1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
6 #include <sys/resource.h>
10 #include "user-internals.h"
11 #include "signal-common.h"
13 #include "user-mmap.h"
14 #include "disas/disas.h"
15 #include "qemu/bitops.h"
16 #include "qemu/path.h"
17 #include "qemu/queue.h"
18 #include "qemu/guest-random.h"
19 #include "qemu/units.h"
20 #include "qemu/selfmap.h"
21 #include "qemu/lockable.h"
22 #include "qapi/error.h"
23 #include "qemu/error-report.h"
24 #include "target_signal.h"
25 #include "tcg/debuginfo.h"
28 #include "target/arm/cpu-features.h"
41 #ifndef TARGET_ARCH_HAS_SIGTRAMP_PAGE
42 #define TARGET_ARCH_HAS_SIGTRAMP_PAGE 0
47 const uint32_t *relocs
;
50 unsigned sigreturn_ofs
;
51 unsigned rt_sigreturn_ofs
;
54 #define ELF_OSABI ELFOSABI_SYSV
56 /* from personality.h */
59 * Flags for bug emulation.
61 * These occupy the top three bytes.
64 ADDR_NO_RANDOMIZE
= 0x0040000, /* disable randomization of VA space */
65 FDPIC_FUNCPTRS
= 0x0080000, /* userspace function ptrs point to
66 descriptors (signal handling) */
67 MMAP_PAGE_ZERO
= 0x0100000,
68 ADDR_COMPAT_LAYOUT
= 0x0200000,
69 READ_IMPLIES_EXEC
= 0x0400000,
70 ADDR_LIMIT_32BIT
= 0x0800000,
71 SHORT_INODE
= 0x1000000,
72 WHOLE_SECONDS
= 0x2000000,
73 STICKY_TIMEOUTS
= 0x4000000,
74 ADDR_LIMIT_3GB
= 0x8000000,
80 * These go in the low byte. Avoid using the top bit, it will
81 * conflict with error returns.
85 PER_LINUX_32BIT
= 0x0000 | ADDR_LIMIT_32BIT
,
86 PER_LINUX_FDPIC
= 0x0000 | FDPIC_FUNCPTRS
,
87 PER_SVR4
= 0x0001 | STICKY_TIMEOUTS
| MMAP_PAGE_ZERO
,
88 PER_SVR3
= 0x0002 | STICKY_TIMEOUTS
| SHORT_INODE
,
89 PER_SCOSVR3
= 0x0003 | STICKY_TIMEOUTS
| WHOLE_SECONDS
| SHORT_INODE
,
90 PER_OSR5
= 0x0003 | STICKY_TIMEOUTS
| WHOLE_SECONDS
,
91 PER_WYSEV386
= 0x0004 | STICKY_TIMEOUTS
| SHORT_INODE
,
92 PER_ISCR4
= 0x0005 | STICKY_TIMEOUTS
,
94 PER_SUNOS
= 0x0006 | STICKY_TIMEOUTS
,
95 PER_XENIX
= 0x0007 | STICKY_TIMEOUTS
| SHORT_INODE
,
97 PER_LINUX32_3GB
= 0x0008 | ADDR_LIMIT_3GB
,
98 PER_IRIX32
= 0x0009 | STICKY_TIMEOUTS
,/* IRIX5 32-bit */
99 PER_IRIXN32
= 0x000a | STICKY_TIMEOUTS
,/* IRIX6 new 32-bit */
100 PER_IRIX64
= 0x000b | STICKY_TIMEOUTS
,/* IRIX6 64-bit */
102 PER_SOLARIS
= 0x000d | STICKY_TIMEOUTS
,
103 PER_UW7
= 0x000e | STICKY_TIMEOUTS
| MMAP_PAGE_ZERO
,
104 PER_OSF4
= 0x000f, /* OSF/1 v4 */
110 * Return the base personality without flags.
112 #define personality(pers) (pers & PER_MASK)
114 int info_is_fdpic(struct image_info
*info
)
116 return info
->personality
== PER_LINUX_FDPIC
;
119 /* this flag is uneffective under linux too, should be deleted */
120 #ifndef MAP_DENYWRITE
121 #define MAP_DENYWRITE 0
124 /* should probably go in elf.h */
129 #if TARGET_BIG_ENDIAN
130 #define ELF_DATA ELFDATA2MSB
132 #define ELF_DATA ELFDATA2LSB
135 #ifdef TARGET_ABI_MIPSN32
136 typedef abi_ullong target_elf_greg_t
;
137 #define tswapreg(ptr) tswap64(ptr)
139 typedef abi_ulong target_elf_greg_t
;
140 #define tswapreg(ptr) tswapal(ptr)
144 typedef abi_ushort target_uid_t
;
145 typedef abi_ushort target_gid_t
;
147 typedef abi_uint target_uid_t
;
148 typedef abi_uint target_gid_t
;
150 typedef abi_int target_pid_t
;
154 #define ELF_HWCAP get_elf_hwcap()
156 static uint32_t get_elf_hwcap(void)
158 X86CPU
*cpu
= X86_CPU(thread_cpu
);
160 return cpu
->env
.features
[FEAT_1_EDX
];
164 #define ELF_CLASS ELFCLASS64
165 #define ELF_ARCH EM_X86_64
167 #define ELF_PLATFORM "x86_64"
169 static inline void init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
172 regs
->rsp
= infop
->start_stack
;
173 regs
->rip
= infop
->entry
;
177 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
180 * Note that ELF_NREG should be 29 as there should be place for
181 * TRAPNO and ERR "registers" as well but linux doesn't dump
184 * See linux kernel: arch/x86/include/asm/elf.h
186 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUX86State
*env
)
188 (*regs
)[0] = tswapreg(env
->regs
[15]);
189 (*regs
)[1] = tswapreg(env
->regs
[14]);
190 (*regs
)[2] = tswapreg(env
->regs
[13]);
191 (*regs
)[3] = tswapreg(env
->regs
[12]);
192 (*regs
)[4] = tswapreg(env
->regs
[R_EBP
]);
193 (*regs
)[5] = tswapreg(env
->regs
[R_EBX
]);
194 (*regs
)[6] = tswapreg(env
->regs
[11]);
195 (*regs
)[7] = tswapreg(env
->regs
[10]);
196 (*regs
)[8] = tswapreg(env
->regs
[9]);
197 (*regs
)[9] = tswapreg(env
->regs
[8]);
198 (*regs
)[10] = tswapreg(env
->regs
[R_EAX
]);
199 (*regs
)[11] = tswapreg(env
->regs
[R_ECX
]);
200 (*regs
)[12] = tswapreg(env
->regs
[R_EDX
]);
201 (*regs
)[13] = tswapreg(env
->regs
[R_ESI
]);
202 (*regs
)[14] = tswapreg(env
->regs
[R_EDI
]);
203 (*regs
)[15] = tswapreg(env
->regs
[R_EAX
]); /* XXX */
204 (*regs
)[16] = tswapreg(env
->eip
);
205 (*regs
)[17] = tswapreg(env
->segs
[R_CS
].selector
& 0xffff);
206 (*regs
)[18] = tswapreg(env
->eflags
);
207 (*regs
)[19] = tswapreg(env
->regs
[R_ESP
]);
208 (*regs
)[20] = tswapreg(env
->segs
[R_SS
].selector
& 0xffff);
209 (*regs
)[21] = tswapreg(env
->segs
[R_FS
].selector
& 0xffff);
210 (*regs
)[22] = tswapreg(env
->segs
[R_GS
].selector
& 0xffff);
211 (*regs
)[23] = tswapreg(env
->segs
[R_DS
].selector
& 0xffff);
212 (*regs
)[24] = tswapreg(env
->segs
[R_ES
].selector
& 0xffff);
213 (*regs
)[25] = tswapreg(env
->segs
[R_FS
].selector
& 0xffff);
214 (*regs
)[26] = tswapreg(env
->segs
[R_GS
].selector
& 0xffff);
217 #if ULONG_MAX > UINT32_MAX
218 #define INIT_GUEST_COMMPAGE
219 static bool init_guest_commpage(void)
222 * The vsyscall page is at a high negative address aka kernel space,
223 * which means that we cannot actually allocate it with target_mmap.
224 * We still should be able to use page_set_flags, unless the user
225 * has specified -R reserved_va, which would trigger an assert().
227 if (reserved_va
!= 0 &&
228 TARGET_VSYSCALL_PAGE
+ TARGET_PAGE_SIZE
- 1 > reserved_va
) {
229 error_report("Cannot allocate vsyscall page");
232 page_set_flags(TARGET_VSYSCALL_PAGE
,
233 TARGET_VSYSCALL_PAGE
| ~TARGET_PAGE_MASK
,
234 PAGE_EXEC
| PAGE_VALID
);
241 * This is used to ensure we don't load something for the wrong architecture.
243 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
246 * These are used to set parameters in the core dumps.
248 #define ELF_CLASS ELFCLASS32
249 #define ELF_ARCH EM_386
251 #define ELF_PLATFORM get_elf_platform()
252 #define EXSTACK_DEFAULT true
254 static const char *get_elf_platform(void)
256 static char elf_platform
[] = "i386";
257 int family
= object_property_get_int(OBJECT(thread_cpu
), "family", NULL
);
262 elf_platform
[1] = '0' + family
;
267 static inline void init_thread(struct target_pt_regs
*regs
,
268 struct image_info
*infop
)
270 regs
->esp
= infop
->start_stack
;
271 regs
->eip
= infop
->entry
;
273 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
274 starts %edx contains a pointer to a function which might be
275 registered using `atexit'. This provides a mean for the
276 dynamic linker to call DT_FINI functions for shared libraries
277 that have been loaded before the code runs.
279 A value of 0 tells we have no such handler. */
284 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
287 * Note that ELF_NREG should be 19 as there should be place for
288 * TRAPNO and ERR "registers" as well but linux doesn't dump
291 * See linux kernel: arch/x86/include/asm/elf.h
293 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUX86State
*env
)
295 (*regs
)[0] = tswapreg(env
->regs
[R_EBX
]);
296 (*regs
)[1] = tswapreg(env
->regs
[R_ECX
]);
297 (*regs
)[2] = tswapreg(env
->regs
[R_EDX
]);
298 (*regs
)[3] = tswapreg(env
->regs
[R_ESI
]);
299 (*regs
)[4] = tswapreg(env
->regs
[R_EDI
]);
300 (*regs
)[5] = tswapreg(env
->regs
[R_EBP
]);
301 (*regs
)[6] = tswapreg(env
->regs
[R_EAX
]);
302 (*regs
)[7] = tswapreg(env
->segs
[R_DS
].selector
& 0xffff);
303 (*regs
)[8] = tswapreg(env
->segs
[R_ES
].selector
& 0xffff);
304 (*regs
)[9] = tswapreg(env
->segs
[R_FS
].selector
& 0xffff);
305 (*regs
)[10] = tswapreg(env
->segs
[R_GS
].selector
& 0xffff);
306 (*regs
)[11] = tswapreg(env
->regs
[R_EAX
]); /* XXX */
307 (*regs
)[12] = tswapreg(env
->eip
);
308 (*regs
)[13] = tswapreg(env
->segs
[R_CS
].selector
& 0xffff);
309 (*regs
)[14] = tswapreg(env
->eflags
);
310 (*regs
)[15] = tswapreg(env
->regs
[R_ESP
]);
311 (*regs
)[16] = tswapreg(env
->segs
[R_SS
].selector
& 0xffff);
315 * i386 is the only target which supplies AT_SYSINFO for the vdso.
316 * All others only supply AT_SYSINFO_EHDR.
318 #define DLINFO_ARCH_ITEMS (vdso_info != NULL)
319 #define ARCH_DLINFO \
322 NEW_AUX_ENT(AT_SYSINFO, vdso_info->entry); \
326 #endif /* TARGET_X86_64 */
328 #define VDSO_HEADER "vdso.c.inc"
330 #define USE_ELF_CORE_DUMP
331 #define ELF_EXEC_PAGESIZE 4096
333 #endif /* TARGET_I386 */
337 #ifndef TARGET_AARCH64
338 /* 32 bit ARM definitions */
340 #define ELF_ARCH EM_ARM
341 #define ELF_CLASS ELFCLASS32
342 #define EXSTACK_DEFAULT true
344 static inline void init_thread(struct target_pt_regs
*regs
,
345 struct image_info
*infop
)
347 abi_long stack
= infop
->start_stack
;
348 memset(regs
, 0, sizeof(*regs
));
350 regs
->uregs
[16] = ARM_CPU_MODE_USR
;
351 if (infop
->entry
& 1) {
352 regs
->uregs
[16] |= CPSR_T
;
354 regs
->uregs
[15] = infop
->entry
& 0xfffffffe;
355 regs
->uregs
[13] = infop
->start_stack
;
356 /* FIXME - what to for failure of get_user()? */
357 get_user_ual(regs
->uregs
[2], stack
+ 8); /* envp */
358 get_user_ual(regs
->uregs
[1], stack
+ 4); /* envp */
359 /* XXX: it seems that r0 is zeroed after ! */
361 /* For uClinux PIC binaries. */
362 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
363 regs
->uregs
[10] = infop
->start_data
;
365 /* Support ARM FDPIC. */
366 if (info_is_fdpic(infop
)) {
367 /* As described in the ABI document, r7 points to the loadmap info
368 * prepared by the kernel. If an interpreter is needed, r8 points
369 * to the interpreter loadmap and r9 points to the interpreter
370 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
371 * r9 points to the main program PT_DYNAMIC info.
373 regs
->uregs
[7] = infop
->loadmap_addr
;
374 if (infop
->interpreter_loadmap_addr
) {
375 /* Executable is dynamically loaded. */
376 regs
->uregs
[8] = infop
->interpreter_loadmap_addr
;
377 regs
->uregs
[9] = infop
->interpreter_pt_dynamic_addr
;
380 regs
->uregs
[9] = infop
->pt_dynamic_addr
;
386 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
388 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUARMState
*env
)
390 (*regs
)[0] = tswapreg(env
->regs
[0]);
391 (*regs
)[1] = tswapreg(env
->regs
[1]);
392 (*regs
)[2] = tswapreg(env
->regs
[2]);
393 (*regs
)[3] = tswapreg(env
->regs
[3]);
394 (*regs
)[4] = tswapreg(env
->regs
[4]);
395 (*regs
)[5] = tswapreg(env
->regs
[5]);
396 (*regs
)[6] = tswapreg(env
->regs
[6]);
397 (*regs
)[7] = tswapreg(env
->regs
[7]);
398 (*regs
)[8] = tswapreg(env
->regs
[8]);
399 (*regs
)[9] = tswapreg(env
->regs
[9]);
400 (*regs
)[10] = tswapreg(env
->regs
[10]);
401 (*regs
)[11] = tswapreg(env
->regs
[11]);
402 (*regs
)[12] = tswapreg(env
->regs
[12]);
403 (*regs
)[13] = tswapreg(env
->regs
[13]);
404 (*regs
)[14] = tswapreg(env
->regs
[14]);
405 (*regs
)[15] = tswapreg(env
->regs
[15]);
407 (*regs
)[16] = tswapreg(cpsr_read((CPUARMState
*)env
));
408 (*regs
)[17] = tswapreg(env
->regs
[0]); /* XXX */
411 #define USE_ELF_CORE_DUMP
412 #define ELF_EXEC_PAGESIZE 4096
416 ARM_HWCAP_ARM_SWP
= 1 << 0,
417 ARM_HWCAP_ARM_HALF
= 1 << 1,
418 ARM_HWCAP_ARM_THUMB
= 1 << 2,
419 ARM_HWCAP_ARM_26BIT
= 1 << 3,
420 ARM_HWCAP_ARM_FAST_MULT
= 1 << 4,
421 ARM_HWCAP_ARM_FPA
= 1 << 5,
422 ARM_HWCAP_ARM_VFP
= 1 << 6,
423 ARM_HWCAP_ARM_EDSP
= 1 << 7,
424 ARM_HWCAP_ARM_JAVA
= 1 << 8,
425 ARM_HWCAP_ARM_IWMMXT
= 1 << 9,
426 ARM_HWCAP_ARM_CRUNCH
= 1 << 10,
427 ARM_HWCAP_ARM_THUMBEE
= 1 << 11,
428 ARM_HWCAP_ARM_NEON
= 1 << 12,
429 ARM_HWCAP_ARM_VFPv3
= 1 << 13,
430 ARM_HWCAP_ARM_VFPv3D16
= 1 << 14,
431 ARM_HWCAP_ARM_TLS
= 1 << 15,
432 ARM_HWCAP_ARM_VFPv4
= 1 << 16,
433 ARM_HWCAP_ARM_IDIVA
= 1 << 17,
434 ARM_HWCAP_ARM_IDIVT
= 1 << 18,
435 ARM_HWCAP_ARM_VFPD32
= 1 << 19,
436 ARM_HWCAP_ARM_LPAE
= 1 << 20,
437 ARM_HWCAP_ARM_EVTSTRM
= 1 << 21,
438 ARM_HWCAP_ARM_FPHP
= 1 << 22,
439 ARM_HWCAP_ARM_ASIMDHP
= 1 << 23,
440 ARM_HWCAP_ARM_ASIMDDP
= 1 << 24,
441 ARM_HWCAP_ARM_ASIMDFHM
= 1 << 25,
442 ARM_HWCAP_ARM_ASIMDBF16
= 1 << 26,
443 ARM_HWCAP_ARM_I8MM
= 1 << 27,
447 ARM_HWCAP2_ARM_AES
= 1 << 0,
448 ARM_HWCAP2_ARM_PMULL
= 1 << 1,
449 ARM_HWCAP2_ARM_SHA1
= 1 << 2,
450 ARM_HWCAP2_ARM_SHA2
= 1 << 3,
451 ARM_HWCAP2_ARM_CRC32
= 1 << 4,
452 ARM_HWCAP2_ARM_SB
= 1 << 5,
453 ARM_HWCAP2_ARM_SSBS
= 1 << 6,
456 /* The commpage only exists for 32 bit kernels */
458 #define HI_COMMPAGE (intptr_t)0xffff0f00u
460 static bool init_guest_commpage(void)
462 ARMCPU
*cpu
= ARM_CPU(thread_cpu
);
463 int host_page_size
= qemu_real_host_page_size();
469 * M-profile allocates maximum of 2GB address space, so can never
470 * allocate the commpage. Skip it.
472 if (arm_feature(&cpu
->env
, ARM_FEATURE_M
)) {
476 commpage
= HI_COMMPAGE
& -host_page_size
;
477 want
= g2h_untagged(commpage
);
478 addr
= mmap(want
, host_page_size
, PROT_READ
| PROT_WRITE
,
479 MAP_ANONYMOUS
| MAP_PRIVATE
|
480 (commpage
< reserved_va
? MAP_FIXED
: MAP_FIXED_NOREPLACE
),
483 if (addr
== MAP_FAILED
) {
484 perror("Allocating guest commpage");
491 /* Set kernel helper versions; rest of page is 0. */
492 __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu
));
494 if (mprotect(addr
, host_page_size
, PROT_READ
)) {
495 perror("Protecting guest commpage");
499 page_set_flags(commpage
, commpage
| (host_page_size
- 1),
500 PAGE_READ
| PAGE_EXEC
| PAGE_VALID
);
504 #define ELF_HWCAP get_elf_hwcap()
505 #define ELF_HWCAP2 get_elf_hwcap2()
507 uint32_t get_elf_hwcap(void)
509 ARMCPU
*cpu
= ARM_CPU(thread_cpu
);
512 hwcaps
|= ARM_HWCAP_ARM_SWP
;
513 hwcaps
|= ARM_HWCAP_ARM_HALF
;
514 hwcaps
|= ARM_HWCAP_ARM_THUMB
;
515 hwcaps
|= ARM_HWCAP_ARM_FAST_MULT
;
517 /* probe for the extra features */
518 #define GET_FEATURE(feat, hwcap) \
519 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
521 #define GET_FEATURE_ID(feat, hwcap) \
522 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
524 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
525 GET_FEATURE(ARM_FEATURE_V5
, ARM_HWCAP_ARM_EDSP
);
526 GET_FEATURE(ARM_FEATURE_IWMMXT
, ARM_HWCAP_ARM_IWMMXT
);
527 GET_FEATURE(ARM_FEATURE_THUMB2EE
, ARM_HWCAP_ARM_THUMBEE
);
528 GET_FEATURE(ARM_FEATURE_NEON
, ARM_HWCAP_ARM_NEON
);
529 GET_FEATURE(ARM_FEATURE_V6K
, ARM_HWCAP_ARM_TLS
);
530 GET_FEATURE(ARM_FEATURE_LPAE
, ARM_HWCAP_ARM_LPAE
);
531 GET_FEATURE_ID(aa32_arm_div
, ARM_HWCAP_ARM_IDIVA
);
532 GET_FEATURE_ID(aa32_thumb_div
, ARM_HWCAP_ARM_IDIVT
);
533 GET_FEATURE_ID(aa32_vfp
, ARM_HWCAP_ARM_VFP
);
535 if (cpu_isar_feature(aa32_fpsp_v3
, cpu
) ||
536 cpu_isar_feature(aa32_fpdp_v3
, cpu
)) {
537 hwcaps
|= ARM_HWCAP_ARM_VFPv3
;
538 if (cpu_isar_feature(aa32_simd_r32
, cpu
)) {
539 hwcaps
|= ARM_HWCAP_ARM_VFPD32
;
541 hwcaps
|= ARM_HWCAP_ARM_VFPv3D16
;
544 GET_FEATURE_ID(aa32_simdfmac
, ARM_HWCAP_ARM_VFPv4
);
546 * MVFR1.FPHP and .SIMDHP must be in sync, and QEMU uses the same
547 * isar_feature function for both. The kernel reports them as two hwcaps.
