Merge remote-tracking branch 'remotes/stsquad/tags/pull-testing-gdbstub-docs-080221...
[qemu/ar7.git] / include / exec / memory.h
blobc6ce74fb790b919f2d01ed5c8fc75d3567e9e25c
1 /*
2 * Physical memory management API
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
14 #ifndef MEMORY_H
15 #define MEMORY_H
17 #ifndef CONFIG_USER_ONLY
19 #include "exec/cpu-common.h"
20 #include "exec/hwaddr.h"
21 #include "exec/memattrs.h"
22 #include "exec/memop.h"
23 #include "exec/ramlist.h"
24 #include "qemu/bswap.h"
25 #include "qemu/queue.h"
26 #include "qemu/int128.h"
27 #include "qemu/notify.h"
28 #include "qom/object.h"
29 #include "qemu/rcu.h"
31 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
33 #define MAX_PHYS_ADDR_SPACE_BITS 62
34 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
36 #define TYPE_MEMORY_REGION "qemu:memory-region"
37 DECLARE_INSTANCE_CHECKER(MemoryRegion, MEMORY_REGION,
38 TYPE_MEMORY_REGION)
40 #define TYPE_IOMMU_MEMORY_REGION "qemu:iommu-memory-region"
41 typedef struct IOMMUMemoryRegionClass IOMMUMemoryRegionClass;
42 DECLARE_OBJ_CHECKERS(IOMMUMemoryRegion, IOMMUMemoryRegionClass,
43 IOMMU_MEMORY_REGION, TYPE_IOMMU_MEMORY_REGION)
45 #ifdef CONFIG_FUZZ
46 void fuzz_dma_read_cb(size_t addr,
47 size_t len,
48 MemoryRegion *mr,
49 bool is_write);
50 #else
51 static inline void fuzz_dma_read_cb(size_t addr,
52 size_t len,
53 MemoryRegion *mr,
54 bool is_write)
56 /* Do Nothing */
58 #endif
60 extern bool global_dirty_log;
62 typedef struct MemoryRegionOps MemoryRegionOps;
64 struct ReservedRegion {
65 hwaddr low;
66 hwaddr high;
67 unsigned type;
70 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
72 /* See address_space_translate: bit 0 is read, bit 1 is write. */
73 typedef enum {
74 IOMMU_NONE = 0,
75 IOMMU_RO = 1,
76 IOMMU_WO = 2,
77 IOMMU_RW = 3,
78 } IOMMUAccessFlags;
80 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
82 struct IOMMUTLBEntry {
83 AddressSpace *target_as;
84 hwaddr iova;
85 hwaddr translated_addr;
86 hwaddr addr_mask; /* 0xfff = 4k translation */
87 IOMMUAccessFlags perm;
91 * Bitmap for different IOMMUNotifier capabilities. Each notifier can
92 * register with one or multiple IOMMU Notifier capability bit(s).
94 typedef enum {
95 IOMMU_NOTIFIER_NONE = 0,
96 /* Notify cache invalidations */
97 IOMMU_NOTIFIER_UNMAP = 0x1,
98 /* Notify entry changes (newly created entries) */
99 IOMMU_NOTIFIER_MAP = 0x2,
100 /* Notify changes on device IOTLB entries */
101 IOMMU_NOTIFIER_DEVIOTLB_UNMAP = 0x04,
102 } IOMMUNotifierFlag;
104 #define IOMMU_NOTIFIER_IOTLB_EVENTS (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
105 #define IOMMU_NOTIFIER_DEVIOTLB_EVENTS IOMMU_NOTIFIER_DEVIOTLB_UNMAP
106 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_IOTLB_EVENTS | \
107 IOMMU_NOTIFIER_DEVIOTLB_EVENTS)
109 struct IOMMUNotifier;
110 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
111 IOMMUTLBEntry *data);
113 struct IOMMUNotifier {
114 IOMMUNotify notify;
115 IOMMUNotifierFlag notifier_flags;
116 /* Notify for address space range start <= addr <= end */
117 hwaddr start;
118 hwaddr end;
119 int iommu_idx;
120 QLIST_ENTRY(IOMMUNotifier) node;
122 typedef struct IOMMUNotifier IOMMUNotifier;
124 typedef struct IOMMUTLBEvent {
125 IOMMUNotifierFlag type;
126 IOMMUTLBEntry entry;
127 } IOMMUTLBEvent;
129 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
130 #define RAM_PREALLOC (1 << 0)
132 /* RAM is mmap-ed with MAP_SHARED */
133 #define RAM_SHARED (1 << 1)
135 /* Only a portion of RAM (used_length) is actually used, and migrated.
136 * This used_length size can change across reboots.
138 #define RAM_RESIZEABLE (1 << 2)
140 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
141 * zero the page and wake waiting processes.
142 * (Set during postcopy)
144 #define RAM_UF_ZEROPAGE (1 << 3)
146 /* RAM can be migrated */
147 #define RAM_MIGRATABLE (1 << 4)
149 /* RAM is a persistent kind memory */
150 #define RAM_PMEM (1 << 5)
152 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
153 IOMMUNotifierFlag flags,
154 hwaddr start, hwaddr end,
155 int iommu_idx)
157 n->notify = fn;
158 n->notifier_flags = flags;
159 n->start = start;
160 n->end = end;
161 n->iommu_idx = iommu_idx;
165 * Memory region callbacks
167 struct MemoryRegionOps {
168 /* Read from the memory region. @addr is relative to @mr; @size is
169 * in bytes. */
170 uint64_t (*read)(void *opaque,
171 hwaddr addr,
172 unsigned size);
173 /* Write to the memory region. @addr is relative to @mr; @size is
174 * in bytes. */
175 void (*write)(void *opaque,
176 hwaddr addr,
177 uint64_t data,
178 unsigned size);
180 MemTxResult (*read_with_attrs)(void *opaque,
181 hwaddr addr,
182 uint64_t *data,
183 unsigned size,
184 MemTxAttrs attrs);
185 MemTxResult (*write_with_attrs)(void *opaque,
186 hwaddr addr,
187 uint64_t data,
188 unsigned size,
189 MemTxAttrs attrs);
191 enum device_endian endianness;
192 /* Guest-visible constraints: */
193 struct {
194 /* If nonzero, specify bounds on access sizes beyond which a machine
195 * check is thrown.
197 unsigned min_access_size;
198 unsigned max_access_size;
199 /* If true, unaligned accesses are supported. Otherwise unaligned
200 * accesses throw machine checks.
202 bool unaligned;
204 * If present, and returns #false, the transaction is not accepted
205 * by the device (and results in machine dependent behaviour such
206 * as a machine check exception).
208 bool (*accepts)(void *opaque, hwaddr addr,
209 unsigned size, bool is_write,
210 MemTxAttrs attrs);
211 } valid;
212 /* Internal implementation constraints: */
213 struct {
214 /* If nonzero, specifies the minimum size implemented. Smaller sizes
215 * will be rounded upwards and a partial result will be returned.
217 unsigned min_access_size;
218 /* If nonzero, specifies the maximum size implemented. Larger sizes
219 * will be done as a series of accesses with smaller sizes.
221 unsigned max_access_size;
222 /* If true, unaligned accesses are supported. Otherwise all accesses
223 * are converted to (possibly multiple) naturally aligned accesses.
225 bool unaligned;
226 } impl;
229 typedef struct MemoryRegionClass {
230 /* private */
231 ObjectClass parent_class;
232 } MemoryRegionClass;
235 enum IOMMUMemoryRegionAttr {
236 IOMMU_ATTR_SPAPR_TCE_FD
240 * IOMMUMemoryRegionClass:
242 * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION
243 * and provide an implementation of at least the @translate method here
244 * to handle requests to the memory region. Other methods are optional.
246 * The IOMMU implementation must use the IOMMU notifier infrastructure
247 * to report whenever mappings are changed, by calling
248 * memory_region_notify_iommu() (or, if necessary, by calling
249 * memory_region_notify_iommu_one() for each registered notifier).
