during registration as it is handled by the 64-bit instance.
783 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
784 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
785 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
786 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
787 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
788 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
789 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
790 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
791 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
792 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
793 REGINFO_SENTINEL
796 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
797 /* NB: Some of these registers exist in v8 but with more precise
798 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
800 /* MMU Domain access control / MPU write buffer control */
801 { .name = "DACR",
802 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
803 .access = PL1_RW, .resetvalue = 0,
804 .writefn = dacr_write, .raw_writefn = raw_write,
805 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
806 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
807 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
808 * For v6 and v5, these mappings are overly broad.
810 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
811 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
812 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
813 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
814 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
815 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
816 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
817 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
818 /* Cache maintenance ops; some of this space may be overridden later. */
819 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
820 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
821 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
822 REGINFO_SENTINEL
825 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
826 /* Not all pre-v6 cores implemented this WFI, so this is slightly
827 * over-broad.
829 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
830 .access = PL1_W, .type = ARM_CP_WFI },
831 REGINFO_SENTINEL
834 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
835 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
836 * is UNPREDICTABLE; we choose to NOP as most implementations do).
838 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
839 .access = PL1_W, .type = ARM_CP_WFI },
840 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
841 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
842 * OMAPCP will override this space.
844 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
845 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
846 .resetvalue = 0 },
847 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
848 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
849 .resetvalue = 0 },
850 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
851 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
852 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
853 .resetvalue = 0 },
854 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
855 * implementing it as RAZ means the "debug architecture version" bits
856 * will read as a reserved value, which should cause Linux to not try
857 * to use the debug hardware.
859 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
860 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
861 /* MMU TLB control. Note that the wildcarding means we cover not just
862 * the unified TLB ops but also the dside/iside/inner-shareable variants.
864 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
865 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
866 .type = ARM_CP_NO_RAW },
867 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
868 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
869 .type = ARM_CP_NO_RAW },
870 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
871 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
872 .type = ARM_CP_NO_RAW },
873 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
874 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
875 .type = ARM_CP_NO_RAW },
876 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
877 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
878 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
879 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
880 REGINFO_SENTINEL
883 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
884 uint64_t value)
886 uint32_t mask = 0;
888 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
889 if (!arm_feature(env, ARM_FEATURE_V8)) {
890 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
891 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
892 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
894 if (arm_feature(env, ARM_FEATURE_VFP)) {
895 /* VFP coprocessor: cp10 & cp11 [23:20] */
896 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
898 if (!arm_feature(env, ARM_FEATURE_NEON)) {
899 /* ASEDIS [31] bit is RAO/WI */
900 value |= (1 << 31);
903 /* VFPv3 and upwards with NEON implement 32 double precision
904 * registers (D0-D31).
906 if (!arm_feature(env, ARM_FEATURE_NEON) ||
907 !arm_feature(env, ARM_FEATURE_VFP3)) {
908 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
909 value |= (1 << 30);
912 value &= mask;
916 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
917 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
919 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
920 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
921 value &= ~(0xf << 20);
922 value |= env->cp15.cpacr_el1 & (0xf << 20);
925 env->cp15.cpacr_el1 = value;
928 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
931 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
932 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
934 uint64_t value = env->cp15.cpacr_el1;
936 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
937 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
938 value &= ~(0xf << 20);
940 return value;
944 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
946 /* Call cpacr_write() so that we reset with the correct RAO bits set
947 * for our CPU features.
949 cpacr_write(env, ri, 0);
952 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
953 bool isread)
955 if (arm_feature(env, ARM_FEATURE_V8)) {
956 /* Check if CPACR accesses are to be trapped to EL2 */
957 if (arm_current_el(env) == 1 &&
958 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
959 return CP_ACCESS_TRAP_EL2;
960 /* Check if CPACR accesses are to be trapped to EL3 */
961 } else if (arm_current_el(env) < 3 &&
962 (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
963 return CP_ACCESS_TRAP_EL3;
967 return CP_ACCESS_OK;
970 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
971 bool isread)
973 /* Check if CPTR accesses are set to trap to EL3 */
974 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
975 return CP_ACCESS_TRAP_EL3;
978 return CP_ACCESS_OK;
981 static const ARMCPRegInfo v6_cp_reginfo[] = {
982 /* prefetch by MVA in v6, NOP in v7 */
983 { .name = "MVA_prefetch",
984 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
985 .access = PL1_W, .type = ARM_CP_NOP },
986 /* We need to break the TB after ISB to execute self-modifying code
987 * correctly and also to take any pending interrupts immediately.
988 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
990 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
991 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
992 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
993 .access = PL0_W, .type = ARM_CP_NOP },
994 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
995 .access = PL0_W, .type = ARM_CP_NOP },
996 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
997 .access = PL1_RW,
998 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
999 offsetof(CPUARMState, cp15.ifar_ns) },
1000 .resetvalue = 0, },
1001 /* Watchpoint Fault Address Register : should actually only be present
1002 * for 1136, 1176, 11MPCore.
1004 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1005 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
1006 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
1007 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
1008 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
1009 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
1010 REGINFO_SENTINEL
1013 /* Definitions for the PMU registers */
1014 #define PMCRN_MASK 0xf800
1015 #define PMCRN_SHIFT 11
1016 #define PMCRLC 0x40
1017 #define PMCRDP 0x10
1018 #define PMCRD 0x8
1019 #define PMCRC 0x4
1020 #define PMCRP 0x2
1021 #define PMCRE 0x1
1023 #define PMXEVTYPER_P 0x80000000
1024 #define PMXEVTYPER_U 0x40000000
1025 #define PMXEVTYPER_NSK 0x20000000
1026 #define PMXEVTYPER_NSU 0x10000000
1027 #define PMXEVTYPER_NSH 0x08000000
1028 #define PMXEVTYPER_M 0x04000000
1029 #define PMXEVTYPER_MT 0x02000000
1030 #define PMXEVTYPER_EVTCOUNT 0x0000ffff
1031 #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1032 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1033 PMXEVTYPER_M | PMXEVTYPER_MT | \
1034 PMXEVTYPER_EVTCOUNT)
1036 #define PMCCFILTR 0xf8000000
1037 #define PMCCFILTR_M PMXEVTYPER_M
1038 #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M)
1040 static inline uint32_t pmu_num_counters(CPUARMState *env)
1042 return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT;
1045 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1046 static inline uint64_t pmu_counter_mask(CPUARMState *env)
1048 return (1 << 31) | ((1 << pmu_num_counters(env)) - 1);
1051 typedef struct pm_event {
1052 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
1053 /* If the event is supported on this CPU (used to generate PMCEID[01]) */
1054 bool (*supported)(CPUARMState *);
1056 * Retrieve the current count of the underlying event. The programmed
1057 * counters hold a difference from the return value from this function
1059 uint64_t (*get_count)(CPUARMState *);
1061 * Return how many nanoseconds it will take (at a minimum) for count events
1062 * to occur. A negative value indicates the counter will never overflow, or
1063 * that the counter has otherwise arranged for the overflow bit to be set
1064 * and the PMU interrupt to be raised on overflow.
1066 int64_t (*ns_per_count)(uint64_t);
1067 } pm_event;
1069 static bool event_always_supported(CPUARMState *env)
1071 return true;
1074 static uint64_t swinc_get_count(CPUARMState *env)
1077 * SW_INCR events are written directly to the pmevcntr's by writes to
1078 * PMSWINC, so there is no underlying count maintained by the PMU itself
1080 return 0;
1083 static int64_t swinc_ns_per(uint64_t ignored)
1085 return -1;
1089 * Return the underlying cycle count for the PMU cycle counters. If we're in
1090 * usermode, simply return 0.
1092 static uint64_t cycles_get_count(CPUARMState *env)
1094 #ifndef CONFIG_USER_ONLY
1095 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1096 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1097 #else
1098 return cpu_get_host_ticks();
1099 #endif
1102 #ifndef CONFIG_USER_ONLY
1103 static int64_t cycles_ns_per(uint64_t cycles)
1105 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
1108 static bool instructions_supported(CPUARMState *env)
1110 return use_icount == 1 /* Precise instruction counting */;
1113 static uint64_t instructions_get_count(CPUARMState *env)
1115 return (uint64_t)cpu_get_icount_raw();
1118 static int64_t instructions_ns_per(uint64_t icount)
1120 return cpu_icount_to_ns((int64_t)icount);
1122 #endif
1124 static const pm_event pm_events[] = {
1125 { .number = 0x000, /* SW_INCR */
1126 .supported = event_always_supported,
1127 .get_count = swinc_get_count,
1128 .ns_per_count = swinc_ns_per,
1130 #ifndef CONFIG_USER_ONLY
1131 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
1132 .supported = instructions_supported,
1133 .get_count = instructions_get_count,
1134 .ns_per_count = instructions_ns_per,
1136 { .number = 0x011, /* CPU_CYCLES, Cycle */
1137 .supported = event_always_supported,
1138 .get_count = cycles_get_count,
1139 .ns_per_count = cycles_ns_per,
1141 #endif
1145 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1146 * events (i.e. the statistical profiling extension), this implementation
1147 * should first be updated to something sparse instead of the current
1148 * supported_event_map[] array.
1150 #define MAX_EVENT_ID 0x11
1151 #define UNSUPPORTED_EVENT UINT16_MAX
1152 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1155 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1156 * of ARM event numbers to indices in our pm_events array.
1158 * Note: Events in the 0x40XX range are not currently supported.
1160 void pmu_init(ARMCPU *cpu)
1162 unsigned int i;
1165 * Empty supported_event_map and cpu->pmceid[01] before adding supported
1166 * events to them
1168 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1169 supported_event_map[i] = UNSUPPORTED_EVENT;
1171 cpu->pmceid0 = 0;
1172 cpu->pmceid1 = 0;
1174 for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1175 const pm_event *cnt = &pm_events[i];
1176 assert(cnt->number <= MAX_EVENT_ID);
1177 /* We do not currently support events in the 0x40xx range */
1178 assert(cnt->number <= 0x3f);
1180 if (cnt->supported(&cpu->env)) {
1181 supported_event_map[cnt->number] = i;
1182 uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1183 if (cnt->number & 0x20) {
1184 cpu->pmceid1 |= event_mask;
1185 } else {
1186 cpu->pmceid0 |= event_mask;
1193 * Check at runtime whether a PMU event is supported for the current machine
1195 static bool event_supported(uint16_t number)
1197 if (number > MAX_EVENT_ID) {
1198 return false;
1200 return supported_event_map[number] != UNSUPPORTED_EVENT;
1203 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1204 bool isread)
1206 /* Performance monitor registers user accessibility is controlled
1207 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1208 * trapping to EL2 or EL3 for other accesses.
1210 int el = arm_current_el(env);
1212 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1213 return CP_ACCESS_TRAP;
1215 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
1216 && !arm_is_secure_below_el3(env)) {
1217 return CP_ACCESS_TRAP_EL2;
1219 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1220 return CP_ACCESS_TRAP_EL3;
1223 return CP_ACCESS_OK;
1226 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1227 const ARMCPRegInfo *ri,
1228 bool isread)
1230 /* ER: event counter read trap control */
1231 if (arm_feature(env, ARM_FEATURE_V8)
1232 && arm_current_el(env) == 0
1233 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1234 && isread) {
1235 return CP_ACCESS_OK;
1238 return pmreg_access(env, ri, isread);
1241 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1242 const ARMCPRegInfo *ri,
1243 bool isread)
1245 /* SW: software increment write trap control */
1246 if (arm_feature(env, ARM_FEATURE_V8)
1247 && arm_current_el(env) == 0
1248 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1249 && !isread) {
1250 return CP_ACCESS_OK;
1253 return pmreg_access(env, ri, isread);
1256 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1257 const ARMCPRegInfo *ri,
1258 bool isread)
1260 /* ER: event counter read trap control */
1261 if (arm_feature(env, ARM_FEATURE_V8)
1262 && arm_current_el(env) == 0
1263 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1264 return CP_ACCESS_OK;
1267 return pmreg_access(env, ri, isread);
1270 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1271 const ARMCPRegInfo *ri,
1272 bool isread)
1274 /* CR: cycle counter read trap control */
1275 if (arm_feature(env, ARM_FEATURE_V8)
1276 && arm_current_el(env) == 0
1277 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1278 && isread) {
1279 return CP_ACCESS_OK;
1282 return pmreg_access(env, ri, isread);
1285 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1286 * the current EL, security state, and register configuration.
1288 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1290 uint64_t filter;
1291 bool e, p, u, nsk, nsu, nsh, m;
1292 bool enabled, prohibited, filtered;
1293 bool secure = arm_is_secure(env);
1294 int el = arm_current_el(env);
1295 uint8_t hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
1297 if (!arm_feature(env, ARM_FEATURE_PMU)) {
1298 return false;
1301 if (!arm_feature(env, ARM_FEATURE_EL2) ||
1302 (counter < hpmn || counter == 31)) {
1303 e = env->cp15.c9_pmcr & PMCRE;
1304 } else {
1305 e = env->cp15.mdcr_el2 & MDCR_HPME;
1307 enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1309 if (!secure) {
1310 if (el == 2 && (counter < hpmn || counter == 31)) {
1311 prohibited = env->cp15.mdcr_el2 & MDCR_HPMD;
1312 } else {
1313 prohibited = false;
1315 } else {
1316 prohibited = arm_feature(env, ARM_FEATURE_EL3) &&
1317 (env->cp15.mdcr_el3 & MDCR_SPME);
1320 if (prohibited && counter == 31) {
1321 prohibited = env->cp15.c9_pmcr & PMCRDP;
1324 if (counter == 31) {
1325 filter = env->cp15.pmccfiltr_el0;
1326 } else {
1327 filter = env->cp15.c14_pmevtyper[counter];
1330 p = filter & PMXEVTYPER_P;
1331 u = filter & PMXEVTYPER_U;
1332 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1333 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1334 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1335 m = arm_el_is_aa64(env, 1) &&
1336 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1338 if (el == 0) {
1339 filtered = secure ? u : u != nsu;
1340 } else if (el == 1) {
1341 filtered = secure ? p : p != nsk;
1342 } else if (el == 2) {
1343 filtered = !nsh;
1344 } else { /* EL3 */
1345 filtered = m != p;
1348 if (counter != 31) {
1350 * If not checking PMCCNTR, ensure the counter is setup to an event we
1351 * support
1353 uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1354 if (!event_supported(event)) {
1355 return false;
1359 return enabled && !prohibited && !filtered;
1362 static void pmu_update_irq(CPUARMState *env)
1364 ARMCPU *cpu = env_archcpu(env);
1365 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1366 (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1370 * Ensure c15_ccnt is the guest-visible count so that operations such as
1371 * enabling/disabling the counter or filtering, modifying the count itself,
1372 * etc. can be done logically. This is essentially a no-op if the counter is
1373 * not enabled at the time of the call.
1375 static void pmccntr_op_start(CPUARMState *env)
1377 uint64_t cycles = cycles_get_count(env);
1379 if (pmu_counter_enabled(env, 31)) {
1380 uint64_t eff_cycles = cycles;
1381 if (env->cp15.c9_pmcr & PMCRD) {
1382 /* Increment once every 64 processor clock cycles */
1383 eff_cycles /= 64;
1386 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1388 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1389 1ull << 63 : 1ull << 31;
1390 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1391 env->cp15.c9_pmovsr |= (1 << 31);
1392 pmu_update_irq(env);
1395 env->cp15.c15_ccnt = new_pmccntr;
1397 env->cp15.c15_ccnt_delta = cycles;
1401 * If PMCCNTR is enabled, recalculate the delta between the clock and the
1402 * guest-visible count. A call to pmccntr_op_finish should follow every call to
1403 * pmccntr_op_start.
1405 static void pmccntr_op_finish(CPUARMState *env)
1407 if (pmu_counter_enabled(env, 31)) {
1408 #ifndef CONFIG_USER_ONLY
1409 /* Calculate when the counter will next overflow */
1410 uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1411 if (!(env->cp15.c9_pmcr & PMCRLC)) {
1412 remaining_cycles = (uint32_t)remaining_cycles;
1414 int64_t overflow_in = cycles_ns_per(remaining_cycles);
1416 if (overflow_in > 0) {
1417 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1418 overflow_in;
1419 ARMCPU *cpu = env_archcpu(env);
1420 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1422 #endif
1424 uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1425 if (env->cp15.c9_pmcr & PMCRD) {
1426 /* Increment once every 64 processor clock cycles */
1427 prev_cycles /= 64;
1429 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1433 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1436 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1437 uint64_t count = 0;
1438 if (event_supported(event)) {
1439 uint16_t event_idx = supported_event_map[event];
1440 count = pm_events[event_idx].get_count(env);
1443 if (pmu_counter_enabled(env, counter)) {
1444 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1446 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) {
1447 env->cp15.c9_pmovsr |= (1 << counter);
1448 pmu_update_irq(env);
1450 env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1452 env->cp15.c14_pmevcntr_delta[counter] = count;
1455 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1457 if (pmu_counter_enabled(env, counter)) {
1458 #ifndef CONFIG_USER_ONLY
1459 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1460 uint16_t event_idx = supported_event_map[event];
1461 uint64_t delta = UINT32_MAX -
1462 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1;
1463 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta);
1465 if (overflow_in > 0) {
1466 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1467 overflow_in;
1468 ARMCPU *cpu = env_archcpu(env);
1469 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1471 #endif
1473 env->cp15.c14_pmevcntr_delta[counter] -=
1474 env->cp15.c14_pmevcntr[counter];
1478 void pmu_op_start(CPUARMState *env)
1480 unsigned int i;
1481 pmccntr_op_start(env);
1482 for (i = 0; i < pmu_num_counters(env); i++) {
1483 pmevcntr_op_start(env, i);
1487 void pmu_op_finish(CPUARMState *env)
1489 unsigned int i;
1490 pmccntr_op_finish(env);
1491 for (i = 0; i < pmu_num_counters(env); i++) {
1492 pmevcntr_op_finish(env, i);
1496 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1498 pmu_op_start(&cpu->env);
1501 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1503 pmu_op_finish(&cpu->env);
1506 void arm_pmu_timer_cb(void *opaque)
1508 ARMCPU *cpu = opaque;
1511 * Update all the counter values based on the current underlying counts,
1512 * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1513 * has the effect of setting the cpu->pmu_timer to the next earliest time a
1514 * counter may expire.
1516 pmu_op_start(&cpu->env);
1517 pmu_op_finish(&cpu->env);
1520 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1521 uint64_t value)
1523 pmu_op_start(env);
1525 if (value & PMCRC) {
1526 /* The counter has been reset */
1527 env->cp15.c15_ccnt = 0;
1530 if (value & PMCRP) {
1531 unsigned int i;
1532 for (i = 0; i < pmu_num_counters(env); i++) {
1533 env->cp15.c14_pmevcntr[i] = 0;
1537 /* only the DP, X, D and E bits are writable */
1538 env->cp15.c9_pmcr &= ~0x39;
1539 env->cp15.c9_pmcr |= (value & 0x39);
1541 pmu_op_finish(env);
1544 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1545 uint64_t value)
1547 unsigned int i;
1548 for (i = 0; i < pmu_num_counters(env); i++) {
1549 /* Increment a counter's count iff: */
1550 if ((value & (1 << i)) && /* counter's bit is set */
1551 /* counter is enabled and not filtered */
1552 pmu_counter_enabled(env, i) &&
1553 /* counter is SW_INCR */
1554 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1555 pmevcntr_op_start(env, i);
1558 * Detect if this write causes an overflow since we can't predict
1559 * PMSWINC overflows like we can for other events
1561 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1563 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
1564 env->cp15.c9_pmovsr |= (1 << i);
1565 pmu_update_irq(env);
1568 env->cp15.c14_pmevcntr[i] = new_pmswinc;
1570 pmevcntr_op_finish(env, i);
1575 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1577 uint64_t ret;
1578 pmccntr_op_start(env);
1579 ret = env->cp15.c15_ccnt;
1580 pmccntr_op_finish(env);
1581 return ret;
1584 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1585 uint64_t value)
1587 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1588 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1589 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1590 * accessed.
1592 env->cp15.c9_pmselr = value & 0x1f;
1595 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1596 uint64_t value)
1598 pmccntr_op_start(env);
1599 env->cp15.c15_ccnt = value;
1600 pmccntr_op_finish(env);
1603 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1604 uint64_t value)
1606 uint64_t cur_val = pmccntr_read(env, NULL);
1608 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1611 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1612 uint64_t value)
1614 pmccntr_op_start(env);
1615 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1616 pmccntr_op_finish(env);
1619 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1620 uint64_t value)
1622 pmccntr_op_start(env);
1623 /* M is not accessible from AArch32 */
1624 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1625 (value & PMCCFILTR);
1626 pmccntr_op_finish(env);
1629 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1631 /* M is not visible in AArch32 */
1632 return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1635 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1636 uint64_t value)
1638 value &= pmu_counter_mask(env);
1639 env->cp15.c9_pmcnten |= value;
1642 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1643 uint64_t value)
1645 value &= pmu_counter_mask(env);
1646 env->cp15.c9_pmcnten &= ~value;
1649 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1650 uint64_t value)
1652 value &= pmu_counter_mask(env);
1653 env->cp15.c9_pmovsr &= ~value;
1654 pmu_update_irq(env);
1657 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1658 uint64_t value)
1660 value &= pmu_counter_mask(env);
1661 env->cp15.c9_pmovsr |= value;
1662 pmu_update_irq(env);
1665 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1666 uint64_t value, const uint8_t counter)
1668 if (counter == 31) {
1669 pmccfiltr_write(env, ri, value);
1670 } else if (counter < pmu_num_counters(env)) {
1671 pmevcntr_op_start(env, counter);
1674 * If this counter's event type is changing, store the current
1675 * underlying count for the new type in c14_pmevcntr_delta[counter] so
1676 * pmevcntr_op_finish has the correct baseline when it converts back to
1677 * a delta.
1679 uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1680 PMXEVTYPER_EVTCOUNT;
1681 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1682 if (old_event != new_event) {
1683 uint64_t count = 0;
1684 if (event_supported(new_event)) {
1685 uint16_t event_idx = supported_event_map[new_event];
1686 count = pm_events[event_idx].get_count(env);
1688 env->cp15.c14_pmevcntr_delta[counter] = count;
1691 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1692 pmevcntr_op_finish(env, counter);
1694 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1695 * PMSELR value is equal to or greater than the number of implemented
1696 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1700 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1701 const uint8_t counter)
1703 if (counter == 31) {
1704 return env->cp15.pmccfiltr_el0;
1705 } else if (counter < pmu_num_counters(env)) {
1706 return env->cp15.c14_pmevtyper[counter];
1707 } else {
1709 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1710 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1712 return 0;
1716 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1717 uint64_t value)
1719 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1720 pmevtyper_write(env, ri, value, counter);
1723 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1724 uint64_t value)
1726 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1727 env->cp15.c14_pmevtyper[counter] = value;
1730 * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1731 * pmu_op_finish calls when loading saved state for a migration. Because
1732 * we're potentially updating the type of event here, the value written to
1733 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1734 * different counter type. Therefore, we need to set this value to the
1735 * current count for the counter type we're writing so that pmu_op_finish
1736 * has the correct count for its calculation.
1738 uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1739 if (event_supported(event)) {
1740 uint16_t event_idx = supported_event_map[event];
1741 env->cp15.c14_pmevcntr_delta[counter] =
1742 pm_events[event_idx].get_count(env);
1746 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1748 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1749 return pmevtyper_read(env, ri, counter);
1752 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1753 uint64_t value)
1755 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1758 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1760 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1763 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1764 uint64_t value, uint8_t counter)
1766 if (counter < pmu_num_counters(env)) {
1767 pmevcntr_op_start(env, counter);
1768 env->cp15.c14_pmevcntr[counter] = value;
1769 pmevcntr_op_finish(env, counter);
1772 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1773 * are CONSTRAINED UNPREDICTABLE.
1777 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1778 uint8_t counter)
1780 if (counter < pmu_num_counters(env)) {
1781 uint64_t ret;
1782 pmevcntr_op_start(env, counter);
1783 ret = env->cp15.c14_pmevcntr[counter];
1784 pmevcntr_op_finish(env, counter);
1785 return ret;
1786 } else {
1787 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1788 * are CONSTRAINED UNPREDICTABLE. */
1789 return 0;
1793 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1794 uint64_t value)
1796 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1797 pmevcntr_write(env, ri, value, counter);
1800 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1802 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1803 return pmevcntr_read(env, ri, counter);
1806 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1807 uint64_t value)
1809 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1810 assert(counter < pmu_num_counters(env));
1811 env->cp15.c14_pmevcntr[counter] = value;
1812 pmevcntr_write(env, ri, value, counter);
1815 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1817 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1818 assert(counter < pmu_num_counters(env));
1819 return env->cp15.c14_pmevcntr[counter];
1822 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1823 uint64_t value)
1825 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1828 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1830 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1833 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1834 uint64_t value)
1836 if (arm_feature(env, ARM_FEATURE_V8)) {
1837 env->cp15.c9_pmuserenr = value & 0xf;
1838 } else {
1839 env->cp15.c9_pmuserenr = value & 1;
1843 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1844 uint64_t value)
1846 /* We have no event counters so only the C bit can be changed */
1847 value &= pmu_counter_mask(env);
1848 env->cp15.c9_pminten |= value;
1849 pmu_update_irq(env);
1852 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1853 uint64_t value)
1855 value &= pmu_counter_mask(env);
1856 env->cp15.c9_pminten &= ~value;
1857 pmu_update_irq(env);
1860 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1861 uint64_t value)
1863 /* Note that even though the AArch64 view of this register has bits
1864 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1865 * architectural requirements for bits which are RES0 only in some
1866 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1867 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1869 raw_write(env, ri, value & ~0x1FULL);
1872 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1874 /* Begin with base v8.0 state. */
1875 uint32_t valid_mask = 0x3fff;
1876 ARMCPU *cpu = env_archcpu(env);
1878 if (arm_el_is_aa64(env, 3)) {
1879 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */
1880 valid_mask &= ~SCR_NET;
1881 } else {
1882 valid_mask &= ~(SCR_RW | SCR_ST);
1885 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1886 valid_mask &= ~SCR_HCE;
1888 /* On ARMv7, SMD (or SCD as it is called in v7) is only
1889 * supported if EL2 exists. The bit is UNK/SBZP when
1890 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1891 * when EL2 is unavailable.
1892 * On ARMv8, this bit is always available.
1894 if (arm_feature(env, ARM_FEATURE_V7) &&
1895 !arm_feature(env, ARM_FEATURE_V8)) {
1896 valid_mask &= ~SCR_SMD;
1899 if (cpu_isar_feature(aa64_lor, cpu)) {
1900 valid_mask |= SCR_TLOR;
1902 if (cpu_isar_feature(aa64_pauth, cpu)) {
1903 valid_mask |= SCR_API | SCR_APK;
1906 /* Clear all-context RES0 bits. */
1907 value &= valid_mask;
1908 raw_write(env, ri, value);
1911 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1913 ARMCPU *cpu = env_archcpu(env);
1915 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1916 * bank
1918 uint32_t index = A32_BANKED_REG_GET(env, csselr,
1919 ri->secure & ARM_CP_SECSTATE_S);
1921 return cpu->ccsidr[index];
1924 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1925 uint64_t value)
1927 raw_write(env, ri, value & 0xf);
1930 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1932 CPUState *cs = env_cpu(env);
1933 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
1934 uint64_t ret = 0;
1936 if (hcr_el2 & HCR_IMO) {
1937 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
1938 ret |= CPSR_I;
1940 } else {
1941 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1942 ret |= CPSR_I;
1946 if (hcr_el2 & HCR_FMO) {
1947 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
1948 ret |= CPSR_F;
1950 } else {
1951 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1952 ret |= CPSR_F;
1956 /* External aborts are not possible in QEMU so A bit is always clear */
1957 return ret;
1960 static const ARMCPRegInfo v7_cp_reginfo[] = {
1961 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1962 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1963 .access = PL1_W, .type = ARM_CP_NOP },
1964 /* Performance monitors are implementation defined in v7,
1965 * but with an ARM recommended set of registers, which we
1966 * follow.
1968 * Performance registers fall into three categories:
1969 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1970 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1971 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1972 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1973 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1975 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1976 .access = PL0_RW, .type = ARM_CP_ALIAS,
1977 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1978 .writefn = pmcntenset_write,
1979 .accessfn = pmreg_access,
1980 .raw_writefn = raw_write },
1981 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1982 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1983 .access = PL0_RW, .accessfn = pmreg_access,
1984 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1985 .writefn = pmcntenset_write, .raw_writefn = raw_write },
1986 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1987 .access = PL0_RW,
1988 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1989 .accessfn = pmreg_access,
1990 .writefn = pmcntenclr_write,
1991 .type = ARM_CP_ALIAS },
1992 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1993 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1994 .access = PL0_RW, .accessfn = pmreg_access,
1995 .type = ARM_CP_ALIAS,
1996 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1997 .writefn = pmcntenclr_write },
1998 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1999 .access = PL0_RW, .type = ARM_CP_IO,
2000 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2001 .accessfn = pmreg_access,
2002 .writefn = pmovsr_write,
2003 .raw_writefn = raw_write },
2004 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
2005 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
2006 .access = PL0_RW, .accessfn = pmreg_access,
2007 .type = ARM_CP_ALIAS | ARM_CP_IO,
2008 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2009 .writefn = pmovsr_write,
2010 .raw_writefn = raw_write },
2011 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
2012 .access = PL0_W, .accessfn = pmreg_access_swinc,
2013 .type = ARM_CP_NO_RAW | ARM_CP_IO,
2014 .writefn = pmswinc_write },
2015 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2016 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
2017 .access = PL0_W, .accessfn = pmreg_access_swinc,
2018 .type = ARM_CP_NO_RAW | ARM_CP_IO,
2019 .writefn = pmswinc_write },
2020 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2021 .access = PL0_RW, .type = ARM_CP_ALIAS,
2022 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
2023 .accessfn = pmreg_access_selr, .writefn = pmselr_write,
2024 .raw_writefn = raw_write},
2025 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2026 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
2027 .access = PL0_RW, .accessfn = pmreg_access_selr,
2028 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2029 .writefn = pmselr_write, .raw_writefn = raw_write, },
2030 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
2031 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
2032 .readfn = pmccntr_read, .writefn = pmccntr_write32,
2033 .accessfn = pmreg_access_ccntr },
2034 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2035 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2036 .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2037 .type = ARM_CP_IO,
2038 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2039 .readfn = pmccntr_read, .writefn = pmccntr_write,
2040 .raw_readfn = raw_read, .raw_writefn = raw_write, },
2041 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2042 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2043 .access = PL0_RW, .accessfn = pmreg_access,
2044 .type = ARM_CP_ALIAS | ARM_CP_IO,
2045 .resetvalue = 0, },
2046 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2047 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2048 .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2049 .access = PL0_RW, .accessfn = pmreg_access,
2050 .type = ARM_CP_IO,
2051 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2052 .resetvalue = 0, },
2053 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2054 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2055 .accessfn = pmreg_access,
2056 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2057 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2058 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2059 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2060 .accessfn = pmreg_access,
2061 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2062 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2063 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2064 .accessfn = pmreg_access_xevcntr,
2065 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2066 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2067 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2068 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2069 .accessfn = pmreg_access_xevcntr,
2070 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2071 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2072 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2073 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2074 .resetvalue = 0,
2075 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2076 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2077 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2078 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2079 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2080 .resetvalue = 0,
2081 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2082 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2083 .access = PL1_RW, .accessfn = access_tpm,
2084 .type = ARM_CP_ALIAS | ARM_CP_IO,
2085 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2086 .resetvalue = 0,
2087 .writefn = pmintenset_write, .raw_writefn = raw_write },
2088 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2089 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2090 .access = PL1_RW, .accessfn = access_tpm,
2091 .type = ARM_CP_IO,
2092 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2093 .writefn = pmintenset_write, .raw_writefn = raw_write,
2094 .resetvalue = 0x0 },
2095 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2096 .access = PL1_RW, .accessfn = access_tpm,
2097 .type = ARM_CP_ALIAS | ARM_CP_IO,
2098 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2099 .writefn = pmintenclr_write, },
2100 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2101 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2102 .access = PL1_RW, .accessfn = access_tpm,
2103 .type = ARM_CP_ALIAS | ARM_CP_IO,
2104 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2105 .writefn = pmintenclr_write },
2106 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2107 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2108 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2109 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2110 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2111 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
2112 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2113 offsetof(CPUARMState, cp15.csselr_ns) } },
2114 /* Auxiliary ID register: this actually has an IMPDEF value but for now
2115 * just RAZ for all cores:
2117 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2118 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2119 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2120 /* Auxiliary fault status registers: these also are IMPDEF, and we
2121 * choose to RAZ/WI for all cores.
2123 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2124 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2125 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2126 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2127 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2128 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2129 /* MAIR can just read-as-written because we don't implement caches
2130 * and so don't need to care about memory attributes.
2132 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2133 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2134 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2135 .resetvalue = 0 },
2136 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2137 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2138 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2139 .resetvalue = 0 },
2140 /* For non-long-descriptor page tables these are PRRR and NMRR;
2141 * regardless they still act as reads-as-written for QEMU.
2143 /* MAIR0/1 are defined separately from their 64-bit counterpart which
2144 * allows them to assign the correct fieldoffset based on the endianness
2145 * handled in the field definitions.
2147 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2148 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
2149 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2150 offsetof(CPUARMState, cp15.mair0_ns) },
2151 .resetfn = arm_cp_reset_ignore },
2152 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2153 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
2154 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2155 offsetof(CPUARMState, cp15.mair1_ns) },
2156 .resetfn = arm_cp_reset_ignore },
2157 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2158 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2159 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2160 /* 32 bit ITLB invalidates */
2161 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2162 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
2163 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2164 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2165 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2166 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
2167 /* 32 bit DTLB invalidates */
2168 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2169 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
2170 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2171 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2172 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2173 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
2174 /* 32 bit TLB invalidates */
2175 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2176 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
2177 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2178 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2179 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2180 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
2181 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2182 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
2183 REGINFO_SENTINEL
2186 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2187 /* 32 bit TLB invalidates, Inner Shareable */
2188 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2189 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
2190 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2191 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
2192 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2193 .type = ARM_CP_NO_RAW, .access = PL1_W,
2194 .writefn = tlbiasid_is_write },
2195 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2196 .type = ARM_CP_NO_RAW, .access = PL1_W,
2197 .writefn = tlbimvaa_is_write },
2198 REGINFO_SENTINEL
2201 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2202 /* PMOVSSET is not implemented in v7 before v7ve */
2203 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2204 .access = PL0_RW, .accessfn = pmreg_access,
2205 .type = ARM_CP_ALIAS | ARM_CP_IO,
2206 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2207 .writefn = pmovsset_write,
2208 .raw_writefn = raw_write },
2209 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2210 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2211 .access = PL0_RW, .accessfn = pmreg_access,
2212 .type = ARM_CP_ALIAS | ARM_CP_IO,
2213 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2214 .writefn = pmovsset_write,
2215 .raw_writefn = raw_write },
2216 REGINFO_SENTINEL
2219 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2220 uint64_t value)
2222 value &= 1;
2223 env->teecr = value;
2226 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2227 bool isread)
2229 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2230 return CP_ACCESS_TRAP;
2232 return CP_ACCESS_OK;
2235 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2236 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2237 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2238 .resetvalue = 0,
2239 .writefn = teecr_write },
2240 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2241 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2242 .accessfn = teehbr_access, .resetvalue = 0 },
2243 REGINFO_SENTINEL
2246 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2247 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2248 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2249 .access = PL0_RW,
2250 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2251 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2252 .access = PL0_RW,
2253 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2254 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2255 .resetfn = arm_cp_reset_ignore },
2256 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2257 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2258 .access = PL0_R|PL1_W,
2259 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2260 .resetvalue = 0},
2261 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2262 .access = PL0_R|PL1_W,
2263 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2264 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2265 .resetfn = arm_cp_reset_ignore },
2266 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2267 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2268 .access = PL1_RW,
2269 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2270 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2271 .access = PL1_RW,
2272 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2273 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2274 .resetvalue = 0 },
2275 REGINFO_SENTINEL
2278 #ifndef CONFIG_USER_ONLY
2280 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2281 bool isread)
2283 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2284 * Writable only at the highest implemented exception level.
2286 int el = arm_current_el(env);
2288 switch (el) {
2289 case 0:
2290 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
2291 return CP_ACCESS_TRAP;
2293 break;
2294 case 1:
2295 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2296 arm_is_secure_below_el3(env)) {
2297 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2298 return CP_ACCESS_TRAP_UNCATEGORIZED;
2300 break;
2301 case 2:
2302 case 3:
2303 break;
2306 if (!isread && el < arm_highest_el(env)) {
2307 return CP_ACCESS_TRAP_UNCATEGORIZED;
2310 return CP_ACCESS_OK;
2313 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2314 bool isread)
2316 unsigned int cur_el = arm_current_el(env);
2317 bool secure = arm_is_secure(env);
2319 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
2320 if (cur_el == 0 &&
2321 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2322 return CP_ACCESS_TRAP;
2325 if (arm_feature(env, ARM_FEATURE_EL2) &&
2326 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
2327 !extract32(env->cp15.cnthctl_el2, 0, 1)) {
2328 return CP_ACCESS_TRAP_EL2;
2330 return CP_ACCESS_OK;
2333 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2334 bool isread)
2336 unsigned int cur_el = arm_current_el(env);
2337 bool secure = arm_is_secure(env);
2339 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
2340 * EL0[PV]TEN is zero.
2342 if (cur_el == 0 &&
2343 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2344 return CP_ACCESS_TRAP;
2347 if (arm_feature(env, ARM_FEATURE_EL2) &&
2348 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
2349 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2350 return CP_ACCESS_TRAP_EL2;
2352 return CP_ACCESS_OK;
2355 static CPAccessResult gt_pct_access(CPUARMState *env,
2356 const ARMCPRegInfo *ri,
2357 bool isread)
2359 return gt_counter_access(env, GTIMER_PHYS, isread);
2362 static CPAccessResult gt_vct_access(CPUARMState *env,
2363 const ARMCPRegInfo *ri,
2364 bool isread)
2366 return gt_counter_access(env, GTIMER_VIRT, isread);
2369 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2370 bool isread)
2372 return gt_timer_access(env, GTIMER_PHYS, isread);
2375 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2376 bool isread)
2378 return gt_timer_access(env, GTIMER_VIRT, isread);
2381 static CPAccessResult gt_stimer_access(CPUARMState *env,
2382 const ARMCPRegInfo *ri,
2383 bool isread)
2385 /* The AArch64 register view of the secure physical timer is
2386 * always accessible from EL3, and configurably accessible from
2387 * Secure EL1.
2389 switch (arm_current_el(env)) {
2390 case 1:
2391 if (!arm_is_secure(env)) {
2392 return CP_ACCESS_TRAP;
2394 if (!(env->cp15.scr_el3 & SCR_ST)) {
2395 return CP_ACCESS_TRAP_EL3;
2397 return CP_ACCESS_OK;
2398 case 0:
2399 case 2:
2400 return CP_ACCESS_TRAP;
2401 case 3:
2402 return CP_ACCESS_OK;
2403 default:
2404 g_assert_not_reached();
2408 static uint64_t gt_get_countervalue(CPUARMState *env)
2410 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
2413 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2415 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2417 if (gt->ctl & 1) {
2418 /* Timer enabled: calculate and set current ISTATUS, irq, and
2419 * reset timer to when ISTATUS next has to change
2421 uint64_t offset = timeridx == GTIMER_VIRT ?
2422 cpu->env.cp15.cntvoff_el2 : 0;
2423 uint64_t count = gt_get_countervalue(&cpu->env);
2424 /* Note that this must be unsigned 64 bit arithmetic: */
2425 int istatus = count - offset >= gt->cval;
2426 uint64_t nexttick;
2427 int irqstate;
2429 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2431 irqstate = (istatus && !(gt->ctl & 2));
2432 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2434 if (istatus) {
2435 /* Next transition is when count rolls back over to zero */
2436 nexttick = UINT64_MAX;
2437 } else {
2438 /* Next transition is when we hit cval */
2439 nexttick = gt->cval + offset;
2441 /* Note that the desired next expiry time might be beyond the
2442 * signed-64-bit range of a QEMUTimer -- in this case we just
2443 * set the timer for as far in the future as possible. When the
2444 * timer expires we will reset the timer for any remaining period.
2446 if (nexttick > INT64_MAX / GTIMER_SCALE) {
2447 nexttick = INT64_MAX / GTIMER_SCALE;
2449 timer_mod(cpu->gt_timer[timeridx], nexttick);
2450 trace_arm_gt_recalc(timeridx, irqstate, nexttick);
2451 } else {
2452 /* Timer disabled: ISTATUS and timer output always clear */
2453 gt->ctl &= ~4;
2454 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
2455 timer_del(cpu->gt_timer[timeridx]);
2456 trace_arm_gt_recalc_disabled(timeridx);
2460 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2461 int timeridx)
2463 ARMCPU *cpu = env_archcpu(env);
2465 timer_del(cpu->gt_timer[timeridx]);
2468 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2470 return gt_get_countervalue(env);
2473 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2475 return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
2478 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2479 int timeridx,
2480 uint64_t value)
2482 trace_arm_gt_cval_write(timeridx, value);
2483 env->cp15.c14_timer[timeridx].cval = value;
2484 gt_recalc_timer(env_archcpu(env), timeridx);
2487 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2488 int timeridx)
2490 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
2492 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2493 (gt_get_countervalue(env) - offset));
2496 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2497 int timeridx,
2498 uint64_t value)
2500 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
2502 trace_arm_gt_tval_write(timeridx, value);
2503 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2504 sextract64(value, 0, 32);
2505 gt_recalc_timer(env_archcpu(env), timeridx);
2508 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2509 int timeridx,
2510 uint64_t value)
2512 ARMCPU *cpu = env_archcpu(env);
2513 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2515 trace_arm_gt_ctl_write(timeridx, value);
2516 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2517 if ((oldval ^ value) & 1) {
2518 /* Enable toggled */
2519 gt_recalc_timer(cpu, timeridx);
2520 } else if ((oldval ^ value) & 2) {
2521 /* IMASK toggled: don't need to recalculate,
2522 * just set the interrupt line based on ISTATUS
2524 int irqstate = (oldval & 4) && !(value & 2);
2526 trace_arm_gt_imask_toggle(timeridx, irqstate);
2527 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2531 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2533 gt_timer_reset(env, ri, GTIMER_PHYS);
2536 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2537 uint64_t value)
2539 gt_cval_write(env, ri, GTIMER_PHYS, value);
2542 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2544 return gt_tval_read(env, ri, GTIMER_PHYS);
2547 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2548 uint64_t value)
2550 gt_tval_write(env, ri, GTIMER_PHYS, value);
2553 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2554 uint64_t value)
2556 gt_ctl_write(env, ri, GTIMER_PHYS, value);
2559 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2561 gt_timer_reset(env, ri, GTIMER_VIRT);
2564 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2565 uint64_t value)
2567 gt_cval_write(env, ri, GTIMER_VIRT, value);
2570 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2572 return gt_tval_read(env, ri, GTIMER_VIRT);
2575 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2576 uint64_t value)
2578 gt_tval_write(env, ri, GTIMER_VIRT, value);
2581 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2582 uint64_t value)
2584 gt_ctl_write(env, ri, GTIMER_VIRT, value);
2587 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2588 uint64_t value)
2590 ARMCPU *cpu = env_archcpu(env);
2592 trace_arm_gt_cntvoff_write(value);
2593 raw_write(env, ri, value);
2594 gt_recalc_timer(cpu, GTIMER_VIRT);
2597 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2599 gt_timer_reset(env, ri, GTIMER_HYP);
2602 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2603 uint64_t value)
2605 gt_cval_write(env, ri, GTIMER_HYP, value);
2608 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2610 return gt_tval_read(env, ri, GTIMER_HYP);
2613 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2614 uint64_t value)
2616 gt_tval_write(env, ri, GTIMER_HYP, value);
2619 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2620 uint64_t value)
2622 gt_ctl_write(env, ri, GTIMER_HYP, value);
2625 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2627 gt_timer_reset(env, ri, GTIMER_SEC);
2630 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2631 uint64_t value)
2633 gt_cval_write(env, ri, GTIMER_SEC, value);
2636 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2638 return gt_tval_read(env, ri, GTIMER_SEC);
2641 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2642 uint64_t value)
2644 gt_tval_write(env, ri, GTIMER_SEC, value);
2647 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2648 uint64_t value)
2650 gt_ctl_write(env, ri, GTIMER_SEC, value);
2653 void arm_gt_ptimer_cb(void *opaque)
2655 ARMCPU *cpu = opaque;
2657 gt_recalc_timer(cpu, GTIMER_PHYS);
2660 void arm_gt_vtimer_cb(void *opaque)
2662 ARMCPU *cpu = opaque;
2664 gt_recalc_timer(cpu, GTIMER_VIRT);
2667 void arm_gt_htimer_cb(void *opaque)
2669 ARMCPU *cpu = opaque;
2671 gt_recalc_timer(cpu, GTIMER_HYP);
2674 void arm_gt_stimer_cb(void *opaque)
2676 ARMCPU *cpu = opaque;
2678 gt_recalc_timer(cpu, GTIMER_SEC);
2681 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2682 /* Note that CNTFRQ is purely reads-as-written for the benefit
2683 * of software; writing it doesn't actually change the timer frequency.
2684 * Our reset value matches the fixed frequency we implement the timer at.
2686 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
2687 .type = ARM_CP_ALIAS,
2688 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2689 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
2691 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2692 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2693 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2694 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2695 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
2697 /* overall control: mostly access permissions */
2698 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
2699 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
2700 .access = PL1_RW,
2701 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
2702 .resetvalue = 0,
2704 /* per-timer control */
2705 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2706 .secure = ARM_CP_SECSTATE_NS,
2707 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2708 .accessfn = gt_ptimer_access,
2709 .fieldoffset = offsetoflow32(CPUARMState,
2710 cp15.c14_timer[GTIMER_PHYS].ctl),
2711 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
2713 { .name = "CNTP_CTL_S",
2714 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2715 .secure = ARM_CP_SECSTATE_S,
2716 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2717 .accessfn = gt_ptimer_access,
2718 .fieldoffset = offsetoflow32(CPUARMState,
2719 cp15.c14_timer[GTIMER_SEC].ctl),
2720 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2722 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
2723 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
2724 .type = ARM_CP_IO, .access = PL0_RW,
2725 .accessfn = gt_ptimer_access,
2726 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
2727 .resetvalue = 0,
2728 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
2730 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
2731 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2732 .accessfn = gt_vtimer_access,
2733 .fieldoffset = offsetoflow32(CPUARMState,
2734 cp15.c14_timer[GTIMER_VIRT].ctl),
2735 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
2737 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
2738 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
2739 .type = ARM_CP_IO, .access = PL0_RW,
2740 .accessfn = gt_vtimer_access,
2741 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
2742 .resetvalue = 0,
2743 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
2745 /* TimerValue views: a 32 bit downcounting view of the underlying state */
2746 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2747 .secure = ARM_CP_SECSTATE_NS,
2748 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2749 .accessfn = gt_ptimer_access,
2750 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2752 { .name = "CNTP_TVAL_S",
2753 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2754 .secure = ARM_CP_SECSTATE_S,
2755 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2756 .accessfn = gt_ptimer_access,
2757 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
2759 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2760 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
2761 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2762 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
2763 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2765 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
2766 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2767 .accessfn = gt_vtimer_access,
2768 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2770 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2771 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
2772 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2773 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
2774 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2776 /* The counter itself */
2777 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
2778 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2779 .accessfn = gt_pct_access,
2780 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
2782 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
2783 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
2784 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2785 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
2787 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
2788 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2789 .accessfn = gt_vct_access,
2790 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
2792 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2793 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2794 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2795 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
2797 /* Comparison value, indicating when the timer goes off */
2798 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
2799 .secure = ARM_CP_SECSTATE_NS,
2800 .access = PL0_RW,
2801 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2802 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2803 .accessfn = gt_ptimer_access,
2804 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2806 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
2807 .secure = ARM_CP_SECSTATE_S,
2808 .access = PL0_RW,
2809 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2810 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2811 .accessfn = gt_ptimer_access,
2812 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2814 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2815 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
2816 .access = PL0_RW,
2817 .type = ARM_CP_IO,
2818 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2819 .resetvalue = 0, .accessfn = gt_ptimer_access,
2820 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2822 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
2823 .access = PL0_RW,
2824 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2825 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2826 .accessfn = gt_vtimer_access,
2827 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2829 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2830 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
2831 .access = PL0_RW,
2832 .type = ARM_CP_IO,
2833 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2834 .resetvalue = 0, .accessfn = gt_vtimer_access,
2835 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2837 /* Secure timer -- this is actually restricted to only EL3
2838 * and configurably Secure-EL1 via the accessfn.
