hw/arm: Set the core count for Xilinx's ZynqMP
[qemu/ar7.git] / hw / intc / arm_gicv3_cpuif.c
blob5cbafaf497583a7973b4c2e36cdb14e846007fe9
1 /*
2 * ARM Generic Interrupt Controller v3
4 * Copyright (c) 2016 Linaro Limited
5 * Written by Peter Maydell
7 * This code is licensed under the GPL, version 2 or (at your option)
8 * any later version.
9 */
11 /* This file contains the code for the system register interface
12 * portions of the GICv3.
15 #include "qemu/osdep.h"
16 #include "qemu/bitops.h"
17 #include "qemu/main-loop.h"
18 #include "trace.h"
19 #include "gicv3_internal.h"
20 #include "cpu.h"
22 void gicv3_set_gicv3state(CPUState *cpu, GICv3CPUState *s)
24 ARMCPU *arm_cpu = ARM_CPU(cpu);
25 CPUARMState *env = &arm_cpu->env;
27 env->gicv3state = (void *)s;
30 static GICv3CPUState *icc_cs_from_env(CPUARMState *env)
32 /* Given the CPU, find the right GICv3CPUState struct.
33 * Since we registered the CPU interface with the EL change hook as
34 * the opaque pointer, we can just directly get from the CPU to it.
36 return arm_get_el_change_hook_opaque(arm_env_get_cpu(env));
39 static bool gicv3_use_ns_bank(CPUARMState *env)
41 /* Return true if we should use the NonSecure bank for a banked GIC
42 * CPU interface register. Note that this differs from the
43 * access_secure_reg() function because GICv3 banked registers are
44 * banked even for AArch64, unlike the other CPU system registers.
46 return !arm_is_secure_below_el3(env);
49 /* The minimum BPR for the virtual interface is a configurable property */
50 static inline int icv_min_vbpr(GICv3CPUState *cs)
52 return 7 - cs->vprebits;
55 /* Simple accessor functions for LR fields */
56 static uint32_t ich_lr_vintid(uint64_t lr)
58 return extract64(lr, ICH_LR_EL2_VINTID_SHIFT, ICH_LR_EL2_VINTID_LENGTH);
61 static uint32_t ich_lr_pintid(uint64_t lr)
63 return extract64(lr, ICH_LR_EL2_PINTID_SHIFT, ICH_LR_EL2_PINTID_LENGTH);
66 static uint32_t ich_lr_prio(uint64_t lr)
68 return extract64(lr, ICH_LR_EL2_PRIORITY_SHIFT, ICH_LR_EL2_PRIORITY_LENGTH);
71 static int ich_lr_state(uint64_t lr)
73 return extract64(lr, ICH_LR_EL2_STATE_SHIFT, ICH_LR_EL2_STATE_LENGTH);
76 static bool icv_access(CPUARMState *env, int hcr_flags)
78 /* Return true if this ICC_ register access should really be
79 * directed to an ICV_ access. hcr_flags is a mask of
80 * HCR_EL2 bits to check: we treat this as an ICV_ access
81 * if we are in NS EL1 and at least one of the specified
82 * HCR_EL2 bits is set.
84 * ICV registers fall into four categories:
85 * * access if NS EL1 and HCR_EL2.FMO == 1:
86 * all ICV regs with '0' in their name
87 * * access if NS EL1 and HCR_EL2.IMO == 1:
88 * all ICV regs with '1' in their name
89 * * access if NS EL1 and either IMO or FMO == 1:
90 * CTLR, DIR, PMR, RPR
92 return (env->cp15.hcr_el2 & hcr_flags) && arm_current_el(env) == 1
93 && !arm_is_secure_below_el3(env);
96 static int read_vbpr(GICv3CPUState *cs, int grp)
98 /* Read VBPR value out of the VMCR field (caller must handle
99 * VCBPR effects if required)
101 if (grp == GICV3_G0) {
102 return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT,
103 ICH_VMCR_EL2_VBPR0_LENGTH);
104 } else {
105 return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT,
106 ICH_VMCR_EL2_VBPR1_LENGTH);
110 static void write_vbpr(GICv3CPUState *cs, int grp, int value)
112 /* Write new VBPR1 value, handling the "writing a value less than
113 * the minimum sets it to the minimum" semantics.
115 int min = icv_min_vbpr(cs);
117 if (grp != GICV3_G0) {
118 min++;
121 value = MAX(value, min);
123 if (grp == GICV3_G0) {
124 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT,
125 ICH_VMCR_EL2_VBPR0_LENGTH, value);
126 } else {
127 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT,
128 ICH_VMCR_EL2_VBPR1_LENGTH, value);
132 static uint32_t icv_fullprio_mask(GICv3CPUState *cs)
134 /* Return a mask word which clears the unimplemented priority bits
135 * from a priority value for a virtual interrupt. (Not to be confused
136 * with the group priority, whose mask depends on the value of VBPR
137 * for the interrupt group.)
139 return ~0U << (8 - cs->vpribits);
142 static int ich_highest_active_virt_prio(GICv3CPUState *cs)
144 /* Calculate the current running priority based on the set bits
145 * in the ICH Active Priority Registers.
147 int i;
148 int aprmax = 1 << (cs->vprebits - 5);
150 assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0]));
152 for (i = 0; i < aprmax; i++) {
153 uint32_t apr = cs->ich_apr[GICV3_G0][i] |
154 cs->ich_apr[GICV3_G1NS][i];
156 if (!apr) {
157 continue;
159 return (i * 32 + ctz32(apr)) << (icv_min_vbpr(cs) + 1);
161 /* No current active interrupts: return idle priority */
162 return 0xff;
165 static int hppvi_index(GICv3CPUState *cs)
167 /* Return the list register index of the highest priority pending
168 * virtual interrupt, as per the HighestPriorityVirtualInterrupt
169 * pseudocode. If no pending virtual interrupts, return -1.
171 int idx = -1;
172 int i;
173 /* Note that a list register entry with a priority of 0xff will
174 * never be reported by this function; this is the architecturally
175 * correct behaviour.
177 int prio = 0xff;
179 if (!(cs->ich_vmcr_el2 & (ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1))) {
180 /* Both groups disabled, definitely nothing to do */
181 return idx;
184 for (i = 0; i < cs->num_list_regs; i++) {
185 uint64_t lr = cs->ich_lr_el2[i];
186 int thisprio;
188 if (ich_lr_state(lr) != ICH_LR_EL2_STATE_PENDING) {
189 /* Not Pending */
190 continue;
193 /* Ignore interrupts if relevant group enable not set */
194 if (lr & ICH_LR_EL2_GROUP) {
195 if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
196 continue;
198 } else {
199 if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) {
200 continue;
204 thisprio = ich_lr_prio(lr);
206 if (thisprio < prio) {
207 prio = thisprio;
208 idx = i;
212 return idx;
215 static uint32_t icv_gprio_mask(GICv3CPUState *cs, int group)
217 /* Return a mask word which clears the subpriority bits from
218 * a priority value for a virtual interrupt in the specified group.
219 * This depends on the VBPR value.
220 * If using VBPR0 then:
221 * a BPR of 0 means the group priority bits are [7:1];
222 * a BPR of 1 means they are [7:2], and so on down to
223 * a BPR of 7 meaning no group priority bits at all.
224 * If using VBPR1 then:
225 * a BPR of 0 is impossible (the minimum value is 1)
226 * a BPR of 1 means the group priority bits are [7:1];
227 * a BPR of 2 means they are [7:2], and so on down to
228 * a BPR of 7 meaning the group priority is [7].
230 * Which BPR to use depends on the group of the interrupt and
231 * the current ICH_VMCR_EL2.VCBPR settings.
233 * This corresponds to the VGroupBits() pseudocode.
235 int bpr;
237 if (group == GICV3_G1NS && cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) {
238 group = GICV3_G0;
241 bpr = read_vbpr(cs, group);
242 if (group == GICV3_G1NS) {
243 assert(bpr > 0);
244 bpr--;
247 return ~0U << (bpr + 1);
250 static bool icv_hppi_can_preempt(GICv3CPUState *cs, uint64_t lr)
252 /* Return true if we can signal this virtual interrupt defined by
253 * the given list register value; see the pseudocode functions
254 * CanSignalVirtualInterrupt and CanSignalVirtualInt.
255 * Compare also icc_hppi_can_preempt() which is the non-virtual
256 * equivalent of these checks.
258 int grp;
259 uint32_t mask, prio, rprio, vpmr;
261 if (!(cs->ich_hcr_el2 & ICH_HCR_EL2_EN)) {
262 /* Virtual interface disabled */
263 return false;
266 /* We don't need to check that this LR is in Pending state because
267 * that has already been done in hppvi_index().
270 prio = ich_lr_prio(lr);
271 vpmr = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
272 ICH_VMCR_EL2_VPMR_LENGTH);
274 if (prio >= vpmr) {
275 /* Priority mask masks this interrupt */
276 return false;
279 rprio = ich_highest_active_virt_prio(cs);
280 if (rprio == 0xff) {
281 /* No running interrupt so we can preempt */
282 return true;
285 grp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
287 mask = icv_gprio_mask(cs, grp);
289 /* We only preempt a running interrupt if the pending interrupt's
290 * group priority is sufficient (the subpriorities are not considered).
292 if ((prio & mask) < (rprio & mask)) {
293 return true;
296 return false;
299 static uint32_t eoi_maintenance_interrupt_state(GICv3CPUState *cs,
300 uint32_t *misr)
302 /* Return a set of bits indicating the EOI maintenance interrupt status
303 * for each list register. The EOI maintenance interrupt status is
304 * 1 if LR.State == 0 && LR.HW == 0 && LR.EOI == 1
305 * (see the GICv3 spec for the ICH_EISR_EL2 register).
306 * If misr is not NULL then we should also collect the information
307 * about the MISR.EOI, MISR.NP and MISR.U bits.
309 uint32_t value = 0;
310 int validcount = 0;
311 bool seenpending = false;
312 int i;
314 for (i = 0; i < cs->num_list_regs; i++) {
315 uint64_t lr = cs->ich_lr_el2[i];
317 if ((lr & (ICH_LR_EL2_STATE_MASK | ICH_LR_EL2_HW | ICH_LR_EL2_EOI))
318 == ICH_LR_EL2_EOI) {
319 value |= (1 << i);
321 if ((lr & ICH_LR_EL2_STATE_MASK)) {
322 validcount++;
324 if (ich_lr_state(lr) == ICH_LR_EL2_STATE_PENDING) {
325 seenpending = true;
329 if (misr) {
330 if (validcount < 2 && (cs->ich_hcr_el2 & ICH_HCR_EL2_UIE)) {
331 *misr |= ICH_MISR_EL2_U;
333 if (!seenpending && (cs->ich_hcr_el2 & ICH_HCR_EL2_NPIE)) {
334 *misr |= ICH_MISR_EL2_NP;
336 if (value) {
337 *misr |= ICH_MISR_EL2_EOI;
340 return value;
343 static uint32_t maintenance_interrupt_state(GICv3CPUState *cs)
345 /* Return a set of bits indicating the maintenance interrupt status
346 * (as seen in the ICH_MISR_EL2 register).
