target-i386: introduce new raise_exception functions
[qemu/ar7.git] / translate-all.c
blob0b8b34b884a63379c5a05f31f306bd9f7d8ae579
1 /*
2 * Host code generation
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #ifdef _WIN32
20 #include <windows.h>
21 #else
22 #include <sys/types.h>
23 #include <sys/mman.h>
24 #endif
25 #include <stdarg.h>
26 #include <stdlib.h>
27 #include <stdio.h>
28 #include <string.h>
29 #include <inttypes.h>
31 #include "config.h"
33 #include "qemu-common.h"
34 #define NO_CPU_IO_DEFS
35 #include "cpu.h"
36 #include "trace.h"
37 #include "disas/disas.h"
38 #include "tcg.h"
39 #if defined(CONFIG_USER_ONLY)
40 #include "qemu.h"
41 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
42 #include <sys/param.h>
43 #if __FreeBSD_version >= 700104
44 #define HAVE_KINFO_GETVMMAP
45 #define sigqueue sigqueue_freebsd /* avoid redefinition */
46 #include <sys/time.h>
47 #include <sys/proc.h>
48 #include <machine/profile.h>
49 #define _KERNEL
50 #include <sys/user.h>
51 #undef _KERNEL
52 #undef sigqueue
53 #include <libutil.h>
54 #endif
55 #endif
56 #else
57 #include "exec/address-spaces.h"
58 #endif
60 #include "exec/cputlb.h"
61 #include "exec/tb-hash.h"
62 #include "translate-all.h"
63 #include "qemu/bitmap.h"
64 #include "qemu/timer.h"
66 //#define DEBUG_TB_INVALIDATE
67 //#define DEBUG_FLUSH
68 /* make various TB consistency checks */
69 //#define DEBUG_TB_CHECK
71 #if !defined(CONFIG_USER_ONLY)
72 /* TB consistency checks only implemented for usermode emulation. */
73 #undef DEBUG_TB_CHECK
74 #endif
76 #define SMC_BITMAP_USE_THRESHOLD 10
78 typedef struct PageDesc {
79 /* list of TBs intersecting this ram page */
80 TranslationBlock *first_tb;
81 /* in order to optimize self modifying code, we count the number
82 of lookups we do to a given page to use a bitmap */
83 unsigned int code_write_count;
84 unsigned long *code_bitmap;
85 #if defined(CONFIG_USER_ONLY)
86 unsigned long flags;
87 #endif
88 } PageDesc;
90 /* In system mode we want L1_MAP to be based on ram offsets,
91 while in user mode we want it to be based on virtual addresses. */
92 #if !defined(CONFIG_USER_ONLY)
93 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
94 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
95 #else
96 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
97 #endif
98 #else
99 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
100 #endif
102 /* Size of the L2 (and L3, etc) page tables. */
103 #define V_L2_BITS 10
104 #define V_L2_SIZE (1 << V_L2_BITS)
106 /* The bits remaining after N lower levels of page tables. */
107 #define V_L1_BITS_REM \
108 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS)
110 #if V_L1_BITS_REM < 4
111 #define V_L1_BITS (V_L1_BITS_REM + V_L2_BITS)
112 #else
113 #define V_L1_BITS V_L1_BITS_REM
114 #endif
116 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
118 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
120 uintptr_t qemu_real_host_page_size;
121 uintptr_t qemu_real_host_page_mask;
122 uintptr_t qemu_host_page_size;
123 uintptr_t qemu_host_page_mask;
125 /* The bottom level has pointers to PageDesc */
126 static void *l1_map[V_L1_SIZE];
128 /* code generation context */
129 TCGContext tcg_ctx;
131 /* translation block context */
132 #ifdef CONFIG_USER_ONLY
133 __thread int have_tb_lock;
134 #endif
136 void tb_lock(void)
138 #ifdef CONFIG_USER_ONLY
139 assert(!have_tb_lock);
140 qemu_mutex_lock(&tcg_ctx.tb_ctx.tb_lock);
141 have_tb_lock++;
142 #endif
145 void tb_unlock(void)
147 #ifdef CONFIG_USER_ONLY
148 assert(have_tb_lock);
149 have_tb_lock--;
150 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
151 #endif
154 void tb_lock_reset(void)
156 #ifdef CONFIG_USER_ONLY
157 if (have_tb_lock) {
158 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
159 have_tb_lock = 0;
161 #endif
164 static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
165 tb_page_addr_t phys_page2);
166 static TranslationBlock *tb_find_pc(uintptr_t tc_ptr);
168 void cpu_gen_init(void)
170 tcg_context_init(&tcg_ctx);
173 /* return non zero if the very first instruction is invalid so that
174 * the virtual CPU can trigger an exception.
176 * '*gen_code_size_ptr' contains the size of the generated code (host
177 * code).
179 * Called with mmap_lock held for user-mode emulation.
181 int cpu_gen_code(CPUArchState *env, TranslationBlock *tb, int *gen_code_size_ptr)
183 TCGContext *s = &tcg_ctx;
184 tcg_insn_unit *gen_code_buf;
185 int gen_code_size;
186 #ifdef CONFIG_PROFILER
187 int64_t ti;
188 #endif
190 #ifdef CONFIG_PROFILER
191 s->tb_count1++; /* includes aborted translations because of
192 exceptions */
193 ti = profile_getclock();
194 #endif
195 tcg_func_start(s);
197 gen_intermediate_code(env, tb);
199 trace_translate_block(tb, tb->pc, tb->tc_ptr);
201 /* generate machine code */
202 gen_code_buf = tb->tc_ptr;
203 tb->tb_next_offset[0] = 0xffff;
204 tb->tb_next_offset[1] = 0xffff;
205 s->tb_next_offset = tb->tb_next_offset;
206 #ifdef USE_DIRECT_JUMP
207 s->tb_jmp_offset = tb->tb_jmp_offset;
208 s->tb_next = NULL;
209 #else
210 s->tb_jmp_offset = NULL;
211 s->tb_next = tb->tb_next;
212 #endif
214 #ifdef CONFIG_PROFILER
215 s->tb_count++;
216 s->interm_time += profile_getclock() - ti;
217 s->code_time -= profile_getclock();
218 #endif
219 gen_code_size = tcg_gen_code(s, gen_code_buf);
220 *gen_code_size_ptr = gen_code_size;
221 #ifdef CONFIG_PROFILER
222 s->code_time += profile_getclock();
223 s->code_in_len += tb->size;
224 s->code_out_len += gen_code_size;
225 #endif
227 #ifdef DEBUG_DISAS
228 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM)) {
229 qemu_log("OUT: [size=%d]\n", gen_code_size);
230 log_disas(tb->tc_ptr, gen_code_size);
231 qemu_log("\n");
232 qemu_log_flush();
234 #endif
235 return 0;
238 /* The cpu state corresponding to 'searched_pc' is restored.
