2 * QEMU PowerPC XIVE interrupt controller model
4 * Copyright (c) 2017-2018, IBM Corporation.
6 * This code is licensed under the GPL version 2 or later. See the
7 * COPYING file in the top-level directory.
10 #include "qemu/osdep.h"
12 #include "qemu/module.h"
13 #include "qapi/error.h"
14 #include "target/ppc/cpu.h"
15 #include "sysemu/cpus.h"
16 #include "sysemu/dma.h"
17 #include "sysemu/reset.h"
18 #include "hw/qdev-properties.h"
19 #include "migration/vmstate.h"
20 #include "monitor/monitor.h"
22 #include "hw/ppc/xive.h"
23 #include "hw/ppc/xive_regs.h"
27 * XIVE Thread Interrupt Management context
31 * Convert a priority number to an Interrupt Pending Buffer (IPB)
32 * register, which indicates a pending interrupt at the priority
33 * corresponding to the bit number
35 static uint8_t priority_to_ipb(uint8_t priority
)
37 return priority
> XIVE_PRIORITY_MAX
?
38 0 : 1 << (XIVE_PRIORITY_MAX
- priority
);
42 * Convert an Interrupt Pending Buffer (IPB) register to a Pending
43 * Interrupt Priority Register (PIPR), which contains the priority of
44 * the most favored pending notification.
46 static uint8_t ipb_to_pipr(uint8_t ibp
)
48 return ibp
? clz32((uint32_t)ibp
<< 24) : 0xff;
51 static uint8_t exception_mask(uint8_t ring
)
59 g_assert_not_reached();
63 static qemu_irq
xive_tctx_output(XiveTCTX
*tctx
, uint8_t ring
)
67 return 0; /* Not supported */
69 return tctx
->os_output
;
72 return tctx
->hv_output
;
78 static uint64_t xive_tctx_accept(XiveTCTX
*tctx
, uint8_t ring
)
80 uint8_t *regs
= &tctx
->regs
[ring
];
81 uint8_t nsr
= regs
[TM_NSR
];
82 uint8_t mask
= exception_mask(ring
);
84 qemu_irq_lower(xive_tctx_output(tctx
, ring
));
86 if (regs
[TM_NSR
] & mask
) {
87 uint8_t cppr
= regs
[TM_PIPR
];
91 /* Reset the pending buffer bit */
92 regs
[TM_IPB
] &= ~priority_to_ipb(cppr
);
93 regs
[TM_PIPR
] = ipb_to_pipr(regs
[TM_IPB
]);
95 /* Drop Exception bit */
96 regs
[TM_NSR
] &= ~mask
;
98 trace_xive_tctx_accept(tctx
->cs
->cpu_index
, ring
,
99 regs
[TM_IPB
], regs
[TM_PIPR
],
100 regs
[TM_CPPR
], regs
[TM_NSR
]);
103 return (nsr
<< 8) | regs
[TM_CPPR
];
106 static void xive_tctx_notify(XiveTCTX
*tctx
, uint8_t ring
)
108 uint8_t *regs
= &tctx
->regs
[ring
];
110 if (regs
[TM_PIPR
] < regs
[TM_CPPR
]) {
113 regs
[TM_NSR
] |= TM_QW1_NSR_EO
;
116 regs
[TM_NSR
] |= (TM_QW3_NSR_HE_PHYS
<< 6);
119 g_assert_not_reached();
121 trace_xive_tctx_notify(tctx
->cs
->cpu_index
, ring
,
122 regs
[TM_IPB
], regs
[TM_PIPR
],
123 regs
[TM_CPPR
], regs
[TM_NSR
]);
124 qemu_irq_raise(xive_tctx_output(tctx
, ring
));
128 static void xive_tctx_set_cppr(XiveTCTX
*tctx
, uint8_t ring
, uint8_t cppr
)
130 uint8_t *regs
= &tctx
->regs
[ring
];
132 trace_xive_tctx_set_cppr(tctx
->cs
->cpu_index
, ring
,
133 regs
[TM_IPB
], regs
[TM_PIPR
],
136 if (cppr
> XIVE_PRIORITY_MAX
) {
140 tctx
->regs
[ring
+ TM_CPPR
] = cppr
;
142 /* CPPR has changed, check if we need to raise a pending exception */
143 xive_tctx_notify(tctx
, ring
);
146 void xive_tctx_ipb_update(XiveTCTX
*tctx
, uint8_t ring
, uint8_t ipb
)
148 uint8_t *regs
= &tctx
->regs
[ring
];
151 regs
[TM_PIPR
] = ipb_to_pipr(regs
[TM_IPB
]);
152 xive_tctx_notify(tctx
, ring
);
155 static inline uint32_t xive_tctx_word2(uint8_t *ring
)
157 return *((uint32_t *) &ring
[TM_WORD2
]);
161 * XIVE Thread Interrupt Management Area (TIMA)
164 static void xive_tm_set_hv_cppr(XivePresenter
*xptr
, XiveTCTX
*tctx
,
165 hwaddr offset
, uint64_t value
, unsigned size
)
167 xive_tctx_set_cppr(tctx
, TM_QW3_HV_PHYS
, value
& 0xff);
170 static uint64_t xive_tm_ack_hv_reg(XivePresenter
*xptr
, XiveTCTX
*tctx
,
171 hwaddr offset
, unsigned size
)
173 return xive_tctx_accept(tctx
, TM_QW3_HV_PHYS
);
176 static uint64_t xive_tm_pull_pool_ctx(XivePresenter
*xptr
, XiveTCTX
*tctx
,
177 hwaddr offset
, unsigned size
)
179 uint32_t qw2w2_prev
= xive_tctx_word2(&tctx
->regs
[TM_QW2_HV_POOL
]);
182 qw2w2
= xive_set_field32(TM_QW2W2_VP
, qw2w2_prev
, 0);
183 memcpy(&tctx
->regs
[TM_QW2_HV_POOL
+ TM_WORD2
], &qw2w2
, 4);
187 static void xive_tm_vt_push(XivePresenter
*xptr
, XiveTCTX
*tctx
, hwaddr offset
,
188 uint64_t value
, unsigned size
)
190 tctx
->regs
[TM_QW3_HV_PHYS
+ TM_WORD2
] = value
& 0xff;
193 static uint64_t xive_tm_vt_poll(XivePresenter
*xptr
, XiveTCTX
*tctx
,
194 hwaddr offset
, unsigned size
)
196 return tctx
->regs
[TM_QW3_HV_PHYS
+ TM_WORD2
] & 0xff;
200 * Define an access map for each page of the TIMA that we will use in
201 * the memory region ops to filter values when doing loads and stores
202 * of raw registers values
204 * Registers accessibility bits :
212 static const uint8_t xive_tm_hw_view
[] = {
213 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-0 User */
214 3, 3, 3, 3, 3, 3, 0, 2, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-1 OS */
215 0, 0, 3, 3, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-2 POOL */
216 3, 3, 3, 3, 0, 3, 0, 2, 3, 0, 0, 3, 3, 3, 3, 0, /* QW-3 PHYS */
219 static const uint8_t xive_tm_hv_view
[] = {
220 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-0 User */
221 3, 3, 3, 3, 3, 3, 0, 2, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-1 OS */
222 0, 0, 3, 3, 0, 0, 0, 0, 0, 3, 3, 3, 0, 0, 0, 0, /* QW-2 POOL */
223 3, 3, 3, 3, 0, 3, 0, 2, 3, 0, 0, 3, 0, 0, 0, 0, /* QW-3 PHYS */
226 static const uint8_t xive_tm_os_view
[] = {
227 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-0 User */
228 2, 3, 2, 2, 2, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-1 OS */
229 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-2 POOL */
230 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-3 PHYS */
233 static const uint8_t xive_tm_user_view
[] = {
234 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-0 User */
235 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-1 OS */
236 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-2 POOL */
237 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-3 PHYS */
241 * Overall TIMA access map for the thread interrupt management context
244 static const uint8_t *xive_tm_views
[] = {
245 [XIVE_TM_HW_PAGE
] = xive_tm_hw_view
,
246 [XIVE_TM_HV_PAGE
] = xive_tm_hv_view
,
247 [XIVE_TM_OS_PAGE
] = xive_tm_os_view
,
248 [XIVE_TM_USER_PAGE
] = xive_tm_user_view
,
252 * Computes a register access mask for a given offset in the TIMA
254 static uint64_t xive_tm_mask(hwaddr offset
, unsigned size
, bool write
)
256 uint8_t page_offset
= (offset
>> TM_SHIFT
) & 0x3;
257 uint8_t reg_offset
= offset
& 0x3F;
258 uint8_t reg_mask
= write
? 0x1 : 0x2;
262 for (i
= 0; i
< size
; i
++) {
263 if (xive_tm_views
[page_offset
][reg_offset
+ i
] & reg_mask
) {
264 mask
|= (uint64_t) 0xff << (8 * (size
- i
- 1));
271 static void xive_tm_raw_write(XiveTCTX
*tctx
, hwaddr offset
, uint64_t value
,
274 uint8_t ring_offset
= offset
& 0x30;
275 uint8_t reg_offset
= offset
& 0x3F;
276 uint64_t mask
= xive_tm_mask(offset
, size
, true);
280 * Only 4 or 8 bytes stores are allowed and the User ring is
283 if (size
< 4 || !mask
|| ring_offset
== TM_QW0_USER
) {
284 qemu_log_mask(LOG_GUEST_ERROR
, "XIVE: invalid write access at TIMA @%"
285 HWADDR_PRIx
"\n", offset
);
290 * Use the register offset for the raw values and filter out
293 for (i
= 0; i
< size
; i
++) {
294 uint8_t byte_mask
= (mask
>> (8 * (size
- i
- 1)));
296 tctx
->regs
[reg_offset
+ i
] = (value
>> (8 * (size
- i
- 1))) &
302 static uint64_t xive_tm_raw_read(XiveTCTX
*tctx
, hwaddr offset
, unsigned size
)
304 uint8_t ring_offset
= offset
& 0x30;
305 uint8_t reg_offset
= offset
& 0x3F;
306 uint64_t mask
= xive_tm_mask(offset
, size
, false);
311 * Only 4 or 8 bytes loads are allowed and the User ring is
314 if (size
< 4 || !mask
|| ring_offset
== TM_QW0_USER
) {
315 qemu_log_mask(LOG_GUEST_ERROR
, "XIVE: invalid read access at TIMA @%"
316 HWADDR_PRIx
"\n", offset
);
320 /* Use the register offset for the raw values */
322 for (i
= 0; i
< size
; i
++) {
323 ret
|= (uint64_t) tctx
->regs
[reg_offset
+ i
] << (8 * (size
- i
- 1));
326 /* filter out reserved values */
331 * The TM context is mapped twice within each page. Stores and loads
332 * to the first mapping below 2K write and read the specified values
333 * without modification. The second mapping above 2K performs specific
334 * state changes (side effects) in addition to setting/returning the
335 * interrupt management area context of the processor thread.