549 GET_FEATURE_ID(aa32_fp16_arith
, ARM_HWCAP_ARM_FPHP
);
550 GET_FEATURE_ID(aa32_fp16_arith
, ARM_HWCAP_ARM_ASIMDHP
);
551 GET_FEATURE_ID(aa32_dp
, ARM_HWCAP_ARM_ASIMDDP
);
552 GET_FEATURE_ID(aa32_fhm
, ARM_HWCAP_ARM_ASIMDFHM
);
553 GET_FEATURE_ID(aa32_bf16
, ARM_HWCAP_ARM_ASIMDBF16
);
554 GET_FEATURE_ID(aa32_i8mm
, ARM_HWCAP_ARM_I8MM
);
559 uint64_t get_elf_hwcap2(void)
561 ARMCPU
*cpu
= ARM_CPU(thread_cpu
);
564 GET_FEATURE_ID(aa32_aes
, ARM_HWCAP2_ARM_AES
);
565 GET_FEATURE_ID(aa32_pmull
, ARM_HWCAP2_ARM_PMULL
);
566 GET_FEATURE_ID(aa32_sha1
, ARM_HWCAP2_ARM_SHA1
);
567 GET_FEATURE_ID(aa32_sha2
, ARM_HWCAP2_ARM_SHA2
);
568 GET_FEATURE_ID(aa32_crc32
, ARM_HWCAP2_ARM_CRC32
);
569 GET_FEATURE_ID(aa32_sb
, ARM_HWCAP2_ARM_SB
);
570 GET_FEATURE_ID(aa32_ssbs
, ARM_HWCAP2_ARM_SSBS
);
574 const char *elf_hwcap_str(uint32_t bit
)
576 static const char *hwcap_str
[] = {
577 [__builtin_ctz(ARM_HWCAP_ARM_SWP
)] = "swp",
578 [__builtin_ctz(ARM_HWCAP_ARM_HALF
)] = "half",
579 [__builtin_ctz(ARM_HWCAP_ARM_THUMB
)] = "thumb",
580 [__builtin_ctz(ARM_HWCAP_ARM_26BIT
)] = "26bit",
581 [__builtin_ctz(ARM_HWCAP_ARM_FAST_MULT
)] = "fast_mult",
582 [__builtin_ctz(ARM_HWCAP_ARM_FPA
)] = "fpa",
583 [__builtin_ctz(ARM_HWCAP_ARM_VFP
)] = "vfp",
584 [__builtin_ctz(ARM_HWCAP_ARM_EDSP
)] = "edsp",
585 [__builtin_ctz(ARM_HWCAP_ARM_JAVA
)] = "java",
586 [__builtin_ctz(ARM_HWCAP_ARM_IWMMXT
)] = "iwmmxt",
587 [__builtin_ctz(ARM_HWCAP_ARM_CRUNCH
)] = "crunch",
588 [__builtin_ctz(ARM_HWCAP_ARM_THUMBEE
)] = "thumbee",
589 [__builtin_ctz(ARM_HWCAP_ARM_NEON
)] = "neon",
590 [__builtin_ctz(ARM_HWCAP_ARM_VFPv3
)] = "vfpv3",
591 [__builtin_ctz(ARM_HWCAP_ARM_VFPv3D16
)] = "vfpv3d16",
592 [__builtin_ctz(ARM_HWCAP_ARM_TLS
)] = "tls",
593 [__builtin_ctz(ARM_HWCAP_ARM_VFPv4
)] = "vfpv4",
594 [__builtin_ctz(ARM_HWCAP_ARM_IDIVA
)] = "idiva",
595 [__builtin_ctz(ARM_HWCAP_ARM_IDIVT
)] = "idivt",
596 [__builtin_ctz(ARM_HWCAP_ARM_VFPD32
)] = "vfpd32",
597 [__builtin_ctz(ARM_HWCAP_ARM_LPAE
)] = "lpae",
598 [__builtin_ctz(ARM_HWCAP_ARM_EVTSTRM
)] = "evtstrm",
599 [__builtin_ctz(ARM_HWCAP_ARM_FPHP
)] = "fphp",
600 [__builtin_ctz(ARM_HWCAP_ARM_ASIMDHP
)] = "asimdhp",
601 [__builtin_ctz(ARM_HWCAP_ARM_ASIMDDP
)] = "asimddp",
602 [__builtin_ctz(ARM_HWCAP_ARM_ASIMDFHM
)] = "asimdfhm",
603 [__builtin_ctz(ARM_HWCAP_ARM_ASIMDBF16
)] = "asimdbf16",
604 [__builtin_ctz(ARM_HWCAP_ARM_I8MM
)] = "i8mm",
607 return bit
< ARRAY_SIZE(hwcap_str
) ? hwcap_str
[bit
] : NULL
;
610 const char *elf_hwcap2_str(uint32_t bit
)
612 static const char *hwcap_str
[] = {
613 [__builtin_ctz(ARM_HWCAP2_ARM_AES
)] = "aes",
614 [__builtin_ctz(ARM_HWCAP2_ARM_PMULL
)] = "pmull",
615 [__builtin_ctz(ARM_HWCAP2_ARM_SHA1
)] = "sha1",
616 [__builtin_ctz(ARM_HWCAP2_ARM_SHA2
)] = "sha2",
617 [__builtin_ctz(ARM_HWCAP2_ARM_CRC32
)] = "crc32",
618 [__builtin_ctz(ARM_HWCAP2_ARM_SB
)] = "sb",
619 [__builtin_ctz(ARM_HWCAP2_ARM_SSBS
)] = "ssbs",
622 return bit
< ARRAY_SIZE(hwcap_str
) ? hwcap_str
[bit
] : NULL
;
626 #undef GET_FEATURE_ID
628 #define ELF_PLATFORM get_elf_platform()
630 static const char *get_elf_platform(void)
632 CPUARMState
*env
= cpu_env(thread_cpu
);
634 #if TARGET_BIG_ENDIAN
640 if (arm_feature(env
, ARM_FEATURE_V8
)) {
642 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
643 if (arm_feature(env
, ARM_FEATURE_M
)) {
648 } else if (arm_feature(env
, ARM_FEATURE_V6
)) {
650 } else if (arm_feature(env
, ARM_FEATURE_V5
)) {
660 /* 64 bit ARM definitions */
662 #define ELF_ARCH EM_AARCH64
663 #define ELF_CLASS ELFCLASS64
664 #if TARGET_BIG_ENDIAN
665 # define ELF_PLATFORM "aarch64_be"
667 # define ELF_PLATFORM "aarch64"
670 static inline void init_thread(struct target_pt_regs
*regs
,
671 struct image_info
*infop
)
673 abi_long stack
= infop
->start_stack
;
674 memset(regs
, 0, sizeof(*regs
));
676 regs
->pc
= infop
->entry
& ~0x3ULL
;
681 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
683 static void elf_core_copy_regs(target_elf_gregset_t
*regs
,
684 const CPUARMState
*env
)
688 for (i
= 0; i
< 32; i
++) {
689 (*regs
)[i
] = tswapreg(env
->xregs
[i
]);
691 (*regs
)[32] = tswapreg(env
->pc
);
692 (*regs
)[33] = tswapreg(pstate_read((CPUARMState
*)env
));
695 #define USE_ELF_CORE_DUMP
696 #define ELF_EXEC_PAGESIZE 4096
699 ARM_HWCAP_A64_FP
= 1 << 0,
700 ARM_HWCAP_A64_ASIMD
= 1 << 1,
701 ARM_HWCAP_A64_EVTSTRM
= 1 << 2,
702 ARM_HWCAP_A64_AES
= 1 << 3,
703 ARM_HWCAP_A64_PMULL
= 1 << 4,
704 ARM_HWCAP_A64_SHA1
= 1 << 5,
705 ARM_HWCAP_A64_SHA2
= 1 << 6,
706 ARM_HWCAP_A64_CRC32
= 1 << 7,
707 ARM_HWCAP_A64_ATOMICS
= 1 << 8,
708 ARM_HWCAP_A64_FPHP
= 1 << 9,
709 ARM_HWCAP_A64_ASIMDHP
= 1 << 10,
710 ARM_HWCAP_A64_CPUID
= 1 << 11,
711 ARM_HWCAP_A64_ASIMDRDM
= 1 << 12,
712 ARM_HWCAP_A64_JSCVT
= 1 << 13,
713 ARM_HWCAP_A64_FCMA
= 1 << 14,
714 ARM_HWCAP_A64_LRCPC
= 1 << 15,
715 ARM_HWCAP_A64_DCPOP
= 1 << 16,
716 ARM_HWCAP_A64_SHA3
= 1 << 17,
717 ARM_HWCAP_A64_SM3
= 1 << 18,
718 ARM_HWCAP_A64_SM4
= 1 << 19,
719 ARM_HWCAP_A64_ASIMDDP
= 1 << 20,
720 ARM_HWCAP_A64_SHA512
= 1 << 21,
721 ARM_HWCAP_A64_SVE
= 1 << 22,
722 ARM_HWCAP_A64_ASIMDFHM
= 1 << 23,
723 ARM_HWCAP_A64_DIT
= 1 << 24,
724 ARM_HWCAP_A64_USCAT
= 1 << 25,
725 ARM_HWCAP_A64_ILRCPC
= 1 << 26,
726 ARM_HWCAP_A64_FLAGM
= 1 << 27,
727 ARM_HWCAP_A64_SSBS
= 1 << 28,
728 ARM_HWCAP_A64_SB
= 1 << 29,
729 ARM_HWCAP_A64_PACA
= 1 << 30,
730 ARM_HWCAP_A64_PACG
= 1UL << 31,
732 ARM_HWCAP2_A64_DCPODP
= 1 << 0,
733 ARM_HWCAP2_A64_SVE2
= 1 << 1,
734 ARM_HWCAP2_A64_SVEAES
= 1 << 2,
735 ARM_HWCAP2_A64_SVEPMULL
= 1 << 3,
736 ARM_HWCAP2_A64_SVEBITPERM
= 1 << 4,
737 ARM_HWCAP2_A64_SVESHA3
= 1 << 5,
738 ARM_HWCAP2_A64_SVESM4
= 1 << 6,
739 ARM_HWCAP2_A64_FLAGM2
= 1 << 7,
740 ARM_HWCAP2_A64_FRINT
= 1 << 8,
741 ARM_HWCAP2_A64_SVEI8MM
= 1 << 9,
742 ARM_HWCAP2_A64_SVEF32MM
= 1 << 10,
743 ARM_HWCAP2_A64_SVEF64MM
= 1 << 11,
744 ARM_HWCAP2_A64_SVEBF16
= 1 << 12,
745 ARM_HWCAP2_A64_I8MM
= 1 << 13,
746 ARM_HWCAP2_A64_BF16
= 1 << 14,
747 ARM_HWCAP2_A64_DGH
= 1 << 15,
748 ARM_HWCAP2_A64_RNG
= 1 << 16,
749 ARM_HWCAP2_A64_BTI
= 1 << 17,
750 ARM_HWCAP2_A64_MTE
= 1 << 18,
751 ARM_HWCAP2_A64_ECV
= 1 << 19,
752 ARM_HWCAP2_A64_AFP
= 1 << 20,
753 ARM_HWCAP2_A64_RPRES
= 1 << 21,
754 ARM_HWCAP2_A64_MTE3
= 1 << 22,
755 ARM_HWCAP2_A64_SME
= 1 << 23,
756 ARM_HWCAP2_A64_SME_I16I64
= 1 << 24,
757 ARM_HWCAP2_A64_SME_F64F64
= 1 << 25,
758 ARM_HWCAP2_A64_SME_I8I32
= 1 << 26,
759 ARM_HWCAP2_A64_SME_F16F32
= 1 << 27,
760 ARM_HWCAP2_A64_SME_B16F32
= 1 << 28,
761 ARM_HWCAP2_A64_SME_F32F32
= 1 << 29,
762 ARM_HWCAP2_A64_SME_FA64
= 1 << 30,
763 ARM_HWCAP2_A64_WFXT
= 1ULL << 31,
764 ARM_HWCAP2_A64_EBF16
= 1ULL << 32,
765 ARM_HWCAP2_A64_SVE_EBF16
= 1ULL << 33,
766 ARM_HWCAP2_A64_CSSC
= 1ULL << 34,
767 ARM_HWCAP2_A64_RPRFM
= 1ULL << 35,
768 ARM_HWCAP2_A64_SVE2P1
= 1ULL << 36,
769 ARM_HWCAP2_A64_SME2
= 1ULL << 37,
770 ARM_HWCAP2_A64_SME2P1
= 1ULL << 38,
771 ARM_HWCAP2_A64_SME_I16I32
= 1ULL << 39,
772 ARM_HWCAP2_A64_SME_BI32I32
= 1ULL << 40,
773 ARM_HWCAP2_A64_SME_B16B16
= 1ULL << 41,
774 ARM_HWCAP2_A64_SME_F16F16
= 1ULL << 42,
775 ARM_HWCAP2_A64_MOPS
= 1ULL << 43,
776 ARM_HWCAP2_A64_HBC
= 1ULL << 44,
779 #define ELF_HWCAP get_elf_hwcap()
780 #define ELF_HWCAP2 get_elf_hwcap2()
782 #define GET_FEATURE_ID(feat, hwcap) \
783 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
785 uint32_t get_elf_hwcap(void)
787 ARMCPU
*cpu
= ARM_CPU(thread_cpu
);
790 hwcaps
|= ARM_HWCAP_A64_FP
;
791 hwcaps
|= ARM_HWCAP_A64_ASIMD
;
792 hwcaps
|= ARM_HWCAP_A64_CPUID
;
794 /* probe for the extra features */
796 GET_FEATURE_ID(aa64_aes
, ARM_HWCAP_A64_AES
);
797 GET_FEATURE_ID(aa64_pmull
, ARM_HWCAP_A64_PMULL
);
798 GET_FEATURE_ID(aa64_sha1
, ARM_HWCAP_A64_SHA1
);
799 GET_FEATURE_ID(aa64_sha256
, ARM_HWCAP_A64_SHA2
);
800 GET_FEATURE_ID(aa64_sha512
, ARM_HWCAP_A64_SHA512
);
801 GET_FEATURE_ID(aa64_crc32
, ARM_HWCAP_A64_CRC32
);
802 GET_FEATURE_ID(aa64_sha3
, ARM_HWCAP_A64_SHA3
);
803 GET_FEATURE_ID(aa64_sm3
, ARM_HWCAP_A64_SM3
);
804 GET_FEATURE_ID(aa64_sm4
, ARM_HWCAP_A64_SM4
);
805 GET_FEATURE_ID(aa64_fp16
, ARM_HWCAP_A64_FPHP
| ARM_HWCAP_A64_ASIMDHP
);
806 GET_FEATURE_ID(aa64_atomics
, ARM_HWCAP_A64_ATOMICS
);
807 GET_FEATURE_ID(aa64_lse2
, ARM_HWCAP_A64_USCAT
);
808 GET_FEATURE_ID(aa64_rdm
, ARM_HWCAP_A64_ASIMDRDM
);
809 GET_FEATURE_ID(aa64_dp
, ARM_HWCAP_A64_ASIMDDP
);
810 GET_FEATURE_ID(aa64_fcma
, ARM_HWCAP_A64_FCMA
);
811 GET_FEATURE_ID(aa64_sve
, ARM_HWCAP_A64_SVE
);
812 GET_FEATURE_ID(aa64_pauth
, ARM_HWCAP_A64_PACA
| ARM_HWCAP_A64_PACG
);
813 GET_FEATURE_ID(aa64_fhm
, ARM_HWCAP_A64_ASIMDFHM
);
814 GET_FEATURE_ID(aa64_dit
, ARM_HWCAP_A64_DIT
);
815 GET_FEATURE_ID(aa64_jscvt
, ARM_HWCAP_A64_JSCVT
);
816 GET_FEATURE_ID(aa64_sb
, ARM_HWCAP_A64_SB
);
817 GET_FEATURE_ID(aa64_condm_4
, ARM_HWCAP_A64_FLAGM
);
818 GET_FEATURE_ID(aa64_dcpop
, ARM_HWCAP_A64_DCPOP
);
819 GET_FEATURE_ID(aa64_rcpc_8_3
, ARM_HWCAP_A64_LRCPC
);
820 GET_FEATURE_ID(aa64_rcpc_8_4
, ARM_HWCAP_A64_ILRCPC
);
825 uint64_t get_elf_hwcap2(void)
827 ARMCPU
*cpu
= ARM_CPU(thread_cpu
);
830 GET_FEATURE_ID(aa64_dcpodp
, ARM_HWCAP2_A64_DCPODP
);
831 GET_FEATURE_ID(aa64_sve2
, ARM_HWCAP2_A64_SVE2
);
832 GET_FEATURE_ID(aa64_sve2_aes
, ARM_HWCAP2_A64_SVEAES
);
833 GET_FEATURE_ID(aa64_sve2_pmull128
, ARM_HWCAP2_A64_SVEPMULL
);
834 GET_FEATURE_ID(aa64_sve2_bitperm
, ARM_HWCAP2_A64_SVEBITPERM
);
835 GET_FEATURE_ID(aa64_sve2_sha3
, ARM_HWCAP2_A64_SVESHA3
);
836 GET_FEATURE_ID(aa64_sve2_sm4
, ARM_HWCAP2_A64_SVESM4
);
837 GET_FEATURE_ID(aa64_condm_5
, ARM_HWCAP2_A64_FLAGM2
);
838 GET_FEATURE_ID(aa64_frint
, ARM_HWCAP2_A64_FRINT
);
839 GET_FEATURE_ID(aa64_sve_i8mm
, ARM_HWCAP2_A64_SVEI8MM
);
840 GET_FEATURE_ID(aa64_sve_f32mm
, ARM_HWCAP2_A64_SVEF32MM
);
841 GET_FEATURE_ID(aa64_sve_f64mm
, ARM_HWCAP2_A64_SVEF64MM
);
842 GET_FEATURE_ID(aa64_sve_bf16
, ARM_HWCAP2_A64_SVEBF16
);
843 GET_FEATURE_ID(aa64_i8mm
, ARM_HWCAP2_A64_I8MM
);
844 GET_FEATURE_ID(aa64_bf16
, ARM_HWCAP2_A64_BF16
);
845 GET_FEATURE_ID(aa64_rndr
, ARM_HWCAP2_A64_RNG
);
846 GET_FEATURE_ID(aa64_bti
, ARM_HWCAP2_A64_BTI
);
847 GET_FEATURE_ID(aa64_mte
, ARM_HWCAP2_A64_MTE
);
848 GET_FEATURE_ID(aa64_mte3
, ARM_HWCAP2_A64_MTE3
);
849 GET_FEATURE_ID(aa64_sme
, (ARM_HWCAP2_A64_SME
|
850 ARM_HWCAP2_A64_SME_F32F32
|
851 ARM_HWCAP2_A64_SME_B16F32
|
852 ARM_HWCAP2_A64_SME_F16F32
|
853 ARM_HWCAP2_A64_SME_I8I32
));
854 GET_FEATURE_ID(aa64_sme_f64f64
, ARM_HWCAP2_A64_SME_F64F64
);
855 GET_FEATURE_ID(aa64_sme_i16i64
, ARM_HWCAP2_A64_SME_I16I64
);
856 GET_FEATURE_ID(aa64_sme_fa64
, ARM_HWCAP2_A64_SME_FA64
);
857 GET_FEATURE_ID(aa64_hbc
, ARM_HWCAP2_A64_HBC
);
858 GET_FEATURE_ID(aa64_mops
, ARM_HWCAP2_A64_MOPS
);
863 const char *elf_hwcap_str(uint32_t bit
)
865 static const char *hwcap_str
[] = {
866 [__builtin_ctz(ARM_HWCAP_A64_FP
)] = "fp",
867 [__builtin_ctz(ARM_HWCAP_A64_ASIMD
)] = "asimd",
868 [__builtin_ctz(ARM_HWCAP_A64_EVTSTRM
)] = "evtstrm",
869 [__builtin_ctz(ARM_HWCAP_A64_AES
)] = "aes",
870 [__builtin_ctz(ARM_HWCAP_A64_PMULL
)] = "pmull",
871 [__builtin_ctz(ARM_HWCAP_A64_SHA1
)] = "sha1",
872 [__builtin_ctz(ARM_HWCAP_A64_SHA2
)] = "sha2",
873 [__builtin_ctz(ARM_HWCAP_A64_CRC32
)] = "crc32",
874 [__builtin_ctz(ARM_HWCAP_A64_ATOMICS
)] = "atomics",
875 [__builtin_ctz(ARM_HWCAP_A64_FPHP
)] = "fphp",
876 [__builtin_ctz(ARM_HWCAP_A64_ASIMDHP
)] = "asimdhp",
877 [__builtin_ctz(ARM_HWCAP_A64_CPUID
)] = "cpuid",
878 [__builtin_ctz(ARM_HWCAP_A64_ASIMDRDM
)] = "asimdrdm",
879 [__builtin_ctz(ARM_HWCAP_A64_JSCVT
)] = "jscvt",
880 [__builtin_ctz(ARM_HWCAP_A64_FCMA
)] = "fcma",
881 [__builtin_ctz(ARM_HWCAP_A64_LRCPC
)] = "lrcpc",
882 [__builtin_ctz(ARM_HWCAP_A64_DCPOP
)] = "dcpop",
883 [__builtin_ctz(ARM_HWCAP_A64_SHA3
)] = "sha3",
884 [__builtin_ctz(ARM_HWCAP_A64_SM3
)] = "sm3",
885 [__builtin_ctz(ARM_HWCAP_A64_SM4
)] = "sm4",
886 [__builtin_ctz(ARM_HWCAP_A64_ASIMDDP
)] = "asimddp",
887 [__builtin_ctz(ARM_HWCAP_A64_SHA512
)] = "sha512",
888 [__builtin_ctz(ARM_HWCAP_A64_SVE
)] = "sve",
889 [__builtin_ctz(ARM_HWCAP_A64_ASIMDFHM
)] = "asimdfhm",
890 [__builtin_ctz(ARM_HWCAP_A64_DIT
)] = "dit",
891 [__builtin_ctz(ARM_HWCAP_A64_USCAT
)] = "uscat",
892 [__builtin_ctz(ARM_HWCAP_A64_ILRCPC
)] = "ilrcpc",
893 [__builtin_ctz(ARM_HWCAP_A64_FLAGM
)] = "flagm",
894 [__builtin_ctz(ARM_HWCAP_A64_SSBS
)] = "ssbs",
895 [__builtin_ctz(ARM_HWCAP_A64_SB
)] = "sb",
896 [__builtin_ctz(ARM_HWCAP_A64_PACA
)] = "paca",
897 [__builtin_ctz(ARM_HWCAP_A64_PACG
)] = "pacg",
900 return bit
< ARRAY_SIZE(hwcap_str
) ? hwcap_str
[bit
] : NULL
;
903 const char *elf_hwcap2_str(uint32_t bit
)
905 static const char *hwcap_str
[] = {
906 [__builtin_ctz(ARM_HWCAP2_A64_DCPODP
)] = "dcpodp",
907 [__builtin_ctz(ARM_HWCAP2_A64_SVE2
)] = "sve2",
908 [__builtin_ctz(ARM_HWCAP2_A64_SVEAES
)] = "sveaes",
909 [__builtin_ctz(ARM_HWCAP2_A64_SVEPMULL
)] = "svepmull",
910 [__builtin_ctz(ARM_HWCAP2_A64_SVEBITPERM
)] = "svebitperm",
911 [__builtin_ctz(ARM_HWCAP2_A64_SVESHA3
)] = "svesha3",
912 [__builtin_ctz(ARM_HWCAP2_A64_SVESM4
)] = "svesm4",
913 [__builtin_ctz(ARM_HWCAP2_A64_FLAGM2
)] = "flagm2",
914 [__builtin_ctz(ARM_HWCAP2_A64_FRINT
)] = "frint",
915 [__builtin_ctz(ARM_HWCAP2_A64_SVEI8MM
