2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
27 #include "sysemu/sysemu.h"
28 #include "sysemu/numa.h"
30 #include "hw/fw-path-provider.h"
33 #include "sysemu/device_tree.h"
34 #include "sysemu/block-backend.h"
35 #include "sysemu/cpus.h"
36 #include "sysemu/kvm.h"
37 #include "sysemu/device_tree.h"
39 #include "migration/migration.h"
40 #include "mmu-hash64.h"
43 #include "hw/boards.h"
44 #include "hw/ppc/ppc.h"
45 #include "hw/loader.h"
47 #include "hw/ppc/spapr.h"
48 #include "hw/ppc/spapr_vio.h"
49 #include "hw/pci-host/spapr.h"
50 #include "hw/ppc/xics.h"
51 #include "hw/pci/msi.h"
53 #include "hw/pci/pci.h"
54 #include "hw/scsi/scsi.h"
55 #include "hw/virtio/virtio-scsi.h"
57 #include "exec/address-spaces.h"
59 #include "qemu/config-file.h"
60 #include "qemu/error-report.h"
64 #include "hw/compat.h"
65 #include "qemu-common.h"
69 /* SLOF memory layout:
71 * SLOF raw image loaded at 0, copies its romfs right below the flat
72 * device-tree, then position SLOF itself 31M below that
74 * So we set FW_OVERHEAD to 40MB which should account for all of that
77 * We load our kernel at 4M, leaving space for SLOF initial image
79 #define FDT_MAX_SIZE 0x100000
80 #define RTAS_MAX_SIZE 0x10000
81 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
82 #define FW_MAX_SIZE 0x400000
83 #define FW_FILE_NAME "slof.bin"
84 #define FW_OVERHEAD 0x2800000
85 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
87 #define MIN_RMA_SLOF 128UL
89 #define TIMEBASE_FREQ 512000000ULL
91 #define PHANDLE_XICP 0x00001111
93 #define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift))
95 static XICSState
*try_create_xics(const char *type
, int nr_servers
,
96 int nr_irqs
, Error
**errp
)
101 dev
= qdev_create(NULL
, type
);
102 qdev_prop_set_uint32(dev
, "nr_servers", nr_servers
);
103 qdev_prop_set_uint32(dev
, "nr_irqs", nr_irqs
);
104 object_property_set_bool(OBJECT(dev
), true, "realized", &err
);
106 error_propagate(errp
, err
);
107 object_unparent(OBJECT(dev
));
110 return XICS_COMMON(dev
);
113 static XICSState
*xics_system_init(MachineState
*machine
,
114 int nr_servers
, int nr_irqs
)
116 XICSState
*icp
= NULL
;
121 if (machine_kernel_irqchip_allowed(machine
)) {
122 icp
= try_create_xics(TYPE_KVM_XICS
, nr_servers
, nr_irqs
, &err
);
124 if (machine_kernel_irqchip_required(machine
) && !icp
) {
125 error_report("kernel_irqchip requested but unavailable: %s",
126 error_get_pretty(err
));
131 icp
= try_create_xics(TYPE_XICS
, nr_servers
, nr_irqs
, &error_abort
);
137 static int spapr_fixup_cpu_smt_dt(void *fdt
, int offset
, PowerPCCPU
*cpu
,
141 uint32_t servers_prop
[smt_threads
];
142 uint32_t gservers_prop
[smt_threads
* 2];
143 int index
= ppc_get_vcpu_dt_id(cpu
);
145 if (cpu
->cpu_version
) {
146 ret
= fdt_setprop_cell(fdt
, offset
, "cpu-version", cpu
->cpu_version
);
152 /* Build interrupt servers and gservers properties */
153 for (i
= 0; i
< smt_threads
; i
++) {
154 servers_prop
[i
] = cpu_to_be32(index
+ i
);
155 /* Hack, direct the group queues back to cpu 0 */
156 gservers_prop
[i
*2] = cpu_to_be32(index
+ i
);
157 gservers_prop
[i
*2 + 1] = 0;
159 ret
= fdt_setprop(fdt
, offset
, "ibm,ppc-interrupt-server#s",
160 servers_prop
, sizeof(servers_prop
));
164 ret
= fdt_setprop(fdt
, offset
, "ibm,ppc-interrupt-gserver#s",
165 gservers_prop
, sizeof(gservers_prop
));
170 static int spapr_fixup_cpu_numa_dt(void *fdt
, int offset
, CPUState
*cs
)
173 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
174 int index
= ppc_get_vcpu_dt_id(cpu
);
175 uint32_t associativity
[] = {cpu_to_be32(0x5),
179 cpu_to_be32(cs
->numa_node
),
182 /* Advertise NUMA via ibm,associativity */
183 if (nb_numa_nodes
> 1) {
184 ret
= fdt_setprop(fdt
, offset
, "ibm,associativity", associativity
,
185 sizeof(associativity
));
191 static int spapr_fixup_cpu_dt(void *fdt
, sPAPRMachineState
*spapr
)
193 int ret
= 0, offset
, cpus_offset
;
196 int smt
= kvmppc_smt_threads();
197 uint32_t pft_size_prop
[] = {0, cpu_to_be32(spapr
->htab_shift
)};
200 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
201 DeviceClass
*dc
= DEVICE_GET_CLASS(cs
);
202 int index
= ppc_get_vcpu_dt_id(cpu
);
204 if ((index
% smt
) != 0) {
208 snprintf(cpu_model
, 32, "%s@%x", dc
->fw_name
, index
);
210 cpus_offset
= fdt_path_offset(fdt
, "/cpus");
211 if (cpus_offset
< 0) {
212 cpus_offset
= fdt_add_subnode(fdt
, fdt_path_offset(fdt
, "/"),
214 if (cpus_offset
< 0) {
218 offset
= fdt_subnode_offset(fdt
, cpus_offset
, cpu_model
);
220 offset
= fdt_add_subnode(fdt
, cpus_offset
, cpu_model
);
226 ret
= fdt_setprop(fdt
, offset
, "ibm,pft-size",
227 pft_size_prop
, sizeof(pft_size_prop
));
232 ret
= spapr_fixup_cpu_numa_dt(fdt
, offset
, cs
);
237 ret
= spapr_fixup_cpu_smt_dt(fdt
, offset
, cpu
,
238 ppc_get_compat_smt_threads(cpu
));
247 static size_t create_page_sizes_prop(CPUPPCState
*env
, uint32_t *prop
,
250 size_t maxcells
= maxsize
/ sizeof(uint32_t);
254 for (i
= 0; i
< PPC_PAGE_SIZES_MAX_SZ
; i
++) {
255 struct ppc_one_seg_page_size
*sps
= &env
->sps
.sps
[i
];
257 if (!sps
->page_shift
) {
260 for (count
= 0; count
< PPC_PAGE_SIZES_MAX_SZ
; count
++) {
261 if (sps
->enc
[count
].page_shift
== 0) {
265 if ((p
- prop
) >= (maxcells
- 3 - count
* 2)) {
268 *(p
++) = cpu_to_be32(sps
->page_shift
);
269 *(p
++) = cpu_to_be32(sps
->slb_enc
);
270 *(p
++) = cpu_to_be32(count
);
271 for (j
= 0; j
< count
; j
++) {
272 *(p
++) = cpu_to_be32(sps
->enc
[j
].page_shift
);
273 *(p
++) = cpu_to_be32(sps
->enc
[j
].pte_enc
);
277 return (p
- prop
) * sizeof(uint32_t);
280 static hwaddr
spapr_node0_size(void)
282 MachineState
*machine
= MACHINE(qdev_get_machine());
286 for (i
= 0; i
< nb_numa_nodes
; ++i
) {
287 if (numa_info
[i
].node_mem
) {
288 return MIN(pow2floor(numa_info
[i
].node_mem
),
293 return machine
->ram_size
;
300 fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
301 #exp, fdt_strerror(ret)); \
306 static void add_str(GString
*s
, const gchar
*s1
)
308 g_string_append_len(s
, s1
, strlen(s1
) + 1);
311 static void *spapr_create_fdt_skel(hwaddr initrd_base
,
315 const char *kernel_cmdline
,
319 uint32_t start_prop
= cpu_to_be32(initrd_base
);
320 uint32_t end_prop
= cpu_to_be32(initrd_base
+ initrd_size
);
321 GString
*hypertas
= g_string_sized_new(256);
322 GString
*qemu_hypertas
= g_string_sized_new(256);
323 uint32_t refpoints
[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
324 uint32_t interrupt_server_ranges_prop
[] = {0, cpu_to_be32(max_cpus
)};
325 unsigned char vec5
[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
328 add_str(hypertas
, "hcall-pft");
329 add_str(hypertas
, "hcall-term");
330 add_str(hypertas
, "hcall-dabr");
331 add_str(hypertas
, "hcall-interrupt");
332 add_str(hypertas
, "hcall-tce");
333 add_str(hypertas
, "hcall-vio");
334 add_str(hypertas
, "hcall-splpar");
335 add_str(hypertas
, "hcall-bulk");
336 add_str(hypertas
, "hcall-set-mode");
337 add_str(qemu_hypertas
, "hcall-memop1");
339 fdt
= g_malloc0(FDT_MAX_SIZE
);
340 _FDT((fdt_create(fdt
, FDT_MAX_SIZE
)));
343 _FDT((fdt_add_reservemap_entry(fdt
, KERNEL_LOAD_ADDR
, kernel_size
)));
346 _FDT((fdt_add_reservemap_entry(fdt
, initrd_base
, initrd_size
)));
348 _FDT((fdt_finish_reservemap(fdt
)));
351 _FDT((fdt_begin_node(fdt
, "")));
352 _FDT((fdt_property_string(fdt
, "device_type", "chrp")));
353 _FDT((fdt_property_string(fdt
, "model", "IBM pSeries (emulated by qemu)")));
354 _FDT((fdt_property_string(fdt
, "compatible", "qemu,pseries")));
357 * Add info to guest to indentify which host is it being run on
358 * and what is the uuid of the guest