337 static uint64_t xive_tm_ack_os_reg(XivePresenter
*xptr
, XiveTCTX
*tctx
,
338 hwaddr offset
, unsigned size
)
340 return xive_tctx_accept(tctx
, TM_QW1_OS
);
343 static void xive_tm_set_os_cppr(XivePresenter
*xptr
, XiveTCTX
*tctx
,
344 hwaddr offset
, uint64_t value
, unsigned size
)
346 xive_tctx_set_cppr(tctx
, TM_QW1_OS
, value
& 0xff);
350 * Adjust the IPB to allow a CPU to process event queues of other
351 * priorities during one physical interrupt cycle.
353 static void xive_tm_set_os_pending(XivePresenter
*xptr
, XiveTCTX
*tctx
,
354 hwaddr offset
, uint64_t value
, unsigned size
)
356 xive_tctx_ipb_update(tctx
, TM_QW1_OS
, priority_to_ipb(value
& 0xff));
359 static void xive_os_cam_decode(uint32_t cam
, uint8_t *nvt_blk
,
360 uint32_t *nvt_idx
, bool *vo
)
363 *nvt_blk
= xive_nvt_blk(cam
);
366 *nvt_idx
= xive_nvt_idx(cam
);
369 *vo
= !!(cam
& TM_QW1W2_VO
);
373 static uint32_t xive_tctx_get_os_cam(XiveTCTX
*tctx
, uint8_t *nvt_blk
,
374 uint32_t *nvt_idx
, bool *vo
)
376 uint32_t qw1w2
= xive_tctx_word2(&tctx
->regs
[TM_QW1_OS
]);
377 uint32_t cam
= be32_to_cpu(qw1w2
);
379 xive_os_cam_decode(cam
, nvt_blk
, nvt_idx
, vo
);
383 static void xive_tctx_set_os_cam(XiveTCTX
*tctx
, uint32_t qw1w2
)
385 memcpy(&tctx
->regs
[TM_QW1_OS
+ TM_WORD2
], &qw1w2
, 4);
388 static uint64_t xive_tm_pull_os_ctx(XivePresenter
*xptr
, XiveTCTX
*tctx
,
389 hwaddr offset
, unsigned size
)
397 qw1w2
= xive_tctx_get_os_cam(tctx
, &nvt_blk
, &nvt_idx
, &vo
);
400 qemu_log_mask(LOG_GUEST_ERROR
, "XIVE: pulling invalid NVT %x/%x !?\n",
404 /* Invalidate CAM line */
405 qw1w2_new
= xive_set_field32(TM_QW1W2_VO
, qw1w2
, 0);
406 xive_tctx_set_os_cam(tctx
, qw1w2_new
);
410 static void xive_tctx_need_resend(XiveRouter
*xrtr
, XiveTCTX
*tctx
,
411 uint8_t nvt_blk
, uint32_t nvt_idx
)
417 * Grab the associated NVT to pull the pending bits, and merge
418 * them with the IPB of the thread interrupt context registers
420 if (xive_router_get_nvt(xrtr
, nvt_blk
, nvt_idx
, &nvt
)) {
421 qemu_log_mask(LOG_GUEST_ERROR
, "XIVE: invalid NVT %x/%x\n",
426 ipb
= xive_get_field32(NVT_W4_IPB
, nvt
.w4
);
429 /* Reset the NVT value */
430 nvt
.w4
= xive_set_field32(NVT_W4_IPB
, nvt
.w4
, 0);
431 xive_router_write_nvt(xrtr
, nvt_blk
, nvt_idx
, &nvt
, 4);
433 /* Merge in current context */
434 xive_tctx_ipb_update(tctx
, TM_QW1_OS
, ipb
);
439 * Updating the OS CAM line can trigger a resend of interrupt
441 static void xive_tm_push_os_ctx(XivePresenter
*xptr
, XiveTCTX
*tctx
,
442 hwaddr offset
, uint64_t value
, unsigned size
)
444 uint32_t cam
= value
;
445 uint32_t qw1w2
= cpu_to_be32(cam
);
450 xive_os_cam_decode(cam
, &nvt_blk
, &nvt_idx
, &vo
);
452 /* First update the registers */
453 xive_tctx_set_os_cam(tctx
, qw1w2
);
455 /* Check the interrupt pending bits */
457 xive_tctx_need_resend(XIVE_ROUTER(xptr
), tctx
, nvt_blk
, nvt_idx
);
462 * Define a mapping of "special" operations depending on the TIMA page
463 * offset and the size of the operation.
465 typedef struct XiveTmOp
{
469 void (*write_handler
)(XivePresenter
*xptr
, XiveTCTX
*tctx
,
471 uint64_t value
, unsigned size
);
472 uint64_t (*read_handler
)(XivePresenter
*xptr
, XiveTCTX
*tctx
, hwaddr offset
,
476 static const XiveTmOp xive_tm_operations
[] = {
478 * MMIOs below 2K : raw values and special operations without side
481 { XIVE_TM_OS_PAGE
, TM_QW1_OS
+ TM_CPPR
, 1, xive_tm_set_os_cppr
, NULL
},
482 { XIVE_TM_HV_PAGE
, TM_QW1_OS
+ TM_WORD2
, 4, xive_tm_push_os_ctx
, NULL
},
483 { XIVE_TM_HV_PAGE
, TM_QW3_HV_PHYS
+ TM_CPPR
, 1, xive_tm_set_hv_cppr
, NULL
},
484 { XIVE_TM_HV_PAGE
, TM_QW3_HV_PHYS
+ TM_WORD2
, 1, xive_tm_vt_push
, NULL
},
485 { XIVE_TM_HV_PAGE
, TM_QW3_HV_PHYS
+ TM_WORD2
, 1, NULL
, xive_tm_vt_poll
},
487 /* MMIOs above 2K : special operations with side effects */
488 { XIVE_TM_OS_PAGE
, TM_SPC_ACK_OS_REG
, 2, NULL
, xive_tm_ack_os_reg
},
489 { XIVE_TM_OS_PAGE
, TM_SPC_SET_OS_PENDING
, 1, xive_tm_set_os_pending
, NULL
},
490 { XIVE_TM_HV_PAGE
, TM_SPC_PULL_OS_CTX
, 4, NULL
, xive_tm_pull_os_ctx
},
491 { XIVE_TM_HV_PAGE
, TM_SPC_PULL_OS_CTX
, 8, NULL
, xive_tm_pull_os_ctx
},
492 { XIVE_TM_HV_PAGE
, TM_SPC_ACK_HV_REG
, 2, NULL
, xive_tm_ack_hv_reg
},
493 { XIVE_TM_HV_PAGE
, TM_SPC_PULL_POOL_CTX
, 4, NULL
, xive_tm_pull_pool_ctx
},
494 { XIVE_TM_HV_PAGE
, TM_SPC_PULL_POOL_CTX
, 8, NULL
, xive_tm_pull_pool_ctx
},
497 static const XiveTmOp
*xive_tm_find_op(hwaddr offset
, unsigned size
, bool write
)
499 uint8_t page_offset
= (offset
>> TM_SHIFT
) & 0x3;
500 uint32_t op_offset
= offset
& 0xFFF;
503 for (i
= 0; i
< ARRAY_SIZE(xive_tm_operations
); i
++) {
504 const XiveTmOp
*xto
= &xive_tm_operations
[i
];
506 /* Accesses done from a more privileged TIMA page is allowed */
507 if (xto
->page_offset
>= page_offset
&&
508 xto
->op_offset
== op_offset
&&
510 ((write
&& xto
->write_handler
) || (!write
&& xto
->read_handler
))) {
520 void xive_tctx_tm_write(XivePresenter
*xptr
, XiveTCTX
*tctx
, hwaddr offset
,
521 uint64_t value
, unsigned size
)
525 trace_xive_tctx_tm_write(offset
, size
, value
);
528 * TODO: check V bit in Q[0-3]W2
532 * First, check for special operations in the 2K region
534 if (offset
& 0x800) {
535 xto
= xive_tm_find_op(offset
, size
, true);
537 qemu_log_mask(LOG_GUEST_ERROR
, "XIVE: invalid write access at TIMA "
538 "@%"HWADDR_PRIx
"\n", offset
);
540 xto
->write_handler(xptr
, tctx
, offset
, value
, size
);
546 * Then, for special operations in the region below 2K.