240 static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
241 uintptr_t searched_pc)
243 CPUArchState *env = cpu->env_ptr;
244 TCGContext *s = &tcg_ctx;
245 int j;
246 uintptr_t tc_ptr;
247 #ifdef CONFIG_PROFILER
248 int64_t ti;
249 #endif
251 #ifdef CONFIG_PROFILER
252 ti = profile_getclock();
253 #endif
254 tcg_func_start(s);
256 gen_intermediate_code_pc(env, tb);
258 if (tb->cflags & CF_USE_ICOUNT) {
259 assert(use_icount);
260 /* Reset the cycle counter to the start of the block. */
261 cpu->icount_decr.u16.low += tb->icount;
262 /* Clear the IO flag. */
263 cpu->can_do_io = 0;
266 /* find opc index corresponding to search_pc */
267 tc_ptr = (uintptr_t)tb->tc_ptr;
268 if (searched_pc < tc_ptr)
269 return -1;
271 s->tb_next_offset = tb->tb_next_offset;
272 #ifdef USE_DIRECT_JUMP
273 s->tb_jmp_offset = tb->tb_jmp_offset;
274 s->tb_next = NULL;
275 #else
276 s->tb_jmp_offset = NULL;
277 s->tb_next = tb->tb_next;
278 #endif
279 j = tcg_gen_code_search_pc(s, (tcg_insn_unit *)tc_ptr,
280 searched_pc - tc_ptr);
281 if (j < 0)
282 return -1;
283 /* now find start of instruction before */
284 while (s->gen_opc_instr_start[j] == 0) {
285 j--;
287 cpu->icount_decr.u16.low -= s->gen_opc_icount[j];
289 restore_state_to_opc(env, tb, j);
291 #ifdef CONFIG_PROFILER
292 s->restore_time += profile_getclock() - ti;
293 s->restore_count++;
294 #endif
295 return 0;
298 bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr)
300 TranslationBlock *tb;
302 tb = tb_find_pc(retaddr);
303 if (tb) {
304 cpu_restore_state_from_tb(cpu, tb, retaddr);
305 if (tb->cflags & CF_NOCACHE) {
306 /* one-shot translation, invalidate it immediately */
307 cpu->current_tb = NULL;
308 tb_phys_invalidate(tb, -1);
309 tb_free(tb);
311 return true;
313 return false;
316 #ifdef _WIN32
317 static __attribute__((unused)) void map_exec(void *addr, long size)
319 DWORD old_protect;
320 VirtualProtect(addr, size,
321 PAGE_EXECUTE_READWRITE, &old_protect);
323 #else
324 static __attribute__((unused)) void map_exec(void *addr, long size)
326 unsigned long start, end, page_size;
328 page_size = getpagesize();
329 start = (unsigned long)addr;
330 start &= ~(page_size - 1);
332 end = (unsigned long)addr + size;
333 end += page_size - 1;
334 end &= ~(page_size - 1);
336 mprotect((void *)start, end - start,
337 PROT_READ | PROT_WRITE | PROT_EXEC);
339 #endif
341 void page_size_init(void)
343 /* NOTE: we can always suppose that qemu_host_page_size >=
344 TARGET_PAGE_SIZE */
345 qemu_real_host_page_size = getpagesize();
346 qemu_real_host_page_mask = ~(qemu_real_host_page_size - 1);
347 if (qemu_host_page_size == 0) {
348 qemu_host_page_size = qemu_real_host_page_size;
350 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
351 qemu_host_page_size = TARGET_PAGE_SIZE;
353 qemu_host_page_mask = ~(qemu_host_page_size - 1);
356 static void page_init(void)
358 page_size_init();
359 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
361 #ifdef HAVE_KINFO_GETVMMAP
362 struct kinfo_vmentry *freep;
363 int i, cnt;
365 freep = kinfo_getvmmap(getpid(), &cnt);
366 if (freep) {
367 mmap_lock();
368 for (i = 0; i < cnt; i++) {
369 unsigned long startaddr, endaddr;
371 startaddr = freep[i].kve_start;
372 endaddr = freep[i].kve_end;
373 if (h2g_valid(startaddr)) {
374 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
376 if (h2g_valid(endaddr)) {
377 endaddr = h2g(endaddr);
378 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
379 } else {
380 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
381 endaddr = ~0ul;
382 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
383 #endif
387 free(freep);
388 mmap_unlock();
390 #else
391 FILE *f;
393 last_brk = (unsigned long)sbrk(0);
395 f = fopen("/compat/linux/proc/self/maps", "r");
396 if (f) {
397 mmap_lock();
399 do {
400 unsigned long startaddr, endaddr;
401 int n;
403 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
405 if (n == 2 && h2g_valid(startaddr)) {
406 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
408 if (h2g_valid(endaddr)) {
409 endaddr = h2g(endaddr);
410 } else {
411 endaddr = ~0ul;
413 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
415 } while (!feof(f));
417 fclose(f);
418 mmap_unlock();
420 #endif
422 #endif
425 /* If alloc=1:
426 * Called with mmap_lock held for user-mode emulation.
428 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
430 PageDesc *pd;
431 void **lp;
432 int i;
434 /* Level 1. Always allocated. */
435 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
437 /* Level 2..N-1. */
438 for (i = V_L1_SHIFT / V_L2_BITS - 1; i > 0; i--) {
439 void **p = atomic_rcu_read(lp);
441 if (p == NULL) {
442 if (!alloc) {
443 return NULL;
445 p = g_new0(void *, V_L2_SIZE);
446 atomic_rcu_set(lp, p);
449 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
452 pd = atomic_rcu_read(lp);
453 if (pd == NULL) {
454 if (!alloc) {
455 return NULL;
457 pd = g_new0(PageDesc, V_L2_SIZE);
458 atomic_rcu_set(lp, pd);
461 return pd + (index & (V_L2_SIZE - 1));
464 static inline PageDesc *page_find(tb_page_addr_t index)
466 return page_find_alloc(index, 0);
469 #if defined(CONFIG_USER_ONLY)
470 /* Currently it is not recommended to allocate big chunks of data in
471 user mode. It will change when a dedicated libc will be used. */
472 /* ??? 64-bit hosts ought to have no problem mmaping data outside the
473 region in which the guest needs to run. Revisit this. */
474 #define USE_STATIC_CODE_GEN_BUFFER
475 #endif
477 /* ??? Should configure for this, not list operating systems here. */
478 #if (defined(__linux__) \
479 || defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
480 || defined(__DragonFly__) || defined(__OpenBSD__) \
481 || defined(__NetBSD__))
482 # define USE_MMAP
483 #endif
485 /* Minimum size of the code gen buffer. This number is randomly chosen,
486 but not so small that we can't have a fair number of TB's live. */
487 #define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024)
489 /* Maximum size of the code gen buffer we'd like to use. Unless otherwise
490 indicated, this is constrained by the range of direct branches on the
491 host cpu, as used by the TCG implementation of goto_tb. */
492 #if defined(__x86_64__)
493 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
494 #elif defined(__sparc__)
495 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
496 #elif defined(__aarch64__)
497 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
498 #elif defined(__arm__)
499 # define MAX_CODE_GEN_BUFFER_SIZE (16u * 1024 * 1024)
500 #elif defined(__s390x__)
501 /* We have a +- 4GB range on the branches; leave some slop. */
502 # define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024)
503 #elif defined(__mips__)
504 /* We have a 256MB branch region, but leave room to make sure the
505 main executable is also within that region. */
506 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
507 #else
508 # define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1)
509 #endif
511 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
513 #define DEFAULT_CODE_GEN_BUFFER_SIZE \
514 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
515 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
517 static inline size_t size_code_gen_buffer(size_t tb_size)
519 /* Size the buffer. */
520 if (tb_size == 0) {
521 #ifdef USE_STATIC_CODE_GEN_BUFFER
522 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
523 #else
524 /* ??? Needs adjustments. */
525 /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
526 static buffer, we could size this on RESERVED_VA, on the text
527 segment size of the executable, or continue to use the default. */
528 tb_size = (unsigned long)(ram_size / 4);
529 #endif
531 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
532 tb_size = MIN_CODE_GEN_BUFFER_SIZE;
534 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
535 tb_size = MAX_CODE_GEN_BUFFER_SIZE;
537 tcg_ctx.code_gen_buffer_size = tb_size;
538 return tb_size;
541 #ifdef __mips__
542 /* In order to use J and JAL within the code_gen_buffer, we require
543 that the buffer not cross a 256MB boundary. */
544 static inline bool cross_256mb(void *addr, size_t size)
546 return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & 0xf0000000;
549 /* We weren't able to allocate a buffer without crossing that boundary,
550 so make do with the larger portion of the buffer that doesn't cross.