2840 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
2841 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
2842 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
2843 .accessfn = gt_stimer_access,
2844 .readfn = gt_sec_tval_read,
2845 .writefn = gt_sec_tval_write,
2846 .resetfn = gt_sec_timer_reset,
2848 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
2849 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
2850 .type = ARM_CP_IO, .access = PL1_RW,
2851 .accessfn = gt_stimer_access,
2852 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
2853 .resetvalue = 0,
2854 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2856 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
2857 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
2858 .type = ARM_CP_IO, .access = PL1_RW,
2859 .accessfn = gt_stimer_access,
2860 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2861 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2863 REGINFO_SENTINEL
2866 #else
2868 /* In user-mode most of the generic timer registers are inaccessible
2869 * however modern kernels (4.12+) allow access to cntvct_el0
2872 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2874 /* Currently we have no support for QEMUTimer in linux-user so we
2875 * can't call gt_get_countervalue(env), instead we directly
2876 * call the lower level functions.
2878 return cpu_get_clock() / GTIMER_SCALE;
2881 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2882 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2883 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2884 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
2885 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2886 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
2888 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2889 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2890 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2891 .readfn = gt_virt_cnt_read,
2893 REGINFO_SENTINEL
2896 #endif
2898 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2900 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2901 raw_write(env, ri, value);
2902 } else if (arm_feature(env, ARM_FEATURE_V7)) {
2903 raw_write(env, ri, value & 0xfffff6ff);
2904 } else {
2905 raw_write(env, ri, value & 0xfffff1ff);
2909 #ifndef CONFIG_USER_ONLY
2910 /* get_phys_addr() isn't present for user-mode-only targets */
2912 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
2913 bool isread)
2915 if (ri->opc2 & 4) {
2916 /* The ATS12NSO* operations must trap to EL3 if executed in
2917 * Secure EL1 (which can only happen if EL3 is AArch64).
2918 * They are simply UNDEF if executed from NS EL1.
2919 * They function normally from EL2 or EL3.
2921 if (arm_current_el(env) == 1) {
2922 if (arm_is_secure_below_el3(env)) {
2923 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
2925 return CP_ACCESS_TRAP_UNCATEGORIZED;
2928 return CP_ACCESS_OK;
2931 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
2932 MMUAccessType access_type, ARMMMUIdx mmu_idx)
2934 hwaddr phys_addr;
2935 target_ulong page_size;
2936 int prot;
2937 bool ret;
2938 uint64_t par64;
2939 bool format64 = false;
2940 MemTxAttrs attrs = {};
2941 ARMMMUFaultInfo fi = {};
2942 ARMCacheAttrs cacheattrs = {};
2944 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
2945 &prot, &page_size, &fi, &cacheattrs);
2947 if (is_a64(env)) {
2948 format64 = true;
2949 } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
2951 * ATS1Cxx:
2952 * * TTBCR.EAE determines whether the result is returned using the
2953 * 32-bit or the 64-bit PAR format
2954 * * Instructions executed in Hyp mode always use the 64bit format
2956 * ATS1S2NSOxx uses the 64bit format if any of the following is true:
2957 * * The Non-secure TTBCR.EAE bit is set to 1
2958 * * The implementation includes EL2, and the value of HCR.VM is 1
2960 * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
2962 * ATS1Hx always uses the 64bit format.
2964 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
2966 if (arm_feature(env, ARM_FEATURE_EL2)) {
2967 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
2968 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
2969 } else {
2970 format64 |= arm_current_el(env) == 2;
2975 if (format64) {
2976 /* Create a 64-bit PAR */
2977 par64 = (1 << 11); /* LPAE bit always set */
2978 if (!ret) {
2979 par64 |= phys_addr & ~0xfffULL;
2980 if (!attrs.secure) {
2981 par64 |= (1 << 9); /* NS */
2983 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
2984 par64 |= cacheattrs.shareability << 7; /* SH */
2985 } else {
2986 uint32_t fsr = arm_fi_to_lfsc(&fi);
2988 par64 |= 1; /* F */
2989 par64 |= (fsr & 0x3f) << 1; /* FS */
2990 if (fi.stage2) {
2991 par64 |= (1 << 9); /* S */
2993 if (fi.s1ptw) {
2994 par64 |= (1 << 8); /* PTW */
2997 } else {
2998 /* fsr is a DFSR/IFSR value for the short descriptor
2999 * translation table format (with WnR always clear).
3000 * Convert it to a 32-bit PAR.
3002 if (!ret) {
3003 /* We do not set any attribute bits in the PAR */
3004 if (page_size == (1 << 24)
3005 && arm_feature(env, ARM_FEATURE_V7)) {
3006 par64 = (phys_addr & 0xff000000) | (1 << 1);
3007 } else {
3008 par64 = phys_addr & 0xfffff000;
3010 if (!attrs.secure) {
3011 par64 |= (1 << 9); /* NS */
3013 } else {
3014 uint32_t fsr = arm_fi_to_sfsc(&fi);
3016 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3017 ((fsr & 0xf) << 1) | 1;
3020 return par64;
3023 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3025 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3026 uint64_t par64;
3027 ARMMMUIdx mmu_idx;
3028 int el = arm_current_el(env);
3029 bool secure = arm_is_secure_below_el3(env);
3031 switch (ri->opc2 & 6) {
3032 case 0:
3033 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
3034 switch (el) {
3035 case 3:
3036 mmu_idx = ARMMMUIdx_S1E3;
3037 break;
3038 case 2:
3039 mmu_idx = ARMMMUIdx_S1NSE1;
3040 break;
3041 case 1:
3042 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
3043 break;
3044 default:
3045 g_assert_not_reached();
3047 break;
3048 case 2:
3049 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3050 switch (el) {
3051 case 3:
3052 mmu_idx = ARMMMUIdx_S1SE0;
3053 break;
3054 case 2:
3055 mmu_idx = ARMMMUIdx_S1NSE0;
3056 break;
3057 case 1:
3058 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
3059 break;
3060 default:
3061 g_assert_not_reached();
3063 break;
3064 case 4:
3065 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3066 mmu_idx = ARMMMUIdx_S12NSE1;
3067 break;
3068 case 6:
3069 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3070 mmu_idx = ARMMMUIdx_S12NSE0;
3071 break;
3072 default:
3073 g_assert_not_reached();
3076 par64 = do_ats_write(env, value, access_type, mmu_idx);
3078 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3081 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3082 uint64_t value)
3084 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3085 uint64_t par64;
3087 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S1E2);
3089 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3092 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3093 bool isread)
3095 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
3096 return CP_ACCESS_TRAP;
3098 return CP_ACCESS_OK;
3101 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3102 uint64_t value)
3104 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3105 ARMMMUIdx mmu_idx;
3106 int secure = arm_is_secure_below_el3(env);
3108 switch (ri->opc2 & 6) {
3109 case 0:
3110 switch (ri->opc1) {
3111 case 0: /* AT S1E1R, AT S1E1W */
3112 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
3113 break;
3114 case 4: /* AT S1E2R, AT S1E2W */
3115 mmu_idx = ARMMMUIdx_S1E2;
3116 break;
3117 case 6: /* AT S1E3R, AT S1E3W */
3118 mmu_idx = ARMMMUIdx_S1E3;
3119 break;
3120 default:
3121 g_assert_not_reached();
3123 break;
3124 case 2: /* AT S1E0R, AT S1E0W */
3125 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
3126 break;
3127 case 4: /* AT S12E1R, AT S12E1W */
3128 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
3129 break;
3130 case 6: /* AT S12E0R, AT S12E0W */
3131 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
3132 break;
3133 default:
3134 g_assert_not_reached();
3137 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
3139 #endif
3141 static const ARMCPRegInfo vapa_cp_reginfo[] = {
3142 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3143 .access = PL1_RW, .resetvalue = 0,
3144 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3145 offsetoflow32(CPUARMState, cp15.par_ns) },
3146 .writefn = par_write },
3147 #ifndef CONFIG_USER_ONLY
3148 /* This underdecoding is safe because the reginfo is NO_RAW. */
3149 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3150 .access = PL1_W, .accessfn = ats_access,
3151 .writefn = ats_write, .type = ARM_CP_NO_RAW },
3152 #endif
3153 REGINFO_SENTINEL
3156 /* Return basic MPU access permission bits. */
3157 static uint32_t simple_mpu_ap_bits(uint32_t val)
3159 uint32_t ret;
3160 uint32_t mask;
3161 int i;
3162 ret = 0;
3163 mask = 3;
3164 for (i = 0; i < 16; i += 2) {
3165 ret |= (val >> i) & mask;
3166 mask <<= 2;
3168 return ret;
3171 /* Pad basic MPU access permission bits to extended format. */
3172 static uint32_t extended_mpu_ap_bits(uint32_t val)
3174 uint32_t ret;
3175 uint32_t mask;
3176 int i;
3177 ret = 0;
3178 mask = 3;
3179 for (i = 0; i < 16; i += 2) {
3180 ret |= (val & mask) << i;
3181 mask <<= 2;
3183 return ret;
3186 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3187 uint64_t value)
3189 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3192 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3194 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3197 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3198 uint64_t value)
3200 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3203 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3205 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3208 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3210 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3212 if (!u32p) {
3213 return 0;
3216 u32p += env->pmsav7.rnr[M_REG_NS];
3217 return *u32p;
3220 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3221 uint64_t value)
3223 ARMCPU *cpu = env_archcpu(env);
3224 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3226 if (!u32p) {
3227 return;
3230 u32p += env->pmsav7.rnr[M_REG_NS];
3231 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3232 *u32p = value;
3235 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3236 uint64_t value)
3238 ARMCPU *cpu = env_archcpu(env);
3239 uint32_t nrgs = cpu->pmsav7_dregion;
3241 if (value >= nrgs) {
3242 qemu_log_mask(LOG_GUEST_ERROR,
3243 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3244 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3245 return;
3248 raw_write(env, ri, value);
3251 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
3252 /* Reset for all these registers is handled in arm_cpu_reset(),
3253 * because the PMSAv7 is also used by M-profile CPUs, which do
3254 * not register cpregs but still need the state to be reset.
3256 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3257 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3258 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
3259 .readfn = pmsav7_read, .writefn = pmsav7_write,
3260 .resetfn = arm_cp_reset_ignore },
3261 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
3262 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3263 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
3264 .readfn = pmsav7_read, .writefn = pmsav7_write,
3265 .resetfn = arm_cp_reset_ignore },
3266 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
3267 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3268 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
3269 .readfn = pmsav7_read, .writefn = pmsav7_write,
3270 .resetfn = arm_cp_reset_ignore },
3271 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
3272 .access = PL1_RW,
3273 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
3274 .writefn = pmsav7_rgnr_write,
3275 .resetfn = arm_cp_reset_ignore },
3276 REGINFO_SENTINEL
3279 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
3280 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3281 .access = PL1_RW, .type = ARM_CP_ALIAS,
3282 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3283 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
3284 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3285 .access = PL1_RW, .type = ARM_CP_ALIAS,
3286 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3287 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
3288 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
3289 .access = PL1_RW,
3290 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3291 .resetvalue = 0, },
3292 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
3293 .access = PL1_RW,
3294 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3295 .resetvalue = 0, },
3296 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
3297 .access = PL1_RW,
3298 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
3299 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
3300 .access = PL1_RW,
3301 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
3302 /* Protection region base and size registers */
3303 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
3304 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3305 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
3306 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
3307 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3308 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
3309 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
3310 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3311 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
3312 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
3313 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3314 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
3315 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
3316 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3317 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
3318 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
3319 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3320 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
3321 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
3322 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3323 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
3324 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
3325 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3326 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
3327 REGINFO_SENTINEL
3330 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
3331 uint64_t value)
3333 TCR *tcr = raw_ptr(env, ri);
3334 int maskshift = extract32(value, 0, 3);
3336 if (!arm_feature(env, ARM_FEATURE_V8)) {
3337 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
3338 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
3339 * using Long-desciptor translation table format */
3340 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
3341 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
3342 /* In an implementation that includes the Security Extensions
3343 * TTBCR has additional fields PD0 [4] and PD1 [5] for
3344 * Short-descriptor translation table format.
3346 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
3347 } else {
3348 value &= TTBCR_N;
3352 /* Update the masks corresponding to the TCR bank being written
3353 * Note that we always calculate mask and base_mask, but
3354 * they are only used for short-descriptor tables (ie if EAE is 0);
3355 * for long-descriptor tables the TCR fields are used differently
3356 * and the mask and base_mask values are meaningless.
3358 tcr->raw_tcr = value;
3359 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
3360 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
3363 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3364 uint64_t value)
3366 ARMCPU *cpu = env_archcpu(env);
3367 TCR *tcr = raw_ptr(env, ri);
3369 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3370 /* With LPAE the TTBCR could result in a change of ASID
3371 * via the TTBCR.A1 bit, so do a TLB flush.
3373 tlb_flush(CPU(cpu));
3375 /* Preserve the high half of TCR_EL1, set via TTBCR2. */
3376 value = deposit64(tcr->raw_tcr, 0, 32, value);
3377 vmsa_ttbcr_raw_write(env, ri, value);
3380 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3382 TCR *tcr = raw_ptr(env, ri);
3384 /* Reset both the TCR as well as the masks corresponding to the bank of
3385 * the TCR being reset.
3387 tcr->raw_tcr = 0;
3388 tcr->mask = 0;
3389 tcr->base_mask = 0xffffc000u;
3392 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3393 uint64_t value)
3395 ARMCPU *cpu = env_archcpu(env);
3396 TCR *tcr = raw_ptr(env, ri);
3398 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
3399 tlb_flush(CPU(cpu));
3400 tcr->raw_tcr = value;
3403 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3404 uint64_t value)
3406 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */
3407 if (cpreg_field_is_64bit(ri) &&
3408 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
3409 ARMCPU *cpu = env_archcpu(env);
3410 tlb_flush(CPU(cpu));
3412 raw_write(env, ri, value);
3415 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3416 uint64_t value)
3418 ARMCPU *cpu = env_archcpu(env);
3419 CPUState *cs = CPU(cpu);
3421 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */
3422 if (raw_read(env, ri) != value) {
3423 tlb_flush_by_mmuidx(cs,
3424 ARMMMUIdxBit_S12NSE1 |
3425 ARMMMUIdxBit_S12NSE0 |
3426 ARMMMUIdxBit_S2NS);
3427 raw_write(env, ri, value);
3431 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
3432 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3433 .access = PL1_RW, .type = ARM_CP_ALIAS,
3434 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
3435 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
3436 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3437 .access = PL1_RW, .resetvalue = 0,
3438 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
3439 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
3440 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
3441 .access = PL1_RW, .resetvalue = 0,
3442 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
3443 offsetof(CPUARMState, cp15.dfar_ns) } },
3444 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
3445 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
3446 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
3447 .resetvalue = 0, },
3448 REGINFO_SENTINEL
3451 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
3452 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
3453 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
3454 .access = PL1_RW,
3455 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
3456 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
3457 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
3458 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
3459 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
3460 offsetof(CPUARMState, cp15.ttbr0_ns) } },
3461 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
3462 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
3463 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
3464 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
3465 offsetof(CPUARMState, cp15.ttbr1_ns) } },
3466 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
3467 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3468 .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
3469 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
3470 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
3471 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3472 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
3473 .raw_writefn = vmsa_ttbcr_raw_write,
3474 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
3475 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
3476 REGINFO_SENTINEL
3479 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
3480 * qemu tlbs nor adjusting cached masks.
3482 static const ARMCPRegInfo ttbcr2_reginfo = {
3483 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
3484 .access = PL1_RW, .type = ARM_CP_ALIAS,
3485 .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
3486 offsetofhigh32(CPUARMState, cp15.tcr_el[1]) },
3489 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
3490 uint64_t value)
3492 env->cp15.c15_ticonfig = value & 0xe7;
3493 /* The OS_TYPE bit in this register changes the reported CPUID! */
3494 env->cp15.c0_cpuid = (value & (1 << 5)) ?
3495 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
3498 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
3499 uint64_t value)
3501 env->cp15.c15_threadid = value & 0xffff;
3504 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
3505 uint64_t value)
3507 /* Wait-for-interrupt (deprecated) */
3508 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
3511 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
3512 uint64_t value)
3514 /* On OMAP there are registers indicating the max/min index of dcache lines
3515 * containing a dirty line; cache flush operations have to reset these.
3517 env->cp15.c15_i_max = 0x000;
3518 env->cp15.c15_i_min = 0xff0;
3521 static const ARMCPRegInfo omap_cp_reginfo[] = {
3522 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
3523 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
3524 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
3525 .resetvalue = 0, },
3526 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
3527 .access = PL1_RW, .type = ARM_CP_NOP },
3528 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
3529 .access = PL1_RW,
3530 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
3531 .writefn = omap_ticonfig_write },
3532 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
3533 .access = PL1_RW,
3534 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
3535 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
3536 .access = PL1_RW, .resetvalue = 0xff0,
3537 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
3538 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
3539 .access = PL1_RW,
3540 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
3541 .writefn = omap_threadid_write },
3542 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
3543 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3544 .type = ARM_CP_NO_RAW,
3545 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
3546 /* TODO: Peripheral port remap register:
3547 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
3548 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
3549 * when MMU is off.
3551 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
3552 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
3553 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
3554 .writefn = omap_cachemaint_write },
3555 { .name = "C9", .cp = 15, .crn = 9,
3556 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
3557 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
3558 REGINFO_SENTINEL
3561 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3562 uint64_t value)
3564 env->cp15.c15_cpar = value & 0x3fff;
3567 static const ARMCPRegInfo xscale_cp_reginfo[] = {
3568 { .name = "XSCALE_CPAR",
3569 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3570 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
3571 .writefn = xscale_cpar_write, },
3572 { .name = "XSCALE_AUXCR",
3573 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
3574 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
3575 .resetvalue = 0, },
3576 /* XScale specific cache-lockdown: since we have no cache we NOP these
3577 * and hope the guest does not really rely on cache behaviour.
3579 { .name = "XSCALE_LOCK_ICACHE_LINE",
3580 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
3581 .access = PL1_W, .type = ARM_CP_NOP },
3582 { .name = "XSCALE_UNLOCK_ICACHE",
3583 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
3584 .access = PL1_W, .type = ARM_CP_NOP },
3585 { .name = "XSCALE_DCACHE_LOCK",
3586 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
3587 .access = PL1_RW, .type = ARM_CP_NOP },
3588 { .name = "XSCALE_UNLOCK_DCACHE",
3589 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
3590 .access = PL1_W, .type = ARM_CP_NOP },
3591 REGINFO_SENTINEL
3594 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
3595 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
3596 * implementation of this implementation-defined space.
3597 * Ideally this should eventually disappear in favour of actually
3598 * implementing the correct behaviour for all cores.
3600 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
3601 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3602 .access = PL1_RW,
3603 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
3604 .resetvalue = 0 },
3605 REGINFO_SENTINEL
3608 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
3609 /* Cache status: RAZ because we have no cache so it's always clean */
3610 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
3611 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3612 .resetvalue = 0 },
3613 REGINFO_SENTINEL
3616 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
3617 /* We never have a a block transfer operation in progress */
3618 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
3619 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3620 .resetvalue = 0 },
3621 /* The cache ops themselves: these all NOP for QEMU */
3622 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
3623 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3624 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
3625 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3626 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
3627 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3628 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
3629 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3630 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
3631 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3632 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
3633 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3634 REGINFO_SENTINEL
3637 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
3638 /* The cache test-and-clean instructions always return (1 << 30)
3639 * to indicate that there are no dirty cache lines.
3641 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
3642 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3643 .resetvalue = (1 << 30) },
3644 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
3645 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3646 .resetvalue = (1 << 30) },
3647 REGINFO_SENTINEL
3650 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
3651 /* Ignore ReadBuffer accesses */
3652 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
3653 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3654 .access = PL1_RW, .resetvalue = 0,
3655 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
3656 REGINFO_SENTINEL
3659 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3661 ARMCPU *cpu = env_archcpu(env);
3662 unsigned int cur_el = arm_current_el(env);
3663 bool secure = arm_is_secure(env);
3665 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
3666 return env->cp15.vpidr_el2;
3668 return raw_read(env, ri);
3671 static uint64_t mpidr_read_val(CPUARMState *env)
3673 ARMCPU *cpu = env_archcpu(env);
3674 uint64_t mpidr = cpu->mp_affinity;
3676 if (arm_feature(env, ARM_FEATURE_V7MP)) {
3677 mpidr |= (1U << 31);
3678 /* Cores which are uniprocessor (non-coherent)
3679 * but still implement the MP extensions set
3680 * bit 30. (For instance, Cortex-R5).
3682 if (cpu->mp_is_up) {
3683 mpidr |= (1u << 30);
3686 return mpidr;
3689 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3691 unsigned int cur_el = arm_current_el(env);
3692 bool secure = arm_is_secure(env);
3694 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
3695 return env->cp15.vmpidr_el2;
3697 return mpidr_read_val(env);
3700 static const ARMCPRegInfo lpae_cp_reginfo[] = {
3701 /* NOP AMAIR0/1 */
3702 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
3703 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
3704 .access = PL1_RW, .type = ARM_CP_CONST,
3705 .resetvalue = 0 },
3706 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
3707 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
3708 .access = PL1_RW, .type = ARM_CP_CONST,
3709 .resetvalue = 0 },
3710 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
3711 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
3712 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
3713 offsetof(CPUARMState, cp15.par_ns)} },
3714 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
3715 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3716 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
3717 offsetof(CPUARMState, cp15.ttbr0_ns) },
3718 .writefn = vmsa_ttbr_write, },
3719 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
3720 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3721 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
3722 offsetof(CPUARMState, cp15.ttbr1_ns) },
3723 .writefn = vmsa_ttbr_write, },
3724 REGINFO_SENTINEL
3727 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3729 return vfp_get_fpcr(env);
3732 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3733 uint64_t value)
3735 vfp_set_fpcr(env, value);
3738 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3740 return vfp_get_fpsr(env);
3743 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3744 uint64_t value)
3746 vfp_set_fpsr(env, value);
3749 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
3750 bool isread)
3752 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
3753 return CP_ACCESS_TRAP;
3755 return CP_ACCESS_OK;
3758 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
3759 uint64_t value)
3761 env->daif = value & PSTATE_DAIF;
3764 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
3765 const ARMCPRegInfo *ri,
3766 bool isread)
3768 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
3769 * SCTLR_EL1.UCI is set.
3771 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
3772 return CP_ACCESS_TRAP;
3774 return CP_ACCESS_OK;
3777 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
3778 * Page D4-1736 (DDI0487A.b)
3781 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3782 uint64_t value)
3784 CPUState *cs = env_cpu(env);
3785 bool sec = arm_is_secure_below_el3(env);
3787 if (sec) {
3788 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3789 ARMMMUIdxBit_S1SE1 |
3790 ARMMMUIdxBit_S1SE0);
3791 } else {
3792 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3793 ARMMMUIdxBit_S12NSE1 |
3794 ARMMMUIdxBit_S12NSE0);
3798 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3799 uint64_t value)
3801 CPUState *cs = env_cpu(env);
3803 if (tlb_force_broadcast(env)) {
3804 tlbi_aa64_vmalle1is_write(env, NULL, value);
3805 return;
3808 if (arm_is_secure_below_el3(env)) {
3809 tlb_flush_by_mmuidx(cs,
3810 ARMMMUIdxBit_S1SE1 |
3811 ARMMMUIdxBit_S1SE0);
3812 } else {
3813 tlb_flush_by_mmuidx(cs,
3814 ARMMMUIdxBit_S12NSE1 |
3815 ARMMMUIdxBit_S12NSE0);
3819 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3820 uint64_t value)
3822 /* Note that the 'ALL' scope must invalidate both stage 1 and
3823 * stage 2 translations, whereas most other scopes only invalidate
3824 * stage 1 translations.
3826 ARMCPU *cpu = env_archcpu(env);
3827 CPUState *cs = CPU(cpu);
3829 if (arm_is_secure_below_el3(env)) {
3830 tlb_flush_by_mmuidx(cs,
3831 ARMMMUIdxBit_S1SE1 |
3832 ARMMMUIdxBit_S1SE0);
3833 } else {
3834 if (arm_feature(env, ARM_FEATURE_EL2)) {
3835 tlb_flush_by_mmuidx(cs,
3836 ARMMMUIdxBit_S12NSE1 |
3837 ARMMMUIdxBit_S12NSE0 |
3838 ARMMMUIdxBit_S2NS);
3839 } else {
3840 tlb_flush_by_mmuidx(cs,
3841 ARMMMUIdxBit_S12NSE1 |
3842 ARMMMUIdxBit_S12NSE0);
3847 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3848 uint64_t value)
3850 ARMCPU *cpu = env_archcpu(env);
3851 CPUState *cs = CPU(cpu);
3853 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
3856 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3857 uint64_t value)
3859 ARMCPU *cpu = env_archcpu(env);
3860 CPUState *cs = CPU(cpu);
3862 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3);
3865 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3866 uint64_t value)
3868 /* Note that the 'ALL' scope must invalidate both stage 1 and
3869 * stage 2 translations, whereas most other scopes only invalidate
3870 * stage 1 translations.
3872 CPUState *cs = env_cpu(env);
3873 bool sec = arm_is_secure_below_el3(env);
3874 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
3876 if (sec) {
3877 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3878 ARMMMUIdxBit_S1SE1 |
3879 ARMMMUIdxBit_S1SE0);
3880 } else if (has_el2) {
3881 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3882 ARMMMUIdxBit_S12NSE1 |
3883 ARMMMUIdxBit_S12NSE0 |
3884 ARMMMUIdxBit_S2NS);
3885 } else {
3886 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3887 ARMMMUIdxBit_S12NSE1 |
3888 ARMMMUIdxBit_S12NSE0);
3892 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3893 uint64_t value)
3895 CPUState *cs = env_cpu(env);
3897 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
3900 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3901 uint64_t value)
3903 CPUState *cs = env_cpu(env);
3905 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3);
3908 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3909 uint64_t value)
3911 /* Invalidate by VA, EL2
3912 * Currently handles both VAE2 and VALE2, since we don't support
3913 * flush-last-level-only.
3915 ARMCPU *cpu = env_archcpu(env);
3916 CPUState *cs = CPU(cpu);
3917 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3919 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
3922 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3923 uint64_t value)
3925 /* Invalidate by VA, EL3
3926 * Currently handles both VAE3 and VALE3, since we don't support
3927 * flush-last-level-only.
3929 ARMCPU *cpu = env_archcpu(env);
3930 CPUState *cs = CPU(cpu);
3931 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3933 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3);
3936 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3937 uint64_t value)
3939 ARMCPU *cpu = env_archcpu(env);
3940 CPUState *cs = CPU(cpu);
3941 bool sec = arm_is_secure_below_el3(env);
3942 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3944 if (sec) {
3945 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3946 ARMMMUIdxBit_S1SE1 |
3947 ARMMMUIdxBit_S1SE0);
3948 } else {
3949 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3950 ARMMMUIdxBit_S12NSE1 |
3951 ARMMMUIdxBit_S12NSE0);
3955 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3956 uint64_t value)
3958 /* Invalidate by VA, EL1&0 (AArch64 version).
3959 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
3960 * since we don't support flush-for-specific-ASID-only or
3961 * flush-last-level-only.
3963 ARMCPU *cpu = env_archcpu(env);
3964 CPUState *cs = CPU(cpu);
3965 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3967 if (tlb_force_broadcast(env)) {
3968 tlbi_aa64_vae1is_write(env, NULL, value);
3969 return;
3972 if (arm_is_secure_below_el3(env)) {
3973 tlb_flush_page_by_mmuidx(cs, pageaddr,
3974 ARMMMUIdxBit_S1SE1 |
3975 ARMMMUIdxBit_S1SE0);
3976 } else {
3977 tlb_flush_page_by_mmuidx(cs, pageaddr,
3978 ARMMMUIdxBit_S12NSE1 |
3979 ARMMMUIdxBit_S12NSE0);
3983 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3984 uint64_t value)
3986 CPUState *cs = env_cpu(env);
3987 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3989 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3990 ARMMMUIdxBit_S1E2);
3993 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3994 uint64_t value)
3996 CPUState *cs = env_cpu(env);
3997 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3999 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
4000 ARMMMUIdxBit_S1E3);
4003 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4004 uint64_t value)
4006 /* Invalidate by IPA. This has to invalidate any structures that
4007 * contain only stage 2 translation information, but does not need
4008 * to apply to structures that contain combined stage 1 and stage 2
4009 * translation information.
4010 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
4012 ARMCPU *cpu = env_archcpu(env);
4013 CPUState *cs = CPU(cpu);
4014 uint64_t pageaddr;
4016 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
4017 return;
4020 pageaddr = sextract64(value << 12, 0, 48);
4022 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
4025 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4026 uint64_t value)
4028 CPUState *cs = env_cpu(env);
4029 uint64_t pageaddr;
4031 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
4032 return;
4035 pageaddr = sextract64(value << 12, 0, 48);
4037 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
4038 ARMMMUIdxBit_S2NS);
4041 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
4042 bool isread)
4044 /* We don't implement EL2, so the only control on DC ZVA is the
4045 * bit in the SCTLR which can prohibit access for EL0.
4047 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
4048 return CP_ACCESS_TRAP;
4050 return CP_ACCESS_OK;
4053 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
4055 ARMCPU *cpu = env_archcpu(env);
4056 int dzp_bit = 1 << 4;
4058 /* DZP indicates whether DC ZVA access is allowed */
4059 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
4060 dzp_bit = 0;
4062 return cpu->dcz_blocksize | dzp_bit;
4065 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4066 bool isread)
4068 if (!(env->pstate & PSTATE_SP)) {
4069 /* Access to SP_EL0 is undefined if it's being used as
4070 * the stack pointer.
4072 return CP_ACCESS_TRAP_UNCATEGORIZED;
4074 return CP_ACCESS_OK;
4077 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
4079 return env->pstate & PSTATE_SP;
4082 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
4084 update_spsel(env, val);
4087 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4088 uint64_t value)
4090 ARMCPU *cpu = env_archcpu(env);
4092 if (raw_read(env, ri) == value) {
4093 /* Skip the TLB flush if nothing actually changed; Linux likes
4094 * to do a lot of pointless SCTLR writes.
4096 return;
4099 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
4100 /* M bit is RAZ/WI for PMSA with no MPU implemented */
4101 value &= ~SCTLR_M;
4104 raw_write(env, ri, value);
4105 /* ??? Lots of these bits are not implemented. */
4106 /* This may enable/disable the MMU, so do a TLB flush. */
4107 tlb_flush(CPU(cpu));
4110 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
4111 bool isread)
4113 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
4114 return CP_ACCESS_TRAP_FP_EL2;
4116 if (env->cp15.cptr_el[3] & CPTR_TFP) {
4117 return CP_ACCESS_TRAP_FP_EL3;
4119 return CP_ACCESS_OK;
4122 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4123 uint64_t value)
4125 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
4128 static const ARMCPRegInfo v8_cp_reginfo[] = {
4129 /* Minimal set of EL0-visible registers. This will need to be expanded
4130 * significantly for system emulation of AArch64 CPUs.
4132 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
4133 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
4134 .access = PL0_RW, .type = ARM_CP_NZCV },
4135 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
4136 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
4137 .type = ARM_CP_NO_RAW,
4138 .access = PL0_RW, .accessfn = aa64_daif_access,
4139 .fieldoffset = offsetof(CPUARMState, daif),
4140 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
4141 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
4142 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
4143 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4144 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
4145 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
4146 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
4147 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4148 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
4149 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
4150 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
4151 .access = PL0_R, .type = ARM_CP_NO_RAW,
4152 .readfn = aa64_dczid_read },
4153 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
4154 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
4155 .access = PL0_W, .type = ARM_CP_DC_ZVA,
4156 #ifndef CONFIG_USER_ONLY
4157 /* Avoid overhead of an access check that always passes in user-mode */
4158 .accessfn = aa64_zva_access,
4159 #endif
4161 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
4162 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
4163 .access = PL1_R, .type = ARM_CP_CURRENTEL },
4164 /* Cache ops: all NOPs since we don't emulate caches */
4165 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
4166 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4167 .access = PL1_W, .type = ARM_CP_NOP },
4168 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
4169 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4170 .access = PL1_W, .type = ARM_CP_NOP },
4171 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
4172 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
4173 .access = PL0_W, .type = ARM_CP_NOP,
4174 .accessfn = aa64_cacheop_access },
4175 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
4176 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4177 .access = PL1_W, .type = ARM_CP_NOP },
4178 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
4179 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4180 .access = PL1_W, .type = ARM_CP_NOP },
4181 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
4182 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
4183 .access = PL0_W, .type = ARM_CP_NOP,
4184 .accessfn = aa64_cacheop_access },
4185 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
4186 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4187 .access = PL1_W, .type = ARM_CP_NOP },
4188 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
4189 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
4190 .access = PL0_W, .type = ARM_CP_NOP,
4191 .accessfn = aa64_cacheop_access },
4192 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
4193 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
4194 .access = PL0_W, .type = ARM_CP_NOP,
4195 .accessfn = aa64_cacheop_access },
4196 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
4197 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4198 .access = PL1_W, .type = ARM_CP_NOP },
4199 /* TLBI operations */
4200 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
4201 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
4202 .access = PL1_W, .type = ARM_CP_NO_RAW,
4203 .writefn = tlbi_aa64_vmalle1is_write },
4204 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
4205 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
4206 .access = PL1_W, .type = ARM_CP_NO_RAW,
4207 .writefn = tlbi_aa64_vae1is_write },
4208 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
4209 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
4210 .access = PL1_W, .type = ARM_CP_NO_RAW,
4211 .writefn = tlbi_aa64_vmalle1is_write },
4212 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
4213 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
4214 .access = PL1_W, .type = ARM_CP_NO_RAW,
4215 .writefn = tlbi_aa64_vae1is_write },
4216 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
4217 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4218 .access = PL1_W, .type = ARM_CP_NO_RAW,
4219 .writefn = tlbi_aa64_vae1is_write },
4220 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
4221 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4222 .access = PL1_W, .type = ARM_CP_NO_RAW,
4223 .writefn = tlbi_aa64_vae1is_write },
4224 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
4225 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
4226 .access = PL1_W, .type = ARM_CP_NO_RAW,
4227 .writefn = tlbi_aa64_vmalle1_write },
4228 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
4229 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
4230 .access = PL1_W, .type = ARM_CP_NO_RAW,
4231 .writefn = tlbi_aa64_vae1_write },
4232 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
4233 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
4234 .access = PL1_W, .type = ARM_CP_NO_RAW,
4235 .writefn = tlbi_aa64_vmalle1_write },
4236 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
4237 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
4238 .access = PL1_W, .type = ARM_CP_NO_RAW,
4239 .writefn = tlbi_aa64_vae1_write },
4240 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
4241 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4242 .access = PL1_W, .type = ARM_CP_NO_RAW,
4243 .writefn = tlbi_aa64_vae1_write },
4244 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
4245 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4246 .access = PL1_W, .type = ARM_CP_NO_RAW,
4247 .writefn = tlbi_aa64_vae1_write },
4248 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
4249 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4250 .access = PL2_W, .type = ARM_CP_NO_RAW,
4251 .writefn = tlbi_aa64_ipas2e1is_write },
4252 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
4253 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4254 .access = PL2_W, .type = ARM_CP_NO_RAW,
4255 .writefn = tlbi_aa64_ipas2e1is_write },
4256 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
4257 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4258 .access = PL2_W, .type = ARM_CP_NO_RAW,
4259 .writefn = tlbi_aa64_alle1is_write },
4260 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
4261 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
4262 .access = PL2_W, .type = ARM_CP_NO_RAW,
4263 .writefn = tlbi_aa64_alle1is_write },
4264 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
4265 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4266 .access = PL2_W, .type = ARM_CP_NO_RAW,
4267 .writefn = tlbi_aa64_ipas2e1_write },
4268 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
4269 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4270 .access = PL2_W, .type = ARM_CP_NO_RAW,
4271 .writefn = tlbi_aa64_ipas2e1_write },
4272 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
4273 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4274 .access = PL2_W, .type = ARM_CP_NO_RAW,
4275 .writefn = tlbi_aa64_alle1_write },
4276 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
4277 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
4278 .access = PL2_W, .type = ARM_CP_NO_RAW,
4279 .writefn = tlbi_aa64_alle1is_write },
4280 #ifndef CONFIG_USER_ONLY
4281 /* 64 bit address translation operations */
4282 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
4283 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
4284 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4285 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
4286 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
4287 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4288 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
4289 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
4290 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4291 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
4292 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
4293 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4294 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
4295 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
4296 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4297 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
4298 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
4299 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4300 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
4301 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
4302 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4303 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
4304 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
4305 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4306 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
4307 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
4308 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
4309 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4310 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
4311 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
4312 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4313 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
4314 .type = ARM_CP_ALIAS,
4315 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
4316 .access = PL1_RW, .resetvalue = 0,
4317 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
4318 .writefn = par_write },
4319 #endif
4320 /* TLB invalidate last level of translation table walk */
4321 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4322 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
4323 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4324 .type = ARM_CP_NO_RAW, .access = PL1_W,
4325 .writefn = tlbimvaa_is_write },
4326 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4327 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
4328 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4329 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
4330 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
4331 .type = ARM_CP_NO_RAW, .access = PL2_W,
4332 .writefn = tlbimva_hyp_write },
4333 { .name = "TLBIMVALHIS",
4334 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
4335 .type = ARM_CP_NO_RAW, .access = PL2_W,
4336 .writefn = tlbimva_hyp_is_write },
4337 { .name = "TLBIIPAS2",
4338 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4339 .type = ARM_CP_NO_RAW, .access = PL2_W,
4340 .writefn = tlbiipas2_write },
4341 { .name = "TLBIIPAS2IS",
4342 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4343 .type = ARM_CP_NO_RAW, .access = PL2_W,
4344 .writefn = tlbiipas2_is_write },
4345 { .name = "TLBIIPAS2L",
4346 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4347 .type = ARM_CP_NO_RAW, .access = PL2_W,
4348 .writefn = tlbiipas2_write },
4349 { .name = "TLBIIPAS2LIS",
4350 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4351 .type = ARM_CP_NO_RAW, .access = PL2_W,
4352 .writefn = tlbiipas2_is_write },
4353 /* 32 bit cache operations */
4354 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4355 .type = ARM_CP_NOP, .access = PL1_W },
4356 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
4357 .type = ARM_CP_NOP, .access = PL1_W },
4358 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4359 .type = ARM_CP_NOP, .access = PL1_W },
4360 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
4361 .type = ARM_CP_NOP, .access = PL1_W },
4362 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
4363 .type = ARM_CP_NOP, .access = PL1_W },
4364 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
4365 .type = ARM_CP_NOP, .access = PL1_W },
4366 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4367 .type = ARM_CP_NOP, .access = PL1_W },
4368 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4369 .type = ARM_CP_NOP, .access = PL1_W },
4370 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
4371 .type = ARM_CP_NOP, .access = PL1_W },
4372 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4373 .type = ARM_CP_NOP, .access = PL1_W },
4374 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
4375 .type = ARM_CP_NOP, .access = PL1_W },
4376 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
4377 .type = ARM_CP_NOP, .access = PL1_W },
4378 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4379 .type = ARM_CP_NOP, .access = PL1_W },
4380 /* MMU Domain access control / MPU write buffer control */
4381 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
4382 .access = PL1_RW, .resetvalue = 0,
4383 .writefn = dacr_write, .raw_writefn = raw_write,
4384 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
4385 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
4386 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
4387 .type = ARM_CP_ALIAS,
4388 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
4389 .access = PL1_RW,
4390 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
4391 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
4392 .type = ARM_CP_ALIAS,
4393 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
4394 .access = PL1_RW,
4395 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
4396 /* We rely on the access checks not allowing the guest to write to the
4397 * state field when SPSel indicates that it's being used as the stack
4398 * pointer.
4400 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
4401 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
4402 .access = PL1_RW, .accessfn = sp_el0_access,
4403 .type = ARM_CP_ALIAS,
4404 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
4405 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
4406 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
4407 .access = PL2_RW, .type = ARM_CP_ALIAS,
4408 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
4409 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
4410 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
4411 .type = ARM_CP_NO_RAW,
4412 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
4413 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
4414 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
4415 .type = ARM_CP_ALIAS,
4416 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
4417 .access = PL2_RW, .accessfn = fpexc32_access },
4418 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
4419 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
4420 .access = PL2_RW, .resetvalue = 0,
4421 .writefn = dacr_write, .raw_writefn = raw_write,
4422 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
4423 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
4424 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
4425 .access = PL2_RW, .resetvalue = 0,
4426 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
4427 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
4428 .type = ARM_CP_ALIAS,
4429 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
4430 .access = PL2_RW,
4431 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
4432 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
4433 .type = ARM_CP_ALIAS,
4434 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
4435 .access = PL2_RW,
4436 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
4437 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
4438 .type = ARM_CP_ALIAS,
4439 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
4440 .access = PL2_RW,
4441 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
4442 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
4443 .type = ARM_CP_ALIAS,
4444 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
4445 .access = PL2_RW,
4446 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
4447 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
4448 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
4449 .resetvalue = 0,
4450 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
4451 { .name = "SDCR", .type = ARM_CP_ALIAS,
4452 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
4453 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4454 .writefn = sdcr_write,
4455 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
4456 REGINFO_SENTINEL
4459 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
4460 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
4461 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
4462 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
4463 .access = PL2_RW,
4464 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
4465 { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH,
4466 .type = ARM_CP_NO_RAW,
4467 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4468 .access = PL2_RW,
4469 .type = ARM_CP_CONST, .resetvalue = 0 },
4470 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
4471 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
4472 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4473 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
4474 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
4475 .access = PL2_RW,
4476 .type = ARM_CP_CONST, .resetvalue = 0 },
4477 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
4478 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
4479 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4480 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
4481 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
4482 .access = PL2_RW, .type = ARM_CP_CONST,
4483 .resetvalue = 0 },
4484 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
4485 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
4486 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4487 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
4488 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
4489 .access = PL2_RW, .type = ARM_CP_CONST,
4490 .resetvalue = 0 },
4491 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
4492 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
4493 .access = PL2_RW, .type = ARM_CP_CONST,
4494 .resetvalue = 0 },
4495 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
4496 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
4497 .access = PL2_RW, .type = ARM_CP_CONST,
4498 .resetvalue = 0 },
4499 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
4500 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
4501 .access = PL2_RW, .type = ARM_CP_CONST,
4502 .resetvalue = 0 },
4503 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
4504 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
4505 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4506 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
4507 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
4508 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4509 .type = ARM_CP_CONST, .resetvalue = 0 },
4510 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
4511 .cp = 15, .opc1 = 6, .crm = 2,
4512 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4513 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
4514 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
4515 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
4516 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4517 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
4518 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
4519 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4520 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4521 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
4522 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4523 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
4524 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
4525 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4526 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
4527 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
4528 .resetvalue = 0 },
4529 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
4530 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
4531 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4532 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
4533 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
4534 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4535 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
4536 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
4537 .resetvalue = 0 },
4538 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
4539 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
4540 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4541 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
4542 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
4543 .resetvalue = 0 },
4544 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
4545 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
4546 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4547 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
4548 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
4549 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4550 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
4551 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
4552 .access = PL2_RW, .accessfn = access_tda,
4553 .type = ARM_CP_CONST, .resetvalue = 0 },
4554 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
4555 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4556 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4557 .type = ARM_CP_CONST, .resetvalue = 0 },
4558 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
4559 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
4560 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4561 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
4562 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
4563 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4564 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
4565 .type = ARM_CP_CONST,
4566 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
4567 .access = PL2_RW, .resetvalue = 0 },
4568 REGINFO_SENTINEL
4571 /* Ditto, but for registers which exist in ARMv8 but not v7 */
4572 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = {
4573 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
4574 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
4575 .access = PL2_RW,
4576 .type = ARM_CP_CONST, .resetvalue = 0 },
4577 REGINFO_SENTINEL
4580 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
4582 ARMCPU *cpu = env_archcpu(env);
4583 uint64_t valid_mask = HCR_MASK;
4585 if (arm_feature(env, ARM_FEATURE_EL3)) {
4586 valid_mask &= ~HCR_HCD;
4587 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
4588 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
4589 * However, if we're using the SMC PSCI conduit then QEMU is
4590 * effectively acting like EL3 firmware and so the guest at
4591 * EL2 should retain the ability to prevent EL1 from being
4592 * able to make SMC calls into the ersatz firmware, so in
4593 * that case HCR.TSC should be read/write.
4595 valid_mask &= ~HCR_TSC;
4597 if (cpu_isar_feature(aa64_lor, cpu)) {
4598 valid_mask |= HCR_TLOR;
4600 if (cpu_isar_feature(aa64_pauth, cpu)) {
4601 valid_mask |= HCR_API | HCR_APK;
4604 /* Clear RES0 bits. */
4605 value &= valid_mask;
4607 /* These bits change the MMU setup:
4608 * HCR_VM enables stage 2 translation
4609 * HCR_PTW forbids certain page-table setups
4610 * HCR_DC Disables stage1 and enables stage2 translation
4612 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
4613 tlb_flush(CPU(cpu));
4615 env->cp15.hcr_el2 = value;
4618 * Updates to VI and VF require us to update the status of
4619 * virtual interrupts, which are the logical OR of these bits
4620 * and the state of the input lines from the GIC. (This requires
4621 * that we have the iothread lock, which is done by marking the
4622 * reginfo structs as ARM_CP_IO.)
4623 * Note that if a write to HCR pends a VIRQ or VFIQ it is never
4624 * possible for it to be taken immediately, because VIRQ and
4625 * VFIQ are masked unless running at EL0 or EL1, and HCR
4626 * can only be written at EL2.
