pc_q35: remove unnecessary m->alias assignment
[qemu/ar7.git] / migration / ram.c
blob8deb84984f4a8e9bcdcbdba7d83ce56e406adddf
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 * Copyright (c) 2011-2015 Red Hat Inc
7 * Authors:
8 * Juan Quintela <quintela@redhat.com>
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
29 #include "qemu/osdep.h"
30 #include "qemu/cutils.h"
31 #include "qemu/bitops.h"
32 #include "qemu/bitmap.h"
33 #include "qemu/madvise.h"
34 #include "qemu/main-loop.h"
35 #include "xbzrle.h"
36 #include "ram-compress.h"
37 #include "ram.h"
38 #include "migration.h"
39 #include "migration-stats.h"
40 #include "migration/register.h"
41 #include "migration/misc.h"
42 #include "qemu-file.h"
43 #include "postcopy-ram.h"
44 #include "page_cache.h"
45 #include "qemu/error-report.h"
46 #include "qapi/error.h"
47 #include "qapi/qapi-types-migration.h"
48 #include "qapi/qapi-events-migration.h"
49 #include "qapi/qapi-commands-migration.h"
50 #include "qapi/qmp/qerror.h"
51 #include "trace.h"
52 #include "exec/ram_addr.h"
53 #include "exec/target_page.h"
54 #include "qemu/rcu_queue.h"
55 #include "migration/colo.h"
56 #include "block.h"
57 #include "sysemu/cpu-throttle.h"
58 #include "savevm.h"
59 #include "qemu/iov.h"
60 #include "multifd.h"
61 #include "sysemu/runstate.h"
62 #include "rdma.h"
63 #include "options.h"
64 #include "sysemu/dirtylimit.h"
65 #include "sysemu/kvm.h"
67 #include "hw/boards.h" /* for machine_dump_guest_core() */
69 #if defined(__linux__)
70 #include "qemu/userfaultfd.h"
71 #endif /* defined(__linux__) */
73 /***********************************************************/
74 /* ram save/restore */
77 * RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
78 * worked for pages that were filled with the same char. We switched
79 * it to only search for the zero value. And to avoid confusion with
80 * RAM_SAVE_FLAG_COMPRESS_PAGE just rename it.
83 * RAM_SAVE_FLAG_FULL was obsoleted in 2009, it can be reused now
85 #define RAM_SAVE_FLAG_FULL 0x01
86 #define RAM_SAVE_FLAG_ZERO 0x02
87 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
88 #define RAM_SAVE_FLAG_PAGE 0x08
89 #define RAM_SAVE_FLAG_EOS 0x10
90 #define RAM_SAVE_FLAG_CONTINUE 0x20
91 #define RAM_SAVE_FLAG_XBZRLE 0x40
92 /* 0x80 is reserved in rdma.h for RAM_SAVE_FLAG_HOOK */
93 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
94 #define RAM_SAVE_FLAG_MULTIFD_FLUSH 0x200
95 /* We can't use any flag that is bigger than 0x200 */
98 * mapped-ram migration supports O_DIRECT, so we need to make sure the
99 * userspace buffer, the IO operation size and the file offset are
100 * aligned according to the underlying device's block size. The first
101 * two are already aligned to page size, but we need to add padding to
102 * the file to align the offset. We cannot read the block size
103 * dynamically because the migration file can be moved between
104 * different systems, so use 1M to cover most block sizes and to keep
105 * the file offset aligned at page size as well.
107 #define MAPPED_RAM_FILE_OFFSET_ALIGNMENT 0x100000
110 * When doing mapped-ram migration, this is the amount we read from
111 * the pages region in the migration file at a time.
113 #define MAPPED_RAM_LOAD_BUF_SIZE 0x100000
115 XBZRLECacheStats xbzrle_counters;
117 /* used by the search for pages to send */
118 struct PageSearchStatus {
119 /* The migration channel used for a specific host page */
120 QEMUFile *pss_channel;
121 /* Last block from where we have sent data */
122 RAMBlock *last_sent_block;
123 /* Current block being searched */
124 RAMBlock *block;
125 /* Current page to search from */
126 unsigned long page;
127 /* Set once we wrap around */
128 bool complete_round;
129 /* Whether we're sending a host page */
130 bool host_page_sending;
131 /* The start/end of current host page. Invalid if host_page_sending==false */
132 unsigned long host_page_start;
133 unsigned long host_page_end;
135 typedef struct PageSearchStatus PageSearchStatus;
137 /* struct contains XBZRLE cache and a static page
138 used by the compression */
139 static struct {
140 /* buffer used for XBZRLE encoding */
141 uint8_t *encoded_buf;
142 /* buffer for storing page content */
143 uint8_t *current_buf;
144 /* Cache for XBZRLE, Protected by lock. */
145 PageCache *cache;
146 QemuMutex lock;
147 /* it will store a page full of zeros */
148 uint8_t *zero_target_page;
149 /* buffer used for XBZRLE decoding */
150 uint8_t *decoded_buf;
151 } XBZRLE;
153 static void XBZRLE_cache_lock(void)
155 if (migrate_xbzrle()) {
156 qemu_mutex_lock(&XBZRLE.lock);
160 static void XBZRLE_cache_unlock(void)
162 if (migrate_xbzrle()) {
163 qemu_mutex_unlock(&XBZRLE.lock);
168 * xbzrle_cache_resize: resize the xbzrle cache
170 * This function is called from migrate_params_apply in main
171 * thread, possibly while a migration is in progress. A running
172 * migration may be using the cache and might finish during this call,
173 * hence changes to the cache are protected by XBZRLE.lock().
175 * Returns 0 for success or -1 for error
177 * @new_size: new cache size
178 * @errp: set *errp if the check failed, with reason
180 int xbzrle_cache_resize(uint64_t new_size, Error **errp)
182 PageCache *new_cache;
183 int64_t ret = 0;
185 /* Check for truncation */
186 if (new_size != (size_t)new_size) {
187 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
188 "exceeding address space");
189 return -1;
192 if (new_size == migrate_xbzrle_cache_size()) {
193 /* nothing to do */
194 return 0;
197 XBZRLE_cache_lock();
199 if (XBZRLE.cache != NULL) {
200 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
201 if (!new_cache) {
202 ret = -1;
203 goto out;
206 cache_fini(XBZRLE.cache);
207 XBZRLE.cache = new_cache;
209 out:
210 XBZRLE_cache_unlock();
211 return ret;
214 static bool postcopy_preempt_active(void)
216 return migrate_postcopy_preempt() && migration_in_postcopy();
219 bool migrate_ram_is_ignored(RAMBlock *block)
221 return !qemu_ram_is_migratable(block) ||
222 (migrate_ignore_shared() && qemu_ram_is_shared(block)
223 && qemu_ram_is_named_file(block));
226 #undef RAMBLOCK_FOREACH
228 int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque)
230 RAMBlock *block;
231 int ret = 0;
233 RCU_READ_LOCK_GUARD();
235 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
236 ret = func(block, opaque);
237 if (ret) {
238 break;
241 return ret;
244 static void ramblock_recv_map_init(void)
246 RAMBlock *rb;
248 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
249 assert(!rb->receivedmap);
250 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
254 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
256 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
257 rb->receivedmap);
260 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset)
262 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
265 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
267 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
270 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
271 size_t nr)
273 bitmap_set_atomic(rb->receivedmap,
274 ramblock_recv_bitmap_offset(host_addr, rb),
275 nr);
278 #define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL)
281 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes).
283 * Returns >0 if success with sent bytes, or <0 if error.
285 int64_t ramblock_recv_bitmap_send(QEMUFile *file,
286 const char *block_name)
288 RAMBlock *block = qemu_ram_block_by_name(block_name);
289 unsigned long *le_bitmap, nbits;
290 uint64_t size;
292 if (!block) {
293 error_report("%s: invalid block name: %s", __func__, block_name);
294 return -1;
297 nbits = block->postcopy_length >> TARGET_PAGE_BITS;
300 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit
301 * machines we may need 4 more bytes for padding (see below
302 * comment). So extend it a bit before hand.
304 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
307 * Always use little endian when sending the bitmap. This is
308 * required that when source and destination VMs are not using the
309 * same endianness. (Note: big endian won't work.)
311 bitmap_to_le(le_bitmap, block->receivedmap, nbits);
313 /* Size of the bitmap, in bytes */
314 size = DIV_ROUND_UP(nbits, 8);
317 * size is always aligned to 8 bytes for 64bit machines, but it
318 * may not be true for 32bit machines. We need this padding to
319 * make sure the migration can survive even between 32bit and
320 * 64bit machines.
322 size = ROUND_UP(size, 8);
324 qemu_put_be64(file, size);
325 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size);
326 g_free(le_bitmap);
328 * Mark as an end, in case the middle part is screwed up due to
329 * some "mysterious" reason.
331 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING);
332 int ret = qemu_fflush(file);
333 if (ret) {
334 return ret;
337 return size + sizeof(size);
341 * An outstanding page request, on the source, having been received
342 * and queued
344 struct RAMSrcPageRequest {
345 RAMBlock *rb;
346 hwaddr offset;
347 hwaddr len;
349 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
352 /* State of RAM for migration */
353 struct RAMState {
355 * PageSearchStatus structures for the channels when send pages.
356 * Protected by the bitmap_mutex.
358 PageSearchStatus pss[RAM_CHANNEL_MAX];
359 /* UFFD file descriptor, used in 'write-tracking' migration */
360 int uffdio_fd;
361 /* total ram size in bytes */
362 uint64_t ram_bytes_total;
363 /* Last block that we have visited searching for dirty pages */
364 RAMBlock *last_seen_block;
365 /* Last dirty target page we have sent */
366 ram_addr_t last_page;
367 /* last ram version we have seen */
368 uint32_t last_version;
369 /* How many times we have dirty too many pages */
370 int dirty_rate_high_cnt;
371 /* these variables are used for bitmap sync */
372 /* last time we did a full bitmap_sync */
373 int64_t time_last_bitmap_sync;
374 /* bytes transferred at start_time */
375 uint64_t bytes_xfer_prev;
376 /* number of dirty pages since start_time */
377 uint64_t num_dirty_pages_period;
378 /* xbzrle misses since the beginning of the period */
379 uint64_t xbzrle_cache_miss_prev;
380 /* Amount of xbzrle pages since the beginning of the period */
381 uint64_t xbzrle_pages_prev;
382 /* Amount of xbzrle encoded bytes since the beginning of the period */
383 uint64_t xbzrle_bytes_prev;
384 /* Are we really using XBZRLE (e.g., after the first round). */
385 bool xbzrle_started;
386 /* Are we on the last stage of migration */
387 bool last_stage;
389 /* total handled target pages at the beginning of period */
390 uint64_t target_page_count_prev;
391 /* total handled target pages since start */
392 uint64_t target_page_count;
393 /* number of dirty bits in the bitmap */
394 uint64_t migration_dirty_pages;
396 * Protects:
397 * - dirty/clear bitmap
398 * - migration_dirty_pages
399 * - pss structures
401 QemuMutex bitmap_mutex;
402 /* The RAMBlock used in the last src_page_requests */
403 RAMBlock *last_req_rb;
404 /* Queue of outstanding page requests from the destination */
405 QemuMutex src_page_req_mutex;
406 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests;
409 * This is only used when postcopy is in recovery phase, to communicate
410 * between the migration thread and the return path thread on dirty
411 * bitmap synchronizations. This field is unused in other stages of
412 * RAM migration.
414 unsigned int postcopy_bmap_sync_requested;
416 typedef struct RAMState RAMState;
418 static RAMState *ram_state;
420 static NotifierWithReturnList precopy_notifier_list;
422 /* Whether postcopy has queued requests? */
423 static bool postcopy_has_request(RAMState *rs)
425 return !QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests);
428 void precopy_infrastructure_init(void)
430 notifier_with_return_list_init(&precopy_notifier_list);
433 void precopy_add_notifier(NotifierWithReturn *n)
435 notifier_with_return_list_add(&precopy_notifier_list, n);
438 void precopy_remove_notifier(NotifierWithReturn *n)
440 notifier_with_return_remove(n);
443 int precopy_notify(PrecopyNotifyReason reason, Error **errp)
445 PrecopyNotifyData pnd;
446 pnd.reason = reason;
448 return notifier_with_return_list_notify(&precopy_notifier_list, &pnd, errp);
451 uint64_t ram_bytes_remaining(void)
453 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
457 void ram_transferred_add(uint64_t bytes)
459 if (runstate_is_running()) {
460 stat64_add(&mig_stats.precopy_bytes, bytes);
461 } else if (migration_in_postcopy()) {
462 stat64_add(&mig_stats.postcopy_bytes, bytes);
463 } else {
464 stat64_add(&mig_stats.downtime_bytes, bytes);
468 struct MigrationOps {
469 int (*ram_save_target_page)(RAMState *rs, PageSearchStatus *pss);
471 typedef struct MigrationOps MigrationOps;
473 MigrationOps *migration_ops;
475 static int ram_save_host_page_urgent(PageSearchStatus *pss);
477 /* NOTE: page is the PFN not real ram_addr_t. */
478 static void pss_init(PageSearchStatus *pss, RAMBlock *rb, ram_addr_t page)
480 pss->block = rb;
481 pss->page = page;
482 pss->complete_round = false;
486 * Check whether two PSSs are actively sending the same page. Return true
487 * if it is, false otherwise.
489 static bool pss_overlap(PageSearchStatus *pss1, PageSearchStatus *pss2)
491 return pss1->host_page_sending && pss2->host_page_sending &&
492 (pss1->host_page_start == pss2->host_page_start);
496 * save_page_header: write page header to wire
498 * If this is the 1st block, it also writes the block identification
500 * Returns the number of bytes written
502 * @pss: current PSS channel status
503 * @block: block that contains the page we want to send
504 * @offset: offset inside the block for the page
505 * in the lower bits, it contains flags
507 static size_t save_page_header(PageSearchStatus *pss, QEMUFile *f,
508 RAMBlock *block, ram_addr_t offset)
510 size_t size, len;
511 bool same_block = (block == pss->last_sent_block);
513 if (same_block) {
514 offset |= RAM_SAVE_FLAG_CONTINUE;
516 qemu_put_be64(f, offset);
517 size = 8;
519 if (!same_block) {
520 len = strlen(block->idstr);
521 qemu_put_byte(f, len);
522 qemu_put_buffer(f, (uint8_t *)block->idstr, len);
523 size += 1 + len;
524 pss->last_sent_block = block;
526 return size;
530 * mig_throttle_guest_down: throttle down the guest
532 * Reduce amount of guest cpu execution to hopefully slow down memory
533 * writes. If guest dirty memory rate is reduced below the rate at
534 * which we can transfer pages to the destination then we should be
535 * able to complete migration. Some workloads dirty memory way too
536 * fast and will not effectively converge, even with auto-converge.
538 static void mig_throttle_guest_down(uint64_t bytes_dirty_period,
539 uint64_t bytes_dirty_threshold)
541 uint64_t pct_initial = migrate_cpu_throttle_initial();
542 uint64_t pct_increment = migrate_cpu_throttle_increment();
543 bool pct_tailslow = migrate_cpu_throttle_tailslow();
544 int pct_max = migrate_max_cpu_throttle();
546 uint64_t throttle_now = cpu_throttle_get_percentage();
547 uint64_t cpu_now, cpu_ideal, throttle_inc;
549 /* We have not started throttling yet. Let's start it. */
550 if (!cpu_throttle_active()) {
551 cpu_throttle_set(pct_initial);
552 } else {
553 /* Throttling already on, just increase the rate */
554 if (!pct_tailslow) {
555 throttle_inc = pct_increment;
556 } else {
557 /* Compute the ideal CPU percentage used by Guest, which may
558 * make the dirty rate match the dirty rate threshold. */
559 cpu_now = 100 - throttle_now;
560 cpu_ideal = cpu_now * (bytes_dirty_threshold * 1.0 /
561 bytes_dirty_period);
562 throttle_inc = MIN(cpu_now - cpu_ideal, pct_increment);
564 cpu_throttle_set(MIN(throttle_now + throttle_inc, pct_max));
568 void mig_throttle_counter_reset(void)
570 RAMState *rs = ram_state;
572 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
573 rs->num_dirty_pages_period = 0;
574 rs->bytes_xfer_prev = migration_transferred_bytes();
578 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
580 * @current_addr: address for the zero page
582 * Update the xbzrle cache to reflect a page that's been sent as all 0.
583 * The important thing is that a stale (not-yet-0'd) page be replaced
584 * by the new data.
585 * As a bonus, if the page wasn't in the cache it gets added so that
586 * when a small write is made into the 0'd page it gets XBZRLE sent.
