meson: set colorout to auto
[qemu/ar7.git] / hw / ppc / spapr.c
blobdd2fa4826b31f7d3c3f5d9e4ce2738730f274394
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
27 #include "qemu/osdep.h"
28 #include "qemu-common.h"
29 #include "qapi/error.h"
30 #include "qapi/visitor.h"
31 #include "sysemu/sysemu.h"
32 #include "sysemu/hostmem.h"
33 #include "sysemu/numa.h"
34 #include "sysemu/qtest.h"
35 #include "sysemu/reset.h"
36 #include "sysemu/runstate.h"
37 #include "qemu/log.h"
38 #include "hw/fw-path-provider.h"
39 #include "elf.h"
40 #include "net/net.h"
41 #include "sysemu/device_tree.h"
42 #include "sysemu/cpus.h"
43 #include "sysemu/hw_accel.h"
44 #include "kvm_ppc.h"
45 #include "migration/misc.h"
46 #include "migration/qemu-file-types.h"
47 #include "migration/global_state.h"
48 #include "migration/register.h"
49 #include "migration/blocker.h"
50 #include "mmu-hash64.h"
51 #include "mmu-book3s-v3.h"
52 #include "cpu-models.h"
53 #include "hw/core/cpu.h"
55 #include "hw/boards.h"
56 #include "hw/ppc/ppc.h"
57 #include "hw/loader.h"
59 #include "hw/ppc/fdt.h"
60 #include "hw/ppc/spapr.h"
61 #include "hw/ppc/spapr_vio.h"
62 #include "hw/qdev-properties.h"
63 #include "hw/pci-host/spapr.h"
64 #include "hw/pci/msi.h"
66 #include "hw/pci/pci.h"
67 #include "hw/scsi/scsi.h"
68 #include "hw/virtio/virtio-scsi.h"
69 #include "hw/virtio/vhost-scsi-common.h"
71 #include "exec/address-spaces.h"
72 #include "exec/ram_addr.h"
73 #include "hw/usb.h"
74 #include "qemu/config-file.h"
75 #include "qemu/error-report.h"
76 #include "trace.h"
77 #include "hw/nmi.h"
78 #include "hw/intc/intc.h"
80 #include "hw/ppc/spapr_cpu_core.h"
81 #include "hw/mem/memory-device.h"
82 #include "hw/ppc/spapr_tpm_proxy.h"
83 #include "hw/ppc/spapr_nvdimm.h"
85 #include "monitor/monitor.h"
87 #include <libfdt.h>
89 /* SLOF memory layout:
91 * SLOF raw image loaded at 0, copies its romfs right below the flat
92 * device-tree, then position SLOF itself 31M below that
94 * So we set FW_OVERHEAD to 40MB which should account for all of that
95 * and more
97 * We load our kernel at 4M, leaving space for SLOF initial image
99 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
100 #define FW_MAX_SIZE 0x400000
101 #define FW_FILE_NAME "slof.bin"
102 #define FW_OVERHEAD 0x2800000
103 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
105 #define MIN_RMA_SLOF (128 * MiB)
107 #define PHANDLE_INTC 0x00001111
109 /* These two functions implement the VCPU id numbering: one to compute them
110 * all and one to identify thread 0 of a VCORE. Any change to the first one
111 * is likely to have an impact on the second one, so let's keep them close.
113 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
115 MachineState *ms = MACHINE(spapr);
116 unsigned int smp_threads = ms->smp.threads;
118 assert(spapr->vsmt);
119 return
120 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
122 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
123 PowerPCCPU *cpu)
125 assert(spapr->vsmt);
126 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
129 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
131 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
132 * and newer QEMUs don't even have them. In both cases, we don't want
133 * to send anything on the wire.
135 return false;
138 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
139 .name = "icp/server",
140 .version_id = 1,
141 .minimum_version_id = 1,
142 .needed = pre_2_10_vmstate_dummy_icp_needed,
143 .fields = (VMStateField[]) {
144 VMSTATE_UNUSED(4), /* uint32_t xirr */
145 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
146 VMSTATE_UNUSED(1), /* uint8_t mfrr */
147 VMSTATE_END_OF_LIST()
151 static void pre_2_10_vmstate_register_dummy_icp(int i)
153 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
154 (void *)(uintptr_t) i);
157 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
159 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
160 (void *)(uintptr_t) i);
163 int spapr_max_server_number(SpaprMachineState *spapr)
165 MachineState *ms = MACHINE(spapr);
167 assert(spapr->vsmt);
168 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
171 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
172 int smt_threads)
174 int i, ret = 0;
175 uint32_t servers_prop[smt_threads];
176 uint32_t gservers_prop[smt_threads * 2];
177 int index = spapr_get_vcpu_id(cpu);
179 if (cpu->compat_pvr) {
180 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
181 if (ret < 0) {
182 return ret;
186 /* Build interrupt servers and gservers properties */
187 for (i = 0; i < smt_threads; i++) {
188 servers_prop[i] = cpu_to_be32(index + i);
189 /* Hack, direct the group queues back to cpu 0 */
190 gservers_prop[i*2] = cpu_to_be32(index + i);
191 gservers_prop[i*2 + 1] = 0;
193 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
194 servers_prop, sizeof(servers_prop));
195 if (ret < 0) {
196 return ret;
198 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
199 gservers_prop, sizeof(gservers_prop));
201 return ret;
204 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
206 int index = spapr_get_vcpu_id(cpu);
207 uint32_t associativity[] = {cpu_to_be32(0x5),
208 cpu_to_be32(0x0),
209 cpu_to_be32(0x0),
210 cpu_to_be32(0x0),
211 cpu_to_be32(cpu->node_id),
212 cpu_to_be32(index)};
214 /* Advertise NUMA via ibm,associativity */
215 return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
216 sizeof(associativity));
219 static void spapr_dt_pa_features(SpaprMachineState *spapr,
220 PowerPCCPU *cpu,
221 void *fdt, int offset)
223 uint8_t pa_features_206[] = { 6, 0,
224 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
225 uint8_t pa_features_207[] = { 24, 0,
226 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
227 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
228 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
229 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
230 uint8_t pa_features_300[] = { 66, 0,
231 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
232 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
233 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
234 /* 6: DS207 */
235 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
236 /* 16: Vector */
237 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
238 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
239 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
240 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
241 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
242 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
243 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
244 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
245 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
246 /* 42: PM, 44: PC RA, 46: SC vec'd */
247 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
248 /* 48: SIMD, 50: QP BFP, 52: String */
249 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
250 /* 54: DecFP, 56: DecI, 58: SHA */
251 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
252 /* 60: NM atomic, 62: RNG */
253 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
255 uint8_t *pa_features = NULL;
256 size_t pa_size;
258 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
259 pa_features = pa_features_206;
260 pa_size = sizeof(pa_features_206);
262 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
263 pa_features = pa_features_207;
264 pa_size = sizeof(pa_features_207);
266 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
267 pa_features = pa_features_300;
268 pa_size = sizeof(pa_features_300);
270 if (!pa_features) {
271 return;
274 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
276 * Note: we keep CI large pages off by default because a 64K capable
277 * guest provisioned with large pages might otherwise try to map a qemu
278 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
279 * even if that qemu runs on a 4k host.
280 * We dd this bit back here if we are confident this is not an issue
282 pa_features[3] |= 0x20;
284 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
285 pa_features[24] |= 0x80; /* Transactional memory support */
287 if (spapr->cas_pre_isa3_guest && pa_size > 40) {
288 /* Workaround for broken kernels that attempt (guest) radix
289 * mode when they can't handle it, if they see the radix bit set
290 * in pa-features. So hide it from them. */
291 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
294 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
297 static hwaddr spapr_node0_size(MachineState *machine)
299 if (machine->numa_state->num_nodes) {
300 int i;
301 for (i = 0; i < machine->numa_state->num_nodes; ++i) {
302 if (machine->numa_state->nodes[i].node_mem) {
303 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
304 machine->ram_size);
308 return machine->ram_size;
311 static void add_str(GString *s, const gchar *s1)
313 g_string_append_len(s, s1, strlen(s1) + 1);
316 static int spapr_dt_memory_node(void *fdt, int nodeid, hwaddr start,
317 hwaddr size)
319 uint32_t associativity[] = {
320 cpu_to_be32(0x4), /* length */
321 cpu_to_be32(0x0), cpu_to_be32(0x0),
322 cpu_to_be32(0x0), cpu_to_be32(nodeid)
324 char mem_name[32];
325 uint64_t mem_reg_property[2];
326 int off;
328 mem_reg_property[0] = cpu_to_be64(start);
329 mem_reg_property[1] = cpu_to_be64(size);
331 sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
332 off = fdt_add_subnode(fdt, 0, mem_name);
333 _FDT(off);
334 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
335 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
336 sizeof(mem_reg_property))));
337 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
338 sizeof(associativity))));
339 return off;
342 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
344 MemoryDeviceInfoList *info;
346 for (info = list; info; info = info->next) {
347 MemoryDeviceInfo *value = info->value;
349 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
350 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
352 if (addr >= pcdimm_info->addr &&
353 addr < (pcdimm_info->addr + pcdimm_info->size)) {
354 return pcdimm_info->node;
359 return -1;
362 struct sPAPRDrconfCellV2 {
363 uint32_t seq_lmbs;
364 uint64_t base_addr;
365 uint32_t drc_index;
366 uint32_t aa_index;
367 uint32_t flags;
368 } QEMU_PACKED;
370 typedef struct DrconfCellQueue {
371 struct sPAPRDrconfCellV2 cell;
372 QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
373 } DrconfCellQueue;
375 static DrconfCellQueue *
376 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
377 uint32_t drc_index, uint32_t aa_index,
378 uint32_t flags)
380 DrconfCellQueue *elem;
382 elem = g_malloc0(sizeof(*elem));
383 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
384 elem->cell.base_addr = cpu_to_be64(base_addr);
385 elem->cell.drc_index = cpu_to_be32(drc_index);
386 elem->cell.aa_index = cpu_to_be32(aa_index);
387 elem->cell.flags = cpu_to_be32(flags);
389 return elem;
392 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt,
393 int offset, MemoryDeviceInfoList *dimms)
395 MachineState *machine = MACHINE(spapr);
396 uint8_t *int_buf, *cur_index;
397 int ret;
398 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
399 uint64_t addr, cur_addr, size;
400 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
401 uint64_t mem_end = machine->device_memory->base +
402 memory_region_size(&machine->device_memory->mr);
403 uint32_t node, buf_len, nr_entries = 0;
404 SpaprDrc *drc;
405 DrconfCellQueue *elem, *next;
406 MemoryDeviceInfoList *info;
407 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
408 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
410 /* Entry to cover RAM and the gap area */
411 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
412 SPAPR_LMB_FLAGS_RESERVED |
413 SPAPR_LMB_FLAGS_DRC_INVALID);
414 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
415 nr_entries++;
417 cur_addr = machine->device_memory->base;
418 for (info = dimms; info; info = info->next) {
419 PCDIMMDeviceInfo *di = info->value->u.dimm.data;
421 addr = di->addr;
422 size = di->size;
423 node = di->node;
426 * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
427 * area is marked hotpluggable in the next iteration for the bigger
428 * chunk including the NVDIMM occupied area.
430 if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM)
431 continue;
433 /* Entry for hot-pluggable area */
434 if (cur_addr < addr) {
435 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
436 g_assert(drc);
437 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
438 cur_addr, spapr_drc_index(drc), -1, 0);
439 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
440 nr_entries++;
443 /* Entry for DIMM */
444 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
445 g_assert(drc);
446 elem = spapr_get_drconf_cell(size / lmb_size, addr,
447 spapr_drc_index(drc), node,
448 (SPAPR_LMB_FLAGS_ASSIGNED |
449 SPAPR_LMB_FLAGS_HOTREMOVABLE));
450 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
451 nr_entries++;
452 cur_addr = addr + size;
455 /* Entry for remaining hotpluggable area */
456 if (cur_addr < mem_end) {
457 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
458 g_assert(drc);
459 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
460 cur_addr, spapr_drc_index(drc), -1, 0);
461 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
462 nr_entries++;
465 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
466 int_buf = cur_index = g_malloc0(buf_len);
467 *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
468 cur_index += sizeof(nr_entries);
470 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
471 memcpy(cur_index, &elem->cell, sizeof(elem->cell));
472 cur_index += sizeof(elem->cell);
473 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
474 g_free(elem);
477 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
478 g_free(int_buf);
479 if (ret < 0) {
480 return -1;
482 return 0;
485 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt,
486 int offset, MemoryDeviceInfoList *dimms)
488 MachineState *machine = MACHINE(spapr);
489 int i, ret;
490 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
491 uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
492 uint32_t nr_lmbs = (machine->device_memory->base +
493 memory_region_size(&machine->device_memory->mr)) /
494 lmb_size;
495 uint32_t *int_buf, *cur_index, buf_len;
498 * Allocate enough buffer size to fit in ibm,dynamic-memory
500 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
501 cur_index = int_buf = g_malloc0(buf_len);
502 int_buf[0] = cpu_to_be32(nr_lmbs);
503 cur_index++;
504 for (i = 0; i < nr_lmbs; i++) {
505 uint64_t addr = i * lmb_size;
506 uint32_t *dynamic_memory = cur_index;
508 if (i >= device_lmb_start) {
509 SpaprDrc *drc;
511 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
512 g_assert(drc);
514 dynamic_memory[0] = cpu_to_be32(addr >> 32);
515 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
516 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
517 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
518 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
519 if (memory_region_present(get_system_memory(), addr)) {
520 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
521 } else {
522 dynamic_memory[5] = cpu_to_be32(0);
524 } else {
526 * LMB information for RMA, boot time RAM and gap b/n RAM and
527 * device memory region -- all these are marked as reserved
528 * and as having no valid DRC.
530 dynamic_memory[0] = cpu_to_be32(addr >> 32);
531 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
532 dynamic_memory[2] = cpu_to_be32(0);
533 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
534 dynamic_memory[4] = cpu_to_be32(-1);
535 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
536 SPAPR_LMB_FLAGS_DRC_INVALID);
539 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
541 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
542 g_free(int_buf);
543 if (ret < 0) {
544 return -1;
546 return 0;
550 * Adds ibm,dynamic-reconfiguration-memory node.
551 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
552 * of this device tree node.
