fpu: Replace int8 typedef with int8_t
[qemu/ar7.git] / include / fpu / softfloat.h
bloba6842ad21d05ccf175c9326fa06c85d1b4d09d7b
1 /*
2 * QEMU float support
4 * The code in this source file is derived from release 2a of the SoftFloat
5 * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
6 * some later contributions) are provided under that license, as detailed below.
7 * It has subsequently been modified by contributors to the QEMU Project,
8 * so some portions are provided under:
9 * the SoftFloat-2a license
10 * the BSD license
11 * GPL-v2-or-later
13 * Any future contributions to this file after December 1st 2014 will be
14 * taken to be licensed under the Softfloat-2a license unless specifically
15 * indicated otherwise.
19 ===============================================================================
20 This C header file is part of the SoftFloat IEC/IEEE Floating-point
21 Arithmetic Package, Release 2a.
23 Written by John R. Hauser. This work was made possible in part by the
24 International Computer Science Institute, located at Suite 600, 1947 Center
25 Street, Berkeley, California 94704. Funding was partially provided by the
26 National Science Foundation under grant MIP-9311980. The original version
27 of this code was written as part of a project to build a fixed-point vector
28 processor in collaboration with the University of California at Berkeley,
29 overseen by Profs. Nelson Morgan and John Wawrzynek. More information
30 is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
31 arithmetic/SoftFloat.html'.
33 THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
34 has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
35 TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
36 PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
37 AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
39 Derivative works are acceptable, even for commercial purposes, so long as
40 (1) they include prominent notice that the work is derivative, and (2) they
41 include prominent notice akin to these four paragraphs for those parts of
42 this code that are retained.
44 ===============================================================================
47 /* BSD licensing:
48 * Copyright (c) 2006, Fabrice Bellard
49 * All rights reserved.
51 * Redistribution and use in source and binary forms, with or without
52 * modification, are permitted provided that the following conditions are met:
54 * 1. Redistributions of source code must retain the above copyright notice,
55 * this list of conditions and the following disclaimer.
57 * 2. Redistributions in binary form must reproduce the above copyright notice,
58 * this list of conditions and the following disclaimer in the documentation
59 * and/or other materials provided with the distribution.
61 * 3. Neither the name of the copyright holder nor the names of its contributors
62 * may be used to endorse or promote products derived from this software without
63 * specific prior written permission.
65 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
66 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
69 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
70 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
71 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
72 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
73 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
74 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
75 * THE POSSIBILITY OF SUCH DAMAGE.
78 /* Portions of this work are licensed under the terms of the GNU GPL,
79 * version 2 or later. See the COPYING file in the top-level directory.
82 #ifndef SOFTFLOAT_H
83 #define SOFTFLOAT_H
85 #if defined(CONFIG_SOLARIS) && defined(CONFIG_NEEDS_LIBSUNMATH)
86 #include <sunmath.h>
87 #endif
89 #include <inttypes.h>
90 #include "config-host.h"
91 #include "qemu/osdep.h"
93 /*----------------------------------------------------------------------------
94 | Each of the following `typedef's defines the most convenient type that holds
95 | integers of at least as many bits as specified. For example, `uint8' should
96 | be the most convenient type that can hold unsigned integers of as many as
97 | 8 bits. The `flag' type must be able to hold either a 0 or 1. For most
98 | implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed
99 | to the same as `int'.
100 *----------------------------------------------------------------------------*/
101 typedef uint8_t flag;
102 typedef uint8_t uint8;
104 #define LIT64( a ) a##LL
106 /*----------------------------------------------------------------------------
107 | Software IEC/IEEE floating-point ordering relations
108 *----------------------------------------------------------------------------*/
109 enum {
110 float_relation_less = -1,
111 float_relation_equal = 0,
112 float_relation_greater = 1,
113 float_relation_unordered = 2
116 /*----------------------------------------------------------------------------
117 | Software IEC/IEEE floating-point types.