360 if (kvmppc_get_host_model(&buf
)) {
361 _FDT((fdt_property_string(fdt
, "host-model", buf
)));
364 if (kvmppc_get_host_serial(&buf
)) {
365 _FDT((fdt_property_string(fdt
, "host-serial", buf
)));
369 buf
= g_strdup_printf(UUID_FMT
, qemu_uuid
[0], qemu_uuid
[1],
370 qemu_uuid
[2], qemu_uuid
[3], qemu_uuid
[4],
371 qemu_uuid
[5], qemu_uuid
[6], qemu_uuid
[7],
372 qemu_uuid
[8], qemu_uuid
[9], qemu_uuid
[10],
373 qemu_uuid
[11], qemu_uuid
[12], qemu_uuid
[13],
374 qemu_uuid
[14], qemu_uuid
[15]);
376 _FDT((fdt_property_string(fdt
, "vm,uuid", buf
)));
379 if (qemu_get_vm_name()) {
380 _FDT((fdt_property_string(fdt
, "ibm,partition-name",
381 qemu_get_vm_name())));
384 _FDT((fdt_property_cell(fdt
, "#address-cells", 0x2)));
385 _FDT((fdt_property_cell(fdt
, "#size-cells", 0x2)));
388 _FDT((fdt_begin_node(fdt
, "chosen")));
390 /* Set Form1_affinity */
391 _FDT((fdt_property(fdt
, "ibm,architecture-vec-5", vec5
, sizeof(vec5
))));
393 _FDT((fdt_property_string(fdt
, "bootargs", kernel_cmdline
)));
394 _FDT((fdt_property(fdt
, "linux,initrd-start",
395 &start_prop
, sizeof(start_prop
))));
396 _FDT((fdt_property(fdt
, "linux,initrd-end",
397 &end_prop
, sizeof(end_prop
))));
399 uint64_t kprop
[2] = { cpu_to_be64(KERNEL_LOAD_ADDR
),
400 cpu_to_be64(kernel_size
) };
402 _FDT((fdt_property(fdt
, "qemu,boot-kernel", &kprop
, sizeof(kprop
))));
404 _FDT((fdt_property(fdt
, "qemu,boot-kernel-le", NULL
, 0)));
408 _FDT((fdt_property_cell(fdt
, "qemu,boot-menu", boot_menu
)));
410 _FDT((fdt_property_cell(fdt
, "qemu,graphic-width", graphic_width
)));
411 _FDT((fdt_property_cell(fdt
, "qemu,graphic-height", graphic_height
)));
412 _FDT((fdt_property_cell(fdt
, "qemu,graphic-depth", graphic_depth
)));
414 _FDT((fdt_end_node(fdt
)));
417 _FDT((fdt_begin_node(fdt
, "rtas")));
419 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
420 add_str(hypertas
, "hcall-multi-tce");
422 _FDT((fdt_property(fdt
, "ibm,hypertas-functions", hypertas
->str
,
424 g_string_free(hypertas
, TRUE
);
425 _FDT((fdt_property(fdt
, "qemu,hypertas-functions", qemu_hypertas
->str
,
426 qemu_hypertas
->len
)));
427 g_string_free(qemu_hypertas
, TRUE
);
429 _FDT((fdt_property(fdt
, "ibm,associativity-reference-points",
430 refpoints
, sizeof(refpoints
))));
432 _FDT((fdt_property_cell(fdt
, "rtas-error-log-max", RTAS_ERROR_LOG_MAX
)));
433 _FDT((fdt_property_cell(fdt
, "rtas-event-scan-rate",
434 RTAS_EVENT_SCAN_RATE
)));
437 _FDT((fdt_property(fdt
, "ibm,change-msix-capable", NULL
, 0)));
441 * According to PAPR, rtas ibm,os-term does not guarantee a return
442 * back to the guest cpu.
444 * While an additional ibm,extended-os-term property indicates that
445 * rtas call return will always occur. Set this property.
447 _FDT((fdt_property(fdt
, "ibm,extended-os-term", NULL
, 0)));
449 _FDT((fdt_end_node(fdt
)));
451 /* interrupt controller */
452 _FDT((fdt_begin_node(fdt
, "interrupt-controller")));
454 _FDT((fdt_property_string(fdt
, "device_type",
455 "PowerPC-External-Interrupt-Presentation")));
456 _FDT((fdt_property_string(fdt
, "compatible", "IBM,ppc-xicp")));
457 _FDT((fdt_property(fdt
, "interrupt-controller", NULL
, 0)));
458 _FDT((fdt_property(fdt
, "ibm,interrupt-server-ranges",
459 interrupt_server_ranges_prop
,
460 sizeof(interrupt_server_ranges_prop
))));
461 _FDT((fdt_property_cell(fdt
, "#interrupt-cells", 2)));
462 _FDT((fdt_property_cell(fdt
, "linux,phandle", PHANDLE_XICP
)));
463 _FDT((fdt_property_cell(fdt
, "phandle", PHANDLE_XICP
)));
465 _FDT((fdt_end_node(fdt
)));
468 _FDT((fdt_begin_node(fdt
, "vdevice")));
470 _FDT((fdt_property_string(fdt
, "device_type", "vdevice")));
471 _FDT((fdt_property_string(fdt
, "compatible", "IBM,vdevice")));
472 _FDT((fdt_property_cell(fdt
, "#address-cells", 0x1)));
473 _FDT((fdt_property_cell(fdt
, "#size-cells", 0x0)));
474 _FDT((fdt_property_cell(fdt
, "#interrupt-cells", 0x2)));
475 _FDT((fdt_property(fdt
, "interrupt-controller", NULL
, 0)));
477 _FDT((fdt_end_node(fdt
)));
480 spapr_events_fdt_skel(fdt
, epow_irq
);
482 /* /hypervisor node */
484 uint8_t hypercall
[16];
486 /* indicate KVM hypercall interface */
487 _FDT((fdt_begin_node(fdt
, "hypervisor")));
488 _FDT((fdt_property_string(fdt
, "compatible", "linux,kvm")));
489 if (kvmppc_has_cap_fixup_hcalls()) {
491 * Older KVM versions with older guest kernels were broken with the
492 * magic page, don't allow the guest to map it.
494 kvmppc_get_hypercall(first_cpu
->env_ptr
, hypercall
,
496 _FDT((fdt_property(fdt
, "hcall-instructions", hypercall
,
497 sizeof(hypercall
))));
499 _FDT((fdt_end_node(fdt
)));
502 _FDT((fdt_end_node(fdt
))); /* close root node */
503 _FDT((fdt_finish(fdt
)));
508 static int spapr_populate_memory_node(void *fdt
, int nodeid
, hwaddr start
,
511 uint32_t associativity
[] = {
512 cpu_to_be32(0x4), /* length */
513 cpu_to_be32(0x0), cpu_to_be32(0x0),
514 cpu_to_be32(0x0), cpu_to_be32(nodeid
)
517 uint64_t mem_reg_property
[2];
520 mem_reg_property
[0] = cpu_to_be64(start
);
521 mem_reg_property
[1] = cpu_to_be64(size
);
523 sprintf(mem_name
, "memory@" TARGET_FMT_lx
, start
);
524 off
= fdt_add_subnode(fdt
, 0, mem_name
);
526 _FDT((fdt_setprop_string(fdt
, off
, "device_type", "memory")));
527 _FDT((fdt_setprop(fdt
, off
, "reg", mem_reg_property
,
528 sizeof(mem_reg_property
))));
529 _FDT((fdt_setprop(fdt
, off
, "ibm,associativity", associativity
,
530 sizeof(associativity
))));
534 static int spapr_populate_memory(sPAPRMachineState
*spapr
, void *fdt
)
536 MachineState
*machine
= MACHINE(spapr
);
537 hwaddr mem_start
, node_size
;
538 int i
, nb_nodes
= nb_numa_nodes
;
539 NodeInfo
*nodes
= numa_info
;
542 /* No NUMA nodes, assume there is just one node with whole RAM */
543 if (!nb_numa_nodes
) {
545 ramnode
.node_mem
= machine
->ram_size
;
549 for (i
= 0, mem_start
= 0; i
< nb_nodes
; ++i
) {
550 if (!nodes
[i
].node_mem
) {
553 if (mem_start
>= machine
->ram_size
) {
556 node_size
= nodes
[i
].node_mem
;
557 if (node_size
> machine
->ram_size
- mem_start
) {
558 node_size
= machine
->ram_size
- mem_start
;
562 /* ppc_spapr_init() checks for rma_size <= node0_size already */
563 spapr_populate_memory_node(fdt
, i
, 0, spapr
->rma_size
);
564 mem_start
+= spapr
->rma_size
;
565 node_size
-= spapr
->rma_size
;
567 for ( ; node_size
; ) {
568 hwaddr sizetmp
= pow2floor(node_size
);
570 /* mem_start != 0 here */
571 if (ctzl(mem_start
) < ctzl(sizetmp
)) {
572 sizetmp
= 1ULL << ctzl(mem_start
);
575 spapr_populate_memory_node(fdt
, i
, mem_start
, sizetmp
);
576 node_size
-= sizetmp
;
577 mem_start
+= sizetmp
;
584 static void spapr_populate_cpu_dt(CPUState
*cs
, void *fdt
, int offset
,
585 sPAPRMachineState
*spapr
)
587 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
588 CPUPPCState
*env
= &cpu
->env
;
589 PowerPCCPUClass
*pcc
= POWERPC_CPU_GET_CLASS(cs
);
590 int index
= ppc_get_vcpu_dt_id(cpu
);
591 uint32_t segs
[] = {cpu_to_be32(28), cpu_to_be32(40),
592 0xffffffff, 0xffffffff};
593 uint32_t tbfreq
= kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ
;
594 uint32_t cpufreq
= kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
595 uint32_t page_sizes_prop
[64];
596 size_t page_sizes_prop_size
;
597 uint32_t vcpus_per_socket
= smp_threads
* smp_cores
;
598 uint32_t pft_size_prop
[] = {0, cpu_to_be32(spapr
->htab_shift
)};
600 /* Note: we keep CI large pages off for now because a 64K capable guest
601 * provisioned with large pages might otherwise try to map a qemu
602 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
603 * even if that qemu runs on a 4k host.