554 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr,
555 void *fdt)
557 MachineState *machine = MACHINE(spapr);
558 int nb_numa_nodes = machine->numa_state->num_nodes;
559 int ret, i, offset;
560 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
561 uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32),
562 cpu_to_be32(lmb_size & 0xffffffff)};
563 uint32_t *int_buf, *cur_index, buf_len;
564 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
565 MemoryDeviceInfoList *dimms = NULL;
568 * Don't create the node if there is no device memory
570 if (machine->ram_size == machine->maxram_size) {
571 return 0;
574 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
576 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
577 sizeof(prop_lmb_size));
578 if (ret < 0) {
579 return ret;
582 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
583 if (ret < 0) {
584 return ret;
587 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
588 if (ret < 0) {
589 return ret;
592 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
593 dimms = qmp_memory_device_list();
594 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
595 ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms);
596 } else {
597 ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms);
599 qapi_free_MemoryDeviceInfoList(dimms);
601 if (ret < 0) {
602 return ret;
605 /* ibm,associativity-lookup-arrays */
606 buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
607 cur_index = int_buf = g_malloc0(buf_len);
608 int_buf[0] = cpu_to_be32(nr_nodes);
609 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
610 cur_index += 2;
611 for (i = 0; i < nr_nodes; i++) {
612 uint32_t associativity[] = {
613 cpu_to_be32(0x0),
614 cpu_to_be32(0x0),
615 cpu_to_be32(0x0),
616 cpu_to_be32(i)
618 memcpy(cur_index, associativity, sizeof(associativity));
619 cur_index += 4;
621 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
622 (cur_index - int_buf) * sizeof(uint32_t));
623 g_free(int_buf);
625 return ret;
628 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt)
630 MachineState *machine = MACHINE(spapr);
631 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
632 hwaddr mem_start, node_size;
633 int i, nb_nodes = machine->numa_state->num_nodes;
634 NodeInfo *nodes = machine->numa_state->nodes;
636 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
637 if (!nodes[i].node_mem) {
638 continue;
640 if (mem_start >= machine->ram_size) {
641 node_size = 0;
642 } else {
643 node_size = nodes[i].node_mem;
644 if (node_size > machine->ram_size - mem_start) {
645 node_size = machine->ram_size - mem_start;
648 if (!mem_start) {
649 /* spapr_machine_init() checks for rma_size <= node0_size
650 * already */
651 spapr_dt_memory_node(fdt, i, 0, spapr->rma_size);
652 mem_start += spapr->rma_size;
653 node_size -= spapr->rma_size;
655 for ( ; node_size; ) {
656 hwaddr sizetmp = pow2floor(node_size);
658 /* mem_start != 0 here */
659 if (ctzl(mem_start) < ctzl(sizetmp)) {
660 sizetmp = 1ULL << ctzl(mem_start);
663 spapr_dt_memory_node(fdt, i, mem_start, sizetmp);
664 node_size -= sizetmp;
665 mem_start += sizetmp;
669 /* Generate ibm,dynamic-reconfiguration-memory node if required */
670 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) {
671 int ret;
673 g_assert(smc->dr_lmb_enabled);
674 ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt);
675 if (ret) {
676 return ret;
680 return 0;
683 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset,
684 SpaprMachineState *spapr)
686 MachineState *ms = MACHINE(spapr);
687 PowerPCCPU *cpu = POWERPC_CPU(cs);
688 CPUPPCState *env = &cpu->env;
689 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
690 int index = spapr_get_vcpu_id(cpu);
691 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
692 0xffffffff, 0xffffffff};
693 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
694 : SPAPR_TIMEBASE_FREQ;
695 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
696 uint32_t page_sizes_prop[64];
697 size_t page_sizes_prop_size;
698 unsigned int smp_threads = ms->smp.threads;
699 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
700 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
701 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
702 SpaprDrc *drc;
703 int drc_index;
704 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
705 int i;
707 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
708 if (drc) {
709 drc_index = spapr_drc_index(drc);
710 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
713 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
714 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
716 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
717 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
718 env->dcache_line_size)));
719 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
720 env->dcache_line_size)));
721 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
722 env->icache_line_size)));
723 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
724 env->icache_line_size)));
726 if (pcc->l1_dcache_size) {
727 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
728 pcc->l1_dcache_size)));
729 } else {
730 warn_report("Unknown L1 dcache size for cpu");
732 if (pcc->l1_icache_size) {
733 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
734 pcc->l1_icache_size)));
735 } else {
736 warn_report("Unknown L1 icache size for cpu");
739 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
740 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
741 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
742 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
743 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
744 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
746 if (env->spr_cb[SPR_PURR].oea_read) {
747 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
749 if (env->spr_cb[SPR_SPURR].oea_read) {
750 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
753 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
754 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
755 segs, sizeof(segs))));
758 /* Advertise VSX (vector extensions) if available
759 * 1 == VMX / Altivec available
760 * 2 == VSX available
762 * Only CPUs for which we create core types in spapr_cpu_core.c
763 * are possible, and all of those have VMX */
764 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
765 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
766 } else {
767 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
770 /* Advertise DFP (Decimal Floating Point) if available
771 * 0 / no property == no DFP
772 * 1 == DFP available */
773 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
774 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
777 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
778 sizeof(page_sizes_prop));
779 if (page_sizes_prop_size) {
780 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
781 page_sizes_prop, page_sizes_prop_size)));
784 spapr_dt_pa_features(spapr, cpu, fdt, offset);
786 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
787 cs->cpu_index / vcpus_per_socket)));
789 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
790 pft_size_prop, sizeof(pft_size_prop))));
792 if (ms->numa_state->num_nodes > 1) {
793 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
796 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
798 if (pcc->radix_page_info) {
799 for (i = 0; i < pcc->radix_page_info->count; i++) {
800 radix_AP_encodings[i] =
801 cpu_to_be32(pcc->radix_page_info->entries[i]);
803 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
804 radix_AP_encodings,
805 pcc->radix_page_info->count *
806 sizeof(radix_AP_encodings[0]))));
810 * We set this property to let the guest know that it can use the large
811 * decrementer and its width in bits.
813 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
814 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
815 pcc->lrg_decr_bits)));
818 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr)
820 CPUState **rev;
821 CPUState *cs;
822 int n_cpus;
823 int cpus_offset;
824 char *nodename;
825 int i;
827 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
828 _FDT(cpus_offset);
829 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
830 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
833 * We walk the CPUs in reverse order to ensure that CPU DT nodes
834 * created by fdt_add_subnode() end up in the right order in FDT
835 * for the guest kernel the enumerate the CPUs correctly.
837 * The CPU list cannot be traversed in reverse order, so we need
838 * to do extra work.
840 n_cpus = 0;
841 rev = NULL;
842 CPU_FOREACH(cs) {
843 rev = g_renew(CPUState *, rev, n_cpus + 1);
844 rev[n_cpus++] = cs;
847 for (i = n_cpus - 1; i >= 0; i--) {
848 CPUState *cs = rev[i];
849 PowerPCCPU *cpu = POWERPC_CPU(cs);
850 int index = spapr_get_vcpu_id(cpu);
851 DeviceClass *dc = DEVICE_GET_CLASS(cs);
852 int offset;
854 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
855 continue;
858 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
859 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
860 g_free(nodename);
861 _FDT(offset);
862 spapr_dt_cpu(cs, fdt, offset, spapr);
865 g_free(rev);
868 static int spapr_dt_rng(void *fdt)
870 int node;
871 int ret;
873 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
874 if (node <= 0) {
875 return -1;
877 ret = fdt_setprop_string(fdt, node, "device_type",
878 "ibm,platform-facilities");
879 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
880 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
882 node = fdt_add_subnode(fdt, node, "ibm,random-v1");
883 if (node <= 0) {
884 return -1;
886 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
888 return ret ? -1 : 0;
891 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
893 MachineState *ms = MACHINE(spapr);
894 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
895 int rtas;
896 GString *hypertas = g_string_sized_new(256);
897 GString *qemu_hypertas = g_string_sized_new(256);
898 uint32_t refpoints[] = {
899 cpu_to_be32(0x4),
900 cpu_to_be32(0x4),
901 cpu_to_be32(0x2),
903 uint32_t nr_refpoints = ARRAY_SIZE(refpoints);
904 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
905 memory_region_size(&MACHINE(spapr)->device_memory->mr);
906 uint32_t lrdr_capacity[] = {
907 cpu_to_be32(max_device_addr >> 32),
908 cpu_to_be32(max_device_addr & 0xffffffff),
909 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32),
910 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff),
911 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
913 uint32_t maxdomain = cpu_to_be32(spapr->gpu_numa_id > 1 ? 1 : 0);
914 uint32_t maxdomains[] = {
915 cpu_to_be32(4),
916 maxdomain,
917 maxdomain,
918 maxdomain,
919 cpu_to_be32(spapr->gpu_numa_id),
922 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
924 /* hypertas */
925 add_str(hypertas, "hcall-pft");
926 add_str(hypertas, "hcall-term");
927 add_str(hypertas, "hcall-dabr");
928 add_str(hypertas, "hcall-interrupt");
929 add_str(hypertas, "hcall-tce");
930 add_str(hypertas, "hcall-vio");
931 add_str(hypertas, "hcall-splpar");
932 add_str(hypertas, "hcall-join");
933 add_str(hypertas, "hcall-bulk");
934 add_str(hypertas, "hcall-set-mode");
935 add_str(hypertas, "hcall-sprg0");
936 add_str(hypertas, "hcall-copy");
937 add_str(hypertas, "hcall-debug");
938 add_str(hypertas, "hcall-vphn");
939 add_str(qemu_hypertas, "hcall-memop1");
941 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
942 add_str(hypertas, "hcall-multi-tce");
945 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
946 add_str(hypertas, "hcall-hpt-resize");
949 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
950 hypertas->str, hypertas->len));
951 g_string_free(hypertas, TRUE);
952 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
953 qemu_hypertas->str, qemu_hypertas->len));
954 g_string_free(qemu_hypertas, TRUE);
956 if (smc->pre_5_1_assoc_refpoints) {
957 nr_refpoints = 2;
960 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
961 refpoints, nr_refpoints * sizeof(refpoints[0])));
963 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
964 maxdomains, sizeof(maxdomains)));
967 * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log,
968 * and 16 bytes per CPU for system reset error log plus an extra 8 bytes.
970 * The system reset requirements are driven by existing Linux and PowerVM
971 * implementation which (contrary to PAPR) saves r3 in the error log
972 * structure like machine check, so Linux expects to find the saved r3
973 * value at the address in r3 upon FWNMI-enabled sreset interrupt (and
974 * does not look at the error value).
976 * System reset interrupts are not subject to interlock like machine
977 * check, so this memory area could be corrupted if the sreset is
978 * interrupted by a machine check (or vice versa) if it was shared. To
979 * prevent this, system reset uses per-CPU areas for the sreset save
980 * area. A system reset that interrupts a system reset handler could
981 * still overwrite this area, but Linux doesn't try to recover in that
982 * case anyway.
984 * The extra 8 bytes is required because Linux's FWNMI error log check
985 * is off-by-one.
987 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_ERROR_LOG_MAX +
988 ms->smp.max_cpus * sizeof(uint64_t)*2 + sizeof(uint64_t)));
989 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
990 RTAS_ERROR_LOG_MAX));
991 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
992 RTAS_EVENT_SCAN_RATE));
994 g_assert(msi_nonbroken);
995 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
998 * According to PAPR, rtas ibm,os-term does not guarantee a return
999 * back to the guest cpu.
1001 * While an additional ibm,extended-os-term property indicates
1002 * that rtas call return will always occur. Set this property.
1004 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
1006 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
1007 lrdr_capacity, sizeof(lrdr_capacity)));
1009 spapr_dt_rtas_tokens(fdt, rtas);
1013 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
1014 * and the XIVE features that the guest may request and thus the valid
1015 * values for bytes 23..26 of option vector 5:
1017 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
1018 int chosen)
1020 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1022 char val[2 * 4] = {
1023 23, 0x00, /* XICS / XIVE mode */
1024 24, 0x00, /* Hash/Radix, filled in below. */
1025 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1026 26, 0x40, /* Radix options: GTSE == yes. */
1029 if (spapr->irq->xics && spapr->irq->xive) {
1030 val[1] = SPAPR_OV5_XIVE_BOTH;
1031 } else if (spapr->irq->xive) {
1032 val[1] = SPAPR_OV5_XIVE_EXPLOIT;
1033 } else {
1034 assert(spapr->irq->xics);
1035 val[1] = SPAPR_OV5_XIVE_LEGACY;
1038 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1039 first_ppc_cpu->compat_pvr)) {
1041 * If we're in a pre POWER9 compat mode then the guest should
1042 * do hash and use the legacy interrupt mode
1044 val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
1045 val[3] = 0x00; /* Hash */
1046 } else if (kvm_enabled()) {
1047 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1048 val[3] = 0x80; /* OV5_MMU_BOTH */
1049 } else if (kvmppc_has_cap_mmu_radix()) {
1050 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1051 } else {
1052 val[3] = 0x00; /* Hash */
1054 } else {
1055 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1056 val[3] = 0xC0;
1058 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1059 val, sizeof(val)));
1062 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset)
1064 MachineState *machine = MACHINE(spapr);
1065 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1066 int chosen;
1068 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1070 if (reset) {
1071 const char *boot_device = machine->boot_order;
1072 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1073 size_t cb = 0;
1074 char *bootlist = get_boot_devices_list(&cb);
1076 if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1077 _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1078 machine->kernel_cmdline));
1081 if (spapr->initrd_size) {
1082 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1083 spapr->initrd_base));
1084 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1085 spapr->initrd_base + spapr->initrd_size));
1088 if (spapr->kernel_size) {
1089 uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr),
1090 cpu_to_be64(spapr->kernel_size) };
1092 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1093 &kprop, sizeof(kprop)));
1094 if (spapr->kernel_le) {
1095 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1098 if (boot_menu) {
1099 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1101 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1102 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1103 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1105 if (cb && bootlist) {
1106 int i;
1108 for (i = 0; i < cb; i++) {
1109 if (bootlist[i] == '\n') {
1110 bootlist[i] = ' ';
1113 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1116 if (boot_device && strlen(boot_device)) {
1117 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1120 if (!spapr->has_graphics && stdout_path) {
1122 * "linux,stdout-path" and "stdout" properties are
1123 * deprecated by linux kernel. New platforms should only
1124 * use the "stdout-path" property. Set the new property
1125 * and continue using older property to remain compatible
1126 * with the existing firmware.
1128 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1129 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1133 * We can deal with BAR reallocation just fine, advertise it
1134 * to the guest
1136 if (smc->linux_pci_probe) {
1137 _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1140 spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1142 g_free(stdout_path);
1143 g_free(bootlist);
1146 _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5"));
1149 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1151 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1152 * KVM to work under pHyp with some guest co-operation */
1153 int hypervisor;
1154 uint8_t hypercall[16];
1156 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1157 /* indicate KVM hypercall interface */
1158 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1159 if (kvmppc_has_cap_fixup_hcalls()) {
1161 * Older KVM versions with older guest kernels were broken
1162 * with the magic page, don't allow the guest to map it.