118 *----------------------------------------------------------------------------*/
119 /* Use structures for soft-float types. This prevents accidentally mixing
120 them with native int/float types. A sufficiently clever compiler and
121 sane ABI should be able to see though these structs. However
122 x86/gcc 3.x seems to struggle a bit, so leave them disabled by default. */
123 //#define USE_SOFTFLOAT_STRUCT_TYPES
124 #ifdef USE_SOFTFLOAT_STRUCT_TYPES
125 typedef struct {
126 uint16_t v;
127 } float16;
128 #define float16_val(x) (((float16)(x)).v)
129 #define make_float16(x) __extension__ ({ float16 f16_val = {x}; f16_val; })
130 #define const_float16(x) { x }
131 typedef struct {
132 uint32_t v;
133 } float32;
134 /* The cast ensures an error if the wrong type is passed. */
135 #define float32_val(x) (((float32)(x)).v)
136 #define make_float32(x) __extension__ ({ float32 f32_val = {x}; f32_val; })
137 #define const_float32(x) { x }
138 typedef struct {
139 uint64_t v;
140 } float64;
141 #define float64_val(x) (((float64)(x)).v)
142 #define make_float64(x) __extension__ ({ float64 f64_val = {x}; f64_val; })
143 #define const_float64(x) { x }
144 #else
145 typedef uint16_t float16;
146 typedef uint32_t float32;
147 typedef uint64_t float64;
148 #define float16_val(x) (x)
149 #define float32_val(x) (x)
150 #define float64_val(x) (x)
151 #define make_float16(x) (x)
152 #define make_float32(x) (x)
153 #define make_float64(x) (x)
154 #define const_float16(x) (x)
155 #define const_float32(x) (x)
156 #define const_float64(x) (x)
157 #endif
158 typedef struct {
159 uint64_t low;
160 uint16_t high;
161 } floatx80;
162 #define make_floatx80(exp, mant) ((floatx80) { mant, exp })
163 #define make_floatx80_init(exp, mant) { .low = mant, .high = exp }
164 typedef struct {
165 #ifdef HOST_WORDS_BIGENDIAN
166 uint64_t high, low;
167 #else
168 uint64_t low, high;
169 #endif
170 } float128;
171 #define make_float128(high_, low_) ((float128) { .high = high_, .low = low_ })
172 #define make_float128_init(high_, low_) { .high = high_, .low = low_ }
174 /*----------------------------------------------------------------------------
175 | Software IEC/IEEE floating-point underflow tininess-detection mode.
176 *----------------------------------------------------------------------------*/
177 enum {
178 float_tininess_after_rounding = 0,
179 float_tininess_before_rounding = 1
182 /*----------------------------------------------------------------------------
183 | Software IEC/IEEE floating-point rounding mode.
184 *----------------------------------------------------------------------------*/
185 enum {
186 float_round_nearest_even = 0,
187 float_round_down = 1,
188 float_round_up = 2,
189 float_round_to_zero = 3,
190 float_round_ties_away = 4,
193 /*----------------------------------------------------------------------------
194 | Software IEC/IEEE floating-point exception flags.
195 *----------------------------------------------------------------------------*/
196 enum {
197 float_flag_invalid = 1,
198 float_flag_divbyzero = 4,
199 float_flag_overflow = 8,
200 float_flag_underflow = 16,
201 float_flag_inexact = 32,
202 float_flag_input_denormal = 64,
203 float_flag_output_denormal = 128
206 typedef struct float_status {
207 signed char float_detect_tininess;
208 signed char float_rounding_mode;
209 signed char float_exception_flags;
210 signed char floatx80_rounding_precision;
211 /* should denormalised results go to zero and set the inexact flag? */
212 flag flush_to_zero;
213 /* should denormalised inputs go to zero and set the input_denormal flag? */
214 flag flush_inputs_to_zero;
215 flag default_nan_mode;
216 } float_status;
218 static inline void set_float_detect_tininess(int val, float_status *status)
220 status->float_detect_tininess = val;
222 static inline void set_float_rounding_mode(int val, float_status *status)
224 status->float_rounding_mode = val;
226 static inline void set_float_exception_flags(int val, float_status *status)
228 status->float_exception_flags = val;
230 static inline void set_floatx80_rounding_precision(int val,
231 float_status *status)
233 status->floatx80_rounding_precision = val;
235 static inline void set_flush_to_zero(flag val, float_status *status)
237 status->flush_to_zero = val;
239 static inline void set_flush_inputs_to_zero(flag val, float_status *status)
241 status->flush_inputs_to_zero = val;
243 static inline void set_default_nan_mode(flag val, float_status *status)
245 status->default_nan_mode = val;
247 static inline int get_float_detect_tininess(float_status *status)
249 return status->float_detect_tininess;
251 static inline int get_float_rounding_mode(float_status *status)
253 return status->float_rounding_mode;
255 static inline int get_float_exception_flags(float_status *status)
257 return status->float_exception_flags;
259 static inline int get_floatx80_rounding_precision(float_status *status)
261 return status->floatx80_rounding_precision;
263 static inline flag get_flush_to_zero(float_status *status)
265 return status->flush_to_zero;
267 static inline flag get_flush_inputs_to_zero(float_status *status)
269 return status->flush_inputs_to_zero;
271 static inline flag get_default_nan_mode(float_status *status)
273 return status->default_nan_mode;
276 /*----------------------------------------------------------------------------
277 | Routine to raise any or all of the software IEC/IEEE floating-point
278 | exception flags.