548 xto
= xive_tm_find_op(offset
, size
, true);
550 xto
->write_handler(xptr
, tctx
, offset
, value
, size
);
555 * Finish with raw access to the register values
557 xive_tm_raw_write(tctx
, offset
, value
, size
);
560 uint64_t xive_tctx_tm_read(XivePresenter
*xptr
, XiveTCTX
*tctx
, hwaddr offset
,
567 * TODO: check V bit in Q[0-3]W2
571 * First, check for special operations in the 2K region
573 if (offset
& 0x800) {
574 xto
= xive_tm_find_op(offset
, size
, false);
576 qemu_log_mask(LOG_GUEST_ERROR
, "XIVE: invalid read access to TIMA"
577 "@%"HWADDR_PRIx
"\n", offset
);
580 ret
= xto
->read_handler(xptr
, tctx
, offset
, size
);
585 * Then, for special operations in the region below 2K.
587 xto
= xive_tm_find_op(offset
, size
, false);
589 ret
= xto
->read_handler(xptr
, tctx
, offset
, size
);
594 * Finish with raw access to the register values
596 ret
= xive_tm_raw_read(tctx
, offset
, size
);
598 trace_xive_tctx_tm_read(offset
, size
, ret
);
602 static char *xive_tctx_ring_print(uint8_t *ring
)
604 uint32_t w2
= xive_tctx_word2(ring
);
606 return g_strdup_printf("%02x %02x %02x %02x %02x "
607 "%02x %02x %02x %08x",
608 ring
[TM_NSR
], ring
[TM_CPPR
], ring
[TM_IPB
], ring
[TM_LSMFB
],
609 ring
[TM_ACK_CNT
], ring
[TM_INC
], ring
[TM_AGE
], ring
[TM_PIPR
],
613 static const char * const xive_tctx_ring_names
[] = {
614 "USER", "OS", "POOL", "PHYS",
618 * kvm_irqchip_in_kernel() will cause the compiler to turn this
619 * info a nop if CONFIG_KVM isn't defined.
621 #define xive_in_kernel(xptr) \
622 (kvm_irqchip_in_kernel() && \
624 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr); \
625 xpc->in_kernel ? xpc->in_kernel(xptr) : false; \
628 void xive_tctx_pic_print_info(XiveTCTX
*tctx
, Monitor
*mon
)
633 /* Skip partially initialized vCPUs. This can happen on sPAPR when vCPUs
634 * are hot plugged or unplugged.
640 cpu_index
= tctx
->cs
? tctx
->cs
->cpu_index
: -1;
642 if (xive_in_kernel(tctx
->xptr
)) {
643 Error
*local_err
= NULL
;
645 kvmppc_xive_cpu_synchronize_state(tctx
, &local_err
);
647 error_report_err(local_err
);
652 monitor_printf(mon
, "CPU[%04x]: QW NSR CPPR IPB LSMFB ACK# INC AGE PIPR"
655 for (i
= 0; i
< XIVE_TM_RING_COUNT
; i
++) {
656 char *s
= xive_tctx_ring_print(&tctx
->regs
[i
* XIVE_TM_RING_SIZE
]);
657 monitor_printf(mon
, "CPU[%04x]: %4s %s\n", cpu_index
,
658 xive_tctx_ring_names
[i
], s
);
663 void xive_tctx_reset(XiveTCTX
*tctx
)
665 memset(tctx
->regs
, 0, sizeof(tctx
->regs
));
667 /* Set some defaults */
668 tctx
->regs
[TM_QW1_OS
+ TM_LSMFB
] = 0xFF;
669 tctx
->regs
[TM_QW1_OS
+ TM_ACK_CNT
] = 0xFF;
670 tctx
->regs
[TM_QW1_OS
+ TM_AGE
] = 0xFF;
673 * Initialize PIPR to 0xFF to avoid phantom interrupts when the
676 tctx
->regs
[TM_QW1_OS
+ TM_PIPR
] =
677 ipb_to_pipr(tctx
->regs
[TM_QW1_OS
+ TM_IPB
]);
678 tctx
->regs
[TM_QW3_HV_PHYS
+ TM_PIPR
] =
679 ipb_to_pipr(tctx
->regs
[TM_QW3_HV_PHYS
+ TM_IPB
]);
682 static void xive_tctx_realize(DeviceState
*dev
, Error
**errp
)
684 XiveTCTX
*tctx
= XIVE_TCTX(dev
);
691 cpu
= POWERPC_CPU(tctx
->cs
);
693 switch (PPC_INPUT(env
)) {
694 case PPC_FLAGS_INPUT_POWER9
:
695 tctx
->hv_output
= env
->irq_inputs
[POWER9_INPUT_HINT
];
696 tctx
->os_output
= env
->irq_inputs
[POWER9_INPUT_INT
];
700 error_setg(errp
, "XIVE interrupt controller does not support "
701 "this CPU bus model");
705 /* Connect the presenter to the VCPU (required for CPU hotplug) */
706 if (xive_in_kernel(tctx
->xptr
)) {
707 if (kvmppc_xive_cpu_connect(tctx
, errp
) < 0) {
713 static int vmstate_xive_tctx_pre_save(void *opaque
)
715 XiveTCTX
*tctx
= XIVE_TCTX(opaque
);
716 Error
*local_err
= NULL
;
719 if (xive_in_kernel(tctx
->xptr
)) {
720 ret
= kvmppc_xive_cpu_get_state(tctx
, &local_err
);
722 error_report_err(local_err
);
730 static int vmstate_xive_tctx_post_load(void *opaque
, int version_id
)
732 XiveTCTX
*tctx
= XIVE_TCTX(opaque
);
733 Error
*local_err
= NULL
;
736 if (xive_in_kernel(tctx
->xptr
)) {
738 * Required for hotplugged CPU, for which the state comes
739 * after all states of the machine.
741 ret
= kvmppc_xive_cpu_set_state(tctx
, &local_err
);
743 error_report_err(local_err
);
751 static const VMStateDescription vmstate_xive_tctx
= {
752 .name
= TYPE_XIVE_TCTX
,
754 .minimum_version_id
= 1,
755 .pre_save
= vmstate_xive_tctx_pre_save
,
756 .post_load
= vmstate_xive_tctx_post_load
,
757 .fields
= (VMStateField
[]) {
758 VMSTATE_BUFFER(regs
, XiveTCTX
),
759 VMSTATE_END_OF_LIST()
763 static Property xive_tctx_properties
[] = {
764 DEFINE_PROP_LINK("cpu", XiveTCTX
, cs
, TYPE_CPU
, CPUState
*),
765 DEFINE_PROP_LINK("presenter", XiveTCTX
, xptr
, TYPE_XIVE_PRESENTER
,
767 DEFINE_PROP_END_OF_LIST(),
770 static void xive_tctx_class_init(ObjectClass
*klass
, void *data
)
772 DeviceClass
*dc
= DEVICE_CLASS(klass
);
774 dc
->desc
= "XIVE Interrupt Thread Context";
775 dc
->realize
= xive_tctx_realize
;
776 dc
->vmsd
= &vmstate_xive_tctx
;
777 device_class_set_props(dc
, xive_tctx_properties
);
779 * Reason: part of XIVE interrupt controller, needs to be wired up
780 * by xive_tctx_create().