551 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */
552 static inline void *split_cross_256mb(void *buf1, size_t size1)
554 void *buf2 = (void *)(((uintptr_t)buf1 + size1) & 0xf0000000);
555 size_t size2 = buf1 + size1 - buf2;
557 size1 = buf2 - buf1;
558 if (size1 < size2) {
559 size1 = size2;
560 buf1 = buf2;
563 tcg_ctx.code_gen_buffer_size = size1;
564 return buf1;
566 #endif
568 #ifdef USE_STATIC_CODE_GEN_BUFFER
569 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
570 __attribute__((aligned(CODE_GEN_ALIGN)));
572 static inline void *alloc_code_gen_buffer(void)
574 void *buf = static_code_gen_buffer;
575 #ifdef __mips__
576 if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) {
577 buf = split_cross_256mb(buf, tcg_ctx.code_gen_buffer_size);
579 #endif
580 map_exec(buf, tcg_ctx.code_gen_buffer_size);
581 return buf;
583 #elif defined(USE_MMAP)
584 static inline void *alloc_code_gen_buffer(void)
586 int flags = MAP_PRIVATE | MAP_ANONYMOUS;
587 uintptr_t start = 0;
588 void *buf;
590 /* Constrain the position of the buffer based on the host cpu.
591 Note that these addresses are chosen in concert with the
592 addresses assigned in the relevant linker script file. */
593 # if defined(__PIE__) || defined(__PIC__)
594 /* Don't bother setting a preferred location if we're building
595 a position-independent executable. We're more likely to get
596 an address near the main executable if we let the kernel
597 choose the address. */
598 # elif defined(__x86_64__) && defined(MAP_32BIT)
599 /* Force the memory down into low memory with the executable.
600 Leave the choice of exact location with the kernel. */
601 flags |= MAP_32BIT;
602 /* Cannot expect to map more than 800MB in low memory. */
603 if (tcg_ctx.code_gen_buffer_size > 800u * 1024 * 1024) {
604 tcg_ctx.code_gen_buffer_size = 800u * 1024 * 1024;
606 # elif defined(__sparc__)
607 start = 0x40000000ul;
608 # elif defined(__s390x__)
609 start = 0x90000000ul;
610 # elif defined(__mips__)
611 /* ??? We ought to more explicitly manage layout for softmmu too. */
612 # ifdef CONFIG_USER_ONLY
613 start = 0x68000000ul;
614 # elif _MIPS_SIM == _ABI64
615 start = 0x128000000ul;
616 # else
617 start = 0x08000000ul;
618 # endif
619 # endif
621 buf = mmap((void *)start, tcg_ctx.code_gen_buffer_size,
622 PROT_WRITE | PROT_READ | PROT_EXEC, flags, -1, 0);
623 if (buf == MAP_FAILED) {
624 return NULL;
627 #ifdef __mips__
628 if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) {
629 /* Try again, with the original still mapped, to avoid re-acquiring
630 that 256mb crossing. This time don't specify an address. */
631 size_t size2, size1 = tcg_ctx.code_gen_buffer_size;
632 void *buf2 = mmap(NULL, size1, PROT_WRITE | PROT_READ | PROT_EXEC,
633 flags, -1, 0);
634 if (buf2 != MAP_FAILED) {
635 if (!cross_256mb(buf2, size1)) {
636 /* Success! Use the new buffer. */
637 munmap(buf, size1);
638 return buf2;
640 /* Failure. Work with what we had. */
641 munmap(buf2, size1);
644 /* Split the original buffer. Free the smaller half. */
645 buf2 = split_cross_256mb(buf, size1);
646 size2 = tcg_ctx.code_gen_buffer_size;
647 munmap(buf + (buf == buf2 ? size2 : 0), size1 - size2);
648 return buf2;
650 #endif
652 return buf;
654 #else
655 static inline void *alloc_code_gen_buffer(void)
657 void *buf = g_try_malloc(tcg_ctx.code_gen_buffer_size);
659 if (buf == NULL) {
660 return NULL;
663 #ifdef __mips__
664 if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) {
665 void *buf2 = g_malloc(tcg_ctx.code_gen_buffer_size);
666 if (buf2 != NULL && !cross_256mb(buf2, size1)) {
667 /* Success! Use the new buffer. */
668 free(buf);
669 buf = buf2;
670 } else {
671 /* Failure. Work with what we had. Since this is malloc
672 and not mmap, we can't free the other half. */
673 free(buf2);
674 buf = split_cross_256mb(buf, tcg_ctx.code_gen_buffer_size);
677 #endif
679 map_exec(buf, tcg_ctx.code_gen_buffer_size);
680 return buf;
682 #endif /* USE_STATIC_CODE_GEN_BUFFER, USE_MMAP */
684 static inline void code_gen_alloc(size_t tb_size)
686 tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size);
687 tcg_ctx.code_gen_buffer = alloc_code_gen_buffer();
688 if (tcg_ctx.code_gen_buffer == NULL) {
689 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
690 exit(1);
693 qemu_madvise(tcg_ctx.code_gen_buffer, tcg_ctx.code_gen_buffer_size,
694 QEMU_MADV_HUGEPAGE);
696 /* Steal room for the prologue at the end of the buffer. This ensures
697 (via the MAX_CODE_GEN_BUFFER_SIZE limits above) that direct branches
698 from TB's to the prologue are going to be in range. It also means
699 that we don't need to mark (additional) portions of the data segment
700 as executable. */
701 tcg_ctx.code_gen_prologue = tcg_ctx.code_gen_buffer +
702 tcg_ctx.code_gen_buffer_size - 1024;
703 tcg_ctx.code_gen_buffer_size -= 1024;
705 tcg_ctx.code_gen_buffer_max_size = tcg_ctx.code_gen_buffer_size -
706 (TCG_MAX_OP_SIZE * OPC_BUF_SIZE);
707 tcg_ctx.code_gen_max_blocks = tcg_ctx.code_gen_buffer_size /
708 CODE_GEN_AVG_BLOCK_SIZE;
709 tcg_ctx.tb_ctx.tbs =
710 g_malloc(tcg_ctx.code_gen_max_blocks * sizeof(TranslationBlock));
711 qemu_mutex_init(&tcg_ctx.tb_ctx.tb_lock);
714 /* Must be called before using the QEMU cpus. 'tb_size' is the size
715 (in bytes) allocated to the translation buffer. Zero means default
716 size. */
717 void tcg_exec_init(unsigned long tb_size)
719 cpu_gen_init();
720 code_gen_alloc(tb_size);
721 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
722 tcg_register_jit(tcg_ctx.code_gen_buffer, tcg_ctx.code_gen_buffer_size);
723 page_init();
724 #if defined(CONFIG_SOFTMMU)
725 /* There's no guest base to take into account, so go ahead and
726 initialize the prologue now. */
727 tcg_prologue_init(&tcg_ctx);
728 #endif
731 bool tcg_enabled(void)
733 return tcg_ctx.code_gen_buffer != NULL;
736 /* Allocate a new translation block. Flush the translation buffer if
737 too many translation blocks or too much generated code. */
738 static TranslationBlock *tb_alloc(target_ulong pc)
740 TranslationBlock *tb;
742 if (tcg_ctx.tb_ctx.nb_tbs >= tcg_ctx.code_gen_max_blocks ||
743 (tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer) >=
744 tcg_ctx.code_gen_buffer_max_size) {
745 return NULL;
747 tb = &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs++];
748 tb->pc = pc;
749 tb->cflags = 0;
750 return tb;
753 void tb_free(TranslationBlock *tb)
755 /* In practice this is mostly used for single use temporary TB
756 Ignore the hard cases and just back up if this TB happens to
757 be the last one generated. */
758 if (tcg_ctx.tb_ctx.nb_tbs > 0 &&
759 tb == &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) {
760 tcg_ctx.code_gen_ptr = tb->tc_ptr;
761 tcg_ctx.tb_ctx.nb_tbs--;