279 *----------------------------------------------------------------------------*/
280 void float_raise(int8_t flags, float_status *status);
282 /*----------------------------------------------------------------------------
283 | If `a' is denormal and we are in flush-to-zero mode then set the
284 | input-denormal exception and return zero. Otherwise just return the value.
285 *----------------------------------------------------------------------------*/
286 float32 float32_squash_input_denormal(float32 a, float_status *status);
287 float64 float64_squash_input_denormal(float64 a, float_status *status);
289 /*----------------------------------------------------------------------------
290 | Options to indicate which negations to perform in float*_muladd()
291 | Using these differs from negating an input or output before calling
292 | the muladd function in that this means that a NaN doesn't have its
293 | sign bit inverted before it is propagated.
294 | We also support halving the result before rounding, as a special
295 | case to support the ARM fused-sqrt-step instruction FRSQRTS.
296 *----------------------------------------------------------------------------*/
297 enum {
298 float_muladd_negate_c = 1,
299 float_muladd_negate_product = 2,
300 float_muladd_negate_result = 4,
301 float_muladd_halve_result = 8,
304 /*----------------------------------------------------------------------------
305 | Software IEC/IEEE integer-to-floating-point conversion routines.
306 *----------------------------------------------------------------------------*/
307 float32 int32_to_float32(int32_t, float_status *status);
308 float64 int32_to_float64(int32_t, float_status *status);
309 float32 uint32_to_float32(uint32_t, float_status *status);
310 float64 uint32_to_float64(uint32_t, float_status *status);
311 floatx80 int32_to_floatx80(int32_t, float_status *status);
312 float128 int32_to_float128(int32_t, float_status *status);
313 float32 int64_to_float32(int64_t, float_status *status);
314 float64 int64_to_float64(int64_t, float_status *status);
315 floatx80 int64_to_floatx80(int64_t, float_status *status);
316 float128 int64_to_float128(int64_t, float_status *status);
317 float32 uint64_to_float32(uint64_t, float_status *status);
318 float64 uint64_to_float64(uint64_t, float_status *status);
319 float128 uint64_to_float128(uint64_t, float_status *status);
321 /* We provide the int16 versions for symmetry of API with float-to-int */
322 static inline float32 int16_to_float32(int16_t v, float_status *status)
324 return int32_to_float32(v, status);
327 static inline float32 uint16_to_float32(uint16_t v, float_status *status)
329 return uint32_to_float32(v, status);
332 static inline float64 int16_to_float64(int16_t v, float_status *status)
334 return int32_to_float64(v, status);
337 static inline float64 uint16_to_float64(uint16_t v, float_status *status)
339 return uint32_to_float64(v, status);
342 /*----------------------------------------------------------------------------
343 | Software half-precision conversion routines.
344 *----------------------------------------------------------------------------*/
345 float16 float32_to_float16(float32, flag, float_status *status);
346 float32 float16_to_float32(float16, flag, float_status *status);
347 float16 float64_to_float16(float64 a, flag ieee, float_status *status);
348 float64 float16_to_float64(float16 a, flag ieee, float_status *status);
350 /*----------------------------------------------------------------------------
351 | Software half-precision operations.
352 *----------------------------------------------------------------------------*/
353 int float16_is_quiet_nan( float16 );
354 int float16_is_signaling_nan( float16 );
355 float16 float16_maybe_silence_nan( float16 );
357 static inline int float16_is_any_nan(float16 a)
359 return ((float16_val(a) & ~0x8000) > 0x7c00);
362 /*----------------------------------------------------------------------------
363 | The pattern for a default generated half-precision NaN.