251 * Conceptually an IOMMU provides a mapping from input address
252 * to an output TLB entry. If the IOMMU is aware of memory transaction
253 * attributes and the output TLB entry depends on the transaction
254 * attributes, we represent this using IOMMU indexes. Each index
255 * selects a particular translation table that the IOMMU has:
257 * @attrs_to_index returns the IOMMU index for a set of transaction attributes
259 * @translate takes an input address and an IOMMU index
261 * and the mapping returned can only depend on the input address and the
262 * IOMMU index.
264 * Most IOMMUs don't care about the transaction attributes and support
265 * only a single IOMMU index. A more complex IOMMU might have one index
266 * for secure transactions and one for non-secure transactions.
268 struct IOMMUMemoryRegionClass {
269 /* private: */
270 MemoryRegionClass parent_class;
272 /* public: */
274 * @translate:
276 * Return a TLB entry that contains a given address.
278 * The IOMMUAccessFlags indicated via @flag are optional and may
279 * be specified as IOMMU_NONE to indicate that the caller needs
280 * the full translation information for both reads and writes. If
281 * the access flags are specified then the IOMMU implementation
282 * may use this as an optimization, to stop doing a page table
283 * walk as soon as it knows that the requested permissions are not
284 * allowed. If IOMMU_NONE is passed then the IOMMU must do the
285 * full page table walk and report the permissions in the returned
286 * IOMMUTLBEntry. (Note that this implies that an IOMMU may not
287 * return different mappings for reads and writes.)
289 * The returned information remains valid while the caller is
290 * holding the big QEMU lock or is inside an RCU critical section;
291 * if the caller wishes to cache the mapping beyond that it must
292 * register an IOMMU notifier so it can invalidate its cached
293 * information when the IOMMU mapping changes.
295 * @iommu: the IOMMUMemoryRegion
297 * @hwaddr: address to be translated within the memory region
299 * @flag: requested access permission
301 * @iommu_idx: IOMMU index for the translation
303 IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr,
304 IOMMUAccessFlags flag, int iommu_idx);
306 * @get_min_page_size:
308 * Returns minimum supported page size in bytes.
310 * If this method is not provided then the minimum is assumed to
311 * be TARGET_PAGE_SIZE.
313 * @iommu: the IOMMUMemoryRegion
315 uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu);
317 * @notify_flag_changed:
319 * Called when IOMMU Notifier flag changes (ie when the set of
320 * events which IOMMU users are requesting notification for changes).
321 * Optional method -- need not be provided if the IOMMU does not
322 * need to know exactly which events must be notified.
324 * @iommu: the IOMMUMemoryRegion
326 * @old_flags: events which previously needed to be notified
328 * @new_flags: events which now need to be notified
330 * Returns 0 on success, or a negative errno; in particular
331 * returns -EINVAL if the new flag bitmap is not supported by the
332 * IOMMU memory region. In case of failure, the error object
333 * must be created
335 int (*notify_flag_changed)(IOMMUMemoryRegion *iommu,
336 IOMMUNotifierFlag old_flags,
337 IOMMUNotifierFlag new_flags,
338 Error **errp);
340 * @replay:
342 * Called to handle memory_region_iommu_replay().
344 * The default implementation of memory_region_iommu_replay() is to
345 * call the IOMMU translate method for every page in the address space
346 * with flag == IOMMU_NONE and then call the notifier if translate
347 * returns a valid mapping. If this method is implemented then it
348 * overrides the default behaviour, and must provide the full semantics
349 * of memory_region_iommu_replay(), by calling @notifier for every
350 * translation present in the IOMMU.
352 * Optional method -- an IOMMU only needs to provide this method
353 * if the default is inefficient or produces undesirable side effects.
355 * Note: this is not related to record-and-replay functionality.
357 void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier);
360 * @get_attr:
362 * Get IOMMU misc attributes. This is an optional method that
363 * can be used to allow users of the IOMMU to get implementation-specific
364 * information. The IOMMU implements this method to handle calls
365 * by IOMMU users to memory_region_iommu_get_attr() by filling in
366 * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that
367 * the IOMMU supports. If the method is unimplemented then
368 * memory_region_iommu_get_attr() will always return -EINVAL.
370 * @iommu: the IOMMUMemoryRegion
372 * @attr: attribute being queried
374 * @data: memory to fill in with the attribute data
376 * Returns 0 on success, or a negative errno; in particular
377 * returns -EINVAL for unrecognized or unimplemented attribute types.
379 int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr,
380 void *data);
383 * @attrs_to_index:
385 * Return the IOMMU index to use for a given set of transaction attributes.
387 * Optional method: if an IOMMU only supports a single IOMMU index then
388 * the default implementation of memory_region_iommu_attrs_to_index()
389 * will return 0.
391 * The indexes supported by an IOMMU must be contiguous, starting at 0.
393 * @iommu: the IOMMUMemoryRegion
394 * @attrs: memory transaction attributes
396 int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs);
399 * @num_indexes:
401 * Return the number of IOMMU indexes this IOMMU supports.
403 * Optional method: if this method is not provided, then
404 * memory_region_iommu_num_indexes() will return 1, indicating that
405 * only a single IOMMU index is supported.
407 * @iommu: the IOMMUMemoryRegion
409 int (*num_indexes)(IOMMUMemoryRegion *iommu);
412 * @iommu_set_page_size_mask:
414 * Restrict the page size mask that can be supported with a given IOMMU
415 * memory region. Used for example to propagate host physical IOMMU page
416 * size mask limitations to the virtual IOMMU.
418 * Optional method: if this method is not provided, then the default global
419 * page mask is used.
421 * @iommu: the IOMMUMemoryRegion
423 * @page_size_mask: a bitmask of supported page sizes. At least one bit,
424 * representing the smallest page size, must be set. Additional set bits
425 * represent supported block sizes. For example a host physical IOMMU that
426 * uses page tables with a page size of 4kB, and supports 2MB and 4GB
427 * blocks, will set mask 0x40201000. A granule of 4kB with indiscriminate
428 * block sizes is specified with mask 0xfffffffffffff000.
430 * Returns 0 on success, or a negative error. In case of failure, the error
431 * object must be created.
433 int (*iommu_set_page_size_mask)(IOMMUMemoryRegion *iommu,
434 uint64_t page_size_mask,
435 Error **errp);
438 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
439 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
441 /** MemoryRegion:
443 * A struct representing a memory region.
445 struct MemoryRegion {
446 Object parent_obj;
448 /* private: */
450 /* The following fields should fit in a cache line */
451 bool romd_mode;
452 bool ram;
453 bool subpage;
454 bool readonly; /* For RAM regions */
455 bool nonvolatile;
456 bool rom_device;
457 bool flush_coalesced_mmio;
458 uint8_t dirty_log_mask;
459 bool is_iommu;
460 RAMBlock *ram_block;
461 Object *owner;
463 const MemoryRegionOps *ops;
464 void *opaque;
465 MemoryRegion *container;
466 Int128 size;
467 hwaddr addr;
468 void (*destructor)(MemoryRegion *mr);
469 uint64_t align;
470 bool terminates;
471 bool ram_device;
472 bool enabled;
473 bool warning_printed; /* For reservations */
474 uint8_t vga_logging_count;
475 MemoryRegion *alias;
476 hwaddr alias_offset;
477 int32_t priority;
478 QTAILQ_HEAD(, MemoryRegion) subregions;
479 QTAILQ_ENTRY(MemoryRegion) subregions_link;
480 QTAILQ_HEAD(, CoalescedMemoryRange) coalesced;
481 const char *name;
482 unsigned ioeventfd_nb;
483 MemoryRegionIoeventfd *ioeventfds;
486 struct IOMMUMemoryRegion {
487 MemoryRegion parent_obj;
489 QLIST_HEAD(, IOMMUNotifier) iommu_notify;
490 IOMMUNotifierFlag iommu_notify_flags;
493 #define IOMMU_NOTIFIER_FOREACH(n, mr) \
494 QLIST_FOREACH((n), &(mr)->iommu_notify, node)
497 * struct MemoryListener: callbacks structure for updates to the physical memory map
499 * Allows a component to adjust to changes in the guest-visible memory map.