588 static void xbzrle_cache_zero_page(ram_addr_t current_addr)
590 /* We don't care if this fails to allocate a new cache page
591 * as long as it updated an old one */
592 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
593 stat64_get(&mig_stats.dirty_sync_count));
596 #define ENCODING_FLAG_XBZRLE 0x1
599 * save_xbzrle_page: compress and send current page
601 * Returns: 1 means that we wrote the page
602 * 0 means that page is identical to the one already sent
603 * -1 means that xbzrle would be longer than normal
605 * @rs: current RAM state
606 * @pss: current PSS channel
607 * @current_data: pointer to the address of the page contents
608 * @current_addr: addr of the page
609 * @block: block that contains the page we want to send
610 * @offset: offset inside the block for the page
612 static int save_xbzrle_page(RAMState *rs, PageSearchStatus *pss,
613 uint8_t **current_data, ram_addr_t current_addr,
614 RAMBlock *block, ram_addr_t offset)
616 int encoded_len = 0, bytes_xbzrle;
617 uint8_t *prev_cached_page;
618 QEMUFile *file = pss->pss_channel;
619 uint64_t generation = stat64_get(&mig_stats.dirty_sync_count);
621 if (!cache_is_cached(XBZRLE.cache, current_addr, generation)) {
622 xbzrle_counters.cache_miss++;
623 if (!rs->last_stage) {
624 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
625 generation) == -1) {
626 return -1;
627 } else {
628 /* update *current_data when the page has been
629 inserted into cache */
630 *current_data = get_cached_data(XBZRLE.cache, current_addr);
633 return -1;
637 * Reaching here means the page has hit the xbzrle cache, no matter what
638 * encoding result it is (normal encoding, overflow or skipping the page),
639 * count the page as encoded. This is used to calculate the encoding rate.
641 * Example: 2 pages (8KB) being encoded, first page encoding generates 2KB,
642 * 2nd page turns out to be skipped (i.e. no new bytes written to the
643 * page), the overall encoding rate will be 8KB / 2KB = 4, which has the
644 * skipped page included. In this way, the encoding rate can tell if the
645 * guest page is good for xbzrle encoding.
647 xbzrle_counters.pages++;
648 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
650 /* save current buffer into memory */
651 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
653 /* XBZRLE encoding (if there is no overflow) */
654 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
655 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
656 TARGET_PAGE_SIZE);
659 * Update the cache contents, so that it corresponds to the data
660 * sent, in all cases except where we skip the page.
662 if (!rs->last_stage && encoded_len != 0) {
663 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
665 * In the case where we couldn't compress, ensure that the caller
666 * sends the data from the cache, since the guest might have
667 * changed the RAM since we copied it.
669 *current_data = prev_cached_page;
672 if (encoded_len == 0) {
673 trace_save_xbzrle_page_skipping();
674 return 0;
675 } else if (encoded_len == -1) {
676 trace_save_xbzrle_page_overflow();
677 xbzrle_counters.overflow++;
678 xbzrle_counters.bytes += TARGET_PAGE_SIZE;
679 return -1;
682 /* Send XBZRLE based compressed page */
683 bytes_xbzrle = save_page_header(pss, pss->pss_channel, block,
684 offset | RAM_SAVE_FLAG_XBZRLE);
685 qemu_put_byte(file, ENCODING_FLAG_XBZRLE);
686 qemu_put_be16(file, encoded_len);
687 qemu_put_buffer(file, XBZRLE.encoded_buf, encoded_len);
688 bytes_xbzrle += encoded_len + 1 + 2;
690 * Like compressed_size (please see update_compress_thread_counts),
691 * the xbzrle encoded bytes don't count the 8 byte header with
692 * RAM_SAVE_FLAG_CONTINUE.
694 xbzrle_counters.bytes += bytes_xbzrle - 8;
695 ram_transferred_add(bytes_xbzrle);
697 return 1;
701 * pss_find_next_dirty: find the next dirty page of current ramblock
703 * This function updates pss->page to point to the next dirty page index
704 * within the ramblock to migrate, or the end of ramblock when nothing
705 * found. Note that when pss->host_page_sending==true it means we're
706 * during sending a host page, so we won't look for dirty page that is
707 * outside the host page boundary.
709 * @pss: the current page search status
711 static void pss_find_next_dirty(PageSearchStatus *pss)
713 RAMBlock *rb = pss->block;
714 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
715 unsigned long *bitmap = rb->bmap;
717 if (migrate_ram_is_ignored(rb)) {
718 /* Points directly to the end, so we know no dirty page */
719 pss->page = size;
720 return;
724 * If during sending a host page, only look for dirty pages within the
725 * current host page being send.
727 if (pss->host_page_sending) {
728 assert(pss->host_page_end);
729 size = MIN(size, pss->host_page_end);
732 pss->page = find_next_bit(bitmap, size, pss->page);
735 static void migration_clear_memory_region_dirty_bitmap(RAMBlock *rb,
736 unsigned long page)
738 uint8_t shift;
739 hwaddr size, start;
741 if (!rb->clear_bmap || !clear_bmap_test_and_clear(rb, page)) {
742 return;
745 shift = rb->clear_bmap_shift;
747 * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this
748 * can make things easier sometimes since then start address
749 * of the small chunk will always be 64 pages aligned so the
750 * bitmap will always be aligned to unsigned long. We should
751 * even be able to remove this restriction but I'm simply
752 * keeping it.
754 assert(shift >= 6);
756 size = 1ULL << (TARGET_PAGE_BITS + shift);
757 start = QEMU_ALIGN_DOWN((ram_addr_t)page << TARGET_PAGE_BITS, size);
758 trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page);
759 memory_region_clear_dirty_bitmap(rb->mr, start, size);
762 static void
763 migration_clear_memory_region_dirty_bitmap_range(RAMBlock *rb,
764 unsigned long start,
765 unsigned long npages)
767 unsigned long i, chunk_pages = 1UL << rb->clear_bmap_shift;
768 unsigned long chunk_start = QEMU_ALIGN_DOWN(start, chunk_pages);
769 unsigned long chunk_end = QEMU_ALIGN_UP(start + npages, chunk_pages);
772 * Clear pages from start to start + npages - 1, so the end boundary is
773 * exclusive.
775 for (i = chunk_start; i < chunk_end; i += chunk_pages) {
776 migration_clear_memory_region_dirty_bitmap(rb, i);
781 * colo_bitmap_find_diry:find contiguous dirty pages from start
783 * Returns the page offset within memory region of the start of the contiguout
784 * dirty page
786 * @rs: current RAM state
787 * @rb: RAMBlock where to search for dirty pages
788 * @start: page where we start the search
789 * @num: the number of contiguous dirty pages
791 static inline
792 unsigned long colo_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
793 unsigned long start, unsigned long *num)
795 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
796 unsigned long *bitmap = rb->bmap;
797 unsigned long first, next;
799 *num = 0;
801 if (migrate_ram_is_ignored(rb)) {
802 return size;
805 first = find_next_bit(bitmap, size, start);
806 if (first >= size) {
807 return first;
809 next = find_next_zero_bit(bitmap, size, first + 1);
810 assert(next >= first);
811 *num = next - first;
812 return first;
815 static inline bool migration_bitmap_clear_dirty(RAMState *rs,
816 RAMBlock *rb,
817 unsigned long page)
819 bool ret;
822 * Clear dirty bitmap if needed. This _must_ be called before we
823 * send any of the page in the chunk because we need to make sure
824 * we can capture further page content changes when we sync dirty
825 * log the next time. So as long as we are going to send any of
826 * the page in the chunk we clear the remote dirty bitmap for all.
827 * Clearing it earlier won't be a problem, but too late will.
829 migration_clear_memory_region_dirty_bitmap(rb, page);
831 ret = test_and_clear_bit(page, rb->bmap);
832 if (ret) {
833 rs->migration_dirty_pages--;
836 return ret;
839 static void dirty_bitmap_clear_section(MemoryRegionSection *section,
840 void *opaque)
842 const hwaddr offset = section->offset_within_region;
843 const hwaddr size = int128_get64(section->size);
844 const unsigned long start = offset >> TARGET_PAGE_BITS;
845 const unsigned long npages = size >> TARGET_PAGE_BITS;
846 RAMBlock *rb = section->mr->ram_block;
847 uint64_t *cleared_bits = opaque;
850 * We don't grab ram_state->bitmap_mutex because we expect to run
851 * only when starting migration or during postcopy recovery where
852 * we don't have concurrent access.
854 if (!migration_in_postcopy() && !migrate_background_snapshot()) {
855 migration_clear_memory_region_dirty_bitmap_range(rb, start, npages);
857 *cleared_bits += bitmap_count_one_with_offset(rb->bmap, start, npages);
858 bitmap_clear(rb->bmap, start, npages);
862 * Exclude all dirty pages from migration that fall into a discarded range as
863 * managed by a RamDiscardManager responsible for the mapped memory region of
864 * the RAMBlock. Clear the corresponding bits in the dirty bitmaps.
866 * Discarded pages ("logically unplugged") have undefined content and must
867 * not get migrated, because even reading these pages for migration might
868 * result in undesired behavior.
870 * Returns the number of cleared bits in the RAMBlock dirty bitmap.
872 * Note: The result is only stable while migrating (precopy/postcopy).
874 static uint64_t ramblock_dirty_bitmap_clear_discarded_pages(RAMBlock *rb)
876 uint64_t cleared_bits = 0;
878 if (rb->mr && rb->bmap && memory_region_has_ram_discard_manager(rb->mr)) {
879 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
880 MemoryRegionSection section = {
881 .mr = rb->mr,
882 .offset_within_region = 0,
883 .size = int128_make64(qemu_ram_get_used_length(rb)),
886 ram_discard_manager_replay_discarded(rdm, &section,
887 dirty_bitmap_clear_section,
888 &cleared_bits);
890 return cleared_bits;
894 * Check if a host-page aligned page falls into a discarded range as managed by
895 * a RamDiscardManager responsible for the mapped memory region of the RAMBlock.
897 * Note: The result is only stable while migrating (precopy/postcopy).
899 bool ramblock_page_is_discarded(RAMBlock *rb, ram_addr_t start)
901 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
902 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
903 MemoryRegionSection section = {
904 .mr = rb->mr,
905 .offset_within_region = start,
906 .size = int128_make64(qemu_ram_pagesize(rb)),
909 return !ram_discard_manager_is_populated(rdm, &section);
911 return false;
914 /* Called with RCU critical section */
915 static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb)
917 uint64_t new_dirty_pages =
918 cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length);
920 rs->migration_dirty_pages += new_dirty_pages;
921 rs->num_dirty_pages_period += new_dirty_pages;
925 * ram_pagesize_summary: calculate all the pagesizes of a VM
927 * Returns a summary bitmap of the page sizes of all RAMBlocks
929 * For VMs with just normal pages this is equivalent to the host page
930 * size. If it's got some huge pages then it's the OR of all the
931 * different page sizes.
933 uint64_t ram_pagesize_summary(void)
935 RAMBlock *block;
936 uint64_t summary = 0;
938 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
939 summary |= block->page_size;
942 return summary;
945 uint64_t ram_get_total_transferred_pages(void)
947 return stat64_get(&mig_stats.normal_pages) +
948 stat64_get(&mig_stats.zero_pages) +
949 compress_ram_pages() + xbzrle_counters.pages;
952 static void migration_update_rates(RAMState *rs, int64_t end_time)
954 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev;
956 /* calculate period counters */
957 stat64_set(&mig_stats.dirty_pages_rate,
958 rs->num_dirty_pages_period * 1000 /
959 (end_time - rs->time_last_bitmap_sync));
961 if (!page_count) {
962 return;
965 if (migrate_xbzrle()) {
966 double encoded_size, unencoded_size;
968 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss -
969 rs->xbzrle_cache_miss_prev) / page_count;
970 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
971 unencoded_size = (xbzrle_counters.pages - rs->xbzrle_pages_prev) *
972 TARGET_PAGE_SIZE;
973 encoded_size = xbzrle_counters.bytes - rs->xbzrle_bytes_prev;
974 if (xbzrle_counters.pages == rs->xbzrle_pages_prev || !encoded_size) {
975 xbzrle_counters.encoding_rate = 0;
976 } else {
977 xbzrle_counters.encoding_rate = unencoded_size / encoded_size;
979 rs->xbzrle_pages_prev = xbzrle_counters.pages;
980 rs->xbzrle_bytes_prev = xbzrle_counters.bytes;
982 compress_update_rates(page_count);
986 * Enable dirty-limit to throttle down the guest
988 static void migration_dirty_limit_guest(void)
991 * dirty page rate quota for all vCPUs fetched from
992 * migration parameter 'vcpu_dirty_limit'
994 static int64_t quota_dirtyrate;
995 MigrationState *s = migrate_get_current();
998 * If dirty limit already enabled and migration parameter
999 * vcpu-dirty-limit untouched.
1001 if (dirtylimit_in_service() &&
1002 quota_dirtyrate == s->parameters.vcpu_dirty_limit) {
1003 return;
1006 quota_dirtyrate = s->parameters.vcpu_dirty_limit;
1009 * Set all vCPU a quota dirtyrate, note that the second
1010 * parameter will be ignored if setting all vCPU for the vm
1012 qmp_set_vcpu_dirty_limit(false, -1, quota_dirtyrate, NULL);
1013 trace_migration_dirty_limit_guest(quota_dirtyrate);
1016 static void migration_trigger_throttle(RAMState *rs)
1018 uint64_t threshold = migrate_throttle_trigger_threshold();
1019 uint64_t bytes_xfer_period =
1020 migration_transferred_bytes() - rs->bytes_xfer_prev;
1021 uint64_t bytes_dirty_period = rs->num_dirty_pages_period * TARGET_PAGE_SIZE;
1022 uint64_t bytes_dirty_threshold = bytes_xfer_period * threshold / 100;
1024 /* During block migration the auto-converge logic incorrectly detects
1025 * that ram migration makes no progress. Avoid this by disabling the
1026 * throttling logic during the bulk phase of block migration. */
1027 if (blk_mig_bulk_active()) {
1028 return;
1032 * The following detection logic can be refined later. For now:
1033 * Check to see if the ratio between dirtied bytes and the approx.
1034 * amount of bytes that just got transferred since the last time
1035 * we were in this routine reaches the threshold. If that happens
1036 * twice, start or increase throttling.
1038 if ((bytes_dirty_period > bytes_dirty_threshold) &&
1039 (++rs->dirty_rate_high_cnt >= 2)) {
1040 rs->dirty_rate_high_cnt = 0;
1041 if (migrate_auto_converge()) {
1042 trace_migration_throttle();
1043 mig_throttle_guest_down(bytes_dirty_period,
1044 bytes_dirty_threshold);
1045 } else if (migrate_dirty_limit()) {
1046 migration_dirty_limit_guest();
1051 static void migration_bitmap_sync(RAMState *rs, bool last_stage)
1053 RAMBlock *block;
1054 int64_t end_time;
1056 stat64_add(&mig_stats.dirty_sync_count, 1);
1058 if (!rs->time_last_bitmap_sync) {
1059 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1062 trace_migration_bitmap_sync_start();
1063 memory_global_dirty_log_sync(last_stage);
1065 qemu_mutex_lock(&rs->bitmap_mutex);
1066 WITH_RCU_READ_LOCK_GUARD() {
1067 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1068 ramblock_sync_dirty_bitmap(rs, block);
1070 stat64_set(&mig_stats.dirty_bytes_last_sync, ram_bytes_remaining());
1072 qemu_mutex_unlock(&rs->bitmap_mutex);
1074 memory_global_after_dirty_log_sync();
1075 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
1077 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1079 /* more than 1 second = 1000 millisecons */
1080 if (end_time > rs->time_last_bitmap_sync + 1000) {
1081 migration_trigger_throttle(rs);
1083 migration_update_rates(rs, end_time);
1085 rs->target_page_count_prev = rs->target_page_count;
1087 /* reset period counters */
1088 rs->time_last_bitmap_sync = end_time;
1089 rs->num_dirty_pages_period = 0;
1090 rs->bytes_xfer_prev = migration_transferred_bytes();
1092 if (migrate_events()) {
1093 uint64_t generation = stat64_get(&mig_stats.dirty_sync_count);
1094 qapi_event_send_migration_pass(generation);
1098 static void migration_bitmap_sync_precopy(RAMState *rs, bool last_stage)
1100 Error *local_err = NULL;
1103 * The current notifier usage is just an optimization to migration, so we
1104 * don't stop the normal migration process in the error case.
1106 if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) {
1107 error_report_err(local_err);
1108 local_err = NULL;
1111 migration_bitmap_sync(rs, last_stage);
1113 if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) {
1114 error_report_err(local_err);
1118 void ram_release_page(const char *rbname, uint64_t offset)
1120 if (!migrate_release_ram() || !migration_in_postcopy()) {
1121 return;
1124 ram_discard_range(rbname, offset, TARGET_PAGE_SIZE);
1128 * save_zero_page: send the zero page to the stream
1130 * Returns the number of pages written.
1132 * @rs: current RAM state
1133 * @pss: current PSS channel
1134 * @offset: offset inside the block for the page
1136 static int save_zero_page(RAMState *rs, PageSearchStatus *pss,
1137 ram_addr_t offset)
1139 uint8_t *p = pss->block->host + offset;
1140 QEMUFile *file = pss->pss_channel;
1141 int len = 0;
1143 if (migrate_zero_page_detection() == ZERO_PAGE_DETECTION_NONE) {
1144 return 0;
1147 if (!buffer_is_zero(p, TARGET_PAGE_SIZE)) {
1148 return 0;
1151 stat64_add(&mig_stats.zero_pages, 1);
1153 if (migrate_mapped_ram()) {
1154 /* zero pages are not transferred with mapped-ram */
1155 clear_bit_atomic(offset >> TARGET_PAGE_BITS, pss->block->file_bmap);
1156 return 1;
1159 len += save_page_header(pss, file, pss->block, offset | RAM_SAVE_FLAG_ZERO);
1160 qemu_put_byte(file, 0);
1161 len += 1;
1162 ram_release_page(pss->block->idstr, offset);
1163 ram_transferred_add(len);
1166 * Must let xbzrle know, otherwise a previous (now 0'd) cached
1167 * page would be stale.