364 *----------------------------------------------------------------------------*/
365 extern const float16 float16_default_nan;
367 /*----------------------------------------------------------------------------
368 | Software IEC/IEEE single-precision conversion routines.
369 *----------------------------------------------------------------------------*/
370 int_fast16_t float32_to_int16(float32, float_status *status);
371 uint_fast16_t float32_to_uint16(float32, float_status *status);
372 int_fast16_t float32_to_int16_round_to_zero(float32, float_status *status);
373 uint_fast16_t float32_to_uint16_round_to_zero(float32, float_status *status);
374 int32_t float32_to_int32(float32, float_status *status);
375 int32_t float32_to_int32_round_to_zero(float32, float_status *status);
376 uint32_t float32_to_uint32(float32, float_status *status);
377 uint32_t float32_to_uint32_round_to_zero(float32, float_status *status);
378 int64_t float32_to_int64(float32, float_status *status);
379 uint64_t float32_to_uint64(float32, float_status *status);
380 uint64_t float32_to_uint64_round_to_zero(float32, float_status *status);
381 int64_t float32_to_int64_round_to_zero(float32, float_status *status);
382 float64 float32_to_float64(float32, float_status *status);
383 floatx80 float32_to_floatx80(float32, float_status *status);
384 float128 float32_to_float128(float32, float_status *status);
386 /*----------------------------------------------------------------------------
387 | Software IEC/IEEE single-precision operations.
388 *----------------------------------------------------------------------------*/
389 float32 float32_round_to_int(float32, float_status *status);
390 float32 float32_add(float32, float32, float_status *status);
391 float32 float32_sub(float32, float32, float_status *status);
392 float32 float32_mul(float32, float32, float_status *status);
393 float32 float32_div(float32, float32, float_status *status);
394 float32 float32_rem(float32, float32, float_status *status);
395 float32 float32_muladd(float32, float32, float32, int, float_status *status);
396 float32 float32_sqrt(float32, float_status *status);
397 float32 float32_exp2(float32, float_status *status);
398 float32 float32_log2(float32, float_status *status);
399 int float32_eq(float32, float32, float_status *status);
400 int float32_le(float32, float32, float_status *status);
401 int float32_lt(float32, float32, float_status *status);
402 int float32_unordered(float32, float32, float_status *status);
403 int float32_eq_quiet(float32, float32, float_status *status);
404 int float32_le_quiet(float32, float32, float_status *status);
405 int float32_lt_quiet(float32, float32, float_status *status);
406 int float32_unordered_quiet(float32, float32, float_status *status);
407 int float32_compare(float32, float32, float_status *status);
408 int float32_compare_quiet(float32, float32, float_status *status);
409 float32 float32_min(float32, float32, float_status *status);
410 float32 float32_max(float32, float32, float_status *status);
411 float32 float32_minnum(float32, float32, float_status *status);
412 float32 float32_maxnum(float32, float32, float_status *status);
413 float32 float32_minnummag(float32, float32, float_status *status);
414 float32 float32_maxnummag(float32, float32, float_status *status);
415 int float32_is_quiet_nan( float32 );
416 int float32_is_signaling_nan( float32 );
417 float32 float32_maybe_silence_nan( float32 );
418 float32 float32_scalbn(float32, int, float_status *status);
420 static inline float32 float32_abs(float32 a)
422 /* Note that abs does *not* handle NaN specially, nor does
423 * it flush denormal inputs to zero.
425 return make_float32(float32_val(a) & 0x7fffffff);
428 static inline float32 float32_chs(float32 a)
430 /* Note that chs does *not* handle NaN specially, nor does
431 * it flush denormal inputs to zero.