782 dc
->user_creatable
= false;
785 static const TypeInfo xive_tctx_info
= {
786 .name
= TYPE_XIVE_TCTX
,
787 .parent
= TYPE_DEVICE
,
788 .instance_size
= sizeof(XiveTCTX
),
789 .class_init
= xive_tctx_class_init
,
792 Object
*xive_tctx_create(Object
*cpu
, XivePresenter
*xptr
, Error
**errp
)
796 obj
= object_new(TYPE_XIVE_TCTX
);
797 object_property_add_child(cpu
, TYPE_XIVE_TCTX
, obj
);
799 object_property_set_link(obj
, "cpu", cpu
, &error_abort
);
800 object_property_set_link(obj
, "presenter", OBJECT(xptr
), &error_abort
);
801 if (!qdev_realize(DEVICE(obj
), NULL
, errp
)) {
802 object_unparent(obj
);
808 void xive_tctx_destroy(XiveTCTX
*tctx
)
810 Object
*obj
= OBJECT(tctx
);
812 object_unparent(obj
);
819 static uint8_t xive_esb_set(uint8_t *pq
, uint8_t value
)
821 uint8_t old_pq
= *pq
& 0x3;
829 static bool xive_esb_trigger(uint8_t *pq
)
831 uint8_t old_pq
= *pq
& 0x3;
835 xive_esb_set(pq
, XIVE_ESB_PENDING
);
837 case XIVE_ESB_PENDING
:
838 case XIVE_ESB_QUEUED
:
839 xive_esb_set(pq
, XIVE_ESB_QUEUED
);
842 xive_esb_set(pq
, XIVE_ESB_OFF
);
845 g_assert_not_reached();
849 static bool xive_esb_eoi(uint8_t *pq
)
851 uint8_t old_pq
= *pq
& 0x3;
855 case XIVE_ESB_PENDING
:
856 xive_esb_set(pq
, XIVE_ESB_RESET
);
858 case XIVE_ESB_QUEUED
:
859 xive_esb_set(pq
, XIVE_ESB_PENDING
);
862 xive_esb_set(pq
, XIVE_ESB_OFF
);
865 g_assert_not_reached();
870 * XIVE Interrupt Source (or IVSE)
873 uint8_t xive_source_esb_get(XiveSource
*xsrc
, uint32_t srcno
)
875 assert(srcno
< xsrc
->nr_irqs
);
877 return xsrc
->status
[srcno
] & 0x3;
880 uint8_t xive_source_esb_set(XiveSource
*xsrc
, uint32_t srcno
, uint8_t pq
)
882 assert(srcno
< xsrc
->nr_irqs
);
884 return xive_esb_set(&xsrc
->status
[srcno
], pq
);
888 * Returns whether the event notification should be forwarded.
890 static bool xive_source_lsi_trigger(XiveSource
*xsrc
, uint32_t srcno
)
892 uint8_t old_pq
= xive_source_esb_get(xsrc
, srcno
);
894 xsrc
->status
[srcno
] |= XIVE_STATUS_ASSERTED
;
898 xive_source_esb_set(xsrc
, srcno
, XIVE_ESB_PENDING
);
906 * Returns whether the event notification should be forwarded.
908 static bool xive_source_esb_trigger(XiveSource
*xsrc
, uint32_t srcno
)
912 assert(srcno
< xsrc
->nr_irqs
);
914 ret
= xive_esb_trigger(&xsrc
->status
[srcno
]);
916 if (xive_source_irq_is_lsi(xsrc
, srcno
) &&
917 xive_source_esb_get(xsrc
, srcno
) == XIVE_ESB_QUEUED
) {
918 qemu_log_mask(LOG_GUEST_ERROR
,
919 "XIVE: queued an event on LSI IRQ %d\n", srcno
);
926 * Returns whether the event notification should be forwarded.
928 static bool xive_source_esb_eoi(XiveSource
*xsrc
, uint32_t srcno
)
932 assert(srcno
< xsrc
->nr_irqs
);
934 ret
= xive_esb_eoi(&xsrc
->status
[srcno
]);
937 * LSI sources do not set the Q bit but they can still be
938 * asserted, in which case we should forward a new event
941 if (xive_source_irq_is_lsi(xsrc
, srcno
) &&
942 xsrc
->status
[srcno
] & XIVE_STATUS_ASSERTED
) {
943 ret
= xive_source_lsi_trigger(xsrc
, srcno
);
950 * Forward the source event notification to the Router
952 static void xive_source_notify(XiveSource
*xsrc
, int srcno
)
954 XiveNotifierClass
*xnc
= XIVE_NOTIFIER_GET_CLASS(xsrc
->xive
);
957 xnc
->notify(xsrc
->xive
, srcno
);
962 * In a two pages ESB MMIO setting, even page is the trigger page, odd
963 * page is for management
965 static inline bool addr_is_even(hwaddr addr
, uint32_t shift
)
967 return !((addr
>> shift
) & 1);
970 static inline bool xive_source_is_trigger_page(XiveSource
*xsrc
, hwaddr addr
)
972 return xive_source_esb_has_2page(xsrc
) &&
973 addr_is_even(addr
, xsrc
->esb_shift
- 1);
978 * Trigger page Management/EOI page
980 * ESB MMIO setting 2 pages 1 or 2 pages
982 * 0x000 .. 0x3FF -1 EOI and return 0|1
983 * 0x400 .. 0x7FF -1 EOI and return 0|1
984 * 0x800 .. 0xBFF -1 return PQ
985 * 0xC00 .. 0xCFF -1 return PQ and atomically PQ=00
986 * 0xD00 .. 0xDFF -1 return PQ and atomically PQ=01
987 * 0xE00 .. 0xDFF -1 return PQ and atomically PQ=10
988 * 0xF00 .. 0xDFF -1 return PQ and atomically PQ=11
990 static uint64_t xive_source_esb_read(void *opaque
, hwaddr addr
, unsigned size
)
992 XiveSource
*xsrc
= XIVE_SOURCE(opaque
);
993 uint32_t offset
= addr
& 0xFFF;
994 uint32_t srcno
= addr
>> xsrc
->esb_shift
;
997 /* In a two pages ESB MMIO setting, trigger page should not be read */
998 if (xive_source_is_trigger_page(xsrc
, addr
)) {
999 qemu_log_mask(LOG_GUEST_ERROR
,
1000 "XIVE: invalid load on IRQ %d trigger page at "
1001 "0x%"HWADDR_PRIx
"\n", srcno
, addr
);
1006 case XIVE_ESB_LOAD_EOI
... XIVE_ESB_LOAD_EOI
+ 0x7FF:
1007 ret
= xive_source_esb_eoi(xsrc
, srcno
);
1009 /* Forward the source event notification for routing */
1011 xive_source_notify(xsrc
, srcno
);
1015 case XIVE_ESB_GET
... XIVE_ESB_GET
+ 0x3FF:
1016 ret
= xive_source_esb_get(xsrc
, srcno
);
1019 case XIVE_ESB_SET_PQ_00
... XIVE_ESB_SET_PQ_00
+ 0x0FF:
1020 case XIVE_ESB_SET_PQ_01
... XIVE_ESB_SET_PQ_01
+ 0x0FF:
1021 case XIVE_ESB_SET_PQ_10
... XIVE_ESB_SET_PQ_10
+ 0x0FF:
1022 case XIVE_ESB_SET_PQ_11
... XIVE_ESB_SET_PQ_11
+ 0x0FF:
1023 ret
= xive_source_esb_set(xsrc
, srcno
, (offset
>> 8) & 0x3);
1026 qemu_log_mask(LOG_GUEST_ERROR
, "XIVE: invalid ESB load addr %x\n",
1030 trace_xive_source_esb_read(addr
, srcno
, ret
);