348 uint32_t value = 0;
350 /* Scan list registers and fill in the U, NP and EOI bits */
351 eoi_maintenance_interrupt_state(cs, &value);
353 if (cs->ich_hcr_el2 & (ICH_HCR_EL2_LRENPIE | ICH_HCR_EL2_EOICOUNT_MASK)) {
354 value |= ICH_MISR_EL2_LRENP;
357 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0EIE) &&
358 (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) {
359 value |= ICH_MISR_EL2_VGRP0E;
362 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0DIE) &&
363 !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
364 value |= ICH_MISR_EL2_VGRP0D;
366 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1EIE) &&
367 (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
368 value |= ICH_MISR_EL2_VGRP1E;
371 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1DIE) &&
372 !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
373 value |= ICH_MISR_EL2_VGRP1D;
376 return value;
379 static void gicv3_cpuif_virt_update(GICv3CPUState *cs)
381 /* Tell the CPU about any pending virtual interrupts or
382 * maintenance interrupts, following a change to the state
383 * of the CPU interface relevant to virtual interrupts.
385 * CAUTION: this function will call qemu_set_irq() on the
386 * CPU maintenance IRQ line, which is typically wired up
387 * to the GIC as a per-CPU interrupt. This means that it
388 * will recursively call back into the GIC code via
389 * gicv3_redist_set_irq() and thus into the CPU interface code's
390 * gicv3_cpuif_update(). It is therefore important that this
391 * function is only called as the final action of a CPU interface
392 * register write implementation, after all the GIC state
393 * fields have been updated. gicv3_cpuif_update() also must
394 * not cause this function to be called, but that happens
395 * naturally as a result of there being no architectural
396 * linkage between the physical and virtual GIC logic.
398 int idx;
399 int irqlevel = 0;
400 int fiqlevel = 0;
401 int maintlevel = 0;
403 idx = hppvi_index(cs);
404 trace_gicv3_cpuif_virt_update(gicv3_redist_affid(cs), idx);
405 if (idx >= 0) {
406 uint64_t lr = cs->ich_lr_el2[idx];
408 if (icv_hppi_can_preempt(cs, lr)) {
409 /* Virtual interrupts are simple: G0 are always FIQ, and G1 IRQ */
410 if (lr & ICH_LR_EL2_GROUP) {
411 irqlevel = 1;
412 } else {
413 fiqlevel = 1;
418 if (cs->ich_hcr_el2 & ICH_HCR_EL2_EN) {
419 maintlevel = maintenance_interrupt_state(cs);
422 trace_gicv3_cpuif_virt_set_irqs(gicv3_redist_affid(cs), fiqlevel,
423 irqlevel, maintlevel);
425 qemu_set_irq(cs->parent_vfiq, fiqlevel);
426 qemu_set_irq(cs->parent_virq, irqlevel);
427 qemu_set_irq(cs->maintenance_irq, maintlevel);
430 static uint64_t icv_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
432 GICv3CPUState *cs = icc_cs_from_env(env);
433 int regno = ri->opc2 & 3;
434 int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1NS;
435 uint64_t value = cs->ich_apr[grp][regno];
437 trace_gicv3_icv_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
438 return value;
441 static void icv_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
442 uint64_t value)
444 GICv3CPUState *cs = icc_cs_from_env(env);
445 int regno = ri->opc2 & 3;
446 int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1NS;
448 trace_gicv3_icv_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
450 cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU;
452 gicv3_cpuif_virt_update(cs);
453 return;
456 static uint64_t icv_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
458 GICv3CPUState *cs = icc_cs_from_env(env);
459 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS;
460 uint64_t bpr;
461 bool satinc = false;
463 if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) {
464 /* reads return bpr0 + 1 saturated to 7, writes ignored */
465 grp = GICV3_G0;
466 satinc = true;
469 bpr = read_vbpr(cs, grp);
471 if (satinc) {
472 bpr++;
473 bpr = MIN(bpr, 7);
476 trace_gicv3_icv_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr);
478 return bpr;
481 static void icv_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri,
482 uint64_t value)
484 GICv3CPUState *cs = icc_cs_from_env(env);
485 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS;
487 trace_gicv3_icv_bpr_write(ri->crm == 8 ? 0 : 1,
488 gicv3_redist_affid(cs), value);
490 if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) {
491 /* reads return bpr0 + 1 saturated to 7, writes ignored */
492 return;
495 write_vbpr(cs, grp, value);
497 gicv3_cpuif_virt_update(cs);
500 static uint64_t icv_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri)
502 GICv3CPUState *cs = icc_cs_from_env(env);
503 uint64_t value;
505 value = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
506 ICH_VMCR_EL2_VPMR_LENGTH);
508 trace_gicv3_icv_pmr_read(gicv3_redist_affid(cs), value);
509 return value;
512 static void icv_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri,
513 uint64_t value)
515 GICv3CPUState *cs = icc_cs_from_env(env);
517 trace_gicv3_icv_pmr_write(gicv3_redist_affid(cs), value);
519 value &= icv_fullprio_mask(cs);
521 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
522 ICH_VMCR_EL2_VPMR_LENGTH, value);
524 gicv3_cpuif_virt_update(cs);
527 static uint64_t icv_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri)
529 GICv3CPUState *cs = icc_cs_from_env(env);
530 int enbit;
531 uint64_t value;
533 enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT;
534 value = extract64(cs->ich_vmcr_el2, enbit, 1);
536 trace_gicv3_icv_igrpen_read(ri->opc2 & 1 ? 1 : 0,
537 gicv3_redist_affid(cs), value);
538 return value;
541 static void icv_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri,
542 uint64_t value)
544 GICv3CPUState *cs = icc_cs_from_env(env);
545 int enbit;
547 trace_gicv3_icv_igrpen_write(ri->opc2 & 1 ? 1 : 0,
548 gicv3_redist_affid(cs), value);
550 enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT;
552 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, enbit, 1, value);
553 gicv3_cpuif_virt_update(cs);
556 static uint64_t icv_ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
558 GICv3CPUState *cs = icc_cs_from_env(env);
559 uint64_t value;
561 /* Note that the fixed fields here (A3V, SEIS, IDbits, PRIbits)
562 * should match the ones reported in ich_vtr_read().
564 value = ICC_CTLR_EL1_A3V | (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
565 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT);
567 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM) {
568 value |= ICC_CTLR_EL1_EOIMODE;
571 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) {
572 value |= ICC_CTLR_EL1_CBPR;
575 trace_gicv3_icv_ctlr_read(gicv3_redist_affid(cs), value);
576 return value;
579 static void icv_ctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
580 uint64_t value)
582 GICv3CPUState *cs = icc_cs_from_env(env);
584 trace_gicv3_icv_ctlr_write(gicv3_redist_affid(cs), value);
586 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VCBPR_SHIFT,
587 1, value & ICC_CTLR_EL1_CBPR ? 1 : 0);
588 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VEOIM_SHIFT,
589 1, value & ICC_CTLR_EL1_EOIMODE ? 1 : 0);
591 gicv3_cpuif_virt_update(cs);
594 static uint64_t icv_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
596 GICv3CPUState *cs = icc_cs_from_env(env);
597 int prio = ich_highest_active_virt_prio(cs);
599 trace_gicv3_icv_rpr_read(gicv3_redist_affid(cs), prio);
600 return prio;
603 static uint64_t icv_hppir_read(CPUARMState *env, const ARMCPRegInfo *ri)
605 GICv3CPUState *cs = icc_cs_from_env(env);
606 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
607 int idx = hppvi_index(cs);
608 uint64_t value = INTID_SPURIOUS;
610 if (idx >= 0) {
611 uint64_t lr = cs->ich_lr_el2[idx];
612 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
614 if (grp == thisgrp) {
615 value = ich_lr_vintid(lr);
619 trace_gicv3_icv_hppir_read(grp, gicv3_redist_affid(cs), value);
620 return value;
623 static void icv_activate_irq(GICv3CPUState *cs, int idx, int grp)
625 /* Activate the interrupt in the specified list register
626 * by moving it from Pending to Active state, and update the
627 * Active Priority Registers.
629 uint32_t mask = icv_gprio_mask(cs, grp);
630 int prio = ich_lr_prio(cs->ich_lr_el2[idx]) & mask;
631 int aprbit = prio >> (8 - cs->vprebits);
632 int regno = aprbit / 32;
633 int regbit = aprbit % 32;
635 cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT;
636 cs->ich_lr_el2[idx] |= ICH_LR_EL2_STATE_ACTIVE_BIT;
637 cs->ich_apr[grp][regno] |= (1 << regbit);
640 static uint64_t icv_iar_read(CPUARMState *env, const ARMCPRegInfo *ri)
642 GICv3CPUState *cs = icc_cs_from_env(env);
643 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
644 int idx = hppvi_index(cs);
645 uint64_t intid = INTID_SPURIOUS;
647 if (idx >= 0) {
648 uint64_t lr = cs->ich_lr_el2[idx];
649 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
651 if (thisgrp == grp && icv_hppi_can_preempt(cs, lr)) {
652 intid = ich_lr_vintid(lr);
653 if (intid < INTID_SECURE) {
654 icv_activate_irq(cs, idx, grp);
655 } else {
656 /* Interrupt goes from Pending to Invalid */
657 cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT;
658 /* We will now return the (bogus) ID from the list register,
659 * as per the pseudocode.
665 trace_gicv3_icv_iar_read(ri->crm == 8 ? 0 : 1,
666 gicv3_redist_affid(cs), intid);
667 return intid;
670 static int icc_highest_active_prio(GICv3CPUState *cs)
672 /* Calculate the current running priority based on the set bits
673 * in the Active Priority Registers.
675 int i;
677 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) {
678 uint32_t apr = cs->icc_apr[GICV3_G0][i] |
679 cs->icc_apr[GICV3_G1][i] | cs->icc_apr[GICV3_G1NS][i];
681 if (!apr) {
682 continue;
684 return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
686 /* No current active interrupts: return idle priority */
687 return 0xff;
690 static uint32_t icc_gprio_mask(GICv3CPUState *cs, int group)
692 /* Return a mask word which clears the subpriority bits from
693 * a priority value for an interrupt in the specified group.
694 * This depends on the BPR value. For CBPR0 (S or NS):
695 * a BPR of 0 means the group priority bits are [7:1];
696 * a BPR of 1 means they are [7:2], and so on down to
697 * a BPR of 7 meaning no group priority bits at all.
698 * For CBPR1 NS:
699 * a BPR of 0 is impossible (the minimum value is 1)
700 * a BPR of 1 means the group priority bits are [7:1];
701 * a BPR of 2 means they are [7:2], and so on down to
702 * a BPR of 7 meaning the group priority is [7].
704 * Which BPR to use depends on the group of the interrupt and
705 * the current ICC_CTLR.CBPR settings.
707 * This corresponds to the GroupBits() pseudocode.