765 static inline void invalidate_page_bitmap(PageDesc *p)
767 g_free(p->code_bitmap);
768 p->code_bitmap = NULL;
769 p->code_write_count = 0;
772 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
773 static void page_flush_tb_1(int level, void **lp)
775 int i;
777 if (*lp == NULL) {
778 return;
780 if (level == 0) {
781 PageDesc *pd = *lp;
783 for (i = 0; i < V_L2_SIZE; ++i) {
784 pd[i].first_tb = NULL;
785 invalidate_page_bitmap(pd + i);
787 } else {
788 void **pp = *lp;
790 for (i = 0; i < V_L2_SIZE; ++i) {
791 page_flush_tb_1(level - 1, pp + i);
796 static void page_flush_tb(void)
798 int i;
800 for (i = 0; i < V_L1_SIZE; i++) {
801 page_flush_tb_1(V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
805 /* flush all the translation blocks */
806 /* XXX: tb_flush is currently not thread safe */
807 void tb_flush(CPUState *cpu)
809 #if defined(DEBUG_FLUSH)
810 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
811 (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer),
812 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ?
813 ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) /
814 tcg_ctx.tb_ctx.nb_tbs : 0);
815 #endif
816 if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)
817 > tcg_ctx.code_gen_buffer_size) {
818 cpu_abort(cpu, "Internal error: code buffer overflow\n");
820 tcg_ctx.tb_ctx.nb_tbs = 0;
822 CPU_FOREACH(cpu) {
823 memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache));
826 memset(tcg_ctx.tb_ctx.tb_phys_hash, 0, sizeof(tcg_ctx.tb_ctx.tb_phys_hash));
827 page_flush_tb();
829 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
830 /* XXX: flush processor icache at this point if cache flush is
831 expensive */
832 tcg_ctx.tb_ctx.tb_flush_count++;
835 #ifdef DEBUG_TB_CHECK
837 static void tb_invalidate_check(target_ulong address)
839 TranslationBlock *tb;
840 int i;
842 address &= TARGET_PAGE_MASK;
843 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
844 for (tb = tb_ctx.tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
845 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
846 address >= tb->pc + tb->size)) {
847 printf("ERROR invalidate: address=" TARGET_FMT_lx
848 " PC=%08lx size=%04x\n",
849 address, (long)tb->pc, tb->size);
855 /* verify that all the pages have correct rights for code */
856 static void tb_page_check(void)
858 TranslationBlock *tb;
859 int i, flags1, flags2;
861 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
862 for (tb = tcg_ctx.tb_ctx.tb_phys_hash[i]; tb != NULL;
863 tb = tb->phys_hash_next) {
864 flags1 = page_get_flags(tb->pc);
865 flags2 = page_get_flags(tb->pc + tb->size - 1);
866 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
867 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
868 (long)tb->pc, tb->size, flags1, flags2);
874 #endif
876 static inline void tb_hash_remove(TranslationBlock **ptb, TranslationBlock *tb)
878 TranslationBlock *tb1;
880 for (;;) {
881 tb1 = *ptb;
882 if (tb1 == tb) {
883 *ptb = tb1->phys_hash_next;
884 break;
886 ptb = &tb1->phys_hash_next;
890 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
892 TranslationBlock *tb1;
893 unsigned int n1;
895 for (;;) {
896 tb1 = *ptb;
897 n1 = (uintptr_t)tb1 & 3;
898 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
899 if (tb1 == tb) {
900 *ptb = tb1->page_next[n1];
901 break;
903 ptb = &tb1->page_next[n1];
907 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
909 TranslationBlock *tb1, **ptb;
910 unsigned int n1;
912 ptb = &tb->jmp_next[n];
913 tb1 = *ptb;
914 if (tb1) {
915 /* find tb(n) in circular list */
916 for (;;) {
917 tb1 = *ptb;
918 n1 = (uintptr_t)tb1 & 3;
919 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
920 if (n1 == n && tb1 == tb) {
921 break;
923 if (n1 == 2) {
924 ptb = &tb1->jmp_first;
925 } else {
926 ptb = &tb1->jmp_next[n1];
929 /* now we can suppress tb(n) from the list */
930 *ptb = tb->jmp_next[n];
932 tb->jmp_next[n] = NULL;
936 /* reset the jump entry 'n' of a TB so that it is not chained to
937 another TB */
938 static inline void tb_reset_jump(TranslationBlock *tb, int n)
940 tb_set_jmp_target(tb, n, (uintptr_t)(tb->tc_ptr + tb->tb_next_offset[n]));
943 /* invalidate one TB */
944 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
946 CPUState *cpu;
947 PageDesc *p;
948 unsigned int h, n1;
949 tb_page_addr_t phys_pc;
950 TranslationBlock *tb1, *tb2;
952 /* remove the TB from the hash list */
953 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
954 h = tb_phys_hash_func(phys_pc);
955 tb_hash_remove(&tcg_ctx.tb_ctx.tb_phys_hash[h], tb);
957 /* remove the TB from the page list */
958 if (tb->page_addr[0] != page_addr) {
959 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
960 tb_page_remove(&p->first_tb, tb);
961 invalidate_page_bitmap(p);
963 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
964 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
965 tb_page_remove(&p->first_tb, tb);
966 invalidate_page_bitmap(p);
969 tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
971 /* remove the TB from the hash list */
972 h = tb_jmp_cache_hash_func(tb->pc);
973 CPU_FOREACH(cpu) {
974 if (cpu->tb_jmp_cache[h] == tb) {
975 cpu->tb_jmp_cache[h] = NULL;
979 /* suppress this TB from the two jump lists */
980 tb_jmp_remove(tb, 0);
981 tb_jmp_remove(tb, 1);
983 /* suppress any remaining jumps to this TB */
984 tb1 = tb->jmp_first;
985 for (;;) {
986 n1 = (uintptr_t)tb1 & 3;
987 if (n1 == 2) {
988 break;
990 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
991 tb2 = tb1->jmp_next[n1];
992 tb_reset_jump(tb1, n1);
993 tb1->jmp_next[n1] = NULL;
994 tb1 = tb2;
996 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); /* fail safe */
998 tcg_ctx.tb_ctx.tb_phys_invalidate_count++;
1001 static void build_page_bitmap(PageDesc *p)
1003 int n, tb_start, tb_end;
1004 TranslationBlock *tb;
1006 p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
1008 tb = p->first_tb;
1009 while (tb != NULL) {
1010 n = (uintptr_t)tb & 3;
1011 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1012 /* NOTE: this is subtle as a TB may span two physical pages */
1013 if (n == 0) {
1014 /* NOTE: tb_end may be after the end of the page, but
1015 it is not a problem */
1016 tb_start = tb->pc & ~TARGET_PAGE_MASK;
1017 tb_end = tb_start + tb->size;
1018 if (tb_end > TARGET_PAGE_SIZE) {
1019 tb_end = TARGET_PAGE_SIZE;
1021 } else {
1022 tb_start = 0;
1023 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1025 bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
1026 tb = tb->page_next[n];
1030 /* Called with mmap_lock held for user mode emulation. */
1031 TranslationBlock *tb_gen_code(CPUState *cpu,
1032 target_ulong pc, target_ulong cs_base,
1033 int flags, int cflags)