605 * We can later add this bit back when we are confident this is not
606 * an issue (!HV KVM or 64K host)
608 uint8_t pa_features_206
[] = { 6, 0,
609 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
610 uint8_t pa_features_207
[] = { 24, 0,
611 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
612 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
613 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
614 0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
615 uint8_t *pa_features
;
618 _FDT((fdt_setprop_cell(fdt
, offset
, "reg", index
)));
619 _FDT((fdt_setprop_string(fdt
, offset
, "device_type", "cpu")));
621 _FDT((fdt_setprop_cell(fdt
, offset
, "cpu-version", env
->spr
[SPR_PVR
])));
622 _FDT((fdt_setprop_cell(fdt
, offset
, "d-cache-block-size",
623 env
->dcache_line_size
)));
624 _FDT((fdt_setprop_cell(fdt
, offset
, "d-cache-line-size",
625 env
->dcache_line_size
)));
626 _FDT((fdt_setprop_cell(fdt
, offset
, "i-cache-block-size",
627 env
->icache_line_size
)));
628 _FDT((fdt_setprop_cell(fdt
, offset
, "i-cache-line-size",
629 env
->icache_line_size
)));
631 if (pcc
->l1_dcache_size
) {
632 _FDT((fdt_setprop_cell(fdt
, offset
, "d-cache-size",
633 pcc
->l1_dcache_size
)));
635 fprintf(stderr
, "Warning: Unknown L1 dcache size for cpu\n");
637 if (pcc
->l1_icache_size
) {
638 _FDT((fdt_setprop_cell(fdt
, offset
, "i-cache-size",
639 pcc
->l1_icache_size
)));
641 fprintf(stderr
, "Warning: Unknown L1 icache size for cpu\n");
644 _FDT((fdt_setprop_cell(fdt
, offset
, "timebase-frequency", tbfreq
)));
645 _FDT((fdt_setprop_cell(fdt
, offset
, "clock-frequency", cpufreq
)));
646 _FDT((fdt_setprop_cell(fdt
, offset
, "slb-size", env
->slb_nr
)));
647 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,slb-size", env
->slb_nr
)));
648 _FDT((fdt_setprop_string(fdt
, offset
, "status", "okay")));
649 _FDT((fdt_setprop(fdt
, offset
, "64-bit", NULL
, 0)));
651 if (env
->spr_cb
[SPR_PURR
].oea_read
) {
652 _FDT((fdt_setprop(fdt
, offset
, "ibm,purr", NULL
, 0)));
655 if (env
->mmu_model
& POWERPC_MMU_1TSEG
) {
656 _FDT((fdt_setprop(fdt
, offset
, "ibm,processor-segment-sizes",
657 segs
, sizeof(segs
))));
660 /* Advertise VMX/VSX (vector extensions) if available
661 * 0 / no property == no vector extensions
662 * 1 == VMX / Altivec available
663 * 2 == VSX available */
664 if (env
->insns_flags
& PPC_ALTIVEC
) {
665 uint32_t vmx
= (env
->insns_flags2
& PPC2_VSX
) ? 2 : 1;
667 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,vmx", vmx
)));
670 /* Advertise DFP (Decimal Floating Point) if available
671 * 0 / no property == no DFP
672 * 1 == DFP available */
673 if (env
->insns_flags2
& PPC2_DFP
) {
674 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,dfp", 1)));
677 page_sizes_prop_size
= create_page_sizes_prop(env
, page_sizes_prop
,
678 sizeof(page_sizes_prop
));
679 if (page_sizes_prop_size
) {
680 _FDT((fdt_setprop(fdt
, offset
, "ibm,segment-page-sizes",
681 page_sizes_prop
, page_sizes_prop_size
)));
684 /* Do the ibm,pa-features property, adjust it for ci-large-pages */
685 if (env
->mmu_model
== POWERPC_MMU_2_06
) {
686 pa_features
= pa_features_206
;
687 pa_size
= sizeof(pa_features_206
);
688 } else /* env->mmu_model == POWERPC_MMU_2_07 */ {
689 pa_features
= pa_features_207
;
690 pa_size
= sizeof(pa_features_207
);
692 if (env
->ci_large_pages
) {
693 pa_features
[3] |= 0x20;
695 _FDT((fdt_setprop(fdt
, offset
, "ibm,pa-features", pa_features
, pa_size
)));
697 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,chip-id",
698 cs
->cpu_index
/ vcpus_per_socket
)));
700 _FDT((fdt_setprop(fdt
, offset
, "ibm,pft-size",
701 pft_size_prop
, sizeof(pft_size_prop
))));
703 _FDT(spapr_fixup_cpu_numa_dt(fdt
, offset
, cs
));
705 _FDT(spapr_fixup_cpu_smt_dt(fdt
, offset
, cpu
,
706 ppc_get_compat_smt_threads(cpu
)));
709 static void spapr_populate_cpus_dt_node(void *fdt
, sPAPRMachineState
*spapr
)
714 int smt
= kvmppc_smt_threads();
716 cpus_offset
= fdt_add_subnode(fdt
, 0, "cpus");
718 _FDT((fdt_setprop_cell(fdt
, cpus_offset
, "#address-cells", 0x1)));
719 _FDT((fdt_setprop_cell(fdt
, cpus_offset
, "#size-cells", 0x0)));
722 * We walk the CPUs in reverse order to ensure that CPU DT nodes
723 * created by fdt_add_subnode() end up in the right order in FDT
724 * for the guest kernel the enumerate the CPUs correctly.
726 CPU_FOREACH_REVERSE(cs
) {
727 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
728 int index
= ppc_get_vcpu_dt_id(cpu
);
729 DeviceClass
*dc
= DEVICE_GET_CLASS(cs
);
732 if ((index
% smt
) != 0) {
736 nodename
= g_strdup_printf("%s@%x", dc
->fw_name
, index
);
737 offset
= fdt_add_subnode(fdt
, cpus_offset
, nodename
);
740 spapr_populate_cpu_dt(cs
, fdt
, offset
, spapr
);
746 * Adds ibm,dynamic-reconfiguration-memory node.
747 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
748 * of this device tree node.
750 static int spapr_populate_drconf_memory(sPAPRMachineState
*spapr
, void *fdt
)
752 MachineState
*machine
= MACHINE(spapr
);
754 uint64_t lmb_size
= SPAPR_MEMORY_BLOCK_SIZE
;
755 uint32_t prop_lmb_size
[] = {0, cpu_to_be32(lmb_size
)};
756 uint32_t nr_lmbs
= (machine
->maxram_size
- machine
->ram_size
)/lmb_size
;
757 uint32_t *int_buf
, *cur_index
, buf_len
;
758 int nr_nodes
= nb_numa_nodes
? nb_numa_nodes
: 1;
761 * Allocate enough buffer size to fit in ibm,dynamic-memory
762 * or ibm,associativity-lookup-arrays
764 buf_len
= MAX(nr_lmbs
* SPAPR_DR_LMB_LIST_ENTRY_SIZE
+ 1, nr_nodes
* 4 + 2)
766 cur_index
= int_buf
= g_malloc0(buf_len
);
768 offset
= fdt_add_subnode(fdt
, 0, "ibm,dynamic-reconfiguration-memory");
770 ret
= fdt_setprop(fdt
, offset
, "ibm,lmb-size", prop_lmb_size
,
771 sizeof(prop_lmb_size
));
776 ret
= fdt_setprop_cell(fdt
, offset
, "ibm,memory-flags-mask", 0xff);
781 ret
= fdt_setprop_cell(fdt
, offset
, "ibm,memory-preservation-time", 0x0);
786 /* ibm,dynamic-memory */
787 int_buf
[0] = cpu_to_be32(nr_lmbs
);
789 for (i
= 0; i
< nr_lmbs
; i
++) {
790 sPAPRDRConnector
*drc
;
791 sPAPRDRConnectorClass
*drck
;
792 uint64_t addr
= i
* lmb_size
+ spapr
->hotplug_memory
.base
;;
793 uint32_t *dynamic_memory
= cur_index
;
795 drc
= spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB
,
798 drck
= SPAPR_DR_CONNECTOR_GET_CLASS(drc
);
800 dynamic_memory
[0] = cpu_to_be32(addr
>> 32);
801 dynamic_memory
[1] = cpu_to_be32(addr
& 0xffffffff);
802 dynamic_memory
[2] = cpu_to_be32(drck
->get_index(drc
));
803 dynamic_memory
[3] = cpu_to_be32(0); /* reserved */
804 dynamic_memory
[4] = cpu_to_be32(numa_get_node(addr
, NULL
));
805 if (addr
< machine
->ram_size
||
806 memory_region_present(get_system_memory(), addr
)) {
807 dynamic_memory
[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED
);
809 dynamic_memory
[5] = cpu_to_be32(0);
812 cur_index
+= SPAPR_DR_LMB_LIST_ENTRY_SIZE
;
814 ret
= fdt_setprop(fdt
, offset
, "ibm,dynamic-memory", int_buf
, buf_len
);
819 /* ibm,associativity-lookup-arrays */
821 int_buf
[0] = cpu_to_be32(nr_nodes
);
822 int_buf
[1] = cpu_to_be32(4); /* Number of entries per associativity list */
824 for (i
= 0; i
< nr_nodes
; i
++) {
825 uint32_t associativity
[] = {
831 memcpy(cur_index
, associativity
, sizeof(associativity
));
834 ret
= fdt_setprop(fdt
, offset
, "ibm,associativity-lookup-arrays", int_buf
,
835 (cur_index
- int_buf
) * sizeof(uint32_t));
841 int spapr_h_cas_compose_response(sPAPRMachineState
*spapr
,
842 target_ulong addr
, target_ulong size
,
843 bool cpu_update
, bool memory_update
)
845 void *fdt
, *fdt_skel
;
846 sPAPRDeviceTreeUpdateHeader hdr
= { .version_id
= 1 };
847 sPAPRMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
851 /* Create sceleton */
852 fdt_skel
= g_malloc0(size
);
853 _FDT((fdt_create(fdt_skel
, size
)));
854 _FDT((fdt_begin_node(fdt_skel
, "")));
855 _FDT((fdt_end_node(fdt_skel
)));
856 _FDT((fdt_finish(fdt_skel
)));
857 fdt
= g_malloc0(size
);
858 _FDT((fdt_open_into(fdt_skel
, fdt
, size
)));