500 * Use with memory_listener_register() and memory_listener_unregister().
502 struct MemoryListener {
504 * @begin:
506 * Called at the beginning of an address space update transaction.
507 * Followed by calls to #MemoryListener.region_add(),
508 * #MemoryListener.region_del(), #MemoryListener.region_nop(),
509 * #MemoryListener.log_start() and #MemoryListener.log_stop() in
510 * increasing address order.
512 * @listener: The #MemoryListener.
514 void (*begin)(MemoryListener *listener);
517 * @commit:
519 * Called at the end of an address space update transaction,
520 * after the last call to #MemoryListener.region_add(),
521 * #MemoryListener.region_del() or #MemoryListener.region_nop(),
522 * #MemoryListener.log_start() and #MemoryListener.log_stop().
524 * @listener: The #MemoryListener.
526 void (*commit)(MemoryListener *listener);
529 * @region_add:
531 * Called during an address space update transaction,
532 * for a section of the address space that is new in this address space
533 * space since the last transaction.
535 * @listener: The #MemoryListener.
536 * @section: The new #MemoryRegionSection.
538 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
541 * @region_del:
543 * Called during an address space update transaction,
544 * for a section of the address space that has disappeared in the address
545 * space since the last transaction.
547 * @listener: The #MemoryListener.
548 * @section: The old #MemoryRegionSection.
550 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
553 * @region_nop:
555 * Called during an address space update transaction,
556 * for a section of the address space that is in the same place in the address
557 * space as in the last transaction.
559 * @listener: The #MemoryListener.
560 * @section: The #MemoryRegionSection.
562 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
565 * @log_start:
567 * Called during an address space update transaction, after
568 * one of #MemoryListener.region_add(),#MemoryListener.region_del() or
569 * #MemoryListener.region_nop(), if dirty memory logging clients have
570 * become active since the last transaction.
572 * @listener: The #MemoryListener.
573 * @section: The #MemoryRegionSection.
574 * @old: A bitmap of dirty memory logging clients that were active in
575 * the previous transaction.
576 * @new: A bitmap of dirty memory logging clients that are active in
577 * the current transaction.
579 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
580 int old, int new);
583 * @log_stop:
585 * Called during an address space update transaction, after
586 * one of #MemoryListener.region_add(), #MemoryListener.region_del() or
587 * #MemoryListener.region_nop() and possibly after
588 * #MemoryListener.log_start(), if dirty memory logging clients have
589 * become inactive since the last transaction.
591 * @listener: The #MemoryListener.
592 * @section: The #MemoryRegionSection.
593 * @old: A bitmap of dirty memory logging clients that were active in
594 * the previous transaction.
595 * @new: A bitmap of dirty memory logging clients that are active in
596 * the current transaction.
598 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
599 int old, int new);
602 * @log_sync:
604 * Called by memory_region_snapshot_and_clear_dirty() and
605 * memory_global_dirty_log_sync(), before accessing QEMU's "official"
606 * copy of the dirty memory bitmap for a #MemoryRegionSection.
608 * @listener: The #MemoryListener.
609 * @section: The #MemoryRegionSection.
611 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
614 * @log_clear:
616 * Called before reading the dirty memory bitmap for a
617 * #MemoryRegionSection.
619 * @listener: The #MemoryListener.
620 * @section: The #MemoryRegionSection.
622 void (*log_clear)(MemoryListener *listener, MemoryRegionSection *section);
625 * @log_global_start:
627 * Called by memory_global_dirty_log_start(), which
628 * enables the %DIRTY_LOG_MIGRATION client on all memory regions in
629 * the address space. #MemoryListener.log_global_start() is also
630 * called when a #MemoryListener is added, if global dirty logging is
631 * active at that time.
633 * @listener: The #MemoryListener.
635 void (*log_global_start)(MemoryListener *listener);
638 * @log_global_stop:
640 * Called by memory_global_dirty_log_stop(), which
641 * disables the %DIRTY_LOG_MIGRATION client on all memory regions in
642 * the address space.
644 * @listener: The #MemoryListener.
646 void (*log_global_stop)(MemoryListener *listener);
649 * @log_global_after_sync:
651 * Called after reading the dirty memory bitmap
652 * for any #MemoryRegionSection.
654 * @listener: The #MemoryListener.
656 void (*log_global_after_sync)(MemoryListener *listener);
659 * @eventfd_add:
661 * Called during an address space update transaction,
662 * for a section of the address space that has had a new ioeventfd
663 * registration since the last transaction.
665 * @listener: The #MemoryListener.
666 * @section: The new #MemoryRegionSection.
667 * @match_data: The @match_data parameter for the new ioeventfd.
668 * @data: The @data parameter for the new ioeventfd.
669 * @e: The #EventNotifier parameter for the new ioeventfd.
671 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
672 bool match_data, uint64_t data, EventNotifier *e);
675 * @eventfd_del:
677 * Called during an address space update transaction,
678 * for a section of the address space that has dropped an ioeventfd
679 * registration since the last transaction.
681 * @listener: The #MemoryListener.
682 * @section: The new #MemoryRegionSection.
683 * @match_data: The @match_data parameter for the dropped ioeventfd.
684 * @data: The @data parameter for the dropped ioeventfd.
685 * @e: The #EventNotifier parameter for the dropped ioeventfd.
687 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
688 bool match_data, uint64_t data, EventNotifier *e);
691 * @coalesced_io_add:
693 * Called during an address space update transaction,
694 * for a section of the address space that has had a new coalesced
695 * MMIO range registration since the last transaction.
697 * @listener: The #MemoryListener.
698 * @section: The new #MemoryRegionSection.
699 * @addr: The starting address for the coalesced MMIO range.
700 * @len: The length of the coalesced MMIO range.
702 void (*coalesced_io_add)(MemoryListener *listener, MemoryRegionSection *section,
703 hwaddr addr, hwaddr len);
706 * @coalesced_io_del:
708 * Called during an address space update transaction,
709 * for a section of the address space that has dropped a coalesced
710 * MMIO range since the last transaction.
712 * @listener: The #MemoryListener.
713 * @section: The new #MemoryRegionSection.
714 * @addr: The starting address for the coalesced MMIO range.
715 * @len: The length of the coalesced MMIO range.
717 void (*coalesced_io_del)(MemoryListener *listener, MemoryRegionSection *section,
718 hwaddr addr, hwaddr len);
720 * @priority:
722 * Govern the order in which memory listeners are invoked. Lower priorities
723 * are invoked earlier for "add" or "start" callbacks, and later for "delete"
724 * or "stop" callbacks.
726 unsigned priority;
728 /* private: */
729 AddressSpace *address_space;
730 QTAILQ_ENTRY(MemoryListener) link;
731 QTAILQ_ENTRY(MemoryListener) link_as;
735 * struct AddressSpace: describes a mapping of addresses to #MemoryRegion objects
737 struct AddressSpace {
738 /* private: */
739 struct rcu_head rcu;
740 char *name;
741 MemoryRegion *root;
743 /* Accessed via RCU. */
744 struct FlatView *current_map;
746 int ioeventfd_nb;
747 struct MemoryRegionIoeventfd *ioeventfds;
748 QTAILQ_HEAD(, MemoryListener) listeners;
749 QTAILQ_ENTRY(AddressSpace) address_spaces_link;
752 typedef struct AddressSpaceDispatch AddressSpaceDispatch;
753 typedef struct FlatRange FlatRange;
755 /* Flattened global view of current active memory hierarchy. Kept in sorted
756 * order.