1164 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1165 sizeof(hypercall))) {
1166 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1167 hypercall, sizeof(hypercall)));
1172 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space)
1174 MachineState *machine = MACHINE(spapr);
1175 MachineClass *mc = MACHINE_GET_CLASS(machine);
1176 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1177 int ret;
1178 void *fdt;
1179 SpaprPhbState *phb;
1180 char *buf;
1182 fdt = g_malloc0(space);
1183 _FDT((fdt_create_empty_tree(fdt, space)));
1185 /* Root node */
1186 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1187 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1188 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1190 /* Guest UUID & Name*/
1191 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1192 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1193 if (qemu_uuid_set) {
1194 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1196 g_free(buf);
1198 if (qemu_get_vm_name()) {
1199 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1200 qemu_get_vm_name()));
1203 /* Host Model & Serial Number */
1204 if (spapr->host_model) {
1205 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1206 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1207 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1208 g_free(buf);
1211 if (spapr->host_serial) {
1212 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1213 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1214 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1215 g_free(buf);
1218 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1219 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1221 /* /interrupt controller */
1222 spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC);
1224 ret = spapr_dt_memory(spapr, fdt);
1225 if (ret < 0) {
1226 error_report("couldn't setup memory nodes in fdt");
1227 exit(1);
1230 /* /vdevice */
1231 spapr_dt_vdevice(spapr->vio_bus, fdt);
1233 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1234 ret = spapr_dt_rng(fdt);
1235 if (ret < 0) {
1236 error_report("could not set up rng device in the fdt");
1237 exit(1);
1241 QLIST_FOREACH(phb, &spapr->phbs, list) {
1242 ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL);
1243 if (ret < 0) {
1244 error_report("couldn't setup PCI devices in fdt");
1245 exit(1);
1249 spapr_dt_cpus(fdt, spapr);
1251 if (smc->dr_lmb_enabled) {
1252 _FDT(spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1255 if (mc->has_hotpluggable_cpus) {
1256 int offset = fdt_path_offset(fdt, "/cpus");
1257 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1258 if (ret < 0) {
1259 error_report("Couldn't set up CPU DR device tree properties");
1260 exit(1);
1264 /* /event-sources */
1265 spapr_dt_events(spapr, fdt);
1267 /* /rtas */
1268 spapr_dt_rtas(spapr, fdt);
1270 /* /chosen */
1271 spapr_dt_chosen(spapr, fdt, reset);
1273 /* /hypervisor */
1274 if (kvm_enabled()) {
1275 spapr_dt_hypervisor(spapr, fdt);
1278 /* Build memory reserve map */
1279 if (reset) {
1280 if (spapr->kernel_size) {
1281 _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr,
1282 spapr->kernel_size)));
1284 if (spapr->initrd_size) {
1285 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base,
1286 spapr->initrd_size)));
1290 if (smc->dr_phb_enabled) {
1291 ret = spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB);
1292 if (ret < 0) {
1293 error_report("Couldn't set up PHB DR device tree properties");
1294 exit(1);
1298 /* NVDIMM devices */
1299 if (mc->nvdimm_supported) {
1300 spapr_dt_persistent_memory(fdt);
1303 return fdt;
1306 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1308 SpaprMachineState *spapr = opaque;
1310 return (addr & 0x0fffffff) + spapr->kernel_addr;
1313 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1314 PowerPCCPU *cpu)
1316 CPUPPCState *env = &cpu->env;
1318 /* The TCG path should also be holding the BQL at this point */
1319 g_assert(qemu_mutex_iothread_locked());
1321 if (msr_pr) {
1322 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1323 env->gpr[3] = H_PRIVILEGE;
1324 } else {
1325 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1329 struct LPCRSyncState {
1330 target_ulong value;
1331 target_ulong mask;
1334 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1336 struct LPCRSyncState *s = arg.host_ptr;
1337 PowerPCCPU *cpu = POWERPC_CPU(cs);
1338 CPUPPCState *env = &cpu->env;
1339 target_ulong lpcr;
1341 cpu_synchronize_state(cs);
1342 lpcr = env->spr[SPR_LPCR];
1343 lpcr &= ~s->mask;
1344 lpcr |= s->value;
1345 ppc_store_lpcr(cpu, lpcr);
1348 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1350 CPUState *cs;
1351 struct LPCRSyncState s = {
1352 .value = value,
1353 .mask = mask
1355 CPU_FOREACH(cs) {
1356 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1360 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1362 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1364 /* Copy PATE1:GR into PATE0:HR */
1365 entry->dw0 = spapr->patb_entry & PATE0_HR;
1366 entry->dw1 = spapr->patb_entry;
1369 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1370 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1371 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1372 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1373 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1376 * Get the fd to access the kernel htab, re-opening it if necessary
1378 static int get_htab_fd(SpaprMachineState *spapr)
1380 Error *local_err = NULL;
1382 if (spapr->htab_fd >= 0) {
1383 return spapr->htab_fd;
1386 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1387 if (spapr->htab_fd < 0) {
1388 error_report_err(local_err);
1391 return spapr->htab_fd;
1394 void close_htab_fd(SpaprMachineState *spapr)
1396 if (spapr->htab_fd >= 0) {
1397 close(spapr->htab_fd);
1399 spapr->htab_fd = -1;
1402 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1404 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1406 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1409 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1411 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1413 assert(kvm_enabled());
1415 if (!spapr->htab) {
1416 return 0;
1419 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1422 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1423 hwaddr ptex, int n)
1425 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1426 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1428 if (!spapr->htab) {
1430 * HTAB is controlled by KVM. Fetch into temporary buffer
1432 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1433 kvmppc_read_hptes(hptes, ptex, n);
1434 return hptes;
1438 * HTAB is controlled by QEMU. Just point to the internally
1439 * accessible PTEG.
1441 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1444 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1445 const ppc_hash_pte64_t *hptes,
1446 hwaddr ptex, int n)
1448 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1450 if (!spapr->htab) {
1451 g_free((void *)hptes);
1454 /* Nothing to do for qemu managed HPT */
1457 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1458 uint64_t pte0, uint64_t pte1)
1460 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1461 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1463 if (!spapr->htab) {
1464 kvmppc_write_hpte(ptex, pte0, pte1);
1465 } else {
1466 if (pte0 & HPTE64_V_VALID) {
1467 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1469 * When setting valid, we write PTE1 first. This ensures
1470 * proper synchronization with the reading code in
1471 * ppc_hash64_pteg_search()
1473 smp_wmb();
1474 stq_p(spapr->htab + offset, pte0);
1475 } else {
1476 stq_p(spapr->htab + offset, pte0);
1478 * When clearing it we set PTE0 first. This ensures proper
1479 * synchronization with the reading code in
1480 * ppc_hash64_pteg_search()
1482 smp_wmb();
1483 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1488 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1489 uint64_t pte1)
1491 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15;
1492 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1494 if (!spapr->htab) {
1495 /* There should always be a hash table when this is called */
1496 error_report("spapr_hpte_set_c called with no hash table !");
1497 return;
1500 /* The HW performs a non-atomic byte update */
1501 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1504 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1505 uint64_t pte1)
1507 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14;
1508 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1510 if (!spapr->htab) {
1511 /* There should always be a hash table when this is called */
1512 error_report("spapr_hpte_set_r called with no hash table !");
1513 return;
1516 /* The HW performs a non-atomic byte update */
1517 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1520 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1522 int shift;
1524 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1525 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1526 * that's much more than is needed for Linux guests */
1527 shift = ctz64(pow2ceil(ramsize)) - 7;
1528 shift = MAX(shift, 18); /* Minimum architected size */
1529 shift = MIN(shift, 46); /* Maximum architected size */
1530 return shift;
1533 void spapr_free_hpt(SpaprMachineState *spapr)
1535 g_free(spapr->htab);
1536 spapr->htab = NULL;
1537 spapr->htab_shift = 0;
1538 close_htab_fd(spapr);
1541 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift,
1542 Error **errp)
1544 long rc;
1546 /* Clean up any HPT info from a previous boot */
1547 spapr_free_hpt(spapr);
1549 rc = kvmppc_reset_htab(shift);
1550 if (rc < 0) {
1551 /* kernel-side HPT needed, but couldn't allocate one */
1552 error_setg_errno(errp, errno,
1553 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1554 shift);
1555 /* This is almost certainly fatal, but if the caller really
1556 * wants to carry on with shift == 0, it's welcome to try */
1557 } else if (rc > 0) {
1558 /* kernel-side HPT allocated */
1559 if (rc != shift) {
1560 error_setg(errp,
1561 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1562 shift, rc);
1565 spapr->htab_shift = shift;
1566 spapr->htab = NULL;
1567 } else {
1568 /* kernel-side HPT not needed, allocate in userspace instead */
1569 size_t size = 1ULL << shift;
1570 int i;
1572 spapr->htab = qemu_memalign(size, size);
1573 if (!spapr->htab) {
1574 error_setg_errno(errp, errno,
1575 "Could not allocate HPT of order %d", shift);
1576 return;
1579 memset(spapr->htab, 0, size);
1580 spapr->htab_shift = shift;
1582 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1583 DIRTY_HPTE(HPTE(spapr->htab, i));
1586 /* We're setting up a hash table, so that means we're not radix */
1587 spapr->patb_entry = 0;
1588 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1591 void spapr_setup_hpt(SpaprMachineState *spapr)
1593 int hpt_shift;
1595 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
1596 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1597 } else {
1598 uint64_t current_ram_size;
1600 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1601 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1603 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1605 if (kvm_enabled()) {
1606 hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift);
1608 /* Check our RMA fits in the possible VRMA */
1609 if (vrma_limit < spapr->rma_size) {
1610 error_report("Unable to create %" HWADDR_PRIu
1611 "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB",
1612 spapr->rma_size / MiB, vrma_limit / MiB);
1613 exit(EXIT_FAILURE);
1618 static int spapr_reset_drcs(Object *child, void *opaque)
1620 SpaprDrc *drc =
1621 (SpaprDrc *) object_dynamic_cast(child,
1622 TYPE_SPAPR_DR_CONNECTOR);
1624 if (drc) {
1625 spapr_drc_reset(drc);
1628 return 0;
1631 static void spapr_machine_reset(MachineState *machine)
1633 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1634 PowerPCCPU *first_ppc_cpu;
1635 hwaddr fdt_addr;
1636 void *fdt;
1637 int rc;
1639 kvmppc_svm_off(&error_fatal);
1640 spapr_caps_apply(spapr);
1642 first_ppc_cpu = POWERPC_CPU(first_cpu);
1643 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1644 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1645 spapr->max_compat_pvr)) {
1647 * If using KVM with radix mode available, VCPUs can be started
1648 * without a HPT because KVM will start them in radix mode.
1649 * Set the GR bit in PATE so that we know there is no HPT.
1651 spapr->patb_entry = PATE1_GR;
1652 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1653 } else {
1654 spapr_setup_hpt(spapr);
1657 qemu_devices_reset();
1659 spapr_ovec_cleanup(spapr->ov5_cas);
1660 spapr->ov5_cas = spapr_ovec_new();
1662 ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1665 * This is fixing some of the default configuration of the XIVE
1666 * devices. To be called after the reset of the machine devices.
1668 spapr_irq_reset(spapr, &error_fatal);
1671 * There is no CAS under qtest. Simulate one to please the code that
1672 * depends on spapr->ov5_cas. This is especially needed to test device
1673 * unplug, so we do that before resetting the DRCs.
1675 if (qtest_enabled()) {
1676 spapr_ovec_cleanup(spapr->ov5_cas);
1677 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1680 /* DRC reset may cause a device to be unplugged. This will cause troubles
1681 * if this device is used by another device (eg, a running vhost backend
1682 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1683 * situations, we reset DRCs after all devices have been reset.
1685 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1687 spapr_clear_pending_events(spapr);
1690 * We place the device tree and RTAS just below either the top of the RMA,
1691 * or just below 2GB, whichever is lower, so that it can be
1692 * processed with 32-bit real mode code if necessary
1694 fdt_addr = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FDT_MAX_SIZE;
1696 fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE);
1698 rc = fdt_pack(fdt);
1700 /* Should only fail if we've built a corrupted tree */
1701 assert(rc == 0);
1703 /* Load the fdt */
1704 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1705 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1706 g_free(spapr->fdt_blob);
1707 spapr->fdt_size = fdt_totalsize(fdt);
1708 spapr->fdt_initial_size = spapr->fdt_size;
1709 spapr->fdt_blob = fdt;
1711 /* Set up the entry state */
1712 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, 0, fdt_addr, 0);
1713 first_ppc_cpu->env.gpr[5] = 0;
1715 spapr->fwnmi_system_reset_addr = -1;
1716 spapr->fwnmi_machine_check_addr = -1;
1717 spapr->fwnmi_machine_check_interlock = -1;
1719 /* Signal all vCPUs waiting on this condition */
1720 qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond);
1722 migrate_del_blocker(spapr->fwnmi_migration_blocker);
1725 static void spapr_create_nvram(SpaprMachineState *spapr)
1727 DeviceState *dev = qdev_new("spapr-nvram");
1728 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1730 if (dinfo) {
1731 qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo),
1732 &error_fatal);
1735 qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal);
1737 spapr->nvram = (struct SpaprNvram *)dev;
1740 static void spapr_rtc_create(SpaprMachineState *spapr)
1742 object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc,
1743 sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1744 &error_fatal, NULL);
1745 qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal);
1746 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1747 "date");
1750 /* Returns whether we want to use VGA or not */
1751 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1753 switch (vga_interface_type) {
1754 case VGA_NONE:
1755 return false;
1756 case VGA_DEVICE:
1757 return true;
1758 case VGA_STD:
1759 case VGA_VIRTIO:
1760 case VGA_CIRRUS:
1761 return pci_vga_init(pci_bus) != NULL;
1762 default:
1763 error_setg(errp,
1764 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1765 return false;
1769 static int spapr_pre_load(void *opaque)
1771 int rc;
1773 rc = spapr_caps_pre_load(opaque);
1774 if (rc) {
1775 return rc;
1778 return 0;
1781 static int spapr_post_load(void *opaque, int version_id)
1783 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1784 int err = 0;
1786 err = spapr_caps_post_migration(spapr);
1787 if (err) {
1788 return err;
1792 * In earlier versions, there was no separate qdev for the PAPR
1793 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1794 * So when migrating from those versions, poke the incoming offset
1795 * value into the RTC device
1797 if (version_id < 3) {
1798 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1799 if (err) {
1800 return err;
1804 if (kvm_enabled() && spapr->patb_entry) {
1805 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1806 bool radix = !!(spapr->patb_entry & PATE1_GR);
1807 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1810 * Update LPCR:HR and UPRT as they may not be set properly in
1811 * the stream
1813 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1814 LPCR_HR | LPCR_UPRT);
1816 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1817 if (err) {
1818 error_report("Process table config unsupported by the host");
1819 return -EINVAL;
1823 err = spapr_irq_post_load(spapr, version_id);
1824 if (err) {
1825 return err;
1828 return err;
1831 static int spapr_pre_save(void *opaque)
1833 int rc;
1835 rc = spapr_caps_pre_save(opaque);
1836 if (rc) {
1837 return rc;
1840 return 0;
1843 static bool version_before_3(void *opaque, int version_id)
1845 return version_id < 3;
1848 static bool spapr_pending_events_needed(void *opaque)
1850 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1851 return !QTAILQ_EMPTY(&spapr->pending_events);
1854 static const VMStateDescription vmstate_spapr_event_entry = {
1855 .name = "spapr_event_log_entry",
1856 .version_id = 1,
1857 .minimum_version_id = 1,
1858 .fields = (VMStateField[]) {
1859 VMSTATE_UINT32(summary, SpaprEventLogEntry),
1860 VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1861 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1862 NULL, extended_length),
1863 VMSTATE_END_OF_LIST()
1867 static const VMStateDescription vmstate_spapr_pending_events = {
1868 .name = "spapr_pending_events",
1869 .version_id = 1,
1870 .minimum_version_id = 1,
1871 .needed = spapr_pending_events_needed,
1872 .fields = (VMStateField[]) {
1873 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1874 vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1875 VMSTATE_END_OF_LIST()
1879 static bool spapr_ov5_cas_needed(void *opaque)
1881 SpaprMachineState *spapr = opaque;
1882 SpaprOptionVector *ov5_mask = spapr_ovec_new();
1883 bool cas_needed;
1885 /* Prior to the introduction of SpaprOptionVector, we had two option
1886 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1887 * Both of these options encode machine topology into the device-tree
1888 * in such a way that the now-booted OS should still be able to interact
1889 * appropriately with QEMU regardless of what options were actually
1890 * negotiatied on the source side.
1892 * As such, we can avoid migrating the CAS-negotiated options if these
1893 * are the only options available on the current machine/platform.