861 /* Fixup cpu nodes */
863 _FDT((spapr_fixup_cpu_dt(fdt
, spapr
)));
866 /* Generate memory nodes or ibm,dynamic-reconfiguration-memory node */
867 if (memory_update
&& smc
->dr_lmb_enabled
) {
868 _FDT((spapr_populate_drconf_memory(spapr
, fdt
)));
871 /* Pack resulting tree */
872 _FDT((fdt_pack(fdt
)));
874 if (fdt_totalsize(fdt
) + sizeof(hdr
) > size
) {
875 trace_spapr_cas_failed(size
);
879 cpu_physical_memory_write(addr
, &hdr
, sizeof(hdr
));
880 cpu_physical_memory_write(addr
+ sizeof(hdr
), fdt
, fdt_totalsize(fdt
));
881 trace_spapr_cas_continue(fdt_totalsize(fdt
) + sizeof(hdr
));
887 static void spapr_finalize_fdt(sPAPRMachineState
*spapr
,
892 MachineState
*machine
= MACHINE(qdev_get_machine());
893 sPAPRMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
894 const char *boot_device
= machine
->boot_order
;
901 fdt
= g_malloc(FDT_MAX_SIZE
);
903 /* open out the base tree into a temp buffer for the final tweaks */
904 _FDT((fdt_open_into(spapr
->fdt_skel
, fdt
, FDT_MAX_SIZE
)));
906 ret
= spapr_populate_memory(spapr
, fdt
);
908 fprintf(stderr
, "couldn't setup memory nodes in fdt\n");
912 ret
= spapr_populate_vdevice(spapr
->vio_bus
, fdt
);
914 fprintf(stderr
, "couldn't setup vio devices in fdt\n");
918 if (object_resolve_path_type("", TYPE_SPAPR_RNG
, NULL
)) {
919 ret
= spapr_rng_populate_dt(fdt
);
921 fprintf(stderr
, "could not set up rng device in the fdt\n");
926 QLIST_FOREACH(phb
, &spapr
->phbs
, list
) {
927 ret
= spapr_populate_pci_dt(phb
, PHANDLE_XICP
, fdt
);
931 fprintf(stderr
, "couldn't setup PCI devices in fdt\n");
936 ret
= spapr_rtas_device_tree_setup(fdt
, rtas_addr
, rtas_size
);
938 fprintf(stderr
, "Couldn't set up RTAS device tree properties\n");
942 spapr_populate_cpus_dt_node(fdt
, spapr
);
944 bootlist
= get_boot_devices_list(&cb
, true);
945 if (cb
&& bootlist
) {
946 int offset
= fdt_path_offset(fdt
, "/chosen");
950 for (i
= 0; i
< cb
; i
++) {
951 if (bootlist
[i
] == '\n') {
956 ret
= fdt_setprop_string(fdt
, offset
, "qemu,boot-list", bootlist
);
959 if (boot_device
&& strlen(boot_device
)) {
960 int offset
= fdt_path_offset(fdt
, "/chosen");
965 fdt_setprop_string(fdt
, offset
, "qemu,boot-device", boot_device
);
968 if (!spapr
->has_graphics
) {
969 spapr_populate_chosen_stdout(fdt
, spapr
->vio_bus
);
972 if (smc
->dr_lmb_enabled
) {
973 _FDT(spapr_drc_populate_dt(fdt
, 0, NULL
, SPAPR_DR_CONNECTOR_TYPE_LMB
));
976 _FDT((fdt_pack(fdt
)));
978 if (fdt_totalsize(fdt
) > FDT_MAX_SIZE
) {
979 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
980 fdt_totalsize(fdt
), FDT_MAX_SIZE
);
984 qemu_fdt_dumpdtb(fdt
, fdt_totalsize(fdt
));
985 cpu_physical_memory_write(fdt_addr
, fdt
, fdt_totalsize(fdt
));
991 static uint64_t translate_kernel_address(void *opaque
, uint64_t addr
)
993 return (addr
& 0x0fffffff) + KERNEL_LOAD_ADDR
;
996 static void emulate_spapr_hypercall(PowerPCCPU
*cpu
)
998 CPUPPCState
*env
= &cpu
->env
;
1001 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1002 env
->gpr
[3] = H_PRIVILEGE
;
1004 env
->gpr
[3] = spapr_hypercall(cpu
, env
->gpr
[3], &env
->gpr
[4]);
1008 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1009 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1010 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1011 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1012 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1014 static void spapr_alloc_htab(sPAPRMachineState
*spapr
)
1019 /* allocate hash page table. For now we always make this 16mb,
1020 * later we should probably make it scale to the size of guest
1023 shift
= kvmppc_reset_htab(spapr
->htab_shift
);
1026 /* Kernel handles htab, we don't need to allocate one */
1027 if (shift
!= spapr
->htab_shift
) {
1028 error_setg(&error_abort
, "Failed to allocate HTAB of requested size, try with smaller maxmem");
1031 spapr
->htab_shift
= shift
;
1032 kvmppc_kern_htab
= true;
1035 spapr
->htab
= qemu_memalign(HTAB_SIZE(spapr
), HTAB_SIZE(spapr
));
1038 memset(spapr
->htab
, 0, HTAB_SIZE(spapr
));
1040 for (index
= 0; index
< HTAB_SIZE(spapr
) / HASH_PTE_SIZE_64
; index
++) {
1041 DIRTY_HPTE(HPTE(spapr
->htab
, index
));
1047 * Clear HTAB entries during reset.
1049 * If host kernel has allocated HTAB, KVM_PPC_ALLOCATE_HTAB ioctl is
1050 * used to clear HTAB. Otherwise QEMU-allocated HTAB is cleared manually.
1052 static void spapr_reset_htab(sPAPRMachineState
*spapr
)
1057 shift
= kvmppc_reset_htab(spapr
->htab_shift
);
1059 if (shift
!= spapr
->htab_shift
) {
1060 error_setg(&error_abort
, "Requested HTAB allocation failed during reset");
1063 /* Tell readers to update their file descriptor */
1064 if (spapr
->htab_fd
>= 0) {
1065 spapr
->htab_fd_stale
= true;
1068 memset(spapr
->htab
, 0, HTAB_SIZE(spapr
));
1070 for (index
= 0; index
< HTAB_SIZE(spapr
) / HASH_PTE_SIZE_64
; index
++) {
1071 DIRTY_HPTE(HPTE(spapr
->htab
, index
));
1075 /* Update the RMA size if necessary */
1076 if (spapr
->vrma_adjust
) {
1077 spapr
->rma_size
= kvmppc_rma_size(spapr_node0_size(),
1082 static int find_unknown_sysbus_device(SysBusDevice
*sbdev
, void *opaque
)
1084 bool matched
= false;
1086 if (object_dynamic_cast(OBJECT(sbdev
), TYPE_SPAPR_PCI_HOST_BRIDGE
)) {
1091 error_report("Device %s is not supported by this machine yet.",
1092 qdev_fw_name(DEVICE(sbdev
)));
1100 * A guest reset will cause spapr->htab_fd to become stale if being used.
1101 * Reopen the file descriptor to make sure the whole HTAB is properly read.
1103 static int spapr_check_htab_fd(sPAPRMachineState
*spapr
)
1107 if (spapr
->htab_fd_stale
) {
1108 close(spapr
->htab_fd
);
1109 spapr
->htab_fd
= kvmppc_get_htab_fd(false);
1110 if (spapr
->htab_fd
< 0) {
1111 error_report("Unable to open fd for reading hash table from KVM: "
1112 "%s", strerror(errno
));
1115 spapr
->htab_fd_stale
= false;
1121 static void ppc_spapr_reset(void)
1123 sPAPRMachineState
*spapr
= SPAPR_MACHINE(qdev_get_machine());
1124 PowerPCCPU
*first_ppc_cpu
;
1125 uint32_t rtas_limit
;
1127 /* Check for unknown sysbus devices */
1128 foreach_dynamic_sysbus_device(find_unknown_sysbus_device
, NULL
);
1130 /* Reset the hash table & recalc the RMA */
1131 spapr_reset_htab(spapr
);
1133 qemu_devices_reset();
1136 * We place the device tree and RTAS just below either the top of the RMA,
1137 * or just below 2GB, whichever is lowere, so that it can be
1138 * processed with 32-bit real mode code if necessary
1140 rtas_limit
= MIN(spapr
->rma_size
, RTAS_MAX_ADDR
);
1141 spapr
->rtas_addr
= rtas_limit
- RTAS_MAX_SIZE
;
1142 spapr
->fdt_addr
= spapr
->rtas_addr
- FDT_MAX_SIZE
;
1145 spapr_finalize_fdt(spapr
, spapr
->fdt_addr
, spapr
->rtas_addr
,
1148 /* Copy RTAS over */
1149 cpu_physical_memory_write(spapr
->rtas_addr
, spapr
->rtas_blob
,
1152 /* Set up the entry state */
1153 first_ppc_cpu
= POWERPC_CPU(first_cpu
);
1154 first_ppc_cpu
->env
.gpr
[3] = spapr
->fdt_addr
;
1155 first_ppc_cpu
->env
.gpr
[5] = 0;
1156 first_cpu
->halted
= 0;
1157 first_ppc_cpu
->env
.nip
= SPAPR_ENTRY_POINT
;
1161 static void spapr_cpu_reset(void *opaque
)
1163 sPAPRMachineState
*spapr
= SPAPR_MACHINE(qdev_get_machine());
1164 PowerPCCPU
*cpu
= opaque
;
1165 CPUState
*cs
= CPU(cpu
);
1166 CPUPPCState
*env
= &cpu
->env
;
1170 /* All CPUs start halted. CPU0 is unhalted from the machine level
1171 * reset code and the rest are explicitly started up by the guest
1172 * using an RTAS call */
1175 env
->spr
[SPR_HIOR
] = 0;
1177 env
->external_htab
= (uint8_t *)spapr
->htab
;
1178 if (kvm_enabled() && !env
->external_htab
) {
1180 * HV KVM, set external_htab to 1 so our ppc_hash64_load_hpte*
1181 * functions do the right thing.
1183 env
->external_htab
= (void *)1;
1185 env
->htab_base
= -1;
1187 * htab_mask is the mask used to normalize hash value to PTEG index.
1188 * htab_shift is log2 of hash table size.
1189 * We have 8 hpte per group, and each hpte is 16 bytes.
1190 * ie have 128 bytes per hpte entry.