758 struct FlatView {
759 struct rcu_head rcu;
760 unsigned ref;
761 FlatRange *ranges;
762 unsigned nr;
763 unsigned nr_allocated;
764 struct AddressSpaceDispatch *dispatch;
765 MemoryRegion *root;
768 static inline FlatView *address_space_to_flatview(AddressSpace *as)
770 return qatomic_rcu_read(&as->current_map);
773 typedef int (*flatview_cb)(Int128 start,
774 Int128 len,
775 const MemoryRegion*, void*);
777 void flatview_for_each_range(FlatView *fv, flatview_cb cb , void *opaque);
780 * struct MemoryRegionSection: describes a fragment of a #MemoryRegion
782 * @mr: the region, or %NULL if empty
783 * @fv: the flat view of the address space the region is mapped in
784 * @offset_within_region: the beginning of the section, relative to @mr's start
785 * @size: the size of the section; will not exceed @mr's boundaries
786 * @offset_within_address_space: the address of the first byte of the section
787 * relative to the region's address space
788 * @readonly: writes to this section are ignored
789 * @nonvolatile: this section is non-volatile
791 struct MemoryRegionSection {
792 Int128 size;
793 MemoryRegion *mr;
794 FlatView *fv;
795 hwaddr offset_within_region;
796 hwaddr offset_within_address_space;
797 bool readonly;
798 bool nonvolatile;
801 static inline bool MemoryRegionSection_eq(MemoryRegionSection *a,
802 MemoryRegionSection *b)
804 return a->mr == b->mr &&
805 a->fv == b->fv &&
806 a->offset_within_region == b->offset_within_region &&
807 a->offset_within_address_space == b->offset_within_address_space &&
808 int128_eq(a->size, b->size) &&
809 a->readonly == b->readonly &&
810 a->nonvolatile == b->nonvolatile;
814 * memory_region_init: Initialize a memory region
816 * The region typically acts as a container for other memory regions. Use
817 * memory_region_add_subregion() to add subregions.
819 * @mr: the #MemoryRegion to be initialized
820 * @owner: the object that tracks the region's reference count
821 * @name: used for debugging; not visible to the user or ABI
822 * @size: size of the region; any subregions beyond this size will be clipped
824 void memory_region_init(MemoryRegion *mr,
825 struct Object *owner,
826 const char *name,
827 uint64_t size);
830 * memory_region_ref: Add 1 to a memory region's reference count
832 * Whenever memory regions are accessed outside the BQL, they need to be
833 * preserved against hot-unplug. MemoryRegions actually do not have their
834 * own reference count; they piggyback on a QOM object, their "owner".
835 * This function adds a reference to the owner.
837 * All MemoryRegions must have an owner if they can disappear, even if the
838 * device they belong to operates exclusively under the BQL. This is because
839 * the region could be returned at any time by memory_region_find, and this
840 * is usually under guest control.
842 * @mr: the #MemoryRegion
844 void memory_region_ref(MemoryRegion *mr);
847 * memory_region_unref: Remove 1 to a memory region's reference count
849 * Whenever memory regions are accessed outside the BQL, they need to be
850 * preserved against hot-unplug. MemoryRegions actually do not have their
851 * own reference count; they piggyback on a QOM object, their "owner".
852 * This function removes a reference to the owner and possibly destroys it.
854 * @mr: the #MemoryRegion
856 void memory_region_unref(MemoryRegion *mr);
859 * memory_region_init_io: Initialize an I/O memory region.
861 * Accesses into the region will cause the callbacks in @ops to be called.
862 * if @size is nonzero, subregions will be clipped to @size.
864 * @mr: the #MemoryRegion to be initialized.
865 * @owner: the object that tracks the region's reference count
866 * @ops: a structure containing read and write callbacks to be used when
867 * I/O is performed on the region.
868 * @opaque: passed to the read and write callbacks of the @ops structure.
869 * @name: used for debugging; not visible to the user or ABI
870 * @size: size of the region.
872 void memory_region_init_io(MemoryRegion *mr,
873 struct Object *owner,
874 const MemoryRegionOps *ops,
875 void *opaque,
876 const char *name,
877 uint64_t size);
880 * memory_region_init_ram_nomigrate: Initialize RAM memory region. Accesses
881 * into the region will modify memory
882 * directly.
884 * @mr: the #MemoryRegion to be initialized.
885 * @owner: the object that tracks the region's reference count
886 * @name: Region name, becomes part of RAMBlock name used in migration stream
887 * must be unique within any device
888 * @size: size of the region.
889 * @errp: pointer to Error*, to store an error if it happens.
891 * Note that this function does not do anything to cause the data in the
892 * RAM memory region to be migrated; that is the responsibility of the caller.
894 void memory_region_init_ram_nomigrate(MemoryRegion *mr,
895 struct Object *owner,
896 const char *name,
897 uint64_t size,
898 Error **errp);
901 * memory_region_init_ram_shared_nomigrate: Initialize RAM memory region.
902 * Accesses into the region will
903 * modify memory directly.
905 * @mr: the #MemoryRegion to be initialized.
906 * @owner: the object that tracks the region's reference count
907 * @name: Region name, becomes part of RAMBlock name used in migration stream
908 * must be unique within any device
909 * @size: size of the region.
910 * @share: allow remapping RAM to different addresses
911 * @errp: pointer to Error*, to store an error if it happens.
913 * Note that this function is similar to memory_region_init_ram_nomigrate.
914 * The only difference is part of the RAM region can be remapped.
916 void memory_region_init_ram_shared_nomigrate(MemoryRegion *mr,
917 struct Object *owner,
918 const char *name,
919 uint64_t size,
920 bool share,
921 Error **errp);
924 * memory_region_init_resizeable_ram: Initialize memory region with resizeable
925 * RAM. Accesses into the region will
926 * modify memory directly. Only an initial
927 * portion of this RAM is actually used.
928 * The used size can change across reboots.
930 * @mr: the #MemoryRegion to be initialized.
931 * @owner: the object that tracks the region's reference count
932 * @name: Region name, becomes part of RAMBlock name used in migration stream
933 * must be unique within any device
934 * @size: used size of the region.
935 * @max_size: max size of the region.
936 * @resized: callback to notify owner about used size change.
937 * @errp: pointer to Error*, to store an error if it happens.
939 * Note that this function does not do anything to cause the data in the
940 * RAM memory region to be migrated; that is the responsibility of the caller.
942 void memory_region_init_resizeable_ram(MemoryRegion *mr,
943 struct Object *owner,
944 const char *name,
945 uint64_t size,
946 uint64_t max_size,
947 void (*resized)(const char*,
948 uint64_t length,
949 void *host),
950 Error **errp);
951 #ifdef CONFIG_POSIX
954 * memory_region_init_ram_from_file: Initialize RAM memory region with a
955 * mmap-ed backend.
957 * @mr: the #MemoryRegion to be initialized.
958 * @owner: the object that tracks the region's reference count
959 * @name: Region name, becomes part of RAMBlock name used in migration stream
960 * must be unique within any device
961 * @size: size of the region.
962 * @align: alignment of the region base address; if 0, the default alignment
963 * (getpagesize()) will be used.
964 * @ram_flags: Memory region features:
965 * - RAM_SHARED: memory must be mmaped with the MAP_SHARED flag
966 * - RAM_PMEM: the memory is persistent memory
967 * Other bits are ignored now.
968 * @path: the path in which to allocate the RAM.
969 * @readonly: true to open @path for reading, false for read/write.
970 * @errp: pointer to Error*, to store an error if it happens.
972 * Note that this function does not do anything to cause the data in the
973 * RAM memory region to be migrated; that is the responsibility of the caller.
975 void memory_region_init_ram_from_file(MemoryRegion *mr,
976 struct Object *owner,
977 const char *name,
978 uint64_t size,
979 uint64_t align,
980 uint32_t ram_flags,
981 const char *path,
982 bool readonly,
983 Error **errp);
986 * memory_region_init_ram_from_fd: Initialize RAM memory region with a
987 * mmap-ed backend.