1037 * Trigger page Management/EOI page
1039 * ESB MMIO setting 2 pages 1 or 2 pages
1041 * 0x000 .. 0x3FF Trigger Trigger
1042 * 0x400 .. 0x7FF Trigger EOI
1043 * 0x800 .. 0xBFF Trigger undefined
1044 * 0xC00 .. 0xCFF Trigger PQ=00
1045 * 0xD00 .. 0xDFF Trigger PQ=01
1046 * 0xE00 .. 0xDFF Trigger PQ=10
1047 * 0xF00 .. 0xDFF Trigger PQ=11
1049 static void xive_source_esb_write(void *opaque
, hwaddr addr
,
1050 uint64_t value
, unsigned size
)
1052 XiveSource
*xsrc
= XIVE_SOURCE(opaque
);
1053 uint32_t offset
= addr
& 0xFFF;
1054 uint32_t srcno
= addr
>> xsrc
->esb_shift
;
1055 bool notify
= false;
1057 trace_xive_source_esb_write(addr
, srcno
, value
);
1059 /* In a two pages ESB MMIO setting, trigger page only triggers */
1060 if (xive_source_is_trigger_page(xsrc
, addr
)) {
1061 notify
= xive_source_esb_trigger(xsrc
, srcno
);
1067 notify
= xive_source_esb_trigger(xsrc
, srcno
);
1070 case XIVE_ESB_STORE_EOI
... XIVE_ESB_STORE_EOI
+ 0x3FF:
1071 if (!(xsrc
->esb_flags
& XIVE_SRC_STORE_EOI
)) {
1072 qemu_log_mask(LOG_GUEST_ERROR
,
1073 "XIVE: invalid Store EOI for IRQ %d\n", srcno
);
1077 notify
= xive_source_esb_eoi(xsrc
, srcno
);
1080 case XIVE_ESB_SET_PQ_00
... XIVE_ESB_SET_PQ_00
+ 0x0FF:
1081 case XIVE_ESB_SET_PQ_01
... XIVE_ESB_SET_PQ_01
+ 0x0FF:
1082 case XIVE_ESB_SET_PQ_10
... XIVE_ESB_SET_PQ_10
+ 0x0FF:
1083 case XIVE_ESB_SET_PQ_11
... XIVE_ESB_SET_PQ_11
+ 0x0FF:
1084 xive_source_esb_set(xsrc
, srcno
, (offset
>> 8) & 0x3);
1088 qemu_log_mask(LOG_GUEST_ERROR
, "XIVE: invalid ESB write addr %x\n",
1094 /* Forward the source event notification for routing */
1096 xive_source_notify(xsrc
, srcno
);
1100 static const MemoryRegionOps xive_source_esb_ops
= {
1101 .read
= xive_source_esb_read
,
1102 .write
= xive_source_esb_write
,
1103 .endianness
= DEVICE_BIG_ENDIAN
,
1105 .min_access_size
= 8,
1106 .max_access_size
= 8,
1109 .min_access_size
= 8,
1110 .max_access_size
= 8,
1114 void xive_source_set_irq(void *opaque
, int srcno
, int val
)
1116 XiveSource
*xsrc
= XIVE_SOURCE(opaque
);
1117 bool notify
= false;
1119 if (xive_source_irq_is_lsi(xsrc
, srcno
)) {
1121 notify
= xive_source_lsi_trigger(xsrc
, srcno
);
1123 xsrc
->status
[srcno
] &= ~XIVE_STATUS_ASSERTED
;
1127 notify
= xive_source_esb_trigger(xsrc
, srcno
);
1131 /* Forward the source event notification for routing */
1133 xive_source_notify(xsrc
, srcno
);
1137 void xive_source_pic_print_info(XiveSource
*xsrc
, uint32_t offset
, Monitor
*mon
)
1141 for (i
= 0; i
< xsrc
->nr_irqs
; i
++) {
1142 uint8_t pq
= xive_source_esb_get(xsrc
, i
);
1144 if (pq
== XIVE_ESB_OFF
) {
1148 monitor_printf(mon
, " %08x %s %c%c%c\n", i
+ offset
,
1149 xive_source_irq_is_lsi(xsrc
, i
) ? "LSI" : "MSI",
1150 pq
& XIVE_ESB_VAL_P
? 'P' : '-',
1151 pq
& XIVE_ESB_VAL_Q
? 'Q' : '-',
1152 xsrc
->status
[i
] & XIVE_STATUS_ASSERTED
? 'A' : ' ');
1156 static void xive_source_reset(void *dev
)
1158 XiveSource
*xsrc
= XIVE_SOURCE(dev
);
1160 /* Do not clear the LSI bitmap */
1162 /* PQs are initialized to 0b01 (Q=1) which corresponds to "ints off" */
1163 memset(xsrc
->status
, XIVE_ESB_OFF
, xsrc
->nr_irqs
);
1166 static void xive_source_realize(DeviceState
*dev
, Error
**errp
)
1168 XiveSource
*xsrc
= XIVE_SOURCE(dev
);
1169 size_t esb_len
= xive_source_esb_len(xsrc
);
1173 if (!xsrc
->nr_irqs
) {
1174 error_setg(errp
, "Number of interrupt needs to be greater than 0");
1178 if (xsrc
->esb_shift
!= XIVE_ESB_4K
&&
1179 xsrc
->esb_shift
!= XIVE_ESB_4K_2PAGE
&&
1180 xsrc
->esb_shift
!= XIVE_ESB_64K
&&
1181 xsrc
->esb_shift
!= XIVE_ESB_64K_2PAGE
) {
1182 error_setg(errp
, "Invalid ESB shift setting");
1186 xsrc
->status
= g_malloc0(xsrc
->nr_irqs
);
1187 xsrc
->lsi_map
= bitmap_new(xsrc
->nr_irqs
);
1189 memory_region_init(&xsrc
->esb_mmio
, OBJECT(xsrc
), "xive.esb", esb_len
);
1190 memory_region_init_io(&xsrc
->esb_mmio_emulated
, OBJECT(xsrc
),
1191 &xive_source_esb_ops
, xsrc
, "xive.esb-emulated",
1193 memory_region_add_subregion(&xsrc
->esb_mmio
, 0, &xsrc
->esb_mmio_emulated
);
1195 qemu_register_reset(xive_source_reset
, dev
);
1198 static const VMStateDescription vmstate_xive_source
= {
1199 .name
= TYPE_XIVE_SOURCE
,
1201 .minimum_version_id
= 1,
1202 .fields
= (VMStateField
[]) {
1203 VMSTATE_UINT32_EQUAL(nr_irqs
, XiveSource
, NULL
),
1204 VMSTATE_VBUFFER_UINT32(status
, XiveSource
, 1, NULL
, nr_irqs
),
1205 VMSTATE_END_OF_LIST()
1210 * The default XIVE interrupt source setting for the ESB MMIOs is two
1211 * 64k pages without Store EOI, to be in sync with KVM.
1213 static Property xive_source_properties
[] = {
1214 DEFINE_PROP_UINT64("flags", XiveSource
, esb_flags
, 0),
1215 DEFINE_PROP_UINT32("nr-irqs", XiveSource
, nr_irqs
, 0),
1216 DEFINE_PROP_UINT32("shift", XiveSource
, esb_shift
, XIVE_ESB_64K_2PAGE
),
1217 DEFINE_PROP_LINK("xive", XiveSource
, xive
, TYPE_XIVE_NOTIFIER
,
1219 DEFINE_PROP_END_OF_LIST(),
1222 static void xive_source_class_init(ObjectClass
*klass
, void *data
)
1224 DeviceClass
*dc
= DEVICE_CLASS(klass
);
1226 dc
->desc
= "XIVE Interrupt Source";
1227 device_class_set_props(dc
, xive_source_properties
);
1228 dc
->realize
= xive_source_realize
;
1229 dc
->vmsd
= &vmstate_xive_source
;
1231 * Reason: part of XIVE interrupt controller, needs to be wired up,
1232 * e.g. by spapr_xive_instance_init().