1169 if (rs->xbzrle_started) {
1170 XBZRLE_cache_lock();
1171 xbzrle_cache_zero_page(pss->block->offset + offset);
1172 XBZRLE_cache_unlock();
1175 return len;
1179 * @pages: the number of pages written by the control path,
1180 * < 0 - error
1181 * > 0 - number of pages written
1183 * Return true if the pages has been saved, otherwise false is returned.
1185 static bool control_save_page(PageSearchStatus *pss,
1186 ram_addr_t offset, int *pages)
1188 int ret;
1190 ret = rdma_control_save_page(pss->pss_channel, pss->block->offset, offset,
1191 TARGET_PAGE_SIZE);
1192 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) {
1193 return false;
1196 if (ret == RAM_SAVE_CONTROL_DELAYED) {
1197 *pages = 1;
1198 return true;
1200 *pages = ret;
1201 return true;
1205 * directly send the page to the stream
1207 * Returns the number of pages written.
1209 * @pss: current PSS channel
1210 * @block: block that contains the page we want to send
1211 * @offset: offset inside the block for the page
1212 * @buf: the page to be sent
1213 * @async: send to page asyncly
1215 static int save_normal_page(PageSearchStatus *pss, RAMBlock *block,
1216 ram_addr_t offset, uint8_t *buf, bool async)
1218 QEMUFile *file = pss->pss_channel;
1220 if (migrate_mapped_ram()) {
1221 qemu_put_buffer_at(file, buf, TARGET_PAGE_SIZE,
1222 block->pages_offset + offset);
1223 set_bit(offset >> TARGET_PAGE_BITS, block->file_bmap);
1224 } else {
1225 ram_transferred_add(save_page_header(pss, pss->pss_channel, block,
1226 offset | RAM_SAVE_FLAG_PAGE));
1227 if (async) {
1228 qemu_put_buffer_async(file, buf, TARGET_PAGE_SIZE,
1229 migrate_release_ram() &&
1230 migration_in_postcopy());
1231 } else {
1232 qemu_put_buffer(file, buf, TARGET_PAGE_SIZE);
1235 ram_transferred_add(TARGET_PAGE_SIZE);
1236 stat64_add(&mig_stats.normal_pages, 1);
1237 return 1;
1241 * ram_save_page: send the given page to the stream
1243 * Returns the number of pages written.
1244 * < 0 - error
1245 * >=0 - Number of pages written - this might legally be 0
1246 * if xbzrle noticed the page was the same.
1248 * @rs: current RAM state
1249 * @block: block that contains the page we want to send
1250 * @offset: offset inside the block for the page
1252 static int ram_save_page(RAMState *rs, PageSearchStatus *pss)
1254 int pages = -1;
1255 uint8_t *p;
1256 bool send_async = true;
1257 RAMBlock *block = pss->block;
1258 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
1259 ram_addr_t current_addr = block->offset + offset;
1261 p = block->host + offset;
1262 trace_ram_save_page(block->idstr, (uint64_t)offset, p);
1264 XBZRLE_cache_lock();
1265 if (rs->xbzrle_started && !migration_in_postcopy()) {
1266 pages = save_xbzrle_page(rs, pss, &p, current_addr,
1267 block, offset);
1268 if (!rs->last_stage) {
1269 /* Can't send this cached data async, since the cache page
1270 * might get updated before it gets to the wire
1272 send_async = false;
1276 /* XBZRLE overflow or normal page */
1277 if (pages == -1) {
1278 pages = save_normal_page(pss, block, offset, p, send_async);
1281 XBZRLE_cache_unlock();
1283 return pages;
1286 static int ram_save_multifd_page(RAMBlock *block, ram_addr_t offset)
1288 if (!multifd_queue_page(block, offset)) {
1289 return -1;
1292 return 1;
1295 int compress_send_queued_data(CompressParam *param)
1297 PageSearchStatus *pss = &ram_state->pss[RAM_CHANNEL_PRECOPY];
1298 MigrationState *ms = migrate_get_current();
1299 QEMUFile *file = ms->to_dst_file;
1300 int len = 0;
1302 RAMBlock *block = param->block;
1303 ram_addr_t offset = param->offset;
1305 if (param->result == RES_NONE) {
1306 return 0;
1309 assert(block == pss->last_sent_block);
1311 if (param->result == RES_ZEROPAGE) {
1312 assert(qemu_file_buffer_empty(param->file));
1313 len += save_page_header(pss, file, block, offset | RAM_SAVE_FLAG_ZERO);
1314 qemu_put_byte(file, 0);
1315 len += 1;
1316 ram_release_page(block->idstr, offset);
1317 } else if (param->result == RES_COMPRESS) {
1318 assert(!qemu_file_buffer_empty(param->file));
1319 len += save_page_header(pss, file, block,
1320 offset | RAM_SAVE_FLAG_COMPRESS_PAGE);
1321 len += qemu_put_qemu_file(file, param->file);
1322 } else {
1323 abort();
1326 update_compress_thread_counts(param, len);
1328 return len;
1331 #define PAGE_ALL_CLEAN 0
1332 #define PAGE_TRY_AGAIN 1
1333 #define PAGE_DIRTY_FOUND 2
1335 * find_dirty_block: find the next dirty page and update any state
1336 * associated with the search process.
1338 * Returns:
1339 * <0: An error happened
1340 * PAGE_ALL_CLEAN: no dirty page found, give up
1341 * PAGE_TRY_AGAIN: no dirty page found, retry for next block
1342 * PAGE_DIRTY_FOUND: dirty page found
1344 * @rs: current RAM state
1345 * @pss: data about the state of the current dirty page scan
1346 * @again: set to false if the search has scanned the whole of RAM
1348 static int find_dirty_block(RAMState *rs, PageSearchStatus *pss)
1350 /* Update pss->page for the next dirty bit in ramblock */
1351 pss_find_next_dirty(pss);
1353 if (pss->complete_round && pss->block == rs->last_seen_block &&
1354 pss->page >= rs->last_page) {
1356 * We've been once around the RAM and haven't found anything.
1357 * Give up.
1359 return PAGE_ALL_CLEAN;
1361 if (!offset_in_ramblock(pss->block,
1362 ((ram_addr_t)pss->page) << TARGET_PAGE_BITS)) {
1363 /* Didn't find anything in this RAM Block */
1364 pss->page = 0;
1365 pss->block = QLIST_NEXT_RCU(pss->block, next);
1366 if (!pss->block) {
1367 if (migrate_multifd() &&
1368 (!migrate_multifd_flush_after_each_section() ||
1369 migrate_mapped_ram())) {
1370 QEMUFile *f = rs->pss[RAM_CHANNEL_PRECOPY].pss_channel;
1371 int ret = multifd_send_sync_main();
1372 if (ret < 0) {
1373 return ret;
1376 if (!migrate_mapped_ram()) {
1377 qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH);
1378 qemu_fflush(f);
1382 * If memory migration starts over, we will meet a dirtied page
1383 * which may still exists in compression threads's ring, so we
1384 * should flush the compressed data to make sure the new page
1385 * is not overwritten by the old one in the destination.
1387 * Also If xbzrle is on, stop using the data compression at this
1388 * point. In theory, xbzrle can do better than compression.
1390 compress_flush_data();
1392 /* Hit the end of the list */
1393 pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
1394 /* Flag that we've looped */
1395 pss->complete_round = true;
1396 /* After the first round, enable XBZRLE. */
1397 if (migrate_xbzrle()) {
1398 rs->xbzrle_started = true;
1401 /* Didn't find anything this time, but try again on the new block */
1402 return PAGE_TRY_AGAIN;
1403 } else {
1404 /* We've found something */
1405 return PAGE_DIRTY_FOUND;
1410 * unqueue_page: gets a page of the queue
1412 * Helper for 'get_queued_page' - gets a page off the queue
1414 * Returns the block of the page (or NULL if none available)
1416 * @rs: current RAM state
1417 * @offset: used to return the offset within the RAMBlock
1419 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
1421 struct RAMSrcPageRequest *entry;
1422 RAMBlock *block = NULL;
1424 if (!postcopy_has_request(rs)) {
1425 return NULL;
1428 QEMU_LOCK_GUARD(&rs->src_page_req_mutex);
1431 * This should _never_ change even after we take the lock, because no one
1432 * should be taking anything off the request list other than us.
1434 assert(postcopy_has_request(rs));
1436 entry = QSIMPLEQ_FIRST(&rs->src_page_requests);
1437 block = entry->rb;
1438 *offset = entry->offset;
1440 if (entry->len > TARGET_PAGE_SIZE) {
1441 entry->len -= TARGET_PAGE_SIZE;
1442 entry->offset += TARGET_PAGE_SIZE;
1443 } else {
1444 memory_region_unref(block->mr);
1445 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
1446 g_free(entry);
1447 migration_consume_urgent_request();
1450 return block;
1453 #if defined(__linux__)
1455 * poll_fault_page: try to get next UFFD write fault page and, if pending fault
1456 * is found, return RAM block pointer and page offset
1458 * Returns pointer to the RAMBlock containing faulting page,
1459 * NULL if no write faults are pending
1461 * @rs: current RAM state
1462 * @offset: page offset from the beginning of the block
1464 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset)
1466 struct uffd_msg uffd_msg;
1467 void *page_address;
1468 RAMBlock *block;
1469 int res;
1471 if (!migrate_background_snapshot()) {
1472 return NULL;
1475 res = uffd_read_events(rs->uffdio_fd, &uffd_msg, 1);
1476 if (res <= 0) {
1477 return NULL;
1480 page_address = (void *)(uintptr_t) uffd_msg.arg.pagefault.address;
1481 block = qemu_ram_block_from_host(page_address, false, offset);
1482 assert(block && (block->flags & RAM_UF_WRITEPROTECT) != 0);
1483 return block;
1487 * ram_save_release_protection: release UFFD write protection after
1488 * a range of pages has been saved
1490 * @rs: current RAM state
1491 * @pss: page-search-status structure
1492 * @start_page: index of the first page in the range relative to pss->block
1494 * Returns 0 on success, negative value in case of an error
1496 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss,
1497 unsigned long start_page)
1499 int res = 0;
1501 /* Check if page is from UFFD-managed region. */
1502 if (pss->block->flags & RAM_UF_WRITEPROTECT) {
1503 void *page_address = pss->block->host + (start_page << TARGET_PAGE_BITS);
1504 uint64_t run_length = (pss->page - start_page) << TARGET_PAGE_BITS;
1506 /* Flush async buffers before un-protect. */
1507 qemu_fflush(pss->pss_channel);
1508 /* Un-protect memory range. */
1509 res = uffd_change_protection(rs->uffdio_fd, page_address, run_length,
1510 false, false);
1513 return res;
1516 /* ram_write_tracking_available: check if kernel supports required UFFD features
1518 * Returns true if supports, false otherwise
1520 bool ram_write_tracking_available(void)
1522 uint64_t uffd_features;
1523 int res;
1525 res = uffd_query_features(&uffd_features);
1526 return (res == 0 &&
1527 (uffd_features & UFFD_FEATURE_PAGEFAULT_FLAG_WP) != 0);
1530 /* ram_write_tracking_compatible: check if guest configuration is
1531 * compatible with 'write-tracking'
1533 * Returns true if compatible, false otherwise
1535 bool ram_write_tracking_compatible(void)
1537 const uint64_t uffd_ioctls_mask = BIT(_UFFDIO_WRITEPROTECT);
1538 int uffd_fd;
1539 RAMBlock *block;
1540 bool ret = false;
1542 /* Open UFFD file descriptor */
1543 uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, false);
1544 if (uffd_fd < 0) {
1545 return false;
1548 RCU_READ_LOCK_GUARD();
1550 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1551 uint64_t uffd_ioctls;
1553 /* Nothing to do with read-only and MMIO-writable regions */
1554 if (block->mr->readonly || block->mr->rom_device) {
1555 continue;
1557 /* Try to register block memory via UFFD-IO to track writes */
1558 if (uffd_register_memory(uffd_fd, block->host, block->max_length,
1559 UFFDIO_REGISTER_MODE_WP, &uffd_ioctls)) {
1560 goto out;
1562 if ((uffd_ioctls & uffd_ioctls_mask) != uffd_ioctls_mask) {
1563 goto out;
1566 ret = true;
1568 out:
1569 uffd_close_fd(uffd_fd);
1570 return ret;
1573 static inline void populate_read_range(RAMBlock *block, ram_addr_t offset,
1574 ram_addr_t size)
1576 const ram_addr_t end = offset + size;
1579 * We read one byte of each page; this will preallocate page tables if
1580 * required and populate the shared zeropage on MAP_PRIVATE anonymous memory
1581 * where no page was populated yet. This might require adaption when
1582 * supporting other mappings, like shmem.
1584 for (; offset < end; offset += block->page_size) {
1585 char tmp = *((char *)block->host + offset);
1587 /* Don't optimize the read out */
1588 asm volatile("" : "+r" (tmp));
1592 static inline int populate_read_section(MemoryRegionSection *section,
1593 void *opaque)
1595 const hwaddr size = int128_get64(section->size);
1596 hwaddr offset = section->offset_within_region;
1597 RAMBlock *block = section->mr->ram_block;
1599 populate_read_range(block, offset, size);
1600 return 0;
1604 * ram_block_populate_read: preallocate page tables and populate pages in the
1605 * RAM block by reading a byte of each page.
1607 * Since it's solely used for userfault_fd WP feature, here we just
1608 * hardcode page size to qemu_real_host_page_size.
1610 * @block: RAM block to populate
1612 static void ram_block_populate_read(RAMBlock *rb)
1615 * Skip populating all pages that fall into a discarded range as managed by
1616 * a RamDiscardManager responsible for the mapped memory region of the
1617 * RAMBlock. Such discarded ("logically unplugged") parts of a RAMBlock
1618 * must not get populated automatically. We don't have to track
1619 * modifications via userfaultfd WP reliably, because these pages will
1620 * not be part of the migration stream either way -- see
1621 * ramblock_dirty_bitmap_exclude_discarded_pages().
1623 * Note: The result is only stable while migrating (precopy/postcopy).
1625 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
1626 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
1627 MemoryRegionSection section = {
1628 .mr = rb->mr,
1629 .offset_within_region = 0,
1630 .size = rb->mr->size,
1633 ram_discard_manager_replay_populated(rdm, &section,
1634 populate_read_section, NULL);
1635 } else {
1636 populate_read_range(rb, 0, rb->used_length);
1641 * ram_write_tracking_prepare: prepare for UFFD-WP memory tracking
1643 void ram_write_tracking_prepare(void)
1645 RAMBlock *block;
1647 RCU_READ_LOCK_GUARD();
1649 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1650 /* Nothing to do with read-only and MMIO-writable regions */
1651 if (block->mr->readonly || block->mr->rom_device) {
1652 continue;
1656 * Populate pages of the RAM block before enabling userfault_fd
1657 * write protection.
1659 * This stage is required since ioctl(UFFDIO_WRITEPROTECT) with
1660 * UFFDIO_WRITEPROTECT_MODE_WP mode setting would silently skip
1661 * pages with pte_none() entries in page table.