1035 CPUArchState *env = cpu->env_ptr;
1036 TranslationBlock *tb;
1037 tb_page_addr_t phys_pc, phys_page2;
1038 target_ulong virt_page2;
1039 int code_gen_size;
1041 phys_pc = get_page_addr_code(env, pc);
1042 if (use_icount) {
1043 cflags |= CF_USE_ICOUNT;
1045 tb = tb_alloc(pc);
1046 if (!tb) {
1047 /* flush must be done */
1048 tb_flush(cpu);
1049 /* cannot fail at this point */
1050 tb = tb_alloc(pc);
1051 /* Don't forget to invalidate previous TB info. */
1052 tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
1054 tb->tc_ptr = tcg_ctx.code_gen_ptr;
1055 tb->cs_base = cs_base;
1056 tb->flags = flags;
1057 tb->cflags = cflags;
1058 cpu_gen_code(env, tb, &code_gen_size);
1059 tcg_ctx.code_gen_ptr = (void *)(((uintptr_t)tcg_ctx.code_gen_ptr +
1060 code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
1062 /* check next page if needed */
1063 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1064 phys_page2 = -1;
1065 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1066 phys_page2 = get_page_addr_code(env, virt_page2);
1068 tb_link_page(tb, phys_pc, phys_page2);
1069 return tb;
1073 * Invalidate all TBs which intersect with the target physical address range
1074 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1075 * 'is_cpu_write_access' should be true if called from a real cpu write
1076 * access: the virtual CPU will exit the current TB if code is modified inside
1077 * this TB.
1079 * Called with mmap_lock held for user-mode emulation
1081 void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
1083 while (start < end) {
1084 tb_invalidate_phys_page_range(start, end, 0);
1085 start &= TARGET_PAGE_MASK;
1086 start += TARGET_PAGE_SIZE;
1091 * Invalidate all TBs which intersect with the target physical address range
1092 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1093 * 'is_cpu_write_access' should be true if called from a real cpu write
1094 * access: the virtual CPU will exit the current TB if code is modified inside
1095 * this TB.
1097 * Called with mmap_lock held for user-mode emulation
1099 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1100 int is_cpu_write_access)
1102 TranslationBlock *tb, *tb_next, *saved_tb;
1103 CPUState *cpu = current_cpu;
1104 #if defined(TARGET_HAS_PRECISE_SMC)
1105 CPUArchState *env = NULL;
1106 #endif
1107 tb_page_addr_t tb_start, tb_end;
1108 PageDesc *p;
1109 int n;
1110 #ifdef TARGET_HAS_PRECISE_SMC
1111 int current_tb_not_found = is_cpu_write_access;
1112 TranslationBlock *current_tb = NULL;
1113 int current_tb_modified = 0;
1114 target_ulong current_pc = 0;
1115 target_ulong current_cs_base = 0;
1116 int current_flags = 0;
1117 #endif /* TARGET_HAS_PRECISE_SMC */
1119 p = page_find(start >> TARGET_PAGE_BITS);
1120 if (!p) {
1121 return;
1123 #if defined(TARGET_HAS_PRECISE_SMC)
1124 if (cpu != NULL) {
1125 env = cpu->env_ptr;
1127 #endif
1129 /* we remove all the TBs in the range [start, end[ */
1130 /* XXX: see if in some cases it could be faster to invalidate all
1131 the code */
1132 tb = p->first_tb;
1133 while (tb != NULL) {
1134 n = (uintptr_t)tb & 3;
1135 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1136 tb_next = tb->page_next[n];
1137 /* NOTE: this is subtle as a TB may span two physical pages */
1138 if (n == 0) {
1139 /* NOTE: tb_end may be after the end of the page, but
1140 it is not a problem */
1141 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1142 tb_end = tb_start + tb->size;
1143 } else {
1144 tb_start = tb->page_addr[1];
1145 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1147 if (!(tb_end <= start || tb_start >= end)) {
1148 #ifdef TARGET_HAS_PRECISE_SMC
1149 if (current_tb_not_found) {
1150 current_tb_not_found = 0;
1151 current_tb = NULL;
1152 if (cpu->mem_io_pc) {
1153 /* now we have a real cpu fault */
1154 current_tb = tb_find_pc(cpu->mem_io_pc);
1157 if (current_tb == tb &&
1158 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1159 /* If we are modifying the current TB, we must stop
1160 its execution. We could be more precise by checking
1161 that the modification is after the current PC, but it
1162 would require a specialized function to partially
1163 restore the CPU state */
1165 current_tb_modified = 1;
1166 cpu_restore_state_from_tb(cpu, current_tb, cpu->mem_io_pc);
1167 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1168 &current_flags);
1170 #endif /* TARGET_HAS_PRECISE_SMC */
1171 /* we need to do that to handle the case where a signal
1172 occurs while doing tb_phys_invalidate() */
1173 saved_tb = NULL;
1174 if (cpu != NULL) {
1175 saved_tb = cpu->current_tb;
1176 cpu->current_tb = NULL;
1178 tb_phys_invalidate(tb, -1);
1179 if (cpu != NULL) {
1180 cpu->current_tb = saved_tb;
1181 if (cpu->interrupt_request && cpu->current_tb) {
1182 cpu_interrupt(cpu, cpu->interrupt_request);
1186 tb = tb_next;
1188 #if !defined(CONFIG_USER_ONLY)
1189 /* if no code remaining, no need to continue to use slow writes */
1190 if (!p->first_tb) {
1191 invalidate_page_bitmap(p);
1192 tlb_unprotect_code(start);
1194 #endif
1195 #ifdef TARGET_HAS_PRECISE_SMC
1196 if (current_tb_modified) {
1197 /* we generate a block containing just the instruction
1198 modifying the memory. It will ensure that it cannot modify
1199 itself */
1200 cpu->current_tb = NULL;
1201 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1202 cpu_resume_from_signal(cpu, NULL);
1204 #endif
1207 /* len must be <= 8 and start must be a multiple of len */
1208 void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1210 PageDesc *p;
1212 #if 0
1213 if (1) {
1214 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1215 cpu_single_env->mem_io_vaddr, len,
1216 cpu_single_env->eip,
1217 cpu_single_env->eip +
1218 (intptr_t)cpu_single_env->segs[R_CS].base);
1220 #endif
1221 p = page_find(start >> TARGET_PAGE_BITS);
1222 if (!p) {
1223 return;
1225 if (!p->code_bitmap &&
1226 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
1227 /* build code bitmap */
1228 build_page_bitmap(p);
1230 if (p->code_bitmap) {
1231 unsigned int nr;
1232 unsigned long b;
1234 nr = start & ~TARGET_PAGE_MASK;
1235 b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
1236 if (b & ((1 << len) - 1)) {
1237 goto do_invalidate;
1239 } else {
1240 do_invalidate:
1241 tb_invalidate_phys_page_range(start, start + len, 1);
1245 #if !defined(CONFIG_SOFTMMU)
1246 /* Called with mmap_lock held. */
1247 static void tb_invalidate_phys_page(tb_page_addr_t addr,
1248 uintptr_t pc, void *puc,
1249 bool locked)
1251 TranslationBlock *tb;
1252 PageDesc *p;
1253 int n;
1254 #ifdef TARGET_HAS_PRECISE_SMC
1255 TranslationBlock *current_tb = NULL;
1256 CPUState *cpu = current_cpu;
1257 CPUArchState *env = NULL;
1258 int current_tb_modified = 0;