433 return make_float32(float32_val(a) ^ 0x80000000);
436 static inline int float32_is_infinity(float32 a)
438 return (float32_val(a) & 0x7fffffff) == 0x7f800000;
441 static inline int float32_is_neg(float32 a)
443 return float32_val(a) >> 31;
446 static inline int float32_is_zero(float32 a)
448 return (float32_val(a) & 0x7fffffff) == 0;
451 static inline int float32_is_any_nan(float32 a)
453 return ((float32_val(a) & ~(1 << 31)) > 0x7f800000UL);
456 static inline int float32_is_zero_or_denormal(float32 a)
458 return (float32_val(a) & 0x7f800000) == 0;
461 static inline float32 float32_set_sign(float32 a, int sign)
463 return make_float32((float32_val(a) & 0x7fffffff) | (sign << 31));
466 #define float32_zero make_float32(0)
467 #define float32_one make_float32(0x3f800000)
468 #define float32_ln2 make_float32(0x3f317218)
469 #define float32_pi make_float32(0x40490fdb)
470 #define float32_half make_float32(0x3f000000)
471 #define float32_infinity make_float32(0x7f800000)
474 /*----------------------------------------------------------------------------
475 | The pattern for a default generated single-precision NaN.
476 *----------------------------------------------------------------------------*/
477 extern const float32 float32_default_nan;
479 /*----------------------------------------------------------------------------
480 | Software IEC/IEEE double-precision conversion routines.
481 *----------------------------------------------------------------------------*/
482 int_fast16_t float64_to_int16(float64, float_status *status);
483 uint_fast16_t float64_to_uint16(float64, float_status *status);
484 int_fast16_t float64_to_int16_round_to_zero(float64, float_status *status);
485 uint_fast16_t float64_to_uint16_round_to_zero(float64, float_status *status);
486 int32_t float64_to_int32(float64, float_status *status);
487 int32_t float64_to_int32_round_to_zero(float64, float_status *status);
488 uint32_t float64_to_uint32(float64, float_status *status);
489 uint32_t float64_to_uint32_round_to_zero(float64, float_status *status);
490 int64_t float64_to_int64(float64, float_status *status);
491 int64_t float64_to_int64_round_to_zero(float64, float_status *status);
492 uint64_t float64_to_uint64(float64 a, float_status *status);
493 uint64_t float64_to_uint64_round_to_zero(float64 a, float_status *status);
494 float32 float64_to_float32(float64, float_status *status);
495 floatx80 float64_to_floatx80(float64, float_status *status);
496 float128 float64_to_float128(float64, float_status *status);
498 /*----------------------------------------------------------------------------
499 | Software IEC/IEEE double-precision operations.
500 *----------------------------------------------------------------------------*/
501 float64 float64_round_to_int(float64, float_status *status);
502 float64 float64_trunc_to_int(float64, float_status *status);
503 float64 float64_add(float64, float64, float_status *status);
504 float64 float64_sub(float64, float64, float_status *status);
505 float64 float64_mul(float64, float64, float_status *status);
506 float64 float64_div(float64, float64, float_status *status);
507 float64 float64_rem(float64, float64, float_status *status);
508 float64 float64_muladd(float64, float64, float64, int, float_status *status);
509 float64 float64_sqrt(float64, float_status *status);
510 float64 float64_log2(float64, float_status *status);
511 int float64_eq(float64, float64, float_status *status);
512 int float64_le(float64, float64, float_status *status);
513 int float64_lt(float64, float64, float_status *status);
514 int float64_unordered(float64, float64, float_status *status);
515 int float64_eq_quiet(float64, float64, float_status *status);
516 int float64_le_quiet(float64, float64, float_status *status);
517 int float64_lt_quiet(float64, float64, float_status *status);
518 int float64_unordered_quiet(float64, float64, float_status *status);
519 int float64_compare(float64, float64, float_status *status);
520 int float64_compare_quiet(float64, float64, float_status *status);
521 float64 float64_min(float64, float64, float_status *status);
522 float64 float64_max(float64, float64, float_status *status);
523 float64 float64_minnum(float64, float64, float_status *status);
524 float64 float64_maxnum(float64, float64, float_status *status);
525 float64 float64_minnummag(float64, float64, float_status *status);
526 float64 float64_maxnummag(float64, float64, float_status *status);
527 int float64_is_quiet_nan( float64 a );
528 int float64_is_signaling_nan( float64 );
529 float64 float64_maybe_silence_nan( float64 );
530 float64 float64_scalbn(float64, int, float_status *status);
532 static inline float64 float64_abs(float64 a)
534 /* Note that abs does *not* handle NaN specially, nor does
535 * it flush denormal inputs to zero.
537 return make_float64(float64_val(a) & 0x7fffffffffffffffLL);
540 static inline float64 float64_chs(float64 a)
542 /* Note that chs does *not* handle NaN specially, nor does
543 * it flush denormal inputs to zero.