1894 * Since these are the only options available for pseries-2.7 and
1895 * earlier, this allows us to maintain old->new/new->old migration
1896 * compatibility.
1898 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1899 * via default pseries-2.8 machines and explicit command-line parameters.
1900 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1901 * of the actual CAS-negotiated values to continue working properly. For
1902 * example, availability of memory unplug depends on knowing whether
1903 * OV5_HP_EVT was negotiated via CAS.
1905 * Thus, for any cases where the set of available CAS-negotiatable
1906 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1907 * include the CAS-negotiated options in the migration stream, unless
1908 * if they affect boot time behaviour only.
1910 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1911 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1912 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1914 /* We need extra information if we have any bits outside the mask
1915 * defined above */
1916 cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask);
1918 spapr_ovec_cleanup(ov5_mask);
1920 return cas_needed;
1923 static const VMStateDescription vmstate_spapr_ov5_cas = {
1924 .name = "spapr_option_vector_ov5_cas",
1925 .version_id = 1,
1926 .minimum_version_id = 1,
1927 .needed = spapr_ov5_cas_needed,
1928 .fields = (VMStateField[]) {
1929 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
1930 vmstate_spapr_ovec, SpaprOptionVector),
1931 VMSTATE_END_OF_LIST()
1935 static bool spapr_patb_entry_needed(void *opaque)
1937 SpaprMachineState *spapr = opaque;
1939 return !!spapr->patb_entry;
1942 static const VMStateDescription vmstate_spapr_patb_entry = {
1943 .name = "spapr_patb_entry",
1944 .version_id = 1,
1945 .minimum_version_id = 1,
1946 .needed = spapr_patb_entry_needed,
1947 .fields = (VMStateField[]) {
1948 VMSTATE_UINT64(patb_entry, SpaprMachineState),
1949 VMSTATE_END_OF_LIST()
1953 static bool spapr_irq_map_needed(void *opaque)
1955 SpaprMachineState *spapr = opaque;
1957 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1960 static const VMStateDescription vmstate_spapr_irq_map = {
1961 .name = "spapr_irq_map",
1962 .version_id = 1,
1963 .minimum_version_id = 1,
1964 .needed = spapr_irq_map_needed,
1965 .fields = (VMStateField[]) {
1966 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
1967 VMSTATE_END_OF_LIST()
1971 static bool spapr_dtb_needed(void *opaque)
1973 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
1975 return smc->update_dt_enabled;
1978 static int spapr_dtb_pre_load(void *opaque)
1980 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1982 g_free(spapr->fdt_blob);
1983 spapr->fdt_blob = NULL;
1984 spapr->fdt_size = 0;
1986 return 0;
1989 static const VMStateDescription vmstate_spapr_dtb = {
1990 .name = "spapr_dtb",
1991 .version_id = 1,
1992 .minimum_version_id = 1,
1993 .needed = spapr_dtb_needed,
1994 .pre_load = spapr_dtb_pre_load,
1995 .fields = (VMStateField[]) {
1996 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
1997 VMSTATE_UINT32(fdt_size, SpaprMachineState),
1998 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
1999 fdt_size),
2000 VMSTATE_END_OF_LIST()
2004 static bool spapr_fwnmi_needed(void *opaque)
2006 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2008 return spapr->fwnmi_machine_check_addr != -1;
2011 static int spapr_fwnmi_pre_save(void *opaque)
2013 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2016 * Check if machine check handling is in progress and print a
2017 * warning message.
2019 if (spapr->fwnmi_machine_check_interlock != -1) {
2020 warn_report("A machine check is being handled during migration. The"
2021 "handler may run and log hardware error on the destination");
2024 return 0;
2027 static const VMStateDescription vmstate_spapr_fwnmi = {
2028 .name = "spapr_fwnmi",
2029 .version_id = 1,
2030 .minimum_version_id = 1,
2031 .needed = spapr_fwnmi_needed,
2032 .pre_save = spapr_fwnmi_pre_save,
2033 .fields = (VMStateField[]) {
2034 VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState),
2035 VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState),
2036 VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState),
2037 VMSTATE_END_OF_LIST()
2041 static const VMStateDescription vmstate_spapr = {
2042 .name = "spapr",
2043 .version_id = 3,
2044 .minimum_version_id = 1,
2045 .pre_load = spapr_pre_load,
2046 .post_load = spapr_post_load,
2047 .pre_save = spapr_pre_save,
2048 .fields = (VMStateField[]) {
2049 /* used to be @next_irq */
2050 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2052 /* RTC offset */
2053 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2055 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2056 VMSTATE_END_OF_LIST()
2058 .subsections = (const VMStateDescription*[]) {
2059 &vmstate_spapr_ov5_cas,
2060 &vmstate_spapr_patb_entry,
2061 &vmstate_spapr_pending_events,
2062 &vmstate_spapr_cap_htm,
2063 &vmstate_spapr_cap_vsx,
2064 &vmstate_spapr_cap_dfp,
2065 &vmstate_spapr_cap_cfpc,
2066 &vmstate_spapr_cap_sbbc,
2067 &vmstate_spapr_cap_ibs,
2068 &vmstate_spapr_cap_hpt_maxpagesize,
2069 &vmstate_spapr_irq_map,
2070 &vmstate_spapr_cap_nested_kvm_hv,
2071 &vmstate_spapr_dtb,
2072 &vmstate_spapr_cap_large_decr,
2073 &vmstate_spapr_cap_ccf_assist,
2074 &vmstate_spapr_cap_fwnmi,
2075 &vmstate_spapr_fwnmi,
2076 NULL
2080 static int htab_save_setup(QEMUFile *f, void *opaque)
2082 SpaprMachineState *spapr = opaque;
2084 /* "Iteration" header */
2085 if (!spapr->htab_shift) {
2086 qemu_put_be32(f, -1);
2087 } else {
2088 qemu_put_be32(f, spapr->htab_shift);
2091 if (spapr->htab) {
2092 spapr->htab_save_index = 0;
2093 spapr->htab_first_pass = true;
2094 } else {
2095 if (spapr->htab_shift) {
2096 assert(kvm_enabled());
2101 return 0;
2104 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2105 int chunkstart, int n_valid, int n_invalid)
2107 qemu_put_be32(f, chunkstart);
2108 qemu_put_be16(f, n_valid);
2109 qemu_put_be16(f, n_invalid);
2110 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2111 HASH_PTE_SIZE_64 * n_valid);
2114 static void htab_save_end_marker(QEMUFile *f)
2116 qemu_put_be32(f, 0);
2117 qemu_put_be16(f, 0);
2118 qemu_put_be16(f, 0);
2121 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2122 int64_t max_ns)
2124 bool has_timeout = max_ns != -1;
2125 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2126 int index = spapr->htab_save_index;
2127 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2129 assert(spapr->htab_first_pass);
2131 do {
2132 int chunkstart;
2134 /* Consume invalid HPTEs */
2135 while ((index < htabslots)
2136 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2137 CLEAN_HPTE(HPTE(spapr->htab, index));
2138 index++;
2141 /* Consume valid HPTEs */
2142 chunkstart = index;
2143 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2144 && HPTE_VALID(HPTE(spapr->htab, index))) {
2145 CLEAN_HPTE(HPTE(spapr->htab, index));
2146 index++;
2149 if (index > chunkstart) {
2150 int n_valid = index - chunkstart;
2152 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2154 if (has_timeout &&
2155 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2156 break;
2159 } while ((index < htabslots) && !qemu_file_rate_limit(f));
2161 if (index >= htabslots) {
2162 assert(index == htabslots);
2163 index = 0;
2164 spapr->htab_first_pass = false;
2166 spapr->htab_save_index = index;
2169 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2170 int64_t max_ns)
2172 bool final = max_ns < 0;
2173 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2174 int examined = 0, sent = 0;
2175 int index = spapr->htab_save_index;
2176 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2178 assert(!spapr->htab_first_pass);
2180 do {
2181 int chunkstart, invalidstart;
2183 /* Consume non-dirty HPTEs */
2184 while ((index < htabslots)
2185 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2186 index++;
2187 examined++;
2190 chunkstart = index;
2191 /* Consume valid dirty HPTEs */
2192 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2193 && HPTE_DIRTY(HPTE(spapr->htab, index))
2194 && HPTE_VALID(HPTE(spapr->htab, index))) {
2195 CLEAN_HPTE(HPTE(spapr->htab, index));
2196 index++;
2197 examined++;
2200 invalidstart = index;
2201 /* Consume invalid dirty HPTEs */
2202 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2203 && HPTE_DIRTY(HPTE(spapr->htab, index))
2204 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2205 CLEAN_HPTE(HPTE(spapr->htab, index));
2206 index++;
2207 examined++;
2210 if (index > chunkstart) {
2211 int n_valid = invalidstart - chunkstart;
2212 int n_invalid = index - invalidstart;
2214 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2215 sent += index - chunkstart;
2217 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2218 break;
2222 if (examined >= htabslots) {
2223 break;
2226 if (index >= htabslots) {
2227 assert(index == htabslots);
2228 index = 0;
2230 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2232 if (index >= htabslots) {
2233 assert(index == htabslots);
2234 index = 0;
2237 spapr->htab_save_index = index;
2239 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2242 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2243 #define MAX_KVM_BUF_SIZE 2048
2245 static int htab_save_iterate(QEMUFile *f, void *opaque)
2247 SpaprMachineState *spapr = opaque;
2248 int fd;
2249 int rc = 0;
2251 /* Iteration header */
2252 if (!spapr->htab_shift) {
2253 qemu_put_be32(f, -1);
2254 return 1;
2255 } else {
2256 qemu_put_be32(f, 0);
2259 if (!spapr->htab) {
2260 assert(kvm_enabled());
2262 fd = get_htab_fd(spapr);
2263 if (fd < 0) {
2264 return fd;
2267 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2268 if (rc < 0) {
2269 return rc;
2271 } else if (spapr->htab_first_pass) {
2272 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2273 } else {
2274 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2277 htab_save_end_marker(f);
2279 return rc;
2282 static int htab_save_complete(QEMUFile *f, void *opaque)
2284 SpaprMachineState *spapr = opaque;
2285 int fd;
2287 /* Iteration header */
2288 if (!spapr->htab_shift) {
2289 qemu_put_be32(f, -1);
2290 return 0;
2291 } else {
2292 qemu_put_be32(f, 0);
2295 if (!spapr->htab) {
2296 int rc;
2298 assert(kvm_enabled());
2300 fd = get_htab_fd(spapr);
2301 if (fd < 0) {
2302 return fd;
2305 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2306 if (rc < 0) {
2307 return rc;
2309 } else {
2310 if (spapr->htab_first_pass) {
2311 htab_save_first_pass(f, spapr, -1);
2313 htab_save_later_pass(f, spapr, -1);
2316 /* End marker */
2317 htab_save_end_marker(f);
2319 return 0;
2322 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2324 SpaprMachineState *spapr = opaque;
2325 uint32_t section_hdr;
2326 int fd = -1;
2327 Error *local_err = NULL;
2329 if (version_id < 1 || version_id > 1) {
2330 error_report("htab_load() bad version");
2331 return -EINVAL;
2334 section_hdr = qemu_get_be32(f);
2336 if (section_hdr == -1) {
2337 spapr_free_hpt(spapr);
2338 return 0;
2341 if (section_hdr) {
2342 /* First section gives the htab size */
2343 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2344 if (local_err) {
2345 error_report_err(local_err);
2346 return -EINVAL;
2348 return 0;
2351 if (!spapr->htab) {
2352 assert(kvm_enabled());
2354 fd = kvmppc_get_htab_fd(true, 0, &local_err);
2355 if (fd < 0) {
2356 error_report_err(local_err);
2357 return fd;
2361 while (true) {
2362 uint32_t index;
2363 uint16_t n_valid, n_invalid;
2365 index = qemu_get_be32(f);
2366 n_valid = qemu_get_be16(f);
2367 n_invalid = qemu_get_be16(f);
2369 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2370 /* End of Stream */
2371 break;
2374 if ((index + n_valid + n_invalid) >
2375 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2376 /* Bad index in stream */
2377 error_report(
2378 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2379 index, n_valid, n_invalid, spapr->htab_shift);
2380 return -EINVAL;
2383 if (spapr->htab) {
2384 if (n_valid) {
2385 qemu_get_buffer(f, HPTE(spapr->htab, index),
2386 HASH_PTE_SIZE_64 * n_valid);
2388 if (n_invalid) {
2389 memset(HPTE(spapr->htab, index + n_valid), 0,
2390 HASH_PTE_SIZE_64 * n_invalid);
2392 } else {
2393 int rc;
2395 assert(fd >= 0);
2397 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2398 if (rc < 0) {
2399 return rc;
2404 if (!spapr->htab) {
2405 assert(fd >= 0);
2406 close(fd);
2409 return 0;
2412 static void htab_save_cleanup(void *opaque)
2414 SpaprMachineState *spapr = opaque;
2416 close_htab_fd(spapr);
2419 static SaveVMHandlers savevm_htab_handlers = {
2420 .save_setup = htab_save_setup,
2421 .save_live_iterate = htab_save_iterate,
2422 .save_live_complete_precopy = htab_save_complete,
2423 .save_cleanup = htab_save_cleanup,
2424 .load_state = htab_load,
2427 static void spapr_boot_set(void *opaque, const char *boot_device,
2428 Error **errp)
2430 MachineState *machine = MACHINE(opaque);
2431 machine->boot_order = g_strdup(boot_device);
2434 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2436 MachineState *machine = MACHINE(spapr);
2437 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2438 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2439 int i;
2441 for (i = 0; i < nr_lmbs; i++) {
2442 uint64_t addr;
2444 addr = i * lmb_size + machine->device_memory->base;
2445 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2446 addr / lmb_size);
2451 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2452 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2453 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2455 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2457 int i;
2459 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2460 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2461 " is not aligned to %" PRIu64 " MiB",
2462 machine->ram_size,
2463 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2464 return;
2467 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2468 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2469 " is not aligned to %" PRIu64 " MiB",
2470 machine->ram_size,
2471 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2472 return;
2475 for (i = 0; i < machine->numa_state->num_nodes; i++) {
2476 if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2477 error_setg(errp,
2478 "Node %d memory size 0x%" PRIx64
2479 " is not aligned to %" PRIu64 " MiB",
2480 i, machine->numa_state->nodes[i].node_mem,
2481 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2482 return;
2487 /* find cpu slot in machine->possible_cpus by core_id */
2488 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2490 int index = id / ms->smp.threads;
2492 if (index >= ms->possible_cpus->len) {
2493 return NULL;
2495 if (idx) {
2496 *idx = index;
2498 return &ms->possible_cpus->cpus[index];
2501 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2503 MachineState *ms = MACHINE(spapr);
2504 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2505 Error *local_err = NULL;
2506 bool vsmt_user = !!spapr->vsmt;
2507 int kvm_smt = kvmppc_smt_threads();
2508 int ret;
2509 unsigned int smp_threads = ms->smp.threads;
2511 if (!kvm_enabled() && (smp_threads > 1)) {
2512 error_setg(errp, "TCG cannot support more than 1 thread/core "
2513 "on a pseries machine");
2514 return;
2516 if (!is_power_of_2(smp_threads)) {
2517 error_setg(errp, "Cannot support %d threads/core on a pseries "
2518 "machine because it must be a power of 2", smp_threads);
2519 return;
2522 /* Detemine the VSMT mode to use: */
2523 if (vsmt_user) {
2524 if (spapr->vsmt < smp_threads) {
2525 error_setg(errp, "Cannot support VSMT mode %d"
2526 " because it must be >= threads/core (%d)",
2527 spapr->vsmt, smp_threads);
2528 return;
2530 /* In this case, spapr->vsmt has been set by the command line */
2531 } else if (!smc->smp_threads_vsmt) {
2533 * Default VSMT value is tricky, because we need it to be as
2534 * consistent as possible (for migration), but this requires
2535 * changing it for at least some existing cases. We pick 8 as
2536 * the value that we'd get with KVM on POWER8, the
2537 * overwhelmingly common case in production systems.