1259 target_ulong current_pc = 0;
1260 target_ulong current_cs_base = 0;
1261 int current_flags = 0;
1262 #endif
1264 addr &= TARGET_PAGE_MASK;
1265 p = page_find(addr >> TARGET_PAGE_BITS);
1266 if (!p) {
1267 return;
1269 tb = p->first_tb;
1270 #ifdef TARGET_HAS_PRECISE_SMC
1271 if (tb && pc != 0) {
1272 current_tb = tb_find_pc(pc);
1274 if (cpu != NULL) {
1275 env = cpu->env_ptr;
1277 #endif
1278 while (tb != NULL) {
1279 n = (uintptr_t)tb & 3;
1280 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1281 #ifdef TARGET_HAS_PRECISE_SMC
1282 if (current_tb == tb &&
1283 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1284 /* If we are modifying the current TB, we must stop
1285 its execution. We could be more precise by checking
1286 that the modification is after the current PC, but it
1287 would require a specialized function to partially
1288 restore the CPU state */
1290 current_tb_modified = 1;
1291 cpu_restore_state_from_tb(cpu, current_tb, pc);
1292 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1293 &current_flags);
1295 #endif /* TARGET_HAS_PRECISE_SMC */
1296 tb_phys_invalidate(tb, addr);
1297 tb = tb->page_next[n];
1299 p->first_tb = NULL;
1300 #ifdef TARGET_HAS_PRECISE_SMC
1301 if (current_tb_modified) {
1302 /* we generate a block containing just the instruction
1303 modifying the memory. It will ensure that it cannot modify
1304 itself */
1305 cpu->current_tb = NULL;
1306 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1307 if (locked) {
1308 mmap_unlock();
1310 cpu_resume_from_signal(cpu, puc);
1312 #endif
1314 #endif
1316 /* add the tb in the target page and protect it if necessary
1318 * Called with mmap_lock held for user-mode emulation.
1320 static inline void tb_alloc_page(TranslationBlock *tb,
1321 unsigned int n, tb_page_addr_t page_addr)
1323 PageDesc *p;
1324 #ifndef CONFIG_USER_ONLY
1325 bool page_already_protected;
1326 #endif
1328 tb->page_addr[n] = page_addr;
1329 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1330 tb->page_next[n] = p->first_tb;
1331 #ifndef CONFIG_USER_ONLY
1332 page_already_protected = p->first_tb != NULL;
1333 #endif
1334 p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
1335 invalidate_page_bitmap(p);
1337 #if defined(CONFIG_USER_ONLY)
1338 if (p->flags & PAGE_WRITE) {
1339 target_ulong addr;
1340 PageDesc *p2;
1341 int prot;
1343 /* force the host page as non writable (writes will have a
1344 page fault + mprotect overhead) */
1345 page_addr &= qemu_host_page_mask;
1346 prot = 0;
1347 for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1348 addr += TARGET_PAGE_SIZE) {
1350 p2 = page_find(addr >> TARGET_PAGE_BITS);
1351 if (!p2) {
1352 continue;
1354 prot |= p2->flags;
1355 p2->flags &= ~PAGE_WRITE;
1357 mprotect(g2h(page_addr), qemu_host_page_size,
1358 (prot & PAGE_BITS) & ~PAGE_WRITE);
1359 #ifdef DEBUG_TB_INVALIDATE
1360 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1361 page_addr);
1362 #endif
1364 #else
1365 /* if some code is already present, then the pages are already
1366 protected. So we handle the case where only the first TB is
1367 allocated in a physical page */
1368 if (!page_already_protected) {
1369 tlb_protect_code(page_addr);
1371 #endif
1374 /* add a new TB and link it to the physical page tables. phys_page2 is
1375 * (-1) to indicate that only one page contains the TB.
1377 * Called with mmap_lock held for user-mode emulation.
1379 static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1380 tb_page_addr_t phys_page2)
1382 unsigned int h;
1383 TranslationBlock **ptb;
1385 /* add in the physical hash table */
1386 h = tb_phys_hash_func(phys_pc);
1387 ptb = &tcg_ctx.tb_ctx.tb_phys_hash[h];
1388 tb->phys_hash_next = *ptb;
1389 *ptb = tb;
1391 /* add in the page list */
1392 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1393 if (phys_page2 != -1) {
1394 tb_alloc_page(tb, 1, phys_page2);
1395 } else {
1396 tb->page_addr[1] = -1;
1399 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2);
1400 tb->jmp_next[0] = NULL;
1401 tb->jmp_next[1] = NULL;
1403 /* init original jump addresses */
1404 if (tb->tb_next_offset[0] != 0xffff) {
1405 tb_reset_jump(tb, 0);
1407 if (tb->tb_next_offset[1] != 0xffff) {
1408 tb_reset_jump(tb, 1);
1411 #ifdef DEBUG_TB_CHECK
1412 tb_page_check();
1413 #endif
1416 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1417 tb[1].tc_ptr. Return NULL if not found */
1418 static TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
1420 int m_min, m_max, m;
1421 uintptr_t v;
1422 TranslationBlock *tb;
1424 if (tcg_ctx.tb_ctx.nb_tbs <= 0) {
1425 return NULL;
1427 if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer ||
1428 tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) {
1429 return NULL;
1431 /* binary search (cf Knuth) */
1432 m_min = 0;
1433 m_max = tcg_ctx.tb_ctx.nb_tbs - 1;
1434 while (m_min <= m_max) {
1435 m = (m_min + m_max) >> 1;
1436 tb = &tcg_ctx.tb_ctx.tbs[m];
1437 v = (uintptr_t)tb->tc_ptr;
1438 if (v == tc_ptr) {
1439 return tb;
1440 } else if (tc_ptr < v) {
1441 m_max = m - 1;
1442 } else {
1443 m_min = m + 1;
1446 return &tcg_ctx.tb_ctx.tbs[m_max];
1449 #if !defined(CONFIG_USER_ONLY)
1450 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
1452 ram_addr_t ram_addr;
1453 MemoryRegion *mr;
1454 hwaddr l = 1;
1456 rcu_read_lock();
1457 mr = address_space_translate(as, addr, &addr, &l, false);
1458 if (!(memory_region_is_ram(mr)
1459 || memory_region_is_romd(mr))) {
1460 rcu_read_unlock();
1461 return;
1463 ram_addr = (memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK)
1464 + addr;
1465 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1466 rcu_read_unlock();
1468 #endif /* !defined(CONFIG_USER_ONLY) */
1470 void tb_check_watchpoint(CPUState *cpu)
1472 TranslationBlock *tb;
1474 tb = tb_find_pc(cpu->mem_io_pc);
1475 if (tb) {
1476 /* We can use retranslation to find the PC. */
1477 cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc);
1478 tb_phys_invalidate(tb, -1);
1479 } else {
1480 /* The exception probably happened in a helper. The CPU state should
1481 have been saved before calling it. Fetch the PC from there. */
1482 CPUArchState *env = cpu->env_ptr;
1483 target_ulong pc, cs_base;
1484 tb_page_addr_t addr;
1485 int flags;
1487 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
1488 addr = get_page_addr_code(env, pc);
1489 tb_invalidate_phys_range(addr, addr + 1);
1493 #ifndef CONFIG_USER_ONLY
1494 /* mask must never be zero, except for A20 change call */
1495 static void tcg_handle_interrupt(CPUState *cpu, int mask)
1497 int old_mask;
1499 old_mask = cpu->interrupt_request;
1500 cpu->interrupt_request |= mask;
1503 * If called from iothread context, wake the target cpu in
1504 * case its halted.