)] = "svei8mm",
916 [__builtin_ctz(ARM_HWCAP2_A64_SVEF32MM
)] = "svef32mm",
917 [__builtin_ctz(ARM_HWCAP2_A64_SVEF64MM
)] = "svef64mm",
918 [__builtin_ctz(ARM_HWCAP2_A64_SVEBF16
)] = "svebf16",
919 [__builtin_ctz(ARM_HWCAP2_A64_I8MM
)] = "i8mm",
920 [__builtin_ctz(ARM_HWCAP2_A64_BF16
)] = "bf16",
921 [__builtin_ctz(ARM_HWCAP2_A64_DGH
)] = "dgh",
922 [__builtin_ctz(ARM_HWCAP2_A64_RNG
)] = "rng",
923 [__builtin_ctz(ARM_HWCAP2_A64_BTI
)] = "bti",
924 [__builtin_ctz(ARM_HWCAP2_A64_MTE
)] = "mte",
925 [__builtin_ctz(ARM_HWCAP2_A64_ECV
)] = "ecv",
926 [__builtin_ctz(ARM_HWCAP2_A64_AFP
)] = "afp",
927 [__builtin_ctz(ARM_HWCAP2_A64_RPRES
)] = "rpres",
928 [__builtin_ctz(ARM_HWCAP2_A64_MTE3
)] = "mte3",
929 [__builtin_ctz(ARM_HWCAP2_A64_SME
)] = "sme",
930 [__builtin_ctz(ARM_HWCAP2_A64_SME_I16I64
)] = "smei16i64",
931 [__builtin_ctz(ARM_HWCAP2_A64_SME_F64F64
)] = "smef64f64",
932 [__builtin_ctz(ARM_HWCAP2_A64_SME_I8I32
)] = "smei8i32",
933 [__builtin_ctz(ARM_HWCAP2_A64_SME_F16F32
)] = "smef16f32",
934 [__builtin_ctz(ARM_HWCAP2_A64_SME_B16F32
)] = "smeb16f32",
935 [__builtin_ctz(ARM_HWCAP2_A64_SME_F32F32
)] = "smef32f32",
936 [__builtin_ctz(ARM_HWCAP2_A64_SME_FA64
)] = "smefa64",
937 [__builtin_ctz(ARM_HWCAP2_A64_WFXT
)] = "wfxt",
938 [__builtin_ctzll(ARM_HWCAP2_A64_EBF16
)] = "ebf16",
939 [__builtin_ctzll(ARM_HWCAP2_A64_SVE_EBF16
)] = "sveebf16",
940 [__builtin_ctzll(ARM_HWCAP2_A64_CSSC
)] = "cssc",
941 [__builtin_ctzll(ARM_HWCAP2_A64_RPRFM
)] = "rprfm",
942 [__builtin_ctzll(ARM_HWCAP2_A64_SVE2P1
)] = "sve2p1",
943 [__builtin_ctzll(ARM_HWCAP2_A64_SME2
)] = "sme2",
944 [__builtin_ctzll(ARM_HWCAP2_A64_SME2P1
)] = "sme2p1",
945 [__builtin_ctzll(ARM_HWCAP2_A64_SME_I16I32
)] = "smei16i32",
946 [__builtin_ctzll(ARM_HWCAP2_A64_SME_BI32I32
)] = "smebi32i32",
947 [__builtin_ctzll(ARM_HWCAP2_A64_SME_B16B16
)] = "smeb16b16",
948 [__builtin_ctzll(ARM_HWCAP2_A64_SME_F16F16
)] = "smef16f16",
949 [__builtin_ctzll(ARM_HWCAP2_A64_MOPS
)] = "mops",
950 [__builtin_ctzll(ARM_HWCAP2_A64_HBC
)] = "hbc",
953 return bit
< ARRAY_SIZE(hwcap_str
) ? hwcap_str
[bit
] : NULL
;
956 #undef GET_FEATURE_ID
958 #endif /* not TARGET_AARCH64 */
960 #if TARGET_BIG_ENDIAN
961 # define VDSO_HEADER "vdso-be.c.inc"
963 # define VDSO_HEADER "vdso-le.c.inc"
966 #endif /* TARGET_ARM */
969 #ifdef TARGET_SPARC64
971 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
972 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
974 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
976 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
979 #define ELF_CLASS ELFCLASS64
980 #define ELF_ARCH EM_SPARCV9
982 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
983 | HWCAP_SPARC_MULDIV)
984 #define ELF_CLASS ELFCLASS32
985 #define ELF_ARCH EM_SPARC
986 #endif /* TARGET_SPARC64 */
988 static inline void init_thread(struct target_pt_regs
*regs
,
989 struct image_info
*infop
)
991 /* Note that target_cpu_copy_regs does not read psr/tstate. */
992 regs
->pc
= infop
->entry
;
993 regs
->npc
= regs
->pc
+ 4;
995 regs
->u_regs
[14] = (infop
->start_stack
- 16 * sizeof(abi_ulong
)
996 - TARGET_STACK_BIAS
);
998 #endif /* TARGET_SPARC */
1002 #define ELF_MACHINE PPC_ELF_MACHINE
1004 #if defined(TARGET_PPC64)
1006 #define elf_check_arch(x) ( (x) == EM_PPC64 )
1008 #define ELF_CLASS ELFCLASS64
1012 #define ELF_CLASS ELFCLASS32
1013 #define EXSTACK_DEFAULT true
1017 #define ELF_ARCH EM_PPC
1019 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
1020 See arch/powerpc/include/asm/cputable.h. */
1022 QEMU_PPC_FEATURE_32
= 0x80000000,
1023 QEMU_PPC_FEATURE_64
= 0x40000000,
1024 QEMU_PPC_FEATURE_601_INSTR
= 0x20000000,
1025 QEMU_PPC_FEATURE_HAS_ALTIVEC
= 0x10000000,
1026 QEMU_PPC_FEATURE_HAS_FPU
= 0x08000000,
1027 QEMU_PPC_FEATURE_HAS_MMU
= 0x04000000,
1028 QEMU_PPC_FEATURE_HAS_4xxMAC
= 0x02000000,
1029 QEMU_PPC_FEATURE_UNIFIED_CACHE
= 0x01000000,
1030 QEMU_PPC_FEATURE_HAS_SPE
= 0x00800000,
1031 QEMU_PPC_FEATURE_HAS_EFP_SINGLE
= 0x00400000,
1032 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE
= 0x00200000,
1033 QEMU_PPC_FEATURE_NO_TB
= 0x00100000,
1034 QEMU_PPC_FEATURE_POWER4
= 0x00080000,
1035 QEMU_PPC_FEATURE_POWER5
= 0x00040000,
1036 QEMU_PPC_FEATURE_POWER5_PLUS
= 0x00020000,
1037 QEMU_PPC_FEATURE_CELL
= 0x00010000,
1038 QEMU_PPC_FEATURE_BOOKE
= 0x00008000,
1039 QEMU_PPC_FEATURE_SMT
= 0x00004000,
1040 QEMU_PPC_FEATURE_ICACHE_SNOOP
= 0x00002000,
1041 QEMU_PPC_FEATURE_ARCH_2_05
= 0x00001000,
1042 QEMU_PPC_FEATURE_PA6T
= 0x00000800,
1043 QEMU_PPC_FEATURE_HAS_DFP
= 0x00000400,
1044 QEMU_PPC_FEATURE_POWER6_EXT
= 0x00000200,
1045 QEMU_PPC_FEATURE_ARCH_2_06
= 0x00000100,
1046 QEMU_PPC_FEATURE_HAS_VSX
= 0x00000080,
1047 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT
= 0x00000040,
1049 QEMU_PPC_FEATURE_TRUE_LE
= 0x00000002,
1050 QEMU_PPC_FEATURE_PPC_LE
= 0x00000001,
1052 /* Feature definitions in AT_HWCAP2. */
1053 QEMU_PPC_FEATURE2_ARCH_2_07
= 0x80000000, /* ISA 2.07 */
1054 QEMU_PPC_FEATURE2_HAS_HTM
= 0x40000000, /* Hardware Transactional Memory */
1055 QEMU_PPC_FEATURE2_HAS_DSCR
= 0x20000000, /* Data Stream Control Register */
1056 QEMU_PPC_FEATURE2_HAS_EBB
= 0x10000000, /* Event Base Branching */
1057 QEMU_PPC_FEATURE2_HAS_ISEL
= 0x08000000, /* Integer Select */
1058 QEMU_PPC_FEATURE2_HAS_TAR
= 0x04000000, /* Target Address Register */
1059 QEMU_PPC_FEATURE2_VEC_CRYPTO
= 0x02000000,
1060 QEMU_PPC_FEATURE2_HTM_NOSC
= 0x01000000,
1061 QEMU_PPC_FEATURE2_ARCH_3_00
= 0x00800000, /* ISA 3.00 */
1062 QEMU_PPC_FEATURE2_HAS_IEEE128
= 0x00400000, /* VSX IEEE Bin Float 128-bit */
1063 QEMU_PPC_FEATURE2_DARN
= 0x00200000, /* darn random number insn */
1064 QEMU_PPC_FEATURE2_SCV
= 0x00100000, /* scv syscall */
1065 QEMU_PPC_FEATURE2_HTM_NO_SUSPEND
= 0x00080000, /* TM w/o suspended state */
1066 QEMU_PPC_FEATURE2_ARCH_3_1
= 0x00040000, /* ISA 3.1 */
1067 QEMU_PPC_FEATURE2_MMA
= 0x00020000, /* Matrix-Multiply Assist */
1070 #define ELF_HWCAP get_elf_hwcap()
1072 static uint32_t get_elf_hwcap(void)
1074 PowerPCCPU
*cpu
= POWERPC_CPU(thread_cpu
);
1075 uint32_t features
= 0;
1077 /* We don't have to be terribly complete here; the high points are
1078 Altivec/FP/SPE support. Anything else is just a bonus. */
1079 #define GET_FEATURE(flag, feature) \
1080 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
1081 #define GET_FEATURE2(flags, feature) \
1083 if ((cpu->env.insns_flags2 & flags) == flags) { \
1084 features |= feature; \
1087 GET_FEATURE(PPC_64B
, QEMU_PPC_FEATURE_64
);
1088 GET_FEATURE(PPC_FLOAT
, QEMU_PPC_FEATURE_HAS_FPU
);
1089 GET_FEATURE(PPC_ALTIVEC
, QEMU_PPC_FEATURE_HAS_ALTIVEC
);
1090 GET_FEATURE(PPC_SPE
, QEMU_PPC_FEATURE_HAS_SPE
);
1091 GET_FEATURE(PPC_SPE_SINGLE
, QEMU_PPC_FEATURE_HAS_EFP_SINGLE
);
1092 GET_FEATURE(PPC_SPE_DOUBLE
, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE
);
1093 GET_FEATURE(PPC_BOOKE
, QEMU_PPC_FEATURE_BOOKE
);
1094 GET_FEATURE(PPC_405_MAC
, QEMU_PPC_FEATURE_HAS_4xxMAC
);
1095 GET_FEATURE2(PPC2_DFP
, QEMU_PPC_FEATURE_HAS_DFP
);
1096 GET_FEATURE2(PPC2_VSX
, QEMU_PPC_FEATURE_HAS_VSX
);
1097 GET_FEATURE2((PPC2_PERM_ISA206
| PPC2_DIVE_ISA206
| PPC2_ATOMIC_ISA206
|
1098 PPC2_FP_CVT_ISA206
| PPC2_FP_TST_ISA206
),
1099 QEMU_PPC_FEATURE_ARCH_2_06
);
1106 #define ELF_HWCAP2 get_elf_hwcap2()
1108 static uint32_t get_elf_hwcap2(void)
1110 PowerPCCPU
*cpu
= POWERPC_CPU(thread_cpu
);
1111 uint32_t features
= 0;
1113 #define GET_FEATURE(flag, feature) \
1114 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
1115 #define GET_FEATURE2(flag, feature) \
1116 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
1118 GET_FEATURE(PPC_ISEL
, QEMU_PPC_FEATURE2_HAS_ISEL
);
1119 GET_FEATURE2(PPC2_BCTAR_ISA207
, QEMU_PPC_FEATURE2_HAS_TAR
);
1120 GET_FEATURE2((PPC2_BCTAR_ISA207
| PPC2_LSQ_ISA207
| PPC2_ALTIVEC_207
|
1121 PPC2_ISA207S
), QEMU_PPC_FEATURE2_ARCH_2_07
|
1122 QEMU_PPC_FEATURE2_VEC_CRYPTO
);
1123 GET_FEATURE2(PPC2_ISA300
, QEMU_PPC_FEATURE2_ARCH_3_00
|
1124 QEMU_PPC_FEATURE2_DARN
| QEMU_PPC_FEATURE2_HAS_IEEE128
);
1125 GET_FEATURE2(PPC2_ISA310
, QEMU_PPC_FEATURE2_ARCH_3_1
|
1126 QEMU_PPC_FEATURE2_MMA
);
1135 * The requirements here are:
1136 * - keep the final alignment of sp (sp & 0xf)
1137 * - make sure the 32-bit value at the first 16 byte aligned position of
1138 * AUXV is greater than 16 for glibc compatibility.
1139 * AT_IGNOREPPC is used for that.
1140 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
1141 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
1143 #define DLINFO_ARCH_ITEMS 5
1144 #define ARCH_DLINFO \
1146 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
1148 * Handle glibc compatibility: these magic entries must \
1149 * be at the lowest addresses in the final auxv. \
1151 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
1152 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
1153 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
1154 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
1155 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
1158 static inline void init_thread(struct target_pt_regs
*_regs
, struct image_info
*infop
)
1160 _regs
->gpr
[1] = infop
->start_stack
;
1161 #if defined(TARGET_PPC64)
1162 if (get_ppc64_abi(infop
) < 2) {
1164 get_user_u64(val
, infop
->entry
+ 8);
1165 _regs
->gpr
[2] = val
+ infop
->load_bias
;
1166 get_user_u64(val
, infop
->entry
);
1167 infop
->entry
= val
+ infop
->load_bias
;
1169 _regs
->gpr
[12] = infop
->entry
; /* r12 set to global entry address */
1172 _regs
->nip
= infop
->entry
;
1175 /* See linux kernel: arch/powerpc/include/asm/elf.h. */
1177 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1179 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUPPCState
*env
)
1182 target_ulong ccr
= 0;
1184 for (i
= 0; i
< ARRAY_SIZE(env
->gpr
); i
++) {
1185 (*regs
)[i
] = tswapreg(env
->gpr
[i
]);
1188 (*regs
)[32] = tswapreg(env
->nip
);
1189 (*regs
)[33] = tswapreg(env
->msr
);
1190 (*regs
)[35] = tswapreg(env
->ctr
);
1191 (*regs
)[36] = tswapreg(env
->lr
);
1192 (*regs
)[37] = tswapreg(cpu_read_xer(env
));
1194 ccr
= ppc_get_cr(env
);
1195 (*regs
)[38] = tswapreg(ccr
);
1198 #define USE_ELF_CORE_DUMP
1199 #define ELF_EXEC_PAGESIZE 4096
1201 #ifndef TARGET_PPC64
1202 # define VDSO_HEADER "vdso-32.c.inc"
1203 #elif TARGET_BIG_ENDIAN
1204 # define VDSO_HEADER "vdso-64.c.inc"
1206 # define VDSO_HEADER "vdso-64le.c.inc"
1211 #ifdef TARGET_LOONGARCH64
1213 #define ELF_CLASS ELFCLASS64
1214 #define ELF_ARCH EM_LOONGARCH
1215 #define EXSTACK_DEFAULT true
1217 #define elf_check_arch(x) ((x) == EM_LOONGARCH)
1219 #define VDSO_HEADER "vdso.c.inc"
1221 static inline void init_thread(struct target_pt_regs
*regs
,
1222 struct image_info
*infop
)
1224 /*Set crmd PG,DA = 1,0 */
1225 regs
->csr
.crmd
= 2 << 3;
1226 regs
->csr
.era
= infop
->entry
;
1227 regs
->regs
[3] = infop
->start_stack
;
1230 /* See linux kernel: arch/loongarch/include/asm/elf.h */
1232 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1236 TARGET_EF_CSR_ERA
= TARGET_EF_R0
+ 33,
1237 TARGET_EF_CSR_BADV
= TARGET_EF_R0
+ 34,
1240 static void elf_core_copy_regs(target_elf_gregset_t
*regs
,
1241 const CPULoongArchState
*env
)
1245 (*regs
)[TARGET_EF_R0
] = 0;
1247 for (i
= 1; i
< ARRAY_SIZE(env
->gpr
); i
++) {
1248 (*regs
)[TARGET_EF_R0
+ i
] = tswapreg(env
->gpr
[i
]);
1251 (*regs
)[TARGET_EF_CSR_ERA
] = tswapreg(env
->pc
);
1252 (*regs
)[TARGET_EF_CSR_BADV
] = tswapreg(env
->CSR_BADV
);
1255 #define USE_ELF_CORE_DUMP
1256 #define ELF_EXEC_PAGESIZE 4096
1258 #define ELF_HWCAP get_elf_hwcap()
1260 /* See arch/loongarch/include/uapi/asm/hwcap.h */
1262 HWCAP_LOONGARCH_CPUCFG
= (1 << 0),
1263 HWCAP_LOONGARCH_LAM
= (1 << 1),
1264 HWCAP_LOONGARCH_UAL
= (1 << 2),
1265 HWCAP_LOONGARCH_FPU
= (1 << 3),
1266 HWCAP_LOONGARCH_LSX
= (1 << 4),
1267 HWCAP_LOONGARCH_LASX
= (1 << 5),
1268 HWCAP_LOONGARCH_CRC32
= (1 << 6),
1269 HWCAP_LOONGARCH_COMPLEX
= (1 << 7),
1270 HWCAP_LOONGARCH_CRYPTO
= (1 << 8),
1271 HWCAP_LOONGARCH_LVZ
= (1 << 9),
1272 HWCAP_LOONGARCH_LBT_X86
= (1 << 10),
1273 HWCAP_LOONGARCH_LBT_ARM
= (1 << 11),
1274 HWCAP_LOONGARCH_LBT_MIPS
= (1 << 12),
1277 static uint32_t get_elf_hwcap(void)
1279 LoongArchCPU
*cpu
= LOONGARCH_CPU(thread_cpu
);
1280 uint32_t hwcaps
= 0;
1282 hwcaps
|= HWCAP_LOONGARCH_CRC32
;
1284 if (FIELD_EX32(cpu
->env
.cpucfg
[1], CPUCFG1
, UAL
)) {
1285 hwcaps
|= HWCAP_LOONGARCH_UAL
;
1288 if (FIELD_EX32(cpu
->env
.cpucfg
[2], CPUCFG2
, FP
)) {
1289 hwcaps
|= HWCAP_LOONGARCH_FPU
;
1292 if (FIELD_EX32(cpu
->env
.cpucfg
[2], CPUCFG2
, LAM
)) {
1293 hwcaps
|= HWCAP_LOONGARCH_LAM
;
1296 if (FIELD_EX32(cpu
->env
.cpucfg
[2], CPUCFG2
, LSX
)) {
1297 hwcaps
|= HWCAP_LOONGARCH_LSX
;
1300 if (FIELD_EX32(cpu
->env
.cpucfg
[2], CPUCFG2
, LASX
)) {
1301 hwcaps
|= HWCAP_LOONGARCH_LASX
;
1307 #define ELF_PLATFORM "loongarch"
1309 #endif /* TARGET_LOONGARCH64 */
1313 #ifdef TARGET_MIPS64
1314 #define ELF_CLASS ELFCLASS64
1316 #define ELF_CLASS ELFCLASS32
1318 #define ELF_ARCH EM_MIPS
1319 #define EXSTACK_DEFAULT true
1321 #ifdef TARGET_ABI_MIPSN32
1322 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