1234 dc
->user_creatable
= false;
1237 static const TypeInfo xive_source_info
= {
1238 .name
= TYPE_XIVE_SOURCE
,
1239 .parent
= TYPE_DEVICE
,
1240 .instance_size
= sizeof(XiveSource
),
1241 .class_init
= xive_source_class_init
,
1248 void xive_end_queue_pic_print_info(XiveEND
*end
, uint32_t width
, Monitor
*mon
)
1250 uint64_t qaddr_base
= xive_end_qaddr(end
);
1251 uint32_t qsize
= xive_get_field32(END_W0_QSIZE
, end
->w0
);
1252 uint32_t qindex
= xive_get_field32(END_W1_PAGE_OFF
, end
->w1
);
1253 uint32_t qentries
= 1 << (qsize
+ 10);
1257 * print out the [ (qindex - (width - 1)) .. (qindex + 1)] window
1259 monitor_printf(mon
, " [ ");
1260 qindex
= (qindex
- (width
- 1)) & (qentries
- 1);
1261 for (i
= 0; i
< width
; i
++) {
1262 uint64_t qaddr
= qaddr_base
+ (qindex
<< 2);
1263 uint32_t qdata
= -1;
1265 if (dma_memory_read(&address_space_memory
, qaddr
, &qdata
,
1267 qemu_log_mask(LOG_GUEST_ERROR
, "XIVE: failed to read EQ @0x%"
1268 HWADDR_PRIx
"\n", qaddr
);
1271 monitor_printf(mon
, "%s%08x ", i
== width
- 1 ? "^" : "",
1272 be32_to_cpu(qdata
));
1273 qindex
= (qindex
+ 1) & (qentries
- 1);
1275 monitor_printf(mon
, "]");
1278 void xive_end_pic_print_info(XiveEND
*end
, uint32_t end_idx
, Monitor
*mon
)
1280 uint64_t qaddr_base
= xive_end_qaddr(end
);
1281 uint32_t qindex
= xive_get_field32(END_W1_PAGE_OFF
, end
->w1
);
1282 uint32_t qgen
= xive_get_field32(END_W1_GENERATION
, end
->w1
);
1283 uint32_t qsize
= xive_get_field32(END_W0_QSIZE
, end
->w0
);
1284 uint32_t qentries
= 1 << (qsize
+ 10);
1286 uint32_t nvt_blk
= xive_get_field32(END_W6_NVT_BLOCK
, end
->w6
);
1287 uint32_t nvt_idx
= xive_get_field32(END_W6_NVT_INDEX
, end
->w6
);
1288 uint8_t priority
= xive_get_field32(END_W7_F0_PRIORITY
, end
->w7
);
1291 if (!xive_end_is_valid(end
)) {
1295 pq
= xive_get_field32(END_W1_ESn
, end
->w1
);
1297 monitor_printf(mon
, " %08x %c%c %c%c%c%c%c%c%c%c prio:%d nvt:%02x/%04x",
1299 pq
& XIVE_ESB_VAL_P
? 'P' : '-',
1300 pq
& XIVE_ESB_VAL_Q
? 'Q' : '-',
1301 xive_end_is_valid(end
) ? 'v' : '-',
1302 xive_end_is_enqueue(end
) ? 'q' : '-',
1303 xive_end_is_notify(end
) ? 'n' : '-',
1304 xive_end_is_backlog(end
) ? 'b' : '-',
1305 xive_end_is_escalate(end
) ? 'e' : '-',
1306 xive_end_is_uncond_escalation(end
) ? 'u' : '-',
1307 xive_end_is_silent_escalation(end
) ? 's' : '-',
1308 xive_end_is_firmware(end
) ? 'f' : '-',
1309 priority
, nvt_blk
, nvt_idx
);
1312 monitor_printf(mon
, " eq:@%08"PRIx64
"% 6d/%5d ^%d",
1313 qaddr_base
, qindex
, qentries
, qgen
);
1314 xive_end_queue_pic_print_info(end
, 6, mon
);
1316 monitor_printf(mon
, "\n");
1319 static void xive_end_enqueue(XiveEND
*end
, uint32_t data
)
1321 uint64_t qaddr_base
= xive_end_qaddr(end
);
1322 uint32_t qsize
= xive_get_field32(END_W0_QSIZE
, end
->w0
);
1323 uint32_t qindex
= xive_get_field32(END_W1_PAGE_OFF
, end
->w1
);
1324 uint32_t qgen
= xive_get_field32(END_W1_GENERATION
, end
->w1
);
1326 uint64_t qaddr
= qaddr_base
+ (qindex
<< 2);
1327 uint32_t qdata
= cpu_to_be32((qgen
<< 31) | (data
& 0x7fffffff));
1328 uint32_t qentries
= 1 << (qsize
+ 10);
1330 if (dma_memory_write(&address_space_memory
, qaddr
, &qdata
, sizeof(qdata
))) {
1331 qemu_log_mask(LOG_GUEST_ERROR
, "XIVE: failed to write END data @0x%"
1332 HWADDR_PRIx
"\n", qaddr
);
1336 qindex
= (qindex
+ 1) & (qentries
- 1);
1339 end
->w1
= xive_set_field32(END_W1_GENERATION
, end
->w1
, qgen
);
1341 end
->w1
= xive_set_field32(END_W1_PAGE_OFF
, end
->w1
, qindex
);
1344 void xive_end_eas_pic_print_info(XiveEND
*end
, uint32_t end_idx
,
1347 XiveEAS
*eas
= (XiveEAS
*) &end
->w4
;
1350 if (!xive_end_is_escalate(end
)) {
1354 pq
= xive_get_field32(END_W1_ESe
, end
->w1
);
1356 monitor_printf(mon
, " %08x %c%c %c%c end:%02x/%04x data:%08x\n",
1358 pq
& XIVE_ESB_VAL_P
? 'P' : '-',
1359 pq
& XIVE_ESB_VAL_Q
? 'Q' : '-',
1360 xive_eas_is_valid(eas
) ? 'V' : ' ',
1361 xive_eas_is_masked(eas
) ? 'M' : ' ',
1362 (uint8_t) xive_get_field64(EAS_END_BLOCK
, eas
->w
),
1363 (uint32_t) xive_get_field64(EAS_END_INDEX
, eas
->w
),
1364 (uint32_t) xive_get_field64(EAS_END_DATA
, eas
->w
));
1368 * XIVE Router (aka. Virtualization Controller or IVRE)
1371 int xive_router_get_eas(XiveRouter
*xrtr
, uint8_t eas_blk
, uint32_t eas_idx
,
1374 XiveRouterClass
*xrc
= XIVE_ROUTER_GET_CLASS(xrtr
);
1376 return xrc
->get_eas(xrtr
, eas_blk
, eas_idx
, eas
);
1379 int xive_router_get_end(XiveRouter
*xrtr
, uint8_t end_blk
, uint32_t end_idx
,
1382 XiveRouterClass
*xrc
= XIVE_ROUTER_GET_CLASS(xrtr
);
1384 return xrc
->get_end(xrtr
, end_blk
, end_idx
, end
);
1387 int xive_router_write_end(XiveRouter
*xrtr
, uint8_t end_blk
, uint32_t end_idx
,
1388 XiveEND
*end
, uint8_t word_number
)
1390 XiveRouterClass
*xrc
= XIVE_ROUTER_GET_CLASS(xrtr
);
1392 return xrc
->write_end(xrtr
, end_blk
, end_idx
, end
, word_number
);
1395 int xive_router_get_nvt(XiveRouter
*xrtr
, uint8_t nvt_blk
, uint32_t nvt_idx
,
1398 XiveRouterClass
*xrc
= XIVE_ROUTER_GET_CLASS(xrtr
);
1400 return xrc
->get_nvt(xrtr
, nvt_blk
, nvt_idx
, nvt
);
1403 int xive_router_write_nvt(XiveRouter
*xrtr
, uint8_t nvt_blk
, uint32_t nvt_idx
,
1404 XiveNVT
*nvt
, uint8_t word_number
)
1406 XiveRouterClass
*xrc
= XIVE_ROUTER_GET_CLASS(xrtr
);
1408 return xrc
->write_nvt(xrtr
, nvt_blk
, nvt_idx
, nvt
, word_number
);
1411 static int xive_router_get_block_id(XiveRouter
*xrtr
)
1413 XiveRouterClass
*xrc
= XIVE_ROUTER_GET_CLASS(xrtr
);
1415 return xrc
->get_block_id(xrtr
);
1418 static void xive_router_realize(DeviceState
*dev
, Error
**errp
)
1420 XiveRouter
*xrtr
= XIVE_ROUTER(dev
);
1426 * Encode the HW CAM line in the block group mode format :
1428 * chip << 19 | 0000000 0 0001 thread (7Bit)
1430 static uint32_t xive_tctx_hw_cam_line(XivePresenter
*xptr
, XiveTCTX
*tctx
)
1432 CPUPPCState
*env
= &POWERPC_CPU(tctx
->cs
)->env
;
1433 uint32_t pir
= env
->spr_cb
[SPR_PIR
].default_value
;
1434 uint8_t blk
= xive_router_get_block_id(XIVE_ROUTER(xptr
));
1436 return xive_nvt_cam_line(blk
, 1 << 7 | (pir
& 0x7f));
1440 * The thread context register words are in big-endian format.
1442 int xive_presenter_tctx_match(XivePresenter
*xptr
, XiveTCTX
*tctx
,
1444 uint8_t nvt_blk
, uint32_t nvt_idx
,
1445 bool cam_ignore
, uint32_t logic_serv
)
1447 uint32_t cam
= xive_nvt_cam_line(nvt_blk
, nvt_idx
);
1448 uint32_t qw3w2
= xive_tctx_word2(&tctx
->regs
[TM_QW3_HV_PHYS
]);
1449 uint32_t qw2w2
= xive_tctx_word2(&tctx
->regs
[TM_QW2_HV_POOL
]);
1450 uint32_t qw1w2
= xive_tctx_word2(&tctx
->regs
[TM_QW1_OS
]);
1451 uint32_t qw0w2
= xive_tctx_word2(&tctx
->regs
[TM_QW0_USER
]);
1454 * TODO (PowerNV): ignore mode. The low order bits of the NVT
1455 * identifier are ignored in the "CAM" match.
1459 if (cam_ignore
== true) {
1461 * F=0 & i=1: Logical server notification (bits ignored at
1462 * the end of the NVT identifier)
1464 qemu_log_mask(LOG_UNIMP
, "XIVE: no support for LS NVT %x/%x\n",
1469 /* F=0 & i=0: Specific NVT notification */
1472 if ((be32_to_cpu(qw3w2
) & TM_QW3W2_VT
) &&
1473 cam
== xive_tctx_hw_cam_line(xptr
, tctx
)) {
1474 return TM_QW3_HV_PHYS
;
1478 if ((be32_to_cpu(qw2w2
) & TM_QW2W2_VP
) &&
1479 cam
== xive_get_field32(TM_QW2W2_POOL_CAM
, qw2w2
)) {
1480 return TM_QW2_HV_POOL
;
1484 if ((be32_to_cpu(qw1w2
) & TM_QW1W2_VO
) &&
1485 cam
== xive_get_field32(TM_QW1W2_OS_CAM
, qw1w2
)) {
1489 /* F=1 : User level Event-Based Branch (EBB) notification */
1492 if ((be32_to_cpu(qw1w2
) & TM_QW1W2_VO
) &&
1493 (cam
== xive_get_field32(TM_QW1W2_OS_CAM
, qw1w2
)) &&
1494 (be32_to_cpu(qw0w2
) & TM_QW0W2_VU
) &&
1495 (logic_serv
== xive_get_field32(TM_QW0W2_LOGIC_SERV
, qw0w2
))) {
1503 * This is our simple Xive Presenter Engine model. It is merged in the
1504 * Router as it does not require an extra object.