709 int bpr;
711 if ((group == GICV3_G1 && cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR) ||
712 (group == GICV3_G1NS &&
713 cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
714 group = GICV3_G0;
717 bpr = cs->icc_bpr[group] & 7;
719 if (group == GICV3_G1NS) {
720 assert(bpr > 0);
721 bpr--;
724 return ~0U << (bpr + 1);
727 static bool icc_no_enabled_hppi(GICv3CPUState *cs)
729 /* Return true if there is no pending interrupt, or the
730 * highest priority pending interrupt is in a group which has been
731 * disabled at the CPU interface by the ICC_IGRPEN* register enable bits.
733 return cs->hppi.prio == 0xff || (cs->icc_igrpen[cs->hppi.grp] == 0);
736 static bool icc_hppi_can_preempt(GICv3CPUState *cs)
738 /* Return true if we have a pending interrupt of sufficient
739 * priority to preempt.
741 int rprio;
742 uint32_t mask;
744 if (icc_no_enabled_hppi(cs)) {
745 return false;
748 if (cs->hppi.prio >= cs->icc_pmr_el1) {
749 /* Priority mask masks this interrupt */
750 return false;
753 rprio = icc_highest_active_prio(cs);
754 if (rprio == 0xff) {
755 /* No currently running interrupt so we can preempt */
756 return true;
759 mask = icc_gprio_mask(cs, cs->hppi.grp);
761 /* We only preempt a running interrupt if the pending interrupt's
762 * group priority is sufficient (the subpriorities are not considered).
764 if ((cs->hppi.prio & mask) < (rprio & mask)) {
765 return true;
768 return false;
771 void gicv3_cpuif_update(GICv3CPUState *cs)
773 /* Tell the CPU about its highest priority pending interrupt */
774 int irqlevel = 0;
775 int fiqlevel = 0;
776 ARMCPU *cpu = ARM_CPU(cs->cpu);
777 CPUARMState *env = &cpu->env;
779 g_assert(qemu_mutex_iothread_locked());
781 trace_gicv3_cpuif_update(gicv3_redist_affid(cs), cs->hppi.irq,
782 cs->hppi.grp, cs->hppi.prio);
784 if (cs->hppi.grp == GICV3_G1 && !arm_feature(env, ARM_FEATURE_EL3)) {
785 /* If a Security-enabled GIC sends a G1S interrupt to a
786 * Security-disabled CPU, we must treat it as if it were G0.
788 cs->hppi.grp = GICV3_G0;
791 if (icc_hppi_can_preempt(cs)) {
792 /* We have an interrupt: should we signal it as IRQ or FIQ?
793 * This is described in the GICv3 spec section 4.6.2.
795 bool isfiq;
797 switch (cs->hppi.grp) {
798 case GICV3_G0:
799 isfiq = true;
800 break;
801 case GICV3_G1:
802 isfiq = (!arm_is_secure(env) ||
803 (arm_current_el(env) == 3 && arm_el_is_aa64(env, 3)));
804 break;
805 case GICV3_G1NS:
806 isfiq = arm_is_secure(env);
807 break;
808 default:
809 g_assert_not_reached();
812 if (isfiq) {
813 fiqlevel = 1;
814 } else {
815 irqlevel = 1;
819 trace_gicv3_cpuif_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel);
821 qemu_set_irq(cs->parent_fiq, fiqlevel);
822 qemu_set_irq(cs->parent_irq, irqlevel);
825 static uint64_t icc_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri)
827 GICv3CPUState *cs = icc_cs_from_env(env);
828 uint32_t value = cs->icc_pmr_el1;
830 if (icv_access(env, HCR_FMO | HCR_IMO)) {
831 return icv_pmr_read(env, ri);
834 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) &&
835 (env->cp15.scr_el3 & SCR_FIQ)) {
836 /* NS access and Group 0 is inaccessible to NS: return the
837 * NS view of the current priority
839 if (value & 0x80) {
840 /* Secure priorities not visible to NS */
841 value = 0;
842 } else if (value != 0xff) {
843 value = (value << 1) & 0xff;
847 trace_gicv3_icc_pmr_read(gicv3_redist_affid(cs), value);
849 return value;
852 static void icc_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri,
853 uint64_t value)
855 GICv3CPUState *cs = icc_cs_from_env(env);
857 if (icv_access(env, HCR_FMO | HCR_IMO)) {
858 return icv_pmr_write(env, ri, value);
861 trace_gicv3_icc_pmr_write(gicv3_redist_affid(cs), value);
863 value &= 0xff;
865 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) &&
866 (env->cp15.scr_el3 & SCR_FIQ)) {
867 /* NS access and Group 0 is inaccessible to NS: return the
868 * NS view of the current priority
870 if (!(cs->icc_pmr_el1 & 0x80)) {
871 /* Current PMR in the secure range, don't allow NS to change it */
872 return;
874 value = (value >> 1) & 0x80;
876 cs->icc_pmr_el1 = value;
877 gicv3_cpuif_update(cs);
880 static void icc_activate_irq(GICv3CPUState *cs, int irq)
882 /* Move the interrupt from the Pending state to Active, and update
883 * the Active Priority Registers
885 uint32_t mask = icc_gprio_mask(cs, cs->hppi.grp);
886 int prio = cs->hppi.prio & mask;
887 int aprbit = prio >> 1;
888 int regno = aprbit / 32;
889 int regbit = aprbit % 32;
891 cs->icc_apr[cs->hppi.grp][regno] |= (1 << regbit);
893 if (irq < GIC_INTERNAL) {
894 cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 1);
895 cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 0);
896 gicv3_redist_update(cs);
897 } else {
898 gicv3_gicd_active_set(cs->gic, irq);
899 gicv3_gicd_pending_clear(cs->gic, irq);
900 gicv3_update(cs->gic, irq, 1);
904 static uint64_t icc_hppir0_value(GICv3CPUState *cs, CPUARMState *env)
906 /* Return the highest priority pending interrupt register value
907 * for group 0.
909 bool irq_is_secure;
911 if (cs->hppi.prio == 0xff) {
912 return INTID_SPURIOUS;
915 /* Check whether we can return the interrupt or if we should return
916 * a special identifier, as per the CheckGroup0ForSpecialIdentifiers
917 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
918 * is always zero.)
920 irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) &&
921 (cs->hppi.grp != GICV3_G1NS));
923 if (cs->hppi.grp != GICV3_G0 && !arm_is_el3_or_mon(env)) {
924 return INTID_SPURIOUS;
926 if (irq_is_secure && !arm_is_secure(env)) {
927 /* Secure interrupts not visible to Nonsecure */
928 return INTID_SPURIOUS;
931 if (cs->hppi.grp != GICV3_G0) {
932 /* Indicate to EL3 that there's a Group 1 interrupt for the other
933 * state pending.
935 return irq_is_secure ? INTID_SECURE : INTID_NONSECURE;
938 return cs->hppi.irq;
941 static uint64_t icc_hppir1_value(GICv3CPUState *cs, CPUARMState *env)
943 /* Return the highest priority pending interrupt register value
944 * for group 1.
946 bool irq_is_secure;
948 if (cs->hppi.prio == 0xff) {
949 return INTID_SPURIOUS;
952 /* Check whether we can return the interrupt or if we should return
953 * a special identifier, as per the CheckGroup1ForSpecialIdentifiers
954 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
955 * is always zero.)
957 irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) &&
958 (cs->hppi.grp != GICV3_G1NS));
960 if (cs->hppi.grp == GICV3_G0) {
961 /* Group 0 interrupts not visible via HPPIR1 */
962 return INTID_SPURIOUS;
964 if (irq_is_secure) {
965 if (!arm_is_secure(env)) {
966 /* Secure interrupts not visible in Non-secure */
967 return INTID_SPURIOUS;
969 } else if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) {
970 /* Group 1 non-secure interrupts not visible in Secure EL1 */
971 return INTID_SPURIOUS;
974 return cs->hppi.irq;
977 static uint64_t icc_iar0_read(CPUARMState *env, const ARMCPRegInfo *ri)
979 GICv3CPUState *cs = icc_cs_from_env(env);
980 uint64_t intid;
982 if (icv_access(env, HCR_FMO)) {
983 return icv_iar_read(env, ri);
986 if (!icc_hppi_can_preempt(cs)) {
987 intid = INTID_SPURIOUS;
988 } else {
989 intid = icc_hppir0_value(cs, env);
992 if (!(intid >= INTID_SECURE && intid <= INTID_SPURIOUS)) {
993 icc_activate_irq(cs, intid);
996 trace_gicv3_icc_iar0_read(gicv3_redist_affid(cs), intid);
997 return intid;
1000 static uint64_t icc_iar1_read(CPUARMState *env, const ARMCPRegInfo *ri)
1002 GICv3CPUState *cs = icc_cs_from_env(env);
1003 uint64_t intid;
1005 if (icv_access(env, HCR_IMO)) {
1006 return icv_iar_read(env, ri);
1009 if (!icc_hppi_can_preempt(cs)) {
1010 intid = INTID_SPURIOUS;
1011 } else {
1012 intid = icc_hppir1_value(cs, env);
1015 if (!(intid >= INTID_SECURE && intid <= INTID_SPURIOUS)) {
1016 icc_activate_irq(cs, intid);
1019 trace_gicv3_icc_iar1_read(gicv3_redist_affid(cs), intid);
1020 return intid;
1023 static void icc_drop_prio(GICv3CPUState *cs, int grp)
1025 /* Drop the priority of the currently active interrupt in
1026 * the specified group.
1028 * Note that we can guarantee (because of the requirement to nest
1029 * ICC_IAR reads [which activate an interrupt and raise priority]
1030 * with ICC_EOIR writes [which drop the priority for the interrupt])
1031 * that the interrupt we're being called for is the highest priority
1032 * active interrupt, meaning that it has the lowest set bit in the
1033 * APR registers.
1035 * If the guest does not honour the ordering constraints then the
1036 * behaviour of the GIC is UNPREDICTABLE, which for us means that
1037 * the values of the APR registers might become incorrect and the
1038 * running priority will be wrong, so interrupts that should preempt
1039 * might not do so, and interrupts that should not preempt might do so.
1041 int i;
1043 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[grp]); i++) {
1044 uint64_t *papr = &cs->icc_apr[grp][i];
1046 if (!*papr) {
1047 continue;
1049 /* Clear the lowest set bit */
1050 *papr &= *papr - 1;
1051 break;
1054 /* running priority change means we need an update for this cpu i/f */
1055 gicv3_cpuif_update(cs);
1058 static bool icc_eoi_split(CPUARMState *env, GICv3CPUState *cs)
1060 /* Return true if we should split priority drop and interrupt
1061 * deactivation, ie whether the relevant EOIMode bit is set.
1063 if (arm_is_el3_or_mon(env)) {
1064 return cs->icc_ctlr_el3 & ICC_CTLR_EL3_EOIMODE_EL3;
1066 if (arm_is_secure_below_el3(env)) {
1067 return cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_EOIMODE;
1068 } else {
1069 return cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE;
1073 static int icc_highest_active_group(GICv3CPUState *cs)
1075 /* Return the group with the highest priority active interrupt.
1076 * We can do this by just comparing the APRs to see which one
1077 * has the lowest set bit.
1078 * (If more than one group is active at the same priority then
1079 * we're in UNPREDICTABLE territory.)