2539 spapr->vsmt = MAX(8, smp_threads);
2540 } else {
2541 spapr->vsmt = smp_threads;
2544 /* KVM: If necessary, set the SMT mode: */
2545 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2546 ret = kvmppc_set_smt_threads(spapr->vsmt);
2547 if (ret) {
2548 /* Looks like KVM isn't able to change VSMT mode */
2549 error_setg(&local_err,
2550 "Failed to set KVM's VSMT mode to %d (errno %d)",
2551 spapr->vsmt, ret);
2552 /* We can live with that if the default one is big enough
2553 * for the number of threads, and a submultiple of the one
2554 * we want. In this case we'll waste some vcpu ids, but
2555 * behaviour will be correct */
2556 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2557 warn_report_err(local_err);
2558 } else {
2559 if (!vsmt_user) {
2560 error_append_hint(&local_err,
2561 "On PPC, a VM with %d threads/core"
2562 " on a host with %d threads/core"
2563 " requires the use of VSMT mode %d.\n",
2564 smp_threads, kvm_smt, spapr->vsmt);
2566 kvmppc_error_append_smt_possible_hint(&local_err);
2567 error_propagate(errp, local_err);
2571 /* else TCG: nothing to do currently */
2574 static void spapr_init_cpus(SpaprMachineState *spapr)
2576 MachineState *machine = MACHINE(spapr);
2577 MachineClass *mc = MACHINE_GET_CLASS(machine);
2578 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2579 const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2580 const CPUArchIdList *possible_cpus;
2581 unsigned int smp_cpus = machine->smp.cpus;
2582 unsigned int smp_threads = machine->smp.threads;
2583 unsigned int max_cpus = machine->smp.max_cpus;
2584 int boot_cores_nr = smp_cpus / smp_threads;
2585 int i;
2587 possible_cpus = mc->possible_cpu_arch_ids(machine);
2588 if (mc->has_hotpluggable_cpus) {
2589 if (smp_cpus % smp_threads) {
2590 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2591 smp_cpus, smp_threads);
2592 exit(1);
2594 if (max_cpus % smp_threads) {
2595 error_report("max_cpus (%u) must be multiple of threads (%u)",
2596 max_cpus, smp_threads);
2597 exit(1);
2599 } else {
2600 if (max_cpus != smp_cpus) {
2601 error_report("This machine version does not support CPU hotplug");
2602 exit(1);
2604 boot_cores_nr = possible_cpus->len;
2607 if (smc->pre_2_10_has_unused_icps) {
2608 int i;
2610 for (i = 0; i < spapr_max_server_number(spapr); i++) {
2611 /* Dummy entries get deregistered when real ICPState objects
2612 * are registered during CPU core hotplug.
2614 pre_2_10_vmstate_register_dummy_icp(i);
2618 for (i = 0; i < possible_cpus->len; i++) {
2619 int core_id = i * smp_threads;
2621 if (mc->has_hotpluggable_cpus) {
2622 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2623 spapr_vcpu_id(spapr, core_id));
2626 if (i < boot_cores_nr) {
2627 Object *core = object_new(type);
2628 int nr_threads = smp_threads;
2630 /* Handle the partially filled core for older machine types */
2631 if ((i + 1) * smp_threads >= smp_cpus) {
2632 nr_threads = smp_cpus - i * smp_threads;
2635 object_property_set_int(core, "nr-threads", nr_threads,
2636 &error_fatal);
2637 object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id,
2638 &error_fatal);
2639 qdev_realize(DEVICE(core), NULL, &error_fatal);
2641 object_unref(core);
2646 static PCIHostState *spapr_create_default_phb(void)
2648 DeviceState *dev;
2650 dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE);
2651 qdev_prop_set_uint32(dev, "index", 0);
2652 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
2654 return PCI_HOST_BRIDGE(dev);
2657 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp)
2659 MachineState *machine = MACHINE(spapr);
2660 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2661 hwaddr rma_size = machine->ram_size;
2662 hwaddr node0_size = spapr_node0_size(machine);
2664 /* RMA has to fit in the first NUMA node */
2665 rma_size = MIN(rma_size, node0_size);
2668 * VRMA access is via a special 1TiB SLB mapping, so the RMA can
2669 * never exceed that
2671 rma_size = MIN(rma_size, 1 * TiB);
2674 * Clamp the RMA size based on machine type. This is for
2675 * migration compatibility with older qemu versions, which limited
2676 * the RMA size for complicated and mostly bad reasons.
2678 if (smc->rma_limit) {
2679 rma_size = MIN(rma_size, smc->rma_limit);
2682 if (rma_size < MIN_RMA_SLOF) {
2683 error_setg(errp,
2684 "pSeries SLOF firmware requires >= %" HWADDR_PRIx
2685 "ldMiB guest RMA (Real Mode Area memory)",
2686 MIN_RMA_SLOF / MiB);
2687 return 0;
2690 return rma_size;
2693 /* pSeries LPAR / sPAPR hardware init */
2694 static void spapr_machine_init(MachineState *machine)
2696 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2697 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2698 MachineClass *mc = MACHINE_GET_CLASS(machine);
2699 const char *kernel_filename = machine->kernel_filename;
2700 const char *initrd_filename = machine->initrd_filename;
2701 PCIHostState *phb;
2702 int i;
2703 MemoryRegion *sysmem = get_system_memory();
2704 long load_limit, fw_size;
2705 char *filename;
2706 Error *resize_hpt_err = NULL;
2708 msi_nonbroken = true;
2710 QLIST_INIT(&spapr->phbs);
2711 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2713 /* Determine capabilities to run with */
2714 spapr_caps_init(spapr);
2716 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2717 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2719 * If the user explicitly requested a mode we should either
2720 * supply it, or fail completely (which we do below). But if
2721 * it's not set explicitly, we reset our mode to something
2722 * that works
2724 if (resize_hpt_err) {
2725 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2726 error_free(resize_hpt_err);
2727 resize_hpt_err = NULL;
2728 } else {
2729 spapr->resize_hpt = smc->resize_hpt_default;
2733 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2735 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2737 * User requested HPT resize, but this host can't supply it. Bail out
2739 error_report_err(resize_hpt_err);
2740 exit(1);
2742 error_free(resize_hpt_err);
2744 spapr->rma_size = spapr_rma_size(spapr, &error_fatal);
2746 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2747 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2750 * VSMT must be set in order to be able to compute VCPU ids, ie to
2751 * call spapr_max_server_number() or spapr_vcpu_id().
2753 spapr_set_vsmt_mode(spapr, &error_fatal);
2755 /* Set up Interrupt Controller before we create the VCPUs */
2756 spapr_irq_init(spapr, &error_fatal);
2758 /* Set up containers for ibm,client-architecture-support negotiated options
2760 spapr->ov5 = spapr_ovec_new();
2761 spapr->ov5_cas = spapr_ovec_new();
2763 if (smc->dr_lmb_enabled) {
2764 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2765 spapr_validate_node_memory(machine, &error_fatal);
2768 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2770 /* advertise support for dedicated HP event source to guests */
2771 if (spapr->use_hotplug_event_source) {
2772 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2775 /* advertise support for HPT resizing */
2776 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2777 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2780 /* advertise support for ibm,dyamic-memory-v2 */
2781 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2783 /* advertise XIVE on POWER9 machines */
2784 if (spapr->irq->xive) {
2785 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2788 /* init CPUs */
2789 spapr_init_cpus(spapr);
2792 * check we don't have a memory-less/cpu-less NUMA node
2793 * Firmware relies on the existing memory/cpu topology to provide the
2794 * NUMA topology to the kernel.
2795 * And the linux kernel needs to know the NUMA topology at start
2796 * to be able to hotplug CPUs later.
2798 if (machine->numa_state->num_nodes) {
2799 for (i = 0; i < machine->numa_state->num_nodes; ++i) {
2800 /* check for memory-less node */
2801 if (machine->numa_state->nodes[i].node_mem == 0) {
2802 CPUState *cs;
2803 int found = 0;
2804 /* check for cpu-less node */
2805 CPU_FOREACH(cs) {
2806 PowerPCCPU *cpu = POWERPC_CPU(cs);
2807 if (cpu->node_id == i) {
2808 found = 1;
2809 break;
2812 /* memory-less and cpu-less node */
2813 if (!found) {
2814 error_report(
2815 "Memory-less/cpu-less nodes are not supported (node %d)",
2817 exit(1);
2825 * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
2826 * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
2827 * called from vPHB reset handler so we initialize the counter here.
2828 * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
2829 * must be equally distant from any other node.
2830 * The final value of spapr->gpu_numa_id is going to be written to
2831 * max-associativity-domains in spapr_build_fdt().
2833 spapr->gpu_numa_id = MAX(1, machine->numa_state->num_nodes);
2835 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2836 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2837 spapr->max_compat_pvr)) {
2838 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300);
2839 /* KVM and TCG always allow GTSE with radix... */
2840 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2842 /* ... but not with hash (currently). */
2844 if (kvm_enabled()) {
2845 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2846 kvmppc_enable_logical_ci_hcalls();
2847 kvmppc_enable_set_mode_hcall();
2849 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2850 kvmppc_enable_clear_ref_mod_hcalls();
2852 /* Enable H_PAGE_INIT */
2853 kvmppc_enable_h_page_init();
2856 /* map RAM */
2857 memory_region_add_subregion(sysmem, 0, machine->ram);
2859 /* always allocate the device memory information */
2860 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2862 /* initialize hotplug memory address space */
2863 if (machine->ram_size < machine->maxram_size) {
2864 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2866 * Limit the number of hotpluggable memory slots to half the number
2867 * slots that KVM supports, leaving the other half for PCI and other
2868 * devices. However ensure that number of slots doesn't drop below 32.
2870 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2871 SPAPR_MAX_RAM_SLOTS;
2873 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2874 max_memslots = SPAPR_MAX_RAM_SLOTS;
2876 if (machine->ram_slots > max_memslots) {
2877 error_report("Specified number of memory slots %"
2878 PRIu64" exceeds max supported %d",
2879 machine->ram_slots, max_memslots);
2880 exit(1);
2883 machine->device_memory->base = ROUND_UP(machine->ram_size,
2884 SPAPR_DEVICE_MEM_ALIGN);
2885 memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2886 "device-memory", device_mem_size);
2887 memory_region_add_subregion(sysmem, machine->device_memory->base,
2888 &machine->device_memory->mr);
2891 if (smc->dr_lmb_enabled) {
2892 spapr_create_lmb_dr_connectors(spapr);
2895 if (spapr_get_cap(spapr, SPAPR_CAP_FWNMI) == SPAPR_CAP_ON) {
2896 /* Create the error string for live migration blocker */
2897 error_setg(&spapr->fwnmi_migration_blocker,
2898 "A machine check is being handled during migration. The handler"
2899 "may run and log hardware error on the destination");
2902 if (mc->nvdimm_supported) {
2903 spapr_create_nvdimm_dr_connectors(spapr);
2906 /* Set up RTAS event infrastructure */
2907 spapr_events_init(spapr);
2909 /* Set up the RTC RTAS interfaces */
2910 spapr_rtc_create(spapr);
2912 /* Set up VIO bus */
2913 spapr->vio_bus = spapr_vio_bus_init();
2915 for (i = 0; i < serial_max_hds(); i++) {
2916 if (serial_hd(i)) {
2917 spapr_vty_create(spapr->vio_bus, serial_hd(i));
2921 /* We always have at least the nvram device on VIO */
2922 spapr_create_nvram(spapr);
2925 * Setup hotplug / dynamic-reconfiguration connectors. top-level
2926 * connectors (described in root DT node's "ibm,drc-types" property)
2927 * are pre-initialized here. additional child connectors (such as
2928 * connectors for a PHBs PCI slots) are added as needed during their
2929 * parent's realization.
2931 if (smc->dr_phb_enabled) {
2932 for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2933 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2937 /* Set up PCI */
2938 spapr_pci_rtas_init();
2940 phb = spapr_create_default_phb();
2942 for (i = 0; i < nb_nics; i++) {
2943 NICInfo *nd = &nd_table[i];
2945 if (!nd->model) {
2946 nd->model = g_strdup("spapr-vlan");
2949 if (g_str_equal(nd->model, "spapr-vlan") ||
2950 g_str_equal(nd->model, "ibmveth")) {
2951 spapr_vlan_create(spapr->vio_bus, nd);
2952 } else {
2953 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2957 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2958 spapr_vscsi_create(spapr->vio_bus);
2961 /* Graphics */
2962 if (spapr_vga_init(phb->bus, &error_fatal)) {
2963 spapr->has_graphics = true;
2964 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2967 if (machine->usb) {
2968 if (smc->use_ohci_by_default) {
2969 pci_create_simple(phb->bus, -1, "pci-ohci");
2970 } else {
2971 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2974 if (spapr->has_graphics) {
2975 USBBus *usb_bus = usb_bus_find(-1);
2977 usb_create_simple(usb_bus, "usb-kbd");
2978 usb_create_simple(usb_bus, "usb-mouse");
2982 if (kernel_filename) {
2983 uint64_t lowaddr = 0;
2985 spapr->kernel_size = load_elf(kernel_filename, NULL,
2986 translate_kernel_address, spapr,
2987 NULL, &lowaddr, NULL, NULL, 1,
2988 PPC_ELF_MACHINE, 0, 0);
2989 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2990 spapr->kernel_size = load_elf(kernel_filename, NULL,
2991 translate_kernel_address, spapr, NULL,
2992 &lowaddr, NULL, NULL, 0,
2993 PPC_ELF_MACHINE,
2994 0, 0);
2995 spapr->kernel_le = spapr->kernel_size > 0;
2997 if (spapr->kernel_size < 0) {
2998 error_report("error loading %s: %s", kernel_filename,
2999 load_elf_strerror(spapr->kernel_size));
3000 exit(1);
3003 /* load initrd */
3004 if (initrd_filename) {
3005 /* Try to locate the initrd in the gap between the kernel
3006 * and the firmware. Add a bit of space just in case
3008 spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size
3009 + 0x1ffff) & ~0xffff;
3010 spapr->initrd_size = load_image_targphys(initrd_filename,
3011 spapr->initrd_base,
3012 load_limit
3013 - spapr->initrd_base);
3014 if (spapr->initrd_size < 0) {
3015 error_report("could not load initial ram disk '%s'",
3016 initrd_filename);
3017 exit(1);
3022 if (bios_name == NULL) {
3023 bios_name = FW_FILE_NAME;
3025 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
3026 if (!filename) {
3027 error_report("Could not find LPAR firmware '%s'", bios_name);
3028 exit(1);
3030 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
3031 if (fw_size <= 0) {
3032 error_report("Could not load LPAR firmware '%s'", filename);
3033 exit(1);
3035 g_free(filename);
3037 /* FIXME: Should register things through the MachineState's qdev
3038 * interface, this is a legacy from the sPAPREnvironment structure
3039 * which predated MachineState but had a similar function */
3040 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3041 register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1,
3042 &savevm_htab_handlers, spapr);
3044 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine));
3046 qemu_register_boot_set(spapr_boot_set, spapr);
3049 * Nothing needs to be done to resume a suspended guest because
3050 * suspending does not change the machine state, so no need for
3051 * a ->wakeup method.