4628 g_assert(qemu_mutex_iothread_locked());
4629 arm_cpu_update_virq(cpu);
4630 arm_cpu_update_vfiq(cpu);
4633 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
4634 uint64_t value)
4636 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
4637 value = deposit64(env->cp15.hcr_el2, 32, 32, value);
4638 hcr_write(env, NULL, value);
4641 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
4642 uint64_t value)
4644 /* Handle HCR write, i.e. write to low half of HCR_EL2 */
4645 value = deposit64(env->cp15.hcr_el2, 0, 32, value);
4646 hcr_write(env, NULL, value);
4650 * Return the effective value of HCR_EL2.
4651 * Bits that are not included here:
4652 * RW (read from SCR_EL3.RW as needed)
4654 uint64_t arm_hcr_el2_eff(CPUARMState *env)
4656 uint64_t ret = env->cp15.hcr_el2;
4658 if (arm_is_secure_below_el3(env)) {
4660 * "This register has no effect if EL2 is not enabled in the
4661 * current Security state". This is ARMv8.4-SecEL2 speak for
4662 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
4664 * Prior to that, the language was "In an implementation that
4665 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
4666 * as if this field is 0 for all purposes other than a direct
4667 * read or write access of HCR_EL2". With lots of enumeration
4668 * on a per-field basis. In current QEMU, this is condition
4669 * is arm_is_secure_below_el3.
4671 * Since the v8.4 language applies to the entire register, and
4672 * appears to be backward compatible, use that.
4674 ret = 0;
4675 } else if (ret & HCR_TGE) {
4676 /* These bits are up-to-date as of ARMv8.4. */
4677 if (ret & HCR_E2H) {
4678 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
4679 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
4680 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
4681 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE);
4682 } else {
4683 ret |= HCR_FMO | HCR_IMO | HCR_AMO;
4685 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
4686 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
4687 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
4688 HCR_TLOR);
4691 return ret;
4694 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4695 uint64_t value)
4698 * For A-profile AArch32 EL3, if NSACR.CP10
4699 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
4701 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
4702 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
4703 value &= ~(0x3 << 10);
4704 value |= env->cp15.cptr_el[2] & (0x3 << 10);
4706 env->cp15.cptr_el[2] = value;
4709 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
4712 * For A-profile AArch32 EL3, if NSACR.CP10
4713 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
4715 uint64_t value = env->cp15.cptr_el[2];
4717 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
4718 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
4719 value |= 0x3 << 10;
4721 return value;
4724 static const ARMCPRegInfo el2_cp_reginfo[] = {
4725 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
4726 .type = ARM_CP_IO,
4727 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4728 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
4729 .writefn = hcr_write },
4730 { .name = "HCR", .state = ARM_CP_STATE_AA32,
4731 .type = ARM_CP_ALIAS | ARM_CP_IO,
4732 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4733 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
4734 .writefn = hcr_writelow },
4735 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
4736 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
4737 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4738 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
4739 .type = ARM_CP_ALIAS,
4740 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
4741 .access = PL2_RW,
4742 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
4743 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
4744 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
4745 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
4746 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
4747 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
4748 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
4749 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
4750 .type = ARM_CP_ALIAS,
4751 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
4752 .access = PL2_RW,
4753 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
4754 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
4755 .type = ARM_CP_ALIAS,
4756 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
4757 .access = PL2_RW,
4758 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
4759 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
4760 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
4761 .access = PL2_RW, .writefn = vbar_write,
4762 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
4763 .resetvalue = 0 },
4764 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
4765 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
4766 .access = PL3_RW, .type = ARM_CP_ALIAS,
4767 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
4768 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
4769 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
4770 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
4771 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
4772 .readfn = cptr_el2_read, .writefn = cptr_el2_write },
4773 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
4774 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
4775 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
4776 .resetvalue = 0 },
4777 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
4778 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
4779 .access = PL2_RW, .type = ARM_CP_ALIAS,
4780 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
4781 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
4782 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
4783 .access = PL2_RW, .type = ARM_CP_CONST,
4784 .resetvalue = 0 },
4785 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
4786 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
4787 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
4788 .access = PL2_RW, .type = ARM_CP_CONST,
4789 .resetvalue = 0 },
4790 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
4791 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
4792 .access = PL2_RW, .type = ARM_CP_CONST,
4793 .resetvalue = 0 },
4794 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
4795 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
4796 .access = PL2_RW, .type = ARM_CP_CONST,
4797 .resetvalue = 0 },
4798 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
4799 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
4800 .access = PL2_RW,
4801 /* no .writefn needed as this can't cause an ASID change;
4802 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
4804 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
4805 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
4806 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
4807 .type = ARM_CP_ALIAS,
4808 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4809 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
4810 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
4811 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
4812 .access = PL2_RW,
4813 /* no .writefn needed as this can't cause an ASID change;
4814 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
4816 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
4817 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
4818 .cp = 15, .opc1 = 6, .crm = 2,
4819 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4820 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4821 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
4822 .writefn = vttbr_write },
4823 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
4824 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
4825 .access = PL2_RW, .writefn = vttbr_write,
4826 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
4827 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
4828 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
4829 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
4830 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
4831 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4832 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
4833 .access = PL2_RW, .resetvalue = 0,
4834 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
4835 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
4836 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
4837 .access = PL2_RW, .resetvalue = 0,
4838 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
4839 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
4840 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4841 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
4842 { .name = "TLBIALLNSNH",
4843 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4844 .type = ARM_CP_NO_RAW, .access = PL2_W,
4845 .writefn = tlbiall_nsnh_write },
4846 { .name = "TLBIALLNSNHIS",
4847 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4848 .type = ARM_CP_NO_RAW, .access = PL2_W,
4849 .writefn = tlbiall_nsnh_is_write },
4850 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
4851 .type = ARM_CP_NO_RAW, .access = PL2_W,
4852 .writefn = tlbiall_hyp_write },
4853 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
4854 .type = ARM_CP_NO_RAW, .access = PL2_W,
4855 .writefn = tlbiall_hyp_is_write },
4856 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
4857 .type = ARM_CP_NO_RAW, .access = PL2_W,
4858 .writefn = tlbimva_hyp_write },
4859 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
4860 .type = ARM_CP_NO_RAW, .access = PL2_W,
4861 .writefn = tlbimva_hyp_is_write },
4862 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
4863 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
4864 .type = ARM_CP_NO_RAW, .access = PL2_W,
4865 .writefn = tlbi_aa64_alle2_write },
4866 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
4867 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
4868 .type = ARM_CP_NO_RAW, .access = PL2_W,
4869 .writefn = tlbi_aa64_vae2_write },
4870 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
4871 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
4872 .access = PL2_W, .type = ARM_CP_NO_RAW,
4873 .writefn = tlbi_aa64_vae2_write },
4874 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
4875 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
4876 .access = PL2_W, .type = ARM_CP_NO_RAW,
4877 .writefn = tlbi_aa64_alle2is_write },
4878 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
4879 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
4880 .type = ARM_CP_NO_RAW, .access = PL2_W,
4881 .writefn = tlbi_aa64_vae2is_write },
4882 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
4883 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
4884 .access = PL2_W, .type = ARM_CP_NO_RAW,
4885 .writefn = tlbi_aa64_vae2is_write },
4886 #ifndef CONFIG_USER_ONLY
4887 /* Unlike the other EL2-related AT operations, these must
4888 * UNDEF from EL3 if EL2 is not implemented, which is why we
4889 * define them here rather than with the rest of the AT ops.
4891 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
4892 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
4893 .access = PL2_W, .accessfn = at_s1e2_access,
4894 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4895 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
4896 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
4897 .access = PL2_W, .accessfn = at_s1e2_access,
4898 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4899 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
4900 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
4901 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
4902 * to behave as if SCR.NS was 1.
4904 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
4905 .access = PL2_W,
4906 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
4907 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
4908 .access = PL2_W,
4909 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
4910 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
4911 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
4912 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
4913 * reset values as IMPDEF. We choose to reset to 3 to comply with
4914 * both ARMv7 and ARMv8.
4916 .access = PL2_RW, .resetvalue = 3,
4917 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
4918 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
4919 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
4920 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
4921 .writefn = gt_cntvoff_write,
4922 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
4923 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
4924 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
4925 .writefn = gt_cntvoff_write,
4926 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
4927 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
4928 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
4929 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
4930 .type = ARM_CP_IO, .access = PL2_RW,
4931 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
4932 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
4933 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
4934 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
4935 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
4936 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
4937 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
4938 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
4939 .resetfn = gt_hyp_timer_reset,
4940 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
4941 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
4942 .type = ARM_CP_IO,
4943 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
4944 .access = PL2_RW,
4945 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
4946 .resetvalue = 0,
4947 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
4948 #endif
4949 /* The only field of MDCR_EL2 that has a defined architectural reset value
4950 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
4951 * don't implement any PMU event counters, so using zero as a reset
4952 * value for MDCR_EL2 is okay
4954 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
4955 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
4956 .access = PL2_RW, .resetvalue = 0,
4957 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
4958 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
4959 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4960 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4961 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
4962 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
4963 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4964 .access = PL2_RW,
4965 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
4966 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
4967 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
4968 .access = PL2_RW,
4969 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
4970 REGINFO_SENTINEL
4973 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
4974 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
4975 .type = ARM_CP_ALIAS | ARM_CP_IO,
4976 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
4977 .access = PL2_RW,
4978 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
4979 .writefn = hcr_writehigh },
4980 REGINFO_SENTINEL
4983 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
4984 bool isread)
4986 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
4987 * At Secure EL1 it traps to EL3.
4989 if (arm_current_el(env) == 3) {
4990 return CP_ACCESS_OK;
4992 if (arm_is_secure_below_el3(env)) {
4993 return CP_ACCESS_TRAP_EL3;
4995 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
4996 if (isread) {
4997 return CP_ACCESS_OK;
4999 return CP_ACCESS_TRAP_UNCATEGORIZED;
5002 static const ARMCPRegInfo el3_cp_reginfo[] = {
5003 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
5004 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
5005 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
5006 .resetvalue = 0, .writefn = scr_write },
5007 { .name = "SCR", .type = ARM_CP_ALIAS,
5008 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
5009 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5010 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
5011 .writefn = scr_write },
5012 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
5013 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
5014 .access = PL3_RW, .resetvalue = 0,
5015 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
5016 { .name = "SDER",
5017 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
5018 .access = PL3_RW, .resetvalue = 0,
5019 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
5020 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
5021 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5022 .writefn = vbar_write, .resetvalue = 0,
5023 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
5024 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
5025 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
5026 .access = PL3_RW, .resetvalue = 0,
5027 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
5028 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
5029 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
5030 .access = PL3_RW,
5031 /* no .writefn needed as this can't cause an ASID change;
5032 * we must provide a .raw_writefn and .resetfn because we handle
5033 * reset and migration for the AArch32 TTBCR(S), which might be
5034 * using mask and base_mask.
5036 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
5037 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
5038 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
5039 .type = ARM_CP_ALIAS,
5040 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
5041 .access = PL3_RW,
5042 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
5043 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
5044 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
5045 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
5046 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
5047 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
5048 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
5049 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
5050 .type = ARM_CP_ALIAS,
5051 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
5052 .access = PL3_RW,
5053 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
5054 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
5055 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
5056 .access = PL3_RW, .writefn = vbar_write,
5057 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
5058 .resetvalue = 0 },
5059 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
5060 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
5061 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
5062 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
5063 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
5064 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
5065 .access = PL3_RW, .resetvalue = 0,
5066 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
5067 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
5068 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
5069 .access = PL3_RW, .type = ARM_CP_CONST,
5070 .resetvalue = 0 },
5071 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
5072 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
5073 .access = PL3_RW, .type = ARM_CP_CONST,
5074 .resetvalue = 0 },
5075 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
5076 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
5077 .access = PL3_RW, .type = ARM_CP_CONST,
5078 .resetvalue = 0 },
5079 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
5080 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
5081 .access = PL3_W, .type = ARM_CP_NO_RAW,
5082 .writefn = tlbi_aa64_alle3is_write },
5083 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
5084 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
5085 .access = PL3_W, .type = ARM_CP_NO_RAW,
5086 .writefn = tlbi_aa64_vae3is_write },
5087 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
5088 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
5089 .access = PL3_W, .type = ARM_CP_NO_RAW,
5090 .writefn = tlbi_aa64_vae3is_write },
5091 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
5092 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
5093 .access = PL3_W, .type = ARM_CP_NO_RAW,
5094 .writefn = tlbi_aa64_alle3_write },
5095 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
5096 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
5097 .access = PL3_W, .type = ARM_CP_NO_RAW,
5098 .writefn = tlbi_aa64_vae3_write },
5099 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
5100 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
5101 .access = PL3_W, .type = ARM_CP_NO_RAW,
5102 .writefn = tlbi_aa64_vae3_write },
5103 REGINFO_SENTINEL
5106 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5107 bool isread)
5109 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
5110 * but the AArch32 CTR has its own reginfo struct)
5112 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
5113 return CP_ACCESS_TRAP;
5115 return CP_ACCESS_OK;
5118 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
5119 uint64_t value)
5121 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
5122 * read via a bit in OSLSR_EL1.
5124 int oslock;
5126 if (ri->state == ARM_CP_STATE_AA32) {
5127 oslock = (value == 0xC5ACCE55);
5128 } else {
5129 oslock = value & 1;
5132 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
5135 static const ARMCPRegInfo debug_cp_reginfo[] = {
5136 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
5137 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
5138 * unlike DBGDRAR it is never accessible from EL0.
5139 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
5140 * accessor.
5142 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
5143 .access = PL0_R, .accessfn = access_tdra,
5144 .type = ARM_CP_CONST, .resetvalue = 0 },
5145 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
5146 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
5147 .access = PL1_R, .accessfn = access_tdra,
5148 .type = ARM_CP_CONST, .resetvalue = 0 },
5149 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
5150 .access = PL0_R, .accessfn = access_tdra,
5151 .type = ARM_CP_CONST, .resetvalue = 0 },
5152 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
5153 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
5154 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
5155 .access = PL1_RW, .accessfn = access_tda,
5156 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
5157 .resetvalue = 0 },
5158 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
5159 * We don't implement the configurable EL0 access.
5161 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
5162 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
5163 .type = ARM_CP_ALIAS,
5164 .access = PL1_R, .accessfn = access_tda,
5165 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
5166 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
5167 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
5168 .access = PL1_W, .type = ARM_CP_NO_RAW,
5169 .accessfn = access_tdosa,
5170 .writefn = oslar_write },
5171 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
5172 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
5173 .access = PL1_R, .resetvalue = 10,
5174 .accessfn = access_tdosa,
5175 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
5176 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
5177 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
5178 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
5179 .access = PL1_RW, .accessfn = access_tdosa,
5180 .type = ARM_CP_NOP },
5181 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
5182 * implement vector catch debug events yet.
5184 { .name = "DBGVCR",
5185 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
5186 .access = PL1_RW, .accessfn = access_tda,
5187 .type = ARM_CP_NOP },
5188 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
5189 * to save and restore a 32-bit guest's DBGVCR)
5191 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
5192 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
5193 .access = PL2_RW, .accessfn = access_tda,
5194 .type = ARM_CP_NOP },
5195 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
5196 * Channel but Linux may try to access this register. The 32-bit
5197 * alias is DBGDCCINT.
5199 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
5200 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
5201 .access = PL1_RW, .accessfn = access_tda,
5202 .type = ARM_CP_NOP },
5203 REGINFO_SENTINEL
5206 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
5207 /* 64 bit access versions of the (dummy) debug registers */
5208 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
5209 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
5210 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
5211 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
5212 REGINFO_SENTINEL
5215 /* Return the exception level to which exceptions should be taken
5216 * via SVEAccessTrap. If an exception should be routed through
5217 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should
5218 * take care of raising that exception.
5219 * C.f. the ARM pseudocode function CheckSVEEnabled.
5221 int sve_exception_el(CPUARMState *env, int el)
5223 #ifndef CONFIG_USER_ONLY
5224 if (el <= 1) {
5225 bool disabled = false;
5227 /* The CPACR.ZEN controls traps to EL1:
5228 * 0, 2 : trap EL0 and EL1 accesses
5229 * 1 : trap only EL0 accesses
5230 * 3 : trap no accesses
5232 if (!extract32(env->cp15.cpacr_el1, 16, 1)) {
5233 disabled = true;
5234 } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) {
5235 disabled = el == 0;
5237 if (disabled) {
5238 /* route_to_el2 */
5239 return (arm_feature(env, ARM_FEATURE_EL2)
5240 && (arm_hcr_el2_eff(env) & HCR_TGE) ? 2 : 1);
5243 /* Check CPACR.FPEN. */
5244 if (!extract32(env->cp15.cpacr_el1, 20, 1)) {
5245 disabled = true;
5246 } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) {
5247 disabled = el == 0;
5249 if (disabled) {
5250 return 0;
5254 /* CPTR_EL2. Since TZ and TFP are positive,
5255 * they will be zero when EL2 is not present.
5257 if (el <= 2 && !arm_is_secure_below_el3(env)) {
5258 if (env->cp15.cptr_el[2] & CPTR_TZ) {
5259 return 2;
5261 if (env->cp15.cptr_el[2] & CPTR_TFP) {
5262 return 0;
5266 /* CPTR_EL3. Since EZ is negative we must check for EL3. */
5267 if (arm_feature(env, ARM_FEATURE_EL3)
5268 && !(env->cp15.cptr_el[3] & CPTR_EZ)) {
5269 return 3;
5271 #endif
5272 return 0;
5276 * Given that SVE is enabled, return the vector length for EL.
5278 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el)
5280 ARMCPU *cpu = env_archcpu(env);
5281 uint32_t zcr_len = cpu->sve_max_vq - 1;
5283 if (el <= 1) {
5284 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]);
5286 if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) {
5287 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
5289 if (el < 3 && arm_feature(env, ARM_FEATURE_EL3)) {
5290 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
5292 return zcr_len;
5295 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5296 uint64_t value)
5298 int cur_el = arm_current_el(env);
5299 int old_len = sve_zcr_len_for_el(env, cur_el);
5300 int new_len;
5302 /* Bits other than [3:0] are RAZ/WI. */
5303 raw_write(env, ri, value & 0xf);
5306 * Because we arrived here, we know both FP and SVE are enabled;
5307 * otherwise we would have trapped access to the ZCR_ELn register.
5309 new_len = sve_zcr_len_for_el(env, cur_el);
5310 if (new_len < old_len) {
5311 aarch64_sve_narrow_vq(env, new_len + 1);
5315 static const ARMCPRegInfo zcr_el1_reginfo = {
5316 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
5317 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
5318 .access = PL1_RW, .type = ARM_CP_SVE,
5319 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
5320 .writefn = zcr_write, .raw_writefn = raw_write
5323 static const ARMCPRegInfo zcr_el2_reginfo = {
5324 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
5325 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
5326 .access = PL2_RW, .type = ARM_CP_SVE,
5327 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
5328 .writefn = zcr_write, .raw_writefn = raw_write
5331 static const ARMCPRegInfo zcr_no_el2_reginfo = {
5332 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
5333 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
5334 .access = PL2_RW, .type = ARM_CP_SVE,
5335 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore
5338 static const ARMCPRegInfo zcr_el3_reginfo = {
5339 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
5340 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
5341 .access = PL3_RW, .type = ARM_CP_SVE,
5342 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
5343 .writefn = zcr_write, .raw_writefn = raw_write
5346 void hw_watchpoint_update(ARMCPU *cpu, int n)
5348 CPUARMState *env = &cpu->env;
5349 vaddr len = 0;
5350 vaddr wvr = env->cp15.dbgwvr[n];
5351 uint64_t wcr = env->cp15.dbgwcr[n];
5352 int mask;
5353 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
5355 if (env->cpu_watchpoint[n]) {
5356 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
5357 env->cpu_watchpoint[n] = NULL;
5360 if (!extract64(wcr, 0, 1)) {
5361 /* E bit clear : watchpoint disabled */
5362 return;
5365 switch (extract64(wcr, 3, 2)) {
5366 case 0:
5367 /* LSC 00 is reserved and must behave as if the wp is disabled */
5368 return;
5369 case 1:
5370 flags |= BP_MEM_READ;
5371 break;
5372 case 2:
5373 flags |= BP_MEM_WRITE;
5374 break;
5375 case 3:
5376 flags |= BP_MEM_ACCESS;
5377 break;
5380 /* Attempts to use both MASK and BAS fields simultaneously are
5381 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
5382 * thus generating a watchpoint for every byte in the masked region.
5384 mask = extract64(wcr, 24, 4);
5385 if (mask == 1 || mask == 2) {
5386 /* Reserved values of MASK; we must act as if the mask value was
5387 * some non-reserved value, or as if the watchpoint were disabled.
5388 * We choose the latter.
5390 return;
5391 } else if (mask) {
5392 /* Watchpoint covers an aligned area up to 2GB in size */
5393 len = 1ULL << mask;
5394 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
5395 * whether the watchpoint fires when the unmasked bits match; we opt
5396 * to generate the exceptions.
5398 wvr &= ~(len - 1);
5399 } else {
5400 /* Watchpoint covers bytes defined by the byte address select bits */
5401 int bas = extract64(wcr, 5, 8);
5402 int basstart;
5404 if (bas == 0) {
5405 /* This must act as if the watchpoint is disabled */
5406 return;
5409 if (extract64(wvr, 2, 1)) {
5410 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
5411 * ignored, and BAS[3:0] define which bytes to watch.
5413 bas &= 0xf;
5415 /* The BAS bits are supposed to be programmed to indicate a contiguous
5416 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
5417 * we fire for each byte in the word/doubleword addressed by the WVR.
5418 * We choose to ignore any non-zero bits after the first range of 1s.
5420 basstart = ctz32(bas);
5421 len = cto32(bas >> basstart);
5422 wvr += basstart;
5425 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
5426 &env->cpu_watchpoint[n]);
5429 void hw_watchpoint_update_all(ARMCPU *cpu)
5431 int i;
5432 CPUARMState *env = &cpu->env;
5434 /* Completely clear out existing QEMU watchpoints and our array, to
5435 * avoid possible stale entries following migration load.
5437 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
5438 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
5440 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
5441 hw_watchpoint_update(cpu, i);
5445 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5446 uint64_t value)
5448 ARMCPU *cpu = env_archcpu(env);
5449 int i = ri->crm;
5451 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
5452 * register reads and behaves as if values written are sign extended.
5453 * Bits [1:0] are RES0.
5455 value = sextract64(value, 0, 49) & ~3ULL;
5457 raw_write(env, ri, value);
5458 hw_watchpoint_update(cpu, i);
5461 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5462 uint64_t value)
5464 ARMCPU *cpu = env_archcpu(env);
5465 int i = ri->crm;
5467 raw_write(env, ri, value);
5468 hw_watchpoint_update(cpu, i);
5471 void hw_breakpoint_update(ARMCPU *cpu, int n)
5473 CPUARMState *env = &cpu->env;
5474 uint64_t bvr = env->cp15.dbgbvr[n];
5475 uint64_t bcr = env->cp15.dbgbcr[n];
5476 vaddr addr;
5477 int bt;
5478 int flags = BP_CPU;
5480 if (env->cpu_breakpoint[n]) {
5481 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
5482 env->cpu_breakpoint[n] = NULL;
5485 if (!extract64(bcr, 0, 1)) {
5486 /* E bit clear : watchpoint disabled */
5487 return;
5490 bt = extract64(bcr, 20, 4);
5492 switch (bt) {
5493 case 4: /* unlinked address mismatch (reserved if AArch64) */
5494 case 5: /* linked address mismatch (reserved if AArch64) */
5495 qemu_log_mask(LOG_UNIMP,
5496 "arm: address mismatch breakpoint types not implemented\n");
5497 return;
5498 case 0: /* unlinked address match */
5499 case 1: /* linked address match */
5501 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
5502 * we behave as if the register was sign extended. Bits [1:0] are
5503 * RES0. The BAS field is used to allow setting breakpoints on 16
5504 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
5505 * a bp will fire if the addresses covered by the bp and the addresses
5506 * covered by the insn overlap but the insn doesn't start at the
5507 * start of the bp address range. We choose to require the insn and
5508 * the bp to have the same address. The constraints on writing to
5509 * BAS enforced in dbgbcr_write mean we have only four cases:
5510 * 0b0000 => no breakpoint
5511 * 0b0011 => breakpoint on addr
5512 * 0b1100 => breakpoint on addr + 2
5513 * 0b1111 => breakpoint on addr
5514 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
5516 int bas = extract64(bcr, 5, 4);
5517 addr = sextract64(bvr, 0, 49) & ~3ULL;
5518 if (bas == 0) {
5519 return;
5521 if (bas == 0xc) {
5522 addr += 2;
5524 break;
5526 case 2: /* unlinked context ID match */
5527 case 8: /* unlinked VMID match (reserved if no EL2) */
5528 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
5529 qemu_log_mask(LOG_UNIMP,
5530 "arm: unlinked context breakpoint types not implemented\n");
5531 return;
5532 case 9: /* linked VMID match (reserved if no EL2) */
5533 case 11: /* linked context ID and VMID match (reserved if no EL2) */
5534 case 3: /* linked context ID match */
5535 default:
5536 /* We must generate no events for Linked context matches (unless
5537 * they are linked to by some other bp/wp, which is handled in
5538 * updates for the linking bp/wp). We choose to also generate no events
5539 * for reserved values.
5541 return;
5544 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
5547 void hw_breakpoint_update_all(ARMCPU *cpu)
5549 int i;
5550 CPUARMState *env = &cpu->env;
5552 /* Completely clear out existing QEMU breakpoints and our array, to
5553 * avoid possible stale entries following migration load.
5555 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
5556 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
5558 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
5559 hw_breakpoint_update(cpu, i);
5563 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5564 uint64_t value)
5566 ARMCPU *cpu = env_archcpu(env);
5567 int i = ri->crm;
5569 raw_write(env, ri, value);
5570 hw_breakpoint_update(cpu, i);
5573 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5574 uint64_t value)
5576 ARMCPU *cpu = env_archcpu(env);
5577 int i = ri->crm;
5579 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
5580 * copy of BAS[0].
5582 value = deposit64(value, 6, 1, extract64(value, 5, 1));
5583 value = deposit64(value, 8, 1, extract64(value, 7, 1));
5585 raw_write(env, ri, value);
5586 hw_breakpoint_update(cpu, i);
5589 static void define_debug_regs(ARMCPU *cpu)
5591 /* Define v7 and v8 architectural debug registers.
5592 * These are just dummy implementations for now.
5594 int i;
5595 int wrps, brps, ctx_cmps;
5596 ARMCPRegInfo dbgdidr = {
5597 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
5598 .access = PL0_R, .accessfn = access_tda,
5599 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
5602 /* Note that all these register fields hold "number of Xs minus 1". */
5603 brps = extract32(cpu->dbgdidr, 24, 4);
5604 wrps = extract32(cpu->dbgdidr, 28, 4);
5605 ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
5607 assert(ctx_cmps <= brps);
5609 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
5610 * of the debug registers such as number of breakpoints;
5611 * check that if they both exist then they agree.
5613 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
5614 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
5615 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
5616 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
5619 define_one_arm_cp_reg(cpu, &dbgdidr);
5620 define_arm_cp_regs(cpu, debug_cp_reginfo);
5622 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
5623 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
5626 for (i = 0; i < brps + 1; i++) {
5627 ARMCPRegInfo dbgregs[] = {
5628 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
5629 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
5630 .access = PL1_RW, .accessfn = access_tda,
5631 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
5632 .writefn = dbgbvr_write, .raw_writefn = raw_write
5634 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
5635 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
5636 .access = PL1_RW, .accessfn = access_tda,
5637 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
5638 .writefn = dbgbcr_write, .raw_writefn = raw_write
5640 REGINFO_SENTINEL
5642 define_arm_cp_regs(cpu, dbgregs);
5645 for (i = 0; i < wrps + 1; i++) {
5646 ARMCPRegInfo dbgregs[] = {
5647 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
5648 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
5649 .access = PL1_RW, .accessfn = access_tda,
5650 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
5651 .writefn = dbgwvr_write, .raw_writefn = raw_write
5653 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
5654 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
5655 .access = PL1_RW, .accessfn = access_tda,
5656 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
5657 .writefn = dbgwcr_write, .raw_writefn = raw_write
5659 REGINFO_SENTINEL
5661 define_arm_cp_regs(cpu, dbgregs);
5665 /* We don't know until after realize whether there's a GICv3
5666 * attached, and that is what registers the gicv3 sysregs.
5667 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
5668 * at runtime.
5670 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
5672 ARMCPU *cpu = env_archcpu(env);
5673 uint64_t pfr1 = cpu->id_pfr1;
5675 if (env->gicv3state) {
5676 pfr1 |= 1 << 28;
5678 return pfr1;
5681 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
5683 ARMCPU *cpu = env_archcpu(env);
5684 uint64_t pfr0 = cpu->isar.id_aa64pfr0;
5686 if (env->gicv3state) {
5687 pfr0 |= 1 << 24;
5689 return pfr0;
5692 /* Shared logic between LORID and the rest of the LOR* registers.
5693 * Secure state has already been delt with.
5695 static CPAccessResult access_lor_ns(CPUARMState *env)
5697 int el = arm_current_el(env);
5699 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
5700 return CP_ACCESS_TRAP_EL2;
5702 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
5703 return CP_ACCESS_TRAP_EL3;
5705 return CP_ACCESS_OK;
5708 static CPAccessResult access_lorid(CPUARMState *env, const ARMCPRegInfo *ri,
5709 bool isread)
5711 if (arm_is_secure_below_el3(env)) {
5712 /* Access ok in secure mode. */
5713 return CP_ACCESS_OK;
5715 return access_lor_ns(env);
5718 static CPAccessResult access_lor_other(CPUARMState *env,
5719 const ARMCPRegInfo *ri, bool isread)
5721 if (arm_is_secure_below_el3(env)) {
5722 /* Access denied in secure mode. */
5723 return CP_ACCESS_TRAP;
5725 return access_lor_ns(env);
5728 #ifdef TARGET_AARCH64
5729 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
5730 bool isread)
5732 int el = arm_current_el(env);
5734 if (el < 2 &&
5735 arm_feature(env, ARM_FEATURE_EL2) &&
5736 !(arm_hcr_el2_eff(env) & HCR_APK)) {
5737 return CP_ACCESS_TRAP_EL2;
5739 if (el < 3 &&
5740 arm_feature(env, ARM_FEATURE_EL3) &&
5741 !(env->cp15.scr_el3 & SCR_APK)) {
5742 return CP_ACCESS_TRAP_EL3;
5744 return CP_ACCESS_OK;
5747 static const ARMCPRegInfo pauth_reginfo[] = {
5748 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5749 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
5750 .access = PL1_RW, .accessfn = access_pauth,
5751 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
5752 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5753 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
5754 .access = PL1_RW, .accessfn = access_pauth,
5755 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
5756 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5757 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
5758 .access = PL1_RW, .accessfn = access_pauth,
5759 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
5760 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5761 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
5762 .access = PL1_RW, .accessfn = access_pauth,
5763 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
5764 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5765 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
5766 .access = PL1_RW, .accessfn = access_pauth,
5767 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
5768 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5769 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
5770 .access = PL1_RW, .accessfn = access_pauth,
5771 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
5772 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5773 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
5774 .access = PL1_RW, .accessfn = access_pauth,
5775 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
5776 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5777 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
5778 .access = PL1_RW, .accessfn = access_pauth,
5779 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
5780 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5781 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
5782 .access = PL1_RW, .accessfn = access_pauth,
5783 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
5784 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5785 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
5786 .access = PL1_RW, .accessfn = access_pauth,
5787 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
5788 REGINFO_SENTINEL
5791 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
5793 Error *err = NULL;
5794 uint64_t ret;
5796 /* Success sets NZCV = 0000. */
5797 env->NF = env->CF = env->VF = 0, env->ZF = 1;
5799 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
5801 * ??? Failed, for unknown reasons in the crypto subsystem.
5802 * The best we can do is log the reason and return the
5803 * timed-out indication to the guest. There is no reason
5804 * we know to expect this failure to be transitory, so the
5805 * guest may well hang retrying the operation.
5807 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
5808 ri->name, error_get_pretty(err));
5809 error_free(err);
5811 env->ZF = 0; /* NZCF = 0100 */
5812 return 0;
5814 return ret;
5817 /* We do not support re-seeding, so the two registers operate the same. */
5818 static const ARMCPRegInfo rndr_reginfo[] = {
5819 { .name = "RNDR", .state = ARM_CP_STATE_AA64,
5820 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
5821 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
5822 .access = PL0_R, .readfn = rndr_readfn },
5823 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
5824 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
5825 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
5826 .access = PL0_R, .readfn = rndr_readfn },
5827 REGINFO_SENTINEL
5829 #endif
5831 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
5832 bool isread)
5834 int el = arm_current_el(env);
5836 if (el == 0) {
5837 uint64_t sctlr = arm_sctlr(env, el);
5838 if (!(sctlr & SCTLR_EnRCTX)) {
5839 return CP_ACCESS_TRAP;
5841 } else if (el == 1) {
5842 uint64_t hcr = arm_hcr_el2_eff(env);
5843 if (hcr & HCR_NV) {
5844 return CP_ACCESS_TRAP_EL2;
5847 return CP_ACCESS_OK;
5850 static const ARMCPRegInfo predinv_reginfo[] = {
5851 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
5852 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
5853 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5854 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
5855 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
5856 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5857 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
5858 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
5859 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5861 * Note the AArch32 opcodes have a different OPC1.
5863 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
5864 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
5865 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5866 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
5867 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
5868 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5869 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
5870 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
5871 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
5872 REGINFO_SENTINEL
5875 void register_cp_regs_for_features(ARMCPU *cpu)
5877 /* Register all the coprocessor registers based on feature bits */
5878 CPUARMState *env = &cpu->env;
5879 if (arm_feature(env, ARM_FEATURE_M)) {
5880 /* M profile has no coprocessor registers */
5881 return;
5884 define_arm_cp_regs(cpu, cp_reginfo);
5885 if (!arm_feature(env, ARM_FEATURE_V8)) {
5886 /* Must go early as it is full of wildcards that may be
5887 * overridden by later definitions.
5889 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
5892 if (arm_feature(env, ARM_FEATURE_V6)) {
5893 /* The ID registers all have impdef reset values */
5894 ARMCPRegInfo v6_idregs[] = {
5895 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
5896 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
5897 .access = PL1_R, .type = ARM_CP_CONST,
5898 .resetvalue = cpu->id_pfr0 },
5899 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
5900 * the value of the GIC field until after we define these regs.
5902 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
5903 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
5904 .access = PL1_R, .type = ARM_CP_NO_RAW,
5905 .readfn = id_pfr1_read,
5906 .writefn = arm_cp_write_ignore },
5907 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
5908 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
5909 .access = PL1_R, .type = ARM_CP_CONST,
5910 .resetvalue = cpu->id_dfr0 },
5911 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
5912 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
5913 .access = PL1_R, .type = ARM_CP_CONST,
5914 .resetvalue = cpu->id_afr0 },
5915 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
5916 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
5917 .access = PL1_R, .type = ARM_CP_CONST,
5918 .resetvalue = cpu->id_mmfr0 },
5919 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
5920 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
5921 .access = PL1_R, .type = ARM_CP_CONST,
5922 .resetvalue = cpu->id_mmfr1 },
5923 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
5924 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
5925 .access = PL1_R, .type = ARM_CP_CONST,
5926 .resetvalue = cpu->id_mmfr2 },
5927 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
5928 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
5929 .access = PL1_R, .type = ARM_CP_CONST,
5930 .resetvalue = cpu->id_mmfr3 },
5931 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
5932 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
5933 .access = PL1_R, .type = ARM_CP_CONST,
5934 .resetvalue = cpu->isar.id_isar0 },
5935 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
5936 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
5937 .access = PL1_R, .type = ARM_CP_CONST,
5938 .resetvalue = cpu->isar.id_isar1 },
5939 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
5940 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
5941 .access = PL1_R, .type = ARM_CP_CONST,
5942 .resetvalue = cpu->isar.id_isar2 },
5943 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
5944 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
5945 .access = PL1_R, .type = ARM_CP_CONST,
5946 .resetvalue = cpu->isar.id_isar3 },
5947 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
5948 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
5949 .access = PL1_R, .type = ARM_CP_CONST,
5950 .resetvalue = cpu->isar.id_isar4 },
5951 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
5952 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
5953 .access = PL1_R, .type = ARM_CP_CONST,
5954 .resetvalue = cpu->isar.id_isar5 },
5955 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
5956 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
5957 .access = PL1_R, .type = ARM_CP_CONST,
5958 .resetvalue = cpu->id_mmfr4 },
5959 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
5960 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
5961 .access = PL1_R, .type = ARM_CP_CONST,
5962 .resetvalue = cpu->isar.id_isar6 },
5963 REGINFO_SENTINEL
5965 define_arm_cp_regs(cpu, v6_idregs);
5966 define_arm_cp_regs(cpu, v6_cp_reginfo);
5967 } else {
5968 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
5970 if (arm_feature(env, ARM_FEATURE_V6K)) {
5971 define_arm_cp_regs(cpu, v6k_cp_reginfo);
5973 if (arm_feature(env, ARM_FEATURE_V7MP) &&
5974 !arm_feature(env, ARM_FEATURE_PMSA)) {
5975 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
5977 if (arm_feature(env, ARM_FEATURE_V7VE)) {
5978 define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
5980 if (arm_feature(env, ARM_FEATURE_V7)) {
5981 /* v7 performance monitor control register: same implementor
5982 * field as main ID register, and we implement four counters in
5983 * addition to the cycle count register.
5985 unsigned int i, pmcrn = 4;
5986 ARMCPRegInfo pmcr = {
5987 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
5988 .access = PL0_RW,
5989 .type = ARM_CP_IO | ARM_CP_ALIAS,
5990 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
5991 .accessfn = pmreg_access, .writefn = pmcr_write,
5992 .raw_writefn = raw_write,
5994 ARMCPRegInfo pmcr64 = {
5995 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
5996 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
5997 .access = PL0_RW, .accessfn = pmreg_access,
5998 .type = ARM_CP_IO,
5999 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
6000 .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT),
6001 .writefn = pmcr_write, .raw_writefn = raw_write,
6003 define_one_arm_cp_reg(cpu, &pmcr);
6004 define_one_arm_cp_reg(cpu, &pmcr64);
6005 for (i = 0; i < pmcrn; i++) {
6006 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
6007 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
6008 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
6009 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
6010 ARMCPRegInfo pmev_regs[] = {
6011 { .name = pmevcntr_name, .cp = 15, .crn = 14,
6012 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6013 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6014 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6015 .accessfn = pmreg_access },
6016 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
6017 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
6018 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6019 .type = ARM_CP_IO,
6020 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6021 .raw_readfn = pmevcntr_rawread,
6022 .raw_writefn = pmevcntr_rawwrite },
6023 { .name = pmevtyper_name, .cp = 15, .crn = 14,
6024 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6025 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6026 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6027 .accessfn = pmreg_access },
6028 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
6029 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
6030 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6031 .type = ARM_CP_IO,
6032 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6033 .raw_writefn = pmevtyper_rawwrite },
6034 REGINFO_SENTINEL
6036 define_arm_cp_regs(cpu, pmev_regs);
6037 g_free(pmevcntr_name);
6038 g_free(pmevcntr_el0_name);
6039 g_free(pmevtyper_name);
6040 g_free(pmevtyper_el0_name);
6042 ARMCPRegInfo clidr = {
6043 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
6044 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
6045 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
6047 define_one_arm_cp_reg(cpu, &clidr);
6048 define_arm_cp_regs(cpu, v7_cp_reginfo);
6049 define_debug_regs(cpu);
6050 } else {
6051 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
6053 if (FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
6054 FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) != 0xf) {
6055 ARMCPRegInfo v81_pmu_regs[] = {
6056 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
6057 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
6058 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6059 .resetvalue = extract64(cpu->pmceid0, 32, 32) },
6060 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
6061 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
6062 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6063 .resetvalue = extract64(cpu->pmceid1, 32, 32) },
6064 REGINFO_SENTINEL
6066 define_arm_cp_regs(cpu, v81_pmu_regs);
6068 if (arm_feature(env, ARM_FEATURE_V8)) {
6069 /* AArch64 ID registers, which all have impdef reset values.
6070 * Note that within the ID register ranges the unused slots
6071 * must all RAZ, not UNDEF; future architecture versions may
6072 * define new registers here.
6074 ARMCPRegInfo v8_idregs[] = {
6075 /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't
6076 * know the right value for the GIC field until after we
6077 * define these regs.
6079 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
6080 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
6081 .access = PL1_R, .type = ARM_CP_NO_RAW,
6082 .readfn = id_aa64pfr0_read,
6083 .writefn = arm_cp_write_ignore },
6084 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
6085 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
6086 .access = PL1_R, .type = ARM_CP_CONST,
6087 .resetvalue = cpu->isar.id_aa64pfr1},
6088 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6089 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
6090 .access = PL1_R, .type = ARM_CP_CONST,
6091 .resetvalue = 0 },
6092 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6093 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
6094 .access = PL1_R, .type = ARM_CP_CONST,
6095 .resetvalue = 0 },
6096 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
6097 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
6098 .access = PL1_R, .type = ARM_CP_CONST,
6099 /* At present, only SVEver == 0 is defined anyway. */
6100 .resetvalue = 0 },
6101 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6102 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
6103 .access = PL1_R, .type = ARM_CP_CONST,
6104 .resetvalue = 0 },
6105 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6106 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
6107 .access = PL1_R, .type = ARM_CP_CONST,
6108 .resetvalue = 0 },
6109 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6110 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
6111 .access = PL1_R, .type = ARM_CP_CONST,
6112 .resetvalue = 0 },
6113 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
6114 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
6115 .access = PL1_R, .type = ARM_CP_CONST,
6116 .resetvalue = cpu->id_aa64dfr0 },
6117 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
6118 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
6119 .access = PL1_R, .type = ARM_CP_CONST,
6120 .resetvalue = cpu->id_aa64dfr1 },
6121 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6122 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
6123 .access = PL1_R, .type = ARM_CP_CONST,
6124 .resetvalue = 0 },
6125 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6126 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
6127 .access = PL1_R, .type = ARM_CP_CONST,
6128 .resetvalue = 0 },
6129 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
6130 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
6131 .access = PL1_R, .type = ARM_CP_CONST,
6132 .resetvalue = cpu->id_aa64afr0 },
6133 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
6134 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
6135 .access = PL1_R, .type = ARM_CP_CONST,
6136 .resetvalue = cpu->id_aa64afr1 },
6137 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6138 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
6139 .access = PL1_R, .type = ARM_CP_CONST,
6140 .resetvalue = 0 },
6141 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6142 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
6143 .access = PL1_R, .type = ARM_CP_CONST,
6144 .resetvalue = 0 },
6145 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
6146 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
6147 .access = PL1_R, .type = ARM_CP_CONST,
6148 .resetvalue = cpu->isar.id_aa64isar0 },
6149 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
6150 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
6151 .access = PL1_R, .type = ARM_CP_CONST,
6152 .resetvalue = cpu->isar.id_aa64isar1 },
6153 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6154 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
6155 .access = PL1_R, .type = ARM_CP_CONST,
6156 .resetvalue = 0 },
6157 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6158 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
6159 .access = PL1_R, .type = ARM_CP_CONST,
6160 .resetvalue = 0 },
6161 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6162 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
6163 .access = PL1_R, .type = ARM_CP_CONST,
6164 .resetvalue = 0 },
6165 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6166 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
6167 .access = PL1_R, .type = ARM_CP_CONST,
6168 .resetvalue = 0 },
6169 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6170 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
6171 .access = PL1_R, .type = ARM_CP_CONST,
6172 .resetvalue = 0 },
6173 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6174 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
6175 .access = PL1_R, .type = ARM_CP_CONST,
6176 .resetvalue = 0 },
6177 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
6178 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
6179 .access = PL1_R, .type = ARM_CP_CONST,
6180 .resetvalue = cpu->isar.id_aa64mmfr0 },
6181 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
6182 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
6183 .access = PL1_R, .type = ARM_CP_CONST,
6184 .resetvalue = cpu->isar.id_aa64mmfr1 },
6185 { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6186 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
6187 .access = PL1_R, .type = ARM_CP_CONST,
6188 .resetvalue = 0 },
6189 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6190 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
6191 .access = PL1_R, .type = ARM_CP_CONST,
6192 .resetvalue = 0 },
6193 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6194 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
6195 .access = PL1_R, .type = ARM_CP_CONST,
6196 .resetvalue = 0 },
6197 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6198 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
6199 .access = PL1_R, .type = ARM_CP_CONST,
6200 .resetvalue = 0 },
6201 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6202 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
6203 .access = PL1_R, .type = ARM_CP_CONST,
6204 .resetvalue = 0 },
6205 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6206 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
6207 .access = PL1_R, .type = ARM_CP_CONST,
6208 .resetvalue = 0 },
6209 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
6210 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
6211 .access = PL1_R, .type = ARM_CP_CONST,
6212 .resetvalue = cpu->isar.mvfr0 },
6213 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
6214 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
6215 .access = PL1_R, .type = ARM_CP_CONST,
6216 .resetvalue = cpu->isar.mvfr1 },
6217 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
6218 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
6219 .access = PL1_R, .type = ARM_CP_CONST,
6220 .resetvalue = cpu->isar.mvfr2 },
6221 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6222 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
6223 .access = PL1_R, .type = ARM_CP_CONST,
6224 .resetvalue = 0 },
6225 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6226 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
6227 .access = PL1_R, .type = ARM_CP_CONST,
6228 .resetvalue = 0 },
6229 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6230 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
6231 .access = PL1_R, .type = ARM_CP_CONST,
6232 .resetvalue = 0 },
6233 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6234 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
6235 .access = PL1_R, .type = ARM_CP_CONST,
6236 .resetvalue = 0 },
6237 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6238 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
6239 .access = PL1_R, .type = ARM_CP_CONST,
6240 .resetvalue = 0 },
6241 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
6242 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
6243 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6244 .resetvalue = extract64(cpu->pmceid0, 0, 32) },
6245 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
6246 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
6247 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6248 .resetvalue = cpu->pmceid0 },
6249 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
6250 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
6251 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6252 .resetvalue = extract64(cpu->pmceid1, 0, 32) },
6253 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
6254 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
6255 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6256 .resetvalue = cpu->pmceid1 },
6257 REGINFO_SENTINEL
6259 #ifdef CONFIG_USER_ONLY
6260 ARMCPRegUserSpaceInfo v8_user_idregs[] = {
6261 { .name = "ID_AA64PFR0_EL1",
6262 .exported_bits = 0x000f000f00ff0000,
6263 .fixed_bits = 0x0000000000000011 },
6264 { .name = "ID_AA64PFR1_EL1",
6265 .exported_bits = 0x00000000000000f0 },
6266 { .name = "ID_AA64PFR*_EL1_RESERVED",
6267 .is_glob = true },
6268 { .name = "ID_AA64ZFR0_EL1" },
6269 { .name = "ID_AA64MMFR0_EL1",
6270 .fixed_bits = 0x00000000ff000000 },
6271 { .name = "ID_AA64MMFR1_EL1" },
6272 { .name = "ID_AA64MMFR*_EL1_RESERVED",
6273 .is_glob = true },
6274 { .name = "ID_AA64DFR0_EL1",
6275 .fixed_bits = 0x0000000000000006 },
6276 { .name = "ID_AA64DFR1_EL1" },
6277 { .name = "ID_AA64DFR*_EL1_RESERVED",
6278 .is_glob = true },
6279 { .name = "ID_AA64AFR*",
6280 .is_glob = true },
6281 { .name = "ID_AA64ISAR0_EL1",
6282 .exported_bits = 0x00fffffff0fffff0 },
6283 { .name = "ID_AA64ISAR1_EL1",
6284 .exported_bits = 0x000000f0ffffffff },
6285 { .name = "ID_AA64ISAR*_EL1_RESERVED",
6286 .is_glob = true },
6287 REGUSERINFO_SENTINEL
6289 modify_arm_cp_regs(v8_idregs, v8_user_idregs);
6290 #endif
6291 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
6292 if (!arm_feature(env, ARM_FEATURE_EL3) &&
6293 !arm_feature(env, ARM_FEATURE_EL2)) {
6294 ARMCPRegInfo rvbar = {
6295 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
6296 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
6297 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
6299 define_one_arm_cp_reg(cpu, &rvbar);
6301 define_arm_cp_regs(cpu, v8_idregs);
6302 define_arm_cp_regs(cpu, v8_cp_reginfo);
6304 if (arm_feature(env, ARM_FEATURE_EL2)) {
6305 uint64_t vmpidr_def = mpidr_read_val(env);
6306 ARMCPRegInfo vpidr_regs[] = {
6307 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
6308 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
6309 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6310 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS,
6311 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
6312 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
6313 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
6314 .access = PL2_RW, .resetvalue = cpu->midr,
6315 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
6316 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
6317 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
6318 .access = PL2_RW, .accessfn = access_el3_aa32ns,
6319 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS,
6320 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
6321 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
6322 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
6323 .access = PL2_RW,
6324 .resetvalue = vmpidr_def,
6325 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
6326 REGINFO_SENTINEL
6328 define_arm_cp_regs(cpu, vpidr_regs);
6329 define_arm_cp_regs(cpu, el2_cp_reginfo);
6330 if (arm_feature(env, ARM_FEATURE_V8)) {
6331 define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
6333 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
6334 if (!arm_feature(env, ARM_FEATURE_EL3)) {
6335 ARMCPRegInfo rvbar = {
6336 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
6337 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
6338 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
6340 define_one_arm_cp_reg(cpu, &rvbar);
6342 } else {
6343 /* If EL2 is missing but higher ELs are enabled, we need to
6344 * register the no_el2 reginfos.