989 * @mr: the #MemoryRegion to be initialized.
990 * @owner: the object that tracks the region's reference count
991 * @name: the name of the region.
992 * @size: size of the region.
993 * @share: %true if memory must be mmaped with the MAP_SHARED flag
994 * @fd: the fd to mmap.
995 * @errp: pointer to Error*, to store an error if it happens.
997 * Note that this function does not do anything to cause the data in the
998 * RAM memory region to be migrated; that is the responsibility of the caller.
1000 void memory_region_init_ram_from_fd(MemoryRegion *mr,
1001 struct Object *owner,
1002 const char *name,
1003 uint64_t size,
1004 bool share,
1005 int fd,
1006 Error **errp);
1007 #endif
1010 * memory_region_init_ram_ptr: Initialize RAM memory region from a
1011 * user-provided pointer. Accesses into the
1012 * region will modify memory directly.
1014 * @mr: the #MemoryRegion to be initialized.
1015 * @owner: the object that tracks the region's reference count
1016 * @name: Region name, becomes part of RAMBlock name used in migration stream
1017 * must be unique within any device
1018 * @size: size of the region.
1019 * @ptr: memory to be mapped; must contain at least @size bytes.
1021 * Note that this function does not do anything to cause the data in the
1022 * RAM memory region to be migrated; that is the responsibility of the caller.
1024 void memory_region_init_ram_ptr(MemoryRegion *mr,
1025 struct Object *owner,
1026 const char *name,
1027 uint64_t size,
1028 void *ptr);
1031 * memory_region_init_ram_device_ptr: Initialize RAM device memory region from
1032 * a user-provided pointer.
1034 * A RAM device represents a mapping to a physical device, such as to a PCI
1035 * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped
1036 * into the VM address space and access to the region will modify memory
1037 * directly. However, the memory region should not be included in a memory
1038 * dump (device may not be enabled/mapped at the time of the dump), and
1039 * operations incompatible with manipulating MMIO should be avoided. Replaces
1040 * skip_dump flag.
1042 * @mr: the #MemoryRegion to be initialized.
1043 * @owner: the object that tracks the region's reference count
1044 * @name: the name of the region.
1045 * @size: size of the region.
1046 * @ptr: memory to be mapped; must contain at least @size bytes.
1048 * Note that this function does not do anything to cause the data in the
1049 * RAM memory region to be migrated; that is the responsibility of the caller.
1050 * (For RAM device memory regions, migrating the contents rarely makes sense.)
1052 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1053 struct Object *owner,
1054 const char *name,
1055 uint64_t size,
1056 void *ptr);
1059 * memory_region_init_alias: Initialize a memory region that aliases all or a
1060 * part of another memory region.
1062 * @mr: the #MemoryRegion to be initialized.
1063 * @owner: the object that tracks the region's reference count
1064 * @name: used for debugging; not visible to the user or ABI
1065 * @orig: the region to be referenced; @mr will be equivalent to
1066 * @orig between @offset and @offset + @size - 1.
1067 * @offset: start of the section in @orig to be referenced.
1068 * @size: size of the region.
1070 void memory_region_init_alias(MemoryRegion *mr,
1071 struct Object *owner,
1072 const char *name,
1073 MemoryRegion *orig,
1074 hwaddr offset,
1075 uint64_t size);
1078 * memory_region_init_rom_nomigrate: Initialize a ROM memory region.
1080 * This has the same effect as calling memory_region_init_ram_nomigrate()
1081 * and then marking the resulting region read-only with
1082 * memory_region_set_readonly().
1084 * Note that this function does not do anything to cause the data in the
1085 * RAM side of the memory region to be migrated; that is the responsibility
1086 * of the caller.
1088 * @mr: the #MemoryRegion to be initialized.
1089 * @owner: the object that tracks the region's reference count
1090 * @name: Region name, becomes part of RAMBlock name used in migration stream
1091 * must be unique within any device
1092 * @size: size of the region.
1093 * @errp: pointer to Error*, to store an error if it happens.
1095 void memory_region_init_rom_nomigrate(MemoryRegion *mr,
1096 struct Object *owner,
1097 const char *name,
1098 uint64_t size,
1099 Error **errp);
1102 * memory_region_init_rom_device_nomigrate: Initialize a ROM memory region.
1103 * Writes are handled via callbacks.
1105 * Note that this function does not do anything to cause the data in the
1106 * RAM side of the memory region to be migrated; that is the responsibility
1107 * of the caller.
1109 * @mr: the #MemoryRegion to be initialized.
1110 * @owner: the object that tracks the region's reference count
1111 * @ops: callbacks for write access handling (must not be NULL).
1112 * @opaque: passed to the read and write callbacks of the @ops structure.
1113 * @name: Region name, becomes part of RAMBlock name used in migration stream
1114 * must be unique within any device
1115 * @size: size of the region.
1116 * @errp: pointer to Error*, to store an error if it happens.
1118 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1119 struct Object *owner,
1120 const MemoryRegionOps *ops,
1121 void *opaque,
1122 const char *name,
1123 uint64_t size,
1124 Error **errp);
1127 * memory_region_init_iommu: Initialize a memory region of a custom type
1128 * that translates addresses
1130 * An IOMMU region translates addresses and forwards accesses to a target
1131 * memory region.
1133 * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION.
1134 * @_iommu_mr should be a pointer to enough memory for an instance of
1135 * that subclass, @instance_size is the size of that subclass, and
1136 * @mrtypename is its name. This function will initialize @_iommu_mr as an
1137 * instance of the subclass, and its methods will then be called to handle
1138 * accesses to the memory region. See the documentation of
1139 * #IOMMUMemoryRegionClass for further details.
1141 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
1142 * @instance_size: the IOMMUMemoryRegion subclass instance size
1143 * @mrtypename: the type name of the #IOMMUMemoryRegion
1144 * @owner: the object that tracks the region's reference count
1145 * @name: used for debugging; not visible to the user or ABI
1146 * @size: size of the region.
1148 void memory_region_init_iommu(void *_iommu_mr,
1149 size_t instance_size,
1150 const char *mrtypename,
1151 Object *owner,
1152 const char *name,
1153 uint64_t size);
1156 * memory_region_init_ram - Initialize RAM memory region. Accesses into the
1157 * region will modify memory directly.
1159 * @mr: the #MemoryRegion to be initialized
1160 * @owner: the object that tracks the region's reference count (must be
1161 * TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL)
1162 * @name: name of the memory region
1163 * @size: size of the region in bytes
1164 * @errp: pointer to Error*, to store an error if it happens.
1166 * This function allocates RAM for a board model or device, and
1167 * arranges for it to be migrated (by calling vmstate_register_ram()
1168 * if @owner is a DeviceState, or vmstate_register_ram_global() if
1169 * @owner is NULL).
1171 * TODO: Currently we restrict @owner to being either NULL (for
1172 * global RAM regions with no owner) or devices, so that we can
1173 * give the RAM block a unique name for migration purposes.
1174 * We should lift this restriction and allow arbitrary Objects.
1175 * If you pass a non-NULL non-device @owner then we will assert.
1177 void memory_region_init_ram(MemoryRegion *mr,
1178 struct Object *owner,
1179 const char *name,
1180 uint64_t size,
1181 Error **errp);
1184 * memory_region_init_rom: Initialize a ROM memory region.
1186 * This has the same effect as calling memory_region_init_ram()
1187 * and then marking the resulting region read-only with
1188 * memory_region_set_readonly(). This includes arranging for the
1189 * contents to be migrated.
1191 * TODO: Currently we restrict @owner to being either NULL (for
1192 * global RAM regions with no owner) or devices, so that we can
1193 * give the RAM block a unique name for migration purposes.
1194 * We should lift this restriction and allow arbitrary Objects.
1195 * If you pass a non-NULL non-device @owner then we will assert.
1197 * @mr: the #MemoryRegion to be initialized.