1192 env
->htab_mask
= (1ULL << (spapr
->htab_shift
- 7)) - 1;
1193 env
->spr
[SPR_SDR1
] = (target_ulong
)(uintptr_t)spapr
->htab
|
1194 (spapr
->htab_shift
- 18);
1197 static void spapr_create_nvram(sPAPRMachineState
*spapr
)
1199 DeviceState
*dev
= qdev_create(&spapr
->vio_bus
->bus
, "spapr-nvram");
1200 DriveInfo
*dinfo
= drive_get(IF_PFLASH
, 0, 0);
1203 qdev_prop_set_drive_nofail(dev
, "drive", blk_by_legacy_dinfo(dinfo
));
1206 qdev_init_nofail(dev
);
1208 spapr
->nvram
= (struct sPAPRNVRAM
*)dev
;
1211 static void spapr_rtc_create(sPAPRMachineState
*spapr
)
1213 DeviceState
*dev
= qdev_create(NULL
, TYPE_SPAPR_RTC
);
1215 qdev_init_nofail(dev
);
1218 object_property_add_alias(qdev_get_machine(), "rtc-time",
1219 OBJECT(spapr
->rtc
), "date", NULL
);
1222 /* Returns whether we want to use VGA or not */
1223 static int spapr_vga_init(PCIBus
*pci_bus
)
1225 switch (vga_interface_type
) {
1232 return pci_vga_init(pci_bus
) != NULL
;
1234 fprintf(stderr
, "This vga model is not supported,"
1235 "currently it only supports -vga std\n");
1240 static int spapr_post_load(void *opaque
, int version_id
)
1242 sPAPRMachineState
*spapr
= (sPAPRMachineState
*)opaque
;
1245 /* In earlier versions, there was no separate qdev for the PAPR
1246 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1247 * So when migrating from those versions, poke the incoming offset
1248 * value into the RTC device */
1249 if (version_id
< 3) {
1250 err
= spapr_rtc_import_offset(spapr
->rtc
, spapr
->rtc_offset
);
1256 static bool version_before_3(void *opaque
, int version_id
)
1258 return version_id
< 3;
1261 static const VMStateDescription vmstate_spapr
= {
1264 .minimum_version_id
= 1,
1265 .post_load
= spapr_post_load
,
1266 .fields
= (VMStateField
[]) {
1267 /* used to be @next_irq */
1268 VMSTATE_UNUSED_BUFFER(version_before_3
, 0, 4),
1271 VMSTATE_UINT64_TEST(rtc_offset
, sPAPRMachineState
, version_before_3
),
1273 VMSTATE_PPC_TIMEBASE_V(tb
, sPAPRMachineState
, 2),
1274 VMSTATE_END_OF_LIST()
1278 static int htab_save_setup(QEMUFile
*f
, void *opaque
)
1280 sPAPRMachineState
*spapr
= opaque
;
1282 /* "Iteration" header */
1283 qemu_put_be32(f
, spapr
->htab_shift
);
1286 spapr
->htab_save_index
= 0;
1287 spapr
->htab_first_pass
= true;
1289 assert(kvm_enabled());
1291 spapr
->htab_fd
= kvmppc_get_htab_fd(false);
1292 spapr
->htab_fd_stale
= false;
1293 if (spapr
->htab_fd
< 0) {
1294 fprintf(stderr
, "Unable to open fd for reading hash table from KVM: %s\n",
1304 static void htab_save_first_pass(QEMUFile
*f
, sPAPRMachineState
*spapr
,
1307 int htabslots
= HTAB_SIZE(spapr
) / HASH_PTE_SIZE_64
;
1308 int index
= spapr
->htab_save_index
;
1309 int64_t starttime
= qemu_clock_get_ns(QEMU_CLOCK_REALTIME
);
1311 assert(spapr
->htab_first_pass
);
1316 /* Consume invalid HPTEs */
1317 while ((index
< htabslots
)
1318 && !HPTE_VALID(HPTE(spapr
->htab
, index
))) {
1320 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
1323 /* Consume valid HPTEs */
1325 while ((index
< htabslots
) && (index
- chunkstart
< USHRT_MAX
)
1326 && HPTE_VALID(HPTE(spapr
->htab
, index
))) {
1328 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
1331 if (index
> chunkstart
) {
1332 int n_valid
= index
- chunkstart
;
1334 qemu_put_be32(f
, chunkstart
);
1335 qemu_put_be16(f
, n_valid
);
1336 qemu_put_be16(f
, 0);
1337 qemu_put_buffer(f
, HPTE(spapr
->htab
, chunkstart
),
1338 HASH_PTE_SIZE_64
* n_valid
);
1340 if ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME
) - starttime
) > max_ns
) {
1344 } while ((index
< htabslots
) && !qemu_file_rate_limit(f
));
1346 if (index
>= htabslots
) {
1347 assert(index
== htabslots
);
1349 spapr
->htab_first_pass
= false;
1351 spapr
->htab_save_index
= index
;
1354 static int htab_save_later_pass(QEMUFile
*f
, sPAPRMachineState
*spapr
,
1357 bool final
= max_ns
< 0;
1358 int htabslots
= HTAB_SIZE(spapr
) / HASH_PTE_SIZE_64
;
1359 int examined
= 0, sent
= 0;
1360 int index
= spapr
->htab_save_index
;
1361 int64_t starttime
= qemu_clock_get_ns(QEMU_CLOCK_REALTIME
);
1363 assert(!spapr
->htab_first_pass
);
1366 int chunkstart
, invalidstart
;
1368 /* Consume non-dirty HPTEs */
1369 while ((index
< htabslots
)
1370 && !HPTE_DIRTY(HPTE(spapr
->htab
, index
))) {
1376 /* Consume valid dirty HPTEs */
1377 while ((index
< htabslots
) && (index
- chunkstart
< USHRT_MAX
)
1378 && HPTE_DIRTY(HPTE(spapr
->htab
, index
))
1379 && HPTE_VALID(HPTE(spapr
->htab
, index
))) {
1380 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
1385 invalidstart
= index
;
1386 /* Consume invalid dirty HPTEs */
1387 while ((index
< htabslots
) && (index
- invalidstart
< USHRT_MAX
)
1388 && HPTE_DIRTY(HPTE(spapr
->htab
, index
))
1389 && !HPTE_VALID(HPTE(spapr
->htab
, index
))) {
1390 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
1395 if (index
> chunkstart
) {
1396 int n_valid
= invalidstart
- chunkstart
;
1397 int n_invalid
= index
- invalidstart
;
1399 qemu_put_be32(f
, chunkstart
);
1400 qemu_put_be16(f
, n_valid
);
1401 qemu_put_be16(f
, n_invalid
);
1402 qemu_put_buffer(f
, HPTE(spapr
->htab
, chunkstart
),
1403 HASH_PTE_SIZE_64
* n_valid
);
1404 sent
+= index
- chunkstart
;
1406 if (!final
&& (qemu_clock_get_ns(QEMU_CLOCK_REALTIME
) - starttime
) > max_ns
) {
1411 if (examined
>= htabslots
) {
1415 if (index
>= htabslots
) {
1416 assert(index
== htabslots
);
1419 } while ((examined
< htabslots
) && (!qemu_file_rate_limit(f
) || final
));
1421 if (index
>= htabslots
) {
1422 assert(index
== htabslots
);
1426 spapr
->htab_save_index
= index
;
1428 return (examined
>= htabslots
) && (sent
== 0) ? 1 : 0;
1431 #define MAX_ITERATION_NS 5000000 /* 5 ms */
1432 #define MAX_KVM_BUF_SIZE 2048
1434 static int htab_save_iterate(QEMUFile
*f
, void *opaque
)
1436 sPAPRMachineState
*spapr
= opaque
;
1439 /* Iteration header */
1440 qemu_put_be32(f
, 0);
1443 assert(kvm_enabled());
1445 rc
= spapr_check_htab_fd(spapr
);
1450 rc
= kvmppc_save_htab(f
, spapr
->htab_fd
,
1451 MAX_KVM_BUF_SIZE
, MAX_ITERATION_NS
);
1455 } else if (spapr
->htab_first_pass
) {
1456 htab_save_first_pass(f
, spapr
, MAX_ITERATION_NS
);
1458 rc
= htab_save_later_pass(f
, spapr
, MAX_ITERATION_NS
);
1462 qemu_put_be32(f
, 0);
1463 qemu_put_be16(f
, 0);
1464 qemu_put_be16(f
, 0);
1469 static int htab_save_complete(QEMUFile
*f
, void *opaque
)
1471 sPAPRMachineState
*spapr
= opaque
;
1473 /* Iteration header */
1474 qemu_put_be32(f
, 0);
1479 assert(kvm_enabled());
1481 rc
= spapr_check_htab_fd(spapr
);
1486 rc
= kvmppc_save_htab(f
, spapr
->htab_fd
, MAX_KVM_BUF_SIZE
, -1);
1490 close(spapr
->htab_fd
);
1491 spapr
->htab_fd
= -1;
1493 htab_save_later_pass(f
, spapr
, -1);
1497 qemu_put_be32(f
, 0);
1498 qemu_put_be16(f
, 0);
1499 qemu_put_be16(f
, 0);
1504 static int htab_load(QEMUFile
*f
, void *opaque
, int version_id
)
1506 sPAPRMachineState
*spapr
= opaque
;
1507 uint32_t section_hdr
;
1510 if (version_id
< 1 || version_id
> 1) {
1511 fprintf(stderr
, "htab_load() bad version\n");
1515 section_hdr
= qemu_get_be32(f
);
1518 /* First section, just the hash shift */
1519 if (spapr
->htab_shift
!= section_hdr
) {
1520 error_report("htab_shift mismatch: source %d target %d",
1521 section_hdr
, spapr
->htab_shift
);
1528 assert(kvm_enabled());
1530 fd
= kvmppc_get_htab_fd(true);
1532 fprintf(stderr
, "Unable to open fd to restore KVM hash table: %s\n",
1539 uint16_t n_valid
, n_invalid
;
1541 index
= qemu_get_be32(f
);
1542 n_valid
= qemu_get_be16(f
);
1543 n_invalid
= qemu_get_be16(f
);
1545 if ((index
== 0) && (n_valid
== 0) && (n_invalid
== 0)) {
1550 if ((index
+ n_valid
+ n_invalid
) >
1551 (HTAB_SIZE(spapr
) / HASH_PTE_SIZE_64
)) {
1552 /* Bad index in stream */
1553 fprintf(stderr
, "htab_load() bad index %d (%hd+%hd entries) "
1554 "in htab stream (htab_shift=%d)\n", index
, n_valid
, n_invalid
,
1561 qemu_get_buffer(f
, HPTE(spapr
->htab
, index
),
1562 HASH_PTE_SIZE_64
* n_valid
);
1565 memset(HPTE(spapr
->htab
, index
+ n_valid
), 0,
1566 HASH_PTE_SIZE_64
* n_invalid
);
1573 rc
= kvmppc_load_htab_chunk(f
, fd
, index
, n_valid
, n_invalid
);
1588 static SaveVMHandlers savevm_htab_handlers
= {
1589 .save_live_setup
= htab_save_setup
,
1590 .save_live_iterate
= htab_save_iterate
,
1591 .save_live_complete
= htab_save_complete
,
1592 .load_state
= htab_load
,
1595 static void spapr_boot_set(void *opaque
, const char *boot_device
,
1598 MachineState
*machine
= MACHINE(qdev_get_machine());
1599 machine
->boot_order
= g_strdup(boot_device
);
1602 static void spapr_cpu_init(sPAPRMachineState
*spapr
, PowerPCCPU
*cpu
)
1604 CPUPPCState
*env
= &cpu
->env
;
1606 /* Set time-base frequency to 512 MHz */
1607 cpu_ppc_tb_init(env
, TIMEBASE_FREQ
);
1609 /* PAPR always has exception vectors in RAM not ROM. To ensure this,
1610 * MSR[IP] should never be set.