1081 int i;
1083 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) {
1084 int g0ctz = ctz32(cs->icc_apr[GICV3_G0][i]);
1085 int g1ctz = ctz32(cs->icc_apr[GICV3_G1][i]);
1086 int g1nsctz = ctz32(cs->icc_apr[GICV3_G1NS][i]);
1088 if (g1nsctz < g0ctz && g1nsctz < g1ctz) {
1089 return GICV3_G1NS;
1091 if (g1ctz < g0ctz) {
1092 return GICV3_G1;
1094 if (g0ctz < 32) {
1095 return GICV3_G0;
1098 /* No set active bits? UNPREDICTABLE; return -1 so the caller
1099 * ignores the spurious EOI attempt.
1101 return -1;
1104 static void icc_deactivate_irq(GICv3CPUState *cs, int irq)
1106 if (irq < GIC_INTERNAL) {
1107 cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 0);
1108 gicv3_redist_update(cs);
1109 } else {
1110 gicv3_gicd_active_clear(cs->gic, irq);
1111 gicv3_update(cs->gic, irq, 1);
1115 static bool icv_eoi_split(CPUARMState *env, GICv3CPUState *cs)
1117 /* Return true if we should split priority drop and interrupt
1118 * deactivation, ie whether the virtual EOIMode bit is set.
1120 return cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM;
1123 static int icv_find_active(GICv3CPUState *cs, int irq)
1125 /* Given an interrupt number for an active interrupt, return the index
1126 * of the corresponding list register, or -1 if there is no match.
1127 * Corresponds to FindActiveVirtualInterrupt pseudocode.
1129 int i;
1131 for (i = 0; i < cs->num_list_regs; i++) {
1132 uint64_t lr = cs->ich_lr_el2[i];
1134 if ((lr & ICH_LR_EL2_STATE_ACTIVE_BIT) && ich_lr_vintid(lr) == irq) {
1135 return i;
1139 return -1;
1142 static void icv_deactivate_irq(GICv3CPUState *cs, int idx)
1144 /* Deactivate the interrupt in the specified list register index */
1145 uint64_t lr = cs->ich_lr_el2[idx];
1147 if (lr & ICH_LR_EL2_HW) {
1148 /* Deactivate the associated physical interrupt */
1149 int pirq = ich_lr_pintid(lr);
1151 if (pirq < INTID_SECURE) {
1152 icc_deactivate_irq(cs, pirq);
1156 /* Clear the 'active' part of the state, so ActivePending->Pending
1157 * and Active->Invalid.
1159 lr &= ~ICH_LR_EL2_STATE_ACTIVE_BIT;
1160 cs->ich_lr_el2[idx] = lr;
1163 static void icv_increment_eoicount(GICv3CPUState *cs)
1165 /* Increment the EOICOUNT field in ICH_HCR_EL2 */
1166 int eoicount = extract64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT,
1167 ICH_HCR_EL2_EOICOUNT_LENGTH);
1169 cs->ich_hcr_el2 = deposit64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT,
1170 ICH_HCR_EL2_EOICOUNT_LENGTH, eoicount + 1);
1173 static int icv_drop_prio(GICv3CPUState *cs)
1175 /* Drop the priority of the currently active virtual interrupt
1176 * (favouring group 0 if there is a set active bit at
1177 * the same priority for both group 0 and group 1).
1178 * Return the priority value for the bit we just cleared,
1179 * or 0xff if no bits were set in the AP registers at all.
1180 * Note that though the ich_apr[] are uint64_t only the low
1181 * 32 bits are actually relevant.
1183 int i;
1184 int aprmax = 1 << (cs->vprebits - 5);
1186 assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0]));
1188 for (i = 0; i < aprmax; i++) {
1189 uint64_t *papr0 = &cs->ich_apr[GICV3_G0][i];
1190 uint64_t *papr1 = &cs->ich_apr[GICV3_G1NS][i];
1191 int apr0count, apr1count;
1193 if (!*papr0 && !*papr1) {
1194 continue;
1197 /* We can't just use the bit-twiddling hack icc_drop_prio() does
1198 * because we need to return the bit number we cleared so
1199 * it can be compared against the list register's priority field.
1201 apr0count = ctz32(*papr0);
1202 apr1count = ctz32(*papr1);
1204 if (apr0count <= apr1count) {
1205 *papr0 &= *papr0 - 1;
1206 return (apr0count + i * 32) << (icv_min_vbpr(cs) + 1);
1207 } else {
1208 *papr1 &= *papr1 - 1;
1209 return (apr1count + i * 32) << (icv_min_vbpr(cs) + 1);
1212 return 0xff;
1215 static void icv_dir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1216 uint64_t value)
1218 /* Deactivate interrupt */
1219 GICv3CPUState *cs = icc_cs_from_env(env);
1220 int idx;
1221 int irq = value & 0xffffff;
1223 trace_gicv3_icv_dir_write(gicv3_redist_affid(cs), value);
1225 if (irq >= cs->gic->num_irq) {
1226 /* Also catches special interrupt numbers and LPIs */
1227 return;
1230 if (!icv_eoi_split(env, cs)) {
1231 return;
1234 idx = icv_find_active(cs, irq);
1236 if (idx < 0) {
1237 /* No list register matching this, so increment the EOI count
1238 * (might trigger a maintenance interrupt)
1240 icv_increment_eoicount(cs);
1241 } else {
1242 icv_deactivate_irq(cs, idx);
1245 gicv3_cpuif_virt_update(cs);
1248 static void icv_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1249 uint64_t value)
1251 /* End of Interrupt */
1252 GICv3CPUState *cs = icc_cs_from_env(env);
1253 int irq = value & 0xffffff;
1254 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
1255 int idx, dropprio;
1257 trace_gicv3_icv_eoir_write(ri->crm == 8 ? 0 : 1,
1258 gicv3_redist_affid(cs), value);
1260 if (irq >= cs->gic->num_irq) {
1261 /* Also catches special interrupt numbers and LPIs */
1262 return;
1265 /* We implement the IMPDEF choice of "drop priority before doing
1266 * error checks" (because that lets us avoid scanning the AP
1267 * registers twice).
1269 dropprio = icv_drop_prio(cs);
1270 if (dropprio == 0xff) {
1271 /* No active interrupt. It is CONSTRAINED UNPREDICTABLE
1272 * whether the list registers are checked in this
1273 * situation; we choose not to.
1275 return;
1278 idx = icv_find_active(cs, irq);
1280 if (idx < 0) {
1281 /* No valid list register corresponding to EOI ID */
1282 icv_increment_eoicount(cs);
1283 } else {
1284 uint64_t lr = cs->ich_lr_el2[idx];
1285 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
1286 int lr_gprio = ich_lr_prio(lr) & icv_gprio_mask(cs, grp);
1288 if (thisgrp == grp && lr_gprio == dropprio) {
1289 if (!icv_eoi_split(env, cs)) {
1290 /* Priority drop and deactivate not split: deactivate irq now */
1291 icv_deactivate_irq(cs, idx);
1296 gicv3_cpuif_virt_update(cs);
1299 static void icc_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1300 uint64_t value)
1302 /* End of Interrupt */
1303 GICv3CPUState *cs = icc_cs_from_env(env);
1304 int irq = value & 0xffffff;
1305 int grp;
1307 if (icv_access(env, ri->crm == 8 ? HCR_FMO : HCR_IMO)) {
1308 icv_eoir_write(env, ri, value);
1309 return;
1312 trace_gicv3_icc_eoir_write(ri->crm == 8 ? 0 : 1,
1313 gicv3_redist_affid(cs), value);
1315 if (ri->crm == 8) {
1316 /* EOIR0 */
1317 grp = GICV3_G0;
1318 } else {
1319 /* EOIR1 */
1320 if (arm_is_secure(env)) {
1321 grp = GICV3_G1;
1322 } else {
1323 grp = GICV3_G1NS;
1327 if (irq >= cs->gic->num_irq) {
1328 /* This handles two cases:
1329 * 1. If software writes the ID of a spurious interrupt [ie 1020-1023]
1330 * to the GICC_EOIR, the GIC ignores that write.
1331 * 2. If software writes the number of a non-existent interrupt
1332 * this must be a subcase of "value written does not match the last
1333 * valid interrupt value read from the Interrupt Acknowledge
1334 * register" and so this is UNPREDICTABLE. We choose to ignore it.
1336 return;
1339 if (icc_highest_active_group(cs) != grp) {
1340 return;
1343 icc_drop_prio(cs, grp);
1345 if (!icc_eoi_split(env, cs)) {
1346 /* Priority drop and deactivate not split: deactivate irq now */
1347 icc_deactivate_irq(cs, irq);
1351 static uint64_t icc_hppir0_read(CPUARMState *env, const ARMCPRegInfo *ri)
1353 GICv3CPUState *cs = icc_cs_from_env(env);
1354 uint64_t value;
1356 if (icv_access(env, HCR_FMO)) {
1357 return icv_hppir_read(env, ri);
1360 value = icc_hppir0_value(cs, env);
1361 trace_gicv3_icc_hppir0_read(gicv3_redist_affid(cs), value);
1362 return value;
1365 static uint64_t icc_hppir1_read(CPUARMState *env, const ARMCPRegInfo *ri)
1367 GICv3CPUState *cs = icc_cs_from_env(env);
1368 uint64_t value;
1370 if (icv_access(env, HCR_IMO)) {
1371 return icv_hppir_read(env, ri);
1374 value = icc_hppir1_value(cs, env);
1375 trace_gicv3_icc_hppir1_read(gicv3_redist_affid(cs), value);
1376 return value;
1379 static uint64_t icc_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1381 GICv3CPUState *cs = icc_cs_from_env(env);
1382 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1;
1383 bool satinc = false;
1384 uint64_t bpr;
1386 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1387 return icv_bpr_read(env, ri);
1390 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1391 grp = GICV3_G1NS;
1394 if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) &&
1395 (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) {
1396 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
1397 * modify BPR0
1399 grp = GICV3_G0;
1402 if (grp == GICV3_G1NS && arm_current_el(env) < 3 &&
1403 (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
1404 /* reads return bpr0 + 1 sat to 7, writes ignored */
1405 grp = GICV3_G0;
1406 satinc = true;
1409 bpr = cs->icc_bpr[grp];
1410 if (satinc) {
1411 bpr++;
1412 bpr = MIN(bpr, 7);
1415 trace_gicv3_icc_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr);
1417 return bpr;
1420 static void icc_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1421 uint64_t value)
1423 GICv3CPUState *cs = icc_cs_from_env(env);
1424 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1;
1425 uint64_t minval;
1427 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1428 icv_bpr_write(env, ri, value);
1429 return;
1432 trace_gicv3_icc_bpr_write(ri->crm == 8 ? 0 : 1,
1433 gicv3_redist_affid(cs), value);
1435 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1436 grp = GICV3_G1NS;
1439 if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) &&
1440 (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) {
1441 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
1442 * modify BPR0
1444 grp = GICV3_G0;
1447 if (grp == GICV3_G1NS && arm_current_el(env) < 3 &&
1448 (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
1449 /* reads return bpr0 + 1 sat to 7, writes ignored */
1450 return;
1453 minval = (grp == GICV3_G1NS) ? GIC_MIN_BPR_NS : GIC_MIN_BPR;
1454 if (value < minval) {
1455 value = minval;
1458 cs->icc_bpr[grp] = value & 7;
1459 gicv3_cpuif_update(cs);
1462 static uint64_t icc_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1464 GICv3CPUState *cs = icc_cs_from_env(env);
1465 uint64_t value;
1467 int regno = ri->opc2 & 3;
1468 int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1;
1470 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1471 return icv_ap_read(env, ri);
1474 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1475 grp = GICV3_G1NS;
1478 value = cs->icc_apr[grp][regno];
1480 trace_gicv3_icc_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
1481 return value;
1484 static void icc_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1485 uint64_t value)
1487 GICv3CPUState *cs = icc_cs_from_env(env);
1489 int regno = ri->opc2 & 3;
1490 int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1;
1492 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1493 icv_ap_write(env, ri, value);
1494 return;
1497 trace_gicv3_icc_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
1499 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1500 grp = GICV3_G1NS;
1503 /* It's not possible to claim that a Non-secure interrupt is active
1504 * at a priority outside the Non-secure range (128..255), since this
1505 * would otherwise allow malicious NS code to block delivery of S interrupts
1506 * by writing a bad value to these registers.