1198 * @owner: the object that tracks the region's reference count
1199 * @name: Region name, becomes part of RAMBlock name used in migration stream
1200 * must be unique within any device
1201 * @size: size of the region.
1202 * @errp: pointer to Error*, to store an error if it happens.
1204 void memory_region_init_rom(MemoryRegion *mr,
1205 struct Object *owner,
1206 const char *name,
1207 uint64_t size,
1208 Error **errp);
1211 * memory_region_init_rom_device: Initialize a ROM memory region.
1212 * Writes are handled via callbacks.
1214 * This function initializes a memory region backed by RAM for reads
1215 * and callbacks for writes, and arranges for the RAM backing to
1216 * be migrated (by calling vmstate_register_ram()
1217 * if @owner is a DeviceState, or vmstate_register_ram_global() if
1218 * @owner is NULL).
1220 * TODO: Currently we restrict @owner to being either NULL (for
1221 * global RAM regions with no owner) or devices, so that we can
1222 * give the RAM block a unique name for migration purposes.
1223 * We should lift this restriction and allow arbitrary Objects.
1224 * If you pass a non-NULL non-device @owner then we will assert.
1226 * @mr: the #MemoryRegion to be initialized.
1227 * @owner: the object that tracks the region's reference count
1228 * @ops: callbacks for write access handling (must not be NULL).
1229 * @opaque: passed to the read and write callbacks of the @ops structure.
1230 * @name: Region name, becomes part of RAMBlock name used in migration stream
1231 * must be unique within any device
1232 * @size: size of the region.
1233 * @errp: pointer to Error*, to store an error if it happens.
1235 void memory_region_init_rom_device(MemoryRegion *mr,
1236 struct Object *owner,
1237 const MemoryRegionOps *ops,
1238 void *opaque,
1239 const char *name,
1240 uint64_t size,
1241 Error **errp);
1245 * memory_region_owner: get a memory region's owner.
1247 * @mr: the memory region being queried.
1249 struct Object *memory_region_owner(MemoryRegion *mr);
1252 * memory_region_size: get a memory region's size.
1254 * @mr: the memory region being queried.
1256 uint64_t memory_region_size(MemoryRegion *mr);
1259 * memory_region_is_ram: check whether a memory region is random access
1261 * Returns %true if a memory region is random access.
1263 * @mr: the memory region being queried
1265 static inline bool memory_region_is_ram(MemoryRegion *mr)
1267 return mr->ram;
1271 * memory_region_is_ram_device: check whether a memory region is a ram device
1273 * Returns %true if a memory region is a device backed ram region
1275 * @mr: the memory region being queried
1277 bool memory_region_is_ram_device(MemoryRegion *mr);
1280 * memory_region_is_romd: check whether a memory region is in ROMD mode
1282 * Returns %true if a memory region is a ROM device and currently set to allow
1283 * direct reads.
1285 * @mr: the memory region being queried
1287 static inline bool memory_region_is_romd(MemoryRegion *mr)
1289 return mr->rom_device && mr->romd_mode;
1293 * memory_region_get_iommu: check whether a memory region is an iommu
1295 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
1296 * otherwise NULL.
1298 * @mr: the memory region being queried
1300 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr)
1302 if (mr->alias) {
1303 return memory_region_get_iommu(mr->alias);
1305 if (mr->is_iommu) {
1306 return (IOMMUMemoryRegion *) mr;
1308 return NULL;
1312 * memory_region_get_iommu_class_nocheck: returns iommu memory region class
1313 * if an iommu or NULL if not
1315 * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu,
1316 * otherwise NULL. This is fast path avoiding QOM checking, use with caution.
1318 * @iommu_mr: the memory region being queried
1320 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck(
1321 IOMMUMemoryRegion *iommu_mr)
1323 return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class);
1326 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
1329 * memory_region_iommu_get_min_page_size: get minimum supported page size
1330 * for an iommu
1332 * Returns minimum supported page size for an iommu.
1334 * @iommu_mr: the memory region being queried
1336 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr);
1339 * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
1341 * Note: for any IOMMU implementation, an in-place mapping change
1342 * should be notified with an UNMAP followed by a MAP.
1344 * @iommu_mr: the memory region that was changed
1345 * @iommu_idx: the IOMMU index for the translation table which has changed
1346 * @event: TLB event with the new entry in the IOMMU translation table.
1347 * The entry replaces all old entries for the same virtual I/O address
1348 * range.
1350 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1351 int iommu_idx,
1352 IOMMUTLBEvent event);
1355 * memory_region_notify_iommu_one: notify a change in an IOMMU translation
1356 * entry to a single notifier
1358 * This works just like memory_region_notify_iommu(), but it only
1359 * notifies a specific notifier, not all of them.
1361 * @notifier: the notifier to be notified
1362 * @event: TLB event with the new entry in the IOMMU translation table.
1363 * The entry replaces all old entries for the same virtual I/O address
1364 * range.
1366 void memory_region_notify_iommu_one(IOMMUNotifier *notifier,
1367 IOMMUTLBEvent *event);
1370 * memory_region_register_iommu_notifier: register a notifier for changes to
1371 * IOMMU translation entries.
1373 * Returns 0 on success, or a negative errno otherwise. In particular,
1374 * -EINVAL indicates that at least one of the attributes of the notifier
1375 * is not supported (flag/range) by the IOMMU memory region. In case of error
1376 * the error object must be created.
1378 * @mr: the memory region to observe
1379 * @n: the IOMMUNotifier to be added; the notify callback receives a
1380 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer
1381 * ceases to be valid on exit from the notifier.
1382 * @errp: pointer to Error*, to store an error if it happens.
1384 int memory_region_register_iommu_notifier(MemoryRegion *mr,
1385 IOMMUNotifier *n, Error **errp);
1388 * memory_region_iommu_replay: replay existing IOMMU translations to
1389 * a notifier with the minimum page granularity returned by
1390 * mr->iommu_ops->get_page_size().
1392 * Note: this is not related to record-and-replay functionality.
1394 * @iommu_mr: the memory region to observe
1395 * @n: the notifier to which to replay iommu mappings
1397 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n);
1400 * memory_region_unregister_iommu_notifier: unregister a notifier for
1401 * changes to IOMMU translation entries.
1403 * @mr: the memory region which was observed and for which notity_stopped()
1404 * needs to be called
1405 * @n: the notifier to be removed.
1407 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1408 IOMMUNotifier *n);
1411 * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is
1412 * defined on the IOMMU.
1414 * Returns 0 on success, or a negative errno otherwise. In particular,
1415 * -EINVAL indicates that the IOMMU does not support the requested
1416 * attribute.
1418 * @iommu_mr: the memory region
1419 * @attr: the requested attribute
1420 * @data: a pointer to the requested attribute data
1422 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
1423 enum IOMMUMemoryRegionAttr attr,
1424 void *data);
1427 * memory_region_iommu_attrs_to_index: return the IOMMU index to
1428 * use for translations with the given memory transaction attributes.
1430 * @iommu_mr: the memory region
1431 * @attrs: the memory transaction attributes
1433 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
1434 MemTxAttrs attrs);
1437 * memory_region_iommu_num_indexes: return the total number of IOMMU
1438 * indexes that this IOMMU supports.
1440 * @iommu_mr: the memory region
1442 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr);
1445 * memory_region_iommu_set_page_size_mask: set the supported page
1446 * sizes for a given IOMMU memory region
1448 * @iommu_mr: IOMMU memory region
1449 * @page_size_mask: supported page size mask
1450 * @errp: pointer to Error*, to store an error if it happens.
1452 int memory_region_iommu_set_page_size_mask(IOMMUMemoryRegion *iommu_mr,
1453 uint64_t page_size_mask,
1454 Error **errp);
1457 * memory_region_name: get a memory region's name
1459 * Returns the string that was used to initialize the memory region.