6346 if (arm_feature(env, ARM_FEATURE_EL3)) {
6347 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
6348 * of MIDR_EL1 and MPIDR_EL1.
6350 ARMCPRegInfo vpidr_regs[] = {
6351 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6352 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
6353 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
6354 .type = ARM_CP_CONST, .resetvalue = cpu->midr,
6355 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
6356 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6357 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
6358 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
6359 .type = ARM_CP_NO_RAW,
6360 .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
6361 REGINFO_SENTINEL
6363 define_arm_cp_regs(cpu, vpidr_regs);
6364 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
6365 if (arm_feature(env, ARM_FEATURE_V8)) {
6366 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo);
6370 if (arm_feature(env, ARM_FEATURE_EL3)) {
6371 define_arm_cp_regs(cpu, el3_cp_reginfo);
6372 ARMCPRegInfo el3_regs[] = {
6373 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
6374 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
6375 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
6376 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
6377 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
6378 .access = PL3_RW,
6379 .raw_writefn = raw_write, .writefn = sctlr_write,
6380 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
6381 .resetvalue = cpu->reset_sctlr },
6382 REGINFO_SENTINEL
6385 define_arm_cp_regs(cpu, el3_regs);
6387 /* The behaviour of NSACR is sufficiently various that we don't
6388 * try to describe it in a single reginfo:
6389 * if EL3 is 64 bit, then trap to EL3 from S EL1,
6390 * reads as constant 0xc00 from NS EL1 and NS EL2
6391 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
6392 * if v7 without EL3, register doesn't exist
6393 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
6395 if (arm_feature(env, ARM_FEATURE_EL3)) {
6396 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
6397 ARMCPRegInfo nsacr = {
6398 .name = "NSACR", .type = ARM_CP_CONST,
6399 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
6400 .access = PL1_RW, .accessfn = nsacr_access,
6401 .resetvalue = 0xc00
6403 define_one_arm_cp_reg(cpu, &nsacr);
6404 } else {
6405 ARMCPRegInfo nsacr = {
6406 .name = "NSACR",
6407 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
6408 .access = PL3_RW | PL1_R,
6409 .resetvalue = 0,
6410 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
6412 define_one_arm_cp_reg(cpu, &nsacr);
6414 } else {
6415 if (arm_feature(env, ARM_FEATURE_V8)) {
6416 ARMCPRegInfo nsacr = {
6417 .name = "NSACR", .type = ARM_CP_CONST,
6418 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
6419 .access = PL1_R,
6420 .resetvalue = 0xc00
6422 define_one_arm_cp_reg(cpu, &nsacr);
6426 if (arm_feature(env, ARM_FEATURE_PMSA)) {
6427 if (arm_feature(env, ARM_FEATURE_V6)) {
6428 /* PMSAv6 not implemented */
6429 assert(arm_feature(env, ARM_FEATURE_V7));
6430 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
6431 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
6432 } else {
6433 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
6435 } else {
6436 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
6437 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
6438 /* TTCBR2 is introduced with ARMv8.2-A32HPD. */
6439 if (FIELD_EX32(cpu->id_mmfr4, ID_MMFR4, HPDS) != 0) {
6440 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
6443 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
6444 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
6446 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
6447 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
6449 if (arm_feature(env, ARM_FEATURE_VAPA)) {
6450 define_arm_cp_regs(cpu, vapa_cp_reginfo);
6452 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
6453 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
6455 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
6456 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
6458 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
6459 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
6461 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
6462 define_arm_cp_regs(cpu, omap_cp_reginfo);
6464 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
6465 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
6467 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
6468 define_arm_cp_regs(cpu, xscale_cp_reginfo);
6470 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
6471 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
6473 if (arm_feature(env, ARM_FEATURE_LPAE)) {
6474 define_arm_cp_regs(cpu, lpae_cp_reginfo);
6476 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
6477 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
6478 * be read-only (ie write causes UNDEF exception).
6481 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
6482 /* Pre-v8 MIDR space.
6483 * Note that the MIDR isn't a simple constant register because
6484 * of the TI925 behaviour where writes to another register can
6485 * cause the MIDR value to change.
6487 * Unimplemented registers in the c15 0 0 0 space default to
6488 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
6489 * and friends override accordingly.
6491 { .name = "MIDR",
6492 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
6493 .access = PL1_R, .resetvalue = cpu->midr,
6494 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
6495 .readfn = midr_read,
6496 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
6497 .type = ARM_CP_OVERRIDE },
6498 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
6499 { .name = "DUMMY",
6500 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
6501 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6502 { .name = "DUMMY",
6503 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
6504 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6505 { .name = "DUMMY",
6506 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
6507 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6508 { .name = "DUMMY",
6509 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
6510 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6511 { .name = "DUMMY",
6512 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
6513 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6514 REGINFO_SENTINEL
6516 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
6517 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
6518 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
6519 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
6520 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
6521 .readfn = midr_read },
6522 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
6523 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
6524 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
6525 .access = PL1_R, .resetvalue = cpu->midr },
6526 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
6527 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
6528 .access = PL1_R, .resetvalue = cpu->midr },
6529 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
6530 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
6531 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
6532 REGINFO_SENTINEL
6534 ARMCPRegInfo id_cp_reginfo[] = {
6535 /* These are common to v8 and pre-v8 */
6536 { .name = "CTR",
6537 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
6538 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
6539 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
6540 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
6541 .access = PL0_R, .accessfn = ctr_el0_access,
6542 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
6543 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
6544 { .name = "TCMTR",
6545 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
6546 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6547 REGINFO_SENTINEL
6549 /* TLBTR is specific to VMSA */
6550 ARMCPRegInfo id_tlbtr_reginfo = {
6551 .name = "TLBTR",
6552 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
6553 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
6555 /* MPUIR is specific to PMSA V6+ */
6556 ARMCPRegInfo id_mpuir_reginfo = {
6557 .name = "MPUIR",
6558 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
6559 .access = PL1_R, .type = ARM_CP_CONST,
6560 .resetvalue = cpu->pmsav7_dregion << 8
6562 ARMCPRegInfo crn0_wi_reginfo = {
6563 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
6564 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
6565 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
6567 #ifdef CONFIG_USER_ONLY
6568 ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
6569 { .name = "MIDR_EL1",
6570 .exported_bits = 0x00000000ffffffff },
6571 { .name = "REVIDR_EL1" },
6572 REGUSERINFO_SENTINEL
6574 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
6575 #endif
6576 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
6577 arm_feature(env, ARM_FEATURE_STRONGARM)) {
6578 ARMCPRegInfo *r;
6579 /* Register the blanket "writes ignored" value first to cover the
6580 * whole space. Then update the specific ID registers to allow write
6581 * access, so that they ignore writes rather than causing them to
6582 * UNDEF.
6584 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
6585 for (r = id_pre_v8_midr_cp_reginfo;
6586 r->type != ARM_CP_SENTINEL; r++) {
6587 r->access = PL1_RW;
6589 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
6590 r->access = PL1_RW;
6592 id_mpuir_reginfo.access = PL1_RW;
6593 id_tlbtr_reginfo.access = PL1_RW;
6595 if (arm_feature(env, ARM_FEATURE_V8)) {
6596 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
6597 } else {
6598 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
6600 define_arm_cp_regs(cpu, id_cp_reginfo);
6601 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
6602 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
6603 } else if (arm_feature(env, ARM_FEATURE_V7)) {
6604 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
6608 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
6609 ARMCPRegInfo mpidr_cp_reginfo[] = {
6610 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
6611 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
6612 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
6613 REGINFO_SENTINEL
6615 #ifdef CONFIG_USER_ONLY
6616 ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
6617 { .name = "MPIDR_EL1",
6618 .fixed_bits = 0x0000000080000000 },
6619 REGUSERINFO_SENTINEL
6621 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
6622 #endif
6623 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
6626 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
6627 ARMCPRegInfo auxcr_reginfo[] = {
6628 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
6629 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
6630 .access = PL1_RW, .type = ARM_CP_CONST,
6631 .resetvalue = cpu->reset_auxcr },
6632 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
6633 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
6634 .access = PL2_RW, .type = ARM_CP_CONST,
6635 .resetvalue = 0 },
6636 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
6637 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
6638 .access = PL3_RW, .type = ARM_CP_CONST,
6639 .resetvalue = 0 },
6640 REGINFO_SENTINEL
6642 define_arm_cp_regs(cpu, auxcr_reginfo);
6643 if (arm_feature(env, ARM_FEATURE_V8)) {
6644 /* HACTLR2 maps to ACTLR_EL2[63:32] and is not in ARMv7 */
6645 ARMCPRegInfo hactlr2_reginfo = {
6646 .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
6647 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
6648 .access = PL2_RW, .type = ARM_CP_CONST,
6649 .resetvalue = 0
6651 define_one_arm_cp_reg(cpu, &hactlr2_reginfo);
6655 if (arm_feature(env, ARM_FEATURE_CBAR)) {
6656 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
6657 /* 32 bit view is [31:18] 0...0 [43:32]. */
6658 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
6659 | extract64(cpu->reset_cbar, 32, 12);
6660 ARMCPRegInfo cbar_reginfo[] = {
6661 { .name = "CBAR",
6662 .type = ARM_CP_CONST,
6663 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
6664 .access = PL1_R, .resetvalue = cpu->reset_cbar },
6665 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
6666 .type = ARM_CP_CONST,
6667 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
6668 .access = PL1_R, .resetvalue = cbar32 },
6669 REGINFO_SENTINEL
6671 /* We don't implement a r/w 64 bit CBAR currently */
6672 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
6673 define_arm_cp_regs(cpu, cbar_reginfo);
6674 } else {
6675 ARMCPRegInfo cbar = {
6676 .name = "CBAR",
6677 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
6678 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
6679 .fieldoffset = offsetof(CPUARMState,
6680 cp15.c15_config_base_address)
6682 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
6683 cbar.access = PL1_R;
6684 cbar.fieldoffset = 0;
6685 cbar.type = ARM_CP_CONST;
6687 define_one_arm_cp_reg(cpu, &cbar);
6691 if (arm_feature(env, ARM_FEATURE_VBAR)) {
6692 ARMCPRegInfo vbar_cp_reginfo[] = {
6693 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
6694 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
6695 .access = PL1_RW, .writefn = vbar_write,
6696 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
6697 offsetof(CPUARMState, cp15.vbar_ns) },
6698 .resetvalue = 0 },
6699 REGINFO_SENTINEL
6701 define_arm_cp_regs(cpu, vbar_cp_reginfo);
6704 /* Generic registers whose values depend on the implementation */
6706 ARMCPRegInfo sctlr = {
6707 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
6708 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
6709 .access = PL1_RW,
6710 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
6711 offsetof(CPUARMState, cp15.sctlr_ns) },
6712 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
6713 .raw_writefn = raw_write,
6715 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
6716 /* Normally we would always end the TB on an SCTLR write, but Linux
6717 * arch/arm/mach-pxa/sleep.S expects two instructions following
6718 * an MMU enable to execute from cache. Imitate this behaviour.
6720 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
6722 define_one_arm_cp_reg(cpu, &sctlr);
6725 if (cpu_isar_feature(aa64_lor, cpu)) {
6727 * A trivial implementation of ARMv8.1-LOR leaves all of these
6728 * registers fixed at 0, which indicates that there are zero
6729 * supported Limited Ordering regions.
6731 static const ARMCPRegInfo lor_reginfo[] = {
6732 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
6733 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
6734 .access = PL1_RW, .accessfn = access_lor_other,
6735 .type = ARM_CP_CONST, .resetvalue = 0 },
6736 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
6737 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
6738 .access = PL1_RW, .accessfn = access_lor_other,
6739 .type = ARM_CP_CONST, .resetvalue = 0 },
6740 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
6741 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
6742 .access = PL1_RW, .accessfn = access_lor_other,
6743 .type = ARM_CP_CONST, .resetvalue = 0 },
6744 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
6745 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
6746 .access = PL1_RW, .accessfn = access_lor_other,
6747 .type = ARM_CP_CONST, .resetvalue = 0 },
6748 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
6749 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
6750 .access = PL1_R, .accessfn = access_lorid,
6751 .type = ARM_CP_CONST, .resetvalue = 0 },
6752 REGINFO_SENTINEL
6754 define_arm_cp_regs(cpu, lor_reginfo);
6757 if (cpu_isar_feature(aa64_sve, cpu)) {
6758 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo);
6759 if (arm_feature(env, ARM_FEATURE_EL2)) {
6760 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo);
6761 } else {
6762 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo);
6764 if (arm_feature(env, ARM_FEATURE_EL3)) {
6765 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo);
6769 #ifdef TARGET_AARCH64
6770 if (cpu_isar_feature(aa64_pauth, cpu)) {
6771 define_arm_cp_regs(cpu, pauth_reginfo);
6773 if (cpu_isar_feature(aa64_rndr, cpu)) {
6774 define_arm_cp_regs(cpu, rndr_reginfo);
6776 #endif
6779 * While all v8.0 cpus support aarch64, QEMU does have configurations
6780 * that do not set ID_AA64ISAR1, e.g. user-only qemu-arm -cpu max,
6781 * which will set ID_ISAR6.
6783 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
6784 ? cpu_isar_feature(aa64_predinv, cpu)
6785 : cpu_isar_feature(aa32_predinv, cpu)) {
6786 define_arm_cp_regs(cpu, predinv_reginfo);
6790 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
6792 CPUState *cs = CPU(cpu);
6793 CPUARMState *env = &cpu->env;
6795 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
6796 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
6797 aarch64_fpu_gdb_set_reg,
6798 34, "aarch64-fpu.xml", 0);
6799 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
6800 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
6801 51, "arm-neon.xml", 0);
6802 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
6803 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
6804 35, "arm-vfp3.xml", 0);
6805 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
6806 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
6807 19, "arm-vfp.xml", 0);
6809 gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg,
6810 arm_gen_dynamic_xml(cs),
6811 "system-registers.xml", 0);
6814 /* Sort alphabetically by type name, except for "any". */
6815 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
6817 ObjectClass *class_a = (ObjectClass *)a;
6818 ObjectClass *class_b = (ObjectClass *)b;
6819 const char *name_a, *name_b;
6821 name_a = object_class_get_name(class_a);
6822 name_b = object_class_get_name(class_b);
6823 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
6824 return 1;
6825 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
6826 return -1;
6827 } else {
6828 return strcmp(name_a, name_b);
6832 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
6834 ObjectClass *oc = data;
6835 const char *typename;
6836 char *name;
6838 typename = object_class_get_name(oc);
6839 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
6840 qemu_printf(" %s\n", name);
6841 g_free(name);
6844 void arm_cpu_list(void)
6846 GSList *list;
6848 list = object_class_get_list(TYPE_ARM_CPU, false);
6849 list = g_slist_sort(list, arm_cpu_list_compare);
6850 qemu_printf("Available CPUs:\n");
6851 g_slist_foreach(list, arm_cpu_list_entry, NULL);
6852 g_slist_free(list);
6855 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
6857 ObjectClass *oc = data;
6858 CpuDefinitionInfoList **cpu_list = user_data;
6859 CpuDefinitionInfoList *entry;
6860 CpuDefinitionInfo *info;
6861 const char *typename;
6863 typename = object_class_get_name(oc);
6864 info = g_malloc0(sizeof(*info));
6865 info->name = g_strndup(typename,
6866 strlen(typename) - strlen("-" TYPE_ARM_CPU));
6867 info->q_typename = g_strdup(typename);
6869 entry = g_malloc0(sizeof(*entry));
6870 entry->value = info;
6871 entry->next = *cpu_list;
6872 *cpu_list = entry;
6875 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
6877 CpuDefinitionInfoList *cpu_list = NULL;
6878 GSList *list;
6880 list = object_class_get_list(TYPE_ARM_CPU, false);
6881 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
6882 g_slist_free(list);
6884 return cpu_list;
6887 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
6888 void *opaque, int state, int secstate,
6889 int crm, int opc1, int opc2,
6890 const char *name)
6892 /* Private utility function for define_one_arm_cp_reg_with_opaque():
6893 * add a single reginfo struct to the hash table.
6895 uint32_t *key = g_new(uint32_t, 1);
6896 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
6897 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
6898 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
6900 r2->name = g_strdup(name);
6901 /* Reset the secure state to the specific incoming state. This is
6902 * necessary as the register may have been defined with both states.
6904 r2->secure = secstate;
6906 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
6907 /* Register is banked (using both entries in array).
6908 * Overwriting fieldoffset as the array is only used to define
6909 * banked registers but later only fieldoffset is used.
6911 r2->fieldoffset = r->bank_fieldoffsets[ns];
6914 if (state == ARM_CP_STATE_AA32) {
6915 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
6916 /* If the register is banked then we don't need to migrate or
6917 * reset the 32-bit instance in certain cases:
6919 * 1) If the register has both 32-bit and 64-bit instances then we
6920 * can count on the 64-bit instance taking care of the
6921 * non-secure bank.
6922 * 2) If ARMv8 is enabled then we can count on a 64-bit version
6923 * taking care of the secure bank. This requires that separate
6924 * 32 and 64-bit definitions are provided.
6926 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
6927 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
6928 r2->type |= ARM_CP_ALIAS;
6930 } else if ((secstate != r->secure) && !ns) {
6931 /* The register is not banked so we only want to allow migration of
6932 * the non-secure instance.
6934 r2->type |= ARM_CP_ALIAS;
6937 if (r->state == ARM_CP_STATE_BOTH) {
6938 /* We assume it is a cp15 register if the .cp field is left unset.
6940 if (r2->cp == 0) {
6941 r2->cp = 15;
6944 #ifdef HOST_WORDS_BIGENDIAN
6945 if (r2->fieldoffset) {
6946 r2->fieldoffset += sizeof(uint32_t);
6948 #endif
6951 if (state == ARM_CP_STATE_AA64) {
6952 /* To allow abbreviation of ARMCPRegInfo
6953 * definitions, we treat cp == 0 as equivalent to
6954 * the value for "standard guest-visible sysreg".
6955 * STATE_BOTH definitions are also always "standard
6956 * sysreg" in their AArch64 view (the .cp value may
6957 * be non-zero for the benefit of the AArch32 view).
6959 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
6960 r2->cp = CP_REG_ARM64_SYSREG_CP;
6962 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
6963 r2->opc0, opc1, opc2);
6964 } else {
6965 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
6967 if (opaque) {
6968 r2->opaque = opaque;
6970 /* reginfo passed to helpers is correct for the actual access,
6971 * and is never ARM_CP_STATE_BOTH:
6973 r2->state = state;
6974 /* Make sure reginfo passed to helpers for wildcarded regs
6975 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
6977 r2->crm = crm;
6978 r2->opc1 = opc1;
6979 r2->opc2 = opc2;
6980 /* By convention, for wildcarded registers only the first
6981 * entry is used for migration; the others are marked as
6982 * ALIAS so we don't try to transfer the register
6983 * multiple times. Special registers (ie NOP/WFI) are
6984 * never migratable and not even raw-accessible.
6986 if ((r->type & ARM_CP_SPECIAL)) {
6987 r2->type |= ARM_CP_NO_RAW;
6989 if (((r->crm == CP_ANY) && crm != 0) ||
6990 ((r->opc1 == CP_ANY) && opc1 != 0) ||
6991 ((r->opc2 == CP_ANY) && opc2 != 0)) {
6992 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
6995 /* Check that raw accesses are either forbidden or handled. Note that
6996 * we can't assert this earlier because the setup of fieldoffset for
6997 * banked registers has to be done first.
6999 if (!(r2->type & ARM_CP_NO_RAW)) {
7000 assert(!raw_accessors_invalid(r2));
7003 /* Overriding of an existing definition must be explicitly
7004 * requested.
7006 if (!(r->type & ARM_CP_OVERRIDE)) {
7007 ARMCPRegInfo *oldreg;
7008 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
7009 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
7010 fprintf(stderr, "Register redefined: cp=%d %d bit "
7011 "crn=%d crm=%d opc1=%d opc2=%d, "
7012 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
7013 r2->crn, r2->crm, r2->opc1, r2->opc2,
7014 oldreg->name, r2->name);
7015 g_assert_not_reached();
7018 g_hash_table_insert(cpu->cp_regs, key, r2);
7022 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
7023 const ARMCPRegInfo *r, void *opaque)
7025 /* Define implementations of coprocessor registers.
7026 * We store these in a hashtable because typically
7027 * there are less than 150 registers in a space which
7028 * is 16*16*16*8*8 = 262144 in size.
7029 * Wildcarding is supported for the crm, opc1 and opc2 fields.
7030 * If a register is defined twice then the second definition is
7031 * used, so this can be used to define some generic registers and
7032 * then override them with implementation specific variations.
7033 * At least one of the original and the second definition should
7034 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
7035 * against accidental use.
7037 * The state field defines whether the register is to be
7038 * visible in the AArch32 or AArch64 execution state. If the
7039 * state is set to ARM_CP_STATE_BOTH then we synthesise a
7040 * reginfo structure for the AArch32 view, which sees the lower
7041 * 32 bits of the 64 bit register.
7043 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
7044 * be wildcarded. AArch64 registers are always considered to be 64
7045 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
7046 * the register, if any.
7048 int crm, opc1, opc2, state;
7049 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
7050 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
7051 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
7052 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
7053 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
7054 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
7055 /* 64 bit registers have only CRm and Opc1 fields */
7056 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
7057 /* op0 only exists in the AArch64 encodings */
7058 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
7059 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
7060 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
7061 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
7062 * encodes a minimum access level for the register. We roll this
7063 * runtime check into our general permission check code, so check
7064 * here that the reginfo's specified permissions are strict enough
7065 * to encompass the generic architectural permission check.
7067 if (r->state != ARM_CP_STATE_AA32) {
7068 int mask = 0;
7069 switch (r->opc1) {
7070 case 0:
7071 /* min_EL EL1, but some accessible to EL0 via kernel ABI */
7072 mask = PL0U_R | PL1_RW;
7073 break;
7074 case 1: case 2:
7075 /* min_EL EL1 */
7076 mask = PL1_RW;
7077 break;
7078 case 3:
7079 /* min_EL EL0 */
7080 mask = PL0_RW;
7081 break;
7082 case 4:
7083 /* min_EL EL2 */
7084 mask = PL2_RW;
7085 break;
7086 case 5:
7087 /* unallocated encoding, so not possible */
7088 assert(false);
7089 break;
7090 case 6:
7091 /* min_EL EL3 */
7092 mask = PL3_RW;
7093 break;
7094 case 7:
7095 /* min_EL EL1, secure mode only (we don't check the latter) */
7096 mask = PL1_RW;
7097 break;
7098 default:
7099 /* broken reginfo with out-of-range opc1 */
7100 assert(false);
7101 break;
7103 /* assert our permissions are not too lax (stricter is fine) */
7104 assert((r->access & ~mask) == 0);
7107 /* Check that the register definition has enough info to handle
7108 * reads and writes if they are permitted.
7110 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
7111 if (r->access & PL3_R) {
7112 assert((r->fieldoffset ||
7113 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
7114 r->readfn);
7116 if (r->access & PL3_W) {
7117 assert((r->fieldoffset ||
7118 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
7119 r->writefn);
7122 /* Bad type field probably means missing sentinel at end of reg list */
7123 assert(cptype_valid(r->type));
7124 for (crm = crmmin; crm <= crmmax; crm++) {
7125 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
7126 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
7127 for (state = ARM_CP_STATE_AA32;
7128 state <= ARM_CP_STATE_AA64; state++) {
7129 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
7130 continue;
7132 if (state == ARM_CP_STATE_AA32) {
7133 /* Under AArch32 CP registers can be common
7134 * (same for secure and non-secure world) or banked.
7136 char *name;
7138 switch (r->secure) {
7139 case ARM_CP_SECSTATE_S:
7140 case ARM_CP_SECSTATE_NS:
7141 add_cpreg_to_hashtable(cpu, r, opaque, state,
7142 r->secure, crm, opc1, opc2,
7143 r->name);
7144 break;
7145 default:
7146 name = g_strdup_printf("%s_S", r->name);
7147 add_cpreg_to_hashtable(cpu, r, opaque, state,
7148 ARM_CP_SECSTATE_S,
7149 crm, opc1, opc2, name);
7150 g_free(name);
7151 add_cpreg_to_hashtable(cpu, r, opaque, state,
7152 ARM_CP_SECSTATE_NS,
7153 crm, opc1, opc2, r->name);
7154 break;
7156 } else {
7157 /* AArch64 registers get mapped to non-secure instance
7158 * of AArch32 */
7159 add_cpreg_to_hashtable(cpu, r, opaque, state,
7160 ARM_CP_SECSTATE_NS,
7161 crm, opc1, opc2, r->name);
7169 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
7170 const ARMCPRegInfo *regs, void *opaque)
7172 /* Define a whole list of registers */
7173 const ARMCPRegInfo *r;
7174 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
7175 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
7180 * Modify ARMCPRegInfo for access from userspace.
7182 * This is a data driven modification directed by
7183 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
7184 * user-space cannot alter any values and dynamic values pertaining to
7185 * execution state are hidden from user space view anyway.
7187 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods)
7189 const ARMCPRegUserSpaceInfo *m;
7190 ARMCPRegInfo *r;
7192 for (m = mods; m->name; m++) {
7193 GPatternSpec *pat = NULL;
7194 if (m->is_glob) {
7195 pat = g_pattern_spec_new(m->name);
7197 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
7198 if (pat && g_pattern_match_string(pat, r->name)) {
7199 r->type = ARM_CP_CONST;
7200 r->access = PL0U_R;
7201 r->resetvalue = 0;
7202 /* continue */
7203 } else if (strcmp(r->name, m->name) == 0) {
7204 r->type = ARM_CP_CONST;
7205 r->access = PL0U_R;
7206 r->resetvalue &= m->exported_bits;
7207 r->resetvalue |= m->fixed_bits;
7208 break;
7211 if (pat) {
7212 g_pattern_spec_free(pat);
7217 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
7219 return g_hash_table_lookup(cpregs, &encoded_cp);
7222 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
7223 uint64_t value)
7225 /* Helper coprocessor write function for write-ignore registers */
7228 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
7230 /* Helper coprocessor write function for read-as-zero registers */
7231 return 0;
7234 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
7236 /* Helper coprocessor reset function for do-nothing-on-reset registers */
7239 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
7241 /* Return true if it is not valid for us to switch to
7242 * this CPU mode (ie all the UNPREDICTABLE cases in
7243 * the ARM ARM CPSRWriteByInstr pseudocode).
7246 /* Changes to or from Hyp via MSR and CPS are illegal. */
7247 if (write_type == CPSRWriteByInstr &&
7248 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
7249 mode == ARM_CPU_MODE_HYP)) {
7250 return 1;
7253 switch (mode) {
7254 case ARM_CPU_MODE_USR:
7255 return 0;
7256 case ARM_CPU_MODE_SYS:
7257 case ARM_CPU_MODE_SVC:
7258 case ARM_CPU_MODE_ABT:
7259 case ARM_CPU_MODE_UND:
7260 case ARM_CPU_MODE_IRQ:
7261 case ARM_CPU_MODE_FIQ:
7262 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
7263 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
7265 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
7266 * and CPS are treated as illegal mode changes.
7268 if (write_type == CPSRWriteByInstr &&
7269 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
7270 (arm_hcr_el2_eff(env) & HCR_TGE)) {
7271 return 1;
7273 return 0;
7274 case ARM_CPU_MODE_HYP:
7275 return !arm_feature(env, ARM_FEATURE_EL2)
7276 || arm_current_el(env) < 2 || arm_is_secure_below_el3(env);
7277 case ARM_CPU_MODE_MON:
7278 return arm_current_el(env) < 3;
7279 default:
7280 return 1;
7284 uint32_t cpsr_read(CPUARMState *env)
7286 int ZF;
7287 ZF = (env->ZF == 0);
7288 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
7289 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
7290 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
7291 | ((env->condexec_bits & 0xfc) << 8)
7292 | (env->GE << 16) | (env->daif & CPSR_AIF);
7295 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
7296 CPSRWriteType write_type)
7298 uint32_t changed_daif;
7300 if (mask & CPSR_NZCV) {
7301 env->ZF = (~val) & CPSR_Z;
7302 env->NF = val;
7303 env->CF = (val >> 29) & 1;
7304 env->VF = (val << 3) & 0x80000000;
7306 if (mask & CPSR_Q)
7307 env->QF = ((val & CPSR_Q) != 0);
7308 if (mask & CPSR_T)
7309 env->thumb = ((val & CPSR_T) != 0);
7310 if (mask & CPSR_IT_0_1) {
7311 env->condexec_bits &= ~3;
7312 env->condexec_bits |= (val >> 25) & 3;
7314 if (mask & CPSR_IT_2_7) {
7315 env->condexec_bits &= 3;
7316 env->condexec_bits |= (val >> 8) & 0xfc;
7318 if (mask & CPSR_GE) {
7319 env->GE = (val >> 16) & 0xf;
7322 /* In a V7 implementation that includes the security extensions but does
7323 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
7324 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
7325 * bits respectively.
7327 * In a V8 implementation, it is permitted for privileged software to
7328 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
7330 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
7331 arm_feature(env, ARM_FEATURE_EL3) &&
7332 !arm_feature(env, ARM_FEATURE_EL2) &&
7333 !arm_is_secure(env)) {
7335 changed_daif = (env->daif ^ val) & mask;
7337 if (changed_daif & CPSR_A) {
7338 /* Check to see if we are allowed to change the masking of async
7339 * abort exceptions from a non-secure state.
7341 if (!(env->cp15.scr_el3 & SCR_AW)) {
7342 qemu_log_mask(LOG_GUEST_ERROR,
7343 "Ignoring attempt to switch CPSR_A flag from "
7344 "non-secure world with SCR.AW bit clear\n");
7345 mask &= ~CPSR_A;
7349 if (changed_daif & CPSR_F) {
7350 /* Check to see if we are allowed to change the masking of FIQ
7351 * exceptions from a non-secure state.
7353 if (!(env->cp15.scr_el3 & SCR_FW)) {
7354 qemu_log_mask(LOG_GUEST_ERROR,
7355 "Ignoring attempt to switch CPSR_F flag from "
7356 "non-secure world with SCR.FW bit clear\n");
7357 mask &= ~CPSR_F;
7360 /* Check whether non-maskable FIQ (NMFI) support is enabled.
7361 * If this bit is set software is not allowed to mask
7362 * FIQs, but is allowed to set CPSR_F to 0.
7364 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
7365 (val & CPSR_F)) {
7366 qemu_log_mask(LOG_GUEST_ERROR,
7367 "Ignoring attempt to enable CPSR_F flag "
7368 "(non-maskable FIQ [NMFI] support enabled)\n");
7369 mask &= ~CPSR_F;
7374 env->daif &= ~(CPSR_AIF & mask);
7375 env->daif |= val & CPSR_AIF & mask;
7377 if (write_type != CPSRWriteRaw &&
7378 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
7379 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
7380 /* Note that we can only get here in USR mode if this is a
7381 * gdb stub write; for this case we follow the architectural
7382 * behaviour for guest writes in USR mode of ignoring an attempt
7383 * to switch mode. (Those are caught by translate.c for writes
7384 * triggered by guest instructions.)
7386 mask &= ~CPSR_M;
7387 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
7388 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
7389 * v7, and has defined behaviour in v8:
7390 * + leave CPSR.M untouched
7391 * + allow changes to the other CPSR fields
7392 * + set PSTATE.IL
7393 * For user changes via the GDB stub, we don't set PSTATE.IL,
7394 * as this would be unnecessarily harsh for a user error.
7396 mask &= ~CPSR_M;
7397 if (write_type != CPSRWriteByGDBStub &&
7398 arm_feature(env, ARM_FEATURE_V8)) {
7399 mask |= CPSR_IL;
7400 val |= CPSR_IL;
7402 qemu_log_mask(LOG_GUEST_ERROR,
7403 "Illegal AArch32 mode switch attempt from %s to %s\n",
7404 aarch32_mode_name(env->uncached_cpsr),
7405 aarch32_mode_name(val));
7406 } else {
7407 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
7408 write_type == CPSRWriteExceptionReturn ?
7409 "Exception return from AArch32" :
7410 "AArch32 mode switch from",
7411 aarch32_mode_name(env->uncached_cpsr),
7412 aarch32_mode_name(val), env->regs[15]);
7413 switch_mode(env, val & CPSR_M);
7416 mask &= ~CACHED_CPSR_BITS;
7417 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
7420 /* Sign/zero extend */
7421 uint32_t HELPER(sxtb16)(uint32_t x)
7423 uint32_t res;
7424 res = (uint16_t)(int8_t)x;
7425 res |= (uint32_t)(int8_t)(x >> 16) << 16;
7426 return res;
7429 uint32_t HELPER(uxtb16)(uint32_t x)
7431 uint32_t res;
7432 res = (uint16_t)(uint8_t)x;
7433 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
7434 return res;
7437 int32_t HELPER(sdiv)(int32_t num, int32_t den)
7439 if (den == 0)
7440 return 0;
7441 if (num == INT_MIN && den == -1)
7442 return INT_MIN;
7443 return num / den;
7446 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
7448 if (den == 0)
7449 return 0;
7450 return num / den;
7453 uint32_t HELPER(rbit)(uint32_t x)
7455 return revbit32(x);
7458 #ifdef CONFIG_USER_ONLY
7460 /* These should probably raise undefined insn exceptions. */
7461 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
7463 ARMCPU *cpu = env_archcpu(env);
7465 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
7468 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
7470 ARMCPU *cpu = env_archcpu(env);
7472 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
7473 return 0;
7476 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
7478 /* translate.c should never generate calls here in user-only mode */
7479 g_assert_not_reached();
7482 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
7484 /* translate.c should never generate calls here in user-only mode */
7485 g_assert_not_reached();
7488 void HELPER(v7m_preserve_fp_state)(CPUARMState *env)
7490 /* translate.c should never generate calls here in user-only mode */
7491 g_assert_not_reached();
7494 void HELPER(v7m_vlstm)(CPUARMState *env, uint32_t fptr)
7496 /* translate.c should never generate calls here in user-only mode */
7497 g_assert_not_reached();
7500 void HELPER(v7m_vlldm)(CPUARMState *env, uint32_t fptr)
7502 /* translate.c should never generate calls here in user-only mode */
7503 g_assert_not_reached();
7506 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
7509 * The TT instructions can be used by unprivileged code, but in
7510 * user-only emulation we don't have the MPU.
7511 * Luckily since we know we are NonSecure unprivileged (and that in
7512 * turn means that the A flag wasn't specified), all the bits in the
7513 * register must be zero:
7514 * IREGION: 0 because IRVALID is 0
7515 * IRVALID: 0 because NS
7516 * S: 0 because NS
7517 * NSRW: 0 because NS
7518 * NSR: 0 because NS
7519 * RW: 0 because unpriv and A flag not set
7520 * R: 0 because unpriv and A flag not set
7521 * SRVALID: 0 because NS
7522 * MRVALID: 0 because unpriv and A flag not set
7523 * SREGION: 0 becaus SRVALID is 0
7524 * MREGION: 0 because MRVALID is 0
7526 return 0;
7529 static void switch_mode(CPUARMState *env, int mode)
7531 ARMCPU *cpu = env_archcpu(env);
7533 if (mode != ARM_CPU_MODE_USR) {
7534 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
7538 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
7539 uint32_t cur_el, bool secure)
7541 return 1;
7544 void aarch64_sync_64_to_32(CPUARMState *env)
7546 g_assert_not_reached();
7549 #else
7551 static void switch_mode(CPUARMState *env, int mode)
7553 int old_mode;
7554 int i;
7556 old_mode = env->uncached_cpsr & CPSR_M;
7557 if (mode == old_mode)
7558 return;
7560 if (old_mode == ARM_CPU_MODE_FIQ) {
7561 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
7562 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
7563 } else if (mode == ARM_CPU_MODE_FIQ) {
7564 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
7565 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
7568 i = bank_number(old_mode);
7569 env->banked_r13[i] = env->regs[13];
7570 env->banked_spsr[i] = env->spsr;
7572 i = bank_number(mode);
7573 env->regs[13] = env->banked_r13[i];
7574 env->spsr = env->banked_spsr[i];
7576 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
7577 env->regs[14] = env->banked_r14[r14_bank_number(mode)];
7580 /* Physical Interrupt Target EL Lookup Table
7582 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
7584 * The below multi-dimensional table is used for looking up the target
7585 * exception level given numerous condition criteria. Specifically, the
7586 * target EL is based on SCR and HCR routing controls as well as the
7587 * currently executing EL and secure state.
7589 * Dimensions:
7590 * target_el_table[2][2][2][2][2][4]
7591 * | | | | | +--- Current EL
7592 * | | | | +------ Non-secure(0)/Secure(1)
7593 * | | | +--------- HCR mask override
7594 * | | +------------ SCR exec state control
7595 * | +--------------- SCR mask override
7596 * +------------------ 32-bit(0)/64-bit(1) EL3
7598 * The table values are as such:
7599 * 0-3 = EL0-EL3
7600 * -1 = Cannot occur
7602 * The ARM ARM target EL table includes entries indicating that an "exception
7603 * is not taken". The two cases where this is applicable are:
7604 * 1) An exception is taken from EL3 but the SCR does not have the exception
7605 * routed to EL3.
7606 * 2) An exception is taken from EL2 but the HCR does not have the exception
7607 * routed to EL2.
7608 * In these two cases, the below table contain a target of EL1. This value is
7609 * returned as it is expected that the consumer of the table data will check
7610 * for "target EL >= current EL" to ensure the exception is not taken.
7612 * SCR HCR
7613 * 64 EA AMO From
7614 * BIT IRQ IMO Non-secure Secure
7615 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
7617 static const int8_t target_el_table[2][2][2][2][2][4] = {
7618 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
7619 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
7620 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
7621 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
7622 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
7623 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
7624 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
7625 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
7626 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
7627 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
7628 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
7629 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
7630 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
7631 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
7632 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
7633 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
7637 * Determine the target EL for physical exceptions
7639 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
7640 uint32_t cur_el, bool secure)
7642 CPUARMState *env = cs->env_ptr;
7643 bool rw;
7644 bool scr;
7645 bool hcr;
7646 int target_el;
7647 /* Is the highest EL AArch64? */
7648 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
7649 uint64_t hcr_el2;
7651 if (arm_feature(env, ARM_FEATURE_EL3)) {
7652 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
7653 } else {
7654 /* Either EL2 is the highest EL (and so the EL2 register width
7655 * is given by is64); or there is no EL2 or EL3, in which case
7656 * the value of 'rw' does not affect the table lookup anyway.
7658 rw = is64;
7661 hcr_el2 = arm_hcr_el2_eff(env);
7662 switch (excp_idx) {
7663 case EXCP_IRQ:
7664 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
7665 hcr = hcr_el2 & HCR_IMO;
7666 break;
7667 case EXCP_FIQ:
7668 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
7669 hcr = hcr_el2 & HCR_FMO;
7670 break;
7671 default:
7672 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
7673 hcr = hcr_el2 & HCR_AMO;
7674 break;
7677 /* Perform a table-lookup for the target EL given the current state */
7678 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
7680 assert(target_el > 0);
7682 return target_el;
7685 void arm_log_exception(int idx)
7687 if (qemu_loglevel_mask(CPU_LOG_INT)) {
7688 const char *exc = NULL;
7689 static const char * const excnames[] = {
7690 [EXCP_UDEF] = "Undefined Instruction",
7691 [EXCP_SWI] = "SVC",
7692 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
7693 [EXCP_DATA_ABORT] = "Data Abort",
7694 [EXCP_IRQ] = "IRQ",
7695 [EXCP_FIQ] = "FIQ",
7696 [EXCP_BKPT] = "Breakpoint",
7697 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
7698 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
7699 [EXCP_HVC] = "Hypervisor Call",
7700 [EXCP_HYP_TRAP] = "Hypervisor Trap",
7701 [EXCP_SMC] = "Secure Monitor Call",
7702 [EXCP_VIRQ] = "Virtual IRQ",
7703 [EXCP_VFIQ] = "Virtual FIQ",
7704 [EXCP_SEMIHOST] = "Semihosting call",
7705 [EXCP_NOCP] = "v7M NOCP UsageFault",
7706 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
7707 [EXCP_STKOF] = "v8M STKOF UsageFault",
7708 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
7709 [EXCP_LSERR] = "v8M LSERR UsageFault",
7710 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
7713 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
7714 exc = excnames[idx];
7716 if (!exc) {
7717 exc = "unknown";
7719 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
7724 * What kind of stack write are we doing? This affects how exceptions
7725 * generated during the stacking are treated.
7727 typedef enum StackingMode {
7728 STACK_NORMAL,
7729 STACK_IGNFAULTS,
7730 STACK_LAZYFP,
7731 } StackingMode;
7733 static bool v7m_stack_write(ARMCPU *cpu, uint32_t addr, uint32_t value,
7734 ARMMMUIdx mmu_idx, StackingMode mode)
7736 CPUState *cs = CPU(cpu);
7737 CPUARMState *env = &cpu->env;
7738 MemTxAttrs attrs = {};
7739 MemTxResult txres;
7740 target_ulong page_size;
7741 hwaddr physaddr;
7742 int prot;
7743 ARMMMUFaultInfo fi = {};
7744 bool secure = mmu_idx & ARM_MMU_IDX_M_S;
7745 int exc;
7746 bool exc_secure;
7748 if (get_phys_addr(env, addr, MMU_DATA_STORE, mmu_idx, &physaddr,
7749 &attrs, &prot, &page_size, &fi, NULL)) {
7750 /* MPU/SAU lookup failed */
7751 if (fi.type == ARMFault_QEMU_SFault) {
7752 if (mode == STACK_LAZYFP) {
7753 qemu_log_mask(CPU_LOG_INT,
7754 "...SecureFault with SFSR.LSPERR "
7755 "during lazy stacking\n");
7756 env->v7m.sfsr |= R_V7M_SFSR_LSPERR_MASK;
7757 } else {
7758 qemu_log_mask(CPU_LOG_INT,
7759 "...SecureFault with SFSR.AUVIOL "
7760 "during stacking\n");
7761 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK;
7763 env->v7m.sfsr |= R_V7M_SFSR_SFARVALID_MASK;
7764 env->v7m.sfar = addr;
7765 exc = ARMV7M_EXCP_SECURE;
7766 exc_secure = false;
7767 } else {
7768 if (mode == STACK_LAZYFP) {
7769 qemu_log_mask(CPU_LOG_INT,
7770 "...MemManageFault with CFSR.MLSPERR\n");
7771 env->v7m.cfsr[secure] |= R_V7M_CFSR_MLSPERR_MASK;
7772 } else {
7773 qemu_log_mask(CPU_LOG_INT,
7774 "...MemManageFault with CFSR.MSTKERR\n");
7775 env->v7m.cfsr[secure] |= R_V7M_CFSR_MSTKERR_MASK;
7777 exc = ARMV7M_EXCP_MEM;
7778 exc_secure = secure;
7780 goto pend_fault;
7782 address_space_stl_le(arm_addressspace(cs, attrs), physaddr, value,
7783 attrs, &txres);
7784 if (txres != MEMTX_OK) {
7785 /* BusFault trying to write the data */
7786 if (mode == STACK_LAZYFP) {
7787 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.LSPERR\n");
7788 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_LSPERR_MASK;
7789 } else {
7790 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.STKERR\n");
7791 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_STKERR_MASK;
7793 exc = ARMV7M_EXCP_BUS;
7794 exc_secure = false;
7795 goto pend_fault;
7797 return true;
7799 pend_fault:
7801 * By pending the exception at this point we are making
7802 * the IMPDEF choice "overridden exceptions pended" (see the
7803 * MergeExcInfo() pseudocode). The other choice would be to not
7804 * pend them now and then make a choice about which to throw away
7805 * later if we have two derived exceptions.
7806 * The only case when we must not pend the exception but instead
7807 * throw it away is if we are doing the push of the callee registers
7808 * and we've already generated a derived exception (this is indicated
7809 * by the caller passing STACK_IGNFAULTS). Even in this case we will
7810 * still update the fault status registers.