1663 ram_block_populate_read(block);
1667 static inline int uffd_protect_section(MemoryRegionSection *section,
1668 void *opaque)
1670 const hwaddr size = int128_get64(section->size);
1671 const hwaddr offset = section->offset_within_region;
1672 RAMBlock *rb = section->mr->ram_block;
1673 int uffd_fd = (uintptr_t)opaque;
1675 return uffd_change_protection(uffd_fd, rb->host + offset, size, true,
1676 false);
1679 static int ram_block_uffd_protect(RAMBlock *rb, int uffd_fd)
1681 assert(rb->flags & RAM_UF_WRITEPROTECT);
1683 /* See ram_block_populate_read() */
1684 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
1685 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
1686 MemoryRegionSection section = {
1687 .mr = rb->mr,
1688 .offset_within_region = 0,
1689 .size = rb->mr->size,
1692 return ram_discard_manager_replay_populated(rdm, &section,
1693 uffd_protect_section,
1694 (void *)(uintptr_t)uffd_fd);
1696 return uffd_change_protection(uffd_fd, rb->host,
1697 rb->used_length, true, false);
1701 * ram_write_tracking_start: start UFFD-WP memory tracking
1703 * Returns 0 for success or negative value in case of error
1705 int ram_write_tracking_start(void)
1707 int uffd_fd;
1708 RAMState *rs = ram_state;
1709 RAMBlock *block;
1711 /* Open UFFD file descriptor */
1712 uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, true);
1713 if (uffd_fd < 0) {
1714 return uffd_fd;
1716 rs->uffdio_fd = uffd_fd;
1718 RCU_READ_LOCK_GUARD();
1720 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1721 /* Nothing to do with read-only and MMIO-writable regions */
1722 if (block->mr->readonly || block->mr->rom_device) {
1723 continue;
1726 /* Register block memory with UFFD to track writes */
1727 if (uffd_register_memory(rs->uffdio_fd, block->host,
1728 block->max_length, UFFDIO_REGISTER_MODE_WP, NULL)) {
1729 goto fail;
1731 block->flags |= RAM_UF_WRITEPROTECT;
1732 memory_region_ref(block->mr);
1734 /* Apply UFFD write protection to the block memory range */
1735 if (ram_block_uffd_protect(block, uffd_fd)) {
1736 goto fail;
1739 trace_ram_write_tracking_ramblock_start(block->idstr, block->page_size,
1740 block->host, block->max_length);
1743 return 0;
1745 fail:
1746 error_report("ram_write_tracking_start() failed: restoring initial memory state");
1748 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1749 if ((block->flags & RAM_UF_WRITEPROTECT) == 0) {
1750 continue;
1752 uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length);
1753 /* Cleanup flags and remove reference */
1754 block->flags &= ~RAM_UF_WRITEPROTECT;
1755 memory_region_unref(block->mr);
1758 uffd_close_fd(uffd_fd);
1759 rs->uffdio_fd = -1;
1760 return -1;
1764 * ram_write_tracking_stop: stop UFFD-WP memory tracking and remove protection
1766 void ram_write_tracking_stop(void)
1768 RAMState *rs = ram_state;
1769 RAMBlock *block;
1771 RCU_READ_LOCK_GUARD();
1773 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1774 if ((block->flags & RAM_UF_WRITEPROTECT) == 0) {
1775 continue;
1777 uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length);
1779 trace_ram_write_tracking_ramblock_stop(block->idstr, block->page_size,
1780 block->host, block->max_length);
1782 /* Cleanup flags and remove reference */
1783 block->flags &= ~RAM_UF_WRITEPROTECT;
1784 memory_region_unref(block->mr);
1787 /* Finally close UFFD file descriptor */
1788 uffd_close_fd(rs->uffdio_fd);
1789 rs->uffdio_fd = -1;
1792 #else
1793 /* No target OS support, stubs just fail or ignore */
1795 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset)
1797 (void) rs;
1798 (void) offset;
1800 return NULL;
1803 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss,
1804 unsigned long start_page)
1806 (void) rs;
1807 (void) pss;
1808 (void) start_page;
1810 return 0;
1813 bool ram_write_tracking_available(void)
1815 return false;
1818 bool ram_write_tracking_compatible(void)
1820 assert(0);
1821 return false;
1824 int ram_write_tracking_start(void)
1826 assert(0);
1827 return -1;
1830 void ram_write_tracking_stop(void)
1832 assert(0);
1834 #endif /* defined(__linux__) */
1837 * get_queued_page: unqueue a page from the postcopy requests
1839 * Skips pages that are already sent (!dirty)
1841 * Returns true if a queued page is found
1843 * @rs: current RAM state
1844 * @pss: data about the state of the current dirty page scan
1846 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
1848 RAMBlock *block;
1849 ram_addr_t offset;
1850 bool dirty;
1852 do {
1853 block = unqueue_page(rs, &offset);
1855 * We're sending this page, and since it's postcopy nothing else
1856 * will dirty it, and we must make sure it doesn't get sent again
1857 * even if this queue request was received after the background
1858 * search already sent it.
1860 if (block) {
1861 unsigned long page;
1863 page = offset >> TARGET_PAGE_BITS;
1864 dirty = test_bit(page, block->bmap);
1865 if (!dirty) {
1866 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
1867 page);
1868 } else {
1869 trace_get_queued_page(block->idstr, (uint64_t)offset, page);
1873 } while (block && !dirty);
1875 if (!block) {
1877 * Poll write faults too if background snapshot is enabled; that's
1878 * when we have vcpus got blocked by the write protected pages.
1880 block = poll_fault_page(rs, &offset);
1883 if (block) {
1885 * We want the background search to continue from the queued page
1886 * since the guest is likely to want other pages near to the page
1887 * it just requested.
1889 pss->block = block;
1890 pss->page = offset >> TARGET_PAGE_BITS;
1893 * This unqueued page would break the "one round" check, even is
1894 * really rare.
1896 pss->complete_round = false;
1899 return !!block;
1903 * migration_page_queue_free: drop any remaining pages in the ram
1904 * request queue
1906 * It should be empty at the end anyway, but in error cases there may
1907 * be some left. in case that there is any page left, we drop it.
1910 static void migration_page_queue_free(RAMState *rs)
1912 struct RAMSrcPageRequest *mspr, *next_mspr;
1913 /* This queue generally should be empty - but in the case of a failed
1914 * migration might have some droppings in.
1916 RCU_READ_LOCK_GUARD();
1917 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
1918 memory_region_unref(mspr->rb->mr);
1919 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
1920 g_free(mspr);
1925 * ram_save_queue_pages: queue the page for transmission
1927 * A request from postcopy destination for example.
1929 * Returns zero on success or negative on error
1931 * @rbname: Name of the RAMBLock of the request. NULL means the
1932 * same that last one.
1933 * @start: starting address from the start of the RAMBlock
1934 * @len: length (in bytes) to send
1936 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len,
1937 Error **errp)
1939 RAMBlock *ramblock;
1940 RAMState *rs = ram_state;
1942 stat64_add(&mig_stats.postcopy_requests, 1);
1943 RCU_READ_LOCK_GUARD();
1945 if (!rbname) {
1946 /* Reuse last RAMBlock */
1947 ramblock = rs->last_req_rb;
1949 if (!ramblock) {
1951 * Shouldn't happen, we can't reuse the last RAMBlock if
1952 * it's the 1st request.
1954 error_setg(errp, "MIG_RP_MSG_REQ_PAGES has no previous block");
1955 return -1;
1957 } else {
1958 ramblock = qemu_ram_block_by_name(rbname);
1960 if (!ramblock) {
1961 /* We shouldn't be asked for a non-existent RAMBlock */
1962 error_setg(errp, "MIG_RP_MSG_REQ_PAGES has no block '%s'", rbname);
1963 return -1;
1965 rs->last_req_rb = ramblock;
1967 trace_ram_save_queue_pages(ramblock->idstr, start, len);
1968 if (!offset_in_ramblock(ramblock, start + len - 1)) {
1969 error_setg(errp, "MIG_RP_MSG_REQ_PAGES request overrun, "
1970 "start=" RAM_ADDR_FMT " len="
1971 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
1972 start, len, ramblock->used_length);
1973 return -1;
1977 * When with postcopy preempt, we send back the page directly in the
1978 * rp-return thread.
1980 if (postcopy_preempt_active()) {
1981 ram_addr_t page_start = start >> TARGET_PAGE_BITS;
1982 size_t page_size = qemu_ram_pagesize(ramblock);
1983 PageSearchStatus *pss = &ram_state->pss[RAM_CHANNEL_POSTCOPY];
1984 int ret = 0;
1986 qemu_mutex_lock(&rs->bitmap_mutex);
1988 pss_init(pss, ramblock, page_start);
1990 * Always use the preempt channel, and make sure it's there. It's
1991 * safe to access without lock, because when rp-thread is running
1992 * we should be the only one who operates on the qemufile
1994 pss->pss_channel = migrate_get_current()->postcopy_qemufile_src;
1995 assert(pss->pss_channel);
1998 * It must be either one or multiple of host page size. Just
1999 * assert; if something wrong we're mostly split brain anyway.
2001 assert(len % page_size == 0);
2002 while (len) {
2003 if (ram_save_host_page_urgent(pss)) {
2004 error_setg(errp, "ram_save_host_page_urgent() failed: "
2005 "ramblock=%s, start_addr=0x"RAM_ADDR_FMT,
2006 ramblock->idstr, start);
2007 ret = -1;
2008 break;
2011 * NOTE: after ram_save_host_page_urgent() succeeded, pss->page
2012 * will automatically be moved and point to the next host page
2013 * we're going to send, so no need to update here.
2015 * Normally QEMU never sends >1 host page in requests, so
2016 * logically we don't even need that as the loop should only
2017 * run once, but just to be consistent.
2019 len -= page_size;
2021 qemu_mutex_unlock(&rs->bitmap_mutex);
2023 return ret;
2026 struct RAMSrcPageRequest *new_entry =
2027 g_new0(struct RAMSrcPageRequest, 1);
2028 new_entry->rb = ramblock;
2029 new_entry->offset = start;
2030 new_entry->len = len;
2032 memory_region_ref(ramblock->mr);
2033 qemu_mutex_lock(&rs->src_page_req_mutex);
2034 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
2035 migration_make_urgent_request();
2036 qemu_mutex_unlock(&rs->src_page_req_mutex);
2038 return 0;
2042 * try to compress the page before posting it out, return true if the page
2043 * has been properly handled by compression, otherwise needs other
2044 * paths to handle it
2046 static bool save_compress_page(RAMState *rs, PageSearchStatus *pss,
2047 ram_addr_t offset)
2049 if (!migrate_compress()) {
2050 return false;
2054 * When starting the process of a new block, the first page of
2055 * the block should be sent out before other pages in the same
2056 * block, and all the pages in last block should have been sent
2057 * out, keeping this order is important, because the 'cont' flag
2058 * is used to avoid resending the block name.
2060 * We post the fist page as normal page as compression will take
2061 * much CPU resource.
2063 if (pss->block != pss->last_sent_block) {
2064 compress_flush_data();
2065 return false;
2068 return compress_page_with_multi_thread(pss->block, offset,
2069 compress_send_queued_data);
2073 * ram_save_target_page_legacy: save one target page
2075 * Returns the number of pages written
2077 * @rs: current RAM state
2078 * @pss: data about the page we want to send
2080 static int ram_save_target_page_legacy(RAMState *rs, PageSearchStatus *pss)
2082 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
2083 int res;
2085 if (control_save_page(pss, offset, &res)) {
2086 return res;
2089 if (save_compress_page(rs, pss, offset)) {
2090 return 1;
2093 if (save_zero_page(rs, pss, offset)) {
2094 return 1;
2097 return ram_save_page(rs, pss);
2101 * ram_save_target_page_multifd: send one target page to multifd workers
2103 * Returns 1 if the page was queued, -1 otherwise.
2105 * @rs: current RAM state
2106 * @pss: data about the page we want to send
2108 static int ram_save_target_page_multifd(RAMState *rs, PageSearchStatus *pss)
2110 RAMBlock *block = pss->block;
2111 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
2114 * While using multifd live migration, we still need to handle zero
2115 * page checking on the migration main thread.
2117 if (migrate_zero_page_detection() == ZERO_PAGE_DETECTION_LEGACY) {
2118 if (save_zero_page(rs, pss, offset)) {
2119 return 1;
2123 return ram_save_multifd_page(block, offset);
2126 /* Should be called before sending a host page */
2127 static void pss_host_page_prepare(PageSearchStatus *pss)
2129 /* How many guest pages are there in one host page? */
2130 size_t guest_pfns = qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2132 pss->host_page_sending = true;
2133 if (guest_pfns <= 1) {
2135 * This covers both when guest psize == host psize, or when guest
2136 * has larger psize than the host (guest_pfns==0).
2138 * For the latter, we always send one whole guest page per
2139 * iteration of the host page (example: an Alpha VM on x86 host
2140 * will have guest psize 8K while host psize 4K).
2142 pss->host_page_start = pss->page;
2143 pss->host_page_end = pss->page + 1;
2144 } else {
2146 * The host page spans over multiple guest pages, we send them
2147 * within the same host page iteration.
2149 pss->host_page_start = ROUND_DOWN(pss->page, guest_pfns);
2150 pss->host_page_end = ROUND_UP(pss->page + 1, guest_pfns);
2155 * Whether the page pointed by PSS is within the host page being sent.
2156 * Must be called after a previous pss_host_page_prepare().
2158 static bool pss_within_range(PageSearchStatus *pss)
2160 ram_addr_t ram_addr;
2162 assert(pss->host_page_sending);
2164 /* Over host-page boundary? */
2165 if (pss->page >= pss->host_page_end) {
2166 return false;
2169 ram_addr = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
2171 return offset_in_ramblock(pss->block, ram_addr);
2174 static void pss_host_page_finish(PageSearchStatus *pss)
2176 pss->host_page_sending = false;
2177 /* This is not needed, but just to reset it */
2178 pss->host_page_start = pss->host_page_end = 0;
2182 * Send an urgent host page specified by `pss'. Need to be called with
2183 * bitmap_mutex held.
2185 * Returns 0 if save host page succeeded, false otherwise.
2187 static int ram_save_host_page_urgent(PageSearchStatus *pss)
2189 bool page_dirty, sent = false;
2190 RAMState *rs = ram_state;
2191 int ret = 0;
2193 trace_postcopy_preempt_send_host_page(pss->block->idstr, pss->page);
2194 pss_host_page_prepare(pss);
2197 * If precopy is sending the same page, let it be done in precopy, or
2198 * we could send the same page in two channels and none of them will
2199 * receive the whole page.
2201 if (pss_overlap(pss, &ram_state->pss[RAM_CHANNEL_PRECOPY])) {
2202 trace_postcopy_preempt_hit(pss->block->idstr,
2203 pss->page << TARGET_PAGE_BITS);
2204 return 0;
2207 do {
2208 page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page);
2210 if (page_dirty) {
2211 /* Be strict to return code; it must be 1, or what else? */
2212 if (migration_ops->ram_save_target_page(rs, pss) != 1) {
2213 error_report_once("%s: ram_save_target_page failed", __func__);
2214 ret = -1;
2215 goto out;
2217 sent = true;
2219 pss_find_next_dirty(pss);
2220 } while (pss_within_range(pss));
2221 out:
2222 pss_host_page_finish(pss);
2223 /* For urgent requests, flush immediately if sent */
2224 if (sent) {
2225 qemu_fflush(pss->pss_channel);
2227 return ret;
2231 * ram_save_host_page: save a whole host page
2233 * Starting at *offset send pages up to the end of the current host
2234 * page. It's valid for the initial offset to point into the middle of
2235 * a host page in which case the remainder of the hostpage is sent.
2236 * Only dirty target pages are sent. Note that the host page size may
2237 * be a huge page for this block.
2239 * The saving stops at the boundary of the used_length of the block
2240 * if the RAMBlock isn't a multiple of the host page size.
2242 * The caller must be with ram_state.bitmap_mutex held to call this
2243 * function. Note that this function can temporarily release the lock, but
2244 * when the function is returned it'll make sure the lock is still held.
2246 * Returns the number of pages written or negative on error
2248 * @rs: current RAM state
2249 * @pss: data about the page we want to send
2251 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss)
2253 bool page_dirty, preempt_active = postcopy_preempt_active();
2254 int tmppages, pages = 0;
2255 size_t pagesize_bits =
2256 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2257 unsigned long start_page = pss->page;
2258 int res;
2260 if (migrate_ram_is_ignored(pss->block)) {
2261 error_report("block %s should not be migrated !", pss->block->idstr);
2262 return 0;
2265 /* Update host page boundary information */
2266 pss_host_page_prepare(pss);
2268 do {
2269 page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page);
2271 /* Check the pages is dirty and if it is send it */
2272 if (page_dirty) {
2274 * Properly yield the lock only in postcopy preempt mode
2275 * because both migration thread and rp-return thread can
2276 * operate on the bitmaps.
2278 if (preempt_active) {
2279 qemu_mutex_unlock(&rs->bitmap_mutex);
2281 tmppages = migration_ops->ram_save_target_page(rs, pss);
2282 if (tmppages >= 0) {
2283 pages += tmppages;
2285 * Allow rate limiting to happen in the middle of huge pages if
2286 * something is sent in the current iteration.
2288 if (pagesize_bits > 1 && tmppages > 0) {
2289 migration_rate_limit();
2292 if (preempt_active) {
2293 qemu_mutex_lock(&rs->bitmap_mutex);
2295 } else {
2296 tmppages = 0;
2299 if (tmppages < 0) {
2300 pss_host_page_finish(pss);
2301 return tmppages;
2304 pss_find_next_dirty(pss);
2305 } while (pss_within_range(pss));
2307 pss_host_page_finish(pss);
2309 res = ram_save_release_protection(rs, pss, start_page);
2310 return (res < 0 ? res : pages);
2314 * ram_find_and_save_block: finds a dirty page and sends it to f
2316 * Called within an RCU critical section.
2318 * Returns the number of pages written where zero means no dirty pages,
2319 * or negative on error
2321 * @rs: current RAM state
2323 * On systems where host-page-size > target-page-size it will send all the
2324 * pages in a host page that are dirty.
2326 static int ram_find_and_save_block(RAMState *rs)
2328 PageSearchStatus *pss = &rs->pss[RAM_CHANNEL_PRECOPY];
2329 int pages = 0;
2331 /* No dirty page as there is zero RAM */
2332 if (!rs->ram_bytes_total) {
2333 return pages;
2337 * Always keep last_seen_block/last_page valid during this procedure,
2338 * because find_dirty_block() relies on these values (e.g., we compare
2339 * last_seen_block with pss.block to see whether we searched all the
2340 * ramblocks) to detect the completion of migration. Having NULL value
2341 * of last_seen_block can conditionally cause below loop to run forever.