1324 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
1327 #define ELF_BASE_PLATFORM get_elf_base_platform()
1329 #define MATCH_PLATFORM_INSN(_flags, _base_platform) \
1330 do { if ((cpu->env.insn_flags & (_flags)) == _flags) \
1331 { return _base_platform; } } while (0)
1333 static const char *get_elf_base_platform(void)
1335 MIPSCPU
*cpu
= MIPS_CPU(thread_cpu
);
1337 /* 64 bit ISAs goes first */
1338 MATCH_PLATFORM_INSN(CPU_MIPS64R6
, "mips64r6");
1339 MATCH_PLATFORM_INSN(CPU_MIPS64R5
, "mips64r5");
1340 MATCH_PLATFORM_INSN(CPU_MIPS64R2
, "mips64r2");
1341 MATCH_PLATFORM_INSN(CPU_MIPS64R1
, "mips64");
1342 MATCH_PLATFORM_INSN(CPU_MIPS5
, "mips5");
1343 MATCH_PLATFORM_INSN(CPU_MIPS4
, "mips4");
1344 MATCH_PLATFORM_INSN(CPU_MIPS3
, "mips3");
1347 MATCH_PLATFORM_INSN(CPU_MIPS32R6
, "mips32r6");
1348 MATCH_PLATFORM_INSN(CPU_MIPS32R5
, "mips32r5");
1349 MATCH_PLATFORM_INSN(CPU_MIPS32R2
, "mips32r2");
1350 MATCH_PLATFORM_INSN(CPU_MIPS32R1
, "mips32");
1351 MATCH_PLATFORM_INSN(CPU_MIPS2
, "mips2");
1356 #undef MATCH_PLATFORM_INSN
1358 static inline void init_thread(struct target_pt_regs
*regs
,
1359 struct image_info
*infop
)
1361 regs
->cp0_status
= 2 << CP0St_KSU
;
1362 regs
->cp0_epc
= infop
->entry
;
1363 regs
->regs
[29] = infop
->start_stack
;
1366 /* See linux kernel: arch/mips/include/asm/elf.h. */
1368 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1370 /* See linux kernel: arch/mips/include/asm/reg.h. */
1372 #ifdef TARGET_MIPS64
1377 TARGET_EF_R26
= TARGET_EF_R0
+ 26,
1378 TARGET_EF_R27
= TARGET_EF_R0
+ 27,
1379 TARGET_EF_LO
= TARGET_EF_R0
+ 32,
1380 TARGET_EF_HI
= TARGET_EF_R0
+ 33,
1381 TARGET_EF_CP0_EPC
= TARGET_EF_R0
+ 34,
1382 TARGET_EF_CP0_BADVADDR
= TARGET_EF_R0
+ 35,
1383 TARGET_EF_CP0_STATUS
= TARGET_EF_R0
+ 36,
1384 TARGET_EF_CP0_CAUSE
= TARGET_EF_R0
+ 37
1387 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1388 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUMIPSState
*env
)
1392 for (i
= 0; i
< TARGET_EF_R0
; i
++) {
1395 (*regs
)[TARGET_EF_R0
] = 0;
1397 for (i
= 1; i
< ARRAY_SIZE(env
->active_tc
.gpr
); i
++) {
1398 (*regs
)[TARGET_EF_R0
+ i
] = tswapreg(env
->active_tc
.gpr
[i
]);
1401 (*regs
)[TARGET_EF_R26
] = 0;
1402 (*regs
)[TARGET_EF_R27
] = 0;
1403 (*regs
)[TARGET_EF_LO
] = tswapreg(env
->active_tc
.LO
[0]);
1404 (*regs
)[TARGET_EF_HI
] = tswapreg(env
->active_tc
.HI
[0]);
1405 (*regs
)[TARGET_EF_CP0_EPC
] = tswapreg(env
->active_tc
.PC
);
1406 (*regs
)[TARGET_EF_CP0_BADVADDR
] = tswapreg(env
->CP0_BadVAddr
);
1407 (*regs
)[TARGET_EF_CP0_STATUS
] = tswapreg(env
->CP0_Status
);
1408 (*regs
)[TARGET_EF_CP0_CAUSE
] = tswapreg(env
->CP0_Cause
);
1411 #define USE_ELF_CORE_DUMP
1412 #define ELF_EXEC_PAGESIZE 4096
1414 /* See arch/mips/include/uapi/asm/hwcap.h. */
1416 HWCAP_MIPS_R6
= (1 << 0),
1417 HWCAP_MIPS_MSA
= (1 << 1),
1418 HWCAP_MIPS_CRC32
= (1 << 2),
1419 HWCAP_MIPS_MIPS16
= (1 << 3),
1420 HWCAP_MIPS_MDMX
= (1 << 4),
1421 HWCAP_MIPS_MIPS3D
= (1 << 5),
1422 HWCAP_MIPS_SMARTMIPS
= (1 << 6),
1423 HWCAP_MIPS_DSP
= (1 << 7),
1424 HWCAP_MIPS_DSP2
= (1 << 8),
1425 HWCAP_MIPS_DSP3
= (1 << 9),
1426 HWCAP_MIPS_MIPS16E2
= (1 << 10),
1427 HWCAP_LOONGSON_MMI
= (1 << 11),
1428 HWCAP_LOONGSON_EXT
= (1 << 12),
1429 HWCAP_LOONGSON_EXT2
= (1 << 13),
1430 HWCAP_LOONGSON_CPUCFG
= (1 << 14),
1433 #define ELF_HWCAP get_elf_hwcap()
1435 #define GET_FEATURE_INSN(_flag, _hwcap) \
1436 do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0)
1438 #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \
1439 do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0)
1441 #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \
1443 if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \
1448 static uint32_t get_elf_hwcap(void)
1450 MIPSCPU
*cpu
= MIPS_CPU(thread_cpu
);
1451 uint32_t hwcaps
= 0;
1453 GET_FEATURE_REG_EQU(CP0_Config0
, CP0C0_AR
, CP0C0_AR_LENGTH
,
1455 GET_FEATURE_REG_SET(CP0_Config3
, 1 << CP0C3_MSAP
, HWCAP_MIPS_MSA
);
1456 GET_FEATURE_INSN(ASE_LMMI
, HWCAP_LOONGSON_MMI
);
1457 GET_FEATURE_INSN(ASE_LEXT
, HWCAP_LOONGSON_EXT
);
1462 #undef GET_FEATURE_REG_EQU
1463 #undef GET_FEATURE_REG_SET
1464 #undef GET_FEATURE_INSN
1466 #endif /* TARGET_MIPS */
1468 #ifdef TARGET_MICROBLAZE
1470 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1472 #define ELF_CLASS ELFCLASS32
1473 #define ELF_ARCH EM_MICROBLAZE
1475 static inline void init_thread(struct target_pt_regs
*regs
,
1476 struct image_info
*infop
)
1478 regs
->pc
= infop
->entry
;
1479 regs
->r1
= infop
->start_stack
;
1483 #define ELF_EXEC_PAGESIZE 4096
1485 #define USE_ELF_CORE_DUMP
1487 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1489 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1490 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUMBState
*env
)
1494 for (i
= 0; i
< 32; i
++) {
1495 (*regs
)[pos
++] = tswapreg(env
->regs
[i
]);
1498 (*regs
)[pos
++] = tswapreg(env
->pc
);
1499 (*regs
)[pos
++] = tswapreg(mb_cpu_read_msr(env
));
1501 (*regs
)[pos
++] = tswapreg(env
->ear
);
1503 (*regs
)[pos
++] = tswapreg(env
->esr
);
1506 #endif /* TARGET_MICROBLAZE */
1510 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1512 #define ELF_CLASS ELFCLASS32
1513 #define ELF_ARCH EM_ALTERA_NIOS2
1515 static void init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
1517 regs
->ea
= infop
->entry
;
1518 regs
->sp
= infop
->start_stack
;
1521 #define LO_COMMPAGE TARGET_PAGE_SIZE
1523 static bool init_guest_commpage(void)
1525 static const uint8_t kuser_page
[4 + 2 * 64] = {
1526 /* __kuser_helper_version */
1527 [0x00] = 0x02, 0x00, 0x00, 0x00,
1529 /* __kuser_cmpxchg */
1530 [0x04] = 0x3a, 0x6c, 0x3b, 0x00, /* trap 16 */
1531 0x3a, 0x28, 0x00, 0xf8, /* ret */
1533 /* __kuser_sigtramp */
1534 [0x44] = 0xc4, 0x22, 0x80, 0x00, /* movi r2, __NR_rt_sigreturn */
1535 0x3a, 0x68, 0x3b, 0x00, /* trap 0 */
1538 int host_page_size
= qemu_real_host_page_size();
1541 want
= g2h_untagged(LO_COMMPAGE
& -host_page_size
);
1542 addr
= mmap(want
, host_page_size
, PROT_READ
| PROT_WRITE
,
1543 MAP_ANONYMOUS
| MAP_PRIVATE
|
1544 (reserved_va
? MAP_FIXED
: MAP_FIXED_NOREPLACE
),
1546 if (addr
== MAP_FAILED
) {
1547 perror("Allocating guest commpage");
1554 memcpy(g2h_untagged(LO_COMMPAGE
), kuser_page
, sizeof(kuser_page
));
1556 if (mprotect(addr
, host_page_size
, PROT_READ
)) {
1557 perror("Protecting guest commpage");
1561 page_set_flags(LO_COMMPAGE
, LO_COMMPAGE
| ~TARGET_PAGE_MASK
,
1562 PAGE_READ
| PAGE_EXEC
| PAGE_VALID
);
1566 #define ELF_EXEC_PAGESIZE 4096
1568 #define USE_ELF_CORE_DUMP
1570 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1572 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1573 static void elf_core_copy_regs(target_elf_gregset_t
*regs
,
1574 const CPUNios2State
*env
)
1579 for (i
= 1; i
< 8; i
++) /* r0-r7 */
1580 (*regs
)[i
] = tswapreg(env
->regs
[i
+ 7]);
1582 for (i
= 8; i
< 16; i
++) /* r8-r15 */
1583 (*regs
)[i
] = tswapreg(env
->regs
[i
- 8]);
1585 for (i
= 16; i
< 24; i
++) /* r16-r23 */
1586 (*regs
)[i
] = tswapreg(env
->regs
[i
+ 7]);
1587 (*regs
)[24] = -1; /* R_ET */
1588 (*regs
)[25] = -1; /* R_BT */
1589 (*regs
)[26] = tswapreg(env
->regs
[R_GP
]);
1590 (*regs
)[27] = tswapreg(env
->regs
[R_SP
]);
1591 (*regs
)[28] = tswapreg(env
->regs
[R_FP
]);
1592 (*regs
)[29] = tswapreg(env
->regs
[R_EA
]);
1593 (*regs
)[30] = -1; /* R_SSTATUS */
1594 (*regs
)[31] = tswapreg(env
->regs
[R_RA
]);
1596 (*regs
)[32] = tswapreg(env
->pc
);
1598 (*regs
)[33] = -1; /* R_STATUS */
1599 (*regs
)[34] = tswapreg(env
->regs
[CR_ESTATUS
]);
1601 for (i
= 35; i
< 49; i
++) /* ... */
1605 #endif /* TARGET_NIOS2 */
1607 #ifdef TARGET_OPENRISC
1609 #define ELF_ARCH EM_OPENRISC
1610 #define ELF_CLASS ELFCLASS32
1611 #define ELF_DATA ELFDATA2MSB
1613 static inline void init_thread(struct target_pt_regs
*regs
,
1614 struct image_info
*infop
)
1616 regs
->pc
= infop
->entry
;
1617 regs
->gpr
[1] = infop
->start_stack
;
1620 #define USE_ELF_CORE_DUMP
1621 #define ELF_EXEC_PAGESIZE 8192
1623 /* See linux kernel arch/openrisc/include/asm/elf.h. */
1624 #define ELF_NREG 34 /* gprs and pc, sr */
1625 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1627 static void elf_core_copy_regs(target_elf_gregset_t
*regs
,
1628 const CPUOpenRISCState
*env
)
1632 for (i
= 0; i
< 32; i
++) {
1633 (*regs
)[i
] = tswapreg(cpu_get_gpr(env
, i
));
1635 (*regs
)[32] = tswapreg(env
->pc
);
1636 (*regs
)[33] = tswapreg(cpu_get_sr(env
));
1639 #define ELF_PLATFORM NULL
1641 #endif /* TARGET_OPENRISC */
1645 #define ELF_CLASS ELFCLASS32
1646 #define ELF_ARCH EM_SH
1648 static inline void init_thread(struct target_pt_regs
*regs
,
1649 struct image_info
*infop
)
1651 /* Check other registers XXXXX */
1652 regs
->pc
= infop
->entry
;
1653 regs
->regs
[15] = infop
->start_stack
;
1656 /* See linux kernel: arch/sh/include/asm/elf.h. */
1658 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1660 /* See linux kernel: arch/sh/include/asm/ptrace.h. */
1665 TARGET_REG_GBR
= 19,
1666 TARGET_REG_MACH
= 20,
1667 TARGET_REG_MACL
= 21,
1668 TARGET_REG_SYSCALL
= 22
1671 static inline void elf_core_copy_regs(target_elf_gregset_t
*regs
,
1672 const CPUSH4State
*env
)
1676 for (i
= 0; i
< 16; i
++) {
1677 (*regs
)[i
] = tswapreg(env
->gregs
[i
]);
1680 (*regs
)[TARGET_REG_PC
] = tswapreg(env
->pc
);
1681 (*regs
)[TARGET_REG_PR
] = tswapreg(env
->pr
);
1682 (*regs
)[TARGET_REG_SR
] = tswapreg(env
->sr
);
1683 (*regs
)[TARGET_REG_GBR
] = tswapreg(env
->gbr
);
1684 (*regs
)[TARGET_REG_MACH
] = tswapreg(env
->mach
);
1685 (*regs
)[TARGET_REG_MACL
] = tswapreg(env
->macl
);
1686 (*regs
)[TARGET_REG_SYSCALL
] = 0; /* FIXME */
1689 #define USE_ELF_CORE_DUMP
1690 #define ELF_EXEC_PAGESIZE 4096
1693 SH_CPU_HAS_FPU
= 0x0001, /* Hardware FPU support */
1694 SH_CPU_HAS_P2_FLUSH_BUG
= 0x0002, /* Need to flush the cache in P2 area */
1695 SH_CPU_HAS_MMU_PAGE_ASSOC
= 0x0004, /* SH3: TLB way selection bit support */
1696 SH_CPU_HAS_DSP
= 0x0008, /* SH-DSP: DSP support */
1697 SH_CPU_HAS_PERF_COUNTER
= 0x0010, /* Hardware performance counters */
1698 SH_CPU_HAS_PTEA
= 0x0020, /* PTEA register */
1699 SH_CPU_HAS_LLSC
= 0x0040, /* movli.l/movco.l */
1700 SH_CPU_HAS_L2_CACHE
= 0x0080, /* Secondary cache / URAM */
1701 SH_CPU_HAS_OP32
= 0x0100, /* 32-bit instruction support */
1702 SH_CPU_HAS_PTEAEX
= 0x0200, /* PTE ASID Extension support */
1705 #define ELF_HWCAP get_elf_hwcap()
1707 static uint32_t get_elf_hwcap(void)
1709 SuperHCPU
*cpu
= SUPERH_CPU(thread_cpu
);
1712 hwcap
|= SH_CPU_HAS_FPU
;
1714 if (cpu
->env
.features
& SH_FEATURE_SH4A
) {
1715 hwcap
|= SH_CPU_HAS_LLSC
;
1725 #define ELF_CLASS ELFCLASS32
1726 #define ELF_ARCH EM_CRIS
1728 static inline void init_thread(struct target_pt_regs
*regs
,
1729 struct image_info
*infop
)
1731 regs
->erp
= infop
->entry
;
1734 #define ELF_EXEC_PAGESIZE 8192
1740 #define ELF_CLASS ELFCLASS32
1741 #define ELF_ARCH EM_68K
1743 /* ??? Does this need to do anything?
1744 #define ELF_PLAT_INIT(_r) */
1746 static inline void init_thread(struct target_pt_regs
*regs
,
1747 struct image_info
*infop
)
1749 regs
->usp
= infop
->start_stack
;
1751 regs
->pc
= infop
->entry
;
1754 /* See linux kernel: arch/m68k/include/asm/elf.h. */
1756 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1758 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUM68KState
*env
)
1760 (*regs
)[0] = tswapreg(env
->dregs
[1]);
1761 (*regs
)[1] = tswapreg(env
->dregs
[2]);
1762 (*regs
)[2] = tswapreg(env
->dregs
[3]);
1763 (*regs
)[3] = tswapreg(env
->dregs
[4]);
1764 (*regs
)[4] = tswapreg(env
->dregs
[5]);
1765 (*regs
)[5] = tswapreg(env
->dregs
[6]);
1766 (*regs
)[6] = tswapreg(env
->dregs
[7]);
1767 (*regs
)[7] = tswapreg(env
->aregs
[0]);
1768 (*regs
)[8] = tswapreg(env
->aregs
[1]);
1769 (*regs
)[9] = tswapreg(env
->aregs
[2]);
1770 (*regs
)[10] = tswapreg(env
->aregs
[3]);
1771 (*regs
)[11] = tswapreg(env
->aregs
[4]);
1772 (*regs
)[12] = tswapreg(env
->aregs
[5]);
1773 (*regs
)[13] = tswapreg(env
->aregs
[6]);
1774 (*regs
)[14] = tswapreg(env
->dregs
[0]);
1775 (*regs
)[15] = tswapreg(env
->aregs
[7]);
1776 (*regs
)[16] = tswapreg(env
->dregs
[0]); /* FIXME: orig_d0 */
1777 (*regs
)[17] = tswapreg(env
->sr
);
1778 (*regs
)[18] = tswapreg(env
->pc
);
1779 (*regs
)[19] = 0; /* FIXME: regs->format | regs->vector */
1782 #define USE_ELF_CORE_DUMP
1783 #define ELF_EXEC_PAGESIZE 8192
1789 #define ELF_CLASS ELFCLASS64
1790 #define ELF_ARCH EM_ALPHA
1792 static inline void init_thread(struct target_pt_regs
*regs
,
1793 struct image_info
*infop
)
1795 regs
->pc
= infop
->entry
;
1797 regs
->usp
= infop
->start_stack
;
1800 #define ELF_EXEC_PAGESIZE 8192
1802 #endif /* TARGET_ALPHA */
1806 #define ELF_CLASS ELFCLASS64
1807 #define ELF_DATA ELFDATA2MSB
1808 #define ELF_ARCH EM_S390
1812 #define ELF_HWCAP get_elf_hwcap()
1814 #define GET_FEATURE(_feat, _hwcap) \
1815 do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1817 uint32_t get_elf_hwcap(void)
1820 * Let's assume we always have esan3 and zarch.
1821 * 31-bit processes can use 64-bit registers (high gprs).