1506 if (!qemu_cpu_is_self(cpu)) {
1507 qemu_cpu_kick(cpu);
1508 return;
1511 if (use_icount) {
1512 cpu->icount_decr.u16.high = 0xffff;
1513 if (!cpu->can_do_io
1514 && (mask & ~old_mask) != 0) {
1515 cpu_abort(cpu, "Raised interrupt while not in I/O function");
1517 } else {
1518 cpu->tcg_exit_req = 1;
1522 CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt;
1524 /* in deterministic execution mode, instructions doing device I/Os
1525 must be at the end of the TB */
1526 void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
1528 #if defined(TARGET_MIPS) || defined(TARGET_SH4)
1529 CPUArchState *env = cpu->env_ptr;
1530 #endif
1531 TranslationBlock *tb;
1532 uint32_t n, cflags;
1533 target_ulong pc, cs_base;
1534 uint64_t flags;
1536 tb = tb_find_pc(retaddr);
1537 if (!tb) {
1538 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
1539 (void *)retaddr);
1541 n = cpu->icount_decr.u16.low + tb->icount;
1542 cpu_restore_state_from_tb(cpu, tb, retaddr);
1543 /* Calculate how many instructions had been executed before the fault
1544 occurred. */
1545 n = n - cpu->icount_decr.u16.low;
1546 /* Generate a new TB ending on the I/O insn. */
1547 n++;
1548 /* On MIPS and SH, delay slot instructions can only be restarted if
1549 they were already the first instruction in the TB. If this is not
1550 the first instruction in a TB then re-execute the preceding
1551 branch. */
1552 #if defined(TARGET_MIPS)
1553 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
1554 env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
1555 cpu->icount_decr.u16.low++;
1556 env->hflags &= ~MIPS_HFLAG_BMASK;
1558 #elif defined(TARGET_SH4)
1559 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
1560 && n > 1) {
1561 env->pc -= 2;
1562 cpu->icount_decr.u16.low++;
1563 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
1565 #endif
1566 /* This should never happen. */
1567 if (n > CF_COUNT_MASK) {
1568 cpu_abort(cpu, "TB too big during recompile");
1571 cflags = n | CF_LAST_IO;
1572 pc = tb->pc;
1573 cs_base = tb->cs_base;
1574 flags = tb->flags;
1575 tb_phys_invalidate(tb, -1);
1576 if (tb->cflags & CF_NOCACHE) {
1577 if (tb->orig_tb) {
1578 /* Invalidate original TB if this TB was generated in
1579 * cpu_exec_nocache() */
1580 tb_phys_invalidate(tb->orig_tb, -1);
1582 tb_free(tb);
1584 /* FIXME: In theory this could raise an exception. In practice
1585 we have already translated the block once so it's probably ok. */
1586 tb_gen_code(cpu, pc, cs_base, flags, cflags);
1587 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
1588 the first in the TB) then we end up generating a whole new TB and
1589 repeating the fault, which is horribly inefficient.
1590 Better would be to execute just this insn uncached, or generate a
1591 second new TB. */
1592 cpu_resume_from_signal(cpu, NULL);
1595 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
1597 unsigned int i;
1599 /* Discard jump cache entries for any tb which might potentially
1600 overlap the flushed page. */
1601 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1602 memset(&cpu->tb_jmp_cache[i], 0,
1603 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1605 i = tb_jmp_cache_hash_page(addr);
1606 memset(&cpu->tb_jmp_cache[i], 0,
1607 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1610 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
1612 int i, target_code_size, max_target_code_size;
1613 int direct_jmp_count, direct_jmp2_count, cross_page;
1614 TranslationBlock *tb;
1616 target_code_size = 0;
1617 max_target_code_size = 0;
1618 cross_page = 0;
1619 direct_jmp_count = 0;
1620 direct_jmp2_count = 0;
1621 for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) {
1622 tb = &tcg_ctx.tb_ctx.tbs[i];
1623 target_code_size += tb->size;
1624 if (tb->size > max_target_code_size) {
1625 max_target_code_size = tb->size;
1627 if (tb->page_addr[1] != -1) {
1628 cross_page++;
1630 if (tb->tb_next_offset[0] != 0xffff) {
1631 direct_jmp_count++;
1632 if (tb->tb_next_offset[1] != 0xffff) {
1633 direct_jmp2_count++;
1637 /* XXX: avoid using doubles ? */
1638 cpu_fprintf(f, "Translation buffer state:\n");
1639 cpu_fprintf(f, "gen code size %td/%zd\n",
1640 tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer,
1641 tcg_ctx.code_gen_buffer_max_size);
1642 cpu_fprintf(f, "TB count %d/%d\n",
1643 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.code_gen_max_blocks);
1644 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
1645 tcg_ctx.tb_ctx.nb_tbs ? target_code_size /
1646 tcg_ctx.tb_ctx.nb_tbs : 0,
1647 max_target_code_size);
1648 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
1649 tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr -
1650 tcg_ctx.code_gen_buffer) /
1651 tcg_ctx.tb_ctx.nb_tbs : 0,
1652 target_code_size ? (double) (tcg_ctx.code_gen_ptr -
1653 tcg_ctx.code_gen_buffer) /
1654 target_code_size : 0);
1655 cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page,
1656 tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) /
1657 tcg_ctx.tb_ctx.nb_tbs : 0);
1658 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
1659 direct_jmp_count,
1660 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) /
1661 tcg_ctx.tb_ctx.nb_tbs : 0,
1662 direct_jmp2_count,
1663 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) /
1664 tcg_ctx.tb_ctx.nb_tbs : 0);
1665 cpu_fprintf(f, "\nStatistics:\n");
1666 cpu_fprintf(f, "TB flush count %d\n", tcg_ctx.tb_ctx.tb_flush_count);
1667 cpu_fprintf(f, "TB invalidate count %d\n",
1668 tcg_ctx.tb_ctx.tb_phys_invalidate_count);
1669 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
1670 tcg_dump_info(f, cpu_fprintf);
1673 void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf)
1675 tcg_dump_op_count(f, cpu_fprintf);
1678 #else /* CONFIG_USER_ONLY */
1680 void cpu_interrupt(CPUState *cpu, int mask)
1682 cpu->interrupt_request |= mask;
1683 cpu->tcg_exit_req = 1;
1687 * Walks guest process memory "regions" one by one
1688 * and calls callback function 'fn' for each region.