1506 * It receives notification requests sent by the IVRE to find one
1507 * matching NVT (or more) dispatched on the processor threads. In case
1508 * of a single NVT notification, the process is abreviated and the
1509 * thread is signaled if a match is found. In case of a logical server
1510 * notification (bits ignored at the end of the NVT identifier), the
1511 * IVPE and IVRE select a winning thread using different filters. This
1512 * involves 2 or 3 exchanges on the PowerBus that the model does not
1515 * The parameters represent what is sent on the PowerBus
1517 static bool xive_presenter_notify(XiveFabric
*xfb
, uint8_t format
,
1518 uint8_t nvt_blk
, uint32_t nvt_idx
,
1519 bool cam_ignore
, uint8_t priority
,
1520 uint32_t logic_serv
)
1522 XiveFabricClass
*xfc
= XIVE_FABRIC_GET_CLASS(xfb
);
1523 XiveTCTXMatch match
= { .tctx
= NULL
, .ring
= 0 };
1527 * Ask the machine to scan the interrupt controllers for a match
1529 count
= xfc
->match_nvt(xfb
, format
, nvt_blk
, nvt_idx
, cam_ignore
,
1530 priority
, logic_serv
, &match
);
1535 /* handle CPU exception delivery */
1537 trace_xive_presenter_notify(nvt_blk
, nvt_idx
, match
.ring
);
1538 xive_tctx_ipb_update(match
.tctx
, match
.ring
, priority_to_ipb(priority
));
1545 * Notification using the END ESe/ESn bit (Event State Buffer for
1546 * escalation and notification). Provide further coalescing in the
1549 static bool xive_router_end_es_notify(XiveRouter
*xrtr
, uint8_t end_blk
,
1550 uint32_t end_idx
, XiveEND
*end
,
1551 uint32_t end_esmask
)
1553 uint8_t pq
= xive_get_field32(end_esmask
, end
->w1
);
1554 bool notify
= xive_esb_trigger(&pq
);
1556 if (pq
!= xive_get_field32(end_esmask
, end
->w1
)) {
1557 end
->w1
= xive_set_field32(end_esmask
, end
->w1
, pq
);
1558 xive_router_write_end(xrtr
, end_blk
, end_idx
, end
, 1);
1561 /* ESe/n[Q]=1 : end of notification */
1566 * An END trigger can come from an event trigger (IPI or HW) or from
1567 * another chip. We don't model the PowerBus but the END trigger
1568 * message has the same parameters than in the function below.
1570 static void xive_router_end_notify(XiveRouter
*xrtr
, uint8_t end_blk
,
1571 uint32_t end_idx
, uint32_t end_data
)
1581 /* END cache lookup */
1582 if (xive_router_get_end(xrtr
, end_blk
, end_idx
, &end
)) {
1583 qemu_log_mask(LOG_GUEST_ERROR
, "XIVE: No END %x/%x\n", end_blk
,
1588 if (!xive_end_is_valid(&end
)) {
1589 trace_xive_router_end_notify(end_blk
, end_idx
, end_data
);
1590 qemu_log_mask(LOG_GUEST_ERROR
, "XIVE: END %x/%x is invalid\n",
1595 if (xive_end_is_enqueue(&end
)) {
1596 xive_end_enqueue(&end
, end_data
);
1597 /* Enqueuing event data modifies the EQ toggle and index */
1598 xive_router_write_end(xrtr
, end_blk
, end_idx
, &end
, 1);
1602 * When the END is silent, we skip the notification part.
1604 if (xive_end_is_silent_escalation(&end
)) {
1609 * The W7 format depends on the F bit in W6. It defines the type
1610 * of the notification :
1612 * F=0 : single or multiple NVT notification
1613 * F=1 : User level Event-Based Branch (EBB) notification, no
1616 format
= xive_get_field32(END_W6_FORMAT_BIT
, end
.w6
);
1617 priority
= xive_get_field32(END_W7_F0_PRIORITY
, end
.w7
);
1619 /* The END is masked */
1620 if (format
== 0 && priority
== 0xff) {
1625 * Check the END ESn (Event State Buffer for notification) for
1626 * even further coalescing in the Router
1628 if (!xive_end_is_notify(&end
)) {
1629 /* ESn[Q]=1 : end of notification */
1630 if (!xive_router_end_es_notify(xrtr
, end_blk
, end_idx
,
1631 &end
, END_W1_ESn
)) {
1637 * Follows IVPE notification
1639 nvt_blk
= xive_get_field32(END_W6_NVT_BLOCK
, end
.w6
);
1640 nvt_idx
= xive_get_field32(END_W6_NVT_INDEX
, end
.w6
);
1642 /* NVT cache lookup */
1643 if (xive_router_get_nvt(xrtr
, nvt_blk
, nvt_idx
, &nvt
)) {
1644 qemu_log_mask(LOG_GUEST_ERROR
, "XIVE: no NVT %x/%x\n",
1649 if (!xive_nvt_is_valid(&nvt
)) {
1650 qemu_log_mask(LOG_GUEST_ERROR
, "XIVE: NVT %x/%x is invalid\n",
1655 found
= xive_presenter_notify(xrtr
->xfb
, format
, nvt_blk
, nvt_idx
,
1656 xive_get_field32(END_W7_F0_IGNORE
, end
.w7
),
1658 xive_get_field32(END_W7_F1_LOG_SERVER_ID
, end
.w7
));
1660 /* TODO: Auto EOI. */
1667 * If no matching NVT is dispatched on a HW thread :
1668 * - specific VP: update the NVT structure if backlog is activated
1669 * - logical server : forward request to IVPE (not supported)
1671 if (xive_end_is_backlog(&end
)) {
1675 qemu_log_mask(LOG_GUEST_ERROR
,
1676 "XIVE: END %x/%x invalid config: F1 & backlog\n",
1681 * Record the IPB in the associated NVT structure for later
1682 * use. The presenter will resend the interrupt when the vCPU
1683 * is dispatched again on a HW thread.
1685 ipb
= xive_get_field32(NVT_W4_IPB
, nvt
.w4
) | priority_to_ipb(priority
);
1686 nvt
.w4
= xive_set_field32(NVT_W4_IPB
, nvt
.w4
, ipb
);
1687 xive_router_write_nvt(xrtr
, nvt_blk
, nvt_idx
, &nvt
, 4);
1690 * On HW, follows a "Broadcast Backlog" to IVPEs
1696 * If activated, escalate notification using the ESe PQ bits and
1699 if (!xive_end_is_escalate(&end
)) {
1704 * Check the END ESe (Event State Buffer for escalation) for even
1705 * further coalescing in the Router
1707 if (!xive_end_is_uncond_escalation(&end
)) {
1708 /* ESe[Q]=1 : end of notification */
1709 if (!xive_router_end_es_notify(xrtr
, end_blk
, end_idx
,
1710 &end
, END_W1_ESe
)) {
1715 trace_xive_router_end_escalate(end_blk
, end_idx
,
1716 (uint8_t) xive_get_field32(END_W4_ESC_END_BLOCK
, end
.w4
),
1717 (uint32_t) xive_get_field32(END_W4_ESC_END_INDEX
, end
.w4
),
1718 (uint32_t) xive_get_field32(END_W5_ESC_END_DATA
, end
.w5
));
1720 * The END trigger becomes an Escalation trigger
1722 xive_router_end_notify(xrtr
,
1723 xive_get_field32(END_W4_ESC_END_BLOCK
, end
.w4
),
1724 xive_get_field32(END_W4_ESC_END_INDEX
, end
.w4
),
1725 xive_get_field32(END_W5_ESC_END_DATA
, end
.w5
));
1728 void xive_router_notify(XiveNotifier
*xn
, uint32_t lisn
)
1730 XiveRouter
*xrtr
= XIVE_ROUTER(xn
);
1731 uint8_t eas_blk
= XIVE_EAS_BLOCK(lisn
);
1732 uint32_t eas_idx
= XIVE_EAS_INDEX(lisn
);
1735 /* EAS cache lookup */
1736 if (xive_router_get_eas(xrtr
, eas_blk
, eas_idx
, &eas
)) {
1737 qemu_log_mask(LOG_GUEST_ERROR
, "XIVE: Unknown LISN %x\n", lisn
);
1742 * The IVRE checks the State Bit Cache at this point. We skip the
1743 * SBC lookup because the state bits of the sources are modeled
1744 * internally in QEMU.