1823 uint32_t hwcap
= HWCAP_S390_ESAN3
| HWCAP_S390_ZARCH
| HWCAP_S390_HIGH_GPRS
;
1825 GET_FEATURE(S390_FEAT_STFLE
, HWCAP_S390_STFLE
);
1826 GET_FEATURE(S390_FEAT_MSA
, HWCAP_S390_MSA
);
1827 GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT
, HWCAP_S390_LDISP
);
1828 GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE
, HWCAP_S390_EIMM
);
1829 if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3
) &&
1830 s390_has_feat(S390_FEAT_ETF3_ENH
)) {
1831 hwcap
|= HWCAP_S390_ETF3EH
;
1833 GET_FEATURE(S390_FEAT_VECTOR
, HWCAP_S390_VXRS
);
1834 GET_FEATURE(S390_FEAT_VECTOR_ENH
, HWCAP_S390_VXRS_EXT
);
1835 GET_FEATURE(S390_FEAT_VECTOR_ENH2
, HWCAP_S390_VXRS_EXT2
);
1840 const char *elf_hwcap_str(uint32_t bit
)
1842 static const char *hwcap_str
[] = {
1843 [HWCAP_S390_NR_ESAN3
] = "esan3",
1844 [HWCAP_S390_NR_ZARCH
] = "zarch",
1845 [HWCAP_S390_NR_STFLE
] = "stfle",
1846 [HWCAP_S390_NR_MSA
] = "msa",
1847 [HWCAP_S390_NR_LDISP
] = "ldisp",
1848 [HWCAP_S390_NR_EIMM
] = "eimm",
1849 [HWCAP_S390_NR_DFP
] = "dfp",
1850 [HWCAP_S390_NR_HPAGE
] = "edat",
1851 [HWCAP_S390_NR_ETF3EH
] = "etf3eh",
1852 [HWCAP_S390_NR_HIGH_GPRS
] = "highgprs",
1853 [HWCAP_S390_NR_TE
] = "te",
1854 [HWCAP_S390_NR_VXRS
] = "vx",
1855 [HWCAP_S390_NR_VXRS_BCD
] = "vxd",
1856 [HWCAP_S390_NR_VXRS_EXT
] = "vxe",
1857 [HWCAP_S390_NR_GS
] = "gs",
1858 [HWCAP_S390_NR_VXRS_EXT2
] = "vxe2",
1859 [HWCAP_S390_NR_VXRS_PDE
] = "vxp",
1860 [HWCAP_S390_NR_SORT
] = "sort",
1861 [HWCAP_S390_NR_DFLT
] = "dflt",
1862 [HWCAP_S390_NR_NNPA
] = "nnpa",
1863 [HWCAP_S390_NR_PCI_MIO
] = "pcimio",
1864 [HWCAP_S390_NR_SIE
] = "sie",
1867 return bit
< ARRAY_SIZE(hwcap_str
) ? hwcap_str
[bit
] : NULL
;
1870 static inline void init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
1872 regs
->psw
.addr
= infop
->entry
;
1873 regs
->psw
.mask
= PSW_MASK_DAT
| PSW_MASK_IO
| PSW_MASK_EXT
| \
1874 PSW_MASK_MCHECK
| PSW_MASK_PSTATE
| PSW_MASK_64
| \
1876 regs
->gprs
[15] = infop
->start_stack
;
1879 /* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs). */
1881 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1884 TARGET_REG_PSWM
= 0,
1885 TARGET_REG_PSWA
= 1,
1886 TARGET_REG_GPRS
= 2,
1887 TARGET_REG_ARS
= 18,
1888 TARGET_REG_ORIG_R2
= 26,
1891 static void elf_core_copy_regs(target_elf_gregset_t
*regs
,
1892 const CPUS390XState
*env
)
1897 (*regs
)[TARGET_REG_PSWM
] = tswapreg(env
->psw
.mask
);
1898 (*regs
)[TARGET_REG_PSWA
] = tswapreg(env
->psw
.addr
);
1899 for (i
= 0; i
< 16; i
++) {
1900 (*regs
)[TARGET_REG_GPRS
+ i
] = tswapreg(env
->regs
[i
]);
1902 aregs
= (uint32_t *)&((*regs
)[TARGET_REG_ARS
]);
1903 for (i
= 0; i
< 16; i
++) {
1904 aregs
[i
] = tswap32(env
->aregs
[i
]);
1906 (*regs
)[TARGET_REG_ORIG_R2
] = 0;
1909 #define USE_ELF_CORE_DUMP
1910 #define ELF_EXEC_PAGESIZE 4096
1912 #define VDSO_HEADER "vdso.c.inc"
1914 #endif /* TARGET_S390X */
1918 #define ELF_ARCH EM_RISCV
1920 #ifdef TARGET_RISCV32
1921 #define ELF_CLASS ELFCLASS32
1922 #define VDSO_HEADER "vdso-32.c.inc"
1924 #define ELF_CLASS ELFCLASS64
1925 #define VDSO_HEADER "vdso-64.c.inc"
1928 #define ELF_HWCAP get_elf_hwcap()
1930 static uint32_t get_elf_hwcap(void)
1932 #define MISA_BIT(EXT) (1 << (EXT - 'A'))
1933 RISCVCPU
*cpu
= RISCV_CPU(thread_cpu
);
1934 uint32_t mask
= MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A')
1935 | MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C')
1938 return cpu
->env
.misa_ext
& mask
;
1942 static inline void init_thread(struct target_pt_regs
*regs
,
1943 struct image_info
*infop
)
1945 regs
->sepc
= infop
->entry
;
1946 regs
->sp
= infop
->start_stack
;
1949 #define ELF_EXEC_PAGESIZE 4096
1951 #endif /* TARGET_RISCV */
1955 #define ELF_CLASS ELFCLASS32
1956 #define ELF_ARCH EM_PARISC
1957 #define ELF_PLATFORM "PARISC"
1958 #define STACK_GROWS_DOWN 0
1959 #define STACK_ALIGNMENT 64
1961 #define VDSO_HEADER "vdso.c.inc"
1963 static inline void init_thread(struct target_pt_regs
*regs
,
1964 struct image_info
*infop
)
1966 regs
->iaoq
[0] = infop
->entry
;
1967 regs
->iaoq
[1] = infop
->entry
+ 4;
1969 regs
->gr
[24] = infop
->argv
;
1970 regs
->gr
[25] = infop
->argc
;
1971 /* The top-of-stack contains a linkage buffer. */
1972 regs
->gr
[30] = infop
->start_stack
+ 64;
1973 regs
->gr
[31] = infop
->entry
;
1976 #define LO_COMMPAGE 0
1978 static bool init_guest_commpage(void)
1980 /* If reserved_va, then we have already mapped 0 page on the host. */
1984 want
= g2h_untagged(LO_COMMPAGE
);
1985 addr
= mmap(want
, TARGET_PAGE_SIZE
, PROT_NONE
,
1986 MAP_ANONYMOUS
| MAP_PRIVATE
| MAP_FIXED_NOREPLACE
, -1, 0);
1987 if (addr
== MAP_FAILED
) {
1988 perror("Allocating guest commpage");
1997 * On Linux, page zero is normally marked execute only + gateway.
1998 * Normal read or write is supposed to fail (thus PROT_NONE above),
1999 * but specific offsets have kernel code mapped to raise permissions
2000 * and implement syscalls. Here, simply mark the page executable.
2001 * Special case the entry points during translation (see do_page_zero).
2003 page_set_flags(LO_COMMPAGE
, LO_COMMPAGE
| ~TARGET_PAGE_MASK
,
2004 PAGE_EXEC
| PAGE_VALID
);
2008 #endif /* TARGET_HPPA */
2010 #ifdef TARGET_XTENSA
2012 #define ELF_CLASS ELFCLASS32
2013 #define ELF_ARCH EM_XTENSA
2015 static inline void init_thread(struct target_pt_regs
*regs
,
2016 struct image_info
*infop
)
2018 regs
->windowbase
= 0;
2019 regs
->windowstart
= 1;
2020 regs
->areg
[1] = infop
->start_stack
;
2021 regs
->pc
= infop
->entry
;
2022 if (info_is_fdpic(infop
)) {
2023 regs
->areg
[4] = infop
->loadmap_addr
;
2024 regs
->areg
[5] = infop
->interpreter_loadmap_addr
;
2025 if (infop
->interpreter_loadmap_addr
) {
2026 regs
->areg
[6] = infop
->interpreter_pt_dynamic_addr
;
2028 regs
->areg
[6] = infop
->pt_dynamic_addr
;
2033 /* See linux kernel: arch/xtensa/include/asm/elf.h. */
2034 #define ELF_NREG 128
2035 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
2044 TARGET_REG_WINDOWSTART
,
2045 TARGET_REG_WINDOWBASE
,
2046 TARGET_REG_THREADPTR
,
2047 TARGET_REG_AR0
= 64,
2050 static void elf_core_copy_regs(target_elf_gregset_t
*regs
,
2051 const CPUXtensaState
*env
)
2055 (*regs
)[TARGET_REG_PC
] = tswapreg(env
->pc
);
2056 (*regs
)[TARGET_REG_PS
] = tswapreg(env
->sregs
[PS
] & ~PS_EXCM
);
2057 (*regs
)[TARGET_REG_LBEG
] = tswapreg(env
->sregs
[LBEG
]);
2058 (*regs
)[TARGET_REG_LEND
] = tswapreg(env
->sregs
[LEND
]);
2059 (*regs
)[TARGET_REG_LCOUNT
] = tswapreg(env
->sregs
[LCOUNT
]);
2060 (*regs
)[TARGET_REG_SAR
] = tswapreg(env
->sregs
[SAR
]);
2061 (*regs
)[TARGET_REG_WINDOWSTART
] = tswapreg(env
->sregs
[WINDOW_START
]);
2062 (*regs
)[TARGET_REG_WINDOWBASE
] = tswapreg(env
->sregs
[WINDOW_BASE
]);
2063 (*regs
)[TARGET_REG_THREADPTR
] = tswapreg(env
->uregs
[THREADPTR
]);
2064 xtensa_sync_phys_from_window((CPUXtensaState
*)env
);
2065 for (i
= 0; i
< env
->config
->nareg
; ++i
) {
2066 (*regs
)[TARGET_REG_AR0
+ i
] = tswapreg(env
->phys_regs
[i
]);
2070 #define USE_ELF_CORE_DUMP
2071 #define ELF_EXEC_PAGESIZE 4096
2073 #endif /* TARGET_XTENSA */
2075 #ifdef TARGET_HEXAGON
2077 #define ELF_CLASS ELFCLASS32
2078 #define ELF_ARCH EM_HEXAGON
2080 static inline void init_thread(struct target_pt_regs
*regs
,
2081 struct image_info
*infop
)
2083 regs
->sepc
= infop
->entry
;
2084 regs
->sp
= infop
->start_stack
;
2087 #endif /* TARGET_HEXAGON */
2089 #ifndef ELF_BASE_PLATFORM
2090 #define ELF_BASE_PLATFORM (NULL)
2093 #ifndef ELF_PLATFORM
2094 #define ELF_PLATFORM (NULL)
2098 #define ELF_MACHINE ELF_ARCH
2101 #ifndef elf_check_arch
2102 #define elf_check_arch(x) ((x) == ELF_ARCH)
2105 #ifndef elf_check_abi
2106 #define elf_check_abi(x) (1)
2113 #ifndef STACK_GROWS_DOWN
2114 #define STACK_GROWS_DOWN 1
2117 #ifndef STACK_ALIGNMENT
2118 #define STACK_ALIGNMENT 16
2123 #define ELF_CLASS ELFCLASS32
2125 #define bswaptls(ptr) bswap32s(ptr)
2128 #ifndef EXSTACK_DEFAULT
2129 #define EXSTACK_DEFAULT false
2134 /* We must delay the following stanzas until after "elf.h". */
2135 #if defined(TARGET_AARCH64)
2137 static bool arch_parse_elf_property(uint32_t pr_type
, uint32_t pr_datasz
,
2138 const uint32_t *data
,
2139 struct image_info
*info
,
2142 if (pr_type
== GNU_PROPERTY_AARCH64_FEATURE_1_AND
) {
2143 if (pr_datasz
!= sizeof(uint32_t)) {
2144 error_setg(errp
, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND");
2147 /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */
2148 info
->note_flags
= *data
;
2152 #define ARCH_USE_GNU_PROPERTY 1
2156 static bool arch_parse_elf_property(uint32_t pr_type
, uint32_t pr_datasz
,
2157 const uint32_t *data
,
2158 struct image_info
*info
,
2161 g_assert_not_reached();
2163 #define ARCH_USE_GNU_PROPERTY 0
2169 unsigned int a_info
; /* Use macros N_MAGIC, etc for access */
2170 unsigned int a_text
; /* length of text, in bytes */
2171 unsigned int a_data
; /* length of data, in bytes */
2172 unsigned int a_bss
; /* length of uninitialized data area, in bytes */
2173 unsigned int a_syms
; /* length of symbol table data in file, in bytes */
2174 unsigned int a_entry
; /* start address */
2175 unsigned int a_trsize
; /* length of relocation info for text, in bytes */
2176 unsigned int a_drsize
; /* length of relocation info for data, in bytes */
2180 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
2186 #define DLINFO_ITEMS 16
2188 static inline void memcpy_fromfs(void * to
, const void * from
, unsigned long n
)
2190 memcpy(to
, from
, n
);
2194 static void bswap_ehdr(struct elfhdr
*ehdr
)
2196 bswap16s(&ehdr
->e_type
); /* Object file type */
2197 bswap16s(&ehdr
->e_machine
); /* Architecture */
2198 bswap32s(&ehdr
->e_version
); /* Object file version */
2199 bswaptls(&ehdr
->e_entry
); /* Entry point virtual address */
2200 bswaptls(&ehdr
->e_phoff
); /* Program header table file offset */
2201 bswaptls(&ehdr
->e_shoff
); /* Section header table file offset */
2202 bswap32s(&ehdr
->e_flags
); /* Processor-specific flags */
2203 bswap16s(&ehdr
->e_ehsize
); /* ELF header size in bytes */
2204 bswap16s(&ehdr
->e_phentsize
); /* Program header table entry size */
2205 bswap16s(&ehdr
->e_phnum
); /* Program header table entry count */
2206 bswap16s(&ehdr
->e_shentsize
); /* Section header table entry size */
2207 bswap16s(&ehdr
->e_shnum
); /* Section header table entry count */
2208 bswap16s(&ehdr
->e_shstrndx
); /* Section header string table index */
2211 static void bswap_phdr(struct elf_phdr
*phdr
, int phnum
)
2214 for (i
= 0; i
< phnum
; ++i
, ++phdr
) {
2215 bswap32s(&phdr
->p_type
); /* Segment type */
2216 bswap32s(&phdr
->p_flags
); /* Segment flags */
2217 bswaptls(&phdr
->p_offset
); /* Segment file offset */
2218 bswaptls(&phdr
->p_vaddr
); /* Segment virtual address */
2219 bswaptls(&phdr
->p_paddr
); /* Segment physical address */
2220 bswaptls(&phdr
->p_filesz
); /* Segment size in file */
2221 bswaptls(&phdr
->p_memsz
); /* Segment size in memory */
2222 bswaptls(&phdr
->p_align
); /* Segment alignment */
2226 static void bswap_shdr(struct elf_shdr
*shdr
, int shnum
)
2229 for (i
= 0; i
< shnum
; ++i
, ++shdr
) {
2230 bswap32s(&shdr
->sh_name
);
2231 bswap32s(&shdr
->sh_type
);
2232 bswaptls(&shdr
->sh_flags
);
2233 bswaptls(&shdr
->sh_addr
);
2234 bswaptls(&shdr
->sh_offset
);
2235 bswaptls(&shdr
->sh_size
);
2236 bswap32s(&shdr
->sh_link
);
2237 bswap32s(&shdr
->sh_info
);
2238 bswaptls(&shdr
->sh_addralign
);
2239 bswaptls(&shdr
->sh_entsize
);
2243 static void bswap_sym(struct elf_sym
*sym
)
2245 bswap32s(&sym
->st_name
);
2246 bswaptls(&sym
->st_value
);
2247 bswaptls(&sym
->st_size
);
2248 bswap16s(&sym
->st_shndx
);
2252 static void bswap_mips_abiflags(Mips_elf_abiflags_v0
*abiflags
)
2254 bswap16s(&abiflags
->version
);
2255 bswap32s(&abiflags
->ases
);
2256 bswap32s(&abiflags
->isa_ext
);
2257 bswap32s(&abiflags
->flags1
);
2258 bswap32s(&abiflags
->flags2
);
2262 static inline void bswap_ehdr(struct elfhdr
*ehdr
) { }
2263 static inline void bswap_phdr(struct elf_phdr
*phdr
, int phnum
) { }
2264 static inline void bswap_shdr(struct elf_shdr
*shdr
, int shnum
) { }
2265 static inline void bswap_sym(struct elf_sym
*sym
) { }
2267 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0
*abiflags
) { }
2271 #ifdef USE_ELF_CORE_DUMP
2272 static int elf_core_dump(int, const CPUArchState
*);
2273 #endif /* USE_ELF_CORE_DUMP */
2274 static void load_symbols(struct elfhdr
*hdr
, const ImageSource
*src
,
2275 abi_ulong load_bias
);
2277 /* Verify the portions of EHDR within E_IDENT for the target.
2278 This can be performed before bswapping the entire header. */
2279 static bool elf_check_ident(struct elfhdr
*ehdr
)
2281 return (ehdr
->e_ident
[EI_MAG0
] == ELFMAG0
2282 && ehdr
->e_ident
[EI_MAG1
] == ELFMAG1
2283 && ehdr
->e_ident
[EI_MAG2
] == ELFMAG2
2284 && ehdr
->e_ident
[EI_MAG3
] == ELFMAG3
2285 && ehdr
->e_ident
[EI_CLASS
] == ELF_CLASS
2286 && ehdr
->e_ident
[EI_DATA
] == ELF_DATA
2287 && ehdr
->e_ident
[EI_VERSION
] == EV_CURRENT
);
2290 /* Verify the portions of EHDR outside of E_IDENT for the target.
2291 This has to wait until after bswapping the header. */
2292 static bool elf_check_ehdr(struct elfhdr
*ehdr
)
2294 return (elf_check_arch(ehdr
->e_machine
)
2295 && elf_check_abi(ehdr
->e_flags
)
2296 && ehdr
->e_ehsize
== sizeof(struct elfhdr
)
2297 && ehdr
->e_phentsize
== sizeof(struct elf_phdr
)
2298 && (ehdr
->e_type
== ET_EXEC
|| ehdr
->e_type
== ET_DYN
));
2302 * 'copy_elf_strings()' copies argument/envelope strings from user
2303 * memory to free pages in kernel mem. These are in a format ready
2304 * to be put directly into the top of new user memory.
2307 static abi_ulong
copy_elf_strings(int argc
, char **argv
, char *scratch
,
2308 abi_ulong p
, abi_ulong stack_limit
)
2315 return 0; /* bullet-proofing */
2318 if (STACK_GROWS_DOWN
) {
2319 int offset
= ((p
- 1) % TARGET_PAGE_SIZE
) + 1;
2320 for (i
= argc
- 1; i
>= 0; --i
) {
2323 fprintf(stderr
, "VFS: argc is wrong");
2326 len
= strlen(tmp
) + 1;
2329 if (len
> (p
- stack_limit
)) {
2333 int bytes_to_copy
= (len
> offset
) ? offset
: len
;
2334 tmp
-= bytes_to_copy
;
2336 offset
-= bytes_to_copy
;
2337 len
-= bytes_to_copy
;
2339 memcpy_fromfs(scratch
+ offset
, tmp
, bytes_to_copy
);
2342 memcpy_to_target(p
, scratch
, top
- p
);
2344 offset
= TARGET_PAGE_SIZE
;
2349 memcpy_to_target(p
, scratch
+ offset
, top
- p
);
2352 int remaining
= TARGET_PAGE_SIZE
- (p
% TARGET_PAGE_SIZE
);
2353 for (i
= 0; i
< argc
; ++i
) {
2356 fprintf(stderr
, "VFS: argc is wrong");
2359 len
= strlen(tmp
) + 1;
2360 if (len
> (stack_limit
- p
)) {
2364 int bytes_to_copy
= (len
> remaining
) ? remaining
: len
;
2366 memcpy_fromfs(scratch
+ (p
- top
), tmp
, bytes_to_copy
);
2368 tmp
+= bytes_to_copy
;
2369 remaining
-= bytes_to_copy
;
2371 len
-= bytes_to_copy
;
2373 if (remaining
== 0) {
2374 memcpy_to_target(top
, scratch
, p
- top
);
2376 remaining
= TARGET_PAGE_SIZE
;
2381 memcpy_to_target(top
, scratch
, p
- top
);
2388 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
2389 * argument/environment space. Newer kernels (>2.6.33) allow more,
2390 * dependent on stack size, but guarantee at least 32 pages for
2391 * backwards compatibility.
2393 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
2395 static abi_ulong
setup_arg_pages(struct linux_binprm
*bprm
,
2396 struct image_info
*info
)
2398 abi_ulong size
, error
, guard
;
2401 size
= guest_stack_size
;
2402 if (size
< STACK_LOWER_LIMIT
) {
2403 size
= STACK_LOWER_LIMIT
;
2406 if (STACK_GROWS_DOWN
) {
2407 guard
= TARGET_PAGE_SIZE
;
2408 if (guard
< qemu_real_host_page_size()) {
2409 guard
= qemu_real_host_page_size();
2412 /* no guard page for hppa target where stack grows upwards. */
2416 prot
= PROT_READ
| PROT_WRITE
;
2417 if (info
->exec_stack
) {
2420 error
= target_mmap(0, size
+ guard
, prot
,
2421 MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
2423 perror("mmap stack");
2427 /* We reserve one extra page at the top of the stack as guard. */
2428 if (STACK_GROWS_DOWN
) {
2429 target_mprotect(error
, guard
, PROT_NONE
);
2430 info
->stack_limit
= error
+ guard
;
2431 return info
->stack_limit
+ size
- sizeof(void *);
2433 info
->stack_limit
= error
+ size
;
2441 * Map and zero the bss. We need to explicitly zero any fractional pages
2442 * after the data section (i.e. bss). Return false on mapping failure.
2444 static bool zero_bss(abi_ulong start_bss
, abi_ulong end_bss
,
2445 int prot
, Error
**errp
)
2447 abi_ulong align_bss
;
2449 /* We only expect writable bss; the code segment shouldn't need this. */
2450 if (!(prot
& PROT_WRITE
)) {
2451 error_setg(errp
, "PT_LOAD with non-writable bss");
2455 align_bss
= TARGET_PAGE_ALIGN(start_bss
);
2456 end_bss
= TARGET_PAGE_ALIGN(end_bss
);
2458 if (start_bss
< align_bss
) {
2459 int flags
= page_get_flags(start_bss
);
2461 if (!(flags
& PAGE_BITS
)) {
2463 * The whole address space of the executable was reserved
2464 * at the start, therefore all pages will be VALID.
2465 * But assuming there are no PROT_NONE PT_LOAD segments,
2466 * a PROT_NONE page means no data all bss, and we can
2467 * simply extend the new anon mapping back to the start
2468 * of the page of bss.
2470 align_bss
-= TARGET_PAGE_SIZE
;
2473 * The start of the bss shares a page with something.
2474 * The only thing that we expect is the data section,
2475 * which would already be marked writable.
2476 * Overlapping the RX code segment seems malformed.