1690 struct walk_memory_regions_data {
1691 walk_memory_regions_fn fn;
1692 void *priv;
1693 target_ulong start;
1694 int prot;
1697 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1698 target_ulong end, int new_prot)
1700 if (data->start != -1u) {
1701 int rc = data->fn(data->priv, data->start, end, data->prot);
1702 if (rc != 0) {
1703 return rc;
1707 data->start = (new_prot ? end : -1u);
1708 data->prot = new_prot;
1710 return 0;
1713 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1714 target_ulong base, int level, void **lp)
1716 target_ulong pa;
1717 int i, rc;
1719 if (*lp == NULL) {
1720 return walk_memory_regions_end(data, base, 0);
1723 if (level == 0) {
1724 PageDesc *pd = *lp;
1726 for (i = 0; i < V_L2_SIZE; ++i) {
1727 int prot = pd[i].flags;
1729 pa = base | (i << TARGET_PAGE_BITS);
1730 if (prot != data->prot) {
1731 rc = walk_memory_regions_end(data, pa, prot);
1732 if (rc != 0) {
1733 return rc;
1737 } else {
1738 void **pp = *lp;
1740 for (i = 0; i < V_L2_SIZE; ++i) {
1741 pa = base | ((target_ulong)i <<
1742 (TARGET_PAGE_BITS + V_L2_BITS * level));
1743 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
1744 if (rc != 0) {
1745 return rc;
1750 return 0;
1753 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
1755 struct walk_memory_regions_data data;
1756 uintptr_t i;
1758 data.fn = fn;
1759 data.priv = priv;
1760 data.start = -1u;
1761 data.prot = 0;
1763 for (i = 0; i < V_L1_SIZE; i++) {
1764 int rc = walk_memory_regions_1(&data, (target_ulong)i << (V_L1_SHIFT + TARGET_PAGE_BITS),
1765 V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
1766 if (rc != 0) {
1767 return rc;
1771 return walk_memory_regions_end(&data, 0, 0);
1774 static int dump_region(void *priv, target_ulong start,
1775 target_ulong end, unsigned long prot)
1777 FILE *f = (FILE *)priv;
1779 (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
1780 " "TARGET_FMT_lx" %c%c%c\n",
1781 start, end, end - start,
1782 ((prot & PAGE_READ) ? 'r' : '-'),
1783 ((prot & PAGE_WRITE) ? 'w' : '-'),
1784 ((prot & PAGE_EXEC) ? 'x' : '-'));
1786 return 0;
1789 /* dump memory mappings */
1790 void page_dump(FILE *f)
1792 const int length = sizeof(target_ulong) * 2;
1793 (void) fprintf(f, "%-*s %-*s %-*s %s\n",
1794 length, "start", length, "end", length, "size", "prot");
1795 walk_memory_regions(f, dump_region);
1798 int page_get_flags(target_ulong address)
1800 PageDesc *p;
1802 p = page_find(address >> TARGET_PAGE_BITS);
1803 if (!p) {
1804 return 0;
1806 return p->flags;
1809 /* Modify the flags of a page and invalidate the code if necessary.
1810 The flag PAGE_WRITE_ORG is positioned automatically depending
1811 on PAGE_WRITE. The mmap_lock should already be held. */
1812 void page_set_flags(target_ulong start, target_ulong end, int flags)
1814 target_ulong addr, len;
1816 /* This function should never be called with addresses outside the
1817 guest address space. If this assert fires, it probably indicates
1818 a missing call to h2g_valid. */
1819 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1820 assert(end < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
1821 #endif
1822 assert(start < end);
1824 start = start & TARGET_PAGE_MASK;
1825 end = TARGET_PAGE_ALIGN(end);
1827 if (flags & PAGE_WRITE) {
1828 flags |= PAGE_WRITE_ORG;
1831 for (addr = start, len = end - start;
1832 len != 0;
1833 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1834 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
1836 /* If the write protection bit is set, then we invalidate
1837 the code inside. */
1838 if (!(p->flags & PAGE_WRITE) &&
1839 (flags & PAGE_WRITE) &&
1840 p->first_tb) {
1841 tb_invalidate_phys_page(addr, 0, NULL, false);
1843 p->flags = flags;
1847 int page_check_range(target_ulong start, target_ulong len, int flags)
1849 PageDesc *p;
1850 target_ulong end;
1851 target_ulong addr;
1853 /* This function should never be called with addresses outside the
1854 guest address space. If this assert fires, it probably indicates
1855 a missing call to h2g_valid. */
1856 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1857 assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
1858 #endif
1860 if (len == 0) {
1861 return 0;
1863 if (start + len - 1 < start) {
1864 /* We've wrapped around. */
1865 return -1;
1868 /* must do before we loose bits in the next step */
1869 end = TARGET_PAGE_ALIGN(start + len);
1870 start = start & TARGET_PAGE_MASK;
1872 for (addr = start, len = end - start;
1873 len != 0;
1874 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1875 p = page_find(addr >> TARGET_PAGE_BITS);
1876 if (!p) {
1877 return -1;
1879 if (!(p->flags & PAGE_VALID)) {
1880 return -1;
1883 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
1884 return -1;
1886 if (flags & PAGE_WRITE) {
1887 if (!(p->flags & PAGE_WRITE_ORG)) {
1888 return -1;
1890 /* unprotect the page if it was put read-only because it
1891 contains translated code */
1892 if (!(p->flags & PAGE_WRITE)) {
1893 if (!page_unprotect(addr, 0, NULL)) {
1894 return -1;
1899 return 0;
1902 /* called from signal handler: invalidate the code and unprotect the
1903 page. Return TRUE if the fault was successfully handled. */
1904 int page_unprotect(target_ulong address, uintptr_t pc, void *puc)
1906 unsigned int prot;
1907 PageDesc *p;
1908 target_ulong host_start, host_end, addr;
1910 /* Technically this isn't safe inside a signal handler. However we
1911 know this only ever happens in a synchronous SEGV handler, so in
1912 practice it seems to be ok. */
1913 mmap_lock();
1915 p = page_find(address >> TARGET_PAGE_BITS);
1916 if (!p) {
1917 mmap_unlock();
1918 return 0;
1921 /* if the page was really writable, then we change its
1922 protection back to writable */
1923 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
1924 host_start = address & qemu_host_page_mask;
1925 host_end = host_start + qemu_host_page_size;
1927 prot = 0;
1928 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
1929 p = page_find(addr >> TARGET_PAGE_BITS);
1930 p->flags |= PAGE_WRITE;
1931 prot |= p->flags;
1933 /* and since the content will be modified, we must invalidate
1934 the corresponding translated code. */
1935 tb_invalidate_phys_page(addr, pc, puc, true);
1936 #ifdef DEBUG_TB_CHECK
1937 tb_invalidate_check(addr);
1938 #endif
1940 mprotect((void *)g2h(host_start), qemu_host_page_size,
1941 prot & PAGE_BITS);
1943 mmap_unlock();
1944 return 1;
1946 mmap_unlock();
1947 return 0;
1949 #endif /* CONFIG_USER_ONLY */