1612 env
->msr_mask
&= ~(1 << 6);
1614 /* Tell KVM that we're in PAPR mode */
1615 if (kvm_enabled()) {
1616 kvmppc_set_papr(cpu
);
1619 if (cpu
->max_compat
) {
1620 if (ppc_set_compat(cpu
, cpu
->max_compat
) < 0) {
1625 xics_cpu_setup(spapr
->icp
, cpu
);
1627 qemu_register_reset(spapr_cpu_reset
, cpu
);
1631 * Reset routine for LMB DR devices.
1633 * Unlike PCI DR devices, LMB DR devices explicitly register this reset
1634 * routine. Reset for PCI DR devices will be handled by PHB reset routine
1635 * when it walks all its children devices. LMB devices reset occurs
1636 * as part of spapr_ppc_reset().
1638 static void spapr_drc_reset(void *opaque
)
1640 sPAPRDRConnector
*drc
= opaque
;
1641 DeviceState
*d
= DEVICE(drc
);
1648 static void spapr_create_lmb_dr_connectors(sPAPRMachineState
*spapr
)
1650 MachineState
*machine
= MACHINE(spapr
);
1651 uint64_t lmb_size
= SPAPR_MEMORY_BLOCK_SIZE
;
1652 uint32_t nr_lmbs
= (machine
->maxram_size
- machine
->ram_size
)/lmb_size
;
1655 for (i
= 0; i
< nr_lmbs
; i
++) {
1656 sPAPRDRConnector
*drc
;
1659 addr
= i
* lmb_size
+ spapr
->hotplug_memory
.base
;
1660 drc
= spapr_dr_connector_new(OBJECT(spapr
), SPAPR_DR_CONNECTOR_TYPE_LMB
,
1662 qemu_register_reset(spapr_drc_reset
, drc
);
1667 * If RAM size, maxmem size and individual node mem sizes aren't aligned
1668 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
1669 * since we can't support such unaligned sizes with DRCONF_MEMORY.
1671 static void spapr_validate_node_memory(MachineState
*machine
)
1675 if (machine
->maxram_size
% SPAPR_MEMORY_BLOCK_SIZE
||
1676 machine
->ram_size
% SPAPR_MEMORY_BLOCK_SIZE
) {
1677 error_report("Can't support memory configuration where RAM size "
1678 "0x" RAM_ADDR_FMT
" or maxmem size "
1679 "0x" RAM_ADDR_FMT
" isn't aligned to %llu MB",
1680 machine
->ram_size
, machine
->maxram_size
,
1681 SPAPR_MEMORY_BLOCK_SIZE
/M_BYTE
);
1685 for (i
= 0; i
< nb_numa_nodes
; i
++) {
1686 if (numa_info
[i
].node_mem
% SPAPR_MEMORY_BLOCK_SIZE
) {
1687 error_report("Can't support memory configuration where memory size"
1688 " %" PRIx64
" of node %d isn't aligned to %llu MB",
1689 numa_info
[i
].node_mem
, i
,
1690 SPAPR_MEMORY_BLOCK_SIZE
/M_BYTE
);
1696 /* pSeries LPAR / sPAPR hardware init */
1697 static void ppc_spapr_init(MachineState
*machine
)
1699 sPAPRMachineState
*spapr
= SPAPR_MACHINE(machine
);
1700 sPAPRMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
1701 const char *kernel_filename
= machine
->kernel_filename
;
1702 const char *kernel_cmdline
= machine
->kernel_cmdline
;
1703 const char *initrd_filename
= machine
->initrd_filename
;
1707 MemoryRegion
*sysmem
= get_system_memory();
1708 MemoryRegion
*ram
= g_new(MemoryRegion
, 1);
1709 MemoryRegion
*rma_region
;
1711 hwaddr rma_alloc_size
;
1712 hwaddr node0_size
= spapr_node0_size();
1713 uint32_t initrd_base
= 0;
1714 long kernel_size
= 0, initrd_size
= 0;
1715 long load_limit
, fw_size
;
1716 bool kernel_le
= false;
1719 msi_supported
= true;
1721 QLIST_INIT(&spapr
->phbs
);
1723 cpu_ppc_hypercall
= emulate_spapr_hypercall
;
1725 /* Allocate RMA if necessary */
1726 rma_alloc_size
= kvmppc_alloc_rma(&rma
);
1728 if (rma_alloc_size
== -1) {
1729 error_report("Unable to create RMA");
1733 if (rma_alloc_size
&& (rma_alloc_size
< node0_size
)) {
1734 spapr
->rma_size
= rma_alloc_size
;
1736 spapr
->rma_size
= node0_size
;
1738 /* With KVM, we don't actually know whether KVM supports an
1739 * unbounded RMA (PR KVM) or is limited by the hash table size
1740 * (HV KVM using VRMA), so we always assume the latter
1742 * In that case, we also limit the initial allocations for RTAS
1743 * etc... to 256M since we have no way to know what the VRMA size
1744 * is going to be as it depends on the size of the hash table
1745 * isn't determined yet.
1747 if (kvm_enabled()) {
1748 spapr
->vrma_adjust
= 1;
1749 spapr
->rma_size
= MIN(spapr
->rma_size
, 0x10000000);
1753 if (spapr
->rma_size
> node0_size
) {
1754 fprintf(stderr
, "Error: Numa node 0 has to span the RMA (%#08"HWADDR_PRIx
")\n",
1759 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
1760 load_limit
= MIN(spapr
->rma_size
, RTAS_MAX_ADDR
) - FW_OVERHEAD
;
1762 /* We aim for a hash table of size 1/128 the size of RAM. The
1763 * normal rule of thumb is 1/64 the size of RAM, but that's much
1764 * more than needed for the Linux guests we support. */
1765 spapr
->htab_shift
= 18; /* Minimum architected size */
1766 while (spapr
->htab_shift
<= 46) {
1767 if ((1ULL << (spapr
->htab_shift
+ 7)) >= machine
->maxram_size
) {
1770 spapr
->htab_shift
++;
1772 spapr_alloc_htab(spapr
);
1774 /* Set up Interrupt Controller before we create the VCPUs */
1775 spapr
->icp
= xics_system_init(machine
,
1776 DIV_ROUND_UP(max_cpus
* kvmppc_smt_threads(),
1780 if (smc
->dr_lmb_enabled
) {
1781 spapr_validate_node_memory(machine
);
1785 if (machine
->cpu_model
== NULL
) {
1786 machine
->cpu_model
= kvm_enabled() ? "host" : "POWER7";
1788 for (i
= 0; i
< smp_cpus
; i
++) {
1789 cpu
= cpu_ppc_init(machine
->cpu_model
);
1791 fprintf(stderr
, "Unable to find PowerPC CPU definition\n");
1794 spapr_cpu_init(spapr
, cpu
);
1797 if (kvm_enabled()) {
1798 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
1799 kvmppc_enable_logical_ci_hcalls();
1800 kvmppc_enable_set_mode_hcall();
1804 memory_region_allocate_system_memory(ram
, NULL
, "ppc_spapr.ram",
1806 memory_region_add_subregion(sysmem
, 0, ram
);
1808 if (rma_alloc_size
&& rma
) {
1809 rma_region
= g_new(MemoryRegion
, 1);
1810 memory_region_init_ram_ptr(rma_region
, NULL
, "ppc_spapr.rma",
1811 rma_alloc_size
, rma
);
1812 vmstate_register_ram_global(rma_region
);
1813 memory_region_add_subregion(sysmem
, 0, rma_region
);
1816 /* initialize hotplug memory address space */
1817 if (machine
->ram_size
< machine
->maxram_size
) {
1818 ram_addr_t hotplug_mem_size
= machine
->maxram_size
- machine
->ram_size
;
1820 if (machine
->ram_slots
> SPAPR_MAX_RAM_SLOTS
) {
1821 error_report("Specified number of memory slots %"PRIu64
" exceeds max supported %d\n",
1822 machine
->ram_slots
, SPAPR_MAX_RAM_SLOTS
);
1826 spapr
->hotplug_memory
.base
= ROUND_UP(machine
->ram_size
,
1827 SPAPR_HOTPLUG_MEM_ALIGN
);
1828 memory_region_init(&spapr
->hotplug_memory
.mr
, OBJECT(spapr
),
1829 "hotplug-memory", hotplug_mem_size
);
1830 memory_region_add_subregion(sysmem
, spapr
->hotplug_memory
.base
,
1831 &spapr
->hotplug_memory
.mr
);
1834 if (smc
->dr_lmb_enabled
) {
1835 spapr_create_lmb_dr_connectors(spapr
);
1838 filename
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, "spapr-rtas.bin");
1840 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
1843 spapr
->rtas_size
= get_image_size(filename
);
1844 spapr
->rtas_blob
= g_malloc(spapr
->rtas_size
);
1845 if (load_image_size(filename
, spapr
->rtas_blob
, spapr
->rtas_size
) < 0) {
1846 error_report("Could not load LPAR rtas '%s'", filename
);
1849 if (spapr
->rtas_size
> RTAS_MAX_SIZE