2478 if (!(flags
& PAGE_WRITE
)) {
2479 error_setg(errp
, "PT_LOAD with bss overlapping "
2480 "non-writable page");
2484 /* The page is already mapped and writable. */
2485 memset(g2h_untagged(start_bss
), 0, align_bss
- start_bss
);
2489 if (align_bss
< end_bss
&&
2490 target_mmap(align_bss
, end_bss
- align_bss
, prot
,
2491 MAP_FIXED
| MAP_PRIVATE
| MAP_ANON
, -1, 0) == -1) {
2492 error_setg_errno(errp
, errno
, "Error mapping bss");
2498 #if defined(TARGET_ARM)
2499 static int elf_is_fdpic(struct elfhdr
*exec
)
2501 return exec
->e_ident
[EI_OSABI
] == ELFOSABI_ARM_FDPIC
;
2503 #elif defined(TARGET_XTENSA)
2504 static int elf_is_fdpic(struct elfhdr
*exec
)
2506 return exec
->e_ident
[EI_OSABI
] == ELFOSABI_XTENSA_FDPIC
;
2509 /* Default implementation, always false. */
2510 static int elf_is_fdpic(struct elfhdr
*exec
)
2516 static abi_ulong
loader_build_fdpic_loadmap(struct image_info
*info
, abi_ulong sp
)
2519 struct elf32_fdpic_loadseg
*loadsegs
= info
->loadsegs
;
2521 /* elf32_fdpic_loadseg */
2525 put_user_u32(loadsegs
[n
].addr
, sp
+0);
2526 put_user_u32(loadsegs
[n
].p_vaddr
, sp
+4);
2527 put_user_u32(loadsegs
[n
].p_memsz
, sp
+8);
2530 /* elf32_fdpic_loadmap */
2532 put_user_u16(0, sp
+0); /* version */
2533 put_user_u16(info
->nsegs
, sp
+2); /* nsegs */
2535 info
->personality
= PER_LINUX_FDPIC
;
2536 info
->loadmap_addr
= sp
;
2541 static abi_ulong
create_elf_tables(abi_ulong p
, int argc
, int envc
,
2542 struct elfhdr
*exec
,
2543 struct image_info
*info
,
2544 struct image_info
*interp_info
,
2545 struct image_info
*vdso_info
)
2548 abi_ulong u_argc
, u_argv
, u_envp
, u_auxv
;
2551 abi_ulong u_rand_bytes
;
2552 uint8_t k_rand_bytes
[16];
2553 abi_ulong u_platform
, u_base_platform
;
2554 const char *k_platform
, *k_base_platform
;
2555 const int n
= sizeof(elf_addr_t
);
2559 /* Needs to be before we load the env/argc/... */
2560 if (elf_is_fdpic(exec
)) {
2561 /* Need 4 byte alignment for these structs */
2563 sp
= loader_build_fdpic_loadmap(info
, sp
);
2564 info
->other_info
= interp_info
;
2566 interp_info
->other_info
= info
;
2567 sp
= loader_build_fdpic_loadmap(interp_info
, sp
);
2568 info
->interpreter_loadmap_addr
= interp_info
->loadmap_addr
;
2569 info
->interpreter_pt_dynamic_addr
= interp_info
->pt_dynamic_addr
;
2571 info
->interpreter_loadmap_addr
= 0;
2572 info
->interpreter_pt_dynamic_addr
= 0;
2576 u_base_platform
= 0;
2577 k_base_platform
= ELF_BASE_PLATFORM
;
2578 if (k_base_platform
) {
2579 size_t len
= strlen(k_base_platform
) + 1;
2580 if (STACK_GROWS_DOWN
) {
2581 sp
-= (len
+ n
- 1) & ~(n
- 1);
2582 u_base_platform
= sp
;
2583 /* FIXME - check return value of memcpy_to_target() for failure */
2584 memcpy_to_target(sp
, k_base_platform
, len
);
2586 memcpy_to_target(sp
, k_base_platform
, len
);
2587 u_base_platform
= sp
;
2593 k_platform
= ELF_PLATFORM
;
2595 size_t len
= strlen(k_platform
) + 1;
2596 if (STACK_GROWS_DOWN
) {
2597 sp
-= (len
+ n
- 1) & ~(n
- 1);
2599 /* FIXME - check return value of memcpy_to_target() for failure */
2600 memcpy_to_target(sp
, k_platform
, len
);
2602 memcpy_to_target(sp
, k_platform
, len
);
2608 /* Provide 16 byte alignment for the PRNG, and basic alignment for
2609 * the argv and envp pointers.
2611 if (STACK_GROWS_DOWN
) {
2612 sp
= QEMU_ALIGN_DOWN(sp
, 16);
2614 sp
= QEMU_ALIGN_UP(sp
, 16);
2618 * Generate 16 random bytes for userspace PRNG seeding.
2620 qemu_guest_getrandom_nofail(k_rand_bytes
, sizeof(k_rand_bytes
));
2621 if (STACK_GROWS_DOWN
) {
2624 /* FIXME - check return value of memcpy_to_target() for failure */
2625 memcpy_to_target(sp
, k_rand_bytes
, 16);
2627 memcpy_to_target(sp
, k_rand_bytes
, 16);
2632 size
= (DLINFO_ITEMS
+ 1) * 2;
2633 if (k_base_platform
) {
2642 #ifdef DLINFO_ARCH_ITEMS
2643 size
+= DLINFO_ARCH_ITEMS
* 2;
2648 info
->auxv_len
= size
* n
;
2650 size
+= envc
+ argc
+ 2;
2651 size
+= 1; /* argc itself */
2654 /* Allocate space and finalize stack alignment for entry now. */
2655 if (STACK_GROWS_DOWN
) {
2656 u_argc
= QEMU_ALIGN_DOWN(sp
- size
, STACK_ALIGNMENT
);
2660 sp
= QEMU_ALIGN_UP(sp
+ size
, STACK_ALIGNMENT
);
2663 u_argv
= u_argc
+ n
;
2664 u_envp
= u_argv
+ (argc
+ 1) * n
;
2665 u_auxv
= u_envp
+ (envc
+ 1) * n
;
2666 info
->saved_auxv
= u_auxv
;
2669 info
->argv
= u_argv
;
2670 info
->envp
= u_envp
;
2672 /* This is correct because Linux defines
2673 * elf_addr_t as Elf32_Off / Elf64_Off
2675 #define NEW_AUX_ENT(id, val) do { \
2676 put_user_ual(id, u_auxv); u_auxv += n; \
2677 put_user_ual(val, u_auxv); u_auxv += n; \
2682 * ARCH_DLINFO must come first so platform specific code can enforce
2683 * special alignment requirements on the AUXV if necessary (eg. PPC).
2687 /* There must be exactly DLINFO_ITEMS entries here, or the assert
2688 * on info->auxv_len will trigger.
2690 NEW_AUX_ENT(AT_PHDR
, (abi_ulong
)(info
->load_addr
+ exec
->e_phoff
));
2691 NEW_AUX_ENT(AT_PHENT
, (abi_ulong
)(sizeof (struct elf_phdr
)));
2692 NEW_AUX_ENT(AT_PHNUM
, (abi_ulong
)(exec
->e_phnum
));
2693 NEW_AUX_ENT(AT_PAGESZ
, (abi_ulong
)(TARGET_PAGE_SIZE
));
2694 NEW_AUX_ENT(AT_BASE
, (abi_ulong
)(interp_info
? interp_info
->load_addr
: 0));
2695 NEW_AUX_ENT(AT_FLAGS
, (abi_ulong
)0);
2696 NEW_AUX_ENT(AT_ENTRY
, info
->entry
);
2697 NEW_AUX_ENT(AT_UID
, (abi_ulong
) getuid());
2698 NEW_AUX_ENT(AT_EUID
, (abi_ulong
) geteuid());
2699 NEW_AUX_ENT(AT_GID
, (abi_ulong
) getgid());
2700 NEW_AUX_ENT(AT_EGID
, (abi_ulong
) getegid());
2701 NEW_AUX_ENT(AT_HWCAP
, (abi_ulong
) ELF_HWCAP
);
2702 NEW_AUX_ENT(AT_CLKTCK
, (abi_ulong
) sysconf(_SC_CLK_TCK
));
2703 NEW_AUX_ENT(AT_RANDOM
, (abi_ulong
) u_rand_bytes
);
2704 NEW_AUX_ENT(AT_SECURE
, (abi_ulong
) qemu_getauxval(AT_SECURE
));
2705 NEW_AUX_ENT(AT_EXECFN
, info
->file_string
);
2708 NEW_AUX_ENT(AT_HWCAP2
, (abi_ulong
) ELF_HWCAP2
);
2711 if (u_base_platform
) {
2712 NEW_AUX_ENT(AT_BASE_PLATFORM
, u_base_platform
);
2715 NEW_AUX_ENT(AT_PLATFORM
, u_platform
);
2718 NEW_AUX_ENT(AT_SYSINFO_EHDR
, vdso_info
->load_addr
);
2720 NEW_AUX_ENT (AT_NULL
, 0);
2723 /* Check that our initial calculation of the auxv length matches how much
2724 * we actually put into it.
2726 assert(info
->auxv_len
== u_auxv
- info
->saved_auxv
);
2728 put_user_ual(argc
, u_argc
);
2730 p
= info
->arg_strings
;
2731 for (i
= 0; i
< argc
; ++i
) {
2732 put_user_ual(p
, u_argv
);
2734 p
+= target_strlen(p
) + 1;
2736 put_user_ual(0, u_argv
);
2738 p
= info
->env_strings
;
2739 for (i
= 0; i
< envc
; ++i
) {
2740 put_user_ual(p
, u_envp
);
2742 p
+= target_strlen(p
) + 1;
2744 put_user_ual(0, u_envp
);
2749 #if defined(HI_COMMPAGE)
2750 #define LO_COMMPAGE -1
2751 #elif defined(LO_COMMPAGE)
2752 #define HI_COMMPAGE 0
2754 #define HI_COMMPAGE 0
2755 #define LO_COMMPAGE -1
2756 #ifndef INIT_GUEST_COMMPAGE
2757 #define init_guest_commpage() true
2763 * @addr: host start address
2764 * @addr_last: host last address
2765 * @keep: do not unmap the probe region
2767 * Return 1 if [@addr, @addr_last] is not mapped in the host,
2768 * return 0 if it is not available to map, and -1 on mmap error.
2769 * If @keep, the region is left mapped on success, otherwise unmapped.
2771 static int pgb_try_mmap(uintptr_t addr
, uintptr_t addr_last
, bool keep
)
2773 size_t size
= addr_last
- addr
+ 1;
2774 void *p
= mmap((void *)addr
, size
, PROT_NONE
,
2775 MAP_ANONYMOUS
| MAP_PRIVATE
|
2776 MAP_NORESERVE
| MAP_FIXED_NOREPLACE
, -1, 0);
2779 if (p
== MAP_FAILED
) {
2780 return errno
== EEXIST
? 0 : -1;
2782 ret
= p
== (void *)addr
;
2783 if (!keep
|| !ret
) {
2790 * pgb_try_mmap_skip_brk(uintptr_t addr, uintptr_t size, uintptr_t brk)
2791 * @addr: host address
2792 * @addr_last: host last address
2795 * Like pgb_try_mmap, but additionally reserve some memory following brk.
2797 static int pgb_try_mmap_skip_brk(uintptr_t addr
, uintptr_t addr_last
,
2798 uintptr_t brk
, bool keep
)
2800 uintptr_t brk_last
= brk
+ 16 * MiB
- 1;
2802 /* Do not map anything close to the host brk. */
2803 if (addr
<= brk_last
&& brk
<= addr_last
) {
2806 return pgb_try_mmap(addr
, addr_last
, keep
);
2811 * @ga: set of guest addrs
2815 * Return true if all @ga can be mapped by the host at @base.
2816 * On success, retain the mapping at index 0 for reserved_va.
2819 typedef struct PGBAddrs
{
2820 uintptr_t bounds
[3][2]; /* start/last pairs */
2824 static bool pgb_try_mmap_set(const PGBAddrs
*ga
, uintptr_t base
, uintptr_t brk
)
2826 for (int i
= ga
->nbounds
- 1; i
>= 0; --i
) {
2827 if (pgb_try_mmap_skip_brk(ga
->bounds
[i
][0] + base
,
2828 ga
->bounds
[i
][1] + base
,
2829 brk
, i
== 0 && reserved_va
) <= 0) {
2838 * @ga: output set of guest addrs
2839 * @guest_loaddr: guest image low address
2840 * @guest_loaddr: guest image high address
2841 * @identity: create for identity mapping
2843 * Fill in @ga with the image, COMMPAGE and NULL page.
2845 static bool pgb_addr_set(PGBAddrs
*ga
, abi_ulong guest_loaddr
,
2846 abi_ulong guest_hiaddr
, bool try_identity
)
2851 * With a low commpage, or a guest mapped very low,
2852 * we may not be able to use the identity map.
2855 if (LO_COMMPAGE
!= -1 && LO_COMMPAGE
< mmap_min_addr
) {
2858 if (guest_loaddr
!= 0 && guest_loaddr
< mmap_min_addr
) {
2863 memset(ga
, 0, sizeof(*ga
));
2867 ga
->bounds
[n
][0] = try_identity
? mmap_min_addr
: 0;
2868 ga
->bounds
[n
][1] = reserved_va
;
2870 /* LO_COMMPAGE and NULL handled by reserving from 0. */
2872 /* Add any LO_COMMPAGE or NULL page. */
2873 if (LO_COMMPAGE
!= -1) {
2874 ga
->bounds
[n
][0] = 0;
2875 ga
->bounds
[n
][1] = LO_COMMPAGE
+ TARGET_PAGE_SIZE
- 1;
2877 } else if (!try_identity
) {
2878 ga
->bounds
[n
][0] = 0;
2879 ga
->bounds
[n
][1] = TARGET_PAGE_SIZE
- 1;
2883 /* Add the guest image for ET_EXEC. */
2885 ga
->bounds
[n
][0] = guest_loaddr
;
2886 ga
->bounds
[n
][1] = guest_hiaddr
;
2892 * Temporarily disable
2893 * "comparison is always false due to limited range of data type"
2894 * due to comparison between unsigned and (possible) 0.
2896 #pragma GCC diagnostic push
2897 #pragma GCC diagnostic ignored "-Wtype-limits"
2899 /* Add any HI_COMMPAGE not covered by reserved_va. */
2900 if (reserved_va
< HI_COMMPAGE
) {
2901 ga
->bounds
[n
][0] = HI_COMMPAGE
& qemu_real_host_page_mask();
2902 ga
->bounds
[n
][1] = HI_COMMPAGE
+ TARGET_PAGE_SIZE
- 1;
2906 #pragma GCC diagnostic pop
2912 static void pgb_fail_in_use(const char *image_name
)
2914 error_report("%s: requires virtual address space that is in use "
2915 "(omit the -B option or choose a different value)",
2920 static void pgb_fixed(const char *image_name
, uintptr_t guest_loaddr
,
2921 uintptr_t guest_hiaddr
, uintptr_t align
)
2924 uintptr_t brk
= (uintptr_t)sbrk(0);
2926 if (!QEMU_IS_ALIGNED(guest_base
, align
)) {
2927 fprintf(stderr
, "Requested guest base %p does not satisfy "
2928 "host minimum alignment (0x%" PRIxPTR
")\n",
2929 (void *)guest_base
, align
);
2933 if (!pgb_addr_set(&ga
, guest_loaddr
, guest_hiaddr
, !guest_base
)
2934 || !pgb_try_mmap_set(&ga
, guest_base
, brk
)) {
2935 pgb_fail_in_use(image_name
);
2940 * pgb_find_fallback:
2942 * This is a fallback method for finding holes in the host address space
2943 * if we don't have the benefit of being able to access /proc/self/map.
2944 * It can potentially take a very long time as we can only dumbly iterate
2945 * up the host address space seeing if the allocation would work.
2947 static uintptr_t pgb_find_fallback(const PGBAddrs
*ga
, uintptr_t align
,
2950 /* TODO: come up with a better estimate of how much to skip. */
2951 uintptr_t skip
= sizeof(uintptr_t) == 4 ? MiB
: GiB
;
2953 for (uintptr_t base
= skip
; ; base
+= skip
) {
2954 base
= ROUND_UP(base
, align
);
2955 if (pgb_try_mmap_set(ga
, base
, brk
)) {
2958 if (base
>= -skip
) {
2964 static uintptr_t pgb_try_itree(const PGBAddrs
*ga
, uintptr_t base
,
2965 IntervalTreeRoot
*root
)
2967 for (int i
= ga
->nbounds
- 1; i
>= 0; --i
) {
2968 uintptr_t s
= base
+ ga
->bounds
[i
][0];
2969 uintptr_t l
= base
+ ga
->bounds
[i
][1];
2970 IntervalTreeNode
*n
;
2973 /* Wraparound. Skip to advance S to mmap_min_addr. */
2974 return mmap_min_addr
- s
;
2977 n
= interval_tree_iter_first(root
, s
, l
);
2979 /* Conflict. Skip to advance S to LAST + 1. */
2980 return n
->last
- s
+ 1;
2983 return 0; /* success */
2986 static uintptr_t pgb_find_itree(const PGBAddrs
*ga
, IntervalTreeRoot
*root
,
2987 uintptr_t align
, uintptr_t brk
)
2989 uintptr_t last
= mmap_min_addr
;
2990 uintptr_t base
, skip
;
2993 base
= ROUND_UP(last
, align
);
2998 skip
= pgb_try_itree(ga
, base
, root
);
3010 * We've chosen 'base' based on holes in the interval tree,
3011 * but we don't yet know if it is a valid host address.
3012 * Because it is the first matching hole, if the host addresses
3013 * are invalid we know there are no further matches.
3015 return pgb_try_mmap_set(ga
, base
, brk
) ? base
: -1;
3018 static void pgb_dynamic(const char *image_name
, uintptr_t guest_loaddr
,
3019 uintptr_t guest_hiaddr
, uintptr_t align
)
3021 IntervalTreeRoot
*root
;
3025 /* Try the identity map first. */
3026 if (pgb_addr_set(&ga
, guest_loaddr
, guest_hiaddr
, true)) {
3027 brk
= (uintptr_t)sbrk(0);
3028 if (pgb_try_mmap_set(&ga
, 0, brk
)) {
3035 * Rebuild the address set for non-identity map.
3036 * This differs in the mapping of the guest NULL page.
3038 pgb_addr_set(&ga
, guest_loaddr
, guest_hiaddr
, false);
3040 root
= read_self_maps();
3042 /* Read brk after we've read the maps, which will malloc. */
3043 brk
= (uintptr_t)sbrk(0);
3046 ret
= pgb_find_fallback(&ga
, align
, brk
);
3049 * Reserve the area close to the host brk.
3050 * This will be freed with the rest of the tree.
3052 IntervalTreeNode
*b
= g_new0(IntervalTreeNode
, 1);
3054 b
->last
= brk
+ 16 * MiB
- 1;
3055 interval_tree_insert(b
, root
);
3057 ret
= pgb_find_itree(&ga
, root
, align
, brk
);
3058 free_self_maps(root
);
3062 int w
= TARGET_LONG_BITS
/ 4;
3064 error_report("%s: Unable to find a guest_base to satisfy all "
3065 "guest address mapping requirements", image_name
);
3067 for (int i
= 0; i
< ga
.nbounds
; ++i
) {
3068 error_printf(" %0*" PRIx64
"-%0*" PRIx64
"\n",
3069 w
, (uint64_t)ga
.bounds
[i
][0],
3070 w
, (uint64_t)ga
.bounds
[i
][1]);
3077 void probe_guest_base(const char *image_name
, abi_ulong guest_loaddr
,
3078 abi_ulong guest_hiaddr
)
3080 /* In order to use host shmat, we must be able to honor SHMLBA. */
3081 uintptr_t align
= MAX(SHMLBA
, TARGET_PAGE_SIZE
);
3083 /* Sanity check the guest binary. */
3085 if (guest_hiaddr
> reserved_va
) {
3086 error_report("%s: requires more than reserved virtual "
3087 "address space (0x%" PRIx64
" > 0x%lx)",
3088 image_name
, (uint64_t)guest_hiaddr
, reserved_va
);
3092 if (guest_hiaddr
!= (uintptr_t)guest_hiaddr
) {
3093 error_report("%s: requires more virtual address space "
3094 "than the host can provide (0x%" PRIx64
")",
3095 image_name
, (uint64_t)guest_hiaddr
+ 1);
3100 if (have_guest_base
) {
3101 pgb_fixed(image_name
, guest_loaddr
, guest_hiaddr
, align
);
3103 pgb_dynamic(image_name
, guest_loaddr
, guest_hiaddr
, align
);
3106 /* Reserve and initialize the commpage. */
3107 if (!init_guest_commpage()) {
3108 /* We have already probed for the commpage being free. */
3109 g_assert_not_reached();
3112 assert(QEMU_IS_ALIGNED(guest_base
, align
));
3113 qemu_log_mask(CPU_LOG_PAGE
, "Locating guest address space "
3114 "@ 0x%" PRIx64
"\n", (uint64_t)guest_base
);
3118 /* The string "GNU\0" as a magic number. */
3119 GNU0_MAGIC
= const_le32('G' | 'N' << 8 | 'U' << 16),
3120 NOTE_DATA_SZ
= 1 * KiB
,
3122 ELF_GNU_PROPERTY_ALIGN
= ELF_CLASS
== ELFCLASS32
? 4 : 8,
3126 * Process a single gnu_property entry.
3127 * Return false for error.
3129 static bool parse_elf_property(const uint32_t *data
, int *off
, int datasz
,
3130 struct image_info
*info
, bool have_prev_type
,
3131 uint32_t *prev_type
, Error
**errp
)
3133 uint32_t pr_type
, pr_datasz
, step
;
3135 if (*off
> datasz
|| !QEMU_IS_ALIGNED(*off
, ELF_GNU_PROPERTY_ALIGN
)) {
3139 data
+= *off
/ sizeof(uint32_t);
3141 if (datasz
< 2 * sizeof(uint32_t)) {
3145 pr_datasz
= data
[1];
3147 datasz
-= 2 * sizeof(uint32_t);
3148 step
= ROUND_UP(pr_datasz
, ELF_GNU_PROPERTY_ALIGN
);
3149 if (step
> datasz
) {
3153 /* Properties are supposed to be unique and sorted on pr_type. */
3154 if (have_prev_type
&& pr_type
<= *prev_type
) {
3155 if (pr_type
== *prev_type
) {
3156 error_setg(errp
, "Duplicate property in PT_GNU_PROPERTY");
3158 error_setg(errp
, "Unsorted property in PT_GNU_PROPERTY");
3162 *prev_type
= pr_type
;
3164 if (!arch_parse_elf_property(pr_type
, pr_datasz
, data
, info
, errp
)) {
3168 *off
+= 2 * sizeof(uint32_t) + step
;
3172 error_setg(errp
, "Ill-formed property in PT_GNU_PROPERTY");
3176 /* Process NT_GNU_PROPERTY_TYPE_0. */
3177 static bool parse_elf_properties(const ImageSource
*src
,
3178 struct image_info
*info
,
3179 const struct elf_phdr
*phdr
,
3183 struct elf_note nhdr
;
3184 uint32_t data
[NOTE_DATA_SZ
/ sizeof(uint32_t)];
3188 bool have_prev_type
;
3191 /* Unless the arch requires properties, ignore them. */
3192 if (!ARCH_USE_GNU_PROPERTY
) {
3196 /* If the properties are crazy large, that's too bad. */
3198 if (n
> sizeof(note
)) {
3199 error_setg(errp
, "PT_GNU_PROPERTY too large");
3202 if (n
< sizeof(note
.nhdr
)) {
3203 error_setg(errp
, "PT_GNU_PROPERTY too small");
3207 if (!imgsrc_read(¬e
, phdr
->p_offset
, n
, src
, errp
)) {
3212 * The contents of a valid PT_GNU_PROPERTY is a sequence
3213 * of uint32_t -- swap them all now.