7812 switch (mode) {
7813 case STACK_NORMAL:
7814 armv7m_nvic_set_pending_derived(env->nvic, exc, exc_secure);
7815 break;
7816 case STACK_LAZYFP:
7817 armv7m_nvic_set_pending_lazyfp(env->nvic, exc, exc_secure);
7818 break;
7819 case STACK_IGNFAULTS:
7820 break;
7822 return false;
7825 static bool v7m_stack_read(ARMCPU *cpu, uint32_t *dest, uint32_t addr,
7826 ARMMMUIdx mmu_idx)
7828 CPUState *cs = CPU(cpu);
7829 CPUARMState *env = &cpu->env;
7830 MemTxAttrs attrs = {};
7831 MemTxResult txres;
7832 target_ulong page_size;
7833 hwaddr physaddr;
7834 int prot;
7835 ARMMMUFaultInfo fi = {};
7836 bool secure = mmu_idx & ARM_MMU_IDX_M_S;
7837 int exc;
7838 bool exc_secure;
7839 uint32_t value;
7841 if (get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &physaddr,
7842 &attrs, &prot, &page_size, &fi, NULL)) {
7843 /* MPU/SAU lookup failed */
7844 if (fi.type == ARMFault_QEMU_SFault) {
7845 qemu_log_mask(CPU_LOG_INT,
7846 "...SecureFault with SFSR.AUVIOL during unstack\n");
7847 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK;
7848 env->v7m.sfar = addr;
7849 exc = ARMV7M_EXCP_SECURE;
7850 exc_secure = false;
7851 } else {
7852 qemu_log_mask(CPU_LOG_INT,
7853 "...MemManageFault with CFSR.MUNSTKERR\n");
7854 env->v7m.cfsr[secure] |= R_V7M_CFSR_MUNSTKERR_MASK;
7855 exc = ARMV7M_EXCP_MEM;
7856 exc_secure = secure;
7858 goto pend_fault;
7861 value = address_space_ldl(arm_addressspace(cs, attrs), physaddr,
7862 attrs, &txres);
7863 if (txres != MEMTX_OK) {
7864 /* BusFault trying to read the data */
7865 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.UNSTKERR\n");
7866 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_UNSTKERR_MASK;
7867 exc = ARMV7M_EXCP_BUS;
7868 exc_secure = false;
7869 goto pend_fault;
7872 *dest = value;
7873 return true;
7875 pend_fault:
7877 * By pending the exception at this point we are making
7878 * the IMPDEF choice "overridden exceptions pended" (see the
7879 * MergeExcInfo() pseudocode). The other choice would be to not
7880 * pend them now and then make a choice about which to throw away
7881 * later if we have two derived exceptions.
7883 armv7m_nvic_set_pending(env->nvic, exc, exc_secure);
7884 return false;
7887 void HELPER(v7m_preserve_fp_state)(CPUARMState *env)
7890 * Preserve FP state (because LSPACT was set and we are about
7891 * to execute an FP instruction). This corresponds to the
7892 * PreserveFPState() pseudocode.
7893 * We may throw an exception if the stacking fails.
7895 ARMCPU *cpu = env_archcpu(env);
7896 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
7897 bool negpri = !(env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_HFRDY_MASK);
7898 bool is_priv = !(env->v7m.fpccr[is_secure] & R_V7M_FPCCR_USER_MASK);
7899 bool splimviol = env->v7m.fpccr[is_secure] & R_V7M_FPCCR_SPLIMVIOL_MASK;
7900 uint32_t fpcar = env->v7m.fpcar[is_secure];
7901 bool stacked_ok = true;
7902 bool ts = is_secure && (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK);
7903 bool take_exception;
7905 /* Take the iothread lock as we are going to touch the NVIC */
7906 qemu_mutex_lock_iothread();
7908 /* Check the background context had access to the FPU */
7909 if (!v7m_cpacr_pass(env, is_secure, is_priv)) {
7910 armv7m_nvic_set_pending_lazyfp(env->nvic, ARMV7M_EXCP_USAGE, is_secure);
7911 env->v7m.cfsr[is_secure] |= R_V7M_CFSR_NOCP_MASK;
7912 stacked_ok = false;
7913 } else if (!is_secure && !extract32(env->v7m.nsacr, 10, 1)) {
7914 armv7m_nvic_set_pending_lazyfp(env->nvic, ARMV7M_EXCP_USAGE, M_REG_S);
7915 env->v7m.cfsr[M_REG_S] |= R_V7M_CFSR_NOCP_MASK;
7916 stacked_ok = false;
7919 if (!splimviol && stacked_ok) {
7920 /* We only stack if the stack limit wasn't violated */
7921 int i;
7922 ARMMMUIdx mmu_idx;
7924 mmu_idx = arm_v7m_mmu_idx_all(env, is_secure, is_priv, negpri);
7925 for (i = 0; i < (ts ? 32 : 16); i += 2) {
7926 uint64_t dn = *aa32_vfp_dreg(env, i / 2);
7927 uint32_t faddr = fpcar + 4 * i;
7928 uint32_t slo = extract64(dn, 0, 32);
7929 uint32_t shi = extract64(dn, 32, 32);
7931 if (i >= 16) {
7932 faddr += 8; /* skip the slot for the FPSCR */
7934 stacked_ok = stacked_ok &&
7935 v7m_stack_write(cpu, faddr, slo, mmu_idx, STACK_LAZYFP) &&
7936 v7m_stack_write(cpu, faddr + 4, shi, mmu_idx, STACK_LAZYFP);
7939 stacked_ok = stacked_ok &&
7940 v7m_stack_write(cpu, fpcar + 0x40,
7941 vfp_get_fpscr(env), mmu_idx, STACK_LAZYFP);
7945 * We definitely pended an exception, but it's possible that it
7946 * might not be able to be taken now. If its priority permits us
7947 * to take it now, then we must not update the LSPACT or FP regs,
7948 * but instead jump out to take the exception immediately.
7949 * If it's just pending and won't be taken until the current
7950 * handler exits, then we do update LSPACT and the FP regs.
7952 take_exception = !stacked_ok &&
7953 armv7m_nvic_can_take_pending_exception(env->nvic);
7955 qemu_mutex_unlock_iothread();
7957 if (take_exception) {
7958 raise_exception_ra(env, EXCP_LAZYFP, 0, 1, GETPC());
7961 env->v7m.fpccr[is_secure] &= ~R_V7M_FPCCR_LSPACT_MASK;
7963 if (ts) {
7964 /* Clear s0 to s31 and the FPSCR */
7965 int i;
7967 for (i = 0; i < 32; i += 2) {
7968 *aa32_vfp_dreg(env, i / 2) = 0;
7970 vfp_set_fpscr(env, 0);
7973 * Otherwise s0 to s15 and FPSCR are UNKNOWN; we choose to leave them
7974 * unchanged.
7979 * Write to v7M CONTROL.SPSEL bit for the specified security bank.
7980 * This may change the current stack pointer between Main and Process
7981 * stack pointers if it is done for the CONTROL register for the current
7982 * security state.
7984 static void write_v7m_control_spsel_for_secstate(CPUARMState *env,
7985 bool new_spsel,
7986 bool secstate)
7988 bool old_is_psp = v7m_using_psp(env);
7990 env->v7m.control[secstate] =
7991 deposit32(env->v7m.control[secstate],
7992 R_V7M_CONTROL_SPSEL_SHIFT,
7993 R_V7M_CONTROL_SPSEL_LENGTH, new_spsel);
7995 if (secstate == env->v7m.secure) {
7996 bool new_is_psp = v7m_using_psp(env);
7997 uint32_t tmp;
7999 if (old_is_psp != new_is_psp) {
8000 tmp = env->v7m.other_sp;
8001 env->v7m.other_sp = env->regs[13];
8002 env->regs[13] = tmp;
8008 * Write to v7M CONTROL.SPSEL bit. This may change the current
8009 * stack pointer between Main and Process stack pointers.
8011 static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel)
8013 write_v7m_control_spsel_for_secstate(env, new_spsel, env->v7m.secure);
8016 void write_v7m_exception(CPUARMState *env, uint32_t new_exc)
8019 * Write a new value to v7m.exception, thus transitioning into or out
8020 * of Handler mode; this may result in a change of active stack pointer.
8022 bool new_is_psp, old_is_psp = v7m_using_psp(env);
8023 uint32_t tmp;
8025 env->v7m.exception = new_exc;
8027 new_is_psp = v7m_using_psp(env);
8029 if (old_is_psp != new_is_psp) {
8030 tmp = env->v7m.other_sp;
8031 env->v7m.other_sp = env->regs[13];
8032 env->regs[13] = tmp;
8036 /* Switch M profile security state between NS and S */
8037 static void switch_v7m_security_state(CPUARMState *env, bool new_secstate)
8039 uint32_t new_ss_msp, new_ss_psp;
8041 if (env->v7m.secure == new_secstate) {
8042 return;
8046 * All the banked state is accessed by looking at env->v7m.secure
8047 * except for the stack pointer; rearrange the SP appropriately.
8049 new_ss_msp = env->v7m.other_ss_msp;
8050 new_ss_psp = env->v7m.other_ss_psp;
8052 if (v7m_using_psp(env)) {
8053 env->v7m.other_ss_psp = env->regs[13];
8054 env->v7m.other_ss_msp = env->v7m.other_sp;
8055 } else {
8056 env->v7m.other_ss_msp = env->regs[13];
8057 env->v7m.other_ss_psp = env->v7m.other_sp;
8060 env->v7m.secure = new_secstate;
8062 if (v7m_using_psp(env)) {
8063 env->regs[13] = new_ss_psp;
8064 env->v7m.other_sp = new_ss_msp;
8065 } else {
8066 env->regs[13] = new_ss_msp;
8067 env->v7m.other_sp = new_ss_psp;
8071 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
8074 * Handle v7M BXNS:
8075 * - if the return value is a magic value, do exception return (like BX)
8076 * - otherwise bit 0 of the return value is the target security state
8078 uint32_t min_magic;
8080 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8081 /* Covers FNC_RETURN and EXC_RETURN magic */
8082 min_magic = FNC_RETURN_MIN_MAGIC;
8083 } else {
8084 /* EXC_RETURN magic only */
8085 min_magic = EXC_RETURN_MIN_MAGIC;
8088 if (dest >= min_magic) {
8090 * This is an exception return magic value; put it where
8091 * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT.
8092 * Note that if we ever add gen_ss_advance() singlestep support to
8093 * M profile this should count as an "instruction execution complete"
8094 * event (compare gen_bx_excret_final_code()).
8096 env->regs[15] = dest & ~1;
8097 env->thumb = dest & 1;
8098 HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT);
8099 /* notreached */
8102 /* translate.c should have made BXNS UNDEF unless we're secure */
8103 assert(env->v7m.secure);
8105 if (!(dest & 1)) {
8106 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
8108 switch_v7m_security_state(env, dest & 1);
8109 env->thumb = 1;
8110 env->regs[15] = dest & ~1;
8113 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
8116 * Handle v7M BLXNS:
8117 * - bit 0 of the destination address is the target security state
8120 /* At this point regs[15] is the address just after the BLXNS */
8121 uint32_t nextinst = env->regs[15] | 1;
8122 uint32_t sp = env->regs[13] - 8;
8123 uint32_t saved_psr;
8125 /* translate.c will have made BLXNS UNDEF unless we're secure */
8126 assert(env->v7m.secure);
8128 if (dest & 1) {
8130 * Target is Secure, so this is just a normal BLX,
8131 * except that the low bit doesn't indicate Thumb/not.
8133 env->regs[14] = nextinst;
8134 env->thumb = 1;
8135 env->regs[15] = dest & ~1;
8136 return;
8139 /* Target is non-secure: first push a stack frame */
8140 if (!QEMU_IS_ALIGNED(sp, 8)) {
8141 qemu_log_mask(LOG_GUEST_ERROR,
8142 "BLXNS with misaligned SP is UNPREDICTABLE\n");
8145 if (sp < v7m_sp_limit(env)) {
8146 raise_exception(env, EXCP_STKOF, 0, 1);
8149 saved_psr = env->v7m.exception;
8150 if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK) {
8151 saved_psr |= XPSR_SFPA;
8154 /* Note that these stores can throw exceptions on MPU faults */
8155 cpu_stl_data(env, sp, nextinst);
8156 cpu_stl_data(env, sp + 4, saved_psr);
8158 env->regs[13] = sp;
8159 env->regs[14] = 0xfeffffff;
8160 if (arm_v7m_is_handler_mode(env)) {
8162 * Write a dummy value to IPSR, to avoid leaking the current secure
8163 * exception number to non-secure code. This is guaranteed not
8164 * to cause write_v7m_exception() to actually change stacks.
8166 write_v7m_exception(env, 1);
8168 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
8169 switch_v7m_security_state(env, 0);
8170 env->thumb = 1;
8171 env->regs[15] = dest;
8174 static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode,
8175 bool spsel)
8178 * Return a pointer to the location where we currently store the
8179 * stack pointer for the requested security state and thread mode.
8180 * This pointer will become invalid if the CPU state is updated
8181 * such that the stack pointers are switched around (eg changing
8182 * the SPSEL control bit).
8183 * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode().
8184 * Unlike that pseudocode, we require the caller to pass us in the
8185 * SPSEL control bit value; this is because we also use this
8186 * function in handling of pushing of the callee-saves registers
8187 * part of the v8M stack frame (pseudocode PushCalleeStack()),
8188 * and in the tailchain codepath the SPSEL bit comes from the exception
8189 * return magic LR value from the previous exception. The pseudocode
8190 * opencodes the stack-selection in PushCalleeStack(), but we prefer
8191 * to make this utility function generic enough to do the job.
8193 bool want_psp = threadmode && spsel;
8195 if (secure == env->v7m.secure) {
8196 if (want_psp == v7m_using_psp(env)) {
8197 return &env->regs[13];
8198 } else {
8199 return &env->v7m.other_sp;
8201 } else {
8202 if (want_psp) {
8203 return &env->v7m.other_ss_psp;
8204 } else {
8205 return &env->v7m.other_ss_msp;
8210 static bool arm_v7m_load_vector(ARMCPU *cpu, int exc, bool targets_secure,
8211 uint32_t *pvec)
8213 CPUState *cs = CPU(cpu);
8214 CPUARMState *env = &cpu->env;
8215 MemTxResult result;
8216 uint32_t addr = env->v7m.vecbase[targets_secure] + exc * 4;
8217 uint32_t vector_entry;
8218 MemTxAttrs attrs = {};
8219 ARMMMUIdx mmu_idx;
8220 bool exc_secure;
8222 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targets_secure, true);
8225 * We don't do a get_phys_addr() here because the rules for vector
8226 * loads are special: they always use the default memory map, and
8227 * the default memory map permits reads from all addresses.
8228 * Since there's no easy way to pass through to pmsav8_mpu_lookup()
8229 * that we want this special case which would always say "yes",
8230 * we just do the SAU lookup here followed by a direct physical load.
8232 attrs.secure = targets_secure;
8233 attrs.user = false;
8235 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8236 V8M_SAttributes sattrs = {};
8238 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
8239 if (sattrs.ns) {
8240 attrs.secure = false;
8241 } else if (!targets_secure) {
8242 /* NS access to S memory */
8243 goto load_fail;
8247 vector_entry = address_space_ldl(arm_addressspace(cs, attrs), addr,
8248 attrs, &result);
8249 if (result != MEMTX_OK) {
8250 goto load_fail;
8252 *pvec = vector_entry;
8253 return true;
8255 load_fail:
8257 * All vector table fetch fails are reported as HardFault, with
8258 * HFSR.VECTTBL and .FORCED set. (FORCED is set because
8259 * technically the underlying exception is a MemManage or BusFault
8260 * that is escalated to HardFault.) This is a terminal exception,
8261 * so we will either take the HardFault immediately or else enter
8262 * lockup (the latter case is handled in armv7m_nvic_set_pending_derived()).
8264 exc_secure = targets_secure ||
8265 !(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
8266 env->v7m.hfsr |= R_V7M_HFSR_VECTTBL_MASK | R_V7M_HFSR_FORCED_MASK;
8267 armv7m_nvic_set_pending_derived(env->nvic, ARMV7M_EXCP_HARD, exc_secure);
8268 return false;
8271 static uint32_t v7m_integrity_sig(CPUARMState *env, uint32_t lr)
8274 * Return the integrity signature value for the callee-saves
8275 * stack frame section. @lr is the exception return payload/LR value
8276 * whose FType bit forms bit 0 of the signature if FP is present.
8278 uint32_t sig = 0xfefa125a;
8280 if (!arm_feature(env, ARM_FEATURE_VFP) || (lr & R_V7M_EXCRET_FTYPE_MASK)) {
8281 sig |= 1;
8283 return sig;
8286 static bool v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain,
8287 bool ignore_faults)
8290 * For v8M, push the callee-saves register part of the stack frame.
8291 * Compare the v8M pseudocode PushCalleeStack().
8292 * In the tailchaining case this may not be the current stack.
8294 CPUARMState *env = &cpu->env;
8295 uint32_t *frame_sp_p;
8296 uint32_t frameptr;
8297 ARMMMUIdx mmu_idx;
8298 bool stacked_ok;
8299 uint32_t limit;
8300 bool want_psp;
8301 uint32_t sig;
8302 StackingMode smode = ignore_faults ? STACK_IGNFAULTS : STACK_NORMAL;
8304 if (dotailchain) {
8305 bool mode = lr & R_V7M_EXCRET_MODE_MASK;
8306 bool priv = !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_NPRIV_MASK) ||
8307 !mode;
8309 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, M_REG_S, priv);
8310 frame_sp_p = get_v7m_sp_ptr(env, M_REG_S, mode,
8311 lr & R_V7M_EXCRET_SPSEL_MASK);
8312 want_psp = mode && (lr & R_V7M_EXCRET_SPSEL_MASK);
8313 if (want_psp) {
8314 limit = env->v7m.psplim[M_REG_S];
8315 } else {
8316 limit = env->v7m.msplim[M_REG_S];
8318 } else {
8319 mmu_idx = arm_mmu_idx(env);
8320 frame_sp_p = &env->regs[13];
8321 limit = v7m_sp_limit(env);
8324 frameptr = *frame_sp_p - 0x28;
8325 if (frameptr < limit) {
8327 * Stack limit failure: set SP to the limit value, and generate
8328 * STKOF UsageFault. Stack pushes below the limit must not be
8329 * performed. It is IMPDEF whether pushes above the limit are
8330 * performed; we choose not to.
8332 qemu_log_mask(CPU_LOG_INT,
8333 "...STKOF during callee-saves register stacking\n");
8334 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
8335 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
8336 env->v7m.secure);
8337 *frame_sp_p = limit;
8338 return true;
8342 * Write as much of the stack frame as we can. A write failure may
8343 * cause us to pend a derived exception.
8345 sig = v7m_integrity_sig(env, lr);
8346 stacked_ok =
8347 v7m_stack_write(cpu, frameptr, sig, mmu_idx, smode) &&
8348 v7m_stack_write(cpu, frameptr + 0x8, env->regs[4], mmu_idx, smode) &&
8349 v7m_stack_write(cpu, frameptr + 0xc, env->regs[5], mmu_idx, smode) &&
8350 v7m_stack_write(cpu, frameptr + 0x10, env->regs[6], mmu_idx, smode) &&
8351 v7m_stack_write(cpu, frameptr + 0x14, env->regs[7], mmu_idx, smode) &&
8352 v7m_stack_write(cpu, frameptr + 0x18, env->regs[8], mmu_idx, smode) &&
8353 v7m_stack_write(cpu, frameptr + 0x1c, env->regs[9], mmu_idx, smode) &&
8354 v7m_stack_write(cpu, frameptr + 0x20, env->regs[10], mmu_idx, smode) &&
8355 v7m_stack_write(cpu, frameptr + 0x24, env->regs[11], mmu_idx, smode);
8357 /* Update SP regardless of whether any of the stack accesses failed. */
8358 *frame_sp_p = frameptr;
8360 return !stacked_ok;
8363 static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain,
8364 bool ignore_stackfaults)
8367 * Do the "take the exception" parts of exception entry,
8368 * but not the pushing of state to the stack. This is
8369 * similar to the pseudocode ExceptionTaken() function.
8371 CPUARMState *env = &cpu->env;
8372 uint32_t addr;
8373 bool targets_secure;
8374 int exc;
8375 bool push_failed = false;
8377 armv7m_nvic_get_pending_irq_info(env->nvic, &exc, &targets_secure);
8378 qemu_log_mask(CPU_LOG_INT, "...taking pending %s exception %d\n",
8379 targets_secure ? "secure" : "nonsecure", exc);
8381 if (dotailchain) {
8382 /* Sanitize LR FType and PREFIX bits */
8383 if (!arm_feature(env, ARM_FEATURE_VFP)) {
8384 lr |= R_V7M_EXCRET_FTYPE_MASK;
8386 lr = deposit32(lr, 24, 8, 0xff);
8389 if (arm_feature(env, ARM_FEATURE_V8)) {
8390 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
8391 (lr & R_V7M_EXCRET_S_MASK)) {
8393 * The background code (the owner of the registers in the
8394 * exception frame) is Secure. This means it may either already
8395 * have or now needs to push callee-saves registers.
8397 if (targets_secure) {
8398 if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) {
8400 * We took an exception from Secure to NonSecure
8401 * (which means the callee-saved registers got stacked)
8402 * and are now tailchaining to a Secure exception.
8403 * Clear DCRS so eventual return from this Secure
8404 * exception unstacks the callee-saved registers.
8406 lr &= ~R_V7M_EXCRET_DCRS_MASK;
8408 } else {
8410 * We're going to a non-secure exception; push the
8411 * callee-saves registers to the stack now, if they're
8412 * not already saved.
8414 if (lr & R_V7M_EXCRET_DCRS_MASK &&
8415 !(dotailchain && !(lr & R_V7M_EXCRET_ES_MASK))) {
8416 push_failed = v7m_push_callee_stack(cpu, lr, dotailchain,
8417 ignore_stackfaults);
8419 lr |= R_V7M_EXCRET_DCRS_MASK;
8423 lr &= ~R_V7M_EXCRET_ES_MASK;
8424 if (targets_secure || !arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8425 lr |= R_V7M_EXCRET_ES_MASK;
8427 lr &= ~R_V7M_EXCRET_SPSEL_MASK;
8428 if (env->v7m.control[targets_secure] & R_V7M_CONTROL_SPSEL_MASK) {
8429 lr |= R_V7M_EXCRET_SPSEL_MASK;
8433 * Clear registers if necessary to prevent non-secure exception
8434 * code being able to see register values from secure code.
8435 * Where register values become architecturally UNKNOWN we leave
8436 * them with their previous values.
8438 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8439 if (!targets_secure) {
8441 * Always clear the caller-saved registers (they have been
8442 * pushed to the stack earlier in v7m_push_stack()).
8443 * Clear callee-saved registers if the background code is
8444 * Secure (in which case these regs were saved in
8445 * v7m_push_callee_stack()).
8447 int i;
8449 for (i = 0; i < 13; i++) {
8450 /* r4..r11 are callee-saves, zero only if EXCRET.S == 1 */
8451 if (i < 4 || i > 11 || (lr & R_V7M_EXCRET_S_MASK)) {
8452 env->regs[i] = 0;
8455 /* Clear EAPSR */
8456 xpsr_write(env, 0, XPSR_NZCV | XPSR_Q | XPSR_GE | XPSR_IT);
8461 if (push_failed && !ignore_stackfaults) {
8463 * Derived exception on callee-saves register stacking:
8464 * we might now want to take a different exception which
8465 * targets a different security state, so try again from the top.
8467 qemu_log_mask(CPU_LOG_INT,
8468 "...derived exception on callee-saves register stacking");
8469 v7m_exception_taken(cpu, lr, true, true);
8470 return;
8473 if (!arm_v7m_load_vector(cpu, exc, targets_secure, &addr)) {
8474 /* Vector load failed: derived exception */
8475 qemu_log_mask(CPU_LOG_INT, "...derived exception on vector table load");
8476 v7m_exception_taken(cpu, lr, true, true);
8477 return;
8481 * Now we've done everything that might cause a derived exception
8482 * we can go ahead and activate whichever exception we're going to
8483 * take (which might now be the derived exception).
8485 armv7m_nvic_acknowledge_irq(env->nvic);
8487 /* Switch to target security state -- must do this before writing SPSEL */
8488 switch_v7m_security_state(env, targets_secure);
8489 write_v7m_control_spsel(env, 0);
8490 arm_clear_exclusive(env);
8491 /* Clear SFPA and FPCA (has no effect if no FPU) */
8492 env->v7m.control[M_REG_S] &=
8493 ~(R_V7M_CONTROL_FPCA_MASK | R_V7M_CONTROL_SFPA_MASK);
8494 /* Clear IT bits */
8495 env->condexec_bits = 0;
8496 env->regs[14] = lr;
8497 env->regs[15] = addr & 0xfffffffe;
8498 env->thumb = addr & 1;
8501 static void v7m_update_fpccr(CPUARMState *env, uint32_t frameptr,
8502 bool apply_splim)
8505 * Like the pseudocode UpdateFPCCR: save state in FPCAR and FPCCR
8506 * that we will need later in order to do lazy FP reg stacking.
8508 bool is_secure = env->v7m.secure;
8509 void *nvic = env->nvic;
8511 * Some bits are unbanked and live always in fpccr[M_REG_S]; some bits
8512 * are banked and we want to update the bit in the bank for the
8513 * current security state; and in one case we want to specifically
8514 * update the NS banked version of a bit even if we are secure.
8516 uint32_t *fpccr_s = &env->v7m.fpccr[M_REG_S];
8517 uint32_t *fpccr_ns = &env->v7m.fpccr[M_REG_NS];
8518 uint32_t *fpccr = &env->v7m.fpccr[is_secure];
8519 bool hfrdy, bfrdy, mmrdy, ns_ufrdy, s_ufrdy, sfrdy, monrdy;
8521 env->v7m.fpcar[is_secure] = frameptr & ~0x7;
8523 if (apply_splim && arm_feature(env, ARM_FEATURE_V8)) {
8524 bool splimviol;
8525 uint32_t splim = v7m_sp_limit(env);
8526 bool ign = armv7m_nvic_neg_prio_requested(nvic, is_secure) &&
8527 (env->v7m.ccr[is_secure] & R_V7M_CCR_STKOFHFNMIGN_MASK);
8529 splimviol = !ign && frameptr < splim;
8530 *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, SPLIMVIOL, splimviol);
8533 *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, LSPACT, 1);
8535 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, S, is_secure);
8537 *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, USER, arm_current_el(env) == 0);
8539 *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, THREAD,
8540 !arm_v7m_is_handler_mode(env));
8542 hfrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_HARD, false);
8543 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, HFRDY, hfrdy);
8545 bfrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_BUS, false);
8546 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, BFRDY, bfrdy);
8548 mmrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_MEM, is_secure);
8549 *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, MMRDY, mmrdy);
8551 ns_ufrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_USAGE, false);
8552 *fpccr_ns = FIELD_DP32(*fpccr_ns, V7M_FPCCR, UFRDY, ns_ufrdy);
8554 monrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_DEBUG, false);
8555 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, MONRDY, monrdy);
8557 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8558 s_ufrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_USAGE, true);
8559 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, UFRDY, s_ufrdy);
8561 sfrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_SECURE, false);
8562 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, SFRDY, sfrdy);
8566 void HELPER(v7m_vlstm)(CPUARMState *env, uint32_t fptr)
8568 /* fptr is the value of Rn, the frame pointer we store the FP regs to */
8569 bool s = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
8570 bool lspact = env->v7m.fpccr[s] & R_V7M_FPCCR_LSPACT_MASK;
8572 assert(env->v7m.secure);
8574 if (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)) {
8575 return;
8578 /* Check access to the coprocessor is permitted */
8579 if (!v7m_cpacr_pass(env, true, arm_current_el(env) != 0)) {
8580 raise_exception_ra(env, EXCP_NOCP, 0, 1, GETPC());
8583 if (lspact) {
8584 /* LSPACT should not be active when there is active FP state */
8585 raise_exception_ra(env, EXCP_LSERR, 0, 1, GETPC());
8588 if (fptr & 7) {
8589 raise_exception_ra(env, EXCP_UNALIGNED, 0, 1, GETPC());
8593 * Note that we do not use v7m_stack_write() here, because the
8594 * accesses should not set the FSR bits for stacking errors if they
8595 * fail. (In pseudocode terms, they are AccType_NORMAL, not AccType_STACK
8596 * or AccType_LAZYFP). Faults in cpu_stl_data() will throw exceptions
8597 * and longjmp out.
8599 if (!(env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPEN_MASK)) {
8600 bool ts = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK;
8601 int i;
8603 for (i = 0; i < (ts ? 32 : 16); i += 2) {
8604 uint64_t dn = *aa32_vfp_dreg(env, i / 2);
8605 uint32_t faddr = fptr + 4 * i;
8606 uint32_t slo = extract64(dn, 0, 32);
8607 uint32_t shi = extract64(dn, 32, 32);
8609 if (i >= 16) {
8610 faddr += 8; /* skip the slot for the FPSCR */
8612 cpu_stl_data(env, faddr, slo);
8613 cpu_stl_data(env, faddr + 4, shi);
8615 cpu_stl_data(env, fptr + 0x40, vfp_get_fpscr(env));
8618 * If TS is 0 then s0 to s15 and FPSCR are UNKNOWN; we choose to
8619 * leave them unchanged, matching our choice in v7m_preserve_fp_state.
8621 if (ts) {
8622 for (i = 0; i < 32; i += 2) {
8623 *aa32_vfp_dreg(env, i / 2) = 0;
8625 vfp_set_fpscr(env, 0);
8627 } else {
8628 v7m_update_fpccr(env, fptr, false);
8631 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_FPCA_MASK;
8634 void HELPER(v7m_vlldm)(CPUARMState *env, uint32_t fptr)
8636 /* fptr is the value of Rn, the frame pointer we load the FP regs from */
8637 assert(env->v7m.secure);
8639 if (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)) {
8640 return;
8643 /* Check access to the coprocessor is permitted */
8644 if (!v7m_cpacr_pass(env, true, arm_current_el(env) != 0)) {
8645 raise_exception_ra(env, EXCP_NOCP, 0, 1, GETPC());
8648 if (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPACT_MASK) {
8649 /* State in FP is still valid */
8650 env->v7m.fpccr[M_REG_S] &= ~R_V7M_FPCCR_LSPACT_MASK;
8651 } else {
8652 bool ts = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK;
8653 int i;
8654 uint32_t fpscr;
8656 if (fptr & 7) {
8657 raise_exception_ra(env, EXCP_UNALIGNED, 0, 1, GETPC());
8660 for (i = 0; i < (ts ? 32 : 16); i += 2) {
8661 uint32_t slo, shi;
8662 uint64_t dn;
8663 uint32_t faddr = fptr + 4 * i;
8665 if (i >= 16) {
8666 faddr += 8; /* skip the slot for the FPSCR */
8669 slo = cpu_ldl_data(env, faddr);
8670 shi = cpu_ldl_data(env, faddr + 4);
8672 dn = (uint64_t) shi << 32 | slo;
8673 *aa32_vfp_dreg(env, i / 2) = dn;
8675 fpscr = cpu_ldl_data(env, fptr + 0x40);
8676 vfp_set_fpscr(env, fpscr);
8679 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
8682 static bool v7m_push_stack(ARMCPU *cpu)
8685 * Do the "set up stack frame" part of exception entry,
8686 * similar to pseudocode PushStack().
8687 * Return true if we generate a derived exception (and so
8688 * should ignore further stack faults trying to process
8689 * that derived exception.)
8691 bool stacked_ok = true, limitviol = false;
8692 CPUARMState *env = &cpu->env;
8693 uint32_t xpsr = xpsr_read(env);
8694 uint32_t frameptr = env->regs[13];
8695 ARMMMUIdx mmu_idx = arm_mmu_idx(env);
8696 uint32_t framesize;
8697 bool nsacr_cp10 = extract32(env->v7m.nsacr, 10, 1);
8699 if ((env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) &&
8700 (env->v7m.secure || nsacr_cp10)) {
8701 if (env->v7m.secure &&
8702 env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK) {
8703 framesize = 0xa8;
8704 } else {
8705 framesize = 0x68;
8707 } else {
8708 framesize = 0x20;
8711 /* Align stack pointer if the guest wants that */
8712 if ((frameptr & 4) &&
8713 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) {
8714 frameptr -= 4;
8715 xpsr |= XPSR_SPREALIGN;
8718 xpsr &= ~XPSR_SFPA;
8719 if (env->v7m.secure &&
8720 (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)) {
8721 xpsr |= XPSR_SFPA;
8724 frameptr -= framesize;
8726 if (arm_feature(env, ARM_FEATURE_V8)) {
8727 uint32_t limit = v7m_sp_limit(env);
8729 if (frameptr < limit) {
8731 * Stack limit failure: set SP to the limit value, and generate
8732 * STKOF UsageFault. Stack pushes below the limit must not be
8733 * performed. It is IMPDEF whether pushes above the limit are
8734 * performed; we choose not to.
8736 qemu_log_mask(CPU_LOG_INT,
8737 "...STKOF during stacking\n");
8738 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
8739 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
8740 env->v7m.secure);
8741 env->regs[13] = limit;
8743 * We won't try to perform any further memory accesses but
8744 * we must continue through the following code to check for
8745 * permission faults during FPU state preservation, and we
8746 * must update FPCCR if lazy stacking is enabled.
8748 limitviol = true;
8749 stacked_ok = false;
8754 * Write as much of the stack frame as we can. If we fail a stack
8755 * write this will result in a derived exception being pended
8756 * (which may be taken in preference to the one we started with
8757 * if it has higher priority).
8759 stacked_ok = stacked_ok &&
8760 v7m_stack_write(cpu, frameptr, env->regs[0], mmu_idx, STACK_NORMAL) &&
8761 v7m_stack_write(cpu, frameptr + 4, env->regs[1],
8762 mmu_idx, STACK_NORMAL) &&
8763 v7m_stack_write(cpu, frameptr + 8, env->regs[2],
8764 mmu_idx, STACK_NORMAL) &&
8765 v7m_stack_write(cpu, frameptr + 12, env->regs[3],
8766 mmu_idx, STACK_NORMAL) &&
8767 v7m_stack_write(cpu, frameptr + 16, env->regs[12],
8768 mmu_idx, STACK_NORMAL) &&
8769 v7m_stack_write(cpu, frameptr + 20, env->regs[14],
8770 mmu_idx, STACK_NORMAL) &&
8771 v7m_stack_write(cpu, frameptr + 24, env->regs[15],
8772 mmu_idx, STACK_NORMAL) &&
8773 v7m_stack_write(cpu, frameptr + 28, xpsr, mmu_idx, STACK_NORMAL);
8775 if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) {
8776 /* FPU is active, try to save its registers */
8777 bool fpccr_s = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
8778 bool lspact = env->v7m.fpccr[fpccr_s] & R_V7M_FPCCR_LSPACT_MASK;
8780 if (lspact && arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8781 qemu_log_mask(CPU_LOG_INT,
8782 "...SecureFault because LSPACT and FPCA both set\n");
8783 env->v7m.sfsr |= R_V7M_SFSR_LSERR_MASK;
8784 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
8785 } else if (!env->v7m.secure && !nsacr_cp10) {
8786 qemu_log_mask(CPU_LOG_INT,
8787 "...Secure UsageFault with CFSR.NOCP because "
8788 "NSACR.CP10 prevents stacking FP regs\n");
8789 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, M_REG_S);
8790 env->v7m.cfsr[M_REG_S] |= R_V7M_CFSR_NOCP_MASK;
8791 } else {
8792 if (!(env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPEN_MASK)) {
8793 /* Lazy stacking disabled, save registers now */
8794 int i;
8795 bool cpacr_pass = v7m_cpacr_pass(env, env->v7m.secure,
8796 arm_current_el(env) != 0);
8798 if (stacked_ok && !cpacr_pass) {
8800 * Take UsageFault if CPACR forbids access. The pseudocode
8801 * here does a full CheckCPEnabled() but we know the NSACR
8802 * check can never fail as we have already handled that.
8804 qemu_log_mask(CPU_LOG_INT,
8805 "...UsageFault with CFSR.NOCP because "
8806 "CPACR.CP10 prevents stacking FP regs\n");
8807 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
8808 env->v7m.secure);
8809 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK;
8810 stacked_ok = false;
8813 for (i = 0; i < ((framesize == 0xa8) ? 32 : 16); i += 2) {
8814 uint64_t dn = *aa32_vfp_dreg(env, i / 2);
8815 uint32_t faddr = frameptr + 0x20 + 4 * i;
8816 uint32_t slo = extract64(dn, 0, 32);
8817 uint32_t shi = extract64(dn, 32, 32);
8819 if (i >= 16) {
8820 faddr += 8; /* skip the slot for the FPSCR */
8822 stacked_ok = stacked_ok &&
8823 v7m_stack_write(cpu, faddr, slo,
8824 mmu_idx, STACK_NORMAL) &&
8825 v7m_stack_write(cpu, faddr + 4, shi,
8826 mmu_idx, STACK_NORMAL);
8828 stacked_ok = stacked_ok &&
8829 v7m_stack_write(cpu, frameptr + 0x60,
8830 vfp_get_fpscr(env), mmu_idx, STACK_NORMAL);
8831 if (cpacr_pass) {
8832 for (i = 0; i < ((framesize == 0xa8) ? 32 : 16); i += 2) {
8833 *aa32_vfp_dreg(env, i / 2) = 0;
8835 vfp_set_fpscr(env, 0);
8837 } else {
8838 /* Lazy stacking enabled, save necessary info to stack later */
8839 v7m_update_fpccr(env, frameptr + 0x20, true);
8845 * If we broke a stack limit then SP was already updated earlier;
8846 * otherwise we update SP regardless of whether any of the stack
8847 * accesses failed or we took some other kind of fault.
8849 if (!limitviol) {
8850 env->regs[13] = frameptr;
8853 return !stacked_ok;
8856 static void do_v7m_exception_exit(ARMCPU *cpu)
8858 CPUARMState *env = &cpu->env;
8859 uint32_t excret;
8860 uint32_t xpsr, xpsr_mask;
8861 bool ufault = false;
8862 bool sfault = false;
8863 bool return_to_sp_process;
8864 bool return_to_handler;
8865 bool rettobase = false;
8866 bool exc_secure = false;
8867 bool return_to_secure;
8868 bool ftype;
8869 bool restore_s16_s31;
8872 * If we're not in Handler mode then jumps to magic exception-exit
8873 * addresses don't have magic behaviour. However for the v8M
8874 * security extensions the magic secure-function-return has to
8875 * work in thread mode too, so to avoid doing an extra check in
8876 * the generated code we allow exception-exit magic to also cause the
8877 * internal exception and bring us here in thread mode. Correct code
8878 * will never try to do this (the following insn fetch will always
8879 * fault) so we the overhead of having taken an unnecessary exception
8880 * doesn't matter.
8882 if (!arm_v7m_is_handler_mode(env)) {
8883 return;
8887 * In the spec pseudocode ExceptionReturn() is called directly
8888 * from BXWritePC() and gets the full target PC value including
8889 * bit zero. In QEMU's implementation we treat it as a normal
8890 * jump-to-register (which is then caught later on), and so split
8891 * the target value up between env->regs[15] and env->thumb in
8892 * gen_bx(). Reconstitute it.
8894 excret = env->regs[15];
8895 if (env->thumb) {
8896 excret |= 1;
8899 qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32
8900 " previous exception %d\n",
8901 excret, env->v7m.exception);
8903 if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) {
8904 qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception "
8905 "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n",
8906 excret);
8909 ftype = excret & R_V7M_EXCRET_FTYPE_MASK;
8911 if (!arm_feature(env, ARM_FEATURE_VFP) && !ftype) {
8912 qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero FTYPE in exception "
8913 "exit PC value 0x%" PRIx32 " is UNPREDICTABLE "
8914 "if FPU not present\n",
8915 excret);
8916 ftype = true;
8919 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8921 * EXC_RETURN.ES validation check (R_SMFL). We must do this before
8922 * we pick which FAULTMASK to clear.
8924 if (!env->v7m.secure &&
8925 ((excret & R_V7M_EXCRET_ES_MASK) ||
8926 !(excret & R_V7M_EXCRET_DCRS_MASK))) {
8927 sfault = 1;
8928 /* For all other purposes, treat ES as 0 (R_HXSR) */
8929 excret &= ~R_V7M_EXCRET_ES_MASK;
8931 exc_secure = excret & R_V7M_EXCRET_ES_MASK;
8934 if (env->v7m.exception != ARMV7M_EXCP_NMI) {
8936 * Auto-clear FAULTMASK on return from other than NMI.
8937 * If the security extension is implemented then this only
8938 * happens if the raw execution priority is >= 0; the
8939 * value of the ES bit in the exception return value indicates
8940 * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.)
8942 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8943 if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) {
8944 env->v7m.faultmask[exc_secure] = 0;
8946 } else {
8947 env->v7m.faultmask[M_REG_NS] = 0;
8951 switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception,
8952 exc_secure)) {
8953 case -1:
8954 /* attempt to exit an exception that isn't active */
8955 ufault = true;
8956 break;
8957 case 0:
8958 /* still an irq active now */
8959 break;
8960 case 1:
8962 * We returned to base exception level, no nesting.
8963 * (In the pseudocode this is written using "NestedActivation != 1"
8964 * where we have 'rettobase == false'.)
8966 rettobase = true;
8967 break;
8968 default:
8969 g_assert_not_reached();
8972 return_to_handler = !(excret & R_V7M_EXCRET_MODE_MASK);
8973 return_to_sp_process = excret & R_V7M_EXCRET_SPSEL_MASK;
8974 return_to_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) &&
8975 (excret & R_V7M_EXCRET_S_MASK);
8977 if (arm_feature(env, ARM_FEATURE_V8)) {
8978 if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8980 * UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP);
8981 * we choose to take the UsageFault.
8983 if ((excret & R_V7M_EXCRET_S_MASK) ||
8984 (excret & R_V7M_EXCRET_ES_MASK) ||
8985 !(excret & R_V7M_EXCRET_DCRS_MASK)) {
8986 ufault = true;
8989 if (excret & R_V7M_EXCRET_RES0_MASK) {
8990 ufault = true;
8992 } else {
8993 /* For v7M we only recognize certain combinations of the low bits */
8994 switch (excret & 0xf) {
8995 case 1: /* Return to Handler */
8996 break;
8997 case 13: /* Return to Thread using Process stack */
8998 case 9: /* Return to Thread using Main stack */
9000 * We only need to check NONBASETHRDENA for v7M, because in
9001 * v8M this bit does not exist (it is RES1).
9003 if (!rettobase &&
9004 !(env->v7m.ccr[env->v7m.secure] &
9005 R_V7M_CCR_NONBASETHRDENA_MASK)) {
9006 ufault = true;
9008 break;
9009 default:
9010 ufault = true;
9015 * Set CONTROL.SPSEL from excret.SPSEL. Since we're still in
9016 * Handler mode (and will be until we write the new XPSR.Interrupt
9017 * field) this does not switch around the current stack pointer.
9018 * We must do this before we do any kind of tailchaining, including
9019 * for the derived exceptions on integrity check failures, or we will
9020 * give the guest an incorrect EXCRET.SPSEL value on exception entry.
9022 write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure);
9025 * Clear scratch FP values left in caller saved registers; this
9026 * must happen before any kind of tail chaining.
9028 if ((env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_CLRONRET_MASK) &&
9029 (env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK)) {
9030 if (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPACT_MASK) {
9031 env->v7m.sfsr |= R_V7M_SFSR_LSERR_MASK;
9032 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
9033 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
9034 "stackframe: error during lazy state deactivation\n");
9035 v7m_exception_taken(cpu, excret, true, false);
9036 return;
9037 } else {
9038 /* Clear s0..s15 and FPSCR */
9039 int i;
9041 for (i = 0; i < 16; i += 2) {
9042 *aa32_vfp_dreg(env, i / 2) = 0;
9044 vfp_set_fpscr(env, 0);
9048 if (sfault) {
9049 env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK;
9050 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
9051 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
9052 "stackframe: failed EXC_RETURN.ES validity check\n");
9053 v7m_exception_taken(cpu, excret, true, false);
9054 return;
9057 if (ufault) {
9059 * Bad exception return: instead of popping the exception
9060 * stack, directly take a usage fault on the current stack.
9062 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
9063 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
9064 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
9065 "stackframe: failed exception return integrity check\n");
9066 v7m_exception_taken(cpu, excret, true, false);
9067 return;
9071 * Tailchaining: if there is currently a pending exception that
9072 * is high enough priority to preempt execution at the level we're
9073 * about to return to, then just directly take that exception now,
9074 * avoiding an unstack-and-then-stack. Note that now we have
9075 * deactivated the previous exception by calling armv7m_nvic_complete_irq()
9076 * our current execution priority is already the execution priority we are
9077 * returning to -- none of the state we would unstack or set based on
9078 * the EXCRET value affects it.
9080 if (armv7m_nvic_can_take_pending_exception(env->nvic)) {
9081 qemu_log_mask(CPU_LOG_INT, "...tailchaining to pending exception\n");
9082 v7m_exception_taken(cpu, excret, true, false);
9083 return;
9086 switch_v7m_security_state(env, return_to_secure);
9090 * The stack pointer we should be reading the exception frame from
9091 * depends on bits in the magic exception return type value (and
9092 * for v8M isn't necessarily the stack pointer we will eventually
9093 * end up resuming execution with). Get a pointer to the location
9094 * in the CPU state struct where the SP we need is currently being
9095 * stored; we will use and modify it in place.
9096 * We use this limited C variable scope so we don't accidentally
9097 * use 'frame_sp_p' after we do something that makes it invalid.
9099 uint32_t *frame_sp_p = get_v7m_sp_ptr(env,
9100 return_to_secure,
9101 !return_to_handler,
9102 return_to_sp_process);
9103 uint32_t frameptr = *frame_sp_p;
9104 bool pop_ok = true;
9105 ARMMMUIdx mmu_idx;
9106 bool return_to_priv = return_to_handler ||
9107 !(env->v7m.control[return_to_secure] & R_V7M_CONTROL_NPRIV_MASK);
9109 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, return_to_secure,
9110 return_to_priv);
9112 if (!QEMU_IS_ALIGNED(frameptr, 8) &&
9113 arm_feature(env, ARM_FEATURE_V8)) {
9114 qemu_log_mask(LOG_GUEST_ERROR,
9115 "M profile exception return with non-8-aligned SP "
9116 "for destination state is UNPREDICTABLE\n");
9119 /* Do we need to pop callee-saved registers? */
9120 if (return_to_secure &&
9121 ((excret & R_V7M_EXCRET_ES_MASK) == 0 ||
9122 (excret & R_V7M_EXCRET_DCRS_MASK) == 0)) {
9123 uint32_t actual_sig;
9125 pop_ok = v7m_stack_read(cpu, &actual_sig, frameptr, mmu_idx);
9127 if (pop_ok && v7m_integrity_sig(env, excret) != actual_sig) {
9128 /* Take a SecureFault on the current stack */
9129 env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK;
9130 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
9131 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
9132 "stackframe: failed exception return integrity "
9133 "signature check\n");
9134 v7m_exception_taken(cpu, excret, true, false);
9135 return;
9138 pop_ok = pop_ok &&
9139 v7m_stack_read(cpu, &env->regs[4], frameptr + 0x8, mmu_idx) &&
9140 v7m_stack_read(cpu, &env->regs[5], frameptr + 0xc, mmu_idx) &&
9141 v7m_stack_read(cpu, &env->regs[6], frameptr + 0x10, mmu_idx) &&
9142 v7m_stack_read(cpu, &env->regs[7], frameptr + 0x14, mmu_idx) &&
9143 v7m_stack_read(cpu, &env->regs[8], frameptr + 0x18, mmu_idx) &&
9144 v7m_stack_read(cpu, &env->regs[9], frameptr + 0x1c, mmu_idx) &&
9145 v7m_stack_read(cpu, &env->regs[10], frameptr + 0x20, mmu_idx) &&
9146 v7m_stack_read(cpu, &env->regs[11], frameptr + 0x24, mmu_idx);
9148 frameptr += 0x28;
9151 /* Pop registers */
9152 pop_ok = pop_ok &&
9153 v7m_stack_read(cpu, &env->regs[0], frameptr, mmu_idx) &&
9154 v7m_stack_read(cpu, &env->regs[1], frameptr + 0x4, mmu_idx) &&
9155 v7m_stack_read(cpu, &env->regs[2], frameptr + 0x8, mmu_idx) &&
9156 v7m_stack_read(cpu, &env->regs[3], frameptr + 0xc, mmu_idx) &&
9157 v7m_stack_read(cpu, &env->regs[12], frameptr + 0x10, mmu_idx) &&
9158 v7m_stack_read(cpu, &env->regs[14], frameptr + 0x14, mmu_idx) &&
9159 v7m_stack_read(cpu, &env->regs[15], frameptr + 0x18, mmu_idx) &&
9160 v7m_stack_read(cpu, &xpsr, frameptr + 0x1c, mmu_idx);
9162 if (!pop_ok) {
9164 * v7m_stack_read() pended a fault, so take it (as a tail
9165 * chained exception on the same stack frame)
9167 qemu_log_mask(CPU_LOG_INT, "...derived exception on unstacking\n");
9168 v7m_exception_taken(cpu, excret, true, false);
9169 return;
9173 * Returning from an exception with a PC with bit 0 set is defined
9174 * behaviour on v8M (bit 0 is ignored), but for v7M it was specified
9175 * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore
9176 * the lsbit, and there are several RTOSes out there which incorrectly
9177 * assume the r15 in the stack frame should be a Thumb-style "lsbit
9178 * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but
9179 * complain about the badly behaved guest.