3053 qemu_register_wakeup_support();
3055 if (kvm_enabled()) {
3056 /* to stop and start vmclock */
3057 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3058 &spapr->tb);
3060 kvmppc_spapr_enable_inkernel_multitce();
3063 qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond);
3066 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3068 if (!vm_type) {
3069 return 0;
3072 if (!strcmp(vm_type, "HV")) {
3073 return 1;
3076 if (!strcmp(vm_type, "PR")) {
3077 return 2;
3080 error_report("Unknown kvm-type specified '%s'", vm_type);
3081 exit(1);
3085 * Implementation of an interface to adjust firmware path
3086 * for the bootindex property handling.
3088 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3089 DeviceState *dev)
3091 #define CAST(type, obj, name) \
3092 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3093 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
3094 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3095 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3097 if (d) {
3098 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3099 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3100 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3102 if (spapr) {
3104 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3105 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3106 * 0x8000 | (target << 8) | (bus << 5) | lun
3107 * (see the "Logical unit addressing format" table in SAM5)
3109 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3110 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3111 (uint64_t)id << 48);
3112 } else if (virtio) {
3114 * We use SRP luns of the form 01000000 | (target << 8) | lun
3115 * in the top 32 bits of the 64-bit LUN
3116 * Note: the quote above is from SLOF and it is wrong,
3117 * the actual binding is:
3118 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3120 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3121 if (d->lun >= 256) {
3122 /* Use the LUN "flat space addressing method" */
3123 id |= 0x4000;
3125 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3126 (uint64_t)id << 32);
3127 } else if (usb) {
3129 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3130 * in the top 32 bits of the 64-bit LUN
3132 unsigned usb_port = atoi(usb->port->path);
3133 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3134 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3135 (uint64_t)id << 32);
3140 * SLOF probes the USB devices, and if it recognizes that the device is a
3141 * storage device, it changes its name to "storage" instead of "usb-host",
3142 * and additionally adds a child node for the SCSI LUN, so the correct
3143 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3145 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3146 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3147 if (usb_host_dev_is_scsi_storage(usbdev)) {
3148 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3152 if (phb) {
3153 /* Replace "pci" with "pci@800000020000000" */
3154 return g_strdup_printf("pci@%"PRIX64, phb->buid);
3157 if (vsc) {
3158 /* Same logic as virtio above */
3159 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3160 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3163 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3164 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3165 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3166 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3169 return NULL;
3172 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3174 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3176 return g_strdup(spapr->kvm_type);
3179 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3181 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3183 g_free(spapr->kvm_type);
3184 spapr->kvm_type = g_strdup(value);
3187 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3189 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3191 return spapr->use_hotplug_event_source;
3194 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3195 Error **errp)
3197 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3199 spapr->use_hotplug_event_source = value;
3202 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3204 return true;
3207 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3209 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3211 switch (spapr->resize_hpt) {
3212 case SPAPR_RESIZE_HPT_DEFAULT:
3213 return g_strdup("default");
3214 case SPAPR_RESIZE_HPT_DISABLED:
3215 return g_strdup("disabled");
3216 case SPAPR_RESIZE_HPT_ENABLED:
3217 return g_strdup("enabled");
3218 case SPAPR_RESIZE_HPT_REQUIRED:
3219 return g_strdup("required");
3221 g_assert_not_reached();
3224 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3226 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3228 if (strcmp(value, "default") == 0) {
3229 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3230 } else if (strcmp(value, "disabled") == 0) {
3231 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3232 } else if (strcmp(value, "enabled") == 0) {
3233 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3234 } else if (strcmp(value, "required") == 0) {
3235 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3236 } else {
3237 error_setg(errp, "Bad value for \"resize-hpt\" property");
3241 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3243 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3245 if (spapr->irq == &spapr_irq_xics_legacy) {
3246 return g_strdup("legacy");
3247 } else if (spapr->irq == &spapr_irq_xics) {
3248 return g_strdup("xics");
3249 } else if (spapr->irq == &spapr_irq_xive) {
3250 return g_strdup("xive");
3251 } else if (spapr->irq == &spapr_irq_dual) {
3252 return g_strdup("dual");
3254 g_assert_not_reached();
3257 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3259 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3261 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3262 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3263 return;
3266 /* The legacy IRQ backend can not be set */
3267 if (strcmp(value, "xics") == 0) {
3268 spapr->irq = &spapr_irq_xics;
3269 } else if (strcmp(value, "xive") == 0) {
3270 spapr->irq = &spapr_irq_xive;
3271 } else if (strcmp(value, "dual") == 0) {
3272 spapr->irq = &spapr_irq_dual;
3273 } else {
3274 error_setg(errp, "Bad value for \"ic-mode\" property");
3278 static char *spapr_get_host_model(Object *obj, Error **errp)
3280 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3282 return g_strdup(spapr->host_model);
3285 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3287 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3289 g_free(spapr->host_model);
3290 spapr->host_model = g_strdup(value);
3293 static char *spapr_get_host_serial(Object *obj, Error **errp)
3295 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3297 return g_strdup(spapr->host_serial);
3300 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3302 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3304 g_free(spapr->host_serial);
3305 spapr->host_serial = g_strdup(value);
3308 static void spapr_instance_init(Object *obj)
3310 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3311 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3313 spapr->htab_fd = -1;
3314 spapr->use_hotplug_event_source = true;
3315 object_property_add_str(obj, "kvm-type",
3316 spapr_get_kvm_type, spapr_set_kvm_type);
3317 object_property_set_description(obj, "kvm-type",
3318 "Specifies the KVM virtualization mode (HV, PR)");
3319 object_property_add_bool(obj, "modern-hotplug-events",
3320 spapr_get_modern_hotplug_events,
3321 spapr_set_modern_hotplug_events);
3322 object_property_set_description(obj, "modern-hotplug-events",
3323 "Use dedicated hotplug event mechanism in"
3324 " place of standard EPOW events when possible"
3325 " (required for memory hot-unplug support)");
3326 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3327 "Maximum permitted CPU compatibility mode");
3329 object_property_add_str(obj, "resize-hpt",
3330 spapr_get_resize_hpt, spapr_set_resize_hpt);
3331 object_property_set_description(obj, "resize-hpt",
3332 "Resizing of the Hash Page Table (enabled, disabled, required)");
3333 object_property_add_uint32_ptr(obj, "vsmt",
3334 &spapr->vsmt, OBJ_PROP_FLAG_READWRITE);
3335 object_property_set_description(obj, "vsmt",
3336 "Virtual SMT: KVM behaves as if this were"
3337 " the host's SMT mode");
3339 object_property_add_bool(obj, "vfio-no-msix-emulation",
3340 spapr_get_msix_emulation, NULL);
3342 object_property_add_uint64_ptr(obj, "kernel-addr",
3343 &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE);
3344 object_property_set_description(obj, "kernel-addr",
3345 stringify(KERNEL_LOAD_ADDR)
3346 " for -kernel is the default");
3347 spapr->kernel_addr = KERNEL_LOAD_ADDR;
3348 /* The machine class defines the default interrupt controller mode */
3349 spapr->irq = smc->irq;
3350 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3351 spapr_set_ic_mode);
3352 object_property_set_description(obj, "ic-mode",
3353 "Specifies the interrupt controller mode (xics, xive, dual)");
3355 object_property_add_str(obj, "host-model",
3356 spapr_get_host_model, spapr_set_host_model);
3357 object_property_set_description(obj, "host-model",
3358 "Host model to advertise in guest device tree");
3359 object_property_add_str(obj, "host-serial",
3360 spapr_get_host_serial, spapr_set_host_serial);
3361 object_property_set_description(obj, "host-serial",
3362 "Host serial number to advertise in guest device tree");
3365 static void spapr_machine_finalizefn(Object *obj)
3367 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3369 g_free(spapr->kvm_type);
3372 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3374 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3375 PowerPCCPU *cpu = POWERPC_CPU(cs);
3376 CPUPPCState *env = &cpu->env;
3378 cpu_synchronize_state(cs);
3379 /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */
3380 if (spapr->fwnmi_system_reset_addr != -1) {
3381 uint64_t rtas_addr, addr;
3383 /* get rtas addr from fdt */
3384 rtas_addr = spapr_get_rtas_addr();
3385 if (!rtas_addr) {
3386 qemu_system_guest_panicked(NULL);
3387 return;
3390 addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2;
3391 stq_be_phys(&address_space_memory, addr, env->gpr[3]);
3392 stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0);
3393 env->gpr[3] = addr;
3395 ppc_cpu_do_system_reset(cs);
3396 if (spapr->fwnmi_system_reset_addr != -1) {
3397 env->nip = spapr->fwnmi_system_reset_addr;
3401 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3403 CPUState *cs;
3405 CPU_FOREACH(cs) {
3406 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3410 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3411 void *fdt, int *fdt_start_offset, Error **errp)
3413 uint64_t addr;
3414 uint32_t node;
3416 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3417 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3418 &error_abort);
3419 *fdt_start_offset = spapr_dt_memory_node(fdt, node, addr,
3420 SPAPR_MEMORY_BLOCK_SIZE);
3421 return 0;
3424 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3425 bool dedicated_hp_event_source, Error **errp)
3427 SpaprDrc *drc;
3428 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3429 int i;
3430 uint64_t addr = addr_start;
3431 bool hotplugged = spapr_drc_hotplugged(dev);
3432 Error *local_err = NULL;
3434 for (i = 0; i < nr_lmbs; i++) {
3435 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3436 addr / SPAPR_MEMORY_BLOCK_SIZE);
3437 g_assert(drc);
3439 spapr_drc_attach(drc, dev, &local_err);
3440 if (local_err) {
3441 while (addr > addr_start) {
3442 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3443 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3444 addr / SPAPR_MEMORY_BLOCK_SIZE);
3445 spapr_drc_detach(drc);
3447 error_propagate(errp, local_err);
3448 return;
3450 if (!hotplugged) {
3451 spapr_drc_reset(drc);
3453 addr += SPAPR_MEMORY_BLOCK_SIZE;
3455 /* send hotplug notification to the
3456 * guest only in case of hotplugged memory
3458 if (hotplugged) {
3459 if (dedicated_hp_event_source) {
3460 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3461 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3462 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3463 nr_lmbs,
3464 spapr_drc_index(drc));
3465 } else {
3466 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3467 nr_lmbs);
3472 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3473 Error **errp)
3475 Error *local_err = NULL;
3476 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3477 PCDIMMDevice *dimm = PC_DIMM(dev);
3478 uint64_t size, addr, slot;
3479 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3481 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3483 pc_dimm_plug(dimm, MACHINE(ms), &local_err);
3484 if (local_err) {
3485 goto out;
3488 if (!is_nvdimm) {
3489 addr = object_property_get_uint(OBJECT(dimm),
3490 PC_DIMM_ADDR_PROP, &local_err);
3491 if (local_err) {
3492 goto out_unplug;
3494 spapr_add_lmbs(dev, addr, size,
3495 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3496 &local_err);
3497 } else {
3498 slot = object_property_get_uint(OBJECT(dimm),
3499 PC_DIMM_SLOT_PROP, &local_err);
3500 if (local_err) {
3501 goto out_unplug;
3503 spapr_add_nvdimm(dev, slot, &local_err);
3506 if (local_err) {
3507 goto out_unplug;
3510 return;
3512 out_unplug:
3513 pc_dimm_unplug(dimm, MACHINE(ms));
3514 out:
3515 error_propagate(errp, local_err);
3518 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3519 Error **errp)
3521 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3522 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3523 const MachineClass *mc = MACHINE_CLASS(smc);
3524 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3525 PCDIMMDevice *dimm = PC_DIMM(dev);
3526 Error *local_err = NULL;
3527 uint64_t size;
3528 Object *memdev;
3529 hwaddr pagesize;
3531 if (!smc->dr_lmb_enabled) {
3532 error_setg(errp, "Memory hotplug not supported for this machine");
3533 return;
3536 if (is_nvdimm && !mc->nvdimm_supported) {
3537 error_setg(errp, "NVDIMM hotplug not supported for this machine");
3538 return;
3541 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3542 if (local_err) {
3543 error_propagate(errp, local_err);
3544 return;
3547 if (!is_nvdimm && size % SPAPR_MEMORY_BLOCK_SIZE) {
3548 error_setg(errp, "Hotplugged memory size must be a multiple of "
3549 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3550 return;
3551 } else if (is_nvdimm) {
3552 spapr_nvdimm_validate_opts(NVDIMM(dev), size, &local_err);
3553 if (local_err) {
3554 error_propagate(errp, local_err);
3555 return;
3559 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3560 &error_abort);
3561 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3562 spapr_check_pagesize(spapr, pagesize, &local_err);
3563 if (local_err) {
3564 error_propagate(errp, local_err);
3565 return;
3568 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3571 struct SpaprDimmState {
3572 PCDIMMDevice *dimm;
3573 uint32_t nr_lmbs;
3574 QTAILQ_ENTRY(SpaprDimmState) next;
3577 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3578 PCDIMMDevice *dimm)
3580 SpaprDimmState *dimm_state = NULL;
3582 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3583 if (dimm_state->dimm == dimm) {
3584 break;
3587 return dimm_state;
3590 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3591 uint32_t nr_lmbs,
3592 PCDIMMDevice *dimm)
3594 SpaprDimmState *ds = NULL;
3597 * If this request is for a DIMM whose removal had failed earlier
3598 * (due to guest's refusal to remove the LMBs), we would have this
3599 * dimm already in the pending_dimm_unplugs list. In that
3600 * case don't add again.
3602 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3603 if (!ds) {
3604 ds = g_malloc0(sizeof(SpaprDimmState));
3605 ds->nr_lmbs = nr_lmbs;
3606 ds->dimm = dimm;
3607 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3609 return ds;
3612 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3613 SpaprDimmState *dimm_state)
3615 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3616 g_free(dimm_state);
3619 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3620 PCDIMMDevice *dimm)
3622 SpaprDrc *drc;
3623 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3624 &error_abort);
3625 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3626 uint32_t avail_lmbs = 0;
3627 uint64_t addr_start, addr;
3628 int i;
3630 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3631 &error_abort);
3633 addr = addr_start;
3634 for (i = 0; i < nr_lmbs; i++) {
3635 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3636 addr / SPAPR_MEMORY_BLOCK_SIZE);
3637 g_assert(drc);
3638 if (drc->dev) {
3639 avail_lmbs++;
3641 addr += SPAPR_MEMORY_BLOCK_SIZE;
3644 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3647 /* Callback to be called during DRC release. */
3648 void spapr_lmb_release(DeviceState *dev)
3650 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3651 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3652 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3654 /* This information will get lost if a migration occurs
3655 * during the unplug process. In this case recover it. */
3656 if (ds == NULL) {
3657 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3658 g_assert(ds);
3659 /* The DRC being examined by the caller at least must be counted */
3660 g_assert(ds->nr_lmbs);
3663 if (--ds->nr_lmbs) {
3664 return;
3668 * Now that all the LMBs have been removed by the guest, call the
3669 * unplug handler chain. This can never fail.