2343 if (!rs->last_seen_block) {
2344 rs->last_seen_block = QLIST_FIRST_RCU(&ram_list.blocks);
2345 rs->last_page = 0;
2348 pss_init(pss, rs->last_seen_block, rs->last_page);
2350 while (true){
2351 if (!get_queued_page(rs, pss)) {
2352 /* priority queue empty, so just search for something dirty */
2353 int res = find_dirty_block(rs, pss);
2354 if (res != PAGE_DIRTY_FOUND) {
2355 if (res == PAGE_ALL_CLEAN) {
2356 break;
2357 } else if (res == PAGE_TRY_AGAIN) {
2358 continue;
2359 } else if (res < 0) {
2360 pages = res;
2361 break;
2365 pages = ram_save_host_page(rs, pss);
2366 if (pages) {
2367 break;
2371 rs->last_seen_block = pss->block;
2372 rs->last_page = pss->page;
2374 return pages;
2377 static uint64_t ram_bytes_total_with_ignored(void)
2379 RAMBlock *block;
2380 uint64_t total = 0;
2382 RCU_READ_LOCK_GUARD();
2384 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2385 total += block->used_length;
2387 return total;
2390 uint64_t ram_bytes_total(void)
2392 RAMBlock *block;
2393 uint64_t total = 0;
2395 RCU_READ_LOCK_GUARD();
2397 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2398 total += block->used_length;
2400 return total;
2403 static void xbzrle_load_setup(void)
2405 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
2408 static void xbzrle_load_cleanup(void)
2410 g_free(XBZRLE.decoded_buf);
2411 XBZRLE.decoded_buf = NULL;
2414 static void ram_state_cleanup(RAMState **rsp)
2416 if (*rsp) {
2417 migration_page_queue_free(*rsp);
2418 qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
2419 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
2420 g_free(*rsp);
2421 *rsp = NULL;
2425 static void xbzrle_cleanup(void)
2427 XBZRLE_cache_lock();
2428 if (XBZRLE.cache) {
2429 cache_fini(XBZRLE.cache);
2430 g_free(XBZRLE.encoded_buf);
2431 g_free(XBZRLE.current_buf);
2432 g_free(XBZRLE.zero_target_page);
2433 XBZRLE.cache = NULL;
2434 XBZRLE.encoded_buf = NULL;
2435 XBZRLE.current_buf = NULL;
2436 XBZRLE.zero_target_page = NULL;
2438 XBZRLE_cache_unlock();
2441 static void ram_save_cleanup(void *opaque)
2443 RAMState **rsp = opaque;
2444 RAMBlock *block;
2446 /* We don't use dirty log with background snapshots */
2447 if (!migrate_background_snapshot()) {
2448 /* caller have hold BQL or is in a bh, so there is
2449 * no writing race against the migration bitmap
2451 if (global_dirty_tracking & GLOBAL_DIRTY_MIGRATION) {
2453 * do not stop dirty log without starting it, since
2454 * memory_global_dirty_log_stop will assert that
2455 * memory_global_dirty_log_start/stop used in pairs
2457 memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION);
2461 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2462 g_free(block->clear_bmap);
2463 block->clear_bmap = NULL;
2464 g_free(block->bmap);
2465 block->bmap = NULL;
2468 xbzrle_cleanup();
2469 compress_threads_save_cleanup();
2470 ram_state_cleanup(rsp);
2471 g_free(migration_ops);
2472 migration_ops = NULL;
2475 static void ram_state_reset(RAMState *rs)
2477 int i;
2479 for (i = 0; i < RAM_CHANNEL_MAX; i++) {
2480 rs->pss[i].last_sent_block = NULL;
2483 rs->last_seen_block = NULL;
2484 rs->last_page = 0;
2485 rs->last_version = ram_list.version;
2486 rs->xbzrle_started = false;
2489 #define MAX_WAIT 50 /* ms, half buffered_file limit */
2491 /* **** functions for postcopy ***** */
2493 void ram_postcopy_migrated_memory_release(MigrationState *ms)
2495 struct RAMBlock *block;
2497 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2498 unsigned long *bitmap = block->bmap;
2499 unsigned long range = block->used_length >> TARGET_PAGE_BITS;
2500 unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
2502 while (run_start < range) {
2503 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
2504 ram_discard_range(block->idstr,
2505 ((ram_addr_t)run_start) << TARGET_PAGE_BITS,
2506 ((ram_addr_t)(run_end - run_start))
2507 << TARGET_PAGE_BITS);
2508 run_start = find_next_zero_bit(bitmap, range, run_end + 1);
2514 * postcopy_send_discard_bm_ram: discard a RAMBlock
2516 * Callback from postcopy_each_ram_send_discard for each RAMBlock
2518 * @ms: current migration state
2519 * @block: RAMBlock to discard
2521 static void postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block)
2523 unsigned long end = block->used_length >> TARGET_PAGE_BITS;
2524 unsigned long current;
2525 unsigned long *bitmap = block->bmap;
2527 for (current = 0; current < end; ) {
2528 unsigned long one = find_next_bit(bitmap, end, current);
2529 unsigned long zero, discard_length;
2531 if (one >= end) {
2532 break;
2535 zero = find_next_zero_bit(bitmap, end, one + 1);
2537 if (zero >= end) {
2538 discard_length = end - one;
2539 } else {
2540 discard_length = zero - one;
2542 postcopy_discard_send_range(ms, one, discard_length);
2543 current = one + discard_length;
2547 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block);
2550 * postcopy_each_ram_send_discard: discard all RAMBlocks
2552 * Utility for the outgoing postcopy code.
2553 * Calls postcopy_send_discard_bm_ram for each RAMBlock
2554 * passing it bitmap indexes and name.
2555 * (qemu_ram_foreach_block ends up passing unscaled lengths
2556 * which would mean postcopy code would have to deal with target page)
2558 * @ms: current migration state
2560 static void postcopy_each_ram_send_discard(MigrationState *ms)
2562 struct RAMBlock *block;
2564 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2565 postcopy_discard_send_init(ms, block->idstr);
2568 * Deal with TPS != HPS and huge pages. It discard any partially sent
2569 * host-page size chunks, mark any partially dirty host-page size
2570 * chunks as all dirty. In this case the host-page is the host-page
2571 * for the particular RAMBlock, i.e. it might be a huge page.
2573 postcopy_chunk_hostpages_pass(ms, block);
2576 * Postcopy sends chunks of bitmap over the wire, but it
2577 * just needs indexes at this point, avoids it having
2578 * target page specific code.
2580 postcopy_send_discard_bm_ram(ms, block);
2581 postcopy_discard_send_finish(ms);
2586 * postcopy_chunk_hostpages_pass: canonicalize bitmap in hostpages
2588 * Helper for postcopy_chunk_hostpages; it's called twice to
2589 * canonicalize the two bitmaps, that are similar, but one is
2590 * inverted.
2592 * Postcopy requires that all target pages in a hostpage are dirty or
2593 * clean, not a mix. This function canonicalizes the bitmaps.
2595 * @ms: current migration state
2596 * @block: block that contains the page we want to canonicalize
2598 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block)
2600 RAMState *rs = ram_state;
2601 unsigned long *bitmap = block->bmap;
2602 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
2603 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
2604 unsigned long run_start;
2606 if (block->page_size == TARGET_PAGE_SIZE) {
2607 /* Easy case - TPS==HPS for a non-huge page RAMBlock */
2608 return;
2611 /* Find a dirty page */
2612 run_start = find_next_bit(bitmap, pages, 0);
2614 while (run_start < pages) {
2617 * If the start of this run of pages is in the middle of a host
2618 * page, then we need to fixup this host page.
2620 if (QEMU_IS_ALIGNED(run_start, host_ratio)) {
2621 /* Find the end of this run */
2622 run_start = find_next_zero_bit(bitmap, pages, run_start + 1);
2624 * If the end isn't at the start of a host page, then the
2625 * run doesn't finish at the end of a host page
2626 * and we need to discard.
2630 if (!QEMU_IS_ALIGNED(run_start, host_ratio)) {
2631 unsigned long page;
2632 unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start,
2633 host_ratio);
2634 run_start = QEMU_ALIGN_UP(run_start, host_ratio);
2636 /* Clean up the bitmap */
2637 for (page = fixup_start_addr;
2638 page < fixup_start_addr + host_ratio; page++) {
2640 * Remark them as dirty, updating the count for any pages
2641 * that weren't previously dirty.
2643 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
2647 /* Find the next dirty page for the next iteration */
2648 run_start = find_next_bit(bitmap, pages, run_start);
2653 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
2655 * Transmit the set of pages to be discarded after precopy to the target
2656 * these are pages that:
2657 * a) Have been previously transmitted but are now dirty again
2658 * b) Pages that have never been transmitted, this ensures that
2659 * any pages on the destination that have been mapped by background
2660 * tasks get discarded (transparent huge pages is the specific concern)
2661 * Hopefully this is pretty sparse
2663 * @ms: current migration state
2665 void ram_postcopy_send_discard_bitmap(MigrationState *ms)
2667 RAMState *rs = ram_state;
2669 RCU_READ_LOCK_GUARD();
2671 /* This should be our last sync, the src is now paused */
2672 migration_bitmap_sync(rs, false);
2674 /* Easiest way to make sure we don't resume in the middle of a host-page */
2675 rs->pss[RAM_CHANNEL_PRECOPY].last_sent_block = NULL;
2676 rs->last_seen_block = NULL;
2677 rs->last_page = 0;
2679 postcopy_each_ram_send_discard(ms);
2681 trace_ram_postcopy_send_discard_bitmap();
2685 * ram_discard_range: discard dirtied pages at the beginning of postcopy
2687 * Returns zero on success
2689 * @rbname: name of the RAMBlock of the request. NULL means the
2690 * same that last one.
2691 * @start: RAMBlock starting page
2692 * @length: RAMBlock size
2694 int ram_discard_range(const char *rbname, uint64_t start, size_t length)
2696 trace_ram_discard_range(rbname, start, length);
2698 RCU_READ_LOCK_GUARD();
2699 RAMBlock *rb = qemu_ram_block_by_name(rbname);
2701 if (!rb) {
2702 error_report("ram_discard_range: Failed to find block '%s'", rbname);
2703 return -1;
2707 * On source VM, we don't need to update the received bitmap since
2708 * we don't even have one.
2710 if (rb->receivedmap) {
2711 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
2712 length >> qemu_target_page_bits());
2715 return ram_block_discard_range(rb, start, length);
2719 * For every allocation, we will try not to crash the VM if the
2720 * allocation failed.
2722 static int xbzrle_init(void)
2724 Error *local_err = NULL;
2726 if (!migrate_xbzrle()) {
2727 return 0;
2730 XBZRLE_cache_lock();
2732 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
2733 if (!XBZRLE.zero_target_page) {
2734 error_report("%s: Error allocating zero page", __func__);
2735 goto err_out;
2738 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
2739 TARGET_PAGE_SIZE, &local_err);
2740 if (!XBZRLE.cache) {
2741 error_report_err(local_err);
2742 goto free_zero_page;
2745 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
2746 if (!XBZRLE.encoded_buf) {
2747 error_report("%s: Error allocating encoded_buf", __func__);
2748 goto free_cache;
2751 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
2752 if (!XBZRLE.current_buf) {
2753 error_report("%s: Error allocating current_buf", __func__);
2754 goto free_encoded_buf;
2757 /* We are all good */
2758 XBZRLE_cache_unlock();
2759 return 0;
2761 free_encoded_buf:
2762 g_free(XBZRLE.encoded_buf);
2763 XBZRLE.encoded_buf = NULL;
2764 free_cache:
2765 cache_fini(XBZRLE.cache);
2766 XBZRLE.cache = NULL;
2767 free_zero_page:
2768 g_free(XBZRLE.zero_target_page);
2769 XBZRLE.zero_target_page = NULL;
2770 err_out:
2771 XBZRLE_cache_unlock();
2772 return -ENOMEM;
2775 static int ram_state_init(RAMState **rsp)
2777 *rsp = g_try_new0(RAMState, 1);
2779 if (!*rsp) {
2780 error_report("%s: Init ramstate fail", __func__);
2781 return -1;
2784 qemu_mutex_init(&(*rsp)->bitmap_mutex);
2785 qemu_mutex_init(&(*rsp)->src_page_req_mutex);
2786 QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
2787 (*rsp)->ram_bytes_total = ram_bytes_total();
2790 * Count the total number of pages used by ram blocks not including any
2791 * gaps due to alignment or unplugs.
2792 * This must match with the initial values of dirty bitmap.
2794 (*rsp)->migration_dirty_pages = (*rsp)->ram_bytes_total >> TARGET_PAGE_BITS;
2795 ram_state_reset(*rsp);
2797 return 0;
2800 static void ram_list_init_bitmaps(void)
2802 MigrationState *ms = migrate_get_current();
2803 RAMBlock *block;
2804 unsigned long pages;
2805 uint8_t shift;
2807 /* Skip setting bitmap if there is no RAM */
2808 if (ram_bytes_total()) {
2809 shift = ms->clear_bitmap_shift;
2810 if (shift > CLEAR_BITMAP_SHIFT_MAX) {
2811 error_report("clear_bitmap_shift (%u) too big, using "
2812 "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX);
2813 shift = CLEAR_BITMAP_SHIFT_MAX;
2814 } else if (shift < CLEAR_BITMAP_SHIFT_MIN) {
2815 error_report("clear_bitmap_shift (%u) too small, using "
2816 "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN);
2817 shift = CLEAR_BITMAP_SHIFT_MIN;
2820 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2821 pages = block->max_length >> TARGET_PAGE_BITS;
2823 * The initial dirty bitmap for migration must be set with all
2824 * ones to make sure we'll migrate every guest RAM page to
2825 * destination.
2826 * Here we set RAMBlock.bmap all to 1 because when rebegin a
2827 * new migration after a failed migration, ram_list.
2828 * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole
2829 * guest memory.
2831 block->bmap = bitmap_new(pages);
2832 bitmap_set(block->bmap, 0, pages);
2833 if (migrate_mapped_ram()) {
2834 block->file_bmap = bitmap_new(pages);
2836 block->clear_bmap_shift = shift;
2837 block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift));
2842 static void migration_bitmap_clear_discarded_pages(RAMState *rs)
2844 unsigned long pages;
2845 RAMBlock *rb;
2847 RCU_READ_LOCK_GUARD();
2849 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
2850 pages = ramblock_dirty_bitmap_clear_discarded_pages(rb);
2851 rs->migration_dirty_pages -= pages;
2855 static void ram_init_bitmaps(RAMState *rs)
2857 qemu_mutex_lock_ramlist();
2859 WITH_RCU_READ_LOCK_GUARD() {
2860 ram_list_init_bitmaps();
2861 /* We don't use dirty log with background snapshots */
2862 if (!migrate_background_snapshot()) {
2863 memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION);
2864 migration_bitmap_sync_precopy(rs, false);
2867 qemu_mutex_unlock_ramlist();
2870 * After an eventual first bitmap sync, fixup the initial bitmap
2871 * containing all 1s to exclude any discarded pages from migration.
2873 migration_bitmap_clear_discarded_pages(rs);
2876 static int ram_init_all(RAMState **rsp)
2878 if (ram_state_init(rsp)) {
2879 return -1;
2882 if (xbzrle_init()) {
2883 ram_state_cleanup(rsp);
2884 return -1;
2887 ram_init_bitmaps(*rsp);
2889 return 0;
2892 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out)
2894 RAMBlock *block;
2895 uint64_t pages = 0;
2898 * Postcopy is not using xbzrle/compression, so no need for that.
2899 * Also, since source are already halted, we don't need to care
2900 * about dirty page logging as well.
2903 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2904 pages += bitmap_count_one(block->bmap,
2905 block->used_length >> TARGET_PAGE_BITS);
2908 /* This may not be aligned with current bitmaps. Recalculate. */
2909 rs->migration_dirty_pages = pages;
2911 ram_state_reset(rs);
2913 /* Update RAMState cache of output QEMUFile */
2914 rs->pss[RAM_CHANNEL_PRECOPY].pss_channel = out;
2916 trace_ram_state_resume_prepare(pages);
2920 * This function clears bits of the free pages reported by the caller from the
2921 * migration dirty bitmap. @addr is the host address corresponding to the
2922 * start of the continuous guest free pages, and @len is the total bytes of
2923 * those pages.
2925 void qemu_guest_free_page_hint(void *addr, size_t len)
2927 RAMBlock *block;
2928 ram_addr_t offset;
2929 size_t used_len, start, npages;
2931 /* This function is currently expected to be used during live migration */
2932 if (!migration_is_setup_or_active()) {
2933 return;
2936 for (; len > 0; len -= used_len, addr += used_len) {
2937 block = qemu_ram_block_from_host(addr, false, &offset);
2938 if (unlikely(!block || offset >= block->used_length)) {
2940 * The implementation might not support RAMBlock resize during
2941 * live migration, but it could happen in theory with future
2942 * updates. So we add a check here to capture that case.
2944 error_report_once("%s unexpected error", __func__);
2945 return;
2948 if (len <= block->used_length - offset) {
2949 used_len = len;
2950 } else {
2951 used_len = block->used_length - offset;
2954 start = offset >> TARGET_PAGE_BITS;
2955 npages = used_len >> TARGET_PAGE_BITS;
2957 qemu_mutex_lock(&ram_state->bitmap_mutex);
2959 * The skipped free pages are equavalent to be sent from clear_bmap's
2960 * perspective, so clear the bits from the memory region bitmap which
2961 * are initially set. Otherwise those skipped pages will be sent in
2962 * the next round after syncing from the memory region bitmap.