9181 if (env->regs[15] & 1) {
9182 env->regs[15] &= ~1U;
9183 if (!arm_feature(env, ARM_FEATURE_V8)) {
9184 qemu_log_mask(LOG_GUEST_ERROR,
9185 "M profile return from interrupt with misaligned "
9186 "PC is UNPREDICTABLE on v7M\n");
9190 if (arm_feature(env, ARM_FEATURE_V8)) {
9192 * For v8M we have to check whether the xPSR exception field
9193 * matches the EXCRET value for return to handler/thread
9194 * before we commit to changing the SP and xPSR.
9196 bool will_be_handler = (xpsr & XPSR_EXCP) != 0;
9197 if (return_to_handler != will_be_handler) {
9199 * Take an INVPC UsageFault on the current stack.
9200 * By this point we will have switched to the security state
9201 * for the background state, so this UsageFault will target
9202 * that state.
9204 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
9205 env->v7m.secure);
9206 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
9207 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
9208 "stackframe: failed exception return integrity "
9209 "check\n");
9210 v7m_exception_taken(cpu, excret, true, false);
9211 return;
9215 if (!ftype) {
9216 /* FP present and we need to handle it */
9217 if (!return_to_secure &&
9218 (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPACT_MASK)) {
9219 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
9220 env->v7m.sfsr |= R_V7M_SFSR_LSERR_MASK;
9221 qemu_log_mask(CPU_LOG_INT,
9222 "...taking SecureFault on existing stackframe: "
9223 "Secure LSPACT set but exception return is "
9224 "not to secure state\n");
9225 v7m_exception_taken(cpu, excret, true, false);
9226 return;
9229 restore_s16_s31 = return_to_secure &&
9230 (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK);
9232 if (env->v7m.fpccr[return_to_secure] & R_V7M_FPCCR_LSPACT_MASK) {
9233 /* State in FPU is still valid, just clear LSPACT */
9234 env->v7m.fpccr[return_to_secure] &= ~R_V7M_FPCCR_LSPACT_MASK;
9235 } else {
9236 int i;
9237 uint32_t fpscr;
9238 bool cpacr_pass, nsacr_pass;
9240 cpacr_pass = v7m_cpacr_pass(env, return_to_secure,
9241 return_to_priv);
9242 nsacr_pass = return_to_secure ||
9243 extract32(env->v7m.nsacr, 10, 1);
9245 if (!cpacr_pass) {
9246 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
9247 return_to_secure);
9248 env->v7m.cfsr[return_to_secure] |= R_V7M_CFSR_NOCP_MASK;
9249 qemu_log_mask(CPU_LOG_INT,
9250 "...taking UsageFault on existing "
9251 "stackframe: CPACR.CP10 prevents unstacking "
9252 "FP regs\n");
9253 v7m_exception_taken(cpu, excret, true, false);
9254 return;
9255 } else if (!nsacr_pass) {
9256 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, true);
9257 env->v7m.cfsr[M_REG_S] |= R_V7M_CFSR_INVPC_MASK;
9258 qemu_log_mask(CPU_LOG_INT,
9259 "...taking Secure UsageFault on existing "
9260 "stackframe: NSACR.CP10 prevents unstacking "
9261 "FP regs\n");
9262 v7m_exception_taken(cpu, excret, true, false);
9263 return;
9266 for (i = 0; i < (restore_s16_s31 ? 32 : 16); i += 2) {
9267 uint32_t slo, shi;
9268 uint64_t dn;
9269 uint32_t faddr = frameptr + 0x20 + 4 * i;
9271 if (i >= 16) {
9272 faddr += 8; /* Skip the slot for the FPSCR */
9275 pop_ok = pop_ok &&
9276 v7m_stack_read(cpu, &slo, faddr, mmu_idx) &&
9277 v7m_stack_read(cpu, &shi, faddr + 4, mmu_idx);
9279 if (!pop_ok) {
9280 break;
9283 dn = (uint64_t)shi << 32 | slo;
9284 *aa32_vfp_dreg(env, i / 2) = dn;
9286 pop_ok = pop_ok &&
9287 v7m_stack_read(cpu, &fpscr, frameptr + 0x60, mmu_idx);
9288 if (pop_ok) {
9289 vfp_set_fpscr(env, fpscr);
9291 if (!pop_ok) {
9293 * These regs are 0 if security extension present;
9294 * otherwise merely UNKNOWN. We zero always.
9296 for (i = 0; i < (restore_s16_s31 ? 32 : 16); i += 2) {
9297 *aa32_vfp_dreg(env, i / 2) = 0;
9299 vfp_set_fpscr(env, 0);
9303 env->v7m.control[M_REG_S] = FIELD_DP32(env->v7m.control[M_REG_S],
9304 V7M_CONTROL, FPCA, !ftype);
9306 /* Commit to consuming the stack frame */
9307 frameptr += 0x20;
9308 if (!ftype) {
9309 frameptr += 0x48;
9310 if (restore_s16_s31) {
9311 frameptr += 0x40;
9315 * Undo stack alignment (the SPREALIGN bit indicates that the original
9316 * pre-exception SP was not 8-aligned and we added a padding word to
9317 * align it, so we undo this by ORing in the bit that increases it
9318 * from the current 8-aligned value to the 8-unaligned value. (Adding 4
9319 * would work too but a logical OR is how the pseudocode specifies it.)
9321 if (xpsr & XPSR_SPREALIGN) {
9322 frameptr |= 4;
9324 *frame_sp_p = frameptr;
9327 xpsr_mask = ~(XPSR_SPREALIGN | XPSR_SFPA);
9328 if (!arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
9329 xpsr_mask &= ~XPSR_GE;
9331 /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */
9332 xpsr_write(env, xpsr, xpsr_mask);
9334 if (env->v7m.secure) {
9335 bool sfpa = xpsr & XPSR_SFPA;
9337 env->v7m.control[M_REG_S] = FIELD_DP32(env->v7m.control[M_REG_S],
9338 V7M_CONTROL, SFPA, sfpa);
9342 * The restored xPSR exception field will be zero if we're
9343 * resuming in Thread mode. If that doesn't match what the
9344 * exception return excret specified then this is a UsageFault.
9345 * v7M requires we make this check here; v8M did it earlier.
9347 if (return_to_handler != arm_v7m_is_handler_mode(env)) {
9349 * Take an INVPC UsageFault by pushing the stack again;
9350 * we know we're v7M so this is never a Secure UsageFault.
9352 bool ignore_stackfaults;
9354 assert(!arm_feature(env, ARM_FEATURE_V8));
9355 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false);
9356 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
9357 ignore_stackfaults = v7m_push_stack(cpu);
9358 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: "
9359 "failed exception return integrity check\n");
9360 v7m_exception_taken(cpu, excret, false, ignore_stackfaults);
9361 return;
9364 /* Otherwise, we have a successful exception exit. */
9365 arm_clear_exclusive(env);
9366 qemu_log_mask(CPU_LOG_INT, "...successful exception return\n");
9369 static bool do_v7m_function_return(ARMCPU *cpu)
9372 * v8M security extensions magic function return.
9373 * We may either:
9374 * (1) throw an exception (longjump)
9375 * (2) return true if we successfully handled the function return
9376 * (3) return false if we failed a consistency check and have
9377 * pended a UsageFault that needs to be taken now
9379 * At this point the magic return value is split between env->regs[15]
9380 * and env->thumb. We don't bother to reconstitute it because we don't
9381 * need it (all values are handled the same way).
9383 CPUARMState *env = &cpu->env;
9384 uint32_t newpc, newpsr, newpsr_exc;
9386 qemu_log_mask(CPU_LOG_INT, "...really v7M secure function return\n");
9389 bool threadmode, spsel;
9390 TCGMemOpIdx oi;
9391 ARMMMUIdx mmu_idx;
9392 uint32_t *frame_sp_p;
9393 uint32_t frameptr;
9395 /* Pull the return address and IPSR from the Secure stack */
9396 threadmode = !arm_v7m_is_handler_mode(env);
9397 spsel = env->v7m.control[M_REG_S] & R_V7M_CONTROL_SPSEL_MASK;
9399 frame_sp_p = get_v7m_sp_ptr(env, true, threadmode, spsel);
9400 frameptr = *frame_sp_p;
9403 * These loads may throw an exception (for MPU faults). We want to
9404 * do them as secure, so work out what MMU index that is.
9406 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
9407 oi = make_memop_idx(MO_LE, arm_to_core_mmu_idx(mmu_idx));
9408 newpc = helper_le_ldul_mmu(env, frameptr, oi, 0);
9409 newpsr = helper_le_ldul_mmu(env, frameptr + 4, oi, 0);
9411 /* Consistency checks on new IPSR */
9412 newpsr_exc = newpsr & XPSR_EXCP;
9413 if (!((env->v7m.exception == 0 && newpsr_exc == 0) ||
9414 (env->v7m.exception == 1 && newpsr_exc != 0))) {
9415 /* Pend the fault and tell our caller to take it */
9416 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
9417 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
9418 env->v7m.secure);
9419 qemu_log_mask(CPU_LOG_INT,
9420 "...taking INVPC UsageFault: "
9421 "IPSR consistency check failed\n");
9422 return false;
9425 *frame_sp_p = frameptr + 8;
9428 /* This invalidates frame_sp_p */
9429 switch_v7m_security_state(env, true);
9430 env->v7m.exception = newpsr_exc;
9431 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
9432 if (newpsr & XPSR_SFPA) {
9433 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_SFPA_MASK;
9435 xpsr_write(env, 0, XPSR_IT);
9436 env->thumb = newpc & 1;
9437 env->regs[15] = newpc & ~1;
9439 qemu_log_mask(CPU_LOG_INT, "...function return successful\n");
9440 return true;
9443 static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx,
9444 uint32_t addr, uint16_t *insn)
9447 * Load a 16-bit portion of a v7M instruction, returning true on success,
9448 * or false on failure (in which case we will have pended the appropriate
9449 * exception).
9450 * We need to do the instruction fetch's MPU and SAU checks
9451 * like this because there is no MMU index that would allow
9452 * doing the load with a single function call. Instead we must
9453 * first check that the security attributes permit the load
9454 * and that they don't mismatch on the two halves of the instruction,
9455 * and then we do the load as a secure load (ie using the security
9456 * attributes of the address, not the CPU, as architecturally required).
9458 CPUState *cs = CPU(cpu);
9459 CPUARMState *env = &cpu->env;
9460 V8M_SAttributes sattrs = {};
9461 MemTxAttrs attrs = {};
9462 ARMMMUFaultInfo fi = {};
9463 MemTxResult txres;
9464 target_ulong page_size;
9465 hwaddr physaddr;
9466 int prot;
9468 v8m_security_lookup(env, addr, MMU_INST_FETCH, mmu_idx, &sattrs);
9469 if (!sattrs.nsc || sattrs.ns) {
9471 * This must be the second half of the insn, and it straddles a
9472 * region boundary with the second half not being S&NSC.
9474 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
9475 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
9476 qemu_log_mask(CPU_LOG_INT,
9477 "...really SecureFault with SFSR.INVEP\n");
9478 return false;
9480 if (get_phys_addr(env, addr, MMU_INST_FETCH, mmu_idx,
9481 &physaddr, &attrs, &prot, &page_size, &fi, NULL)) {
9482 /* the MPU lookup failed */
9483 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
9484 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, env->v7m.secure);
9485 qemu_log_mask(CPU_LOG_INT, "...really MemManage with CFSR.IACCVIOL\n");
9486 return false;
9488 *insn = address_space_lduw_le(arm_addressspace(cs, attrs), physaddr,
9489 attrs, &txres);
9490 if (txres != MEMTX_OK) {
9491 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
9492 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
9493 qemu_log_mask(CPU_LOG_INT, "...really BusFault with CFSR.IBUSERR\n");
9494 return false;
9496 return true;
9499 static bool v7m_handle_execute_nsc(ARMCPU *cpu)
9502 * Check whether this attempt to execute code in a Secure & NS-Callable
9503 * memory region is for an SG instruction; if so, then emulate the
9504 * effect of the SG instruction and return true. Otherwise pend
9505 * the correct kind of exception and return false.
9507 CPUARMState *env = &cpu->env;
9508 ARMMMUIdx mmu_idx;
9509 uint16_t insn;
9512 * We should never get here unless get_phys_addr_pmsav8() caused
9513 * an exception for NS executing in S&NSC memory.
9515 assert(!env->v7m.secure);
9516 assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
9518 /* We want to do the MPU lookup as secure; work out what mmu_idx that is */
9519 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
9521 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15], &insn)) {
9522 return false;
9525 if (!env->thumb) {
9526 goto gen_invep;
9529 if (insn != 0xe97f) {
9531 * Not an SG instruction first half (we choose the IMPDEF
9532 * early-SG-check option).
9534 goto gen_invep;
9537 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15] + 2, &insn)) {
9538 return false;
9541 if (insn != 0xe97f) {
9543 * Not an SG instruction second half (yes, both halves of the SG
9544 * insn have the same hex value)
9546 goto gen_invep;
9550 * OK, we have confirmed that we really have an SG instruction.
9551 * We know we're NS in S memory so don't need to repeat those checks.
9553 qemu_log_mask(CPU_LOG_INT, "...really an SG instruction at 0x%08" PRIx32
9554 ", executing it\n", env->regs[15]);
9555 env->regs[14] &= ~1;
9556 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
9557 switch_v7m_security_state(env, true);
9558 xpsr_write(env, 0, XPSR_IT);
9559 env->regs[15] += 4;
9560 return true;
9562 gen_invep:
9563 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
9564 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
9565 qemu_log_mask(CPU_LOG_INT,
9566 "...really SecureFault with SFSR.INVEP\n");
9567 return false;
9570 void arm_v7m_cpu_do_interrupt(CPUState *cs)
9572 ARMCPU *cpu = ARM_CPU(cs);
9573 CPUARMState *env = &cpu->env;
9574 uint32_t lr;
9575 bool ignore_stackfaults;
9577 arm_log_exception(cs->exception_index);
9580 * For exceptions we just mark as pending on the NVIC, and let that
9581 * handle it.
9583 switch (cs->exception_index) {
9584 case EXCP_UDEF:
9585 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
9586 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK;
9587 break;
9588 case EXCP_NOCP:
9591 * NOCP might be directed to something other than the current
9592 * security state if this fault is because of NSACR; we indicate
9593 * the target security state using exception.target_el.
9595 int target_secstate;
9597 if (env->exception.target_el == 3) {
9598 target_secstate = M_REG_S;
9599 } else {
9600 target_secstate = env->v7m.secure;
9602 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, target_secstate);
9603 env->v7m.cfsr[target_secstate] |= R_V7M_CFSR_NOCP_MASK;
9604 break;
9606 case EXCP_INVSTATE:
9607 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
9608 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK;
9609 break;
9610 case EXCP_STKOF:
9611 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
9612 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
9613 break;
9614 case EXCP_LSERR:
9615 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
9616 env->v7m.sfsr |= R_V7M_SFSR_LSERR_MASK;
9617 break;
9618 case EXCP_UNALIGNED:
9619 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
9620 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNALIGNED_MASK;
9621 break;
9622 case EXCP_SWI:
9623 /* The PC already points to the next instruction. */
9624 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure);
9625 break;
9626 case EXCP_PREFETCH_ABORT:
9627 case EXCP_DATA_ABORT:
9629 * Note that for M profile we don't have a guest facing FSR, but
9630 * the env->exception.fsr will be populated by the code that
9631 * raises the fault, in the A profile short-descriptor format.
9633 switch (env->exception.fsr & 0xf) {
9634 case M_FAKE_FSR_NSC_EXEC:
9636 * Exception generated when we try to execute code at an address
9637 * which is marked as Secure & Non-Secure Callable and the CPU
9638 * is in the Non-Secure state. The only instruction which can
9639 * be executed like this is SG (and that only if both halves of
9640 * the SG instruction have the same security attributes.)
9641 * Everything else must generate an INVEP SecureFault, so we
9642 * emulate the SG instruction here.
9644 if (v7m_handle_execute_nsc(cpu)) {
9645 return;
9647 break;
9648 case M_FAKE_FSR_SFAULT:
9650 * Various flavours of SecureFault for attempts to execute or
9651 * access data in the wrong security state.
9653 switch (cs->exception_index) {
9654 case EXCP_PREFETCH_ABORT:
9655 if (env->v7m.secure) {
9656 env->v7m.sfsr |= R_V7M_SFSR_INVTRAN_MASK;
9657 qemu_log_mask(CPU_LOG_INT,
9658 "...really SecureFault with SFSR.INVTRAN\n");
9659 } else {
9660 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
9661 qemu_log_mask(CPU_LOG_INT,
9662 "...really SecureFault with SFSR.INVEP\n");
9664 break;
9665 case EXCP_DATA_ABORT:
9666 /* This must be an NS access to S memory */
9667 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK;
9668 qemu_log_mask(CPU_LOG_INT,
9669 "...really SecureFault with SFSR.AUVIOL\n");
9670 break;
9672 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
9673 break;
9674 case 0x8: /* External Abort */
9675 switch (cs->exception_index) {
9676 case EXCP_PREFETCH_ABORT:
9677 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
9678 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n");
9679 break;
9680 case EXCP_DATA_ABORT:
9681 env->v7m.cfsr[M_REG_NS] |=
9682 (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK);
9683 env->v7m.bfar = env->exception.vaddress;
9684 qemu_log_mask(CPU_LOG_INT,
9685 "...with CFSR.PRECISERR and BFAR 0x%x\n",
9686 env->v7m.bfar);
9687 break;
9689 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
9690 break;
9691 default:
9693 * All other FSR values are either MPU faults or "can't happen
9694 * for M profile" cases.
9696 switch (cs->exception_index) {
9697 case EXCP_PREFETCH_ABORT:
9698 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
9699 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n");
9700 break;
9701 case EXCP_DATA_ABORT:
9702 env->v7m.cfsr[env->v7m.secure] |=
9703 (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK);
9704 env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress;
9705 qemu_log_mask(CPU_LOG_INT,
9706 "...with CFSR.DACCVIOL and MMFAR 0x%x\n",
9707 env->v7m.mmfar[env->v7m.secure]);
9708 break;
9710 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM,
9711 env->v7m.secure);
9712 break;
9714 break;
9715 case EXCP_BKPT:
9716 if (semihosting_enabled()) {
9717 int nr;
9718 nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff;
9719 if (nr == 0xab) {
9720 env->regs[15] += 2;
9721 qemu_log_mask(CPU_LOG_INT,
9722 "...handling as semihosting call 0x%x\n",
9723 env->regs[0]);
9724 env->regs[0] = do_arm_semihosting(env);
9725 return;
9728 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false);
9729 break;
9730 case EXCP_IRQ:
9731 break;
9732 case EXCP_EXCEPTION_EXIT:
9733 if (env->regs[15] < EXC_RETURN_MIN_MAGIC) {
9734 /* Must be v8M security extension function return */
9735 assert(env->regs[15] >= FNC_RETURN_MIN_MAGIC);
9736 assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
9737 if (do_v7m_function_return(cpu)) {
9738 return;
9740 } else {
9741 do_v7m_exception_exit(cpu);
9742 return;
9744 break;
9745 case EXCP_LAZYFP:
9747 * We already pended the specific exception in the NVIC in the
9748 * v7m_preserve_fp_state() helper function.
9750 break;
9751 default:
9752 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9753 return; /* Never happens. Keep compiler happy. */
9756 if (arm_feature(env, ARM_FEATURE_V8)) {
9757 lr = R_V7M_EXCRET_RES1_MASK |
9758 R_V7M_EXCRET_DCRS_MASK;
9760 * The S bit indicates whether we should return to Secure
9761 * or NonSecure (ie our current state).
9762 * The ES bit indicates whether we're taking this exception
9763 * to Secure or NonSecure (ie our target state). We set it
9764 * later, in v7m_exception_taken().
9765 * The SPSEL bit is also set in v7m_exception_taken() for v8M.
9766 * This corresponds to the ARM ARM pseudocode for v8M setting
9767 * some LR bits in PushStack() and some in ExceptionTaken();
9768 * the distinction matters for the tailchain cases where we
9769 * can take an exception without pushing the stack.
9771 if (env->v7m.secure) {
9772 lr |= R_V7M_EXCRET_S_MASK;
9774 if (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK)) {
9775 lr |= R_V7M_EXCRET_FTYPE_MASK;
9777 } else {
9778 lr = R_V7M_EXCRET_RES1_MASK |
9779 R_V7M_EXCRET_S_MASK |
9780 R_V7M_EXCRET_DCRS_MASK |
9781 R_V7M_EXCRET_FTYPE_MASK |
9782 R_V7M_EXCRET_ES_MASK;
9783 if (env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK) {
9784 lr |= R_V7M_EXCRET_SPSEL_MASK;
9787 if (!arm_v7m_is_handler_mode(env)) {
9788 lr |= R_V7M_EXCRET_MODE_MASK;
9791 ignore_stackfaults = v7m_push_stack(cpu);
9792 v7m_exception_taken(cpu, lr, false, ignore_stackfaults);
9796 * Function used to synchronize QEMU's AArch64 register set with AArch32
9797 * register set. This is necessary when switching between AArch32 and AArch64
9798 * execution state.
9800 void aarch64_sync_32_to_64(CPUARMState *env)
9802 int i;
9803 uint32_t mode = env->uncached_cpsr & CPSR_M;
9805 /* We can blanket copy R[0:7] to X[0:7] */
9806 for (i = 0; i < 8; i++) {
9807 env->xregs[i] = env->regs[i];
9811 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
9812 * Otherwise, they come from the banked user regs.
9814 if (mode == ARM_CPU_MODE_FIQ) {
9815 for (i = 8; i < 13; i++) {
9816 env->xregs[i] = env->usr_regs[i - 8];
9818 } else {
9819 for (i = 8; i < 13; i++) {
9820 env->xregs[i] = env->regs[i];
9825 * Registers x13-x23 are the various mode SP and FP registers. Registers
9826 * r13 and r14 are only copied if we are in that mode, otherwise we copy
9827 * from the mode banked register.
9829 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9830 env->xregs[13] = env->regs[13];
9831 env->xregs[14] = env->regs[14];
9832 } else {
9833 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
9834 /* HYP is an exception in that it is copied from r14 */
9835 if (mode == ARM_CPU_MODE_HYP) {
9836 env->xregs[14] = env->regs[14];
9837 } else {
9838 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
9842 if (mode == ARM_CPU_MODE_HYP) {
9843 env->xregs[15] = env->regs[13];
9844 } else {
9845 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
9848 if (mode == ARM_CPU_MODE_IRQ) {
9849 env->xregs[16] = env->regs[14];
9850 env->xregs[17] = env->regs[13];
9851 } else {
9852 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
9853 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
9856 if (mode == ARM_CPU_MODE_SVC) {
9857 env->xregs[18] = env->regs[14];
9858 env->xregs[19] = env->regs[13];
9859 } else {
9860 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
9861 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
9864 if (mode == ARM_CPU_MODE_ABT) {
9865 env->xregs[20] = env->regs[14];
9866 env->xregs[21] = env->regs[13];
9867 } else {
9868 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
9869 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
9872 if (mode == ARM_CPU_MODE_UND) {
9873 env->xregs[22] = env->regs[14];
9874 env->xregs[23] = env->regs[13];
9875 } else {
9876 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
9877 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
9881 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
9882 * mode, then we can copy from r8-r14. Otherwise, we copy from the
9883 * FIQ bank for r8-r14.
9885 if (mode == ARM_CPU_MODE_FIQ) {
9886 for (i = 24; i < 31; i++) {
9887 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
9889 } else {
9890 for (i = 24; i < 29; i++) {
9891 env->xregs[i] = env->fiq_regs[i - 24];
9893 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
9894 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
9897 env->pc = env->regs[15];
9901 * Function used to synchronize QEMU's AArch32 register set with AArch64
9902 * register set. This is necessary when switching between AArch32 and AArch64
9903 * execution state.
9905 void aarch64_sync_64_to_32(CPUARMState *env)
9907 int i;
9908 uint32_t mode = env->uncached_cpsr & CPSR_M;
9910 /* We can blanket copy X[0:7] to R[0:7] */
9911 for (i = 0; i < 8; i++) {
9912 env->regs[i] = env->xregs[i];
9916 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
9917 * Otherwise, we copy x8-x12 into the banked user regs.
9919 if (mode == ARM_CPU_MODE_FIQ) {
9920 for (i = 8; i < 13; i++) {
9921 env->usr_regs[i - 8] = env->xregs[i];
9923 } else {
9924 for (i = 8; i < 13; i++) {
9925 env->regs[i] = env->xregs[i];
9930 * Registers r13 & r14 depend on the current mode.
9931 * If we are in a given mode, we copy the corresponding x registers to r13
9932 * and r14. Otherwise, we copy the x register to the banked r13 and r14
9933 * for the mode.
9935 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9936 env->regs[13] = env->xregs[13];
9937 env->regs[14] = env->xregs[14];
9938 } else {
9939 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
9942 * HYP is an exception in that it does not have its own banked r14 but
9943 * shares the USR r14
9945 if (mode == ARM_CPU_MODE_HYP) {
9946 env->regs[14] = env->xregs[14];
9947 } else {
9948 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
9952 if (mode == ARM_CPU_MODE_HYP) {
9953 env->regs[13] = env->xregs[15];
9954 } else {
9955 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
9958 if (mode == ARM_CPU_MODE_IRQ) {
9959 env->regs[14] = env->xregs[16];
9960 env->regs[13] = env->xregs[17];
9961 } else {
9962 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
9963 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
9966 if (mode == ARM_CPU_MODE_SVC) {
9967 env->regs[14] = env->xregs[18];
9968 env->regs[13] = env->xregs[19];
9969 } else {
9970 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
9971 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
9974 if (mode == ARM_CPU_MODE_ABT) {
9975 env->regs[14] = env->xregs[20];
9976 env->regs[13] = env->xregs[21];
9977 } else {
9978 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
9979 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
9982 if (mode == ARM_CPU_MODE_UND) {
9983 env->regs[14] = env->xregs[22];
9984 env->regs[13] = env->xregs[23];
9985 } else {
9986 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
9987 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
9990 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
9991 * mode, then we can copy to r8-r14. Otherwise, we copy to the
9992 * FIQ bank for r8-r14.
9994 if (mode == ARM_CPU_MODE_FIQ) {
9995 for (i = 24; i < 31; i++) {
9996 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
9998 } else {
9999 for (i = 24; i < 29; i++) {
10000 env->fiq_regs[i - 24] = env->xregs[i];
10002 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
10003 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
10006 env->regs[15] = env->pc;
10009 static void take_aarch32_exception(CPUARMState *env, int new_mode,
10010 uint32_t mask, uint32_t offset,
10011 uint32_t newpc)
10013 /* Change the CPU state so as to actually take the exception. */
10014 switch_mode(env, new_mode);
10016 * For exceptions taken to AArch32 we must clear the SS bit in both
10017 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
10019 env->uncached_cpsr &= ~PSTATE_SS;
10020 env->spsr = cpsr_read(env);
10021 /* Clear IT bits. */
10022 env->condexec_bits = 0;
10023 /* Switch to the new mode, and to the correct instruction set. */
10024 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
10025 /* Set new mode endianness */
10026 env->uncached_cpsr &= ~CPSR_E;
10027 if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) {
10028 env->uncached_cpsr |= CPSR_E;
10030 /* J and IL must always be cleared for exception entry */
10031 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
10032 env->daif |= mask;
10034 if (new_mode == ARM_CPU_MODE_HYP) {
10035 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
10036 env->elr_el[2] = env->regs[15];
10037 } else {
10039 * this is a lie, as there was no c1_sys on V4T/V5, but who cares
10040 * and we should just guard the thumb mode on V4
10042 if (arm_feature(env, ARM_FEATURE_V4T)) {
10043 env->thumb =
10044 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
10046 env->regs[14] = env->regs[15] + offset;
10048 env->regs[15] = newpc;
10051 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
10054 * Handle exception entry to Hyp mode; this is sufficiently
10055 * different to entry to other AArch32 modes that we handle it
10056 * separately here.
10058 * The vector table entry used is always the 0x14 Hyp mode entry point,
10059 * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp.
10060 * The offset applied to the preferred return address is always zero
10061 * (see DDI0487C.a section G1.12.3).
10062 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
10064 uint32_t addr, mask;
10065 ARMCPU *cpu = ARM_CPU(cs);
10066 CPUARMState *env = &cpu->env;
10068 switch (cs->exception_index) {
10069 case EXCP_UDEF:
10070 addr = 0x04;
10071 break;
10072 case EXCP_SWI:
10073 addr = 0x14;
10074 break;
10075 case EXCP_BKPT:
10076 /* Fall through to prefetch abort. */
10077 case EXCP_PREFETCH_ABORT:
10078 env->cp15.ifar_s = env->exception.vaddress;
10079 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
10080 (uint32_t)env->exception.vaddress);
10081 addr = 0x0c;
10082 break;
10083 case EXCP_DATA_ABORT:
10084 env->cp15.dfar_s = env->exception.vaddress;
10085 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
10086 (uint32_t)env->exception.vaddress);
10087 addr = 0x10;
10088 break;
10089 case EXCP_IRQ:
10090 addr = 0x18;
10091 break;
10092 case EXCP_FIQ:
10093 addr = 0x1c;
10094 break;
10095 case EXCP_HVC:
10096 addr = 0x08;
10097 break;
10098 case EXCP_HYP_TRAP:
10099 addr = 0x14;
10100 default:
10101 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10104 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
10105 if (!arm_feature(env, ARM_FEATURE_V8)) {
10107 * QEMU syndrome values are v8-style. v7 has the IL bit
10108 * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
10109 * If this is a v7 CPU, squash the IL bit in those cases.
10111 if (cs->exception_index == EXCP_PREFETCH_ABORT ||
10112 (cs->exception_index == EXCP_DATA_ABORT &&
10113 !(env->exception.syndrome & ARM_EL_ISV)) ||
10114 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
10115 env->exception.syndrome &= ~ARM_EL_IL;
10118 env->cp15.esr_el[2] = env->exception.syndrome;
10121 if (arm_current_el(env) != 2 && addr < 0x14) {
10122 addr = 0x14;
10125 mask = 0;
10126 if (!(env->cp15.scr_el3 & SCR_EA)) {
10127 mask |= CPSR_A;
10129 if (!(env->cp15.scr_el3 & SCR_IRQ)) {
10130 mask |= CPSR_I;
10132 if (!(env->cp15.scr_el3 & SCR_FIQ)) {
10133 mask |= CPSR_F;
10136 addr += env->cp15.hvbar;
10138 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
10141 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
10143 ARMCPU *cpu = ARM_CPU(cs);
10144 CPUARMState *env = &cpu->env;
10145 uint32_t addr;
10146 uint32_t mask;
10147 int new_mode;
10148 uint32_t offset;
10149 uint32_t moe;
10151 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
10152 switch (syn_get_ec(env->exception.syndrome)) {
10153 case EC_BREAKPOINT:
10154 case EC_BREAKPOINT_SAME_EL:
10155 moe = 1;
10156 break;
10157 case EC_WATCHPOINT:
10158 case EC_WATCHPOINT_SAME_EL:
10159 moe = 10;
10160 break;
10161 case EC_AA32_BKPT:
10162 moe = 3;
10163 break;
10164 case EC_VECTORCATCH:
10165 moe = 5;
10166 break;
10167 default:
10168 moe = 0;
10169 break;
10172 if (moe) {
10173 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
10176 if (env->exception.target_el == 2) {
10177 arm_cpu_do_interrupt_aarch32_hyp(cs);
10178 return;
10181 switch (cs->exception_index) {
10182 case EXCP_UDEF:
10183 new_mode = ARM_CPU_MODE_UND;
10184 addr = 0x04;
10185 mask = CPSR_I;
10186 if (env->thumb)
10187 offset = 2;
10188 else
10189 offset = 4;
10190 break;
10191 case EXCP_SWI:
10192 new_mode = ARM_CPU_MODE_SVC;
10193 addr = 0x08;
10194 mask = CPSR_I;
10195 /* The PC already points to the next instruction. */
10196 offset = 0;
10197 break;
10198 case EXCP_BKPT:
10199 /* Fall through to prefetch abort. */
10200 case EXCP_PREFETCH_ABORT:
10201 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
10202 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
10203 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
10204 env->exception.fsr, (uint32_t)env->exception.vaddress);
10205 new_mode = ARM_CPU_MODE_ABT;
10206 addr = 0x0c;
10207 mask = CPSR_A | CPSR_I;
10208 offset = 4;
10209 break;
10210 case EXCP_DATA_ABORT:
10211 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
10212 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
10213 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
10214 env->exception.fsr,
10215 (uint32_t)env->exception.vaddress);
10216 new_mode = ARM_CPU_MODE_ABT;
10217 addr = 0x10;
10218 mask = CPSR_A | CPSR_I;
10219 offset = 8;
10220 break;
10221 case EXCP_IRQ:
10222 new_mode = ARM_CPU_MODE_IRQ;
10223 addr = 0x18;
10224 /* Disable IRQ and imprecise data aborts. */
10225 mask = CPSR_A | CPSR_I;
10226 offset = 4;
10227 if (env->cp15.scr_el3 & SCR_IRQ) {
10228 /* IRQ routed to monitor mode */
10229 new_mode = ARM_CPU_MODE_MON;
10230 mask |= CPSR_F;
10232 break;
10233 case EXCP_FIQ:
10234 new_mode = ARM_CPU_MODE_FIQ;
10235 addr = 0x1c;
10236 /* Disable FIQ, IRQ and imprecise data aborts. */
10237 mask = CPSR_A | CPSR_I | CPSR_F;
10238 if (env->cp15.scr_el3 & SCR_FIQ) {
10239 /* FIQ routed to monitor mode */
10240 new_mode = ARM_CPU_MODE_MON;
10242 offset = 4;
10243 break;
10244 case EXCP_VIRQ:
10245 new_mode = ARM_CPU_MODE_IRQ;
10246 addr = 0x18;
10247 /* Disable IRQ and imprecise data aborts. */
10248 mask = CPSR_A | CPSR_I;
10249 offset = 4;
10250 break;
10251 case EXCP_VFIQ:
10252 new_mode = ARM_CPU_MODE_FIQ;
10253 addr = 0x1c;
10254 /* Disable FIQ, IRQ and imprecise data aborts. */
10255 mask = CPSR_A | CPSR_I | CPSR_F;
10256 offset = 4;
10257 break;
10258 case EXCP_SMC:
10259 new_mode = ARM_CPU_MODE_MON;
10260 addr = 0x08;
10261 mask = CPSR_A | CPSR_I | CPSR_F;
10262 offset = 0;
10263 break;
10264 default:
10265 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10266 return; /* Never happens. Keep compiler happy. */
10269 if (new_mode == ARM_CPU_MODE_MON) {
10270 addr += env->cp15.mvbar;
10271 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
10272 /* High vectors. When enabled, base address cannot be remapped. */
10273 addr += 0xffff0000;
10274 } else {
10275 /* ARM v7 architectures provide a vector base address register to remap
10276 * the interrupt vector table.
10277 * This register is only followed in non-monitor mode, and is banked.
10278 * Note: only bits 31:5 are valid.
10280 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
10283 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
10284 env->cp15.scr_el3 &= ~SCR_NS;
10287 take_aarch32_exception(env, new_mode, mask, offset, addr);
10290 /* Handle exception entry to a target EL which is using AArch64 */
10291 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
10293 ARMCPU *cpu = ARM_CPU(cs);
10294 CPUARMState *env = &cpu->env;
10295 unsigned int new_el = env->exception.target_el;
10296 target_ulong addr = env->cp15.vbar_el[new_el];
10297 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
10298 unsigned int cur_el = arm_current_el(env);
10301 * Note that new_el can never be 0. If cur_el is 0, then
10302 * el0_a64 is is_a64(), else el0_a64 is ignored.
10304 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
10306 if (cur_el < new_el) {
10307 /* Entry vector offset depends on whether the implemented EL
10308 * immediately lower than the target level is using AArch32 or AArch64
10310 bool is_aa64;
10312 switch (new_el) {
10313 case 3:
10314 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
10315 break;
10316 case 2:
10317 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
10318 break;
10319 case 1:
10320 is_aa64 = is_a64(env);
10321 break;
10322 default:
10323 g_assert_not_reached();
10326 if (is_aa64) {
10327 addr += 0x400;
10328 } else {
10329 addr += 0x600;
10331 } else if (pstate_read(env) & PSTATE_SP) {
10332 addr += 0x200;
10335 switch (cs->exception_index) {
10336 case EXCP_PREFETCH_ABORT:
10337 case EXCP_DATA_ABORT:
10338 env->cp15.far_el[new_el] = env->exception.vaddress;
10339 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
10340 env->cp15.far_el[new_el]);
10341 /* fall through */
10342 case EXCP_BKPT:
10343 case EXCP_UDEF:
10344 case EXCP_SWI:
10345 case EXCP_HVC:
10346 case EXCP_HYP_TRAP:
10347 case EXCP_SMC:
10348 if (syn_get_ec(env->exception.syndrome) == EC_ADVSIMDFPACCESSTRAP) {
10350 * QEMU internal FP/SIMD syndromes from AArch32 include the
10351 * TA and coproc fields which are only exposed if the exception
10352 * is taken to AArch32 Hyp mode. Mask them out to get a valid
10353 * AArch64 format syndrome.
10355 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
10357 env->cp15.esr_el[new_el] = env->exception.syndrome;
10358 break;
10359 case EXCP_IRQ:
10360 case EXCP_VIRQ:
10361 addr += 0x80;
10362 break;
10363 case EXCP_FIQ:
10364 case EXCP_VFIQ:
10365 addr += 0x100;
10366 break;
10367 case EXCP_SEMIHOST:
10368 qemu_log_mask(CPU_LOG_INT,
10369 "...handling as semihosting call 0x%" PRIx64 "\n",
10370 env->xregs[0]);
10371 env->xregs[0] = do_arm_semihosting(env);
10372 return;
10373 default:
10374 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10377 if (is_a64(env)) {
10378 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
10379 aarch64_save_sp(env, arm_current_el(env));
10380 env->elr_el[new_el] = env->pc;
10381 } else {
10382 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
10383 env->elr_el[new_el] = env->regs[15];
10385 aarch64_sync_32_to_64(env);
10387 env->condexec_bits = 0;
10389 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
10390 env->elr_el[new_el]);
10392 pstate_write(env, PSTATE_DAIF | new_mode);
10393 env->aarch64 = 1;
10394 aarch64_restore_sp(env, new_el);
10396 env->pc = addr;
10398 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
10399 new_el, env->pc, pstate_read(env));
10402 static inline bool check_for_semihosting(CPUState *cs)
10404 #ifdef CONFIG_TCG
10405 /* Check whether this exception is a semihosting call; if so
10406 * then handle it and return true; otherwise return false.
10408 ARMCPU *cpu = ARM_CPU(cs);
10409 CPUARMState *env = &cpu->env;
10411 if (is_a64(env)) {
10412 if (cs->exception_index == EXCP_SEMIHOST) {
10413 /* This is always the 64-bit semihosting exception.
10414 * The "is this usermode" and "is semihosting enabled"
10415 * checks have been done at translate time.
10417 qemu_log_mask(CPU_LOG_INT,
10418 "...handling as semihosting call 0x%" PRIx64 "\n",
10419 env->xregs[0]);
10420 env->xregs[0] = do_arm_semihosting(env);
10421 return true;
10423 return false;
10424 } else {
10425 uint32_t imm;
10427 /* Only intercept calls from privileged modes, to provide some
10428 * semblance of security.
10430 if (cs->exception_index != EXCP_SEMIHOST &&
10431 (!semihosting_enabled() ||
10432 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) {
10433 return false;
10436 switch (cs->exception_index) {
10437 case EXCP_SEMIHOST:
10438 /* This is always a semihosting call; the "is this usermode"
10439 * and "is semihosting enabled" checks have been done at
10440 * translate time.
10442 break;
10443 case EXCP_SWI:
10444 /* Check for semihosting interrupt. */
10445 if (env->thumb) {
10446 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env))
10447 & 0xff;
10448 if (imm == 0xab) {
10449 break;
10451 } else {
10452 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env))
10453 & 0xffffff;
10454 if (imm == 0x123456) {
10455 break;
10458 return false;
10459 case EXCP_BKPT:
10460 /* See if this is a semihosting syscall. */
10461 if (env->thumb) {
10462 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env))
10463 & 0xff;
10464 if (imm == 0xab) {
10465 env->regs[15] += 2;
10466 break;
10469 return false;
10470 default:
10471 return false;
10474 qemu_log_mask(CPU_LOG_INT,
10475 "...handling as semihosting call 0x%x\n",
10476 env->regs[0]);
10477 env->regs[0] = do_arm_semihosting(env);
10478 return true;
10480 #else
10481 return false;
10482 #endif
10485 /* Handle a CPU exception for A and R profile CPUs.
10486 * Do any appropriate logging, handle PSCI calls, and then hand off
10487 * to the AArch64-entry or AArch32-entry function depending on the
10488 * target exception level's register width.
10490 void arm_cpu_do_interrupt(CPUState *cs)
10492 ARMCPU *cpu = ARM_CPU(cs);
10493 CPUARMState *env = &cpu->env;
10494 unsigned int new_el = env->exception.target_el;
10496 assert(!arm_feature(env, ARM_FEATURE_M));
10498 arm_log_exception(cs->exception_index);
10499 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
10500 new_el);
10501 if (qemu_loglevel_mask(CPU_LOG_INT)
10502 && !excp_is_internal(cs->exception_index)) {
10503 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
10504 syn_get_ec(env->exception.syndrome),
10505 env->exception.syndrome);
10508 if (arm_is_psci_call(cpu, cs->exception_index)) {
10509 arm_handle_psci_call(cpu);
10510 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
10511 return;
10514 /* Semihosting semantics depend on the register width of the
10515 * code that caused the exception, not the target exception level,
10516 * so must be handled here.
10518 if (check_for_semihosting(cs)) {
10519 return;
10522 /* Hooks may change global state so BQL should be held, also the
10523 * BQL needs to be held for any modification of
10524 * cs->interrupt_request.
10526 g_assert(qemu_mutex_iothread_locked());
10528 arm_call_pre_el_change_hook(cpu);
10530 assert(!excp_is_internal(cs->exception_index));
10531 if (arm_el_is_aa64(env, new_el)) {
10532 arm_cpu_do_interrupt_aarch64(cs);
10533 } else {
10534 arm_cpu_do_interrupt_aarch32(cs);
10537 arm_call_el_change_hook(cpu);
10539 if (!kvm_enabled()) {
10540 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
10543 #endif /* !CONFIG_USER_ONLY */
10545 /* Return the exception level which controls this address translation regime */
10546 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
10548 switch (mmu_idx) {
10549 case ARMMMUIdx_S2NS:
10550 case ARMMMUIdx_S1E2:
10551 return 2;
10552 case ARMMMUIdx_S1E3:
10553 return 3;
10554 case ARMMMUIdx_S1SE0:
10555 return arm_el_is_aa64(env, 3) ? 1 : 3;
10556 case ARMMMUIdx_S1SE1:
10557 case ARMMMUIdx_S1NSE0:
10558 case ARMMMUIdx_S1NSE1:
10559 case ARMMMUIdx_MPrivNegPri:
10560 case ARMMMUIdx_MUserNegPri:
10561 case ARMMMUIdx_MPriv:
10562 case ARMMMUIdx_MUser:
10563 case ARMMMUIdx_MSPrivNegPri:
10564 case ARMMMUIdx_MSUserNegPri:
10565 case ARMMMUIdx_MSPriv:
10566 case ARMMMUIdx_MSUser:
10567 return 1;
10568 default:
10569 g_assert_not_reached();
10573 #ifndef CONFIG_USER_ONLY
10575 /* Return the SCTLR value which controls this address translation regime */
10576 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
10578 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
10581 /* Return true if the specified stage of address translation is disabled */
10582 static inline bool regime_translation_disabled(CPUARMState *env,
10583 ARMMMUIdx mmu_idx)
10585 if (arm_feature(env, ARM_FEATURE_M)) {
10586 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
10587 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
10588 case R_V7M_MPU_CTRL_ENABLE_MASK:
10589 /* Enabled, but not for HardFault and NMI */
10590 return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
10591 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
10592 /* Enabled for all cases */
10593 return false;
10594 case 0:
10595 default:
10596 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
10597 * we warned about that in armv7m_nvic.c when the guest set it.