1461 * @mr: the memory region being queried
1463 const char *memory_region_name(const MemoryRegion *mr);
1466 * memory_region_is_logging: return whether a memory region is logging writes
1468 * Returns %true if the memory region is logging writes for the given client
1470 * @mr: the memory region being queried
1471 * @client: the client being queried
1473 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
1476 * memory_region_get_dirty_log_mask: return the clients for which a
1477 * memory region is logging writes.
1479 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
1480 * are the bit indices.
1482 * @mr: the memory region being queried
1484 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
1487 * memory_region_is_rom: check whether a memory region is ROM
1489 * Returns %true if a memory region is read-only memory.
1491 * @mr: the memory region being queried
1493 static inline bool memory_region_is_rom(MemoryRegion *mr)
1495 return mr->ram && mr->readonly;
1499 * memory_region_is_nonvolatile: check whether a memory region is non-volatile
1501 * Returns %true is a memory region is non-volatile memory.
1503 * @mr: the memory region being queried
1505 static inline bool memory_region_is_nonvolatile(MemoryRegion *mr)
1507 return mr->nonvolatile;
1511 * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
1513 * Returns a file descriptor backing a file-based RAM memory region,
1514 * or -1 if the region is not a file-based RAM memory region.
1516 * @mr: the RAM or alias memory region being queried.
1518 int memory_region_get_fd(MemoryRegion *mr);
1521 * memory_region_from_host: Convert a pointer into a RAM memory region
1522 * and an offset within it.
1524 * Given a host pointer inside a RAM memory region (created with
1525 * memory_region_init_ram() or memory_region_init_ram_ptr()), return
1526 * the MemoryRegion and the offset within it.
1528 * Use with care; by the time this function returns, the returned pointer is
1529 * not protected by RCU anymore. If the caller is not within an RCU critical
1530 * section and does not hold the iothread lock, it must have other means of
1531 * protecting the pointer, such as a reference to the region that includes
1532 * the incoming ram_addr_t.
1534 * @ptr: the host pointer to be converted
1535 * @offset: the offset within memory region
1537 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
1540 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
1542 * Returns a host pointer to a RAM memory region (created with
1543 * memory_region_init_ram() or memory_region_init_ram_ptr()).
1545 * Use with care; by the time this function returns, the returned pointer is
1546 * not protected by RCU anymore. If the caller is not within an RCU critical
1547 * section and does not hold the iothread lock, it must have other means of
1548 * protecting the pointer, such as a reference to the region that includes
1549 * the incoming ram_addr_t.
1551 * @mr: the memory region being queried.
1553 void *memory_region_get_ram_ptr(MemoryRegion *mr);
1555 /* memory_region_ram_resize: Resize a RAM region.
1557 * Only legal before guest might have detected the memory size: e.g. on
1558 * incoming migration, or right after reset.
1560 * @mr: a memory region created with @memory_region_init_resizeable_ram.
1561 * @newsize: the new size the region
1562 * @errp: pointer to Error*, to store an error if it happens.
1564 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
1565 Error **errp);
1568 * memory_region_msync: Synchronize selected address range of
1569 * a memory mapped region
1571 * @mr: the memory region to be msync
1572 * @addr: the initial address of the range to be sync
1573 * @size: the size of the range to be sync
1575 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size);
1578 * memory_region_writeback: Trigger cache writeback for
1579 * selected address range
1581 * @mr: the memory region to be updated
1582 * @addr: the initial address of the range to be written back
1583 * @size: the size of the range to be written back
1585 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size);
1588 * memory_region_set_log: Turn dirty logging on or off for a region.
1590 * Turns dirty logging on or off for a specified client (display, migration).
1591 * Only meaningful for RAM regions.
1593 * @mr: the memory region being updated.
1594 * @log: whether dirty logging is to be enabled or disabled.
1595 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
1597 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
1600 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
1602 * Marks a range of bytes as dirty, after it has been dirtied outside
1603 * guest code.
1605 * @mr: the memory region being dirtied.
1606 * @addr: the address (relative to the start of the region) being dirtied.
1607 * @size: size of the range being dirtied.
1609 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1610 hwaddr size);
1613 * memory_region_clear_dirty_bitmap - clear dirty bitmap for memory range
1615 * This function is called when the caller wants to clear the remote
1616 * dirty bitmap of a memory range within the memory region. This can
1617 * be used by e.g. KVM to manually clear dirty log when
1618 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT is declared support by the host
1619 * kernel.
1621 * @mr: the memory region to clear the dirty log upon
1622 * @start: start address offset within the memory region
1623 * @len: length of the memory region to clear dirty bitmap
1625 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
1626 hwaddr len);
1629 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
1630 * bitmap and clear it.
1632 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
1633 * returns the snapshot. The snapshot can then be used to query dirty
1634 * status, using memory_region_snapshot_get_dirty. Snapshotting allows
1635 * querying the same page multiple times, which is especially useful for
1636 * display updates where the scanlines often are not page aligned.
1638 * The dirty bitmap region which gets copyed into the snapshot (and
1639 * cleared afterwards) can be larger than requested. The boundaries
1640 * are rounded up/down so complete bitmap longs (covering 64 pages on
1641 * 64bit hosts) can be copied over into the bitmap snapshot. Which
1642 * isn't a problem for display updates as the extra pages are outside
1643 * the visible area, and in case the visible area changes a full
1644 * display redraw is due anyway. Should other use cases for this
1645 * function emerge we might have to revisit this implementation
1646 * detail.
1648 * Use g_free to release DirtyBitmapSnapshot.
1650 * @mr: the memory region being queried.
1651 * @addr: the address (relative to the start of the region) being queried.
1652 * @size: the size of the range being queried.
1653 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
1655 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
1656 hwaddr addr,
1657 hwaddr size,
1658 unsigned client);
1661 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
1662 * in the specified dirty bitmap snapshot.
1664 * @mr: the memory region being queried.
1665 * @snap: the dirty bitmap snapshot
1666 * @addr: the address (relative to the start of the region) being queried.
1667 * @size: the size of the range being queried.
1669 bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
1670 DirtyBitmapSnapshot *snap,
1671 hwaddr addr, hwaddr size);
1674 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
1675 * client.
1677 * Marks a range of pages as no longer dirty.
1679 * @mr: the region being updated.
1680 * @addr: the start of the subrange being cleaned.
1681 * @size: the size of the subrange being cleaned.
1682 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1683 * %DIRTY_MEMORY_VGA.
1685 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1686 hwaddr size, unsigned client);
1689 * memory_region_flush_rom_device: Mark a range of pages dirty and invalidate
1690 * TBs (for self-modifying code).
1692 * The MemoryRegionOps->write() callback of a ROM device must use this function
1693 * to mark byte ranges that have been modified internally, such as by directly
1694 * accessing the memory returned by memory_region_get_ram_ptr().
1696 * This function marks the range dirty and invalidates TBs so that TCG can
1697 * detect self-modifying code.
1699 * @mr: the region being flushed.
1700 * @addr: the start, relative to the start of the region, of the range being
1701 * flushed.
1702 * @size: the size, in bytes, of the range being flushed.
1704 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size);
1707 * memory_region_set_readonly: Turn a memory region read-only (or read-write)
1709 * Allows a memory region to be marked as read-only (turning it into a ROM).
1710 * only useful on RAM regions.
1712 * @mr: the region being updated.
1713 * @readonly: whether rhe region is to be ROM or RAM.
1715 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
1718 * memory_region_set_nonvolatile: Turn a memory region non-volatile
1720 * Allows a memory region to be marked as non-volatile.
1721 * only useful on RAM regions.
1723 * @mr: the region being updated.
1724 * @nonvolatile: whether rhe region is to be non-volatile.
1726 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile);
1729 * memory_region_rom_device_set_romd: enable/disable ROMD mode
1731 * Allows a ROM device (initialized with memory_region_init_rom_device() to
1732 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the
1733 * device is mapped to guest memory and satisfies read access directly.
1734 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
1735 * Writes are always handled by the #MemoryRegion.write function.