3216 for (int i
= 0; i
< n
/ 4; i
++) {
3217 bswap32s(note
.data
+ i
);
3222 * Note that nhdr is 3 words, and that the "name" described by namesz
3223 * immediately follows nhdr and is thus at the 4th word. Further, all
3224 * of the inputs to the kernel's round_up are multiples of 4.
3226 if (note
.nhdr
.n_type
!= NT_GNU_PROPERTY_TYPE_0
||
3227 note
.nhdr
.n_namesz
!= NOTE_NAME_SZ
||
3228 note
.data
[3] != GNU0_MAGIC
) {
3229 error_setg(errp
, "Invalid note in PT_GNU_PROPERTY");
3232 off
= sizeof(note
.nhdr
) + NOTE_NAME_SZ
;
3234 datasz
= note
.nhdr
.n_descsz
+ off
;
3236 error_setg(errp
, "Invalid note size in PT_GNU_PROPERTY");
3240 have_prev_type
= false;
3243 if (off
== datasz
) {
3244 return true; /* end, exit ok */
3246 if (!parse_elf_property(note
.data
, &off
, datasz
, info
,
3247 have_prev_type
, &prev_type
, errp
)) {
3250 have_prev_type
= true;
3255 * load_elf_image: Load an ELF image into the address space.
3256 * @image_name: the filename of the image, to use in error messages.
3257 * @src: the ImageSource from which to read.
3258 * @info: info collected from the loaded image.
3259 * @ehdr: the ELF header, not yet bswapped.
3260 * @pinterp_name: record any PT_INTERP string found.
3262 * On return: @info values will be filled in, as necessary or available.
3265 static void load_elf_image(const char *image_name
, const ImageSource
*src
,
3266 struct image_info
*info
, struct elfhdr
*ehdr
,
3267 char **pinterp_name
)
3269 g_autofree
struct elf_phdr
*phdr
= NULL
;
3270 abi_ulong load_addr
, load_bias
, loaddr
, hiaddr
, error
;
3275 * First of all, some simple consistency checks.
3276 * Note that we rely on the bswapped ehdr staying in bprm_buf,
3277 * for later use by load_elf_binary and create_elf_tables.
3279 if (!imgsrc_read(ehdr
, 0, sizeof(*ehdr
), src
, &err
)) {
3282 if (!elf_check_ident(ehdr
)) {
3283 error_setg(&err
, "Invalid ELF image for this architecture");
3287 if (!elf_check_ehdr(ehdr
)) {
3288 error_setg(&err
, "Invalid ELF image for this architecture");
3292 phdr
= imgsrc_read_alloc(ehdr
->e_phoff
,
3293 ehdr
->e_phnum
* sizeof(struct elf_phdr
),
3298 bswap_phdr(phdr
, ehdr
->e_phnum
);
3301 info
->pt_dynamic_addr
= 0;
3306 * Find the maximum size of the image and allocate an appropriate
3307 * amount of memory to handle that. Locate the interpreter, if any.
3309 loaddr
= -1, hiaddr
= 0;
3310 info
->alignment
= 0;
3311 info
->exec_stack
= EXSTACK_DEFAULT
;
3312 for (i
= 0; i
< ehdr
->e_phnum
; ++i
) {
3313 struct elf_phdr
*eppnt
= phdr
+ i
;
3314 if (eppnt
->p_type
== PT_LOAD
) {
3315 abi_ulong a
= eppnt
->p_vaddr
& TARGET_PAGE_MASK
;
3319 a
= eppnt
->p_vaddr
+ eppnt
->p_memsz
- 1;
3324 info
->alignment
|= eppnt
->p_align
;
3325 } else if (eppnt
->p_type
== PT_INTERP
&& pinterp_name
) {
3326 g_autofree
char *interp_name
= NULL
;
3328 if (*pinterp_name
) {
3329 error_setg(&err
, "Multiple PT_INTERP entries");
3333 interp_name
= imgsrc_read_alloc(eppnt
->p_offset
, eppnt
->p_filesz
,
3335 if (interp_name
== NULL
) {
3338 if (interp_name
[eppnt
->p_filesz
- 1] != 0) {
3339 error_setg(&err
, "Invalid PT_INTERP entry");
3342 *pinterp_name
= g_steal_pointer(&interp_name
);
3343 } else if (eppnt
->p_type
== PT_GNU_PROPERTY
) {
3344 if (!parse_elf_properties(src
, info
, eppnt
, &err
)) {
3347 } else if (eppnt
->p_type
== PT_GNU_STACK
) {
3348 info
->exec_stack
= eppnt
->p_flags
& PF_X
;
3354 if (pinterp_name
!= NULL
) {
3355 if (ehdr
->e_type
== ET_EXEC
) {
3357 * Make sure that the low address does not conflict with
3358 * MMAP_MIN_ADDR or the QEMU application itself.
3360 probe_guest_base(image_name
, loaddr
, hiaddr
);
3365 * The binary is dynamic, but we still need to
3366 * select guest_base. In this case we pass a size.
3368 probe_guest_base(image_name
, 0, hiaddr
- loaddr
);
3371 * Avoid collision with the loader by providing a different
3372 * default load address.
3374 load_addr
+= elf_et_dyn_base
;
3377 * TODO: Better support for mmap alignment is desirable.
3378 * Since we do not have complete control over the guest
3379 * address space, we prefer the kernel to choose some address
3380 * rather than force the use of LOAD_ADDR via MAP_FIXED.
3381 * But without MAP_FIXED we cannot guarantee alignment,
3384 align
= pow2ceil(info
->alignment
);
3386 load_addr
&= -align
;
3392 * Reserve address space for all of this.
3394 * In the case of ET_EXEC, we supply MAP_FIXED_NOREPLACE so that we get
3395 * exactly the address range that is required. Without reserved_va,
3396 * the guest address space is not isolated. We have attempted to avoid
3397 * conflict with the host program itself via probe_guest_base, but using
3398 * MAP_FIXED_NOREPLACE instead of MAP_FIXED provides an extra check.
3400 * Otherwise this is ET_DYN, and we are searching for a location
3401 * that can hold the memory space required. If the image is
3402 * pre-linked, LOAD_ADDR will be non-zero, and the kernel should
3403 * honor that address if it happens to be free.
3405 * In both cases, we will overwrite pages in this range with mappings
3406 * from the executable.
3408 load_addr
= target_mmap(load_addr
, (size_t)hiaddr
- loaddr
+ 1, PROT_NONE
,
3409 MAP_PRIVATE
| MAP_ANON
| MAP_NORESERVE
|
3410 (ehdr
->e_type
== ET_EXEC
? MAP_FIXED_NOREPLACE
: 0),
3412 if (load_addr
== -1) {
3415 load_bias
= load_addr
- loaddr
;
3417 if (elf_is_fdpic(ehdr
)) {
3418 struct elf32_fdpic_loadseg
*loadsegs
= info
->loadsegs
=
3419 g_malloc(sizeof(*loadsegs
) * info
->nsegs
);
3421 for (i
= 0; i
< ehdr
->e_phnum
; ++i
) {
3422 switch (phdr
[i
].p_type
) {
3424 info
->pt_dynamic_addr
= phdr
[i
].p_vaddr
+ load_bias
;
3427 loadsegs
->addr
= phdr
[i
].p_vaddr
+ load_bias
;
3428 loadsegs
->p_vaddr
= phdr
[i
].p_vaddr
;
3429 loadsegs
->p_memsz
= phdr
[i
].p_memsz
;
3436 info
->load_bias
= load_bias
;
3437 info
->code_offset
= load_bias
;
3438 info
->data_offset
= load_bias
;
3439 info
->load_addr
= load_addr
;
3440 info
->entry
= ehdr
->e_entry
+ load_bias
;
3441 info
->start_code
= -1;
3443 info
->start_data
= -1;
3445 /* Usual start for brk is after all sections of the main executable. */
3446 info
->brk
= TARGET_PAGE_ALIGN(hiaddr
+ load_bias
);
3447 info
->elf_flags
= ehdr
->e_flags
;
3449 prot_exec
= PROT_EXEC
;
3450 #ifdef TARGET_AARCH64
3452 * If the BTI feature is present, this indicates that the executable
3453 * pages of the startup binary should be mapped with PROT_BTI, so that
3454 * branch targets are enforced.
3456 * The startup binary is either the interpreter or the static executable.
3457 * The interpreter is responsible for all pages of a dynamic executable.
3459 * Elf notes are backward compatible to older cpus.
3460 * Do not enable BTI unless it is supported.
3462 if ((info
->note_flags
& GNU_PROPERTY_AARCH64_FEATURE_1_BTI
)
3463 && (pinterp_name
== NULL
|| *pinterp_name
== 0)
3464 && cpu_isar_feature(aa64_bti
, ARM_CPU(thread_cpu
))) {
3465 prot_exec
|= TARGET_PROT_BTI
;
3469 for (i
= 0; i
< ehdr
->e_phnum
; i
++) {
3470 struct elf_phdr
*eppnt
= phdr
+ i
;
3471 if (eppnt
->p_type
== PT_LOAD
) {
3472 abi_ulong vaddr
, vaddr_po
, vaddr_ps
, vaddr_ef
, vaddr_em
;
3475 if (eppnt
->p_flags
& PF_R
) {
3476 elf_prot
|= PROT_READ
;
3478 if (eppnt
->p_flags
& PF_W
) {
3479 elf_prot
|= PROT_WRITE
;
3481 if (eppnt
->p_flags
& PF_X
) {
3482 elf_prot
|= prot_exec
;
3485 vaddr
= load_bias
+ eppnt
->p_vaddr
;
3486 vaddr_po
= vaddr
& ~TARGET_PAGE_MASK
;
3487 vaddr_ps
= vaddr
& TARGET_PAGE_MASK
;
3489 vaddr_ef
= vaddr
+ eppnt
->p_filesz
;
3490 vaddr_em
= vaddr
+ eppnt
->p_memsz
;
3493 * Some segments may be completely empty, with a non-zero p_memsz
3494 * but no backing file segment.
3496 if (eppnt
->p_filesz
!= 0) {
3497 error
= imgsrc_mmap(vaddr_ps
, eppnt
->p_filesz
+ vaddr_po
,
3498 elf_prot
, MAP_PRIVATE
| MAP_FIXED
,
3499 src
, eppnt
->p_offset
- vaddr_po
);
3505 /* If the load segment requests extra zeros (e.g. bss), map it. */
3506 if (vaddr_ef
< vaddr_em
&&
3507 !zero_bss(vaddr_ef
, vaddr_em
, elf_prot
, &err
)) {
3511 /* Find the full program boundaries. */
3512 if (elf_prot
& PROT_EXEC
) {
3513 if (vaddr
< info
->start_code
) {
3514 info
->start_code
= vaddr
;
3516 if (vaddr_ef
> info
->end_code
) {
3517 info
->end_code
= vaddr_ef
;
3520 if (elf_prot
& PROT_WRITE
) {
3521 if (vaddr
< info
->start_data
) {
3522 info
->start_data
= vaddr
;
3524 if (vaddr_ef
> info
->end_data
) {
3525 info
->end_data
= vaddr_ef
;
3529 } else if (eppnt
->p_type
== PT_MIPS_ABIFLAGS
) {
3530 Mips_elf_abiflags_v0 abiflags
;
3532 if (!imgsrc_read(&abiflags
, eppnt
->p_offset
, sizeof(abiflags
),
3536 bswap_mips_abiflags(&abiflags
);
3537 info
->fp_abi
= abiflags
.fp_abi
;
3542 if (info
->end_data
== 0) {
3543 info
->start_data
= info
->end_code
;
3544 info
->end_data
= info
->end_code
;
3547 if (qemu_log_enabled()) {
3548 load_symbols(ehdr
, src
, load_bias
);
3551 debuginfo_report_elf(image_name
, src
->fd
, load_bias
);
3559 error_setg_errno(&err
, errno
, "Error mapping file");
3562 error_reportf_err(err
, "%s: ", image_name
);
3566 static void load_elf_interp(const char *filename
, struct image_info
*info
,
3567 char bprm_buf
[BPRM_BUF_SIZE
])
3574 fd
= open(path(filename
), O_RDONLY
);
3576 error_setg_file_open(&err
, errno
, filename
);
3577 error_report_err(err
);
3581 retval
= read(fd
, bprm_buf
, BPRM_BUF_SIZE
);
3583 error_setg_errno(&err
, errno
, "Error reading file header");
3584 error_reportf_err(err
, "%s: ", filename
);
3589 src
.cache
= bprm_buf
;
3590 src
.cache_size
= retval
;
3592 load_elf_image(filename
, &src
, info
, &ehdr
, NULL
);
3596 #include VDSO_HEADER
3597 #define vdso_image_info() &vdso_image_info
3599 #define vdso_image_info() NULL
3602 static void load_elf_vdso(struct image_info
*info
, const VdsoImageInfo
*vdso
)
3606 abi_ulong load_bias
, load_addr
;
3609 src
.cache
= vdso
->image
;
3610 src
.cache_size
= vdso
->image_size
;
3612 load_elf_image("<internal-vdso>", &src
, info
, &ehdr
, NULL
);
3613 load_addr
= info
->load_addr
;
3614 load_bias
= info
->load_bias
;
3617 * We need to relocate the VDSO image. The one built into the kernel
3618 * is built for a fixed address. The one built for QEMU is not, since
3619 * that requires close control of the guest address space.
3620 * We pre-processed the image to locate all of the addresses that need
3623 for (unsigned i
= 0, n
= vdso
->reloc_count
; i
< n
; i
++) {
3624 abi_ulong
*addr
= g2h_untagged(load_addr
+ vdso
->relocs
[i
]);
3625 *addr
= tswapal(tswapal(*addr
) + load_bias
);
3628 /* Install signal trampolines, if present. */
3629 if (vdso
->sigreturn_ofs
) {
3630 default_sigreturn
= load_addr
+ vdso
->sigreturn_ofs
;
3632 if (vdso
->rt_sigreturn_ofs
) {
3633 default_rt_sigreturn
= load_addr
+ vdso
->rt_sigreturn_ofs
;
3636 /* Remove write from VDSO segment. */
3637 target_mprotect(info
->start_data
, info
->end_data
- info
->start_data
,
3638 PROT_READ
| PROT_EXEC
);
3641 static int symfind(const void *s0
, const void *s1
)
3643 struct elf_sym
*sym
= (struct elf_sym
*)s1
;
3644 __typeof(sym
->st_value
) addr
= *(uint64_t *)s0
;
3647 if (addr
< sym
->st_value
) {
3649 } else if (addr
>= sym
->st_value
+ sym
->st_size
) {
3655 static const char *lookup_symbolxx(struct syminfo
*s
, uint64_t orig_addr
)
3657 #if ELF_CLASS == ELFCLASS32
3658 struct elf_sym
*syms
= s
->disas_symtab
.elf32
;
3660 struct elf_sym
*syms
= s
->disas_symtab
.elf64
;
3664 struct elf_sym
*sym
;
3666 sym
= bsearch(&orig_addr
, syms
, s
->disas_num_syms
, sizeof(*syms
), symfind
);
3668 return s
->disas_strtab
+ sym
->st_name
;
3674 /* FIXME: This should use elf_ops.h */
3675 static int symcmp(const void *s0
, const void *s1
)
3677 struct elf_sym
*sym0
= (struct elf_sym
*)s0
;
3678 struct elf_sym
*sym1
= (struct elf_sym
*)s1
;
3679 return (sym0
->st_value
< sym1
->st_value
)
3681 : ((sym0
->st_value
> sym1
->st_value
) ? 1 : 0);
3684 /* Best attempt to load symbols from this ELF object. */
3685 static void load_symbols(struct elfhdr
*hdr
, const ImageSource
*src
,
3686 abi_ulong load_bias
)
3688 int i
, shnum
, nsyms
, sym_idx
= 0, str_idx
= 0;
3689 g_autofree
struct elf_shdr
*shdr
= NULL
;
3690 char *strings
= NULL
;
3691 struct elf_sym
*syms
= NULL
;
3692 struct elf_sym
*new_syms
;
3695 shnum
= hdr
->e_shnum
;
3696 shdr
= imgsrc_read_alloc(hdr
->e_shoff
, shnum
* sizeof(struct elf_shdr
),
3702 bswap_shdr(shdr
, shnum
);
3703 for (i
= 0; i
< shnum
; ++i
) {
3704 if (shdr
[i
].sh_type
== SHT_SYMTAB
) {
3706 str_idx
= shdr
[i
].sh_link
;
3711 /* There will be no symbol table if the file was stripped. */
3715 /* Now know where the strtab and symtab are. Snarf them. */
3717 segsz
= shdr
[str_idx
].sh_size
;
3718 strings
= g_try_malloc(segsz
);
3722 if (!imgsrc_read(strings
, shdr
[str_idx
].sh_offset
, segsz
, src
, NULL
)) {
3726 segsz
= shdr
[sym_idx
].sh_size
;
3727 if (segsz
/ sizeof(struct elf_sym
) > INT_MAX
) {
3729 * Implausibly large symbol table: give up rather than ploughing
3730 * on with the number of symbols calculation overflowing.
3734 nsyms
= segsz
/ sizeof(struct elf_sym
);
3735 syms
= g_try_malloc(segsz
);
3739 if (!imgsrc_read(syms
, shdr
[sym_idx
].sh_offset
, segsz
, src
, NULL
)) {
3743 for (i
= 0; i
< nsyms
; ) {
3744 bswap_sym(syms
+ i
);
3745 /* Throw away entries which we do not need. */
3746 if (syms
[i
].st_shndx
== SHN_UNDEF
3747 || syms
[i
].st_shndx
>= SHN_LORESERVE
3748 || ELF_ST_TYPE(syms
[i
].st_info
) != STT_FUNC
) {
3750 syms
[i
] = syms
[nsyms
];
3753 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
3754 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
3755 syms
[i
].st_value
&= ~(target_ulong
)1;
3757 syms
[i
].st_value
+= load_bias
;
3762 /* No "useful" symbol. */
3768 * Attempt to free the storage associated with the local symbols
3769 * that we threw away. Whether or not this has any effect on the
3770 * memory allocation depends on the malloc implementation and how
3771 * many symbols we managed to discard.
3773 new_syms
= g_try_renew(struct elf_sym
, syms
, nsyms
);
3774 if (new_syms
== NULL
) {
3779 qsort(syms
, nsyms
, sizeof(*syms
), symcmp
);
3782 struct syminfo
*s
= g_new(struct syminfo
, 1);
3784 s
->disas_strtab
= strings
;
3785 s
->disas_num_syms
= nsyms
;
3786 #if ELF_CLASS == ELFCLASS32
3787 s
->disas_symtab
.elf32
= syms
;
3789 s
->disas_symtab
.elf64
= syms
;
3791 s
->lookup_symbol
= lookup_symbolxx
;
3802 uint32_t get_elf_eflags(int fd
)
3808 /* Read ELF header */
3809 offset
= lseek(fd
, 0, SEEK_SET
);
3810 if (offset
== (off_t
) -1) {
3813 ret
= read(fd
, &ehdr
, sizeof(ehdr
));
3814 if (ret
< sizeof(ehdr
)) {
3817 offset
= lseek(fd
, offset
, SEEK_SET
);
3818 if (offset
== (off_t
) -1) {
3822 /* Check ELF signature */
3823 if (!elf_check_ident(&ehdr
)) {
3829 if (!elf_check_ehdr(&ehdr
)) {
3833 /* return architecture id */
3834 return ehdr
.e_flags
;
3837 int load_elf_binary(struct linux_binprm
*bprm
, struct image_info
*info
)
3840 * We need a copy of the elf header for passing to create_elf_tables.
3841 * We will have overwritten the original when we re-use bprm->buf
3842 * while loading the interpreter. Allocate the storage for this now
3843 * and let elf_load_image do any swapping that may be required.
3846 struct image_info interp_info
, vdso_info
;
3847 char *elf_interpreter
= NULL
;
3850 memset(&interp_info
, 0, sizeof(interp_info
));
3852 interp_info
.fp_abi
= MIPS_ABI_FP_UNKNOWN
;
3855 load_elf_image(bprm
->filename
, &bprm
->src
, info
, &ehdr
, &elf_interpreter
);
3857 /* Do this so that we can load the interpreter, if need be. We will
3858 change some of these later */
3859 bprm
->p
= setup_arg_pages(bprm
, info
);
3861 scratch
= g_new0(char, TARGET_PAGE_SIZE
);
3862 if (STACK_GROWS_DOWN
) {
3863 bprm
->p
= copy_elf_strings(1, &bprm
->filename
, scratch
,
3864 bprm
->p
, info
->stack_limit
);
3865 info
->file_string
= bprm
->p
;
3866 bprm
->p
= copy_elf_strings(bprm
->envc
, bprm
->envp
, scratch
,
3867 bprm
->p
, info
->stack_limit
);
3868 info
->env_strings
= bprm
->p
;
3869 bprm
->p
= copy_elf_strings(bprm
->argc
, bprm
->argv
, scratch
,
3870 bprm
->p
, info
->stack_limit
);
3871 info
->arg_strings
= bprm
->p
;
3873 info
->arg_strings
= bprm
->p
;
3874 bprm
->p
= copy_elf_strings(bprm
->argc
, bprm
->argv
, scratch
,
3875 bprm
->p
, info
->stack_limit
);
3876 info
->env_strings
= bprm
->p
;
3877 bprm
->p
= copy_elf_strings(bprm
->envc
, bprm
->envp
, scratch
,
3878 bprm
->p
, info
->stack_limit
);
3879 info
->file_string
= bprm
->p
;
3880 bprm
->p
= copy_elf_strings(1, &bprm
->filename
, scratch
,
3881 bprm
->p
, info
->stack_limit
);
3887 fprintf(stderr
, "%s: %s\n", bprm
->filename
, strerror(E2BIG
));
3891 if (elf_interpreter
) {
3892 load_elf_interp(elf_interpreter
, &interp_info
, bprm
->buf
);
3895 * While unusual because of ELF_ET_DYN_BASE, if we are unlucky
3896 * with the mappings the interpreter can be loaded above but
3897 * near the main executable, which can leave very little room
3899 * If the current brk has less than 16MB, use the end of the
3902 if (interp_info
.brk
> info
->brk
&&
3903 interp_info
.load_bias
- info
->brk
< 16 * MiB
) {
3904 info
->brk
= interp_info
.brk
;
3907 /* If the program interpreter is one of these two, then assume
3908 an iBCS2 image. Otherwise assume a native linux image. */
3910 if (strcmp(elf_interpreter
, "/usr/lib/libc.so.1") == 0
3911 || strcmp(elf_interpreter
, "/usr/lib/ld.so.1") == 0) {
3912 info
->personality
= PER_SVR4
;
3914 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
3915 and some applications "depend" upon this behavior. Since
3916 we do not have the power to recompile these, we emulate
3917 the SVr4 behavior. Sigh. */
3918 target_mmap(0, TARGET_PAGE_SIZE
, PROT_READ
| PROT_EXEC
,
3919 MAP_FIXED_NOREPLACE
| MAP_PRIVATE
| MAP_ANONYMOUS
,
3923 info
->interp_fp_abi
= interp_info
.fp_abi
;
3928 * Load a vdso if available, which will amongst other things contain the
3929 * signal trampolines. Otherwise, allocate a separate page for them.