10599 return true;
10603 if (mmu_idx == ARMMMUIdx_S2NS) {
10604 /* HCR.DC means HCR.VM behaves as 1 */
10605 return (env->cp15.hcr_el2 & (HCR_DC | HCR_VM)) == 0;
10608 if (env->cp15.hcr_el2 & HCR_TGE) {
10609 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
10610 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
10611 return true;
10615 if ((env->cp15.hcr_el2 & HCR_DC) &&
10616 (mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1)) {
10617 /* HCR.DC means SCTLR_EL1.M behaves as 0 */
10618 return true;
10621 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
10624 static inline bool regime_translation_big_endian(CPUARMState *env,
10625 ARMMMUIdx mmu_idx)
10627 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
10630 /* Return the TTBR associated with this translation regime */
10631 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
10632 int ttbrn)
10634 if (mmu_idx == ARMMMUIdx_S2NS) {
10635 return env->cp15.vttbr_el2;
10637 if (ttbrn == 0) {
10638 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
10639 } else {
10640 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
10644 #endif /* !CONFIG_USER_ONLY */
10646 /* Return the TCR controlling this translation regime */
10647 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
10649 if (mmu_idx == ARMMMUIdx_S2NS) {
10650 return &env->cp15.vtcr_el2;
10652 return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
10655 /* Convert a possible stage1+2 MMU index into the appropriate
10656 * stage 1 MMU index
10658 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
10660 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
10661 mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0);
10663 return mmu_idx;
10666 /* Return true if the translation regime is using LPAE format page tables */
10667 static inline bool regime_using_lpae_format(CPUARMState *env,
10668 ARMMMUIdx mmu_idx)
10670 int el = regime_el(env, mmu_idx);
10671 if (el == 2 || arm_el_is_aa64(env, el)) {
10672 return true;
10674 if (arm_feature(env, ARM_FEATURE_LPAE)
10675 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
10676 return true;
10678 return false;
10681 /* Returns true if the stage 1 translation regime is using LPAE format page
10682 * tables. Used when raising alignment exceptions, whose FSR changes depending
10683 * on whether the long or short descriptor format is in use. */
10684 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
10686 mmu_idx = stage_1_mmu_idx(mmu_idx);
10688 return regime_using_lpae_format(env, mmu_idx);
10691 #ifndef CONFIG_USER_ONLY
10692 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
10694 switch (mmu_idx) {
10695 case ARMMMUIdx_S1SE0:
10696 case ARMMMUIdx_S1NSE0:
10697 case ARMMMUIdx_MUser:
10698 case ARMMMUIdx_MSUser:
10699 case ARMMMUIdx_MUserNegPri:
10700 case ARMMMUIdx_MSUserNegPri:
10701 return true;
10702 default:
10703 return false;
10704 case ARMMMUIdx_S12NSE0:
10705 case ARMMMUIdx_S12NSE1:
10706 g_assert_not_reached();
10710 /* Translate section/page access permissions to page
10711 * R/W protection flags
10713 * @env: CPUARMState
10714 * @mmu_idx: MMU index indicating required translation regime
10715 * @ap: The 3-bit access permissions (AP[2:0])
10716 * @domain_prot: The 2-bit domain access permissions
10718 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
10719 int ap, int domain_prot)
10721 bool is_user = regime_is_user(env, mmu_idx);
10723 if (domain_prot == 3) {
10724 return PAGE_READ | PAGE_WRITE;
10727 switch (ap) {
10728 case 0:
10729 if (arm_feature(env, ARM_FEATURE_V7)) {
10730 return 0;
10732 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
10733 case SCTLR_S:
10734 return is_user ? 0 : PAGE_READ;
10735 case SCTLR_R:
10736 return PAGE_READ;
10737 default:
10738 return 0;
10740 case 1:
10741 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
10742 case 2:
10743 if (is_user) {
10744 return PAGE_READ;
10745 } else {
10746 return PAGE_READ | PAGE_WRITE;
10748 case 3:
10749 return PAGE_READ | PAGE_WRITE;
10750 case 4: /* Reserved. */
10751 return 0;
10752 case 5:
10753 return is_user ? 0 : PAGE_READ;
10754 case 6:
10755 return PAGE_READ;
10756 case 7:
10757 if (!arm_feature(env, ARM_FEATURE_V6K)) {
10758 return 0;
10760 return PAGE_READ;
10761 default:
10762 g_assert_not_reached();
10766 /* Translate section/page access permissions to page
10767 * R/W protection flags.
10769 * @ap: The 2-bit simple AP (AP[2:1])
10770 * @is_user: TRUE if accessing from PL0
10772 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
10774 switch (ap) {
10775 case 0:
10776 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
10777 case 1:
10778 return PAGE_READ | PAGE_WRITE;
10779 case 2:
10780 return is_user ? 0 : PAGE_READ;
10781 case 3:
10782 return PAGE_READ;
10783 default:
10784 g_assert_not_reached();
10788 static inline int
10789 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
10791 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
10794 /* Translate S2 section/page access permissions to protection flags
10796 * @env: CPUARMState
10797 * @s2ap: The 2-bit stage2 access permissions (S2AP)
10798 * @xn: XN (execute-never) bit
10800 static int get_S2prot(CPUARMState *env, int s2ap, int xn)
10802 int prot = 0;
10804 if (s2ap & 1) {
10805 prot |= PAGE_READ;
10807 if (s2ap & 2) {
10808 prot |= PAGE_WRITE;
10810 if (!xn) {
10811 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
10812 prot |= PAGE_EXEC;
10815 return prot;
10818 /* Translate section/page access permissions to protection flags
10820 * @env: CPUARMState
10821 * @mmu_idx: MMU index indicating required translation regime
10822 * @is_aa64: TRUE if AArch64
10823 * @ap: The 2-bit simple AP (AP[2:1])
10824 * @ns: NS (non-secure) bit
10825 * @xn: XN (execute-never) bit
10826 * @pxn: PXN (privileged execute-never) bit
10828 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
10829 int ap, int ns, int xn, int pxn)
10831 bool is_user = regime_is_user(env, mmu_idx);
10832 int prot_rw, user_rw;
10833 bool have_wxn;
10834 int wxn = 0;
10836 assert(mmu_idx != ARMMMUIdx_S2NS);
10838 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
10839 if (is_user) {
10840 prot_rw = user_rw;
10841 } else {
10842 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
10845 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
10846 return prot_rw;
10849 /* TODO have_wxn should be replaced with
10850 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
10851 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
10852 * compatible processors have EL2, which is required for [U]WXN.
10854 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
10856 if (have_wxn) {
10857 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
10860 if (is_aa64) {
10861 switch (regime_el(env, mmu_idx)) {
10862 case 1:
10863 if (!is_user) {
10864 xn = pxn || (user_rw & PAGE_WRITE);
10866 break;
10867 case 2:
10868 case 3:
10869 break;
10871 } else if (arm_feature(env, ARM_FEATURE_V7)) {
10872 switch (regime_el(env, mmu_idx)) {
10873 case 1:
10874 case 3:
10875 if (is_user) {
10876 xn = xn || !(user_rw & PAGE_READ);
10877 } else {
10878 int uwxn = 0;
10879 if (have_wxn) {
10880 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
10882 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
10883 (uwxn && (user_rw & PAGE_WRITE));
10885 break;
10886 case 2:
10887 break;
10889 } else {
10890 xn = wxn = 0;
10893 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
10894 return prot_rw;
10896 return prot_rw | PAGE_EXEC;
10899 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
10900 uint32_t *table, uint32_t address)
10902 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
10903 TCR *tcr = regime_tcr(env, mmu_idx);
10905 if (address & tcr->mask) {
10906 if (tcr->raw_tcr & TTBCR_PD1) {
10907 /* Translation table walk disabled for TTBR1 */
10908 return false;
10910 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
10911 } else {
10912 if (tcr->raw_tcr & TTBCR_PD0) {
10913 /* Translation table walk disabled for TTBR0 */
10914 return false;
10916 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
10918 *table |= (address >> 18) & 0x3ffc;
10919 return true;
10922 /* Translate a S1 pagetable walk through S2 if needed. */
10923 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
10924 hwaddr addr, MemTxAttrs txattrs,
10925 ARMMMUFaultInfo *fi)
10927 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
10928 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
10929 target_ulong s2size;
10930 hwaddr s2pa;
10931 int s2prot;
10932 int ret;
10933 ARMCacheAttrs cacheattrs = {};
10934 ARMCacheAttrs *pcacheattrs = NULL;
10936 if (env->cp15.hcr_el2 & HCR_PTW) {
10938 * PTW means we must fault if this S1 walk touches S2 Device
10939 * memory; otherwise we don't care about the attributes and can
10940 * save the S2 translation the effort of computing them.
10942 pcacheattrs = &cacheattrs;
10945 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
10946 &txattrs, &s2prot, &s2size, fi, pcacheattrs);
10947 if (ret) {
10948 assert(fi->type != ARMFault_None);
10949 fi->s2addr = addr;
10950 fi->stage2 = true;
10951 fi->s1ptw = true;
10952 return ~0;
10954 if (pcacheattrs && (pcacheattrs->attrs & 0xf0) == 0) {
10955 /* Access was to Device memory: generate Permission fault */
10956 fi->type = ARMFault_Permission;
10957 fi->s2addr = addr;
10958 fi->stage2 = true;
10959 fi->s1ptw = true;
10960 return ~0;
10962 addr = s2pa;
10964 return addr;
10967 /* All loads done in the course of a page table walk go through here. */
10968 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10969 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10971 ARMCPU *cpu = ARM_CPU(cs);
10972 CPUARMState *env = &cpu->env;
10973 MemTxAttrs attrs = {};
10974 MemTxResult result = MEMTX_OK;
10975 AddressSpace *as;
10976 uint32_t data;
10978 attrs.secure = is_secure;
10979 as = arm_addressspace(cs, attrs);
10980 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
10981 if (fi->s1ptw) {
10982 return 0;
10984 if (regime_translation_big_endian(env, mmu_idx)) {
10985 data = address_space_ldl_be(as, addr, attrs, &result);
10986 } else {
10987 data = address_space_ldl_le(as, addr, attrs, &result);
10989 if (result == MEMTX_OK) {
10990 return data;
10992 fi->type = ARMFault_SyncExternalOnWalk;
10993 fi->ea = arm_extabort_type(result);
10994 return 0;
10997 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10998 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
11000 ARMCPU *cpu = ARM_CPU(cs);
11001 CPUARMState *env = &cpu->env;
11002 MemTxAttrs attrs = {};
11003 MemTxResult result = MEMTX_OK;
11004 AddressSpace *as;
11005 uint64_t data;
11007 attrs.secure = is_secure;
11008 as = arm_addressspace(cs, attrs);
11009 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
11010 if (fi->s1ptw) {
11011 return 0;
11013 if (regime_translation_big_endian(env, mmu_idx)) {
11014 data = address_space_ldq_be(as, addr, attrs, &result);
11015 } else {
11016 data = address_space_ldq_le(as, addr, attrs, &result);
11018 if (result == MEMTX_OK) {
11019 return data;
11021 fi->type = ARMFault_SyncExternalOnWalk;
11022 fi->ea = arm_extabort_type(result);
11023 return 0;
11026 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
11027 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11028 hwaddr *phys_ptr, int *prot,
11029 target_ulong *page_size,
11030 ARMMMUFaultInfo *fi)
11032 CPUState *cs = env_cpu(env);
11033 int level = 1;
11034 uint32_t table;
11035 uint32_t desc;
11036 int type;
11037 int ap;
11038 int domain = 0;
11039 int domain_prot;
11040 hwaddr phys_addr;
11041 uint32_t dacr;
11043 /* Pagetable walk. */
11044 /* Lookup l1 descriptor. */
11045 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
11046 /* Section translation fault if page walk is disabled by PD0 or PD1 */
11047 fi->type = ARMFault_Translation;
11048 goto do_fault;
11050 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
11051 mmu_idx, fi);
11052 if (fi->type != ARMFault_None) {
11053 goto do_fault;
11055 type = (desc & 3);
11056 domain = (desc >> 5) & 0x0f;
11057 if (regime_el(env, mmu_idx) == 1) {
11058 dacr = env->cp15.dacr_ns;
11059 } else {
11060 dacr = env->cp15.dacr_s;
11062 domain_prot = (dacr >> (domain * 2)) & 3;
11063 if (type == 0) {
11064 /* Section translation fault. */
11065 fi->type = ARMFault_Translation;
11066 goto do_fault;
11068 if (type != 2) {
11069 level = 2;
11071 if (domain_prot == 0 || domain_prot == 2) {
11072 fi->type = ARMFault_Domain;
11073 goto do_fault;
11075 if (type == 2) {
11076 /* 1Mb section. */
11077 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
11078 ap = (desc >> 10) & 3;
11079 *page_size = 1024 * 1024;
11080 } else {
11081 /* Lookup l2 entry. */
11082 if (type == 1) {
11083 /* Coarse pagetable. */
11084 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
11085 } else {
11086 /* Fine pagetable. */
11087 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
11089 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
11090 mmu_idx, fi);
11091 if (fi->type != ARMFault_None) {
11092 goto do_fault;
11094 switch (desc & 3) {
11095 case 0: /* Page translation fault. */
11096 fi->type = ARMFault_Translation;
11097 goto do_fault;
11098 case 1: /* 64k page. */
11099 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
11100 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
11101 *page_size = 0x10000;
11102 break;
11103 case 2: /* 4k page. */
11104 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
11105 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
11106 *page_size = 0x1000;
11107 break;
11108 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
11109 if (type == 1) {
11110 /* ARMv6/XScale extended small page format */
11111 if (arm_feature(env, ARM_FEATURE_XSCALE)
11112 || arm_feature(env, ARM_FEATURE_V6)) {
11113 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
11114 *page_size = 0x1000;
11115 } else {
11116 /* UNPREDICTABLE in ARMv5; we choose to take a
11117 * page translation fault.
11119 fi->type = ARMFault_Translation;
11120 goto do_fault;
11122 } else {
11123 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
11124 *page_size = 0x400;
11126 ap = (desc >> 4) & 3;
11127 break;
11128 default:
11129 /* Never happens, but compiler isn't smart enough to tell. */
11130 abort();
11133 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
11134 *prot |= *prot ? PAGE_EXEC : 0;
11135 if (!(*prot & (1 << access_type))) {
11136 /* Access permission fault. */
11137 fi->type = ARMFault_Permission;
11138 goto do_fault;
11140 *phys_ptr = phys_addr;
11141 return false;
11142 do_fault:
11143 fi->domain = domain;
11144 fi->level = level;
11145 return true;
11148 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
11149 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11150 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
11151 target_ulong *page_size, ARMMMUFaultInfo *fi)
11153 CPUState *cs = env_cpu(env);
11154 int level = 1;
11155 uint32_t table;
11156 uint32_t desc;
11157 uint32_t xn;
11158 uint32_t pxn = 0;
11159 int type;
11160 int ap;
11161 int domain = 0;
11162 int domain_prot;
11163 hwaddr phys_addr;
11164 uint32_t dacr;
11165 bool ns;
11167 /* Pagetable walk. */
11168 /* Lookup l1 descriptor. */
11169 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
11170 /* Section translation fault if page walk is disabled by PD0 or PD1 */
11171 fi->type = ARMFault_Translation;
11172 goto do_fault;
11174 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
11175 mmu_idx, fi);
11176 if (fi->type != ARMFault_None) {
11177 goto do_fault;
11179 type = (desc & 3);
11180 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
11181 /* Section translation fault, or attempt to use the encoding
11182 * which is Reserved on implementations without PXN.
11184 fi->type = ARMFault_Translation;
11185 goto do_fault;
11187 if ((type == 1) || !(desc & (1 << 18))) {
11188 /* Page or Section. */
11189 domain = (desc >> 5) & 0x0f;
11191 if (regime_el(env, mmu_idx) == 1) {
11192 dacr = env->cp15.dacr_ns;
11193 } else {
11194 dacr = env->cp15.dacr_s;
11196 if (type == 1) {
11197 level = 2;
11199 domain_prot = (dacr >> (domain * 2)) & 3;
11200 if (domain_prot == 0 || domain_prot == 2) {
11201 /* Section or Page domain fault */
11202 fi->type = ARMFault_Domain;
11203 goto do_fault;
11205 if (type != 1) {
11206 if (desc & (1 << 18)) {
11207 /* Supersection. */
11208 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
11209 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
11210 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
11211 *page_size = 0x1000000;
11212 } else {
11213 /* Section. */
11214 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
11215 *page_size = 0x100000;
11217 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
11218 xn = desc & (1 << 4);
11219 pxn = desc & 1;
11220 ns = extract32(desc, 19, 1);
11221 } else {
11222 if (arm_feature(env, ARM_FEATURE_PXN)) {
11223 pxn = (desc >> 2) & 1;
11225 ns = extract32(desc, 3, 1);
11226 /* Lookup l2 entry. */
11227 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
11228 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
11229 mmu_idx, fi);
11230 if (fi->type != ARMFault_None) {
11231 goto do_fault;
11233 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
11234 switch (desc & 3) {
11235 case 0: /* Page translation fault. */
11236 fi->type = ARMFault_Translation;
11237 goto do_fault;
11238 case 1: /* 64k page. */
11239 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
11240 xn = desc & (1 << 15);
11241 *page_size = 0x10000;
11242 break;
11243 case 2: case 3: /* 4k page. */
11244 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
11245 xn = desc & 1;
11246 *page_size = 0x1000;
11247 break;
11248 default:
11249 /* Never happens, but compiler isn't smart enough to tell. */
11250 abort();
11253 if (domain_prot == 3) {
11254 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11255 } else {
11256 if (pxn && !regime_is_user(env, mmu_idx)) {
11257 xn = 1;
11259 if (xn && access_type == MMU_INST_FETCH) {
11260 fi->type = ARMFault_Permission;
11261 goto do_fault;
11264 if (arm_feature(env, ARM_FEATURE_V6K) &&
11265 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
11266 /* The simplified model uses AP[0] as an access control bit. */
11267 if ((ap & 1) == 0) {
11268 /* Access flag fault. */
11269 fi->type = ARMFault_AccessFlag;
11270 goto do_fault;
11272 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
11273 } else {
11274 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
11276 if (*prot && !xn) {
11277 *prot |= PAGE_EXEC;
11279 if (!(*prot & (1 << access_type))) {
11280 /* Access permission fault. */
11281 fi->type = ARMFault_Permission;
11282 goto do_fault;
11285 if (ns) {
11286 /* The NS bit will (as required by the architecture) have no effect if
11287 * the CPU doesn't support TZ or this is a non-secure translation
11288 * regime, because the attribute will already be non-secure.
11290 attrs->secure = false;
11292 *phys_ptr = phys_addr;
11293 return false;
11294 do_fault:
11295 fi->domain = domain;
11296 fi->level = level;
11297 return true;
11301 * check_s2_mmu_setup
11302 * @cpu: ARMCPU
11303 * @is_aa64: True if the translation regime is in AArch64 state
11304 * @startlevel: Suggested starting level
11305 * @inputsize: Bitsize of IPAs
11306 * @stride: Page-table stride (See the ARM ARM)
11308 * Returns true if the suggested S2 translation parameters are OK and
11309 * false otherwise.
11311 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
11312 int inputsize, int stride)
11314 const int grainsize = stride + 3;
11315 int startsizecheck;
11317 /* Negative levels are never allowed. */
11318 if (level < 0) {
11319 return false;
11322 startsizecheck = inputsize - ((3 - level) * stride + grainsize);
11323 if (startsizecheck < 1 || startsizecheck > stride + 4) {
11324 return false;
11327 if (is_aa64) {
11328 CPUARMState *env = &cpu->env;
11329 unsigned int pamax = arm_pamax(cpu);
11331 switch (stride) {
11332 case 13: /* 64KB Pages. */
11333 if (level == 0 || (level == 1 && pamax <= 42)) {
11334 return false;
11336 break;
11337 case 11: /* 16KB Pages. */
11338 if (level == 0 || (level == 1 && pamax <= 40)) {
11339 return false;
11341 break;
11342 case 9: /* 4KB Pages. */
11343 if (level == 0 && pamax <= 42) {
11344 return false;
11346 break;
11347 default:
11348 g_assert_not_reached();
11351 /* Inputsize checks. */
11352 if (inputsize > pamax &&
11353 (arm_el_is_aa64(env, 1) || inputsize > 40)) {
11354 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
11355 return false;
11357 } else {
11358 /* AArch32 only supports 4KB pages. Assert on that. */
11359 assert(stride == 9);
11361 if (level == 0) {
11362 return false;
11365 return true;
11368 /* Translate from the 4-bit stage 2 representation of
11369 * memory attributes (without cache-allocation hints) to
11370 * the 8-bit representation of the stage 1 MAIR registers
11371 * (which includes allocation hints).
11373 * ref: shared/translation/attrs/S2AttrDecode()
11374 * .../S2ConvertAttrsHints()
11376 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
11378 uint8_t hiattr = extract32(s2attrs, 2, 2);
11379 uint8_t loattr = extract32(s2attrs, 0, 2);
11380 uint8_t hihint = 0, lohint = 0;
11382 if (hiattr != 0) { /* normal memory */
11383 if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */
11384 hiattr = loattr = 1; /* non-cacheable */
11385 } else {
11386 if (hiattr != 1) { /* Write-through or write-back */
11387 hihint = 3; /* RW allocate */
11389 if (loattr != 1) { /* Write-through or write-back */
11390 lohint = 3; /* RW allocate */
11395 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
11397 #endif /* !CONFIG_USER_ONLY */
11399 ARMVAParameters aa64_va_parameters_both(CPUARMState *env, uint64_t va,
11400 ARMMMUIdx mmu_idx)
11402 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
11403 uint32_t el = regime_el(env, mmu_idx);
11404 bool tbi, tbid, epd, hpd, using16k, using64k;
11405 int select, tsz;
11408 * Bit 55 is always between the two regions, and is canonical for
11409 * determining if address tagging is enabled.
11411 select = extract64(va, 55, 1);
11413 if (el > 1) {
11414 tsz = extract32(tcr, 0, 6);
11415 using64k = extract32(tcr, 14, 1);
11416 using16k = extract32(tcr, 15, 1);
11417 if (mmu_idx == ARMMMUIdx_S2NS) {
11418 /* VTCR_EL2 */
11419 tbi = tbid = hpd = false;
11420 } else {
11421 tbi = extract32(tcr, 20, 1);
11422 hpd = extract32(tcr, 24, 1);
11423 tbid = extract32(tcr, 29, 1);
11425 epd = false;
11426 } else if (!select) {
11427 tsz = extract32(tcr, 0, 6);
11428 epd = extract32(tcr, 7, 1);
11429 using64k = extract32(tcr, 14, 1);
11430 using16k = extract32(tcr, 15, 1);
11431 tbi = extract64(tcr, 37, 1);
11432 hpd = extract64(tcr, 41, 1);
11433 tbid = extract64(tcr, 51, 1);
11434 } else {
11435 int tg = extract32(tcr, 30, 2);
11436 using16k = tg == 1;
11437 using64k = tg == 3;
11438 tsz = extract32(tcr, 16, 6);
11439 epd = extract32(tcr, 23, 1);
11440 tbi = extract64(tcr, 38, 1);
11441 hpd = extract64(tcr, 42, 1);
11442 tbid = extract64(tcr, 52, 1);
11444 tsz = MIN(tsz, 39); /* TODO: ARMv8.4-TTST */
11445 tsz = MAX(tsz, 16); /* TODO: ARMv8.2-LVA */
11447 return (ARMVAParameters) {
11448 .tsz = tsz,
11449 .select = select,
11450 .tbi = tbi,
11451 .tbid = tbid,
11452 .epd = epd,
11453 .hpd = hpd,
11454 .using16k = using16k,
11455 .using64k = using64k,
11459 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
11460 ARMMMUIdx mmu_idx, bool data)
11462 ARMVAParameters ret = aa64_va_parameters_both(env, va, mmu_idx);
11464 /* Present TBI as a composite with TBID. */
11465 ret.tbi &= (data || !ret.tbid);
11466 return ret;
11469 #ifndef CONFIG_USER_ONLY
11470 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
11471 ARMMMUIdx mmu_idx)
11473 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
11474 uint32_t el = regime_el(env, mmu_idx);
11475 int select, tsz;
11476 bool epd, hpd;
11478 if (mmu_idx == ARMMMUIdx_S2NS) {
11479 /* VTCR */
11480 bool sext = extract32(tcr, 4, 1);
11481 bool sign = extract32(tcr, 3, 1);
11484 * If the sign-extend bit is not the same as t0sz[3], the result
11485 * is unpredictable. Flag this as a guest error.
11487 if (sign != sext) {
11488 qemu_log_mask(LOG_GUEST_ERROR,
11489 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
11491 tsz = sextract32(tcr, 0, 4) + 8;
11492 select = 0;
11493 hpd = false;
11494 epd = false;
11495 } else if (el == 2) {
11496 /* HTCR */
11497 tsz = extract32(tcr, 0, 3);
11498 select = 0;
11499 hpd = extract64(tcr, 24, 1);
11500 epd = false;
11501 } else {
11502 int t0sz = extract32(tcr, 0, 3);
11503 int t1sz = extract32(tcr, 16, 3);
11505 if (t1sz == 0) {
11506 select = va > (0xffffffffu >> t0sz);
11507 } else {
11508 /* Note that we will detect errors later. */
11509 select = va >= ~(0xffffffffu >> t1sz);
11511 if (!select) {
11512 tsz = t0sz;
11513 epd = extract32(tcr, 7, 1);
11514 hpd = extract64(tcr, 41, 1);
11515 } else {
11516 tsz = t1sz;
11517 epd = extract32(tcr, 23, 1);
11518 hpd = extract64(tcr, 42, 1);
11520 /* For aarch32, hpd0 is not enabled without t2e as well. */
11521 hpd &= extract32(tcr, 6, 1);
11524 return (ARMVAParameters) {
11525 .tsz = tsz,
11526 .select = select,
11527 .epd = epd,
11528 .hpd = hpd,
11532 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
11533 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11534 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
11535 target_ulong *page_size_ptr,
11536 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
11538 ARMCPU *cpu = env_archcpu(env);
11539 CPUState *cs = CPU(cpu);
11540 /* Read an LPAE long-descriptor translation table. */
11541 ARMFaultType fault_type = ARMFault_Translation;
11542 uint32_t level;
11543 ARMVAParameters param;
11544 uint64_t ttbr;
11545 hwaddr descaddr, indexmask, indexmask_grainsize;
11546 uint32_t tableattrs;
11547 target_ulong page_size;
11548 uint32_t attrs;
11549 int32_t stride;
11550 int addrsize, inputsize;
11551 TCR *tcr = regime_tcr(env, mmu_idx);
11552 int ap, ns, xn, pxn;
11553 uint32_t el = regime_el(env, mmu_idx);
11554 bool ttbr1_valid;
11555 uint64_t descaddrmask;
11556 bool aarch64 = arm_el_is_aa64(env, el);
11557 bool guarded = false;
11559 /* TODO:
11560 * This code does not handle the different format TCR for VTCR_EL2.
11561 * This code also does not support shareability levels.
11562 * Attribute and permission bit handling should also be checked when adding
11563 * support for those page table walks.
11565 if (aarch64) {
11566 param = aa64_va_parameters(env, address, mmu_idx,
11567 access_type != MMU_INST_FETCH);
11568 level = 0;
11569 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
11570 * invalid.
11572 ttbr1_valid = (el < 2);
11573 addrsize = 64 - 8 * param.tbi;
11574 inputsize = 64 - param.tsz;
11575 } else {
11576 param = aa32_va_parameters(env, address, mmu_idx);
11577 level = 1;
11578 /* There is no TTBR1 for EL2 */
11579 ttbr1_valid = (el != 2);
11580 addrsize = (mmu_idx == ARMMMUIdx_S2NS ? 40 : 32);
11581 inputsize = addrsize - param.tsz;
11585 * We determined the region when collecting the parameters, but we
11586 * have not yet validated that the address is valid for the region.
11587 * Extract the top bits and verify that they all match select.
11589 * For aa32, if inputsize == addrsize, then we have selected the
11590 * region by exclusion in aa32_va_parameters and there is no more
11591 * validation to do here.
11593 if (inputsize < addrsize) {
11594 target_ulong top_bits = sextract64(address, inputsize,
11595 addrsize - inputsize);
11596 if (-top_bits != param.select || (param.select && !ttbr1_valid)) {
11597 /* The gap between the two regions is a Translation fault */
11598 fault_type = ARMFault_Translation;
11599 goto do_fault;
11603 if (param.using64k) {
11604 stride = 13;
11605 } else if (param.using16k) {
11606 stride = 11;
11607 } else {
11608 stride = 9;
11611 /* Note that QEMU ignores shareability and cacheability attributes,
11612 * so we don't need to do anything with the SH, ORGN, IRGN fields
11613 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
11614 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
11615 * implement any ASID-like capability so we can ignore it (instead
11616 * we will always flush the TLB any time the ASID is changed).
11618 ttbr = regime_ttbr(env, mmu_idx, param.select);
11620 /* Here we should have set up all the parameters for the translation:
11621 * inputsize, ttbr, epd, stride, tbi
11624 if (param.epd) {
11625 /* Translation table walk disabled => Translation fault on TLB miss
11626 * Note: This is always 0 on 64-bit EL2 and EL3.
11628 goto do_fault;
11631 if (mmu_idx != ARMMMUIdx_S2NS) {
11632 /* The starting level depends on the virtual address size (which can
11633 * be up to 48 bits) and the translation granule size. It indicates
11634 * the number of strides (stride bits at a time) needed to
11635 * consume the bits of the input address. In the pseudocode this is:
11636 * level = 4 - RoundUp((inputsize - grainsize) / stride)
11637 * where their 'inputsize' is our 'inputsize', 'grainsize' is
11638 * our 'stride + 3' and 'stride' is our 'stride'.
11639 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
11640 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
11641 * = 4 - (inputsize - 4) / stride;
11643 level = 4 - (inputsize - 4) / stride;
11644 } else {
11645 /* For stage 2 translations the starting level is specified by the
11646 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
11648 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
11649 uint32_t startlevel;
11650 bool ok;
11652 if (!aarch64 || stride == 9) {
11653 /* AArch32 or 4KB pages */
11654 startlevel = 2 - sl0;
11655 } else {
11656 /* 16KB or 64KB pages */
11657 startlevel = 3 - sl0;
11660 /* Check that the starting level is valid. */
11661 ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
11662 inputsize, stride);
11663 if (!ok) {
11664 fault_type = ARMFault_Translation;
11665 goto do_fault;
11667 level = startlevel;
11670 indexmask_grainsize = (1ULL << (stride + 3)) - 1;
11671 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
11673 /* Now we can extract the actual base address from the TTBR */
11674 descaddr = extract64(ttbr, 0, 48);
11675 descaddr &= ~indexmask;
11677 /* The address field in the descriptor goes up to bit 39 for ARMv7
11678 * but up to bit 47 for ARMv8, but we use the descaddrmask
11679 * up to bit 39 for AArch32, because we don't need other bits in that case
11680 * to construct next descriptor address (anyway they should be all zeroes).
11682 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
11683 ~indexmask_grainsize;
11685 /* Secure accesses start with the page table in secure memory and
11686 * can be downgraded to non-secure at any step. Non-secure accesses
11687 * remain non-secure. We implement this by just ORing in the NSTable/NS
11688 * bits at each step.
11690 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
11691 for (;;) {
11692 uint64_t descriptor;
11693 bool nstable;
11695 descaddr |= (address >> (stride * (4 - level))) & indexmask;
11696 descaddr &= ~7ULL;
11697 nstable = extract32(tableattrs, 4, 1);
11698 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
11699 if (fi->type != ARMFault_None) {
11700 goto do_fault;
11703 if (!(descriptor & 1) ||
11704 (!(descriptor & 2) && (level == 3))) {
11705 /* Invalid, or the Reserved level 3 encoding */
11706 goto do_fault;
11708 descaddr = descriptor & descaddrmask;
11710 if ((descriptor & 2) && (level < 3)) {
11711 /* Table entry. The top five bits are attributes which may
11712 * propagate down through lower levels of the table (and
11713 * which are all arranged so that 0 means "no effect", so
11714 * we can gather them up by ORing in the bits at each level).
11716 tableattrs |= extract64(descriptor, 59, 5);
11717 level++;
11718 indexmask = indexmask_grainsize;
11719 continue;
11721 /* Block entry at level 1 or 2, or page entry at level 3.
11722 * These are basically the same thing, although the number
11723 * of bits we pull in from the vaddr varies.
11725 page_size = (1ULL << ((stride * (4 - level)) + 3));
11726 descaddr |= (address & (page_size - 1));
11727 /* Extract attributes from the descriptor */
11728 attrs = extract64(descriptor, 2, 10)
11729 | (extract64(descriptor, 52, 12) << 10);
11731 if (mmu_idx == ARMMMUIdx_S2NS) {
11732 /* Stage 2 table descriptors do not include any attribute fields */
11733 break;
11735 /* Merge in attributes from table descriptors */
11736 attrs |= nstable << 3; /* NS */
11737 guarded = extract64(descriptor, 50, 1); /* GP */
11738 if (param.hpd) {
11739 /* HPD disables all the table attributes except NSTable. */
11740 break;
11742 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
11743 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
11744 * means "force PL1 access only", which means forcing AP[1] to 0.
11746 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */
11747 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */
11748 break;
11750 /* Here descaddr is the final physical address, and attributes
11751 * are all in attrs.
11753 fault_type = ARMFault_AccessFlag;
11754 if ((attrs & (1 << 8)) == 0) {
11755 /* Access flag */
11756 goto do_fault;
11759 ap = extract32(attrs, 4, 2);
11760 xn = extract32(attrs, 12, 1);
11762 if (mmu_idx == ARMMMUIdx_S2NS) {
11763 ns = true;
11764 *prot = get_S2prot(env, ap, xn);
11765 } else {
11766 ns = extract32(attrs, 3, 1);
11767 pxn = extract32(attrs, 11, 1);
11768 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
11771 fault_type = ARMFault_Permission;
11772 if (!(*prot & (1 << access_type))) {
11773 goto do_fault;
11776 if (ns) {
11777 /* The NS bit will (as required by the architecture) have no effect if
11778 * the CPU doesn't support TZ or this is a non-secure translation
11779 * regime, because the attribute will already be non-secure.
11781 txattrs->secure = false;
11783 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */
11784 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) {
11785 txattrs->target_tlb_bit0 = true;
11788 if (cacheattrs != NULL) {
11789 if (mmu_idx == ARMMMUIdx_S2NS) {
11790 cacheattrs->attrs = convert_stage2_attrs(env,
11791 extract32(attrs, 0, 4));
11792 } else {
11793 /* Index into MAIR registers for cache attributes */
11794 uint8_t attrindx = extract32(attrs, 0, 3);
11795 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
11796 assert(attrindx <= 7);
11797 cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
11799 cacheattrs->shareability = extract32(attrs, 6, 2);
11802 *phys_ptr = descaddr;
11803 *page_size_ptr = page_size;
11804 return false;
11806 do_fault:
11807 fi->type = fault_type;
11808 fi->level = level;
11809 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
11810 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
11811 return true;
11814 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
11815 ARMMMUIdx mmu_idx,
11816 int32_t address, int *prot)
11818 if (!arm_feature(env, ARM_FEATURE_M)) {
11819 *prot = PAGE_READ | PAGE_WRITE;
11820 switch (address) {
11821 case 0xF0000000 ... 0xFFFFFFFF:
11822 if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
11823 /* hivecs execing is ok */
11824 *prot |= PAGE_EXEC;
11826 break;
11827 case 0x00000000 ... 0x7FFFFFFF:
11828 *prot |= PAGE_EXEC;
11829 break;
11831 } else {
11832 /* Default system address map for M profile cores.
11833 * The architecture specifies which regions are execute-never;
11834 * at the MPU level no other checks are defined.
11836 switch (address) {
11837 case 0x00000000 ... 0x1fffffff: /* ROM */
11838 case 0x20000000 ... 0x3fffffff: /* SRAM */
11839 case 0x60000000 ... 0x7fffffff: /* RAM */
11840 case 0x80000000 ... 0x9fffffff: /* RAM */
11841 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11842 break;
11843 case 0x40000000 ... 0x5fffffff: /* Peripheral */
11844 case 0xa0000000 ... 0xbfffffff: /* Device */
11845 case 0xc0000000 ... 0xdfffffff: /* Device */
11846 case 0xe0000000 ... 0xffffffff: /* System */
11847 *prot = PAGE_READ | PAGE_WRITE;
11848 break;
11849 default:
11850 g_assert_not_reached();
11855 static bool pmsav7_use_background_region(ARMCPU *cpu,
11856 ARMMMUIdx mmu_idx, bool is_user)
11858 /* Return true if we should use the default memory map as a
11859 * "background" region if there are no hits against any MPU regions.
11861 CPUARMState *env = &cpu->env;
11863 if (is_user) {
11864 return false;
11867 if (arm_feature(env, ARM_FEATURE_M)) {
11868 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
11869 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
11870 } else {
11871 return regime_sctlr(env, mmu_idx) & SCTLR_BR;
11875 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
11877 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
11878 return arm_feature(env, ARM_FEATURE_M) &&
11879 extract32(address, 20, 12) == 0xe00;
11882 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
11884 /* True if address is in the M profile system region
11885 * 0xe0000000 - 0xffffffff
11887 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
11890 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
11891 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11892 hwaddr *phys_ptr, int *prot,
11893 target_ulong *page_size,
11894 ARMMMUFaultInfo *fi)
11896 ARMCPU *cpu = env_archcpu(env);
11897 int n;
11898 bool is_user = regime_is_user(env, mmu_idx);
11900 *phys_ptr = address;
11901 *page_size = TARGET_PAGE_SIZE;
11902 *prot = 0;
11904 if (regime_translation_disabled(env, mmu_idx) ||
11905 m_is_ppb_region(env, address)) {
11906 /* MPU disabled or M profile PPB access: use default memory map.
11907 * The other case which uses the default memory map in the
11908 * v7M ARM ARM pseudocode is exception vector reads from the vector
11909 * table. In QEMU those accesses are done in arm_v7m_load_vector(),
11910 * which always does a direct read using address_space_ldl(), rather
11911 * than going via this function, so we don't need to check that here.
11913 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11914 } else { /* MPU enabled */
11915 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
11916 /* region search */
11917 uint32_t base = env->pmsav7.drbar[n];
11918 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
11919 uint32_t rmask;
11920 bool srdis = false;
11922 if (!(env->pmsav7.drsr[n] & 0x1)) {
11923 continue;
11926 if (!rsize) {
11927 qemu_log_mask(LOG_GUEST_ERROR,
11928 "DRSR[%d]: Rsize field cannot be 0\n", n);
11929 continue;
11931 rsize++;
11932 rmask = (1ull << rsize) - 1;
11934 if (base & rmask) {
11935 qemu_log_mask(LOG_GUEST_ERROR,
11936 "DRBAR[%d]: 0x%" PRIx32 " misaligned "
11937 "to DRSR region size, mask = 0x%" PRIx32 "\n",
11938 n, base, rmask);
11939 continue;
11942 if (address < base || address > base + rmask) {
11944 * Address not in this region. We must check whether the
11945 * region covers addresses in the same page as our address.
11946 * In that case we must not report a size that covers the
11947 * whole page for a subsequent hit against a different MPU
11948 * region or the background region, because it would result in
11949 * incorrect TLB hits for subsequent accesses to addresses that
11950 * are in this MPU region.
11952 if (ranges_overlap(base, rmask,
11953 address & TARGET_PAGE_MASK,
11954 TARGET_PAGE_SIZE)) {
11955 *page_size = 1;
11957 continue;
11960 /* Region matched */
11962 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
11963 int i, snd;
11964 uint32_t srdis_mask;
11966 rsize -= 3; /* sub region size (power of 2) */
11967 snd = ((address - base) >> rsize) & 0x7;
11968 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
11970 srdis_mask = srdis ? 0x3 : 0x0;
11971 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
11972 /* This will check in groups of 2, 4 and then 8, whether
11973 * the subregion bits are consistent. rsize is incremented
11974 * back up to give the region size, considering consistent
11975 * adjacent subregions as one region. Stop testing if rsize
11976 * is already big enough for an entire QEMU page.
11978 int snd_rounded = snd & ~(i - 1);
11979 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
11980 snd_rounded + 8, i);
11981 if (srdis_mask ^ srdis_multi) {
11982 break;
11984 srdis_mask = (srdis_mask << i) | srdis_mask;
11985 rsize++;
11988 if (srdis) {
11989 continue;
11991 if (rsize < TARGET_PAGE_BITS) {
11992 *page_size = 1 << rsize;
11994 break;
11997 if (n == -1) { /* no hits */
11998 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
11999 /* background fault */
12000 fi->type = ARMFault_Background;
12001 return true;
12003 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
12004 } else { /* a MPU hit! */
12005 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
12006 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
12008 if (m_is_system_region(env, address)) {
12009 /* System space is always execute never */
12010 xn = 1;
12013 if (is_user) { /* User mode AP bit decoding */
12014 switch (ap) {
12015 case 0:
12016 case 1:
12017 case 5:
12018 break; /* no access */
12019 case 3:
12020 *prot |= PAGE_WRITE;
12021 /* fall through */
12022 case 2:
12023 case 6:
12024 *prot |= PAGE_READ | PAGE_EXEC;
12025 break;
12026 case 7:
12027 /* for v7M, same as 6; for R profile a reserved value */
12028 if (arm_feature(env, ARM_FEATURE_M)) {
12029 *prot |= PAGE_READ | PAGE_EXEC;
12030 break;
12032 /* fall through */
12033 default:
12034 qemu_log_mask(LOG_GUEST_ERROR,
12035 "DRACR[%d]: Bad value for AP bits: 0x%"
12036 PRIx32 "\n", n, ap);
12038 } else { /* Priv. mode AP bits decoding */
12039 switch (ap) {
12040 case 0:
12041 break; /* no access */
12042 case 1:
12043 case 2:
12044 case 3:
12045 *prot |= PAGE_WRITE;
12046 /* fall through */
12047 case 5:
12048 case 6:
12049 *prot |= PAGE_READ | PAGE_EXEC;
12050 break;
12051 case 7:
12052 /* for v7M, same as 6; for R profile a reserved value */
12053 if (arm_feature(env, ARM_FEATURE_M)) {
12054 *prot |= PAGE_READ | PAGE_EXEC;
12055 break;
12057 /* fall through */
12058 default:
12059 qemu_log_mask(LOG_GUEST_ERROR,
12060 "DRACR[%d]: Bad value for AP bits: 0x%"
12061 PRIx32 "\n", n, ap);
12065 /* execute never */
12066 if (xn) {
12067 *prot &= ~PAGE_EXEC;
12072 fi->type = ARMFault_Permission;
12073 fi->level = 1;
12074 return !(*prot & (1 << access_type));
12077 static bool v8m_is_sau_exempt(CPUARMState *env,
12078 uint32_t address, MMUAccessType access_type)
12080 /* The architecture specifies that certain address ranges are
12081 * exempt from v8M SAU/IDAU checks.
12083 return
12084 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
12085 (address >= 0xe0000000 && address <= 0xe0002fff) ||
12086 (address >= 0xe000e000 && address <= 0xe000efff) ||
12087 (address >= 0xe002e000 && address <= 0xe002efff) ||
12088 (address >= 0xe0040000 && address <= 0xe0041fff) ||
12089 (address >= 0xe00ff000 && address <= 0xe00fffff);
12092 void v8m_security_lookup(CPUARMState *env, uint32_t address,
12093 MMUAccessType access_type, ARMMMUIdx mmu_idx,
12094 V8M_SAttributes *sattrs)
12096 /* Look up the security attributes for this address. Compare the
12097 * pseudocode SecurityCheck() function.
12098 * We assume the caller has zero-initialized *sattrs.
12100 ARMCPU *cpu = env_archcpu(env);
12101 int r;
12102 bool idau_exempt = false, idau_ns = true, idau_nsc = true;
12103 int idau_region = IREGION_NOTVALID;
12104 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
12105 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
12107 if (cpu->idau) {
12108 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
12109 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
12111 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
12112 &idau_nsc);
12115 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
12116 /* 0xf0000000..0xffffffff is always S for insn fetches */
12117 return;
12120 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
12121 sattrs->ns = !regime_is_secure(env, mmu_idx);
12122 return;
12125 if (idau_region != IREGION_NOTVALID) {
12126 sattrs->irvalid = true;
12127 sattrs->iregion = idau_region;
12130 switch (env->sau.ctrl & 3) {
12131 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
12132 break;
12133 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
12134 sattrs->ns = true;
12135 break;
12136 default: /* SAU.ENABLE == 1 */
12137 for (r = 0; r < cpu->sau_sregion; r++) {
12138 if (env->sau.rlar[r] & 1) {
12139 uint32_t base = env->sau.rbar[r] & ~0x1f;
12140 uint32_t limit = env->sau.rlar[r] | 0x1f;
12142 if (base <= address && limit >= address) {
12143 if (base > addr_page_base || limit < addr_page_limit) {
12144 sattrs->subpage = true;
12146 if (sattrs->srvalid) {
12147 /* If we hit in more than one region then we must report
12148 * as Secure, not NS-Callable, with no valid region
12149 * number info.
12151 sattrs->ns = false;
12152 sattrs->nsc = false;
12153 sattrs->sregion = 0;
12154 sattrs->srvalid = false;
12155 break;
12156 } else {
12157 if (env->sau.rlar[r] & 2) {
12158 sattrs->nsc = true;
12159 } else {
12160 sattrs->ns = true;
12162 sattrs->srvalid = true;
12163 sattrs->sregion = r;
12165 } else {
12167 * Address not in this region. We must check whether the
12168 * region covers addresses in the same page as our address.
12169 * In that case we must not report a size that covers the
12170 * whole page for a subsequent hit against a different MPU
12171 * region or the background region, because it would result
12172 * in incorrect TLB hits for subsequent accesses to
12173 * addresses that are in this MPU region.
12175 if (limit >= base &&
12176 ranges_overlap(base, limit - base + 1,
12177 addr_page_base,
12178 TARGET_PAGE_SIZE)) {
12179 sattrs->subpage = true;
12184 break;
12188 * The IDAU will override the SAU lookup results if it specifies
12189 * higher security than the SAU does.
12191 if (!idau_ns) {
12192 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
12193 sattrs->ns = false;
12194 sattrs->nsc = idau_nsc;
12199 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
12200 MMUAccessType access_type, ARMMMUIdx mmu_idx,
12201 hwaddr *phys_ptr, MemTxAttrs *txattrs,
12202 int *prot, bool *is_subpage,
12203 ARMMMUFaultInfo *fi, uint32_t *mregion)
12205 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
12206 * that a full phys-to-virt translation does).
12207 * mregion is (if not NULL) set to the region number which matched,
12208 * or -1 if no region number is returned (MPU off, address did not
12209 * hit a region, address hit in multiple regions).
12210 * We set is_subpage to true if the region hit doesn't cover the
12211 * entire TARGET_PAGE the address is within.
12213 ARMCPU *cpu = env_archcpu(env);
12214 bool is_user = regime_is_user(env, mmu_idx);
12215 uint32_t secure = regime_is_secure(env, mmu_idx);
12216 int n;
12217 int matchregion = -1;
12218 bool hit = false;
12219 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
12220 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
12222 *is_subpage = false;
12223 *phys_ptr = address;
12224 *prot = 0;
12225 if (mregion) {
12226 *mregion = -1;
12229 /* Unlike the ARM ARM pseudocode, we don't need to check whether this
12230 * was an exception vector read from the vector table (which is always
12231 * done using the default system address map), because those accesses
12232 * are done in arm_v7m_load_vector(), which always does a direct
12233 * read using address_space_ldl(), rather than going via this function.
12235 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
12236 hit = true;
12237 } else if (m_is_ppb_region(env, address)) {
12238 hit = true;
12239 } else {
12240 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
12241 hit = true;
12244 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
12245 /* region search */
12246 /* Note that the base address is bits [31:5] from the register
12247 * with bits [4:0] all zeroes, but the limit address is bits
12248 * [31:5] from the register with bits [4:0] all ones.
12250 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
12251 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
12253 if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
12254 /* Region disabled */
12255 continue;
12258 if (address < base || address > limit) {
12260 * Address not in this region. We must check whether the
12261 * region covers addresses in the same page as our address.
12262 * In that case we must not report a size that covers the
12263 * whole page for a subsequent hit against a different MPU
12264 * region or the background region, because it would result in
12265 * incorrect TLB hits for subsequent accesses to addresses that
12266 * are in this MPU region.