545 return make_float64(float64_val(a) ^ 0x8000000000000000LL);
548 static inline int float64_is_infinity(float64 a)
550 return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL;
553 static inline int float64_is_neg(float64 a)
555 return float64_val(a) >> 63;
558 static inline int float64_is_zero(float64 a)
560 return (float64_val(a) & 0x7fffffffffffffffLL) == 0;
563 static inline int float64_is_any_nan(float64 a)
565 return ((float64_val(a) & ~(1ULL << 63)) > 0x7ff0000000000000ULL);
568 static inline int float64_is_zero_or_denormal(float64 a)
570 return (float64_val(a) & 0x7ff0000000000000LL) == 0;
573 static inline float64 float64_set_sign(float64 a, int sign)
575 return make_float64((float64_val(a) & 0x7fffffffffffffffULL)
576 | ((int64_t)sign << 63));
579 #define float64_zero make_float64(0)
580 #define float64_one make_float64(0x3ff0000000000000LL)
581 #define float64_ln2 make_float64(0x3fe62e42fefa39efLL)
582 #define float64_pi make_float64(0x400921fb54442d18LL)
583 #define float64_half make_float64(0x3fe0000000000000LL)
584 #define float64_infinity make_float64(0x7ff0000000000000LL)
586 /*----------------------------------------------------------------------------
587 | The pattern for a default generated double-precision NaN.
588 *----------------------------------------------------------------------------*/
589 extern const float64 float64_default_nan;
591 /*----------------------------------------------------------------------------
592 | Software IEC/IEEE extended double-precision conversion routines.
593 *----------------------------------------------------------------------------*/
594 int32_t floatx80_to_int32(floatx80, float_status *status);
595 int32_t floatx80_to_int32_round_to_zero(floatx80, float_status *status);
596 int64_t floatx80_to_int64(floatx80, float_status *status);
597 int64_t floatx80_to_int64_round_to_zero(floatx80, float_status *status);
598 float32 floatx80_to_float32(floatx80, float_status *status);
599 float64 floatx80_to_float64(floatx80, float_status *status);
600 float128 floatx80_to_float128(floatx80, float_status *status);
602 /*----------------------------------------------------------------------------
603 | Software IEC/IEEE extended double-precision operations.
604 *----------------------------------------------------------------------------*/
605 floatx80 floatx80_round_to_int(floatx80, float_status *status);
606 floatx80 floatx80_add(floatx80, floatx80, float_status *status);
607 floatx80 floatx80_sub(floatx80, floatx80, float_status *status);
608 floatx80 floatx80_mul(floatx80, floatx80, float_status *status);
609 floatx80 floatx80_div(floatx80, floatx80, float_status *status);
610 floatx80 floatx80_rem(floatx80, floatx80, float_status *status);
611 floatx80 floatx80_sqrt(floatx80, float_status *status);
612 int floatx80_eq(floatx80, floatx80, float_status *status);
613 int floatx80_le(floatx80, floatx80, float_status *status);
614 int floatx80_lt(floatx80, floatx80, float_status *status);
615 int floatx80_unordered(floatx80, floatx80, float_status *status);
616 int floatx80_eq_quiet(floatx80, floatx80, float_status *status);
617 int floatx80_le_quiet(floatx80, floatx80, float_status *status);
618 int floatx80_lt_quiet(floatx80, floatx80, float_status *status);
619 int floatx80_unordered_quiet(floatx80, floatx80, float_status *status);
620 int floatx80_compare(floatx80, floatx80, float_status *status);
621 int floatx80_compare_quiet(floatx80, floatx80, float_status *status);
622 int floatx80_is_quiet_nan( floatx80 );
623 int floatx80_is_signaling_nan( floatx80 );
624 floatx80 floatx80_maybe_silence_nan( floatx80 );
625 floatx80 floatx80_scalbn(floatx80, int, float_status *status);
627 static inline floatx80 floatx80_abs(floatx80 a)
629 a.high &= 0x7fff;
630 return a;
633 static inline floatx80 floatx80_chs(floatx80 a)
635 a.high ^= 0x8000;
636 return a;
639 static inline int floatx80_is_infinity(floatx80 a)
641 return (a.high & 0x7fff) == 0x7fff && a.low == 0x8000000000000000LL;
644 static inline int floatx80_is_neg(floatx80 a)
646 return a.high >> 15;
649 static inline int floatx80_is_zero(floatx80 a)
651 return (a.high & 0x7fff) == 0 && a.low == 0;
654 static inline int floatx80_is_zero_or_denormal(floatx80 a)
656 return (a.high & 0x7fff) == 0;
659 static inline int floatx80_is_any_nan(floatx80 a)
661 return ((a.high & 0x7fff) == 0x7fff) && (a.low<<1);
664 #define floatx80_zero make_floatx80(0x0000, 0x0000000000000000LL)
665 #define floatx80_one make_floatx80(0x3fff, 0x8000000000000000LL)
666 #define floatx80_ln2 make_floatx80(0x3ffe, 0xb17217f7d1cf79acLL)
667 #define floatx80_pi make_floatx80(0x4000, 0xc90fdaa22168c235LL)
668 #define floatx80_half make_floatx80(0x3ffe, 0x8000000000000000LL)
669 #define floatx80_infinity make_floatx80(0x7fff, 0x8000000000000000LL)
671 /*----------------------------------------------------------------------------
672 | The pattern for a default generated extended double-precision NaN.