1508 if (grp == GICV3_G1NS && regno < 2 && arm_feature(env, ARM_FEATURE_EL3)) {
1509 return;
1512 cs->icc_apr[grp][regno] = value & 0xFFFFFFFFU;
1513 gicv3_cpuif_update(cs);
1516 static void icc_dir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1517 uint64_t value)
1519 /* Deactivate interrupt */
1520 GICv3CPUState *cs = icc_cs_from_env(env);
1521 int irq = value & 0xffffff;
1522 bool irq_is_secure, single_sec_state, irq_is_grp0;
1523 bool route_fiq_to_el3, route_irq_to_el3, route_fiq_to_el2, route_irq_to_el2;
1525 if (icv_access(env, HCR_FMO | HCR_IMO)) {
1526 icv_dir_write(env, ri, value);
1527 return;
1530 trace_gicv3_icc_dir_write(gicv3_redist_affid(cs), value);
1532 if (irq >= cs->gic->num_irq) {
1533 /* Also catches special interrupt numbers and LPIs */
1534 return;
1537 if (!icc_eoi_split(env, cs)) {
1538 return;
1541 int grp = gicv3_irq_group(cs->gic, cs, irq);
1543 single_sec_state = cs->gic->gicd_ctlr & GICD_CTLR_DS;
1544 irq_is_secure = !single_sec_state && (grp != GICV3_G1NS);
1545 irq_is_grp0 = grp == GICV3_G0;
1547 /* Check whether we're allowed to deactivate this interrupt based
1548 * on its group and the current CPU state.
1549 * These checks are laid out to correspond to the spec's pseudocode.
1551 route_fiq_to_el3 = env->cp15.scr_el3 & SCR_FIQ;
1552 route_irq_to_el3 = env->cp15.scr_el3 & SCR_IRQ;
1553 /* No need to include !IsSecure in route_*_to_el2 as it's only
1554 * tested in cases where we know !IsSecure is true.
1556 route_fiq_to_el2 = env->cp15.hcr_el2 & HCR_FMO;
1557 route_irq_to_el2 = env->cp15.hcr_el2 & HCR_FMO;
1559 switch (arm_current_el(env)) {
1560 case 3:
1561 break;
1562 case 2:
1563 if (single_sec_state && irq_is_grp0 && !route_fiq_to_el3) {
1564 break;
1566 if (!irq_is_secure && !irq_is_grp0 && !route_irq_to_el3) {
1567 break;
1569 return;
1570 case 1:
1571 if (!arm_is_secure_below_el3(env)) {
1572 if (single_sec_state && irq_is_grp0 &&
1573 !route_fiq_to_el3 && !route_fiq_to_el2) {
1574 break;
1576 if (!irq_is_secure && !irq_is_grp0 &&
1577 !route_irq_to_el3 && !route_irq_to_el2) {
1578 break;
1580 } else {
1581 if (irq_is_grp0 && !route_fiq_to_el3) {
1582 break;
1584 if (!irq_is_grp0 &&
1585 (!irq_is_secure || !single_sec_state) &&
1586 !route_irq_to_el3) {
1587 break;
1590 return;
1591 default:
1592 g_assert_not_reached();
1595 icc_deactivate_irq(cs, irq);
1598 static uint64_t icc_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1600 GICv3CPUState *cs = icc_cs_from_env(env);
1601 int prio;
1603 if (icv_access(env, HCR_FMO | HCR_IMO)) {
1604 return icv_rpr_read(env, ri);
1607 prio = icc_highest_active_prio(cs);
1609 if (arm_feature(env, ARM_FEATURE_EL3) &&
1610 !arm_is_secure(env) && (env->cp15.scr_el3 & SCR_FIQ)) {
1611 /* NS GIC access and Group 0 is inaccessible to NS */
1612 if (prio & 0x80) {
1613 /* NS mustn't see priorities in the Secure half of the range */
1614 prio = 0;
1615 } else if (prio != 0xff) {
1616 /* Non-idle priority: show the Non-secure view of it */
1617 prio = (prio << 1) & 0xff;
1621 trace_gicv3_icc_rpr_read(gicv3_redist_affid(cs), prio);
1622 return prio;
1625 static void icc_generate_sgi(CPUARMState *env, GICv3CPUState *cs,
1626 uint64_t value, int grp, bool ns)
1628 GICv3State *s = cs->gic;
1630 /* Extract Aff3/Aff2/Aff1 and shift into the bottom 24 bits */
1631 uint64_t aff = extract64(value, 48, 8) << 16 |
1632 extract64(value, 32, 8) << 8 |
1633 extract64(value, 16, 8);
1634 uint32_t targetlist = extract64(value, 0, 16);
1635 uint32_t irq = extract64(value, 24, 4);
1636 bool irm = extract64(value, 40, 1);
1637 int i;
1639 if (grp == GICV3_G1 && s->gicd_ctlr & GICD_CTLR_DS) {
1640 /* If GICD_CTLR.DS == 1, the Distributor treats Secure Group 1
1641 * interrupts as Group 0 interrupts and must send Secure Group 0
1642 * interrupts to the target CPUs.
1644 grp = GICV3_G0;
1647 trace_gicv3_icc_generate_sgi(gicv3_redist_affid(cs), irq, irm,
1648 aff, targetlist);
1650 for (i = 0; i < s->num_cpu; i++) {
1651 GICv3CPUState *ocs = &s->cpu[i];
1653 if (irm) {
1654 /* IRM == 1 : route to all CPUs except self */
1655 if (cs == ocs) {
1656 continue;
1658 } else {
1659 /* IRM == 0 : route to Aff3.Aff2.Aff1.n for all n in [0..15]
1660 * where the corresponding bit is set in targetlist
1662 int aff0;
1664 if (ocs->gicr_typer >> 40 != aff) {
1665 continue;
1667 aff0 = extract64(ocs->gicr_typer, 32, 8);
1668 if (aff0 > 15 || extract32(targetlist, aff0, 1) == 0) {
1669 continue;
1673 /* The redistributor will check against its own GICR_NSACR as needed */
1674 gicv3_redist_send_sgi(ocs, grp, irq, ns);
1678 static void icc_sgi0r_write(CPUARMState *env, const ARMCPRegInfo *ri,
1679 uint64_t value)
1681 /* Generate Secure Group 0 SGI. */
1682 GICv3CPUState *cs = icc_cs_from_env(env);
1683 bool ns = !arm_is_secure(env);
1685 icc_generate_sgi(env, cs, value, GICV3_G0, ns);
1688 static void icc_sgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri,
1689 uint64_t value)
1691 /* Generate Group 1 SGI for the current Security state */
1692 GICv3CPUState *cs = icc_cs_from_env(env);
1693 int grp;
1694 bool ns = !arm_is_secure(env);
1696 grp = ns ? GICV3_G1NS : GICV3_G1;
1697 icc_generate_sgi(env, cs, value, grp, ns);
1700 static void icc_asgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri,
1701 uint64_t value)
1703 /* Generate Group 1 SGI for the Security state that is not
1704 * the current state
1706 GICv3CPUState *cs = icc_cs_from_env(env);
1707 int grp;
1708 bool ns = !arm_is_secure(env);
1710 grp = ns ? GICV3_G1 : GICV3_G1NS;
1711 icc_generate_sgi(env, cs, value, grp, ns);
1714 static uint64_t icc_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri)
1716 GICv3CPUState *cs = icc_cs_from_env(env);
1717 int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0;
1718 uint64_t value;
1720 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1721 return icv_igrpen_read(env, ri);
1724 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1725 grp = GICV3_G1NS;
1728 value = cs->icc_igrpen[grp];
1729 trace_gicv3_icc_igrpen_read(ri->opc2 & 1 ? 1 : 0,
1730 gicv3_redist_affid(cs), value);
1731 return value;
1734 static void icc_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri,
1735 uint64_t value)
1737 GICv3CPUState *cs = icc_cs_from_env(env);
1738 int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0;
1740 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1741 icv_igrpen_write(env, ri, value);
1742 return;
1745 trace_gicv3_icc_igrpen_write(ri->opc2 & 1 ? 1 : 0,
1746 gicv3_redist_affid(cs), value);
1748 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1749 grp = GICV3_G1NS;
1752 cs->icc_igrpen[grp] = value & ICC_IGRPEN_ENABLE;
1753 gicv3_cpuif_update(cs);
1756 static uint64_t icc_igrpen1_el3_read(CPUARMState *env, const ARMCPRegInfo *ri)
1758 GICv3CPUState *cs = icc_cs_from_env(env);
1759 uint64_t value;
1761 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
1762 value = cs->icc_igrpen[GICV3_G1NS] | (cs->icc_igrpen[GICV3_G1] << 1);
1763 trace_gicv3_icc_igrpen1_el3_read(gicv3_redist_affid(cs), value);
1764 return value;
1767 static void icc_igrpen1_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
1768 uint64_t value)
1770 GICv3CPUState *cs = icc_cs_from_env(env);
1772 trace_gicv3_icc_igrpen1_el3_write(gicv3_redist_affid(cs), value);
1774 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
1775 cs->icc_igrpen[GICV3_G1NS] = extract32(value, 0, 1);
1776 cs->icc_igrpen[GICV3_G1] = extract32(value, 1, 1);
1777 gicv3_cpuif_update(cs);
1780 static uint64_t icc_ctlr_el1_read(CPUARMState *env, const ARMCPRegInfo *ri)
1782 GICv3CPUState *cs = icc_cs_from_env(env);
1783 int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S;
1784 uint64_t value;
1786 if (icv_access(env, HCR_FMO | HCR_IMO)) {
1787 return icv_ctlr_read(env, ri);
1790 value = cs->icc_ctlr_el1[bank];
1791 trace_gicv3_icc_ctlr_read(gicv3_redist_affid(cs), value);
1792 return value;
1795 static void icc_ctlr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
1796 uint64_t value)
1798 GICv3CPUState *cs = icc_cs_from_env(env);
1799 int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S;
1800 uint64_t mask;
1802 if (icv_access(env, HCR_FMO | HCR_IMO)) {
1803 icv_ctlr_write(env, ri, value);
1804 return;
1807 trace_gicv3_icc_ctlr_write(gicv3_redist_affid(cs), value);
1809 /* Only CBPR and EOIMODE can be RW;
1810 * for us PMHE is RAZ/WI (we don't implement 1-of-N interrupts or
1811 * the asseciated priority-based routing of them);
1812 * if EL3 is implemented and GICD_CTLR.DS == 0, then PMHE and CBPR are RO.