12268 if (limit >= base &&
12269 ranges_overlap(base, limit - base + 1,
12270 addr_page_base,
12271 TARGET_PAGE_SIZE)) {
12272 *is_subpage = true;
12274 continue;
12277 if (base > addr_page_base || limit < addr_page_limit) {
12278 *is_subpage = true;
12281 if (matchregion != -1) {
12282 /* Multiple regions match -- always a failure (unlike
12283 * PMSAv7 where highest-numbered-region wins)
12285 fi->type = ARMFault_Permission;
12286 fi->level = 1;
12287 return true;
12290 matchregion = n;
12291 hit = true;
12295 if (!hit) {
12296 /* background fault */
12297 fi->type = ARMFault_Background;
12298 return true;
12301 if (matchregion == -1) {
12302 /* hit using the background region */
12303 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
12304 } else {
12305 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
12306 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
12308 if (m_is_system_region(env, address)) {
12309 /* System space is always execute never */
12310 xn = 1;
12313 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
12314 if (*prot && !xn) {
12315 *prot |= PAGE_EXEC;
12317 /* We don't need to look the attribute up in the MAIR0/MAIR1
12318 * registers because that only tells us about cacheability.
12320 if (mregion) {
12321 *mregion = matchregion;
12325 fi->type = ARMFault_Permission;
12326 fi->level = 1;
12327 return !(*prot & (1 << access_type));
12331 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
12332 MMUAccessType access_type, ARMMMUIdx mmu_idx,
12333 hwaddr *phys_ptr, MemTxAttrs *txattrs,
12334 int *prot, target_ulong *page_size,
12335 ARMMMUFaultInfo *fi)
12337 uint32_t secure = regime_is_secure(env, mmu_idx);
12338 V8M_SAttributes sattrs = {};
12339 bool ret;
12340 bool mpu_is_subpage;
12342 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
12343 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
12344 if (access_type == MMU_INST_FETCH) {
12345 /* Instruction fetches always use the MMU bank and the
12346 * transaction attribute determined by the fetch address,
12347 * regardless of CPU state. This is painful for QEMU
12348 * to handle, because it would mean we need to encode
12349 * into the mmu_idx not just the (user, negpri) information
12350 * for the current security state but also that for the
12351 * other security state, which would balloon the number
12352 * of mmu_idx values needed alarmingly.
12353 * Fortunately we can avoid this because it's not actually
12354 * possible to arbitrarily execute code from memory with
12355 * the wrong security attribute: it will always generate
12356 * an exception of some kind or another, apart from the
12357 * special case of an NS CPU executing an SG instruction
12358 * in S&NSC memory. So we always just fail the translation
12359 * here and sort things out in the exception handler
12360 * (including possibly emulating an SG instruction).
12362 if (sattrs.ns != !secure) {
12363 if (sattrs.nsc) {
12364 fi->type = ARMFault_QEMU_NSCExec;
12365 } else {
12366 fi->type = ARMFault_QEMU_SFault;
12368 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
12369 *phys_ptr = address;
12370 *prot = 0;
12371 return true;
12373 } else {
12374 /* For data accesses we always use the MMU bank indicated
12375 * by the current CPU state, but the security attributes
12376 * might downgrade a secure access to nonsecure.
12378 if (sattrs.ns) {
12379 txattrs->secure = false;
12380 } else if (!secure) {
12381 /* NS access to S memory must fault.
12382 * Architecturally we should first check whether the
12383 * MPU information for this address indicates that we
12384 * are doing an unaligned access to Device memory, which
12385 * should generate a UsageFault instead. QEMU does not
12386 * currently check for that kind of unaligned access though.
12387 * If we added it we would need to do so as a special case
12388 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
12390 fi->type = ARMFault_QEMU_SFault;
12391 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
12392 *phys_ptr = address;
12393 *prot = 0;
12394 return true;
12399 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
12400 txattrs, prot, &mpu_is_subpage, fi, NULL);
12401 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE;
12402 return ret;
12405 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
12406 MMUAccessType access_type, ARMMMUIdx mmu_idx,
12407 hwaddr *phys_ptr, int *prot,
12408 ARMMMUFaultInfo *fi)
12410 int n;
12411 uint32_t mask;
12412 uint32_t base;
12413 bool is_user = regime_is_user(env, mmu_idx);
12415 if (regime_translation_disabled(env, mmu_idx)) {
12416 /* MPU disabled. */
12417 *phys_ptr = address;
12418 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
12419 return false;
12422 *phys_ptr = address;
12423 for (n = 7; n >= 0; n--) {
12424 base = env->cp15.c6_region[n];
12425 if ((base & 1) == 0) {
12426 continue;
12428 mask = 1 << ((base >> 1) & 0x1f);
12429 /* Keep this shift separate from the above to avoid an
12430 (undefined) << 32. */
12431 mask = (mask << 1) - 1;
12432 if (((base ^ address) & ~mask) == 0) {
12433 break;
12436 if (n < 0) {
12437 fi->type = ARMFault_Background;
12438 return true;
12441 if (access_type == MMU_INST_FETCH) {
12442 mask = env->cp15.pmsav5_insn_ap;
12443 } else {
12444 mask = env->cp15.pmsav5_data_ap;
12446 mask = (mask >> (n * 4)) & 0xf;
12447 switch (mask) {
12448 case 0:
12449 fi->type = ARMFault_Permission;
12450 fi->level = 1;
12451 return true;
12452 case 1:
12453 if (is_user) {
12454 fi->type = ARMFault_Permission;
12455 fi->level = 1;
12456 return true;
12458 *prot = PAGE_READ | PAGE_WRITE;
12459 break;
12460 case 2:
12461 *prot = PAGE_READ;
12462 if (!is_user) {
12463 *prot |= PAGE_WRITE;
12465 break;
12466 case 3:
12467 *prot = PAGE_READ | PAGE_WRITE;
12468 break;
12469 case 5:
12470 if (is_user) {
12471 fi->type = ARMFault_Permission;
12472 fi->level = 1;
12473 return true;
12475 *prot = PAGE_READ;
12476 break;
12477 case 6:
12478 *prot = PAGE_READ;
12479 break;
12480 default:
12481 /* Bad permission. */
12482 fi->type = ARMFault_Permission;
12483 fi->level = 1;
12484 return true;
12486 *prot |= PAGE_EXEC;
12487 return false;
12490 /* Combine either inner or outer cacheability attributes for normal
12491 * memory, according to table D4-42 and pseudocode procedure
12492 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
12494 * NB: only stage 1 includes allocation hints (RW bits), leading to
12495 * some asymmetry.
12497 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
12499 if (s1 == 4 || s2 == 4) {
12500 /* non-cacheable has precedence */
12501 return 4;
12502 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
12503 /* stage 1 write-through takes precedence */
12504 return s1;
12505 } else if (extract32(s2, 2, 2) == 2) {
12506 /* stage 2 write-through takes precedence, but the allocation hint
12507 * is still taken from stage 1
12509 return (2 << 2) | extract32(s1, 0, 2);
12510 } else { /* write-back */
12511 return s1;
12515 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
12516 * and CombineS1S2Desc()
12518 * @s1: Attributes from stage 1 walk
12519 * @s2: Attributes from stage 2 walk
12521 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
12523 uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4);
12524 uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4);
12525 ARMCacheAttrs ret;
12527 /* Combine shareability attributes (table D4-43) */
12528 if (s1.shareability == 2 || s2.shareability == 2) {
12529 /* if either are outer-shareable, the result is outer-shareable */
12530 ret.shareability = 2;
12531 } else if (s1.shareability == 3 || s2.shareability == 3) {
12532 /* if either are inner-shareable, the result is inner-shareable */
12533 ret.shareability = 3;
12534 } else {
12535 /* both non-shareable */
12536 ret.shareability = 0;
12539 /* Combine memory type and cacheability attributes */
12540 if (s1hi == 0 || s2hi == 0) {
12541 /* Device has precedence over normal */
12542 if (s1lo == 0 || s2lo == 0) {
12543 /* nGnRnE has precedence over anything */
12544 ret.attrs = 0;
12545 } else if (s1lo == 4 || s2lo == 4) {
12546 /* non-Reordering has precedence over Reordering */
12547 ret.attrs = 4; /* nGnRE */
12548 } else if (s1lo == 8 || s2lo == 8) {
12549 /* non-Gathering has precedence over Gathering */
12550 ret.attrs = 8; /* nGRE */
12551 } else {
12552 ret.attrs = 0xc; /* GRE */
12555 /* Any location for which the resultant memory type is any
12556 * type of Device memory is always treated as Outer Shareable.
12558 ret.shareability = 2;
12559 } else { /* Normal memory */
12560 /* Outer/inner cacheability combine independently */
12561 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
12562 | combine_cacheattr_nibble(s1lo, s2lo);
12564 if (ret.attrs == 0x44) {
12565 /* Any location for which the resultant memory type is Normal
12566 * Inner Non-cacheable, Outer Non-cacheable is always treated
12567 * as Outer Shareable.
12569 ret.shareability = 2;
12573 return ret;
12577 /* get_phys_addr - get the physical address for this virtual address
12579 * Find the physical address corresponding to the given virtual address,
12580 * by doing a translation table walk on MMU based systems or using the
12581 * MPU state on MPU based systems.
12583 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
12584 * prot and page_size may not be filled in, and the populated fsr value provides
12585 * information on why the translation aborted, in the format of a
12586 * DFSR/IFSR fault register, with the following caveats:
12587 * * we honour the short vs long DFSR format differences.
12588 * * the WnR bit is never set (the caller must do this).
12589 * * for PSMAv5 based systems we don't bother to return a full FSR format
12590 * value.
12592 * @env: CPUARMState
12593 * @address: virtual address to get physical address for
12594 * @access_type: 0 for read, 1 for write, 2 for execute
12595 * @mmu_idx: MMU index indicating required translation regime
12596 * @phys_ptr: set to the physical address corresponding to the virtual address
12597 * @attrs: set to the memory transaction attributes to use
12598 * @prot: set to the permissions for the page containing phys_ptr
12599 * @page_size: set to the size of the page containing phys_ptr
12600 * @fi: set to fault info if the translation fails
12601 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
12603 bool get_phys_addr(CPUARMState *env, target_ulong address,
12604 MMUAccessType access_type, ARMMMUIdx mmu_idx,
12605 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
12606 target_ulong *page_size,
12607 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
12609 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
12610 /* Call ourselves recursively to do the stage 1 and then stage 2
12611 * translations.
12613 if (arm_feature(env, ARM_FEATURE_EL2)) {
12614 hwaddr ipa;
12615 int s2_prot;
12616 int ret;
12617 ARMCacheAttrs cacheattrs2 = {};
12619 ret = get_phys_addr(env, address, access_type,
12620 stage_1_mmu_idx(mmu_idx), &ipa, attrs,
12621 prot, page_size, fi, cacheattrs);
12623 /* If S1 fails or S2 is disabled, return early. */
12624 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
12625 *phys_ptr = ipa;
12626 return ret;
12629 /* S1 is done. Now do S2 translation. */
12630 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
12631 phys_ptr, attrs, &s2_prot,
12632 page_size, fi,
12633 cacheattrs != NULL ? &cacheattrs2 : NULL);
12634 fi->s2addr = ipa;
12635 /* Combine the S1 and S2 perms. */
12636 *prot &= s2_prot;
12638 /* Combine the S1 and S2 cache attributes, if needed */
12639 if (!ret && cacheattrs != NULL) {
12640 if (env->cp15.hcr_el2 & HCR_DC) {
12642 * HCR.DC forces the first stage attributes to
12643 * Normal Non-Shareable,
12644 * Inner Write-Back Read-Allocate Write-Allocate,
12645 * Outer Write-Back Read-Allocate Write-Allocate.
12647 cacheattrs->attrs = 0xff;
12648 cacheattrs->shareability = 0;
12650 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
12653 return ret;
12654 } else {
12656 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
12658 mmu_idx = stage_1_mmu_idx(mmu_idx);
12662 /* The page table entries may downgrade secure to non-secure, but
12663 * cannot upgrade an non-secure translation regime's attributes
12664 * to secure.
12666 attrs->secure = regime_is_secure(env, mmu_idx);
12667 attrs->user = regime_is_user(env, mmu_idx);
12669 /* Fast Context Switch Extension. This doesn't exist at all in v8.
12670 * In v7 and earlier it affects all stage 1 translations.
12672 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
12673 && !arm_feature(env, ARM_FEATURE_V8)) {
12674 if (regime_el(env, mmu_idx) == 3) {
12675 address += env->cp15.fcseidr_s;
12676 } else {
12677 address += env->cp15.fcseidr_ns;
12681 if (arm_feature(env, ARM_FEATURE_PMSA)) {
12682 bool ret;
12683 *page_size = TARGET_PAGE_SIZE;
12685 if (arm_feature(env, ARM_FEATURE_V8)) {
12686 /* PMSAv8 */
12687 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
12688 phys_ptr, attrs, prot, page_size, fi);
12689 } else if (arm_feature(env, ARM_FEATURE_V7)) {
12690 /* PMSAv7 */
12691 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
12692 phys_ptr, prot, page_size, fi);
12693 } else {
12694 /* Pre-v7 MPU */
12695 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
12696 phys_ptr, prot, fi);
12698 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
12699 " mmu_idx %u -> %s (prot %c%c%c)\n",
12700 access_type == MMU_DATA_LOAD ? "reading" :
12701 (access_type == MMU_DATA_STORE ? "writing" : "execute"),
12702 (uint32_t)address, mmu_idx,
12703 ret ? "Miss" : "Hit",
12704 *prot & PAGE_READ ? 'r' : '-',
12705 *prot & PAGE_WRITE ? 'w' : '-',
12706 *prot & PAGE_EXEC ? 'x' : '-');
12708 return ret;
12711 /* Definitely a real MMU, not an MPU */
12713 if (regime_translation_disabled(env, mmu_idx)) {
12714 /* MMU disabled. */
12715 *phys_ptr = address;
12716 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
12717 *page_size = TARGET_PAGE_SIZE;
12718 return 0;
12721 if (regime_using_lpae_format(env, mmu_idx)) {
12722 return get_phys_addr_lpae(env, address, access_type, mmu_idx,
12723 phys_ptr, attrs, prot, page_size,
12724 fi, cacheattrs);
12725 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
12726 return get_phys_addr_v6(env, address, access_type, mmu_idx,
12727 phys_ptr, attrs, prot, page_size, fi);
12728 } else {
12729 return get_phys_addr_v5(env, address, access_type, mmu_idx,
12730 phys_ptr, prot, page_size, fi);
12734 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
12735 MemTxAttrs *attrs)
12737 ARMCPU *cpu = ARM_CPU(cs);
12738 CPUARMState *env = &cpu->env;
12739 hwaddr phys_addr;
12740 target_ulong page_size;
12741 int prot;
12742 bool ret;
12743 ARMMMUFaultInfo fi = {};
12744 ARMMMUIdx mmu_idx = arm_mmu_idx(env);
12746 *attrs = (MemTxAttrs) {};
12748 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
12749 attrs, &prot, &page_size, &fi, NULL);
12751 if (ret) {
12752 return -1;
12754 return phys_addr;
12757 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
12759 uint32_t mask;
12760 unsigned el = arm_current_el(env);
12762 /* First handle registers which unprivileged can read */
12764 switch (reg) {
12765 case 0 ... 7: /* xPSR sub-fields */
12766 mask = 0;
12767 if ((reg & 1) && el) {
12768 mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */
12770 if (!(reg & 4)) {
12771 mask |= XPSR_NZCV | XPSR_Q; /* APSR */
12772 if (arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
12773 mask |= XPSR_GE;
12776 /* EPSR reads as zero */
12777 return xpsr_read(env) & mask;
12778 break;
12779 case 20: /* CONTROL */
12781 uint32_t value = env->v7m.control[env->v7m.secure];
12782 if (!env->v7m.secure) {
12783 /* SFPA is RAZ/WI from NS; FPCA is stored in the M_REG_S bank */
12784 value |= env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK;
12786 return value;
12788 case 0x94: /* CONTROL_NS */
12790 * We have to handle this here because unprivileged Secure code
12791 * can read the NS CONTROL register.
12793 if (!env->v7m.secure) {
12794 return 0;
12796 return env->v7m.control[M_REG_NS] |
12797 (env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK);
12800 if (el == 0) {
12801 return 0; /* unprivileged reads others as zero */
12804 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
12805 switch (reg) {
12806 case 0x88: /* MSP_NS */
12807 if (!env->v7m.secure) {
12808 return 0;
12810 return env->v7m.other_ss_msp;
12811 case 0x89: /* PSP_NS */
12812 if (!env->v7m.secure) {
12813 return 0;
12815 return env->v7m.other_ss_psp;
12816 case 0x8a: /* MSPLIM_NS */
12817 if (!env->v7m.secure) {
12818 return 0;
12820 return env->v7m.msplim[M_REG_NS];
12821 case 0x8b: /* PSPLIM_NS */
12822 if (!env->v7m.secure) {
12823 return 0;
12825 return env->v7m.psplim[M_REG_NS];
12826 case 0x90: /* PRIMASK_NS */
12827 if (!env->v7m.secure) {
12828 return 0;
12830 return env->v7m.primask[M_REG_NS];
12831 case 0x91: /* BASEPRI_NS */
12832 if (!env->v7m.secure) {
12833 return 0;
12835 return env->v7m.basepri[M_REG_NS];
12836 case 0x93: /* FAULTMASK_NS */
12837 if (!env->v7m.secure) {
12838 return 0;
12840 return env->v7m.faultmask[M_REG_NS];
12841 case 0x98: /* SP_NS */
12844 * This gives the non-secure SP selected based on whether we're
12845 * currently in handler mode or not, using the NS CONTROL.SPSEL.
12847 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
12849 if (!env->v7m.secure) {
12850 return 0;
12852 if (!arm_v7m_is_handler_mode(env) && spsel) {
12853 return env->v7m.other_ss_psp;
12854 } else {
12855 return env->v7m.other_ss_msp;
12858 default:
12859 break;
12863 switch (reg) {
12864 case 8: /* MSP */
12865 return v7m_using_psp(env) ? env->v7m.other_sp : env->regs[13];
12866 case 9: /* PSP */
12867 return v7m_using_psp(env) ? env->regs[13] : env->v7m.other_sp;
12868 case 10: /* MSPLIM */
12869 if (!arm_feature(env, ARM_FEATURE_V8)) {
12870 goto bad_reg;
12872 return env->v7m.msplim[env->v7m.secure];
12873 case 11: /* PSPLIM */
12874 if (!arm_feature(env, ARM_FEATURE_V8)) {
12875 goto bad_reg;
12877 return env->v7m.psplim[env->v7m.secure];
12878 case 16: /* PRIMASK */
12879 return env->v7m.primask[env->v7m.secure];
12880 case 17: /* BASEPRI */
12881 case 18: /* BASEPRI_MAX */
12882 return env->v7m.basepri[env->v7m.secure];
12883 case 19: /* FAULTMASK */
12884 return env->v7m.faultmask[env->v7m.secure];
12885 default:
12886 bad_reg:
12887 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special"
12888 " register %d\n", reg);
12889 return 0;
12893 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
12896 * We're passed bits [11..0] of the instruction; extract
12897 * SYSm and the mask bits.
12898 * Invalid combinations of SYSm and mask are UNPREDICTABLE;
12899 * we choose to treat them as if the mask bits were valid.
12900 * NB that the pseudocode 'mask' variable is bits [11..10],
12901 * whereas ours is [11..8].
12903 uint32_t mask = extract32(maskreg, 8, 4);
12904 uint32_t reg = extract32(maskreg, 0, 8);
12905 int cur_el = arm_current_el(env);
12907 if (cur_el == 0 && reg > 7 && reg != 20) {
12909 * only xPSR sub-fields and CONTROL.SFPA may be written by
12910 * unprivileged code
12912 return;
12915 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
12916 switch (reg) {
12917 case 0x88: /* MSP_NS */
12918 if (!env->v7m.secure) {
12919 return;
12921 env->v7m.other_ss_msp = val;
12922 return;
12923 case 0x89: /* PSP_NS */
12924 if (!env->v7m.secure) {
12925 return;
12927 env->v7m.other_ss_psp = val;
12928 return;
12929 case 0x8a: /* MSPLIM_NS */
12930 if (!env->v7m.secure) {
12931 return;
12933 env->v7m.msplim[M_REG_NS] = val & ~7;
12934 return;
12935 case 0x8b: /* PSPLIM_NS */
12936 if (!env->v7m.secure) {
12937 return;
12939 env->v7m.psplim[M_REG_NS] = val & ~7;
12940 return;
12941 case 0x90: /* PRIMASK_NS */
12942 if (!env->v7m.secure) {
12943 return;
12945 env->v7m.primask[M_REG_NS] = val & 1;
12946 return;
12947 case 0x91: /* BASEPRI_NS */
12948 if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) {
12949 return;
12951 env->v7m.basepri[M_REG_NS] = val & 0xff;
12952 return;
12953 case 0x93: /* FAULTMASK_NS */
12954 if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) {
12955 return;
12957 env->v7m.faultmask[M_REG_NS] = val & 1;
12958 return;
12959 case 0x94: /* CONTROL_NS */
12960 if (!env->v7m.secure) {
12961 return;
12963 write_v7m_control_spsel_for_secstate(env,
12964 val & R_V7M_CONTROL_SPSEL_MASK,
12965 M_REG_NS);
12966 if (arm_feature(env, ARM_FEATURE_M_MAIN)) {
12967 env->v7m.control[M_REG_NS] &= ~R_V7M_CONTROL_NPRIV_MASK;
12968 env->v7m.control[M_REG_NS] |= val & R_V7M_CONTROL_NPRIV_MASK;
12971 * SFPA is RAZ/WI from NS. FPCA is RO if NSACR.CP10 == 0,
12972 * RES0 if the FPU is not present, and is stored in the S bank
12974 if (arm_feature(env, ARM_FEATURE_VFP) &&
12975 extract32(env->v7m.nsacr, 10, 1)) {
12976 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_FPCA_MASK;
12977 env->v7m.control[M_REG_S] |= val & R_V7M_CONTROL_FPCA_MASK;
12979 return;
12980 case 0x98: /* SP_NS */
12983 * This gives the non-secure SP selected based on whether we're
12984 * currently in handler mode or not, using the NS CONTROL.SPSEL.
12986 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
12987 bool is_psp = !arm_v7m_is_handler_mode(env) && spsel;
12988 uint32_t limit;
12990 if (!env->v7m.secure) {
12991 return;
12994 limit = is_psp ? env->v7m.psplim[false] : env->v7m.msplim[false];
12996 if (val < limit) {
12997 CPUState *cs = env_cpu(env);
12999 cpu_restore_state(cs, GETPC(), true);
13000 raise_exception(env, EXCP_STKOF, 0, 1);
13003 if (is_psp) {
13004 env->v7m.other_ss_psp = val;
13005 } else {
13006 env->v7m.other_ss_msp = val;
13008 return;
13010 default:
13011 break;
13015 switch (reg) {
13016 case 0 ... 7: /* xPSR sub-fields */
13017 /* only APSR is actually writable */
13018 if (!(reg & 4)) {
13019 uint32_t apsrmask = 0;
13021 if (mask & 8) {
13022 apsrmask |= XPSR_NZCV | XPSR_Q;
13024 if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
13025 apsrmask |= XPSR_GE;
13027 xpsr_write(env, val, apsrmask);
13029 break;
13030 case 8: /* MSP */
13031 if (v7m_using_psp(env)) {
13032 env->v7m.other_sp = val;
13033 } else {
13034 env->regs[13] = val;
13036 break;
13037 case 9: /* PSP */
13038 if (v7m_using_psp(env)) {
13039 env->regs[13] = val;
13040 } else {
13041 env->v7m.other_sp = val;
13043 break;
13044 case 10: /* MSPLIM */
13045 if (!arm_feature(env, ARM_FEATURE_V8)) {
13046 goto bad_reg;
13048 env->v7m.msplim[env->v7m.secure] = val & ~7;
13049 break;
13050 case 11: /* PSPLIM */
13051 if (!arm_feature(env, ARM_FEATURE_V8)) {
13052 goto bad_reg;
13054 env->v7m.psplim[env->v7m.secure] = val & ~7;
13055 break;
13056 case 16: /* PRIMASK */
13057 env->v7m.primask[env->v7m.secure] = val & 1;
13058 break;
13059 case 17: /* BASEPRI */
13060 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
13061 goto bad_reg;
13063 env->v7m.basepri[env->v7m.secure] = val & 0xff;
13064 break;
13065 case 18: /* BASEPRI_MAX */
13066 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
13067 goto bad_reg;
13069 val &= 0xff;
13070 if (val != 0 && (val < env->v7m.basepri[env->v7m.secure]
13071 || env->v7m.basepri[env->v7m.secure] == 0)) {
13072 env->v7m.basepri[env->v7m.secure] = val;
13074 break;
13075 case 19: /* FAULTMASK */
13076 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
13077 goto bad_reg;
13079 env->v7m.faultmask[env->v7m.secure] = val & 1;
13080 break;
13081 case 20: /* CONTROL */
13083 * Writing to the SPSEL bit only has an effect if we are in
13084 * thread mode; other bits can be updated by any privileged code.
13085 * write_v7m_control_spsel() deals with updating the SPSEL bit in
13086 * env->v7m.control, so we only need update the others.
13087 * For v7M, we must just ignore explicit writes to SPSEL in handler
13088 * mode; for v8M the write is permitted but will have no effect.
13089 * All these bits are writes-ignored from non-privileged code,
13090 * except for SFPA.
13092 if (cur_el > 0 && (arm_feature(env, ARM_FEATURE_V8) ||
13093 !arm_v7m_is_handler_mode(env))) {
13094 write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0);
13096 if (cur_el > 0 && arm_feature(env, ARM_FEATURE_M_MAIN)) {
13097 env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK;
13098 env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK;
13100 if (arm_feature(env, ARM_FEATURE_VFP)) {
13102 * SFPA is RAZ/WI from NS or if no FPU.
13103 * FPCA is RO if NSACR.CP10 == 0, RES0 if the FPU is not present.
13104 * Both are stored in the S bank.
13106 if (env->v7m.secure) {
13107 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
13108 env->v7m.control[M_REG_S] |= val & R_V7M_CONTROL_SFPA_MASK;
13110 if (cur_el > 0 &&
13111 (env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_SECURITY) ||
13112 extract32(env->v7m.nsacr, 10, 1))) {
13113 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_FPCA_MASK;
13114 env->v7m.control[M_REG_S] |= val & R_V7M_CONTROL_FPCA_MASK;
13117 break;
13118 default:
13119 bad_reg:
13120 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special"
13121 " register %d\n", reg);
13122 return;
13126 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
13128 /* Implement the TT instruction. op is bits [7:6] of the insn. */
13129 bool forceunpriv = op & 1;
13130 bool alt = op & 2;
13131 V8M_SAttributes sattrs = {};
13132 uint32_t tt_resp;
13133 bool r, rw, nsr, nsrw, mrvalid;
13134 int prot;
13135 ARMMMUFaultInfo fi = {};
13136 MemTxAttrs attrs = {};
13137 hwaddr phys_addr;
13138 ARMMMUIdx mmu_idx;
13139 uint32_t mregion;
13140 bool targetpriv;
13141 bool targetsec = env->v7m.secure;
13142 bool is_subpage;
13145 * Work out what the security state and privilege level we're
13146 * interested in is...
13148 if (alt) {
13149 targetsec = !targetsec;
13152 if (forceunpriv) {
13153 targetpriv = false;
13154 } else {
13155 targetpriv = arm_v7m_is_handler_mode(env) ||
13156 !(env->v7m.control[targetsec] & R_V7M_CONTROL_NPRIV_MASK);
13159 /* ...and then figure out which MMU index this is */
13160 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targetsec, targetpriv);
13163 * We know that the MPU and SAU don't care about the access type
13164 * for our purposes beyond that we don't want to claim to be
13165 * an insn fetch, so we arbitrarily call this a read.
13169 * MPU region info only available for privileged or if
13170 * inspecting the other MPU state.
13172 if (arm_current_el(env) != 0 || alt) {
13173 /* We can ignore the return value as prot is always set */
13174 pmsav8_mpu_lookup(env, addr, MMU_DATA_LOAD, mmu_idx,
13175 &phys_addr, &attrs, &prot, &is_subpage,
13176 &fi, &mregion);
13177 if (mregion == -1) {
13178 mrvalid = false;
13179 mregion = 0;
13180 } else {
13181 mrvalid = true;
13183 r = prot & PAGE_READ;
13184 rw = prot & PAGE_WRITE;
13185 } else {
13186 r = false;
13187 rw = false;
13188 mrvalid = false;
13189 mregion = 0;
13192 if (env->v7m.secure) {
13193 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
13194 nsr = sattrs.ns && r;
13195 nsrw = sattrs.ns && rw;
13196 } else {
13197 sattrs.ns = true;
13198 nsr = false;
13199 nsrw = false;
13202 tt_resp = (sattrs.iregion << 24) |
13203 (sattrs.irvalid << 23) |
13204 ((!sattrs.ns) << 22) |
13205 (nsrw << 21) |
13206 (nsr << 20) |
13207 (rw << 19) |
13208 (r << 18) |
13209 (sattrs.srvalid << 17) |
13210 (mrvalid << 16) |
13211 (sattrs.sregion << 8) |
13212 mregion;
13214 return tt_resp;
13217 #endif
13219 /* Note that signed overflow is undefined in C. The following routines are
13220 careful to use unsigned types where modulo arithmetic is required.
13221 Failure to do so _will_ break on newer gcc. */
13223 /* Signed saturating arithmetic. */
13225 /* Perform 16-bit signed saturating addition. */
13226 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
13228 uint16_t res;
13230 res = a + b;
13231 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
13232 if (a & 0x8000)
13233 res = 0x8000;
13234 else
13235 res = 0x7fff;
13237 return res;
13240 /* Perform 8-bit signed saturating addition. */
13241 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
13243 uint8_t res;
13245 res = a + b;
13246 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
13247 if (a & 0x80)
13248 res = 0x80;
13249 else
13250 res = 0x7f;
13252 return res;
13255 /* Perform 16-bit signed saturating subtraction. */
13256 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
13258 uint16_t res;
13260 res = a - b;
13261 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
13262 if (a & 0x8000)
13263 res = 0x8000;
13264 else
13265 res = 0x7fff;
13267 return res;
13270 /* Perform 8-bit signed saturating subtraction. */
13271 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
13273 uint8_t res;
13275 res = a - b;
13276 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
13277 if (a & 0x80)
13278 res = 0x80;
13279 else
13280 res = 0x7f;
13282 return res;
13285 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
13286 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
13287 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
13288 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
13289 #define PFX q
13291 #include "op_addsub.h"
13293 /* Unsigned saturating arithmetic. */
13294 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
13296 uint16_t res;
13297 res = a + b;
13298 if (res < a)
13299 res = 0xffff;
13300 return res;
13303 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
13305 if (a > b)
13306 return a - b;
13307 else
13308 return 0;
13311 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
13313 uint8_t res;
13314 res = a + b;
13315 if (res < a)
13316 res = 0xff;
13317 return res;
13320 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
13322 if (a > b)
13323 return a - b;
13324 else
13325 return 0;
13328 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
13329 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
13330 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
13331 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
13332 #define PFX uq
13334 #include "op_addsub.h"
13336 /* Signed modulo arithmetic. */
13337 #define SARITH16(a, b, n, op) do { \
13338 int32_t sum; \
13339 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
13340 RESULT(sum, n, 16); \
13341 if (sum >= 0) \
13342 ge |= 3 << (n * 2); \
13343 } while(0)
13345 #define SARITH8(a, b, n, op) do { \
13346 int32_t sum; \
13347 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
13348 RESULT(sum, n, 8); \
13349 if (sum >= 0) \
13350 ge |= 1 << n; \
13351 } while(0)
13354 #define ADD16(a, b, n) SARITH16(a, b, n, +)
13355 #define SUB16(a, b, n) SARITH16(a, b, n, -)
13356 #define ADD8(a, b, n) SARITH8(a, b, n, +)
13357 #define SUB8(a, b, n) SARITH8(a, b, n, -)
13358 #define PFX s
13359 #define ARITH_GE
13361 #include "op_addsub.h"
13363 /* Unsigned modulo arithmetic. */
13364 #define ADD16(a, b, n) do { \
13365 uint32_t sum; \
13366 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
13367 RESULT(sum, n, 16); \
13368 if ((sum >> 16) == 1) \
13369 ge |= 3 << (n * 2); \
13370 } while(0)
13372 #define ADD8(a, b, n) do { \
13373 uint32_t sum; \
13374 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
13375 RESULT(sum, n, 8); \
13376 if ((sum >> 8) == 1) \
13377 ge |= 1 << n; \
13378 } while(0)
13380 #define SUB16(a, b, n) do { \
13381 uint32_t sum; \
13382 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
13383 RESULT(sum, n, 16); \
13384 if ((sum >> 16) == 0) \
13385 ge |= 3 << (n * 2); \
13386 } while(0)
13388 #define SUB8(a, b, n) do { \
13389 uint32_t sum; \
13390 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
13391 RESULT(sum, n, 8); \
13392 if ((sum >> 8) == 0) \
13393 ge |= 1 << n; \
13394 } while(0)
13396 #define PFX u
13397 #define ARITH_GE
13399 #include "op_addsub.h"
13401 /* Halved signed arithmetic. */
13402 #define ADD16(a, b, n) \
13403 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
13404 #define SUB16(a, b, n) \
13405 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
13406 #define ADD8(a, b, n) \
13407 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
13408 #define SUB8(a, b, n) \
13409 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
13410 #define PFX sh
13412 #include "op_addsub.h"
13414 /* Halved unsigned arithmetic. */
13415 #define ADD16(a, b, n) \
13416 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
13417 #define SUB16(a, b, n) \
13418 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
13419 #define ADD8(a, b, n) \
13420 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
13421 #define SUB8(a, b, n) \
13422 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
13423 #define PFX uh
13425 #include "op_addsub.h"
13427 static inline uint8_t do_usad(uint8_t a, uint8_t b)
13429 if (a > b)
13430 return a - b;
13431 else
13432 return b - a;
13435 /* Unsigned sum of absolute byte differences. */
13436 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
13438 uint32_t sum;
13439 sum = do_usad(a, b);
13440 sum += do_usad(a >> 8, b >> 8);
13441 sum += do_usad(a >> 16, b >>16);
13442 sum += do_usad(a >> 24, b >> 24);
13443 return sum;
13446 /* For ARMv6 SEL instruction. */
13447 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
13449 uint32_t mask;
13451 mask = 0;
13452 if (flags & 1)
13453 mask |= 0xff;
13454 if (flags & 2)
13455 mask |= 0xff00;
13456 if (flags & 4)
13457 mask |= 0xff0000;
13458 if (flags & 8)
13459 mask |= 0xff000000;
13460 return (a & mask) | (b & ~mask);
13463 /* CRC helpers.
13464 * The upper bytes of val (above the number specified by 'bytes') must have
13465 * been zeroed out by the caller.
13467 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
13469 uint8_t buf[4];
13471 stl_le_p(buf, val);
13473 /* zlib crc32 converts the accumulator and output to one's complement. */
13474 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
13477 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
13479 uint8_t buf[4];
13481 stl_le_p(buf, val);
13483 /* Linux crc32c converts the output to one's complement. */
13484 return crc32c(acc, buf, bytes) ^ 0xffffffff;
13487 /* Return the exception level to which FP-disabled exceptions should
13488 * be taken, or 0 if FP is enabled.
13490 int fp_exception_el(CPUARMState *env, int cur_el)
13492 #ifndef CONFIG_USER_ONLY
13493 int fpen;
13495 /* CPACR and the CPTR registers don't exist before v6, so FP is
13496 * always accessible
13498 if (!arm_feature(env, ARM_FEATURE_V6)) {
13499 return 0;
13502 if (arm_feature(env, ARM_FEATURE_M)) {
13503 /* CPACR can cause a NOCP UsageFault taken to current security state */
13504 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
13505 return 1;
13508 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
13509 if (!extract32(env->v7m.nsacr, 10, 1)) {
13510 /* FP insns cause a NOCP UsageFault taken to Secure */
13511 return 3;
13515 return 0;
13518 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
13519 * 0, 2 : trap EL0 and EL1/PL1 accesses
13520 * 1 : trap only EL0 accesses
13521 * 3 : trap no accesses
13523 fpen = extract32(env->cp15.cpacr_el1, 20, 2);
13524 switch (fpen) {
13525 case 0:
13526 case 2:
13527 if (cur_el == 0 || cur_el == 1) {
13528 /* Trap to PL1, which might be EL1 or EL3 */
13529 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
13530 return 3;
13532 return 1;
13534 if (cur_el == 3 && !is_a64(env)) {
13535 /* Secure PL1 running at EL3 */
13536 return 3;
13538 break;
13539 case 1:
13540 if (cur_el == 0) {
13541 return 1;
13543 break;
13544 case 3:
13545 break;
13549 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
13550 * to control non-secure access to the FPU. It doesn't have any
13551 * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
13553 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
13554 cur_el <= 2 && !arm_is_secure_below_el3(env))) {
13555 if (!extract32(env->cp15.nsacr, 10, 1)) {
13556 /* FP insns act as UNDEF */
13557 return cur_el == 2 ? 2 : 1;
13561 /* For the CPTR registers we don't need to guard with an ARM_FEATURE
13562 * check because zero bits in the registers mean "don't trap".
13565 /* CPTR_EL2 : present in v7VE or v8 */
13566 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
13567 && !arm_is_secure_below_el3(env)) {
13568 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
13569 return 2;
13572 /* CPTR_EL3 : present in v8 */
13573 if (extract32(env->cp15.cptr_el[3], 10, 1)) {
13574 /* Trap all FP ops to EL3 */
13575 return 3;
13577 #endif
13578 return 0;
13581 ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env,
13582 bool secstate, bool priv, bool negpri)
13584 ARMMMUIdx mmu_idx = ARM_MMU_IDX_M;
13586 if (priv) {
13587 mmu_idx |= ARM_MMU_IDX_M_PRIV;
13590 if (negpri) {
13591 mmu_idx |= ARM_MMU_IDX_M_NEGPRI;
13594 if (secstate) {
13595 mmu_idx |= ARM_MMU_IDX_M_S;
13598 return mmu_idx;
13601 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
13602 bool secstate, bool priv)
13604 bool negpri = armv7m_nvic_neg_prio_requested(env->nvic, secstate);
13606 return arm_v7m_mmu_idx_all(env, secstate, priv, negpri);
13609 /* Return the MMU index for a v7M CPU in the specified security state */
13610 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
13612 bool priv = arm_current_el(env) != 0;
13614 return arm_v7m_mmu_idx_for_secstate_and_priv(env, secstate, priv);
13617 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
13619 int el;
13621 if (arm_feature(env, ARM_FEATURE_M)) {
13622 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
13625 el = arm_current_el(env);
13626 if (el < 2 && arm_is_secure_below_el3(env)) {
13627 return ARMMMUIdx_S1SE0 + el;
13628 } else {
13629 return ARMMMUIdx_S12NSE0 + el;
13633 int cpu_mmu_index(CPUARMState *env, bool ifetch)
13635 return arm_to_core_mmu_idx(arm_mmu_idx(env));
13638 #ifndef CONFIG_USER_ONLY
13639 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
13641 return stage_1_mmu_idx(arm_mmu_idx(env));
13643 #endif
13645 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
13646 target_ulong *cs_base, uint32_t *pflags)
13648 ARMMMUIdx mmu_idx = arm_mmu_idx(env);
13649 int current_el = arm_current_el(env);
13650 int fp_el = fp_exception_el(env, current_el);
13651 uint32_t flags = 0;
13653 if (is_a64(env)) {
13654 ARMCPU *cpu = env_archcpu(env);
13655 uint64_t sctlr;
13657 *pc = env->pc;
13658 flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1);
13660 /* Get control bits for tagged addresses. */
13662 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
13663 ARMVAParameters p0 = aa64_va_parameters_both(env, 0, stage1);
13664 int tbii, tbid;
13666 /* FIXME: ARMv8.1-VHE S2 translation regime. */
13667 if (regime_el(env, stage1) < 2) {
13668 ARMVAParameters p1 = aa64_va_parameters_both(env, -1, stage1);
13669 tbid = (p1.tbi << 1) | p0.tbi;
13670 tbii = tbid & ~((p1.tbid << 1) | p0.tbid);
13671 } else {
13672 tbid = p0.tbi;
13673 tbii = tbid & !p0.tbid;
13676 flags = FIELD_DP32(flags, TBFLAG_A64, TBII, tbii);
13677 flags = FIELD_DP32(flags, TBFLAG_A64, TBID, tbid);
13680 if (cpu_isar_feature(aa64_sve, cpu)) {
13681 int sve_el = sve_exception_el(env, current_el);
13682 uint32_t zcr_len;
13684 /* If SVE is disabled, but FP is enabled,
13685 * then the effective len is 0.
13687 if (sve_el != 0 && fp_el == 0) {
13688 zcr_len = 0;
13689 } else {
13690 zcr_len = sve_zcr_len_for_el(env, current_el);
13692 flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el);
13693 flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len);
13696 sctlr = arm_sctlr(env, current_el);
13698 if (cpu_isar_feature(aa64_pauth, cpu)) {
13700 * In order to save space in flags, we record only whether
13701 * pauth is "inactive", meaning all insns are implemented as
13702 * a nop, or "active" when some action must be performed.
13703 * The decision of which action to take is left to a helper.
13705 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
13706 flags = FIELD_DP32(flags, TBFLAG_A64, PAUTH_ACTIVE, 1);
13710 if (cpu_isar_feature(aa64_bti, cpu)) {
13711 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */
13712 if (sctlr & (current_el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
13713 flags = FIELD_DP32(flags, TBFLAG_A64, BT, 1);
13715 flags = FIELD_DP32(flags, TBFLAG_A64, BTYPE, env->btype);
13717 } else {
13718 *pc = env->regs[15];
13719 flags = FIELD_DP32(flags, TBFLAG_A32, THUMB, env->thumb);
13720 flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN, env->vfp.vec_len);
13721 flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE, env->vfp.vec_stride);
13722 flags = FIELD_DP32(flags, TBFLAG_A32, CONDEXEC, env->condexec_bits);
13723 flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, arm_sctlr_b(env));
13724 flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env));
13725 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
13726 || arm_el_is_aa64(env, 1) || arm_feature(env, ARM_FEATURE_M)) {
13727 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1);
13729 /* Note that XSCALE_CPAR shares bits with VECSTRIDE */
13730 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
13731 flags = FIELD_DP32(flags, TBFLAG_A32,
13732 XSCALE_CPAR, env->cp15.c15_cpar);
13736 flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX, arm_to_core_mmu_idx(mmu_idx));
13738 /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
13739 * states defined in the ARM ARM for software singlestep:
13740 * SS_ACTIVE PSTATE.SS State
13741 * 0 x Inactive (the TB flag for SS is always 0)
13742 * 1 0 Active-pending
13743 * 1 1 Active-not-pending
13745 if (arm_singlestep_active(env)) {
13746 flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1);
13747 if (is_a64(env)) {
13748 if (env->pstate & PSTATE_SS) {
13749 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1);
13751 } else {
13752 if (env->uncached_cpsr & PSTATE_SS) {
13753 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1);
13757 if (arm_cpu_data_is_big_endian(env)) {
13758 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1);
13760 flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el);
13762 if (arm_v7m_is_handler_mode(env)) {
13763 flags = FIELD_DP32(flags, TBFLAG_A32, HANDLER, 1);
13766 /* v8M always applies stack limit checks unless CCR.STKOFHFNMIGN is
13767 * suppressing them because the requested execution priority is less than 0.
13769 if (arm_feature(env, ARM_FEATURE_V8) &&
13770 arm_feature(env, ARM_FEATURE_M) &&
13771 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
13772 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
13773 flags = FIELD_DP32(flags, TBFLAG_A32, STACKCHECK, 1);
13776 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
13777 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) != env->v7m.secure) {
13778 flags = FIELD_DP32(flags, TBFLAG_A32, FPCCR_S_WRONG, 1);
13781 if (arm_feature(env, ARM_FEATURE_M) &&
13782 (env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
13783 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
13784 (env->v7m.secure &&
13785 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
13787 * ASPEN is set, but FPCA/SFPA indicate that there is no active
13788 * FP context; we must create a new FP context before executing
13789 * any FP insn.
13791 flags = FIELD_DP32(flags, TBFLAG_A32, NEW_FP_CTXT_NEEDED, 1);
13794 if (arm_feature(env, ARM_FEATURE_M)) {
13795 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
13797 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
13798 flags = FIELD_DP32(flags, TBFLAG_A32, LSPACT, 1);
13802 *pflags = flags;
13803 *cs_base = 0;
13806 #ifdef TARGET_AARCH64
13808 * The manual says that when SVE is enabled and VQ is widened the
13809 * implementation is allowed to zero the previously inaccessible
13810 * portion of the registers. The corollary to that is that when
13811 * SVE is enabled and VQ is narrowed we are also allowed to zero
13812 * the now inaccessible portion of the registers.
13814 * The intent of this is that no predicate bit beyond VQ is ever set.
13815 * Which means that some operations on predicate registers themselves
13816 * may operate on full uint64_t or even unrolled across the maximum
13817 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally
13818 * may well be cheaper than conditionals to restrict the operation
13819 * to the relevant portion of a uint16_t[16].
13821 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
13823 int i, j;
13824 uint64_t pmask;
13826 assert(vq >= 1 && vq <= ARM_MAX_VQ);
13827 assert(vq <= env_archcpu(env)->sve_max_vq);
13829 /* Zap the high bits of the zregs. */
13830 for (i = 0; i < 32; i++) {
13831 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
13834 /* Zap the high bits of the pregs and ffr. */
13835 pmask = 0;
13836 if (vq & 3) {
13837 pmask = ~(-1ULL << (16 * (vq & 3)));
13839 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
13840 for (i = 0; i < 17; ++i) {
13841 env->vfp.pregs[i].p[j] &= pmask;
13843 pmask = 0;
13848 * Notice a change in SVE vector size when changing EL.
13850 void aarch64_sve_change_el(CPUARMState *env, int old_el,
13851 int new_el, bool el0_a64)
13853 ARMCPU *cpu = env_archcpu(env);
13854 int old_len, new_len;
13855 bool old_a64, new_a64;
13857 /* Nothing to do if no SVE. */
13858 if (!cpu_isar_feature(aa64_sve, cpu)) {
13859 return;
13862 /* Nothing to do if FP is disabled in either EL. */
13863 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
13864 return;
13868 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
13869 * at ELx, or not available because the EL is in AArch32 state, then
13870 * for all purposes other than a direct read, the ZCR_ELx.LEN field
13871 * has an effective value of 0".
13873 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
13874 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
13875 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that
13876 * we already have the correct register contents when encountering the
13877 * vq0->vq0 transition between EL0->EL1.
13879 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
13880 old_len = (old_a64 && !sve_exception_el(env, old_el)
13881 ? sve_zcr_len_for_el(env, old_el) : 0);
13882 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
13883 new_len = (new_a64 && !sve_exception_el(env, new_el)
13884 ? sve_zcr_len_for_el(env, new_el) : 0);
13886 /* When changing vector length, clear inaccessible state. */
13887 if (new_len < old_len) {
13888 aarch64_sve_narrow_vq(env, new_len + 1);
13891 #endif