2964 migration_clear_memory_region_dirty_bitmap_range(block, start, npages);
2965 ram_state->migration_dirty_pages -=
2966 bitmap_count_one_with_offset(block->bmap, start, npages);
2967 bitmap_clear(block->bmap, start, npages);
2968 qemu_mutex_unlock(&ram_state->bitmap_mutex);
2972 #define MAPPED_RAM_HDR_VERSION 1
2973 struct MappedRamHeader {
2974 uint32_t version;
2976 * The target's page size, so we know how many pages are in the
2977 * bitmap.
2979 uint64_t page_size;
2981 * The offset in the migration file where the pages bitmap is
2982 * stored.
2984 uint64_t bitmap_offset;
2986 * The offset in the migration file where the actual pages (data)
2987 * are stored.
2989 uint64_t pages_offset;
2990 } QEMU_PACKED;
2991 typedef struct MappedRamHeader MappedRamHeader;
2993 static void mapped_ram_setup_ramblock(QEMUFile *file, RAMBlock *block)
2995 g_autofree MappedRamHeader *header = NULL;
2996 size_t header_size, bitmap_size;
2997 long num_pages;
2999 header = g_new0(MappedRamHeader, 1);
3000 header_size = sizeof(MappedRamHeader);
3002 num_pages = block->used_length >> TARGET_PAGE_BITS;
3003 bitmap_size = BITS_TO_LONGS(num_pages) * sizeof(unsigned long);
3006 * Save the file offsets of where the bitmap and the pages should
3007 * go as they are written at the end of migration and during the
3008 * iterative phase, respectively.
3010 block->bitmap_offset = qemu_get_offset(file) + header_size;
3011 block->pages_offset = ROUND_UP(block->bitmap_offset +
3012 bitmap_size,
3013 MAPPED_RAM_FILE_OFFSET_ALIGNMENT);
3015 header->version = cpu_to_be32(MAPPED_RAM_HDR_VERSION);
3016 header->page_size = cpu_to_be64(TARGET_PAGE_SIZE);
3017 header->bitmap_offset = cpu_to_be64(block->bitmap_offset);
3018 header->pages_offset = cpu_to_be64(block->pages_offset);
3020 qemu_put_buffer(file, (uint8_t *) header, header_size);
3022 /* prepare offset for next ramblock */
3023 qemu_set_offset(file, block->pages_offset + block->used_length, SEEK_SET);
3026 static bool mapped_ram_read_header(QEMUFile *file, MappedRamHeader *header,
3027 Error **errp)
3029 size_t ret, header_size = sizeof(MappedRamHeader);
3031 ret = qemu_get_buffer(file, (uint8_t *)header, header_size);
3032 if (ret != header_size) {
3033 error_setg(errp, "Could not read whole mapped-ram migration header "
3034 "(expected %zd, got %zd bytes)", header_size, ret);
3035 return false;
3038 /* migration stream is big-endian */
3039 header->version = be32_to_cpu(header->version);
3041 if (header->version > MAPPED_RAM_HDR_VERSION) {
3042 error_setg(errp, "Migration mapped-ram capability version not "
3043 "supported (expected <= %d, got %d)", MAPPED_RAM_HDR_VERSION,
3044 header->version);
3045 return false;
3048 header->page_size = be64_to_cpu(header->page_size);
3049 header->bitmap_offset = be64_to_cpu(header->bitmap_offset);
3050 header->pages_offset = be64_to_cpu(header->pages_offset);
3052 return true;
3056 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
3057 * long-running RCU critical section. When rcu-reclaims in the code
3058 * start to become numerous it will be necessary to reduce the
3059 * granularity of these critical sections.
3063 * ram_save_setup: Setup RAM for migration
3065 * Returns zero to indicate success and negative for error
3067 * @f: QEMUFile where to send the data
3068 * @opaque: RAMState pointer
3070 static int ram_save_setup(QEMUFile *f, void *opaque)
3072 RAMState **rsp = opaque;
3073 RAMBlock *block;
3074 int ret, max_hg_page_size;
3076 if (compress_threads_save_setup()) {
3077 return -1;
3080 /* migration has already setup the bitmap, reuse it. */
3081 if (!migration_in_colo_state()) {
3082 if (ram_init_all(rsp) != 0) {
3083 compress_threads_save_cleanup();
3084 return -1;
3087 (*rsp)->pss[RAM_CHANNEL_PRECOPY].pss_channel = f;
3090 * ??? Mirrors the previous value of qemu_host_page_size,
3091 * but is this really what was intended for the migration?
3093 max_hg_page_size = MAX(qemu_real_host_page_size(), TARGET_PAGE_SIZE);
3095 WITH_RCU_READ_LOCK_GUARD() {
3096 qemu_put_be64(f, ram_bytes_total_with_ignored()
3097 | RAM_SAVE_FLAG_MEM_SIZE);
3099 RAMBLOCK_FOREACH_MIGRATABLE(block) {
3100 qemu_put_byte(f, strlen(block->idstr));
3101 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
3102 qemu_put_be64(f, block->used_length);
3103 if (migrate_postcopy_ram() &&
3104 block->page_size != max_hg_page_size) {
3105 qemu_put_be64(f, block->page_size);
3107 if (migrate_ignore_shared()) {
3108 qemu_put_be64(f, block->mr->addr);
3111 if (migrate_mapped_ram()) {
3112 mapped_ram_setup_ramblock(f, block);
3117 ret = rdma_registration_start(f, RAM_CONTROL_SETUP);
3118 if (ret < 0) {
3119 qemu_file_set_error(f, ret);
3120 return ret;
3123 ret = rdma_registration_stop(f, RAM_CONTROL_SETUP);
3124 if (ret < 0) {
3125 qemu_file_set_error(f, ret);
3126 return ret;
3129 migration_ops = g_malloc0(sizeof(MigrationOps));
3131 if (migrate_multifd()) {
3132 migration_ops->ram_save_target_page = ram_save_target_page_multifd;
3133 } else {
3134 migration_ops->ram_save_target_page = ram_save_target_page_legacy;
3137 bql_unlock();
3138 ret = multifd_send_sync_main();
3139 bql_lock();
3140 if (ret < 0) {
3141 return ret;
3144 if (migrate_multifd() && !migrate_multifd_flush_after_each_section()
3145 && !migrate_mapped_ram()) {
3146 qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH);
3149 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3150 return qemu_fflush(f);
3153 static void ram_save_file_bmap(QEMUFile *f)
3155 RAMBlock *block;
3157 RAMBLOCK_FOREACH_MIGRATABLE(block) {
3158 long num_pages = block->used_length >> TARGET_PAGE_BITS;
3159 long bitmap_size = BITS_TO_LONGS(num_pages) * sizeof(unsigned long);
3161 qemu_put_buffer_at(f, (uint8_t *)block->file_bmap, bitmap_size,
3162 block->bitmap_offset);
3163 ram_transferred_add(bitmap_size);
3166 * Free the bitmap here to catch any synchronization issues
3167 * with multifd channels. No channels should be sending pages
3168 * after we've written the bitmap to file.
3170 g_free(block->file_bmap);
3171 block->file_bmap = NULL;
3175 void ramblock_set_file_bmap_atomic(RAMBlock *block, ram_addr_t offset, bool set)
3177 if (set) {
3178 set_bit_atomic(offset >> TARGET_PAGE_BITS, block->file_bmap);
3179 } else {
3180 clear_bit_atomic(offset >> TARGET_PAGE_BITS, block->file_bmap);
3185 * ram_save_iterate: iterative stage for migration
3187 * Returns zero to indicate success and negative for error
3189 * @f: QEMUFile where to send the data
3190 * @opaque: RAMState pointer
3192 static int ram_save_iterate(QEMUFile *f, void *opaque)
3194 RAMState **temp = opaque;
3195 RAMState *rs = *temp;
3196 int ret = 0;
3197 int i;
3198 int64_t t0;
3199 int done = 0;
3201 if (blk_mig_bulk_active()) {
3202 /* Avoid transferring ram during bulk phase of block migration as
3203 * the bulk phase will usually take a long time and transferring
3204 * ram updates during that time is pointless. */
3205 goto out;
3209 * We'll take this lock a little bit long, but it's okay for two reasons.
3210 * Firstly, the only possible other thread to take it is who calls
3211 * qemu_guest_free_page_hint(), which should be rare; secondly, see
3212 * MAX_WAIT (if curious, further see commit 4508bd9ed8053ce) below, which
3213 * guarantees that we'll at least released it in a regular basis.
3215 WITH_QEMU_LOCK_GUARD(&rs->bitmap_mutex) {
3216 WITH_RCU_READ_LOCK_GUARD() {
3217 if (ram_list.version != rs->last_version) {
3218 ram_state_reset(rs);
3221 /* Read version before ram_list.blocks */
3222 smp_rmb();
3224 ret = rdma_registration_start(f, RAM_CONTROL_ROUND);
3225 if (ret < 0) {
3226 qemu_file_set_error(f, ret);
3227 goto out;
3230 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
3231 i = 0;
3232 while ((ret = migration_rate_exceeded(f)) == 0 ||
3233 postcopy_has_request(rs)) {
3234 int pages;
3236 if (qemu_file_get_error(f)) {
3237 break;
3240 pages = ram_find_and_save_block(rs);
3241 /* no more pages to sent */
3242 if (pages == 0) {
3243 done = 1;
3244 break;
3247 if (pages < 0) {
3248 qemu_file_set_error(f, pages);
3249 break;
3252 rs->target_page_count += pages;
3255 * During postcopy, it is necessary to make sure one whole host
3256 * page is sent in one chunk.
3258 if (migrate_postcopy_ram()) {
3259 compress_flush_data();
3263 * we want to check in the 1st loop, just in case it was the 1st
3264 * time and we had to sync the dirty bitmap.
3265 * qemu_clock_get_ns() is a bit expensive, so we only check each
3266 * some iterations
3268 if ((i & 63) == 0) {
3269 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) /
3270 1000000;
3271 if (t1 > MAX_WAIT) {
3272 trace_ram_save_iterate_big_wait(t1, i);
3273 break;
3276 i++;
3282 * Must occur before EOS (or any QEMUFile operation)
3283 * because of RDMA protocol.
3285 ret = rdma_registration_stop(f, RAM_CONTROL_ROUND);
3286 if (ret < 0) {
3287 qemu_file_set_error(f, ret);
3290 out:
3291 if (ret >= 0
3292 && migration_is_setup_or_active()) {
3293 if (migrate_multifd() && migrate_multifd_flush_after_each_section() &&
3294 !migrate_mapped_ram()) {
3295 ret = multifd_send_sync_main();
3296 if (ret < 0) {
3297 return ret;
3301 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3302 ram_transferred_add(8);
3303 ret = qemu_fflush(f);
3305 if (ret < 0) {
3306 return ret;
3309 return done;
3313 * ram_save_complete: function called to send the remaining amount of ram
3315 * Returns zero to indicate success or negative on error
3317 * Called with the BQL
3319 * @f: QEMUFile where to send the data
3320 * @opaque: RAMState pointer
3322 static int ram_save_complete(QEMUFile *f, void *opaque)
3324 RAMState **temp = opaque;
3325 RAMState *rs = *temp;
3326 int ret = 0;
3328 rs->last_stage = !migration_in_colo_state();
3330 WITH_RCU_READ_LOCK_GUARD() {
3331 if (!migration_in_postcopy()) {
3332 migration_bitmap_sync_precopy(rs, true);
3335 ret = rdma_registration_start(f, RAM_CONTROL_FINISH);
3336 if (ret < 0) {
3337 qemu_file_set_error(f, ret);
3338 return ret;
3341 /* try transferring iterative blocks of memory */
3343 /* flush all remaining blocks regardless of rate limiting */
3344 qemu_mutex_lock(&rs->bitmap_mutex);
3345 while (true) {
3346 int pages;
3348 pages = ram_find_and_save_block(rs);
3349 /* no more blocks to sent */
3350 if (pages == 0) {
3351 break;
3353 if (pages < 0) {
3354 qemu_mutex_unlock(&rs->bitmap_mutex);
3355 return pages;
3358 qemu_mutex_unlock(&rs->bitmap_mutex);
3360 compress_flush_data();
3362 ret = rdma_registration_stop(f, RAM_CONTROL_FINISH);
3363 if (ret < 0) {
3364 qemu_file_set_error(f, ret);
3365 return ret;
3369 ret = multifd_send_sync_main();
3370 if (ret < 0) {
3371 return ret;
3374 if (migrate_mapped_ram()) {
3375 ram_save_file_bmap(f);
3377 if (qemu_file_get_error(f)) {
3378 Error *local_err = NULL;
3379 int err = qemu_file_get_error_obj(f, &local_err);
3381 error_reportf_err(local_err, "Failed to write bitmap to file: ");
3382 return -err;
3386 if (migrate_multifd() && !migrate_multifd_flush_after_each_section() &&
3387 !migrate_mapped_ram()) {
3388 qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH);
3390 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3391 return qemu_fflush(f);
3394 static void ram_state_pending_estimate(void *opaque, uint64_t *must_precopy,
3395 uint64_t *can_postcopy)
3397 RAMState **temp = opaque;
3398 RAMState *rs = *temp;
3400 uint64_t remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3402 if (migrate_postcopy_ram()) {
3403 /* We can do postcopy, and all the data is postcopiable */
3404 *can_postcopy += remaining_size;
3405 } else {
3406 *must_precopy += remaining_size;
3410 static void ram_state_pending_exact(void *opaque, uint64_t *must_precopy,
3411 uint64_t *can_postcopy)
3413 RAMState **temp = opaque;
3414 RAMState *rs = *temp;
3415 uint64_t remaining_size;
3417 if (!migration_in_postcopy()) {
3418 bql_lock();
3419 WITH_RCU_READ_LOCK_GUARD() {
3420 migration_bitmap_sync_precopy(rs, false);
3422 bql_unlock();
3425 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3427 if (migrate_postcopy_ram()) {
3428 /* We can do postcopy, and all the data is postcopiable */
3429 *can_postcopy += remaining_size;
3430 } else {
3431 *must_precopy += remaining_size;
3435 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
3437 unsigned int xh_len;
3438 int xh_flags;
3439 uint8_t *loaded_data;
3441 /* extract RLE header */
3442 xh_flags = qemu_get_byte(f);
3443 xh_len = qemu_get_be16(f);
3445 if (xh_flags != ENCODING_FLAG_XBZRLE) {
3446 error_report("Failed to load XBZRLE page - wrong compression!");
3447 return -1;
3450 if (xh_len > TARGET_PAGE_SIZE) {
3451 error_report("Failed to load XBZRLE page - len overflow!");
3452 return -1;
3454 loaded_data = XBZRLE.decoded_buf;
3455 /* load data and decode */
3456 /* it can change loaded_data to point to an internal buffer */
3457 qemu_get_buffer_in_place(f, &loaded_data, xh_len);
3459 /* decode RLE */
3460 if (xbzrle_decode_buffer(loaded_data, xh_len, host,
3461 TARGET_PAGE_SIZE) == -1) {
3462 error_report("Failed to load XBZRLE page - decode error!");
3463 return -1;
3466 return 0;
3470 * ram_block_from_stream: read a RAMBlock id from the migration stream
3472 * Must be called from within a rcu critical section.
3474 * Returns a pointer from within the RCU-protected ram_list.
3476 * @mis: the migration incoming state pointer
3477 * @f: QEMUFile where to read the data from
3478 * @flags: Page flags (mostly to see if it's a continuation of previous block)
3479 * @channel: the channel we're using
3481 static inline RAMBlock *ram_block_from_stream(MigrationIncomingState *mis,
3482 QEMUFile *f, int flags,
3483 int channel)
3485 RAMBlock *block = mis->last_recv_block[channel];
3486 char id[256];
3487 uint8_t len;
3489 if (flags & RAM_SAVE_FLAG_CONTINUE) {
3490 if (!block) {
3491 error_report("Ack, bad migration stream!");
3492 return NULL;
3494 return block;
3497 len = qemu_get_byte(f);
3498 qemu_get_buffer(f, (uint8_t *)id, len);
3499 id[len] = 0;
3501 block = qemu_ram_block_by_name(id);
3502 if (!block) {
3503 error_report("Can't find block %s", id);
3504 return NULL;
3507 if (migrate_ram_is_ignored(block)) {
3508 error_report("block %s should not be migrated !", id);
3509 return NULL;
3512 mis->last_recv_block[channel] = block;
3514 return block;
3517 static inline void *host_from_ram_block_offset(RAMBlock *block,
3518 ram_addr_t offset)
3520 if (!offset_in_ramblock(block, offset)) {
3521 return NULL;
3524 return block->host + offset;
3527 static void *host_page_from_ram_block_offset(RAMBlock *block,
3528 ram_addr_t offset)
3530 /* Note: Explicitly no check against offset_in_ramblock(). */
3531 return (void *)QEMU_ALIGN_DOWN((uintptr_t)(block->host + offset),
3532 block->page_size);
3535 static ram_addr_t host_page_offset_from_ram_block_offset(RAMBlock *block,
3536 ram_addr_t offset)
3538 return ((uintptr_t)block->host + offset) & (block->page_size - 1);
3541 void colo_record_bitmap(RAMBlock *block, ram_addr_t *normal, uint32_t pages)
3543 qemu_mutex_lock(&ram_state->bitmap_mutex);
3544 for (int i = 0; i < pages; i++) {
3545 ram_addr_t offset = normal[i];
3546 ram_state->migration_dirty_pages += !test_and_set_bit(
3547 offset >> TARGET_PAGE_BITS,
3548 block->bmap);
3550 qemu_mutex_unlock(&ram_state->bitmap_mutex);
3553 static inline void *colo_cache_from_block_offset(RAMBlock *block,
3554 ram_addr_t offset, bool record_bitmap)
3556 if (!offset_in_ramblock(block, offset)) {
3557 return NULL;
3559 if (!block->colo_cache) {
3560 error_report("%s: colo_cache is NULL in block :%s",
3561 __func__, block->idstr);
3562 return NULL;
3566 * During colo checkpoint, we need bitmap of these migrated pages.