3671 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3672 object_unparent(OBJECT(dev));
3675 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3677 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3678 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3680 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3681 qdev_unrealize(dev);
3682 spapr_pending_dimm_unplugs_remove(spapr, ds);
3685 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3686 DeviceState *dev, Error **errp)
3688 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3689 Error *local_err = NULL;
3690 PCDIMMDevice *dimm = PC_DIMM(dev);
3691 uint32_t nr_lmbs;
3692 uint64_t size, addr_start, addr;
3693 int i;
3694 SpaprDrc *drc;
3696 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
3697 error_setg(errp, "nvdimm device hot unplug is not supported yet.");
3698 return;
3701 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3702 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3704 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3705 &local_err);
3706 if (local_err) {
3707 error_propagate(errp, local_err);
3708 return;
3712 * An existing pending dimm state for this DIMM means that there is an
3713 * unplug operation in progress, waiting for the spapr_lmb_release
3714 * callback to complete the job (BQL can't cover that far). In this case,
3715 * bail out to avoid detaching DRCs that were already released.
3717 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3718 error_setg(errp, "Memory unplug already in progress for device %s",
3719 dev->id);
3720 return;
3723 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3725 addr = addr_start;
3726 for (i = 0; i < nr_lmbs; i++) {
3727 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3728 addr / SPAPR_MEMORY_BLOCK_SIZE);
3729 g_assert(drc);
3731 spapr_drc_detach(drc);
3732 addr += SPAPR_MEMORY_BLOCK_SIZE;
3735 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3736 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3737 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3738 nr_lmbs, spapr_drc_index(drc));
3741 /* Callback to be called during DRC release. */
3742 void spapr_core_release(DeviceState *dev)
3744 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3746 /* Call the unplug handler chain. This can never fail. */
3747 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3748 object_unparent(OBJECT(dev));
3751 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3753 MachineState *ms = MACHINE(hotplug_dev);
3754 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3755 CPUCore *cc = CPU_CORE(dev);
3756 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3758 if (smc->pre_2_10_has_unused_icps) {
3759 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3760 int i;
3762 for (i = 0; i < cc->nr_threads; i++) {
3763 CPUState *cs = CPU(sc->threads[i]);
3765 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3769 assert(core_slot);
3770 core_slot->cpu = NULL;
3771 qdev_unrealize(dev);
3774 static
3775 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3776 Error **errp)
3778 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3779 int index;
3780 SpaprDrc *drc;
3781 CPUCore *cc = CPU_CORE(dev);
3783 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3784 error_setg(errp, "Unable to find CPU core with core-id: %d",
3785 cc->core_id);
3786 return;
3788 if (index == 0) {
3789 error_setg(errp, "Boot CPU core may not be unplugged");
3790 return;
3793 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3794 spapr_vcpu_id(spapr, cc->core_id));
3795 g_assert(drc);
3797 if (!spapr_drc_unplug_requested(drc)) {
3798 spapr_drc_detach(drc);
3799 spapr_hotplug_req_remove_by_index(drc);
3803 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3804 void *fdt, int *fdt_start_offset, Error **errp)
3806 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3807 CPUState *cs = CPU(core->threads[0]);
3808 PowerPCCPU *cpu = POWERPC_CPU(cs);
3809 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3810 int id = spapr_get_vcpu_id(cpu);
3811 char *nodename;
3812 int offset;
3814 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3815 offset = fdt_add_subnode(fdt, 0, nodename);
3816 g_free(nodename);
3818 spapr_dt_cpu(cs, fdt, offset, spapr);
3820 *fdt_start_offset = offset;
3821 return 0;
3824 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3825 Error **errp)
3827 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3828 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3829 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3830 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3831 CPUCore *cc = CPU_CORE(dev);
3832 CPUState *cs;
3833 SpaprDrc *drc;
3834 Error *local_err = NULL;
3835 CPUArchId *core_slot;
3836 int index;
3837 bool hotplugged = spapr_drc_hotplugged(dev);
3838 int i;
3840 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3841 if (!core_slot) {
3842 error_setg(errp, "Unable to find CPU core with core-id: %d",
3843 cc->core_id);
3844 return;
3846 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3847 spapr_vcpu_id(spapr, cc->core_id));
3849 g_assert(drc || !mc->has_hotpluggable_cpus);
3851 if (drc) {
3852 spapr_drc_attach(drc, dev, &local_err);
3853 if (local_err) {
3854 error_propagate(errp, local_err);
3855 return;
3858 if (hotplugged) {
3860 * Send hotplug notification interrupt to the guest only
3861 * in case of hotplugged CPUs.
3863 spapr_hotplug_req_add_by_index(drc);
3864 } else {
3865 spapr_drc_reset(drc);
3869 core_slot->cpu = OBJECT(dev);
3871 if (smc->pre_2_10_has_unused_icps) {
3872 for (i = 0; i < cc->nr_threads; i++) {
3873 cs = CPU(core->threads[i]);
3874 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3879 * Set compatibility mode to match the boot CPU, which was either set
3880 * by the machine reset code or by CAS.
3882 if (hotplugged) {
3883 for (i = 0; i < cc->nr_threads; i++) {
3884 ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
3885 &local_err);
3886 if (local_err) {
3887 error_propagate(errp, local_err);
3888 return;
3894 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3895 Error **errp)
3897 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3898 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3899 CPUCore *cc = CPU_CORE(dev);
3900 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3901 const char *type = object_get_typename(OBJECT(dev));
3902 CPUArchId *core_slot;
3903 int index;
3904 unsigned int smp_threads = machine->smp.threads;
3906 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3907 error_setg(errp, "CPU hotplug not supported for this machine");
3908 return;
3911 if (strcmp(base_core_type, type)) {
3912 error_setg(errp, "CPU core type should be %s", base_core_type);
3913 return;
3916 if (cc->core_id % smp_threads) {
3917 error_setg(errp, "invalid core id %d", cc->core_id);
3918 return;
3922 * In general we should have homogeneous threads-per-core, but old
3923 * (pre hotplug support) machine types allow the last core to have
3924 * reduced threads as a compatibility hack for when we allowed
3925 * total vcpus not a multiple of threads-per-core.
3927 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3928 error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads,
3929 smp_threads);
3930 return;
3933 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3934 if (!core_slot) {
3935 error_setg(errp, "core id %d out of range", cc->core_id);
3936 return;
3939 if (core_slot->cpu) {
3940 error_setg(errp, "core %d already populated", cc->core_id);
3941 return;
3944 numa_cpu_pre_plug(core_slot, dev, errp);
3947 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3948 void *fdt, int *fdt_start_offset, Error **errp)
3950 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
3951 int intc_phandle;
3953 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
3954 if (intc_phandle <= 0) {
3955 return -1;
3958 if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) {
3959 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
3960 return -1;
3963 /* generally SLOF creates these, for hotplug it's up to QEMU */
3964 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
3966 return 0;
3969 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3970 Error **errp)
3972 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3973 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3974 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3975 const unsigned windows_supported = spapr_phb_windows_supported(sphb);
3977 if (dev->hotplugged && !smc->dr_phb_enabled) {
3978 error_setg(errp, "PHB hotplug not supported for this machine");
3979 return;
3982 if (sphb->index == (uint32_t)-1) {
3983 error_setg(errp, "\"index\" for PAPR PHB is mandatory");
3984 return;
3988 * This will check that sphb->index doesn't exceed the maximum number of
3989 * PHBs for the current machine type.
3991 smc->phb_placement(spapr, sphb->index,
3992 &sphb->buid, &sphb->io_win_addr,
3993 &sphb->mem_win_addr, &sphb->mem64_win_addr,
3994 windows_supported, sphb->dma_liobn,
3995 &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
3996 errp);
3999 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4000 Error **errp)
4002 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4003 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4004 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4005 SpaprDrc *drc;
4006 bool hotplugged = spapr_drc_hotplugged(dev);
4007 Error *local_err = NULL;
4009 if (!smc->dr_phb_enabled) {
4010 return;
4013 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4014 /* hotplug hooks should check it's enabled before getting this far */
4015 assert(drc);
4017 spapr_drc_attach(drc, dev, &local_err);
4018 if (local_err) {
4019 error_propagate(errp, local_err);
4020 return;
4023 if (hotplugged) {
4024 spapr_hotplug_req_add_by_index(drc);
4025 } else {
4026 spapr_drc_reset(drc);
4030 void spapr_phb_release(DeviceState *dev)
4032 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
4034 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
4035 object_unparent(OBJECT(dev));
4038 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4040 qdev_unrealize(dev);
4043 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4044 DeviceState *dev, Error **errp)
4046 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4047 SpaprDrc *drc;
4049 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4050 assert(drc);
4052 if (!spapr_drc_unplug_requested(drc)) {
4053 spapr_drc_detach(drc);
4054 spapr_hotplug_req_remove_by_index(drc);
4058 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4059 Error **errp)
4061 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4062 SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
4064 if (spapr->tpm_proxy != NULL) {
4065 error_setg(errp, "Only one TPM proxy can be specified for this machine");
4066 return;
4069 spapr->tpm_proxy = tpm_proxy;
4072 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4074 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4076 qdev_unrealize(dev);
4077 object_unparent(OBJECT(dev));
4078 spapr->tpm_proxy = NULL;
4081 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4082 DeviceState *dev, Error **errp)
4084 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4085 spapr_memory_plug(hotplug_dev, dev, errp);
4086 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4087 spapr_core_plug(hotplug_dev, dev, errp);
4088 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4089 spapr_phb_plug(hotplug_dev, dev, errp);
4090 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4091 spapr_tpm_proxy_plug(hotplug_dev, dev, errp);
4095 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4096 DeviceState *dev, Error **errp)
4098 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4099 spapr_memory_unplug(hotplug_dev, dev);
4100 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4101 spapr_core_unplug(hotplug_dev, dev);
4102 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4103 spapr_phb_unplug(hotplug_dev, dev);
4104 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4105 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4109 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4110 DeviceState *dev, Error **errp)
4112 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4113 MachineClass *mc = MACHINE_GET_CLASS(sms);
4114 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4116 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4117 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
4118 spapr_memory_unplug_request(hotplug_dev, dev, errp);
4119 } else {
4120 /* NOTE: this means there is a window after guest reset, prior to
4121 * CAS negotiation, where unplug requests will fail due to the
4122 * capability not being detected yet. This is a bit different than
4123 * the case with PCI unplug, where the events will be queued and
4124 * eventually handled by the guest after boot
4126 error_setg(errp, "Memory hot unplug not supported for this guest");
4128 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4129 if (!mc->has_hotpluggable_cpus) {
4130 error_setg(errp, "CPU hot unplug not supported on this machine");
4131 return;
4133 spapr_core_unplug_request(hotplug_dev, dev, errp);
4134 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4135 if (!smc->dr_phb_enabled) {
4136 error_setg(errp, "PHB hot unplug not supported on this machine");
4137 return;
4139 spapr_phb_unplug_request(hotplug_dev, dev, errp);
4140 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4141 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4145 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4146 DeviceState *dev, Error **errp)
4148 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4149 spapr_memory_pre_plug(hotplug_dev, dev, errp);
4150 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4151 spapr_core_pre_plug(hotplug_dev, dev, errp);
4152 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4153 spapr_phb_pre_plug(hotplug_dev, dev, errp);
4157 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4158 DeviceState *dev)
4160 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4161 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4162 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4163 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4164 return HOTPLUG_HANDLER(machine);
4166 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4167 PCIDevice *pcidev = PCI_DEVICE(dev);
4168 PCIBus *root = pci_device_root_bus(pcidev);
4169 SpaprPhbState *phb =
4170 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4171 TYPE_SPAPR_PCI_HOST_BRIDGE);
4173 if (phb) {
4174 return HOTPLUG_HANDLER(phb);
4177 return NULL;
4180 static CpuInstanceProperties
4181 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4183 CPUArchId *core_slot;
4184 MachineClass *mc = MACHINE_GET_CLASS(machine);
4186 /* make sure possible_cpu are intialized */
4187 mc->possible_cpu_arch_ids(machine);
4188 /* get CPU core slot containing thread that matches cpu_index */
4189 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4190 assert(core_slot);
4191 return core_slot->props;
4194 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4196 return idx / ms->smp.cores % ms->numa_state->num_nodes;
4199 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4201 int i;
4202 unsigned int smp_threads = machine->smp.threads;
4203 unsigned int smp_cpus = machine->smp.cpus;
4204 const char *core_type;
4205 int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4206 MachineClass *mc = MACHINE_GET_CLASS(machine);
4208 if (!mc->has_hotpluggable_cpus) {
4209 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4211 if (machine->possible_cpus) {
4212 assert(machine->possible_cpus->len == spapr_max_cores);
4213 return machine->possible_cpus;
4216 core_type = spapr_get_cpu_core_type(machine->cpu_type);
4217 if (!core_type) {
4218 error_report("Unable to find sPAPR CPU Core definition");
4219 exit(1);
4222 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4223 sizeof(CPUArchId) * spapr_max_cores);
4224 machine->possible_cpus->len = spapr_max_cores;
4225 for (i = 0; i < machine->possible_cpus->len; i++) {
4226 int core_id = i * smp_threads;
4228 machine->possible_cpus->cpus[i].type = core_type;
4229 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4230 machine->possible_cpus->cpus[i].arch_id = core_id;
4231 machine->possible_cpus->cpus[i].props.has_core_id = true;
4232 machine->possible_cpus->cpus[i].props.core_id = core_id;
4234 return machine->possible_cpus;
4237 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4238 uint64_t *buid, hwaddr *pio,
4239 hwaddr *mmio32, hwaddr *mmio64,
4240 unsigned n_dma, uint32_t *liobns,
4241 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4244 * New-style PHB window placement.
4246 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4247 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4248 * windows.
4250 * Some guest kernels can't work with MMIO windows above 1<<46
4251 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4253 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4254 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
4255 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
4256 * 1TiB 64-bit MMIO windows for each PHB.
4258 const uint64_t base_buid = 0x800000020000000ULL;
4259 int i;
4261 /* Sanity check natural alignments */
4262 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4263 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4264 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4265 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4266 /* Sanity check bounds */
4267 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4268 SPAPR_PCI_MEM32_WIN_SIZE);
4269 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4270 SPAPR_PCI_MEM64_WIN_SIZE);
4272 if (index >= SPAPR_MAX_PHBS) {
4273 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4274 SPAPR_MAX_PHBS - 1);
4275 return;
4278 *buid = base_buid + index;
4279 for (i = 0; i < n_dma; ++i) {
4280 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4283 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4284 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4285 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4287 *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4288 *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4291 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4293 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4295 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4298 static void spapr_ics_resend(XICSFabric *dev)
4300 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4302 ics_resend(spapr->ics);
4305 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4307 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4309 return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4312 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4313 Monitor *mon)
4315 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4317 spapr_irq_print_info(spapr, mon);
4318 monitor_printf(mon, "irqchip: %s\n",
4319 kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4323 * This is a XIVE only operation
4325 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format,
4326 uint8_t nvt_blk, uint32_t nvt_idx,
4327 bool cam_ignore, uint8_t priority,
4328 uint32_t logic_serv, XiveTCTXMatch *match)
4330 SpaprMachineState *spapr = SPAPR_MACHINE(xfb);
4331 XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc);
4332 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
4333 int count;
4335 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
4336 priority, logic_serv, match);
4337 if (count < 0) {
4338 return count;
4342 * When we implement the save and restore of the thread interrupt
4343 * contexts in the enter/exit CPU handlers of the machine and the
4344 * escalations in QEMU, we should be able to handle non dispatched
4345 * vCPUs.