1814 if (arm_feature(env, ARM_FEATURE_EL3) &&
1815 ((cs->gic->gicd_ctlr & GICD_CTLR_DS) == 0)) {
1816 mask = ICC_CTLR_EL1_EOIMODE;
1817 } else {
1818 mask = ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE;
1821 cs->icc_ctlr_el1[bank] &= ~mask;
1822 cs->icc_ctlr_el1[bank] |= (value & mask);
1823 gicv3_cpuif_update(cs);
1827 static uint64_t icc_ctlr_el3_read(CPUARMState *env, const ARMCPRegInfo *ri)
1829 GICv3CPUState *cs = icc_cs_from_env(env);
1830 uint64_t value;
1832 value = cs->icc_ctlr_el3;
1833 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) {
1834 value |= ICC_CTLR_EL3_EOIMODE_EL1NS;
1836 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) {
1837 value |= ICC_CTLR_EL3_CBPR_EL1NS;
1839 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) {
1840 value |= ICC_CTLR_EL3_EOIMODE_EL1S;
1842 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) {
1843 value |= ICC_CTLR_EL3_CBPR_EL1S;
1846 trace_gicv3_icc_ctlr_el3_read(gicv3_redist_affid(cs), value);
1847 return value;
1850 static void icc_ctlr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
1851 uint64_t value)
1853 GICv3CPUState *cs = icc_cs_from_env(env);
1854 uint64_t mask;
1856 trace_gicv3_icc_ctlr_el3_write(gicv3_redist_affid(cs), value);
1858 /* *_EL1NS and *_EL1S bits are aliases into the ICC_CTLR_EL1 bits. */
1859 cs->icc_ctlr_el1[GICV3_NS] &= (ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE);
1860 if (value & ICC_CTLR_EL3_EOIMODE_EL1NS) {
1861 cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_EOIMODE;
1863 if (value & ICC_CTLR_EL3_CBPR_EL1NS) {
1864 cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_CBPR;
1867 cs->icc_ctlr_el1[GICV3_S] &= (ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE);
1868 if (value & ICC_CTLR_EL3_EOIMODE_EL1S) {
1869 cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_EOIMODE;
1871 if (value & ICC_CTLR_EL3_CBPR_EL1S) {
1872 cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_CBPR;
1875 /* The only bit stored in icc_ctlr_el3 which is writeable is EOIMODE_EL3: */
1876 mask = ICC_CTLR_EL3_EOIMODE_EL3;
1878 cs->icc_ctlr_el3 &= ~mask;
1879 cs->icc_ctlr_el3 |= (value & mask);
1880 gicv3_cpuif_update(cs);
1883 static CPAccessResult gicv3_irqfiq_access(CPUARMState *env,
1884 const ARMCPRegInfo *ri, bool isread)
1886 CPAccessResult r = CP_ACCESS_OK;
1887 GICv3CPUState *cs = icc_cs_from_env(env);
1888 int el = arm_current_el(env);
1890 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TC) &&
1891 el == 1 && !arm_is_secure_below_el3(env)) {
1892 /* Takes priority over a possible EL3 trap */
1893 return CP_ACCESS_TRAP_EL2;
1896 if ((env->cp15.scr_el3 & (SCR_FIQ | SCR_IRQ)) == (SCR_FIQ | SCR_IRQ)) {
1897 switch (el) {
1898 case 1:
1899 if (arm_is_secure_below_el3(env) ||
1900 ((env->cp15.hcr_el2 & (HCR_IMO | HCR_FMO)) == 0)) {
1901 r = CP_ACCESS_TRAP_EL3;
1903 break;
1904 case 2:
1905 r = CP_ACCESS_TRAP_EL3;
1906 break;
1907 case 3:
1908 if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
1909 r = CP_ACCESS_TRAP_EL3;
1911 break;
1912 default:
1913 g_assert_not_reached();
1917 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
1918 r = CP_ACCESS_TRAP;
1920 return r;
1923 static CPAccessResult gicv3_dir_access(CPUARMState *env,
1924 const ARMCPRegInfo *ri, bool isread)
1926 GICv3CPUState *cs = icc_cs_from_env(env);
1928 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TDIR) &&
1929 arm_current_el(env) == 1 && !arm_is_secure_below_el3(env)) {
1930 /* Takes priority over a possible EL3 trap */
1931 return CP_ACCESS_TRAP_EL2;
1934 return gicv3_irqfiq_access(env, ri, isread);
1937 static CPAccessResult gicv3_sgi_access(CPUARMState *env,
1938 const ARMCPRegInfo *ri, bool isread)
1940 if ((env->cp15.hcr_el2 & (HCR_IMO | HCR_FMO)) &&
1941 arm_current_el(env) == 1 && !arm_is_secure_below_el3(env)) {
1942 /* Takes priority over a possible EL3 trap */
1943 return CP_ACCESS_TRAP_EL2;
1946 return gicv3_irqfiq_access(env, ri, isread);
1949 static CPAccessResult gicv3_fiq_access(CPUARMState *env,
1950 const ARMCPRegInfo *ri, bool isread)
1952 CPAccessResult r = CP_ACCESS_OK;
1953 GICv3CPUState *cs = icc_cs_from_env(env);
1954 int el = arm_current_el(env);
1956 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL0) &&
1957 el == 1 && !arm_is_secure_below_el3(env)) {
1958 /* Takes priority over a possible EL3 trap */
1959 return CP_ACCESS_TRAP_EL2;
1962 if (env->cp15.scr_el3 & SCR_FIQ) {
1963 switch (el) {
1964 case 1:
1965 if (arm_is_secure_below_el3(env) ||
1966 ((env->cp15.hcr_el2 & HCR_FMO) == 0)) {
1967 r = CP_ACCESS_TRAP_EL3;
1969 break;
1970 case 2:
1971 r = CP_ACCESS_TRAP_EL3;
1972 break;
1973 case 3:
1974 if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
1975 r = CP_ACCESS_TRAP_EL3;
1977 break;
1978 default:
1979 g_assert_not_reached();
1983 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
1984 r = CP_ACCESS_TRAP;
1986 return r;
1989 static CPAccessResult gicv3_irq_access(CPUARMState *env,
1990 const ARMCPRegInfo *ri, bool isread)
1992 CPAccessResult r = CP_ACCESS_OK;
1993 GICv3CPUState *cs = icc_cs_from_env(env);
1994 int el = arm_current_el(env);
1996 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL1) &&
1997 el == 1 && !arm_is_secure_below_el3(env)) {
1998 /* Takes priority over a possible EL3 trap */
1999 return CP_ACCESS_TRAP_EL2;
2002 if (env->cp15.scr_el3 & SCR_IRQ) {
2003 switch (el) {
2004 case 1:
2005 if (arm_is_secure_below_el3(env) ||
2006 ((env->cp15.hcr_el2 & HCR_IMO) == 0)) {
2007 r = CP_ACCESS_TRAP_EL3;
2009 break;
2010 case 2:
2011 r = CP_ACCESS_TRAP_EL3;
2012 break;
2013 case 3:
2014 if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
2015 r = CP_ACCESS_TRAP_EL3;
2017 break;
2018 default:
2019 g_assert_not_reached();
2023 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
2024 r = CP_ACCESS_TRAP;
2026 return r;
2029 static void icc_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2031 GICv3CPUState *cs = icc_cs_from_env(env);
2033 cs->icc_ctlr_el1[GICV3_S] = ICC_CTLR_EL1_A3V |
2034 (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
2035 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT);
2036 cs->icc_ctlr_el1[GICV3_NS] = ICC_CTLR_EL1_A3V |
2037 (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
2038 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT);
2039 cs->icc_pmr_el1 = 0;
2040 cs->icc_bpr[GICV3_G0] = GIC_MIN_BPR;
2041 cs->icc_bpr[GICV3_G1] = GIC_MIN_BPR;
2042 cs->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR_NS;
2043 memset(cs->icc_apr, 0, sizeof(cs->icc_apr));
2044 memset(cs->icc_igrpen, 0, sizeof(cs->icc_igrpen));
2045 cs->icc_ctlr_el3 = ICC_CTLR_EL3_NDS | ICC_CTLR_EL3_A3V |
2046 (1 << ICC_CTLR_EL3_IDBITS_SHIFT) |
2047 (7 << ICC_CTLR_EL3_PRIBITS_SHIFT);
2049 memset(cs->ich_apr, 0, sizeof(cs->ich_apr));
2050 cs->ich_hcr_el2 = 0;
2051 memset(cs->ich_lr_el2, 0, sizeof(cs->ich_lr_el2));
2052 cs->ich_vmcr_el2 = ICH_VMCR_EL2_VFIQEN |
2053 ((icv_min_vbpr(cs) + 1) << ICH_VMCR_EL2_VBPR1_SHIFT) |
2054 (icv_min_vbpr(cs) << ICH_VMCR_EL2_VBPR0_SHIFT);
2057 static const ARMCPRegInfo gicv3_cpuif_reginfo[] = {
2058 { .name = "ICC_PMR_EL1", .state = ARM_CP_STATE_BOTH,
2059 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 6, .opc2 = 0,
2060 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2061 .access = PL1_RW, .accessfn = gicv3_irqfiq_access,
2062 .readfn = icc_pmr_read,
2063 .writefn = icc_pmr_write,
2064 /* We hang the whole cpu interface reset routine off here
2065 * rather than parcelling it out into one little function
2066 * per register
2068 .resetfn = icc_reset,
2070 { .name = "ICC_IAR0_EL1", .state = ARM_CP_STATE_BOTH,
2071 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 0,
2072 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2073 .access = PL1_R, .accessfn = gicv3_fiq_access,
2074 .readfn = icc_iar0_read,
2076 { .name = "ICC_EOIR0_EL1", .state = ARM_CP_STATE_BOTH,
2077 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 1,
2078 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2079 .access = PL1_W, .accessfn = gicv3_fiq_access,
2080 .writefn = icc_eoir_write,
2082 { .name = "ICC_HPPIR0_EL1", .state = ARM_CP_STATE_BOTH,
2083 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 2,
2084 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2085 .access = PL1_R, .accessfn = gicv3_fiq_access,
2086 .readfn = icc_hppir0_read,
2088 { .name = "ICC_BPR0_EL1", .state = ARM_CP_STATE_BOTH,
2089 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 3,
2090 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2091 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2092 .readfn = icc_bpr_read,
2093 .writefn = icc_bpr_write,
2095 { .name = "ICC_AP0R0_EL1", .state = ARM_CP_STATE_BOTH,
2096 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 4,
2097 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2098 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2099 .readfn = icc_ap_read,
2100 .writefn = icc_ap_write,
2102 { .name = "ICC_AP0R1_EL1", .state = ARM_CP_STATE_BOTH,
2103 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 5,
2104 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2105 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2106 .readfn = icc_ap_read,
2107 .writefn = icc_ap_write,
2109 { .name = "ICC_AP0R2_EL1", .state = ARM_CP_STATE_BOTH,
2110 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 6,
2111 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2112 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2113 .readfn = icc_ap_read,
2114 .writefn = icc_ap_write,
2116 { .name = "ICC_AP0R3_EL1", .state = ARM_CP_STATE_BOTH,
2117 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 7,