1747 if (!xive_eas_is_valid(&eas
)) {
1748 qemu_log_mask(LOG_GUEST_ERROR
, "XIVE: invalid LISN %x\n", lisn
);
1752 if (xive_eas_is_masked(&eas
)) {
1753 /* Notification completed */
1758 * The event trigger becomes an END trigger
1760 xive_router_end_notify(xrtr
,
1761 xive_get_field64(EAS_END_BLOCK
, eas
.w
),
1762 xive_get_field64(EAS_END_INDEX
, eas
.w
),
1763 xive_get_field64(EAS_END_DATA
, eas
.w
));
1766 static Property xive_router_properties
[] = {
1767 DEFINE_PROP_LINK("xive-fabric", XiveRouter
, xfb
,
1768 TYPE_XIVE_FABRIC
, XiveFabric
*),
1769 DEFINE_PROP_END_OF_LIST(),
1772 static void xive_router_class_init(ObjectClass
*klass
, void *data
)
1774 DeviceClass
*dc
= DEVICE_CLASS(klass
);
1775 XiveNotifierClass
*xnc
= XIVE_NOTIFIER_CLASS(klass
);
1777 dc
->desc
= "XIVE Router Engine";
1778 device_class_set_props(dc
, xive_router_properties
);
1779 /* Parent is SysBusDeviceClass. No need to call its realize hook */
1780 dc
->realize
= xive_router_realize
;
1781 xnc
->notify
= xive_router_notify
;
1784 static const TypeInfo xive_router_info
= {
1785 .name
= TYPE_XIVE_ROUTER
,
1786 .parent
= TYPE_SYS_BUS_DEVICE
,
1788 .instance_size
= sizeof(XiveRouter
),
1789 .class_size
= sizeof(XiveRouterClass
),
1790 .class_init
= xive_router_class_init
,
1791 .interfaces
= (InterfaceInfo
[]) {
1792 { TYPE_XIVE_NOTIFIER
},
1793 { TYPE_XIVE_PRESENTER
},
1798 void xive_eas_pic_print_info(XiveEAS
*eas
, uint32_t lisn
, Monitor
*mon
)
1800 if (!xive_eas_is_valid(eas
)) {
1804 monitor_printf(mon
, " %08x %s end:%02x/%04x data:%08x\n",
1805 lisn
, xive_eas_is_masked(eas
) ? "M" : " ",
1806 (uint8_t) xive_get_field64(EAS_END_BLOCK
, eas
->w
),
1807 (uint32_t) xive_get_field64(EAS_END_INDEX
, eas
->w
),
1808 (uint32_t) xive_get_field64(EAS_END_DATA
, eas
->w
));
1812 * END ESB MMIO loads
1814 static uint64_t xive_end_source_read(void *opaque
, hwaddr addr
, unsigned size
)
1816 XiveENDSource
*xsrc
= XIVE_END_SOURCE(opaque
);
1817 uint32_t offset
= addr
& 0xFFF;
1821 uint32_t end_esmask
;
1826 * The block id should be deduced from the load address on the END
1827 * ESB MMIO but our model only supports a single block per XIVE chip.
1829 end_blk
= xive_router_get_block_id(xsrc
->xrtr
);
1830 end_idx
= addr
>> (xsrc
->esb_shift
+ 1);
1832 trace_xive_end_source_read(end_blk
, end_idx
, addr
);
1834 if (xive_router_get_end(xsrc
->xrtr
, end_blk
, end_idx
, &end
)) {
1835 qemu_log_mask(LOG_GUEST_ERROR
, "XIVE: No END %x/%x\n", end_blk
,
1840 if (!xive_end_is_valid(&end
)) {
1841 qemu_log_mask(LOG_GUEST_ERROR
, "XIVE: END %x/%x is invalid\n",
1846 end_esmask
= addr_is_even(addr
, xsrc
->esb_shift
) ? END_W1_ESn
: END_W1_ESe
;
1847 pq
= xive_get_field32(end_esmask
, end
.w1
);
1850 case XIVE_ESB_LOAD_EOI
... XIVE_ESB_LOAD_EOI
+ 0x7FF:
1851 ret
= xive_esb_eoi(&pq
);
1853 /* Forward the source event notification for routing ?? */
1856 case XIVE_ESB_GET
... XIVE_ESB_GET
+ 0x3FF:
1860 case XIVE_ESB_SET_PQ_00
... XIVE_ESB_SET_PQ_00
+ 0x0FF:
1861 case XIVE_ESB_SET_PQ_01
... XIVE_ESB_SET_PQ_01
+ 0x0FF:
1862 case XIVE_ESB_SET_PQ_10
... XIVE_ESB_SET_PQ_10
+ 0x0FF:
1863 case XIVE_ESB_SET_PQ_11
... XIVE_ESB_SET_PQ_11
+ 0x0FF:
1864 ret
= xive_esb_set(&pq
, (offset
>> 8) & 0x3);
1867 qemu_log_mask(LOG_GUEST_ERROR
, "XIVE: invalid END ESB load addr %d\n",
1872 if (pq
!= xive_get_field32(end_esmask
, end
.w1
)) {
1873 end
.w1
= xive_set_field32(end_esmask
, end
.w1
, pq
);
1874 xive_router_write_end(xsrc
->xrtr
, end_blk
, end_idx
, &end
, 1);
1881 * END ESB MMIO stores are invalid
1883 static void xive_end_source_write(void *opaque
, hwaddr addr
,
1884 uint64_t value
, unsigned size
)
1886 qemu_log_mask(LOG_GUEST_ERROR
, "XIVE: invalid ESB write addr 0x%"
1887 HWADDR_PRIx
"\n", addr
);
1890 static const MemoryRegionOps xive_end_source_ops
= {
1891 .read
= xive_end_source_read
,
1892 .write
= xive_end_source_write
,
1893 .endianness
= DEVICE_BIG_ENDIAN
,
1895 .min_access_size
= 8,
1896 .max_access_size
= 8,
1899 .min_access_size
= 8,
1900 .max_access_size
= 8,
1904 static void xive_end_source_realize(DeviceState
*dev
, Error
**errp
)
1906 XiveENDSource
*xsrc
= XIVE_END_SOURCE(dev
);
1910 if (!xsrc
->nr_ends
) {
1911 error_setg(errp
, "Number of interrupt needs to be greater than 0");
1915 if (xsrc
->esb_shift
!= XIVE_ESB_4K
&&
1916 xsrc
->esb_shift
!= XIVE_ESB_64K
) {
1917 error_setg(errp
, "Invalid ESB shift setting");
1922 * Each END is assigned an even/odd pair of MMIO pages, the even page
1923 * manages the ESn field while the odd page manages the ESe field.
1925 memory_region_init_io(&xsrc
->esb_mmio
, OBJECT(xsrc
),
1926 &xive_end_source_ops
, xsrc
, "xive.end",
1927 (1ull << (xsrc
->esb_shift
+ 1)) * xsrc
->nr_ends
);
1930 static Property xive_end_source_properties
[] = {
1931 DEFINE_PROP_UINT32("nr-ends", XiveENDSource
, nr_ends
, 0),
1932 DEFINE_PROP_UINT32("shift", XiveENDSource
, esb_shift
, XIVE_ESB_64K
),
1933 DEFINE_PROP_LINK("xive", XiveENDSource
, xrtr
, TYPE_XIVE_ROUTER
,
1935 DEFINE_PROP_END_OF_LIST(),
1938 static void xive_end_source_class_init(ObjectClass
*klass
, void *data
)
1940 DeviceClass
*dc
= DEVICE_CLASS(klass
);
1942 dc
->desc
= "XIVE END Source";
1943 device_class_set_props(dc
, xive_end_source_properties
);
1944 dc
->realize
= xive_end_source_realize
;
1946 * Reason: part of XIVE interrupt controller, needs to be wired up,
1947 * e.g. by spapr_xive_instance_init().
1949 dc
->user_creatable
= false;
1952 static const TypeInfo xive_end_source_info
= {
1953 .name
= TYPE_XIVE_END_SOURCE
,
1954 .parent
= TYPE_DEVICE
,
1955 .instance_size
= sizeof(XiveENDSource
),
1956 .class_init
= xive_end_source_class_init
,
1962 static const TypeInfo xive_notifier_info
= {
1963 .name
= TYPE_XIVE_NOTIFIER
,
1964 .parent
= TYPE_INTERFACE
,
1965 .class_size
= sizeof(XiveNotifierClass
),
1971 static const TypeInfo xive_presenter_info
= {
1972 .name
= TYPE_XIVE_PRESENTER
,
1973 .parent
= TYPE_INTERFACE
,
1974 .class_size
= sizeof(XivePresenterClass
),
1980 static const TypeInfo xive_fabric_info
= {
1981 .name
= TYPE_XIVE_FABRIC
,
1982 .parent
= TYPE_INTERFACE
,
1983 .class_size
= sizeof(XiveFabricClass
),
1986 static void xive_register_types(void)
1988 type_register_static(&xive_fabric_info
);
1989 type_register_static(&xive_source_info
);
1990 type_register_static(&xive_notifier_info
);
1991 type_register_static(&xive_presenter_info
);
1992 type_register_static(&xive_router_info
);
1993 type_register_static(&xive_end_source_info
);
1994 type_register_static(&xive_tctx_info
);
1997 type_init(xive_register_types
)