4347 * Until this is done, the sPAPR machine should find at least one
4348 * matching context always.
4350 if (count == 0) {
4351 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n",
4352 nvt_blk, nvt_idx);
4355 return count;
4358 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4360 return cpu->vcpu_id;
4363 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4365 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4366 MachineState *ms = MACHINE(spapr);
4367 int vcpu_id;
4369 vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4371 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4372 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4373 error_append_hint(errp, "Adjust the number of cpus to %d "
4374 "or try to raise the number of threads per core\n",
4375 vcpu_id * ms->smp.threads / spapr->vsmt);
4376 return;
4379 cpu->vcpu_id = vcpu_id;
4382 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4384 CPUState *cs;
4386 CPU_FOREACH(cs) {
4387 PowerPCCPU *cpu = POWERPC_CPU(cs);
4389 if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4390 return cpu;
4394 return NULL;
4397 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4399 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4401 /* These are only called by TCG, KVM maintains dispatch state */
4403 spapr_cpu->prod = false;
4404 if (spapr_cpu->vpa_addr) {
4405 CPUState *cs = CPU(cpu);
4406 uint32_t dispatch;
4408 dispatch = ldl_be_phys(cs->as,
4409 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4410 dispatch++;
4411 if ((dispatch & 1) != 0) {
4412 qemu_log_mask(LOG_GUEST_ERROR,
4413 "VPA: incorrect dispatch counter value for "
4414 "dispatched partition %u, correcting.\n", dispatch);
4415 dispatch++;
4417 stl_be_phys(cs->as,
4418 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4422 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4424 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4426 if (spapr_cpu->vpa_addr) {
4427 CPUState *cs = CPU(cpu);
4428 uint32_t dispatch;
4430 dispatch = ldl_be_phys(cs->as,
4431 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4432 dispatch++;
4433 if ((dispatch & 1) != 1) {
4434 qemu_log_mask(LOG_GUEST_ERROR,
4435 "VPA: incorrect dispatch counter value for "
4436 "preempted partition %u, correcting.\n", dispatch);
4437 dispatch++;
4439 stl_be_phys(cs->as,
4440 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4444 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4446 MachineClass *mc = MACHINE_CLASS(oc);
4447 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4448 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4449 NMIClass *nc = NMI_CLASS(oc);
4450 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4451 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4452 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4453 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4454 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
4456 mc->desc = "pSeries Logical Partition (PAPR compliant)";
4457 mc->ignore_boot_device_suffixes = true;
4460 * We set up the default / latest behaviour here. The class_init
4461 * functions for the specific versioned machine types can override
4462 * these details for backwards compatibility
4464 mc->init = spapr_machine_init;
4465 mc->reset = spapr_machine_reset;
4466 mc->block_default_type = IF_SCSI;
4467 mc->max_cpus = 1024;
4468 mc->no_parallel = 1;
4469 mc->default_boot_order = "";
4470 mc->default_ram_size = 512 * MiB;
4471 mc->default_ram_id = "ppc_spapr.ram";
4472 mc->default_display = "std";
4473 mc->kvm_type = spapr_kvm_type;
4474 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4475 mc->pci_allow_0_address = true;
4476 assert(!mc->get_hotplug_handler);
4477 mc->get_hotplug_handler = spapr_get_hotplug_handler;
4478 hc->pre_plug = spapr_machine_device_pre_plug;
4479 hc->plug = spapr_machine_device_plug;
4480 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4481 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4482 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4483 hc->unplug_request = spapr_machine_device_unplug_request;
4484 hc->unplug = spapr_machine_device_unplug;
4486 smc->dr_lmb_enabled = true;
4487 smc->update_dt_enabled = true;
4488 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4489 mc->has_hotpluggable_cpus = true;
4490 mc->nvdimm_supported = true;
4491 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4492 fwc->get_dev_path = spapr_get_fw_dev_path;
4493 nc->nmi_monitor_handler = spapr_nmi;
4494 smc->phb_placement = spapr_phb_placement;
4495 vhc->hypercall = emulate_spapr_hypercall;
4496 vhc->hpt_mask = spapr_hpt_mask;
4497 vhc->map_hptes = spapr_map_hptes;
4498 vhc->unmap_hptes = spapr_unmap_hptes;
4499 vhc->hpte_set_c = spapr_hpte_set_c;
4500 vhc->hpte_set_r = spapr_hpte_set_r;
4501 vhc->get_pate = spapr_get_pate;
4502 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4503 vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4504 vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4505 xic->ics_get = spapr_ics_get;
4506 xic->ics_resend = spapr_ics_resend;
4507 xic->icp_get = spapr_icp_get;
4508 ispc->print_info = spapr_pic_print_info;
4509 /* Force NUMA node memory size to be a multiple of
4510 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4511 * in which LMBs are represented and hot-added
4513 mc->numa_mem_align_shift = 28;
4514 mc->auto_enable_numa = true;
4516 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4517 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4518 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4519 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4520 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4521 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4522 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4523 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4524 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4525 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON;
4526 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON;
4527 spapr_caps_add_properties(smc);
4528 smc->irq = &spapr_irq_dual;
4529 smc->dr_phb_enabled = true;
4530 smc->linux_pci_probe = true;
4531 smc->smp_threads_vsmt = true;
4532 smc->nr_xirqs = SPAPR_NR_XIRQS;
4533 xfc->match_nvt = spapr_match_nvt;
4536 static const TypeInfo spapr_machine_info = {
4537 .name = TYPE_SPAPR_MACHINE,
4538 .parent = TYPE_MACHINE,
4539 .abstract = true,
4540 .instance_size = sizeof(SpaprMachineState),
4541 .instance_init = spapr_instance_init,
4542 .instance_finalize = spapr_machine_finalizefn,
4543 .class_size = sizeof(SpaprMachineClass),
4544 .class_init = spapr_machine_class_init,
4545 .interfaces = (InterfaceInfo[]) {
4546 { TYPE_FW_PATH_PROVIDER },
4547 { TYPE_NMI },
4548 { TYPE_HOTPLUG_HANDLER },
4549 { TYPE_PPC_VIRTUAL_HYPERVISOR },
4550 { TYPE_XICS_FABRIC },
4551 { TYPE_INTERRUPT_STATS_PROVIDER },
4552 { TYPE_XIVE_FABRIC },
4557 static void spapr_machine_latest_class_options(MachineClass *mc)
4559 mc->alias = "pseries";
4560 mc->is_default = true;
4563 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
4564 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4565 void *data) \
4567 MachineClass *mc = MACHINE_CLASS(oc); \
4568 spapr_machine_##suffix##_class_options(mc); \
4569 if (latest) { \
4570 spapr_machine_latest_class_options(mc); \
4573 static const TypeInfo spapr_machine_##suffix##_info = { \
4574 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
4575 .parent = TYPE_SPAPR_MACHINE, \
4576 .class_init = spapr_machine_##suffix##_class_init, \
4577 }; \
4578 static void spapr_machine_register_##suffix(void) \
4580 type_register(&spapr_machine_##suffix##_info); \
4582 type_init(spapr_machine_register_##suffix)
4585 * pseries-5.2
4587 static void spapr_machine_5_2_class_options(MachineClass *mc)
4589 /* Defaults for the latest behaviour inherited from the base class */
4592 DEFINE_SPAPR_MACHINE(5_2, "5.2", true);
4595 * pseries-5.1
4597 static void spapr_machine_5_1_class_options(MachineClass *mc)
4599 spapr_machine_5_2_class_options(mc);
4600 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
4603 DEFINE_SPAPR_MACHINE(5_1, "5.1", false);
4606 * pseries-5.0
4608 static void spapr_machine_5_0_class_options(MachineClass *mc)
4610 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4611 static GlobalProperty compat[] = {
4612 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" },
4615 spapr_machine_5_1_class_options(mc);
4616 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
4617 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4618 mc->numa_mem_supported = true;
4619 smc->pre_5_1_assoc_refpoints = true;
4622 DEFINE_SPAPR_MACHINE(5_0, "5.0", false);
4625 * pseries-4.2
4627 static void spapr_machine_4_2_class_options(MachineClass *mc)
4629 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4631 spapr_machine_5_0_class_options(mc);
4632 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
4633 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4634 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF;
4635 smc->rma_limit = 16 * GiB;
4636 mc->nvdimm_supported = false;
4639 DEFINE_SPAPR_MACHINE(4_2, "4.2", false);
4642 * pseries-4.1
4644 static void spapr_machine_4_1_class_options(MachineClass *mc)
4646 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4647 static GlobalProperty compat[] = {
4648 /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4649 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4652 spapr_machine_4_2_class_options(mc);
4653 smc->linux_pci_probe = false;
4654 smc->smp_threads_vsmt = false;
4655 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4656 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4659 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4662 * pseries-4.0
4664 static void phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4665 uint64_t *buid, hwaddr *pio,
4666 hwaddr *mmio32, hwaddr *mmio64,
4667 unsigned n_dma, uint32_t *liobns,
4668 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4670 spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns,
4671 nv2gpa, nv2atsd, errp);
4672 *nv2gpa = 0;
4673 *nv2atsd = 0;
4676 static void spapr_machine_4_0_class_options(MachineClass *mc)
4678 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4680 spapr_machine_4_1_class_options(mc);
4681 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4682 smc->phb_placement = phb_placement_4_0;
4683 smc->irq = &spapr_irq_xics;
4684 smc->pre_4_1_migration = true;
4687 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4690 * pseries-3.1
4692 static void spapr_machine_3_1_class_options(MachineClass *mc)
4694 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4696 spapr_machine_4_0_class_options(mc);
4697 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4699 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4700 smc->update_dt_enabled = false;
4701 smc->dr_phb_enabled = false;
4702 smc->broken_host_serial_model = true;
4703 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4704 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4705 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4706 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4709 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4712 * pseries-3.0
4715 static void spapr_machine_3_0_class_options(MachineClass *mc)
4717 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4719 spapr_machine_3_1_class_options(mc);
4720 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4722 smc->legacy_irq_allocation = true;
4723 smc->nr_xirqs = 0x400;
4724 smc->irq = &spapr_irq_xics_legacy;
4727 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4730 * pseries-2.12
4732 static void spapr_machine_2_12_class_options(MachineClass *mc)
4734 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4735 static GlobalProperty compat[] = {
4736 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4737 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4740 spapr_machine_3_0_class_options(mc);
4741 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4742 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4744 /* We depend on kvm_enabled() to choose a default value for the
4745 * hpt-max-page-size capability. Of course we can't do it here
4746 * because this is too early and the HW accelerator isn't initialzed
4747 * yet. Postpone this to machine init (see default_caps_with_cpu()).
4749 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4752 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4754 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4756 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4758 spapr_machine_2_12_class_options(mc);
4759 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4760 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4761 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4764 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4767 * pseries-2.11
4770 static void spapr_machine_2_11_class_options(MachineClass *mc)
4772 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4774 spapr_machine_2_12_class_options(mc);
4775 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4776 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4779 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4782 * pseries-2.10
4785 static void spapr_machine_2_10_class_options(MachineClass *mc)
4787 spapr_machine_2_11_class_options(mc);
4788 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4791 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4794 * pseries-2.9
4797 static void spapr_machine_2_9_class_options(MachineClass *mc)
4799 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4800 static GlobalProperty compat[] = {
4801 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4804 spapr_machine_2_10_class_options(mc);
4805 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4806 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4807 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4808 smc->pre_2_10_has_unused_icps = true;
4809 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4812 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4815 * pseries-2.8
4818 static void spapr_machine_2_8_class_options(MachineClass *mc)
4820 static GlobalProperty compat[] = {
4821 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4824 spapr_machine_2_9_class_options(mc);
4825 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4826 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4827 mc->numa_mem_align_shift = 23;
4830 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4833 * pseries-2.7
4836 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
4837 uint64_t *buid, hwaddr *pio,
4838 hwaddr *mmio32, hwaddr *mmio64,
4839 unsigned n_dma, uint32_t *liobns,
4840 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4842 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4843 const uint64_t base_buid = 0x800000020000000ULL;
4844 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4845 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4846 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4847 const uint32_t max_index = 255;
4848 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4850 uint64_t ram_top = MACHINE(spapr)->ram_size;
4851 hwaddr phb0_base, phb_base;
4852 int i;
4854 /* Do we have device memory? */
4855 if (MACHINE(spapr)->maxram_size > ram_top) {
4856 /* Can't just use maxram_size, because there may be an
4857 * alignment gap between normal and device memory regions
4859 ram_top = MACHINE(spapr)->device_memory->base +
4860 memory_region_size(&MACHINE(spapr)->device_memory->mr);
4863 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4865 if (index > max_index) {
4866 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4867 max_index);
4868 return;
4871 *buid = base_buid + index;
4872 for (i = 0; i < n_dma; ++i) {
4873 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4876 phb_base = phb0_base + index * phb_spacing;
4877 *pio = phb_base + pio_offset;
4878 *mmio32 = phb_base + mmio_offset;
4880 * We don't set the 64-bit MMIO window, relying on the PHB's
4881 * fallback behaviour of automatically splitting a large "32-bit"
4882 * window into contiguous 32-bit and 64-bit windows
4885 *nv2gpa = 0;
4886 *nv2atsd = 0;
4889 static void spapr_machine_2_7_class_options(MachineClass *mc)
4891 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4892 static GlobalProperty compat[] = {
4893 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4894 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4895 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4896 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4899 spapr_machine_2_8_class_options(mc);
4900 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4901 mc->default_machine_opts = "modern-hotplug-events=off";
4902 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4903 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4904 smc->phb_placement = phb_placement_2_7;
4907 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4910 * pseries-2.6
4913 static void spapr_machine_2_6_class_options(MachineClass *mc)
4915 static GlobalProperty compat[] = {
4916 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4919 spapr_machine_2_7_class_options(mc);
4920 mc->has_hotpluggable_cpus = false;
4921 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4922 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4925 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4928 * pseries-2.5
4931 static void spapr_machine_2_5_class_options(MachineClass *mc)
4933 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4934 static GlobalProperty compat[] = {
4935 { "spapr-vlan", "use-rx-buffer-pools", "off" },
4938 spapr_machine_2_6_class_options(mc);
4939 smc->use_ohci_by_default = true;
4940 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4941 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4944 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4947 * pseries-2.4
4950 static void spapr_machine_2_4_class_options(MachineClass *mc)
4952 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4954 spapr_machine_2_5_class_options(mc);
4955 smc->dr_lmb_enabled = false;
4956 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
4959 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4962 * pseries-2.3
4965 static void spapr_machine_2_3_class_options(MachineClass *mc)
4967 static GlobalProperty compat[] = {
4968 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4970 spapr_machine_2_4_class_options(mc);
4971 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
4972 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4974 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4977 * pseries-2.2
4980 static void spapr_machine_2_2_class_options(MachineClass *mc)
4982 static GlobalProperty compat[] = {
4983 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
4986 spapr_machine_2_3_class_options(mc);
4987 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
4988 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4989 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4991 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4994 * pseries-2.1
4997 static void spapr_machine_2_1_class_options(MachineClass *mc)
4999 spapr_machine_2_2_class_options(mc);
5000 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
5002 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
5004 static void spapr_machine_register_types(void)
5006 type_register_static(&spapr_machine_info);
5009 type_init(spapr_machine_register_types)