673 *----------------------------------------------------------------------------*/
674 extern const floatx80 floatx80_default_nan;
676 /*----------------------------------------------------------------------------
677 | Software IEC/IEEE quadruple-precision conversion routines.
678 *----------------------------------------------------------------------------*/
679 int32_t float128_to_int32(float128, float_status *status);
680 int32_t float128_to_int32_round_to_zero(float128, float_status *status);
681 int64_t float128_to_int64(float128, float_status *status);
682 int64_t float128_to_int64_round_to_zero(float128, float_status *status);
683 float32 float128_to_float32(float128, float_status *status);
684 float64 float128_to_float64(float128, float_status *status);
685 floatx80 float128_to_floatx80(float128, float_status *status);
687 /*----------------------------------------------------------------------------
688 | Software IEC/IEEE quadruple-precision operations.
689 *----------------------------------------------------------------------------*/
690 float128 float128_round_to_int(float128, float_status *status);
691 float128 float128_add(float128, float128, float_status *status);
692 float128 float128_sub(float128, float128, float_status *status);
693 float128 float128_mul(float128, float128, float_status *status);
694 float128 float128_div(float128, float128, float_status *status);
695 float128 float128_rem(float128, float128, float_status *status);
696 float128 float128_sqrt(float128, float_status *status);
697 int float128_eq(float128, float128, float_status *status);
698 int float128_le(float128, float128, float_status *status);
699 int float128_lt(float128, float128, float_status *status);
700 int float128_unordered(float128, float128, float_status *status);
701 int float128_eq_quiet(float128, float128, float_status *status);
702 int float128_le_quiet(float128, float128, float_status *status);
703 int float128_lt_quiet(float128, float128, float_status *status);
704 int float128_unordered_quiet(float128, float128, float_status *status);
705 int float128_compare(float128, float128, float_status *status);
706 int float128_compare_quiet(float128, float128, float_status *status);
707 int float128_is_quiet_nan( float128 );
708 int float128_is_signaling_nan( float128 );
709 float128 float128_maybe_silence_nan( float128 );
710 float128 float128_scalbn(float128, int, float_status *status);
712 static inline float128 float128_abs(float128 a)
714 a.high &= 0x7fffffffffffffffLL;
715 return a;
718 static inline float128 float128_chs(float128 a)
720 a.high ^= 0x8000000000000000LL;
721 return a;
724 static inline int float128_is_infinity(float128 a)
726 return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0;
729 static inline int float128_is_neg(float128 a)
731 return a.high >> 63;
734 static inline int float128_is_zero(float128 a)
736 return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0;
739 static inline int float128_is_zero_or_denormal(float128 a)
741 return (a.high & 0x7fff000000000000LL) == 0;
744 static inline int float128_is_any_nan(float128 a)
746 return ((a.high >> 48) & 0x7fff) == 0x7fff &&
747 ((a.low != 0) || ((a.high & 0xffffffffffffLL) != 0));
750 #define float128_zero make_float128(0, 0)
752 /*----------------------------------------------------------------------------
753 | The pattern for a default generated quadruple-precision NaN.
754 *----------------------------------------------------------------------------*/
755 extern const float128 float128_default_nan;
757 #endif /* !SOFTFLOAT_H */