3931 const VdsoImageInfo
*vdso
= vdso_image_info();
3933 load_elf_vdso(&vdso_info
, vdso
);
3934 info
->vdso
= vdso_info
.load_bias
;
3935 } else if (TARGET_ARCH_HAS_SIGTRAMP_PAGE
) {
3936 abi_long tramp_page
= target_mmap(0, TARGET_PAGE_SIZE
,
3937 PROT_READ
| PROT_WRITE
,
3938 MAP_PRIVATE
| MAP_ANON
, -1, 0);
3939 if (tramp_page
== -1) {
3943 setup_sigtramp(tramp_page
);
3944 target_mprotect(tramp_page
, TARGET_PAGE_SIZE
, PROT_READ
| PROT_EXEC
);
3947 bprm
->p
= create_elf_tables(bprm
->p
, bprm
->argc
, bprm
->envc
, &ehdr
, info
,
3948 elf_interpreter
? &interp_info
: NULL
,
3949 vdso
? &vdso_info
: NULL
);
3950 info
->start_stack
= bprm
->p
;
3952 /* If we have an interpreter, set that as the program's entry point.
3953 Copy the load_bias as well, to help PPC64 interpret the entry
3954 point as a function descriptor. Do this after creating elf tables
3955 so that we copy the original program entry point into the AUXV. */
3956 if (elf_interpreter
) {
3957 info
->load_bias
= interp_info
.load_bias
;
3958 info
->entry
= interp_info
.entry
;
3959 g_free(elf_interpreter
);
3962 #ifdef USE_ELF_CORE_DUMP
3963 bprm
->core_dump
= &elf_core_dump
;
3969 #ifdef USE_ELF_CORE_DUMP
3970 #include "exec/translate-all.h"
3973 * Definitions to generate Intel SVR4-like core files.
3974 * These mostly have the same names as the SVR4 types with "target_elf_"
3975 * tacked on the front to prevent clashes with linux definitions,
3976 * and the typedef forms have been avoided. This is mostly like
3977 * the SVR4 structure, but more Linuxy, with things that Linux does
3978 * not support and which gdb doesn't really use excluded.
3980 * Fields we don't dump (their contents is zero) in linux-user qemu
3981 * are marked with XXX.
3983 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
3985 * Porting ELF coredump for target is (quite) simple process. First you
3986 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
3987 * the target resides):
3989 * #define USE_ELF_CORE_DUMP
3991 * Next you define type of register set used for dumping. ELF specification
3992 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
3994 * typedef <target_regtype> target_elf_greg_t;
3995 * #define ELF_NREG <number of registers>
3996 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
3998 * Last step is to implement target specific function that copies registers
3999 * from given cpu into just specified register set. Prototype is:
4001 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
4002 * const CPUArchState *env);
4005 * regs - copy register values into here (allocated and zeroed by caller)
4006 * env - copy registers from here
4008 * Example for ARM target is provided in this file.
4011 struct target_elf_siginfo
{
4012 abi_int si_signo
; /* signal number */
4013 abi_int si_code
; /* extra code */
4014 abi_int si_errno
; /* errno */
4017 struct target_elf_prstatus
{
4018 struct target_elf_siginfo pr_info
; /* Info associated with signal */
4019 abi_short pr_cursig
; /* Current signal */
4020 abi_ulong pr_sigpend
; /* XXX */
4021 abi_ulong pr_sighold
; /* XXX */
4022 target_pid_t pr_pid
;
4023 target_pid_t pr_ppid
;
4024 target_pid_t pr_pgrp
;
4025 target_pid_t pr_sid
;
4026 struct target_timeval pr_utime
; /* XXX User time */
4027 struct target_timeval pr_stime
; /* XXX System time */
4028 struct target_timeval pr_cutime
; /* XXX Cumulative user time */
4029 struct target_timeval pr_cstime
; /* XXX Cumulative system time */
4030 target_elf_gregset_t pr_reg
; /* GP registers */
4031 abi_int pr_fpvalid
; /* XXX */
4034 #define ELF_PRARGSZ (80) /* Number of chars for args */
4036 struct target_elf_prpsinfo
{
4037 char pr_state
; /* numeric process state */
4038 char pr_sname
; /* char for pr_state */
4039 char pr_zomb
; /* zombie */
4040 char pr_nice
; /* nice val */
4041 abi_ulong pr_flag
; /* flags */
4042 target_uid_t pr_uid
;
4043 target_gid_t pr_gid
;
4044 target_pid_t pr_pid
, pr_ppid
, pr_pgrp
, pr_sid
;
4046 char pr_fname
[16] QEMU_NONSTRING
; /* filename of executable */
4047 char pr_psargs
[ELF_PRARGSZ
]; /* initial part of arg list */
4051 static void bswap_prstatus(struct target_elf_prstatus
*prstatus
)
4053 prstatus
->pr_info
.si_signo
= tswap32(prstatus
->pr_info
.si_signo
);
4054 prstatus
->pr_info
.si_code
= tswap32(prstatus
->pr_info
.si_code
);
4055 prstatus
->pr_info
.si_errno
= tswap32(prstatus
->pr_info
.si_errno
);
4056 prstatus
->pr_cursig
= tswap16(prstatus
->pr_cursig
);
4057 prstatus
->pr_sigpend
= tswapal(prstatus
->pr_sigpend
);
4058 prstatus
->pr_sighold
= tswapal(prstatus
->pr_sighold
);
4059 prstatus
->pr_pid
= tswap32(prstatus
->pr_pid
);
4060 prstatus
->pr_ppid
= tswap32(prstatus
->pr_ppid
);
4061 prstatus
->pr_pgrp
= tswap32(prstatus
->pr_pgrp
);
4062 prstatus
->pr_sid
= tswap32(prstatus
->pr_sid
);
4063 /* cpu times are not filled, so we skip them */
4064 /* regs should be in correct format already */
4065 prstatus
->pr_fpvalid
= tswap32(prstatus
->pr_fpvalid
);
4068 static void bswap_psinfo(struct target_elf_prpsinfo
*psinfo
)
4070 psinfo
->pr_flag
= tswapal(psinfo
->pr_flag
);
4071 psinfo
->pr_uid
= tswap16(psinfo
->pr_uid
);
4072 psinfo
->pr_gid
= tswap16(psinfo
->pr_gid
);
4073 psinfo
->pr_pid
= tswap32(psinfo
->pr_pid
);
4074 psinfo
->pr_ppid
= tswap32(psinfo
->pr_ppid
);
4075 psinfo
->pr_pgrp
= tswap32(psinfo
->pr_pgrp
);
4076 psinfo
->pr_sid
= tswap32(psinfo
->pr_sid
);
4079 static void bswap_note(struct elf_note
*en
)
4081 bswap32s(&en
->n_namesz
);
4082 bswap32s(&en
->n_descsz
);
4083 bswap32s(&en
->n_type
);
4086 static inline void bswap_prstatus(struct target_elf_prstatus
*p
) { }
4087 static inline void bswap_psinfo(struct target_elf_prpsinfo
*p
) {}
4088 static inline void bswap_note(struct elf_note
*en
) { }
4089 #endif /* BSWAP_NEEDED */
4092 * Calculate file (dump) size of given memory region.
4094 static size_t vma_dump_size(target_ulong start
, target_ulong end
,
4095 unsigned long flags
)
4097 /* The area must be readable. */
4098 if (!(flags
& PAGE_READ
)) {
4103 * Usually we don't dump executable pages as they contain
4104 * non-writable code that debugger can read directly from
4105 * target library etc. If there is no elf header, we dump it.
4107 if (!(flags
& PAGE_WRITE_ORG
) &&
4108 (flags
& PAGE_EXEC
) &&
4109 memcmp(g2h_untagged(start
), ELFMAG
, SELFMAG
) == 0) {
4116 static size_t size_note(const char *name
, size_t datasz
)
4118 size_t namesz
= strlen(name
) + 1;
4120 namesz
= ROUND_UP(namesz
, 4);
4121 datasz
= ROUND_UP(datasz
, 4);
4123 return sizeof(struct elf_note
) + namesz
+ datasz
;
4126 static void *fill_note(void **pptr
, int type
, const char *name
, size_t datasz
)
4129 struct elf_note
*n
= ptr
;
4130 size_t namesz
= strlen(name
) + 1;
4132 n
->n_namesz
= namesz
;
4133 n
->n_descsz
= datasz
;
4138 memcpy(ptr
, name
, namesz
);
4140 namesz
= ROUND_UP(namesz
, 4);
4141 datasz
= ROUND_UP(datasz
, 4);
4143 *pptr
= ptr
+ namesz
+ datasz
;
4144 return ptr
+ namesz
;
4147 static void fill_elf_header(struct elfhdr
*elf
, int segs
, uint16_t machine
,
4150 memcpy(elf
->e_ident
, ELFMAG
, SELFMAG
);
4152 elf
->e_ident
[EI_CLASS
] = ELF_CLASS
;
4153 elf
->e_ident
[EI_DATA
] = ELF_DATA
;
4154 elf
->e_ident
[EI_VERSION
] = EV_CURRENT
;
4155 elf
->e_ident
[EI_OSABI
] = ELF_OSABI
;
4157 elf
->e_type
= ET_CORE
;
4158 elf
->e_machine
= machine
;
4159 elf
->e_version
= EV_CURRENT
;
4160 elf
->e_phoff
= sizeof(struct elfhdr
);
4161 elf
->e_flags
= flags
;
4162 elf
->e_ehsize
= sizeof(struct elfhdr
);
4163 elf
->e_phentsize
= sizeof(struct elf_phdr
);
4164 elf
->e_phnum
= segs
;
4169 static void fill_elf_note_phdr(struct elf_phdr
*phdr
, size_t sz
, off_t offset
)
4171 phdr
->p_type
= PT_NOTE
;
4172 phdr
->p_offset
= offset
;
4173 phdr
->p_filesz
= sz
;
4175 bswap_phdr(phdr
, 1);
4178 static void fill_prstatus_note(void *data
, const TaskState
*ts
,
4179 CPUState
*cpu
, int signr
)
4182 * Because note memory is only aligned to 4, and target_elf_prstatus
4183 * may well have higher alignment requirements, fill locally and
4184 * memcpy to the destination afterward.
4186 struct target_elf_prstatus prstatus
= {
4187 .pr_info
.si_signo
= signr
,
4189 .pr_pid
= ts
->ts_tid
,
4190 .pr_ppid
= getppid(),
4191 .pr_pgrp
= getpgrp(),
4192 .pr_sid
= getsid(0),
4195 elf_core_copy_regs(&prstatus
.pr_reg
, cpu_env(cpu
));
4196 bswap_prstatus(&prstatus
);
4197 memcpy(data
, &prstatus
, sizeof(prstatus
));
4200 static void fill_prpsinfo_note(void *data
, const TaskState
*ts
)
4203 * Because note memory is only aligned to 4, and target_elf_prpsinfo
4204 * may well have higher alignment requirements, fill locally and
4205 * memcpy to the destination afterward.
4207 struct target_elf_prpsinfo psinfo
= {
4209 .pr_ppid
= getppid(),
4210 .pr_pgrp
= getpgrp(),
4211 .pr_sid
= getsid(0),
4215 char *base_filename
;
4218 len
= ts
->info
->env_strings
- ts
->info
->arg_strings
;
4219 len
= MIN(len
, ELF_PRARGSZ
);
4220 memcpy(&psinfo
.pr_psargs
, g2h_untagged(ts
->info
->arg_strings
), len
);
4221 for (size_t i
= 0; i
< len
; i
++) {
4222 if (psinfo
.pr_psargs
[i
] == 0) {
4223 psinfo
.pr_psargs
[i
] = ' ';
4227 base_filename
= g_path_get_basename(ts
->bprm
->filename
);
4229 * Using strncpy here is fine: at max-length,
4230 * this field is not NUL-terminated.
4232 strncpy(psinfo
.pr_fname
, base_filename
, sizeof(psinfo
.pr_fname
));
4233 g_free(base_filename
);
4235 bswap_psinfo(&psinfo
);
4236 memcpy(data
, &psinfo
, sizeof(psinfo
));
4239 static void fill_auxv_note(void *data
, const TaskState
*ts
)
4241 memcpy(data
, g2h_untagged(ts
->info
->saved_auxv
), ts
->info
->auxv_len
);
4245 * Constructs name of coredump file. We have following convention
4247 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
4249 * Returns the filename
4251 static char *core_dump_filename(const TaskState
*ts
)
4253 g_autoptr(GDateTime
) now
= g_date_time_new_now_local();
4254 g_autofree
char *nowstr
= g_date_time_format(now
, "%Y%m%d-%H%M%S");
4255 g_autofree
char *base_filename
= g_path_get_basename(ts
->bprm
->filename
);
4257 return g_strdup_printf("qemu_%s_%s_%d.core",
4258 base_filename
, nowstr
, (int)getpid());
4261 static int dump_write(int fd
, const void *ptr
, size_t size
)
4263 const char *bufp
= (const char *)ptr
;
4264 ssize_t bytes_written
, bytes_left
;
4270 * In normal conditions, single write(2) should do but
4271 * in case of socket etc. this mechanism is more portable.
4274 bytes_written
= write(fd
, bufp
, bytes_left
);
4275 if (bytes_written
< 0) {
4279 } else if (bytes_written
== 0) { /* eof */
4282 bufp
+= bytes_written
;
4283 bytes_left
-= bytes_written
;
4284 } while (bytes_left
> 0);
4289 static int wmr_page_unprotect_regions(void *opaque
, target_ulong start
,
4290 target_ulong end
, unsigned long flags
)
4292 if ((flags
& (PAGE_WRITE
| PAGE_WRITE_ORG
)) == PAGE_WRITE_ORG
) {
4293 size_t step
= MAX(TARGET_PAGE_SIZE
, qemu_real_host_page_size());
4296 page_unprotect(start
, 0);
4297 if (end
- start
<= step
) {
4309 } CountAndSizeRegions
;
4311 static int wmr_count_and_size_regions(void *opaque
, target_ulong start
,
4312 target_ulong end
, unsigned long flags
)
4314 CountAndSizeRegions
*css
= opaque
;
4317 css
->size
+= vma_dump_size(start
, end
, flags
);
4322 struct elf_phdr
*phdr
;
4326 static int wmr_fill_region_phdr(void *opaque
, target_ulong start
,
4327 target_ulong end
, unsigned long flags
)
4329 FillRegionPhdr
*d
= opaque
;
4330 struct elf_phdr
*phdr
= d
->phdr
;
4332 phdr
->p_type
= PT_LOAD
;
4333 phdr
->p_vaddr
= start
;
4335 phdr
->p_filesz
= vma_dump_size(start
, end
, flags
);
4336 phdr
->p_offset
= d
->offset
;
4337 d
->offset
+= phdr
->p_filesz
;
4338 phdr
->p_memsz
= end
- start
;
4339 phdr
->p_flags
= (flags
& PAGE_READ
? PF_R
: 0)
4340 | (flags
& PAGE_WRITE_ORG
? PF_W
: 0)
4341 | (flags
& PAGE_EXEC
? PF_X
: 0);
4342 phdr
->p_align
= ELF_EXEC_PAGESIZE
;
4344 bswap_phdr(phdr
, 1);
4349 static int wmr_write_region(void *opaque
, target_ulong start
,
4350 target_ulong end
, unsigned long flags
)
4352 int fd
= *(int *)opaque
;
4353 size_t size
= vma_dump_size(start
, end
, flags
);
4358 return dump_write(fd
, g2h_untagged(start
), size
);
4362 * Write out ELF coredump.
4364 * See documentation of ELF object file format in:
4365 * http://www.caldera.com/developers/devspecs/gabi41.pdf
4367 * Coredump format in linux is following:
4369 * 0 +----------------------+ \
4370 * | ELF header | ET_CORE |
4371 * +----------------------+ |
4372 * | ELF program headers | |--- headers
4373 * | - NOTE section | |
4374 * | - PT_LOAD sections | |
4375 * +----------------------+ /
4380 * +----------------------+ <-- aligned to target page
4381 * | Process memory dump |
4386 * +----------------------+
4388 * NT_PRSTATUS -> struct elf_prstatus (per thread)
4389 * NT_PRSINFO -> struct elf_prpsinfo
4390 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
4392 * Format follows System V format as close as possible. Current
4393 * version limitations are as follows:
4394 * - no floating point registers are dumped
4396 * Function returns 0 in case of success, negative errno otherwise.
4398 * TODO: make this work also during runtime: it should be
4399 * possible to force coredump from running process and then
4400 * continue processing. For example qemu could set up SIGUSR2
4401 * handler (provided that target process haven't registered
4402 * handler for that) that does the dump when signal is received.
4404 static int elf_core_dump(int signr
, const CPUArchState
*env
)
4406 const CPUState
*cpu
= env_cpu((CPUArchState
*)env
);
4407 const TaskState
*ts
= (const TaskState
*)get_task_state((CPUState
*)cpu
);
4408 struct rlimit dumpsize
;
4409 CountAndSizeRegions css
;
4410 off_t offset
, note_offset
, data_offset
;
4416 if (prctl(PR_GET_DUMPABLE
) == 0) {
4420 if (getrlimit(RLIMIT_CORE
, &dumpsize
) < 0 || dumpsize
.rlim_cur
== 0) {
4427 /* By unprotecting, we merge vmas that might be split. */
4428 walk_memory_regions(NULL
, wmr_page_unprotect_regions
);
4431 * Walk through target process memory mappings and
4432 * set up structure containing this information.
4434 memset(&css
, 0, sizeof(css
));
4435 walk_memory_regions(&css
, wmr_count_and_size_regions
);
4438 CPU_FOREACH(cpu_iter
) {
4442 offset
= sizeof(struct elfhdr
);
4443 offset
+= (css
.count
+ 1) * sizeof(struct elf_phdr
);
4444 note_offset
= offset
;
4446 offset
+= size_note("CORE", ts
->info
->auxv_len
);
4447 offset
+= size_note("CORE", sizeof(struct target_elf_prpsinfo
));
4448 offset
+= size_note("CORE", sizeof(struct target_elf_prstatus
)) * cpus
;
4449 note_size
= offset
- note_offset
;
4450 data_offset
= ROUND_UP(offset
, ELF_EXEC_PAGESIZE
);
4452 /* Do not dump if the corefile size exceeds the limit. */
4453 if (dumpsize
.rlim_cur
!= RLIM_INFINITY
4454 && dumpsize
.rlim_cur
< data_offset
+ css
.size
) {
4460 g_autofree
char *corefile
= core_dump_filename(ts
);
4461 fd
= open(corefile
, O_WRONLY
| O_CREAT
| O_TRUNC
,
4462 S_IRUSR
| S_IWUSR
| S_IRGRP
| S_IROTH
);
4469 * There is a fair amount of alignment padding within the notes
4470 * as well as preceeding the process memory. Allocate a zeroed
4471 * block to hold it all. Write all of the headers directly into
4472 * this buffer and then write it out as a block.
4475 g_autofree
void *header
= g_malloc0(data_offset
);
4479 /* Create elf file header. */
4481 fill_elf_header(hptr
, css
.count
+ 1, ELF_MACHINE
, 0);
4482 hptr
+= sizeof(struct elfhdr
);
4484 /* Create elf program headers. */
4485 fill_elf_note_phdr(hptr
, note_size
, note_offset
);
4486 hptr
+= sizeof(struct elf_phdr
);
4489 frp
.offset
= data_offset
;
4490 walk_memory_regions(&frp
, wmr_fill_region_phdr
);
4493 /* Create the notes. */
4494 dptr
= fill_note(&hptr
, NT_AUXV
, "CORE", ts
->info
->auxv_len
);
4495 fill_auxv_note(dptr
, ts
);
4497 dptr
= fill_note(&hptr
, NT_PRPSINFO
, "CORE",
4498 sizeof(struct target_elf_prpsinfo
));
4499 fill_prpsinfo_note(dptr
, ts
);
4501 CPU_FOREACH(cpu_iter
) {
4502 dptr
= fill_note(&hptr
, NT_PRSTATUS
, "CORE",
4503 sizeof(struct target_elf_prstatus
));
4504 fill_prstatus_note(dptr
, ts
, cpu_iter
,
4505 cpu_iter
== cpu
? signr
: 0);
4508 if (dump_write(fd
, header
, data_offset
) < 0) {
4514 * Finally write process memory into the corefile as well.
4516 if (walk_memory_regions(&fd
, wmr_write_region
) < 0) {
4530 #endif /* USE_ELF_CORE_DUMP */
4532 void do_init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
4534 init_thread(regs
, infop
);