3567 * It help us to decide which pages in ram cache should be flushed
3568 * into VM's RAM later.
3570 if (record_bitmap) {
3571 colo_record_bitmap(block, &offset, 1);
3573 return block->colo_cache + offset;
3577 * ram_handle_zero: handle the zero page case
3579 * If a page (or a whole RDMA chunk) has been
3580 * determined to be zero, then zap it.
3582 * @host: host address for the zero page
3583 * @ch: what the page is filled from. We only support zero
3584 * @size: size of the zero page
3586 void ram_handle_zero(void *host, uint64_t size)
3588 if (!buffer_is_zero(host, size)) {
3589 memset(host, 0, size);
3593 static void colo_init_ram_state(void)
3595 ram_state_init(&ram_state);
3599 * colo cache: this is for secondary VM, we cache the whole
3600 * memory of the secondary VM, it is need to hold the global lock
3601 * to call this helper.
3603 int colo_init_ram_cache(void)
3605 RAMBlock *block;
3607 WITH_RCU_READ_LOCK_GUARD() {
3608 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3609 block->colo_cache = qemu_anon_ram_alloc(block->used_length,
3610 NULL, false, false);
3611 if (!block->colo_cache) {
3612 error_report("%s: Can't alloc memory for COLO cache of block %s,"
3613 "size 0x" RAM_ADDR_FMT, __func__, block->idstr,
3614 block->used_length);
3615 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3616 if (block->colo_cache) {
3617 qemu_anon_ram_free(block->colo_cache, block->used_length);
3618 block->colo_cache = NULL;
3621 return -errno;
3623 if (!machine_dump_guest_core(current_machine)) {
3624 qemu_madvise(block->colo_cache, block->used_length,
3625 QEMU_MADV_DONTDUMP);
3631 * Record the dirty pages that sent by PVM, we use this dirty bitmap together
3632 * with to decide which page in cache should be flushed into SVM's RAM. Here
3633 * we use the same name 'ram_bitmap' as for migration.
3635 if (ram_bytes_total()) {
3636 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3637 unsigned long pages = block->max_length >> TARGET_PAGE_BITS;
3638 block->bmap = bitmap_new(pages);
3642 colo_init_ram_state();
3643 return 0;
3646 /* TODO: duplicated with ram_init_bitmaps */
3647 void colo_incoming_start_dirty_log(void)
3649 RAMBlock *block = NULL;
3650 /* For memory_global_dirty_log_start below. */
3651 bql_lock();
3652 qemu_mutex_lock_ramlist();
3654 memory_global_dirty_log_sync(false);
3655 WITH_RCU_READ_LOCK_GUARD() {
3656 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3657 ramblock_sync_dirty_bitmap(ram_state, block);
3658 /* Discard this dirty bitmap record */
3659 bitmap_zero(block->bmap, block->max_length >> TARGET_PAGE_BITS);
3661 memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION);
3663 ram_state->migration_dirty_pages = 0;
3664 qemu_mutex_unlock_ramlist();
3665 bql_unlock();
3668 /* It is need to hold the global lock to call this helper */
3669 void colo_release_ram_cache(void)
3671 RAMBlock *block;
3673 memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION);
3674 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3675 g_free(block->bmap);
3676 block->bmap = NULL;
3679 WITH_RCU_READ_LOCK_GUARD() {
3680 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3681 if (block->colo_cache) {
3682 qemu_anon_ram_free(block->colo_cache, block->used_length);
3683 block->colo_cache = NULL;
3687 ram_state_cleanup(&ram_state);
3691 * ram_load_setup: Setup RAM for migration incoming side
3693 * Returns zero to indicate success and negative for error
3695 * @f: QEMUFile where to receive the data
3696 * @opaque: RAMState pointer
3698 static int ram_load_setup(QEMUFile *f, void *opaque)
3700 xbzrle_load_setup();
3701 ramblock_recv_map_init();
3703 return 0;
3706 static int ram_load_cleanup(void *opaque)
3708 RAMBlock *rb;
3710 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
3711 qemu_ram_block_writeback(rb);
3714 xbzrle_load_cleanup();
3716 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
3717 g_free(rb->receivedmap);
3718 rb->receivedmap = NULL;
3721 return 0;
3725 * ram_postcopy_incoming_init: allocate postcopy data structures
3727 * Returns 0 for success and negative if there was one error
3729 * @mis: current migration incoming state
3731 * Allocate data structures etc needed by incoming migration with
3732 * postcopy-ram. postcopy-ram's similarly names
3733 * postcopy_ram_incoming_init does the work.
3735 int ram_postcopy_incoming_init(MigrationIncomingState *mis)
3737 return postcopy_ram_incoming_init(mis);
3741 * ram_load_postcopy: load a page in postcopy case
3743 * Returns 0 for success or -errno in case of error
3745 * Called in postcopy mode by ram_load().
3746 * rcu_read_lock is taken prior to this being called.
3748 * @f: QEMUFile where to send the data
3749 * @channel: the channel to use for loading
3751 int ram_load_postcopy(QEMUFile *f, int channel)
3753 int flags = 0, ret = 0;
3754 bool place_needed = false;
3755 bool matches_target_page_size = false;
3756 MigrationIncomingState *mis = migration_incoming_get_current();
3757 PostcopyTmpPage *tmp_page = &mis->postcopy_tmp_pages[channel];
3759 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
3760 ram_addr_t addr;
3761 void *page_buffer = NULL;
3762 void *place_source = NULL;
3763 RAMBlock *block = NULL;
3764 uint8_t ch;
3765 int len;
3767 addr = qemu_get_be64(f);
3770 * If qemu file error, we should stop here, and then "addr"
3771 * may be invalid
3773 ret = qemu_file_get_error(f);
3774 if (ret) {
3775 break;
3778 flags = addr & ~TARGET_PAGE_MASK;
3779 addr &= TARGET_PAGE_MASK;
3781 trace_ram_load_postcopy_loop(channel, (uint64_t)addr, flags);
3782 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
3783 RAM_SAVE_FLAG_COMPRESS_PAGE)) {
3784 block = ram_block_from_stream(mis, f, flags, channel);
3785 if (!block) {
3786 ret = -EINVAL;
3787 break;
3791 * Relying on used_length is racy and can result in false positives.
3792 * We might place pages beyond used_length in case RAM was shrunk
3793 * while in postcopy, which is fine - trying to place via
3794 * UFFDIO_COPY/UFFDIO_ZEROPAGE will never segfault.
3796 if (!block->host || addr >= block->postcopy_length) {
3797 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
3798 ret = -EINVAL;
3799 break;
3801 tmp_page->target_pages++;
3802 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE;
3804 * Postcopy requires that we place whole host pages atomically;
3805 * these may be huge pages for RAMBlocks that are backed by
3806 * hugetlbfs.
3807 * To make it atomic, the data is read into a temporary page
3808 * that's moved into place later.
3809 * The migration protocol uses, possibly smaller, target-pages
3810 * however the source ensures it always sends all the components
3811 * of a host page in one chunk.
3813 page_buffer = tmp_page->tmp_huge_page +
3814 host_page_offset_from_ram_block_offset(block, addr);
3815 /* If all TP are zero then we can optimise the place */
3816 if (tmp_page->target_pages == 1) {
3817 tmp_page->host_addr =
3818 host_page_from_ram_block_offset(block, addr);
3819 } else if (tmp_page->host_addr !=
3820 host_page_from_ram_block_offset(block, addr)) {
3821 /* not the 1st TP within the HP */
3822 error_report("Non-same host page detected on channel %d: "
3823 "Target host page %p, received host page %p "
3824 "(rb %s offset 0x"RAM_ADDR_FMT" target_pages %d)",
3825 channel, tmp_page->host_addr,
3826 host_page_from_ram_block_offset(block, addr),
3827 block->idstr, addr, tmp_page->target_pages);
3828 ret = -EINVAL;
3829 break;
3833 * If it's the last part of a host page then we place the host
3834 * page
3836 if (tmp_page->target_pages ==
3837 (block->page_size / TARGET_PAGE_SIZE)) {
3838 place_needed = true;
3840 place_source = tmp_page->tmp_huge_page;
3843 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
3844 case RAM_SAVE_FLAG_ZERO:
3845 ch = qemu_get_byte(f);
3846 if (ch != 0) {
3847 error_report("Found a zero page with value %d", ch);
3848 ret = -EINVAL;
3849 break;
3852 * Can skip to set page_buffer when
3853 * this is a zero page and (block->page_size == TARGET_PAGE_SIZE).
3855 if (!matches_target_page_size) {
3856 memset(page_buffer, ch, TARGET_PAGE_SIZE);
3858 break;
3860 case RAM_SAVE_FLAG_PAGE:
3861 tmp_page->all_zero = false;
3862 if (!matches_target_page_size) {
3863 /* For huge pages, we always use temporary buffer */
3864 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
3865 } else {
3867 * For small pages that matches target page size, we
3868 * avoid the qemu_file copy. Instead we directly use
3869 * the buffer of QEMUFile to place the page. Note: we
3870 * cannot do any QEMUFile operation before using that
3871 * buffer to make sure the buffer is valid when
3872 * placing the page.
3874 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
3875 TARGET_PAGE_SIZE);
3877 break;
3878 case RAM_SAVE_FLAG_COMPRESS_PAGE:
3879 tmp_page->all_zero = false;
3880 len = qemu_get_be32(f);
3881 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
3882 error_report("Invalid compressed data length: %d", len);
3883 ret = -EINVAL;
3884 break;
3886 decompress_data_with_multi_threads(f, page_buffer, len);
3887 break;
3888 case RAM_SAVE_FLAG_MULTIFD_FLUSH:
3889 multifd_recv_sync_main();
3890 break;
3891 case RAM_SAVE_FLAG_EOS:
3892 /* normal exit */
3893 if (migrate_multifd() &&
3894 migrate_multifd_flush_after_each_section()) {
3895 multifd_recv_sync_main();
3897 break;
3898 default:
3899 error_report("Unknown combination of migration flags: 0x%x"
3900 " (postcopy mode)", flags);
3901 ret = -EINVAL;
3902 break;
3905 /* Got the whole host page, wait for decompress before placing. */
3906 if (place_needed) {
3907 ret |= wait_for_decompress_done();
3910 /* Detect for any possible file errors */
3911 if (!ret && qemu_file_get_error(f)) {
3912 ret = qemu_file_get_error(f);
3915 if (!ret && place_needed) {
3916 if (tmp_page->all_zero) {
3917 ret = postcopy_place_page_zero(mis, tmp_page->host_addr, block);
3918 } else {
3919 ret = postcopy_place_page(mis, tmp_page->host_addr,
3920 place_source, block);
3922 place_needed = false;
3923 postcopy_temp_page_reset(tmp_page);
3927 return ret;
3930 static bool postcopy_is_running(void)
3932 PostcopyState ps = postcopy_state_get();
3933 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
3937 * Flush content of RAM cache into SVM's memory.
3938 * Only flush the pages that be dirtied by PVM or SVM or both.
3940 void colo_flush_ram_cache(void)
3942 RAMBlock *block = NULL;
3943 void *dst_host;
3944 void *src_host;
3945 unsigned long offset = 0;
3947 memory_global_dirty_log_sync(false);
3948 qemu_mutex_lock(&ram_state->bitmap_mutex);
3949 WITH_RCU_READ_LOCK_GUARD() {
3950 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3951 ramblock_sync_dirty_bitmap(ram_state, block);
3955 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages);
3956 WITH_RCU_READ_LOCK_GUARD() {
3957 block = QLIST_FIRST_RCU(&ram_list.blocks);
3959 while (block) {
3960 unsigned long num = 0;
3962 offset = colo_bitmap_find_dirty(ram_state, block, offset, &num);
3963 if (!offset_in_ramblock(block,
3964 ((ram_addr_t)offset) << TARGET_PAGE_BITS)) {
3965 offset = 0;
3966 num = 0;
3967 block = QLIST_NEXT_RCU(block, next);
3968 } else {
3969 unsigned long i = 0;
3971 for (i = 0; i < num; i++) {
3972 migration_bitmap_clear_dirty(ram_state, block, offset + i);
3974 dst_host = block->host
3975 + (((ram_addr_t)offset) << TARGET_PAGE_BITS);
3976 src_host = block->colo_cache
3977 + (((ram_addr_t)offset) << TARGET_PAGE_BITS);
3978 memcpy(dst_host, src_host, TARGET_PAGE_SIZE * num);
3979 offset += num;
3983 qemu_mutex_unlock(&ram_state->bitmap_mutex);
3984 trace_colo_flush_ram_cache_end();
3987 static size_t ram_load_multifd_pages(void *host_addr, size_t size,
3988 uint64_t offset)
3990 MultiFDRecvData *data = multifd_get_recv_data();
3992 data->opaque = host_addr;
3993 data->file_offset = offset;
3994 data->size = size;
3996 if (!multifd_recv()) {
3997 return 0;
4000 return size;
4003 static bool read_ramblock_mapped_ram(QEMUFile *f, RAMBlock *block,
4004 long num_pages, unsigned long *bitmap,
4005 Error **errp)
4007 ERRP_GUARD();
4008 unsigned long set_bit_idx, clear_bit_idx;
4009 ram_addr_t offset;
4010 void *host;
4011 size_t read, unread, size;
4013 for (set_bit_idx = find_first_bit(bitmap, num_pages);
4014 set_bit_idx < num_pages;
4015 set_bit_idx = find_next_bit(bitmap, num_pages, clear_bit_idx + 1)) {
4017 clear_bit_idx = find_next_zero_bit(bitmap, num_pages, set_bit_idx + 1);
4019 unread = TARGET_PAGE_SIZE * (clear_bit_idx - set_bit_idx);
4020 offset = set_bit_idx << TARGET_PAGE_BITS;
4022 while (unread > 0) {
4023 host = host_from_ram_block_offset(block, offset);
4024 if (!host) {
4025 error_setg(errp, "page outside of ramblock %s range",
4026 block->idstr);
4027 return false;
4030 size = MIN(unread, MAPPED_RAM_LOAD_BUF_SIZE);
4032 if (migrate_multifd()) {
4033 read = ram_load_multifd_pages(host, size,
4034 block->pages_offset + offset);
4035 } else {
4036 read = qemu_get_buffer_at(f, host, size,
4037 block->pages_offset + offset);
4040 if (!read) {
4041 goto err;
4043 offset += read;
4044 unread -= read;
4048 return true;
4050 err:
4051 qemu_file_get_error_obj(f, errp);
4052 error_prepend(errp, "(%s) failed to read page " RAM_ADDR_FMT
4053 "from file offset %" PRIx64 ": ", block->idstr, offset,
4054 block->pages_offset + offset);
4055 return false;
4058 static void parse_ramblock_mapped_ram(QEMUFile *f, RAMBlock *block,
4059 ram_addr_t length, Error **errp)
4061 g_autofree unsigned long *bitmap = NULL;
4062 MappedRamHeader header;
4063 size_t bitmap_size;
4064 long num_pages;
4066 if (!mapped_ram_read_header(f, &header, errp)) {
4067 return;
4070 block->pages_offset = header.pages_offset;
4073 * Check the alignment of the file region that contains pages. We
4074 * don't enforce MAPPED_RAM_FILE_OFFSET_ALIGNMENT to allow that
4075 * value to change in the future. Do only a sanity check with page
4076 * size alignment.
4078 if (!QEMU_IS_ALIGNED(block->pages_offset, TARGET_PAGE_SIZE)) {
4079 error_setg(errp,
4080 "Error reading ramblock %s pages, region has bad alignment",
4081 block->idstr);
4082 return;
4085 num_pages = length / header.page_size;
4086 bitmap_size = BITS_TO_LONGS(num_pages) * sizeof(unsigned long);
4088 bitmap = g_malloc0(bitmap_size);
4089 if (qemu_get_buffer_at(f, (uint8_t *)bitmap, bitmap_size,
4090 header.bitmap_offset) != bitmap_size) {
4091 error_setg(errp, "Error reading dirty bitmap");
4092 return;
4095 if (!read_ramblock_mapped_ram(f, block, num_pages, bitmap, errp)) {
4096 return;
4099 /* Skip pages array */
4100 qemu_set_offset(f, block->pages_offset + length, SEEK_SET);
4102 return;
4105 static int parse_ramblock(QEMUFile *f, RAMBlock *block, ram_addr_t length)
4107 int ret = 0;
4108 /* ADVISE is earlier, it shows the source has the postcopy capability on */
4109 bool postcopy_advised = migration_incoming_postcopy_advised();
4110 int max_hg_page_size;
4111 Error *local_err = NULL;
4113 assert(block);
4115 if (migrate_mapped_ram()) {
4116 parse_ramblock_mapped_ram(f, block, length, &local_err);
4117 if (local_err) {
4118 error_report_err(local_err);
4119 return -EINVAL;
4121 return 0;
4124 if (!qemu_ram_is_migratable(block)) {
4125 error_report("block %s should not be migrated !", block->idstr);
4126 return -EINVAL;
4129 if (length != block->used_length) {
4130 ret = qemu_ram_resize(block, length, &local_err);
4131 if (local_err) {
4132 error_report_err(local_err);
4133 return ret;
4138 * ??? Mirrors the previous value of qemu_host_page_size,
4139 * but is this really what was intended for the migration?