2118 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2119 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2120 .readfn = icc_ap_read,
2121 .writefn = icc_ap_write,
2123 /* All the ICC_AP1R*_EL1 registers are banked */
2124 { .name = "ICC_AP1R0_EL1", .state = ARM_CP_STATE_BOTH,
2125 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 0,
2126 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2127 .access = PL1_RW, .accessfn = gicv3_irq_access,
2128 .readfn = icc_ap_read,
2129 .writefn = icc_ap_write,
2131 { .name = "ICC_AP1R1_EL1", .state = ARM_CP_STATE_BOTH,
2132 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 1,
2133 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2134 .access = PL1_RW, .accessfn = gicv3_irq_access,
2135 .readfn = icc_ap_read,
2136 .writefn = icc_ap_write,
2138 { .name = "ICC_AP1R2_EL1", .state = ARM_CP_STATE_BOTH,
2139 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 2,
2140 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2141 .access = PL1_RW, .accessfn = gicv3_irq_access,
2142 .readfn = icc_ap_read,
2143 .writefn = icc_ap_write,
2145 { .name = "ICC_AP1R3_EL1", .state = ARM_CP_STATE_BOTH,
2146 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 3,
2147 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2148 .access = PL1_RW, .accessfn = gicv3_irq_access,
2149 .readfn = icc_ap_read,
2150 .writefn = icc_ap_write,
2152 { .name = "ICC_DIR_EL1", .state = ARM_CP_STATE_BOTH,
2153 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 1,
2154 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2155 .access = PL1_W, .accessfn = gicv3_dir_access,
2156 .writefn = icc_dir_write,
2158 { .name = "ICC_RPR_EL1", .state = ARM_CP_STATE_BOTH,
2159 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 3,
2160 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2161 .access = PL1_R, .accessfn = gicv3_irqfiq_access,
2162 .readfn = icc_rpr_read,
2164 { .name = "ICC_SGI1R_EL1", .state = ARM_CP_STATE_AA64,
2165 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 5,
2166 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2167 .access = PL1_W, .accessfn = gicv3_sgi_access,
2168 .writefn = icc_sgi1r_write,
2170 { .name = "ICC_SGI1R",
2171 .cp = 15, .opc1 = 0, .crm = 12,
2172 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
2173 .access = PL1_W, .accessfn = gicv3_sgi_access,
2174 .writefn = icc_sgi1r_write,
2176 { .name = "ICC_ASGI1R_EL1", .state = ARM_CP_STATE_AA64,
2177 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 6,
2178 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2179 .access = PL1_W, .accessfn = gicv3_sgi_access,
2180 .writefn = icc_asgi1r_write,
2182 { .name = "ICC_ASGI1R",
2183 .cp = 15, .opc1 = 1, .crm = 12,
2184 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
2185 .access = PL1_W, .accessfn = gicv3_sgi_access,
2186 .writefn = icc_asgi1r_write,
2188 { .name = "ICC_SGI0R_EL1", .state = ARM_CP_STATE_AA64,
2189 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 7,
2190 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2191 .access = PL1_W, .accessfn = gicv3_sgi_access,
2192 .writefn = icc_sgi0r_write,
2194 { .name = "ICC_SGI0R",
2195 .cp = 15, .opc1 = 2, .crm = 12,
2196 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
2197 .access = PL1_W, .accessfn = gicv3_sgi_access,
2198 .writefn = icc_sgi0r_write,
2200 { .name = "ICC_IAR1_EL1", .state = ARM_CP_STATE_BOTH,
2201 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 0,
2202 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2203 .access = PL1_R, .accessfn = gicv3_irq_access,
2204 .readfn = icc_iar1_read,
2206 { .name = "ICC_EOIR1_EL1", .state = ARM_CP_STATE_BOTH,
2207 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 1,
2208 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2209 .access = PL1_W, .accessfn = gicv3_irq_access,
2210 .writefn = icc_eoir_write,
2212 { .name = "ICC_HPPIR1_EL1", .state = ARM_CP_STATE_BOTH,
2213 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 2,
2214 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2215 .access = PL1_R, .accessfn = gicv3_irq_access,
2216 .readfn = icc_hppir1_read,
2218 /* This register is banked */
2219 { .name = "ICC_BPR1_EL1", .state = ARM_CP_STATE_BOTH,
2220 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 3,
2221 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2222 .access = PL1_RW, .accessfn = gicv3_irq_access,
2223 .readfn = icc_bpr_read,
2224 .writefn = icc_bpr_write,
2226 /* This register is banked */
2227 { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH,
2228 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4,
2229 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2230 .access = PL1_RW, .accessfn = gicv3_irqfiq_access,
2231 .readfn = icc_ctlr_el1_read,
2232 .writefn = icc_ctlr_el1_write,
2234 { .name = "ICC_SRE_EL1", .state = ARM_CP_STATE_BOTH,
2235 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 5,
2236 .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2237 .access = PL1_RW,
2238 /* We don't support IRQ/FIQ bypass and system registers are
2239 * always enabled, so all our bits are RAZ/WI or RAO/WI.
2240 * This register is banked but since it's constant we don't
2241 * need to do anything special.
2243 .resetvalue = 0x7,
2245 { .name = "ICC_IGRPEN0_EL1", .state = ARM_CP_STATE_BOTH,
2246 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 6,
2247 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2248 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2249 .readfn = icc_igrpen_read,
2250 .writefn = icc_igrpen_write,
2252 /* This register is banked */
2253 { .name = "ICC_IGRPEN1_EL1", .state = ARM_CP_STATE_BOTH,
2254 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 7,
2255 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2256 .access = PL1_RW, .accessfn = gicv3_irq_access,
2257 .readfn = icc_igrpen_read,
2258 .writefn = icc_igrpen_write,
2260 { .name = "ICC_SRE_EL2", .state = ARM_CP_STATE_BOTH,
2261 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 5,
2262 .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2263 .access = PL2_RW,
2264 /* We don't support IRQ/FIQ bypass and system registers are
2265 * always enabled, so all our bits are RAZ/WI or RAO/WI.
2267 .resetvalue = 0xf,
2269 { .name = "ICC_CTLR_EL3", .state = ARM_CP_STATE_BOTH,
2270 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 4,
2271 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2272 .access = PL3_RW,
2273 .readfn = icc_ctlr_el3_read,
2274 .writefn = icc_ctlr_el3_write,
2276 { .name = "ICC_SRE_EL3", .state = ARM_CP_STATE_BOTH,
2277 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 5,
2278 .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2279 .access = PL3_RW,
2280 /* We don't support IRQ/FIQ bypass and system registers are
2281 * always enabled, so all our bits are RAZ/WI or RAO/WI.
2283 .resetvalue = 0xf,
2285 { .name = "ICC_IGRPEN1_EL3", .state = ARM_CP_STATE_BOTH,
2286 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 7,
2287 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2288 .access = PL3_RW,
2289 .readfn = icc_igrpen1_el3_read,
2290 .writefn = icc_igrpen1_el3_write,
2292 REGINFO_SENTINEL
2295 static uint64_t ich_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2297 GICv3CPUState *cs = icc_cs_from_env(env);
2298 int regno = ri->opc2 & 3;
2299 int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1NS;
2300 uint64_t value;
2302 value = cs->ich_apr[grp][regno];
2303 trace_gicv3_ich_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
2304 return value;
2307 static void ich_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2308 uint64_t value)
2310 GICv3CPUState *cs = icc_cs_from_env(env);
2311 int regno = ri->opc2 & 3;
2312 int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1NS;
2314 trace_gicv3_ich_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
2316 cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU;
2317 gicv3_cpuif_virt_update(cs);
2320 static uint64_t ich_hcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2322 GICv3CPUState *cs = icc_cs_from_env(env);
2323 uint64_t value = cs->ich_hcr_el2;
2325 trace_gicv3_ich_hcr_read(gicv3_redist_affid(cs), value);
2326 return value;
2329 static void ich_hcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2330 uint64_t value)
2332 GICv3CPUState *cs = icc_cs_from_env(env);
2334 trace_gicv3_ich_hcr_write(gicv3_redist_affid(cs), value);
2336 value &= ICH_HCR_EL2_EN | ICH_HCR_EL2_UIE | ICH_HCR_EL2_LRENPIE |
2337 ICH_HCR_EL2_NPIE | ICH_HCR_EL2_VGRP0EIE | ICH_HCR_EL2_VGRP0DIE |
2338 ICH_HCR_EL2_VGRP1EIE | ICH_HCR_EL2_VGRP1DIE | ICH_HCR_EL2_TC |
2339 ICH_HCR_EL2_TALL0 | ICH_HCR_EL2_TALL1 | ICH_HCR_EL2_TSEI |
2340 ICH_HCR_EL2_TDIR | ICH_HCR_EL2_EOICOUNT_MASK;
2342 cs->ich_hcr_el2 = value;
2343 gicv3_cpuif_virt_update(cs);
2346 static uint64_t ich_vmcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2348 GICv3CPUState *cs = icc_cs_from_env(env);
2349 uint64_t value = cs->ich_vmcr_el2;
2351 trace_gicv3_ich_vmcr_read(gicv3_redist_affid(cs), value);
2352 return value;
2355 static void ich_vmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2356 uint64_t value)
2358 GICv3CPUState *cs = icc_cs_from_env(env);
2360 trace_gicv3_ich_vmcr_write(gicv3_redist_affid(cs), value);
2362 value &= ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1 | ICH_VMCR_EL2_VCBPR |
2363 ICH_VMCR_EL2_VEOIM | ICH_VMCR_EL2_VBPR1_MASK |
2364 ICH_VMCR_EL2_VBPR0_MASK | ICH_VMCR_EL2_VPMR_MASK;
2365 value |= ICH_VMCR_EL2_VFIQEN;
2367 cs->ich_vmcr_el2 = value;
2368 /* Enforce "writing BPRs to less than minimum sets them to the minimum"
2369 * by reading and writing back the fields.