) {
1850 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
1851 (size_t)spapr
->rtas_size
, RTAS_MAX_SIZE
);
1856 /* Set up EPOW events infrastructure */
1857 spapr_events_init(spapr
);
1859 /* Set up the RTC RTAS interfaces */
1860 spapr_rtc_create(spapr
);
1862 /* Set up VIO bus */
1863 spapr
->vio_bus
= spapr_vio_bus_init();
1865 for (i
= 0; i
< MAX_SERIAL_PORTS
; i
++) {
1866 if (serial_hds
[i
]) {
1867 spapr_vty_create(spapr
->vio_bus
, serial_hds
[i
]);
1871 /* We always have at least the nvram device on VIO */
1872 spapr_create_nvram(spapr
);
1875 spapr_pci_rtas_init();
1877 phb
= spapr_create_phb(spapr
, 0);
1879 for (i
= 0; i
< nb_nics
; i
++) {
1880 NICInfo
*nd
= &nd_table
[i
];
1883 nd
->model
= g_strdup("ibmveth");
1886 if (strcmp(nd
->model
, "ibmveth") == 0) {
1887 spapr_vlan_create(spapr
->vio_bus
, nd
);
1889 pci_nic_init_nofail(&nd_table
[i
], phb
->bus
, nd
->model
, NULL
);
1893 for (i
= 0; i
<= drive_get_max_bus(IF_SCSI
); i
++) {
1894 spapr_vscsi_create(spapr
->vio_bus
);
1898 if (spapr_vga_init(phb
->bus
)) {
1899 spapr
->has_graphics
= true;
1900 machine
->usb
|= defaults_enabled() && !machine
->usb_disabled
;
1904 pci_create_simple(phb
->bus
, -1, "pci-ohci");
1906 if (spapr
->has_graphics
) {
1907 USBBus
*usb_bus
= usb_bus_find(-1);
1909 usb_create_simple(usb_bus
, "usb-kbd");
1910 usb_create_simple(usb_bus
, "usb-mouse");
1914 if (spapr
->rma_size
< (MIN_RMA_SLOF
<< 20)) {
1915 fprintf(stderr
, "qemu: pSeries SLOF firmware requires >= "
1916 "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF
);
1920 if (kernel_filename
) {
1921 uint64_t lowaddr
= 0;
1923 kernel_size
= load_elf(kernel_filename
, translate_kernel_address
, NULL
,
1924 NULL
, &lowaddr
, NULL
, 1, PPC_ELF_MACHINE
, 0);
1925 if (kernel_size
== ELF_LOAD_WRONG_ENDIAN
) {
1926 kernel_size
= load_elf(kernel_filename
,
1927 translate_kernel_address
, NULL
,
1928 NULL
, &lowaddr
, NULL
, 0, PPC_ELF_MACHINE
, 0);
1929 kernel_le
= kernel_size
> 0;
1931 if (kernel_size
< 0) {
1932 fprintf(stderr
, "qemu: error loading %s: %s\n",
1933 kernel_filename
, load_elf_strerror(kernel_size
));
1938 if (initrd_filename
) {
1939 /* Try to locate the initrd in the gap between the kernel
1940 * and the firmware. Add a bit of space just in case
1942 initrd_base
= (KERNEL_LOAD_ADDR
+ kernel_size
+ 0x1ffff) & ~0xffff;
1943 initrd_size
= load_image_targphys(initrd_filename
, initrd_base
,
1944 load_limit
- initrd_base
);
1945 if (initrd_size
< 0) {
1946 fprintf(stderr
, "qemu: could not load initial ram disk '%s'\n",
1956 if (bios_name
== NULL
) {
1957 bios_name
= FW_FILE_NAME
;
1959 filename
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, bios_name
);
1961 error_report("Could not find LPAR firmware '%s'", bios_name
);
1964 fw_size
= load_image_targphys(filename
, 0, FW_MAX_SIZE
);
1966 error_report("Could not load LPAR firmware '%s'", filename
);
1971 /* FIXME: Should register things through the MachineState's qdev
1972 * interface, this is a legacy from the sPAPREnvironment structure
1973 * which predated MachineState but had a similar function */
1974 vmstate_register(NULL
, 0, &vmstate_spapr
, spapr
);
1975 register_savevm_live(NULL
, "spapr/htab", -1, 1,
1976 &savevm_htab_handlers
, spapr
);
1978 /* Prepare the device tree */
1979 spapr
->fdt_skel
= spapr_create_fdt_skel(initrd_base
, initrd_size
,
1980 kernel_size
, kernel_le
,
1982 spapr
->check_exception_irq
);
1983 assert(spapr
->fdt_skel
!= NULL
);
1986 QTAILQ_INIT(&spapr
->ccs_list
);
1987 qemu_register_reset(spapr_ccs_reset_hook
, spapr
);
1989 qemu_register_boot_set(spapr_boot_set
, spapr
);
1992 static int spapr_kvm_type(const char *vm_type
)
1998 if (!strcmp(vm_type
, "HV")) {
2002 if (!strcmp(vm_type
, "PR")) {
2006 error_report("Unknown kvm-type specified '%s'", vm_type
);
2011 * Implementation of an interface to adjust firmware path
2012 * for the bootindex property handling.
2014 static char *spapr_get_fw_dev_path(FWPathProvider
*p
, BusState
*bus
,
2017 #define CAST(type, obj, name) \
2018 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2019 SCSIDevice
*d
= CAST(SCSIDevice
, dev
, TYPE_SCSI_DEVICE
);
2020 sPAPRPHBState
*phb
= CAST(sPAPRPHBState
, dev
, TYPE_SPAPR_PCI_HOST_BRIDGE
);
2023 void *spapr
= CAST(void, bus
->parent
, "spapr-vscsi");
2024 VirtIOSCSI
*virtio
= CAST(VirtIOSCSI
, bus
->parent
, TYPE_VIRTIO_SCSI
);
2025 USBDevice
*usb
= CAST(USBDevice
, bus
->parent
, TYPE_USB_DEVICE
);
2029 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2030 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2031 * in the top 16 bits of the 64-bit LUN
2033 unsigned id
= 0x8000 | (d
->id
<< 8) | d
->lun
;
2034 return g_strdup_printf("%s@%"PRIX64
, qdev_fw_name(dev
),
2035 (uint64_t)id
<< 48);
2036 } else if (virtio
) {
2038 * We use SRP luns of the form 01000000 | (target << 8) | lun
2039 * in the top 32 bits of the 64-bit LUN
2040 * Note: the quote above is from SLOF and it is wrong,
2041 * the actual binding is:
2042 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2044 unsigned id
= 0x1000000 | (d
->id
<< 16) | d
->lun
;
2045 return g_strdup_printf("%s@%"PRIX64
, qdev_fw_name(dev
),
2046 (uint64_t)id
<< 32);
2049 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2050 * in the top 32 bits of the 64-bit LUN
2052 unsigned usb_port
= atoi(usb
->port
->path
);
2053 unsigned id
= 0x1000000 | (usb_port
<< 16) | d
->lun
;
2054 return g_strdup_printf("%s@%"PRIX64
, qdev_fw_name(dev
),
2055 (uint64_t)id
<< 32);
2060 /* Replace "pci" with "pci@800000020000000" */
2061 return g_strdup_printf("pci@%"PRIX64
, phb
->buid
);
2067 static char *spapr_get_kvm_type(Object
*obj
, Error
**errp
)
2069 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
2071 return g_strdup(spapr
->kvm_type
);
2074 static void spapr_set_kvm_type(Object
*obj
, const char *value
, Error
**errp
)
2076 sPAPRMachineState
*spapr
= SPAPR_MACHINE(obj
);
2078 g_free(spapr
->kvm_type
);
2079 spapr
->kvm_type
= g_strdup(value
);
2082 static void spapr_machine_initfn(Object
*obj
)
2084 object_property_add_str(obj
, "kvm-type",
2085 spapr_get_kvm_type
, spapr_set_kvm_type
, NULL
);
2086 object_property_set_description(obj
, "kvm-type",
2087 "Specifies the KVM virtualization mode (HV, PR)",
2091 static void ppc_cpu_do_nmi_on_cpu(void *arg
)
2095 cpu_synchronize_state(cs
);
2096 ppc_cpu_do_system_reset(cs
);
2099 static void spapr_nmi(NMIState
*n
, int cpu_index
, Error
**errp
)
2104 async_run_on_cpu(cs
, ppc_cpu_do_nmi_on_cpu
, cs
);
2108 static void spapr_add_lmbs(DeviceState
*dev
, uint64_t addr
, uint64_t size
,
2109 uint32_t node
, Error
**errp
)
2111 sPAPRDRConnector
*drc
;
2112 sPAPRDRConnectorClass
*drck
;
2113 uint32_t nr_lmbs
= size
/SPAPR_MEMORY_BLOCK_SIZE
;
2114 int i
, fdt_offset
, fdt_size
;
2118 * Check for DRC connectors and send hotplug notification to the
2119 * guest only in case of hotplugged memory. This allows cold plugged
2120 * memory to be specified at boot time.