4141 max_hg_page_size = MAX(qemu_real_host_page_size(), TARGET_PAGE_SIZE);
4143 /* For postcopy we need to check hugepage sizes match */
4144 if (postcopy_advised && migrate_postcopy_ram() &&
4145 block->page_size != max_hg_page_size) {
4146 uint64_t remote_page_size = qemu_get_be64(f);
4147 if (remote_page_size != block->page_size) {
4148 error_report("Mismatched RAM page size %s "
4149 "(local) %zd != %" PRId64, block->idstr,
4150 block->page_size, remote_page_size);
4151 return -EINVAL;
4154 if (migrate_ignore_shared()) {
4155 hwaddr addr = qemu_get_be64(f);
4156 if (migrate_ram_is_ignored(block) &&
4157 block->mr->addr != addr) {
4158 error_report("Mismatched GPAs for block %s "
4159 "%" PRId64 "!= %" PRId64, block->idstr,
4160 (uint64_t)addr, (uint64_t)block->mr->addr);
4161 return -EINVAL;
4164 ret = rdma_block_notification_handle(f, block->idstr);
4165 if (ret < 0) {
4166 qemu_file_set_error(f, ret);
4169 return ret;
4172 static int parse_ramblocks(QEMUFile *f, ram_addr_t total_ram_bytes)
4174 int ret = 0;
4176 /* Synchronize RAM block list */
4177 while (!ret && total_ram_bytes) {
4178 RAMBlock *block;
4179 char id[256];
4180 ram_addr_t length;
4181 int len = qemu_get_byte(f);
4183 qemu_get_buffer(f, (uint8_t *)id, len);
4184 id[len] = 0;
4185 length = qemu_get_be64(f);
4187 block = qemu_ram_block_by_name(id);
4188 if (block) {
4189 ret = parse_ramblock(f, block, length);
4190 } else {
4191 error_report("Unknown ramblock \"%s\", cannot accept "
4192 "migration", id);
4193 ret = -EINVAL;
4195 total_ram_bytes -= length;
4198 return ret;
4202 * ram_load_precopy: load pages in precopy case
4204 * Returns 0 for success or -errno in case of error
4206 * Called in precopy mode by ram_load().
4207 * rcu_read_lock is taken prior to this being called.
4209 * @f: QEMUFile where to send the data
4211 static int ram_load_precopy(QEMUFile *f)
4213 MigrationIncomingState *mis = migration_incoming_get_current();
4214 int flags = 0, ret = 0, invalid_flags = 0, len = 0, i = 0;
4216 if (!migrate_compress()) {
4217 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE;
4220 if (migrate_mapped_ram()) {
4221 invalid_flags |= (RAM_SAVE_FLAG_HOOK | RAM_SAVE_FLAG_MULTIFD_FLUSH |
4222 RAM_SAVE_FLAG_PAGE | RAM_SAVE_FLAG_XBZRLE |
4223 RAM_SAVE_FLAG_ZERO);
4226 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
4227 ram_addr_t addr;
4228 void *host = NULL, *host_bak = NULL;
4229 uint8_t ch;
4232 * Yield periodically to let main loop run, but an iteration of
4233 * the main loop is expensive, so do it each some iterations
4235 if ((i & 32767) == 0 && qemu_in_coroutine()) {
4236 aio_co_schedule(qemu_get_current_aio_context(),
4237 qemu_coroutine_self());
4238 qemu_coroutine_yield();
4240 i++;
4242 addr = qemu_get_be64(f);
4243 ret = qemu_file_get_error(f);
4244 if (ret) {
4245 error_report("Getting RAM address failed");
4246 break;
4249 flags = addr & ~TARGET_PAGE_MASK;
4250 addr &= TARGET_PAGE_MASK;
4252 if (flags & invalid_flags) {
4253 error_report("Unexpected RAM flags: %d", flags & invalid_flags);
4255 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) {
4256 error_report("Received an unexpected compressed page");
4259 ret = -EINVAL;
4260 break;
4263 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
4264 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
4265 RAMBlock *block = ram_block_from_stream(mis, f, flags,
4266 RAM_CHANNEL_PRECOPY);
4268 host = host_from_ram_block_offset(block, addr);
4270 * After going into COLO stage, we should not load the page
4271 * into SVM's memory directly, we put them into colo_cache firstly.
4272 * NOTE: We need to keep a copy of SVM's ram in colo_cache.
4273 * Previously, we copied all these memory in preparing stage of COLO
4274 * while we need to stop VM, which is a time-consuming process.
4275 * Here we optimize it by a trick, back-up every page while in
4276 * migration process while COLO is enabled, though it affects the
4277 * speed of the migration, but it obviously reduce the downtime of
4278 * back-up all SVM'S memory in COLO preparing stage.
4280 if (migration_incoming_colo_enabled()) {
4281 if (migration_incoming_in_colo_state()) {
4282 /* In COLO stage, put all pages into cache temporarily */
4283 host = colo_cache_from_block_offset(block, addr, true);
4284 } else {
4286 * In migration stage but before COLO stage,
4287 * Put all pages into both cache and SVM's memory.
4289 host_bak = colo_cache_from_block_offset(block, addr, false);
4292 if (!host) {
4293 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4294 ret = -EINVAL;
4295 break;
4297 if (!migration_incoming_in_colo_state()) {
4298 ramblock_recv_bitmap_set(block, host);
4301 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
4304 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
4305 case RAM_SAVE_FLAG_MEM_SIZE:
4306 ret = parse_ramblocks(f, addr);
4308 * For mapped-ram migration (to a file) using multifd, we sync
4309 * once and for all here to make sure all tasks we queued to
4310 * multifd threads are completed, so that all the ramblocks
4311 * (including all the guest memory pages within) are fully
4312 * loaded after this sync returns.
4314 if (migrate_mapped_ram()) {
4315 multifd_recv_sync_main();
4317 break;
4319 case RAM_SAVE_FLAG_ZERO:
4320 ch = qemu_get_byte(f);
4321 if (ch != 0) {
4322 error_report("Found a zero page with value %d", ch);
4323 ret = -EINVAL;
4324 break;
4326 ram_handle_zero(host, TARGET_PAGE_SIZE);
4327 break;
4329 case RAM_SAVE_FLAG_PAGE:
4330 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
4331 break;
4333 case RAM_SAVE_FLAG_COMPRESS_PAGE:
4334 len = qemu_get_be32(f);
4335 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
4336 error_report("Invalid compressed data length: %d", len);
4337 ret = -EINVAL;
4338 break;
4340 decompress_data_with_multi_threads(f, host, len);
4341 break;
4343 case RAM_SAVE_FLAG_XBZRLE:
4344 if (load_xbzrle(f, addr, host) < 0) {
4345 error_report("Failed to decompress XBZRLE page at "
4346 RAM_ADDR_FMT, addr);
4347 ret = -EINVAL;
4348 break;
4350 break;
4351 case RAM_SAVE_FLAG_MULTIFD_FLUSH:
4352 multifd_recv_sync_main();
4353 break;
4354 case RAM_SAVE_FLAG_EOS:
4355 /* normal exit */
4356 if (migrate_multifd() &&
4357 migrate_multifd_flush_after_each_section() &&
4359 * Mapped-ram migration flushes once and for all after
4360 * parsing ramblocks. Always ignore EOS for it.
4362 !migrate_mapped_ram()) {
4363 multifd_recv_sync_main();
4365 break;
4366 case RAM_SAVE_FLAG_HOOK:
4367 ret = rdma_registration_handle(f);
4368 if (ret < 0) {
4369 qemu_file_set_error(f, ret);
4371 break;
4372 default:
4373 error_report("Unknown combination of migration flags: 0x%x", flags);
4374 ret = -EINVAL;
4376 if (!ret) {
4377 ret = qemu_file_get_error(f);
4379 if (!ret && host_bak) {
4380 memcpy(host_bak, host, TARGET_PAGE_SIZE);
4384 ret |= wait_for_decompress_done();
4385 return ret;
4388 static int ram_load(QEMUFile *f, void *opaque, int version_id)
4390 int ret = 0;
4391 static uint64_t seq_iter;
4393 * If system is running in postcopy mode, page inserts to host memory must
4394 * be atomic
4396 bool postcopy_running = postcopy_is_running();
4398 seq_iter++;
4400 if (version_id != 4) {
4401 return -EINVAL;
4405 * This RCU critical section can be very long running.
4406 * When RCU reclaims in the code start to become numerous,
4407 * it will be necessary to reduce the granularity of this
4408 * critical section.
4410 WITH_RCU_READ_LOCK_GUARD() {
4411 if (postcopy_running) {
4413 * Note! Here RAM_CHANNEL_PRECOPY is the precopy channel of
4414 * postcopy migration, we have another RAM_CHANNEL_POSTCOPY to
4415 * service fast page faults.
4417 ret = ram_load_postcopy(f, RAM_CHANNEL_PRECOPY);
4418 } else {
4419 ret = ram_load_precopy(f);
4422 trace_ram_load_complete(ret, seq_iter);
4424 return ret;
4427 static bool ram_has_postcopy(void *opaque)
4429 RAMBlock *rb;
4430 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
4431 if (ramblock_is_pmem(rb)) {
4432 info_report("Block: %s, host: %p is a nvdimm memory, postcopy"
4433 "is not supported now!", rb->idstr, rb->host);
4434 return false;
4438 return migrate_postcopy_ram();
4441 /* Sync all the dirty bitmap with destination VM. */
4442 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs)
4444 RAMBlock *block;
4445 QEMUFile *file = s->to_dst_file;
4447 trace_ram_dirty_bitmap_sync_start();
4449 qatomic_set(&rs->postcopy_bmap_sync_requested, 0);
4450 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4451 qemu_savevm_send_recv_bitmap(file, block->idstr);
4452 trace_ram_dirty_bitmap_request(block->idstr);
4453 qatomic_inc(&rs->postcopy_bmap_sync_requested);
4456 trace_ram_dirty_bitmap_sync_wait();
4458 /* Wait until all the ramblocks' dirty bitmap synced */
4459 while (qatomic_read(&rs->postcopy_bmap_sync_requested)) {
4460 if (migration_rp_wait(s)) {
4461 return -1;
4465 trace_ram_dirty_bitmap_sync_complete();
4467 return 0;
4471 * Read the received bitmap, revert it as the initial dirty bitmap.
4472 * This is only used when the postcopy migration is paused but wants
4473 * to resume from a middle point.
4475 * Returns true if succeeded, false for errors.
4477 bool ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block, Error **errp)
4479 /* from_dst_file is always valid because we're within rp_thread */
4480 QEMUFile *file = s->rp_state.from_dst_file;
4481 g_autofree unsigned long *le_bitmap = NULL;
4482 unsigned long nbits = block->used_length >> TARGET_PAGE_BITS;
4483 uint64_t local_size = DIV_ROUND_UP(nbits, 8);
4484 uint64_t size, end_mark;
4485 RAMState *rs = ram_state;
4487 trace_ram_dirty_bitmap_reload_begin(block->idstr);
4489 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
4490 error_setg(errp, "Reload bitmap in incorrect state %s",
4491 MigrationStatus_str(s->state));
4492 return false;
4496 * Note: see comments in ramblock_recv_bitmap_send() on why we
4497 * need the endianness conversion, and the paddings.
4499 local_size = ROUND_UP(local_size, 8);
4501 /* Add paddings */
4502 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
4504 size = qemu_get_be64(file);
4506 /* The size of the bitmap should match with our ramblock */
4507 if (size != local_size) {
4508 error_setg(errp, "ramblock '%s' bitmap size mismatch (0x%"PRIx64
4509 " != 0x%"PRIx64")", block->idstr, size, local_size);
4510 return false;
4513 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size);
4514 end_mark = qemu_get_be64(file);
4516 if (qemu_file_get_error(file) || size != local_size) {
4517 error_setg(errp, "read bitmap failed for ramblock '%s': "
4518 "(size 0x%"PRIx64", got: 0x%"PRIx64")",
4519 block->idstr, local_size, size);
4520 return false;
4523 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) {
4524 error_setg(errp, "ramblock '%s' end mark incorrect: 0x%"PRIx64,
4525 block->idstr, end_mark);
4526 return false;
4530 * Endianness conversion. We are during postcopy (though paused).
4531 * The dirty bitmap won't change. We can directly modify it.
4533 bitmap_from_le(block->bmap, le_bitmap, nbits);
4536 * What we received is "received bitmap". Revert it as the initial
4537 * dirty bitmap for this ramblock.
4539 bitmap_complement(block->bmap, block->bmap, nbits);
4541 /* Clear dirty bits of discarded ranges that we don't want to migrate. */
4542 ramblock_dirty_bitmap_clear_discarded_pages(block);
4544 /* We'll recalculate migration_dirty_pages in ram_state_resume_prepare(). */
4545 trace_ram_dirty_bitmap_reload_complete(block->idstr);
4547 qatomic_dec(&rs->postcopy_bmap_sync_requested);
4550 * We succeeded to sync bitmap for current ramblock. Always kick the
4551 * migration thread to check whether all requested bitmaps are
4552 * reloaded. NOTE: it's racy to only kick when requested==0, because
4553 * we don't know whether the migration thread may still be increasing
4554 * it.
4556 migration_rp_kick(s);
4558 return true;
4561 static int ram_resume_prepare(MigrationState *s, void *opaque)
4563 RAMState *rs = *(RAMState **)opaque;
4564 int ret;
4566 ret = ram_dirty_bitmap_sync_all(s, rs);
4567 if (ret) {
4568 return ret;
4571 ram_state_resume_prepare(rs, s->to_dst_file);
4573 return 0;
4576 void postcopy_preempt_shutdown_file(MigrationState *s)
4578 qemu_put_be64(s->postcopy_qemufile_src, RAM_SAVE_FLAG_EOS);
4579 qemu_fflush(s->postcopy_qemufile_src);
4582 static SaveVMHandlers savevm_ram_handlers = {
4583 .save_setup = ram_save_setup,
4584 .save_live_iterate = ram_save_iterate,
4585 .save_live_complete_postcopy = ram_save_complete,
4586 .save_live_complete_precopy = ram_save_complete,
4587 .has_postcopy = ram_has_postcopy,
4588 .state_pending_exact = ram_state_pending_exact,
4589 .state_pending_estimate = ram_state_pending_estimate,
4590 .load_state = ram_load,
4591 .save_cleanup = ram_save_cleanup,
4592 .load_setup = ram_load_setup,
4593 .load_cleanup = ram_load_cleanup,
4594 .resume_prepare = ram_resume_prepare,
4597 static void ram_mig_ram_block_resized(RAMBlockNotifier *n, void *host,
4598 size_t old_size, size_t new_size)
4600 PostcopyState ps = postcopy_state_get();
4601 ram_addr_t offset;
4602 RAMBlock *rb = qemu_ram_block_from_host(host, false, &offset);
4603 Error *err = NULL;
4605 if (!rb) {
4606 error_report("RAM block not found");
4607 return;
4610 if (migrate_ram_is_ignored(rb)) {
4611 return;
4614 if (!migration_is_idle()) {
4616 * Precopy code on the source cannot deal with the size of RAM blocks
4617 * changing at random points in time - especially after sending the
4618 * RAM block sizes in the migration stream, they must no longer change.
4619 * Abort and indicate a proper reason.
4621 error_setg(&err, "RAM block '%s' resized during precopy.", rb->idstr);
4622 migration_cancel(err);
4623 error_free(err);
4626 switch (ps) {
4627 case POSTCOPY_INCOMING_ADVISE:
4629 * Update what ram_postcopy_incoming_init()->init_range() does at the
4630 * time postcopy was advised. Syncing RAM blocks with the source will
4631 * result in RAM resizes.
4633 if (old_size < new_size) {
4634 if (ram_discard_range(rb->idstr, old_size, new_size - old_size)) {
4635 error_report("RAM block '%s' discard of resized RAM failed",
4636 rb->idstr);
4639 rb->postcopy_length = new_size;
4640 break;
4641 case POSTCOPY_INCOMING_NONE:
4642 case POSTCOPY_INCOMING_RUNNING:
4643 case POSTCOPY_INCOMING_END:
4645 * Once our guest is running, postcopy does no longer care about
4646 * resizes. When growing, the new memory was not available on the
4647 * source, no handler needed.
4649 break;
4650 default:
4651 error_report("RAM block '%s' resized during postcopy state: %d",
4652 rb->idstr, ps);
4653 exit(-1);
4657 static RAMBlockNotifier ram_mig_ram_notifier = {
4658 .ram_block_resized = ram_mig_ram_block_resized,
4661 void ram_mig_init(void)
4663 qemu_mutex_init(&XBZRLE.lock);
4664 register_savevm_live("ram", 0, 4, &savevm_ram_handlers, &ram_state);
4665 ram_block_notifier_add(&ram_mig_ram_notifier);