2371 write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G0));
2372 write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G1));
2374 gicv3_cpuif_virt_update(cs);
2377 static uint64_t ich_lr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2379 GICv3CPUState *cs = icc_cs_from_env(env);
2380 int regno = ri->opc2 | ((ri->crm & 1) << 3);
2381 uint64_t value;
2383 /* This read function handles all of:
2384 * 64-bit reads of the whole LR
2385 * 32-bit reads of the low half of the LR
2386 * 32-bit reads of the high half of the LR
2388 if (ri->state == ARM_CP_STATE_AA32) {
2389 if (ri->crm >= 14) {
2390 value = extract64(cs->ich_lr_el2[regno], 32, 32);
2391 trace_gicv3_ich_lrc_read(regno, gicv3_redist_affid(cs), value);
2392 } else {
2393 value = extract64(cs->ich_lr_el2[regno], 0, 32);
2394 trace_gicv3_ich_lr32_read(regno, gicv3_redist_affid(cs), value);
2396 } else {
2397 value = cs->ich_lr_el2[regno];
2398 trace_gicv3_ich_lr_read(regno, gicv3_redist_affid(cs), value);
2401 return value;
2404 static void ich_lr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2405 uint64_t value)
2407 GICv3CPUState *cs = icc_cs_from_env(env);
2408 int regno = ri->opc2 | ((ri->crm & 1) << 3);
2410 /* This write function handles all of:
2411 * 64-bit writes to the whole LR
2412 * 32-bit writes to the low half of the LR
2413 * 32-bit writes to the high half of the LR
2415 if (ri->state == ARM_CP_STATE_AA32) {
2416 if (ri->crm >= 14) {
2417 trace_gicv3_ich_lrc_write(regno, gicv3_redist_affid(cs), value);
2418 value = deposit64(cs->ich_lr_el2[regno], 32, 32, value);
2419 } else {
2420 trace_gicv3_ich_lr32_write(regno, gicv3_redist_affid(cs), value);
2421 value = deposit64(cs->ich_lr_el2[regno], 0, 32, value);
2423 } else {
2424 trace_gicv3_ich_lr_write(regno, gicv3_redist_affid(cs), value);
2427 /* Enforce RES0 bits in priority field */
2428 if (cs->vpribits < 8) {
2429 value = deposit64(value, ICH_LR_EL2_PRIORITY_SHIFT,
2430 8 - cs->vpribits, 0);
2433 cs->ich_lr_el2[regno] = value;
2434 gicv3_cpuif_virt_update(cs);
2437 static uint64_t ich_vtr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2439 GICv3CPUState *cs = icc_cs_from_env(env);
2440 uint64_t value;
2442 value = ((cs->num_list_regs - 1) << ICH_VTR_EL2_LISTREGS_SHIFT)
2443 | ICH_VTR_EL2_TDS | ICH_VTR_EL2_NV4 | ICH_VTR_EL2_A3V
2444 | (1 << ICH_VTR_EL2_IDBITS_SHIFT)
2445 | ((cs->vprebits - 1) << ICH_VTR_EL2_PREBITS_SHIFT)
2446 | ((cs->vpribits - 1) << ICH_VTR_EL2_PRIBITS_SHIFT);
2448 trace_gicv3_ich_vtr_read(gicv3_redist_affid(cs), value);
2449 return value;
2452 static uint64_t ich_misr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2454 GICv3CPUState *cs = icc_cs_from_env(env);
2455 uint64_t value = maintenance_interrupt_state(cs);
2457 trace_gicv3_ich_misr_read(gicv3_redist_affid(cs), value);
2458 return value;
2461 static uint64_t ich_eisr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2463 GICv3CPUState *cs = icc_cs_from_env(env);
2464 uint64_t value = eoi_maintenance_interrupt_state(cs, NULL);
2466 trace_gicv3_ich_eisr_read(gicv3_redist_affid(cs), value);
2467 return value;
2470 static uint64_t ich_elrsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2472 GICv3CPUState *cs = icc_cs_from_env(env);
2473 uint64_t value = 0;
2474 int i;
2476 for (i = 0; i < cs->num_list_regs; i++) {
2477 uint64_t lr = cs->ich_lr_el2[i];
2479 if ((lr & ICH_LR_EL2_STATE_MASK) == 0 &&
2480 ((lr & ICH_LR_EL2_HW) != 0 || (lr & ICH_LR_EL2_EOI) == 0)) {
2481 value |= (1 << i);
2485 trace_gicv3_ich_elrsr_read(gicv3_redist_affid(cs), value);
2486 return value;
2489 static const ARMCPRegInfo gicv3_cpuif_hcr_reginfo[] = {
2490 { .name = "ICH_AP0R0_EL2", .state = ARM_CP_STATE_BOTH,
2491 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 0,
2492 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2493 .access = PL2_RW,
2494 .readfn = ich_ap_read,
2495 .writefn = ich_ap_write,
2497 { .name = "ICH_AP1R0_EL2", .state = ARM_CP_STATE_BOTH,
2498 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 0,
2499 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2500 .access = PL2_RW,
2501 .readfn = ich_ap_read,
2502 .writefn = ich_ap_write,
2504 { .name = "ICH_HCR_EL2", .state = ARM_CP_STATE_BOTH,
2505 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 0,
2506 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2507 .access = PL2_RW,
2508 .readfn = ich_hcr_read,
2509 .writefn = ich_hcr_write,
2511 { .name = "ICH_VTR_EL2", .state = ARM_CP_STATE_BOTH,
2512 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 1,
2513 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2514 .access = PL2_R,
2515 .readfn = ich_vtr_read,
2517 { .name = "ICH_MISR_EL2", .state = ARM_CP_STATE_BOTH,
2518 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 2,
2519 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2520 .access = PL2_R,
2521 .readfn = ich_misr_read,
2523 { .name = "ICH_EISR_EL2", .state = ARM_CP_STATE_BOTH,
2524 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 3,
2525 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2526 .access = PL2_R,
2527 .readfn = ich_eisr_read,
2529 { .name = "ICH_ELRSR_EL2", .state = ARM_CP_STATE_BOTH,
2530 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 5,
2531 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2532 .access = PL2_R,
2533 .readfn = ich_elrsr_read,
2535 { .name = "ICH_VMCR_EL2", .state = ARM_CP_STATE_BOTH,
2536 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 7,
2537 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2538 .access = PL2_RW,
2539 .readfn = ich_vmcr_read,
2540 .writefn = ich_vmcr_write,
2542 REGINFO_SENTINEL
2545 static const ARMCPRegInfo gicv3_cpuif_ich_apxr1_reginfo[] = {
2546 { .name = "ICH_AP0R1_EL2", .state = ARM_CP_STATE_BOTH,
2547 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 1,
2548 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2549 .access = PL2_RW,
2550 .readfn = ich_ap_read,
2551 .writefn = ich_ap_write,
2553 { .name = "ICH_AP1R1_EL2", .state = ARM_CP_STATE_BOTH,
2554 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 1,
2555 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2556 .access = PL2_RW,
2557 .readfn = ich_ap_read,
2558 .writefn = ich_ap_write,
2560 REGINFO_SENTINEL
2563 static const ARMCPRegInfo gicv3_cpuif_ich_apxr23_reginfo[] = {
2564 { .name = "ICH_AP0R2_EL2", .state = ARM_CP_STATE_BOTH,
2565 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 2,
2566 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2567 .access = PL2_RW,
2568 .readfn = ich_ap_read,
2569 .writefn = ich_ap_write,
2571 { .name = "ICH_AP0R3_EL2", .state = ARM_CP_STATE_BOTH,
2572 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 3,
2573 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2574 .access = PL2_RW,
2575 .readfn = ich_ap_read,
2576 .writefn = ich_ap_write,
2578 { .name = "ICH_AP1R2_EL2", .state = ARM_CP_STATE_BOTH,
2579 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 2,
2580 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2581 .access = PL2_RW,
2582 .readfn = ich_ap_read,
2583 .writefn = ich_ap_write,
2585 { .name = "ICH_AP1R3_EL2", .state = ARM_CP_STATE_BOTH,
2586 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 3,
2587 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2588 .access = PL2_RW,
2589 .readfn = ich_ap_read,
2590 .writefn = ich_ap_write,
2592 REGINFO_SENTINEL
2595 static void gicv3_cpuif_el_change_hook(ARMCPU *cpu, void *opaque)
2597 GICv3CPUState *cs = opaque;
2599 gicv3_cpuif_update(cs);
2602 void gicv3_init_cpuif(GICv3State *s)
2604 /* Called from the GICv3 realize function; register our system
2605 * registers with the CPU
2607 int i;
2609 for (i = 0; i < s->num_cpu; i++) {
2610 ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i));
2611 GICv3CPUState *cs = &s->cpu[i];
2613 /* Note that we can't just use the GICv3CPUState as an opaque pointer
2614 * in define_arm_cp_regs_with_opaque(), because when we're called back
2615 * it might be with code translated by CPU 0 but run by CPU 1, in
2616 * which case we'd get the wrong value.
2617 * So instead we define the regs with no ri->opaque info, and
2618 * get back to the GICv3CPUState from the ARMCPU by reading back
2619 * the opaque pointer from the el_change_hook, which we're going
2620 * to need to register anyway.
2622 define_arm_cp_regs(cpu, gicv3_cpuif_reginfo);
2623 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)
2624 && cpu->gic_num_lrs) {
2625 int j;
2627 cs->maintenance_irq = cpu->gicv3_maintenance_interrupt;
2629 cs->num_list_regs = cpu->gic_num_lrs;
2630 cs->vpribits = cpu->gic_vpribits;
2631 cs->vprebits = cpu->gic_vprebits;
2633 /* Check against architectural constraints: getting these
2634 * wrong would be a bug in the CPU code defining these,
2635 * and the implementation relies on them holding.
2637 g_assert(cs->vprebits <= cs->vpribits);
2638 g_assert(cs->vprebits >= 5 && cs->vprebits <= 7);
2639 g_assert(cs->vpribits >= 5 && cs->vpribits <= 8);
2641 define_arm_cp_regs(cpu, gicv3_cpuif_hcr_reginfo);
2643 for (j = 0; j < cs->num_list_regs; j++) {
2644 /* Note that the AArch64 LRs are 64-bit; the AArch32 LRs
2645 * are split into two cp15 regs, LR (the low part, with the
2646 * same encoding as the AArch64 LR) and LRC (the high part).
2648 ARMCPRegInfo lr_regset[] = {
2649 { .name = "ICH_LRn_EL2", .state = ARM_CP_STATE_BOTH,
2650 .opc0 = 3, .opc1 = 4, .crn = 12,
2651 .crm = 12 + (j >> 3), .opc2 = j & 7,
2652 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2653 .access = PL2_RW,
2654 .readfn = ich_lr_read,
2655 .writefn = ich_lr_write,
2657 { .name = "ICH_LRCn_EL2", .state = ARM_CP_STATE_AA32,
2658 .cp = 15, .opc1 = 4, .crn = 12,
2659 .crm = 14 + (j >> 3), .opc2 = j & 7,
2660 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2661 .access = PL2_RW,
2662 .readfn = ich_lr_read,
2663 .writefn = ich_lr_write,
2665 REGINFO_SENTINEL
2667 define_arm_cp_regs(cpu, lr_regset);
2669 if (cs->vprebits >= 6) {
2670 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr1_reginfo);
2672 if (cs->vprebits == 7) {
2673 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr23_reginfo);
2676 arm_register_el_change_hook(cpu, gicv3_cpuif_el_change_hook, cs);