2122 if (!dev
->hotplugged
) {
2126 for (i
= 0; i
< nr_lmbs
; i
++) {
2127 drc
= spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB
,
2128 addr
/SPAPR_MEMORY_BLOCK_SIZE
);
2131 fdt
= create_device_tree(&fdt_size
);
2132 fdt_offset
= spapr_populate_memory_node(fdt
, node
, addr
,
2133 SPAPR_MEMORY_BLOCK_SIZE
);
2135 drck
= SPAPR_DR_CONNECTOR_GET_CLASS(drc
);
2136 drck
->attach(drc
, dev
, fdt
, fdt_offset
, !dev
->hotplugged
, errp
);
2137 addr
+= SPAPR_MEMORY_BLOCK_SIZE
;
2139 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB
, nr_lmbs
);
2142 static void spapr_memory_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
2143 uint32_t node
, Error
**errp
)
2145 Error
*local_err
= NULL
;
2146 sPAPRMachineState
*ms
= SPAPR_MACHINE(hotplug_dev
);
2147 PCDIMMDevice
*dimm
= PC_DIMM(dev
);
2148 PCDIMMDeviceClass
*ddc
= PC_DIMM_GET_CLASS(dimm
);
2149 MemoryRegion
*mr
= ddc
->get_memory_region(dimm
);
2150 uint64_t align
= memory_region_get_alignment(mr
);
2151 uint64_t size
= memory_region_size(mr
);
2154 if (size
% SPAPR_MEMORY_BLOCK_SIZE
) {
2155 error_setg(&local_err
, "Hotplugged memory size must be a multiple of "
2156 "%lld MB", SPAPR_MEMORY_BLOCK_SIZE
/M_BYTE
);
2160 pc_dimm_memory_plug(dev
, &ms
->hotplug_memory
, mr
, align
, false, &local_err
);
2165 addr
= object_property_get_int(OBJECT(dimm
), PC_DIMM_ADDR_PROP
, &local_err
);
2167 pc_dimm_memory_unplug(dev
, &ms
->hotplug_memory
, mr
);
2171 spapr_add_lmbs(dev
, addr
, size
, node
, &error_abort
);
2174 error_propagate(errp
, local_err
);
2177 static void spapr_machine_device_plug(HotplugHandler
*hotplug_dev
,
2178 DeviceState
*dev
, Error
**errp
)
2180 sPAPRMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
2182 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
2185 if (!smc
->dr_lmb_enabled
) {
2186 error_setg(errp
, "Memory hotplug not supported for this machine");
2189 node
= object_property_get_int(OBJECT(dev
), PC_DIMM_NODE_PROP
, errp
);
2195 * Currently PowerPC kernel doesn't allow hot-adding memory to
2196 * memory-less node, but instead will silently add the memory
2197 * to the first node that has some memory. This causes two
2198 * unexpected behaviours for the user.
2200 * - Memory gets hotplugged to a different node than what the user
2202 * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
2203 * to memory-less node, a reboot will set things accordingly
2204 * and the previously hotplugged memory now ends in the right node.
2205 * This appears as if some memory moved from one node to another.
2207 * So until kernel starts supporting memory hotplug to memory-less
2208 * nodes, just prevent such attempts upfront in QEMU.
2210 if (nb_numa_nodes
&& !numa_info
[node
].node_mem
) {
2211 error_setg(errp
, "Can't hotplug memory to memory-less node %d",
2216 spapr_memory_plug(hotplug_dev
, dev
, node
, errp
);
2220 static void spapr_machine_device_unplug(HotplugHandler
*hotplug_dev
,
2221 DeviceState
*dev
, Error
**errp
)
2223 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
2224 error_setg(errp
, "Memory hot unplug not supported by sPAPR");
2228 static HotplugHandler
*spapr_get_hotpug_handler(MachineState
*machine
,
2231 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
2232 return HOTPLUG_HANDLER(machine
);
2237 static unsigned spapr_cpu_index_to_socket_id(unsigned cpu_index
)
2239 /* Allocate to NUMA nodes on a "socket" basis (not that concept of
2240 * socket means much for the paravirtualized PAPR platform) */
2241 return cpu_index
/ smp_threads
/ smp_cores
;
2244 static void spapr_machine_class_init(ObjectClass
*oc
, void *data
)
2246 MachineClass
*mc
= MACHINE_CLASS(oc
);
2247 sPAPRMachineClass
*smc
= SPAPR_MACHINE_CLASS(oc
);
2248 FWPathProviderClass
*fwc
= FW_PATH_PROVIDER_CLASS(oc
);
2249 NMIClass
*nc
= NMI_CLASS(oc
);
2250 HotplugHandlerClass
*hc
= HOTPLUG_HANDLER_CLASS(oc
);
2252 mc
->init
= ppc_spapr_init
;
2253 mc
->reset
= ppc_spapr_reset
;
2254 mc
->block_default_type
= IF_SCSI
;
2255 mc
->max_cpus
= MAX_CPUMASK_BITS
;
2256 mc
->no_parallel
= 1;
2257 mc
->default_boot_order
= "";
2258 mc
->default_ram_size
= 512 * M_BYTE
;
2259 mc
->kvm_type
= spapr_kvm_type
;
2260 mc
->has_dynamic_sysbus
= true;
2261 mc
->pci_allow_0_address
= true;
2262 mc
->get_hotplug_handler
= spapr_get_hotpug_handler
;
2263 hc
->plug
= spapr_machine_device_plug
;
2264 hc
->unplug
= spapr_machine_device_unplug
;
2265 mc
->cpu_index_to_socket_id
= spapr_cpu_index_to_socket_id
;
2267 smc
->dr_lmb_enabled
= false;
2268 fwc
->get_dev_path
= spapr_get_fw_dev_path
;
2269 nc
->nmi_monitor_handler
= spapr_nmi
;
2272 static const TypeInfo spapr_machine_info
= {
2273 .name
= TYPE_SPAPR_MACHINE
,
2274 .parent
= TYPE_MACHINE
,
2276 .instance_size
= sizeof(sPAPRMachineState
),
2277 .instance_init
= spapr_machine_initfn
,
2278 .class_size
= sizeof(sPAPRMachineClass
),
2279 .class_init
= spapr_machine_class_init
,
2280 .interfaces
= (InterfaceInfo
[]) {
2281 { TYPE_FW_PATH_PROVIDER
},
2283 { TYPE_HOTPLUG_HANDLER
},
2288 #define SPAPR_COMPAT_2_3 \
2291 .driver = "spapr-pci-host-bridge",\
2292 .property = "dynamic-reconfiguration",\
2296 #define SPAPR_COMPAT_2_2 \
2300 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
2301 .property = "mem_win_size",\
2302 .value = "0x20000000",\
2305 #define SPAPR_COMPAT_2_1 \
2309 static void spapr_compat_2_3(Object
*obj
)
2311 savevm_skip_section_footers();
2312 global_state_set_optional();
2315 static void spapr_compat_2_2(Object
*obj
)
2317 spapr_compat_2_3(obj
);
2320 static void spapr_compat_2_1(Object
*obj
)
2322 spapr_compat_2_2(obj
);
2325 static void spapr_machine_2_3_instance_init(Object
*obj
)
2327 spapr_compat_2_3(obj
);
2328 spapr_machine_initfn(obj
);
2331 static void spapr_machine_2_2_instance_init(Object
*obj
)
2333 spapr_compat_2_2(obj
);
2334 spapr_machine_initfn(obj
);
2337 static void spapr_machine_2_1_instance_init(Object
*obj
)
2339 spapr_compat_2_1(obj
);
2340 spapr_machine_initfn(obj
);
2343 static void spapr_machine_2_1_class_init(ObjectClass
*oc
, void *data
)
2345 MachineClass
*mc
= MACHINE_CLASS(oc
);
2346 static GlobalProperty compat_props
[] = {
2348 { /* end of list */ }
2351 mc
->desc
= "pSeries Logical Partition (PAPR compliant) v2.1";
2352 mc
->compat_props
= compat_props
;
2355 static const TypeInfo spapr_machine_2_1_info
= {
2356 .name
= MACHINE_TYPE_NAME("pseries-2.1"),
2357 .parent
= TYPE_SPAPR_MACHINE
,
2358 .class_init
= spapr_machine_2_1_class_init
,
2359 .instance_init
= spapr_machine_2_1_instance_init
,
2362 static void spapr_machine_2_2_class_init(ObjectClass
*oc
, void *data
)
2364 static GlobalProperty compat_props
[] = {
2366 { /* end of list */ }
2368 MachineClass
*mc
= MACHINE_CLASS(oc
);
2370 mc
->desc
= "pSeries Logical Partition (PAPR compliant) v2.2";
2371 mc
->compat_props
= compat_props
;
2374 static const TypeInfo spapr_machine_2_2_info
= {
2375 .name
= MACHINE_TYPE_NAME("pseries-2.2"),
2376 .parent
= TYPE_SPAPR_MACHINE
,
2377 .class_init
= spapr_machine_2_2_class_init
,
2378 .instance_init
= spapr_machine_2_2_instance_init
,
2381 static void spapr_machine_2_3_class_init(ObjectClass
*oc
, void *data
)
2383 static GlobalProperty compat_props
[] = {
2385 { /* end of list */ }
2387 MachineClass
*mc
= MACHINE_CLASS(oc
);
2389 mc
->desc
= "pSeries Logical Partition (PAPR compliant) v2.3";
2390 mc
->compat_props
= compat_props
;
2393 static const TypeInfo spapr_machine_2_3_info
= {
2394 .name
= MACHINE_TYPE_NAME("pseries-2.3"),
2395 .parent
= TYPE_SPAPR_MACHINE
,
2396 .class_init
= spapr_machine_2_3_class_init
,
2397 .instance_init
= spapr_machine_2_3_instance_init
,
2400 static void spapr_machine_2_4_class_init(ObjectClass
*oc
, void *data
)
2402 MachineClass
*mc
= MACHINE_CLASS(oc
);
2404 mc
->desc
= "pSeries Logical Partition (PAPR compliant) v2.4";
2405 mc
->alias
= "pseries";
2409 static const TypeInfo spapr_machine_2_4_info
= {
2410 .name
= MACHINE_TYPE_NAME("pseries-2.4"),
2411 .parent
= TYPE_SPAPR_MACHINE
,
2412 .class_init
= spapr_machine_2_4_class_init
,
2415 static void spapr_machine_2_5_class_init(ObjectClass
*oc
, void *data
)
2417 MachineClass
*mc
= MACHINE_CLASS(oc
);
2418 sPAPRMachineClass
*smc
= SPAPR_MACHINE_CLASS(oc
);
2420 mc
->name
= "pseries-2.5";
2421 mc
->desc
= "pSeries Logical Partition (PAPR compliant) v2.5";
2422 mc
->alias
= "pseries";
2424 smc
->dr_lmb_enabled
= true;
2427 static const TypeInfo spapr_machine_2_5_info
= {
2428 .name
= MACHINE_TYPE_NAME("pseries-2.5"),
2429 .parent
= TYPE_SPAPR_MACHINE
,
2430 .class_init
= spapr_machine_2_5_class_init
,
2433 static void spapr_machine_register_types(void)
2435 type_register_static(&spapr_machine_info
);
2436 type_register_static(&spapr_machine_2_1_info
);
2437 type_register_static(&spapr_machine_2_2_info
);
2438 type_register_static(&spapr_machine_2_3_info
);
2439 type_register_static(&spapr_machine_2_4_info
);
2440 type_register_static(&spapr_machine_2_5_info
);
2443 type_init(spapr_machine_register_types
)