1737 * @mr: the memory region to be updated
1738 * @romd_mode: %true to put the region into ROMD mode
1740 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
1743 * memory_region_set_coalescing: Enable memory coalescing for the region.
1745 * Enabled writes to a region to be queued for later processing. MMIO ->write
1746 * callbacks may be delayed until a non-coalesced MMIO is issued.
1747 * Only useful for IO regions. Roughly similar to write-combining hardware.
1749 * @mr: the memory region to be write coalesced
1751 void memory_region_set_coalescing(MemoryRegion *mr);
1754 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
1755 * a region.
1757 * Like memory_region_set_coalescing(), but works on a sub-range of a region.
1758 * Multiple calls can be issued coalesced disjoint ranges.
1760 * @mr: the memory region to be updated.
1761 * @offset: the start of the range within the region to be coalesced.
1762 * @size: the size of the subrange to be coalesced.
1764 void memory_region_add_coalescing(MemoryRegion *mr,
1765 hwaddr offset,
1766 uint64_t size);
1769 * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
1771 * Disables any coalescing caused by memory_region_set_coalescing() or
1772 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory
1773 * hardware.
1775 * @mr: the memory region to be updated.
1777 void memory_region_clear_coalescing(MemoryRegion *mr);
1780 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
1781 * accesses.
1783 * Ensure that pending coalesced MMIO request are flushed before the memory
1784 * region is accessed. This property is automatically enabled for all regions
1785 * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
1787 * @mr: the memory region to be updated.
1789 void memory_region_set_flush_coalesced(MemoryRegion *mr);
1792 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
1793 * accesses.
1795 * Clear the automatic coalesced MMIO flushing enabled via
1796 * memory_region_set_flush_coalesced. Note that this service has no effect on
1797 * memory regions that have MMIO coalescing enabled for themselves. For them,
1798 * automatic flushing will stop once coalescing is disabled.
1800 * @mr: the memory region to be updated.
1802 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
1805 * memory_region_add_eventfd: Request an eventfd to be triggered when a word
1806 * is written to a location.
1808 * Marks a word in an IO region (initialized with memory_region_init_io())
1809 * as a trigger for an eventfd event. The I/O callback will not be called.
1810 * The caller must be prepared to handle failure (that is, take the required
1811 * action if the callback _is_ called).
1813 * @mr: the memory region being updated.
1814 * @addr: the address within @mr that is to be monitored
1815 * @size: the size of the access to trigger the eventfd
1816 * @match_data: whether to match against @data, instead of just @addr
1817 * @data: the data to match against the guest write
1818 * @e: event notifier to be triggered when @addr, @size, and @data all match.
1820 void memory_region_add_eventfd(MemoryRegion *mr,
1821 hwaddr addr,
1822 unsigned size,
1823 bool match_data,
1824 uint64_t data,
1825 EventNotifier *e);
1828 * memory_region_del_eventfd: Cancel an eventfd.
1830 * Cancels an eventfd trigger requested by a previous
1831 * memory_region_add_eventfd() call.
1833 * @mr: the memory region being updated.
1834 * @addr: the address within @mr that is to be monitored
1835 * @size: the size of the access to trigger the eventfd
1836 * @match_data: whether to match against @data, instead of just @addr
1837 * @data: the data to match against the guest write
1838 * @e: event notifier to be triggered when @addr, @size, and @data all match.
1840 void memory_region_del_eventfd(MemoryRegion *mr,
1841 hwaddr addr,
1842 unsigned size,
1843 bool match_data,
1844 uint64_t data,
1845 EventNotifier *e);
1848 * memory_region_add_subregion: Add a subregion to a container.
1850 * Adds a subregion at @offset. The subregion may not overlap with other
1851 * subregions (except for those explicitly marked as overlapping). A region
1852 * may only be added once as a subregion (unless removed with
1853 * memory_region_del_subregion()); use memory_region_init_alias() if you
1854 * want a region to be a subregion in multiple locations.
1856 * @mr: the region to contain the new subregion; must be a container
1857 * initialized with memory_region_init().
1858 * @offset: the offset relative to @mr where @subregion is added.
1859 * @subregion: the subregion to be added.
1861 void memory_region_add_subregion(MemoryRegion *mr,
1862 hwaddr offset,
1863 MemoryRegion *subregion);
1865 * memory_region_add_subregion_overlap: Add a subregion to a container
1866 * with overlap.
1868 * Adds a subregion at @offset. The subregion may overlap with other
1869 * subregions. Conflicts are resolved by having a higher @priority hide a
1870 * lower @priority. Subregions without priority are taken as @priority 0.
1871 * A region may only be added once as a subregion (unless removed with
1872 * memory_region_del_subregion()); use memory_region_init_alias() if you
1873 * want a region to be a subregion in multiple locations.
1875 * @mr: the region to contain the new subregion; must be a container
1876 * initialized with memory_region_init().
1877 * @offset: the offset relative to @mr where @subregion is added.
1878 * @subregion: the subregion to be added.
1879 * @priority: used for resolving overlaps; highest priority wins.
1881 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1882 hwaddr offset,
1883 MemoryRegion *subregion,
1884 int priority);
1887 * memory_region_get_ram_addr: Get the ram address associated with a memory
1888 * region
1890 * @mr: the region to be queried
1892 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
1894 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
1896 * memory_region_del_subregion: Remove a subregion.
1898 * Removes a subregion from its container.
1900 * @mr: the container to be updated.
1901 * @subregion: the region being removed; must be a current subregion of @mr.
1903 void memory_region_del_subregion(MemoryRegion *mr,
1904 MemoryRegion *subregion);
1907 * memory_region_set_enabled: dynamically enable or disable a region
1909 * Enables or disables a memory region. A disabled memory region
1910 * ignores all accesses to itself and its subregions. It does not
1911 * obscure sibling subregions with lower priority - it simply behaves as
1912 * if it was removed from the hierarchy.
1914 * Regions default to being enabled.
1916 * @mr: the region to be updated
1917 * @enabled: whether to enable or disable the region
1919 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
1922 * memory_region_set_address: dynamically update the address of a region
1924 * Dynamically updates the address of a region, relative to its container.
1925 * May be used on regions are currently part of a memory hierarchy.
1927 * @mr: the region to be updated
1928 * @addr: new address, relative to container region
1930 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
1933 * memory_region_set_size: dynamically update the size of a region.
1935 * Dynamically updates the size of a region.
1937 * @mr: the region to be updated
1938 * @size: used size of the region.
1940 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
1943 * memory_region_set_alias_offset: dynamically update a memory alias's offset
1945 * Dynamically updates the offset into the target region that an alias points
1946 * to, as if the fourth argument to memory_region_init_alias() has changed.
1948 * @mr: the #MemoryRegion to be updated; should be an alias.
1949 * @offset: the new offset into the target memory region
1951 void memory_region_set_alias_offset(MemoryRegion *mr,
1952 hwaddr offset);
1955 * memory_region_present: checks if an address relative to a @container
1956 * translates into #MemoryRegion within @container
1958 * Answer whether a #MemoryRegion within @container covers the address
1959 * @addr.
1961 * @container: a #MemoryRegion within which @addr is a relative address
1962 * @addr: the area within @container to be searched
1964 bool memory_region_present(MemoryRegion *container, hwaddr addr);
1967 * memory_region_is_mapped: returns true if #MemoryRegion is mapped
1968 * into any address space.
1970 * @mr: a #MemoryRegion which should be checked if it's mapped
1972 bool memory_region_is_mapped(MemoryRegion *mr);
1975 * memory_region_find: translate an address/size relative to a
1976 * MemoryRegion into a #MemoryRegionSection.
1978 * Locates the first #MemoryRegion within @mr that overlaps the range
1979 * given by @addr and @size.
1981 * Returns a #MemoryRegionSection that describes a contiguous overlap.
1982 * It will have the following characteristics:
1983 * - @size = 0 iff no overlap was found
1984 * - @mr is non-%NULL iff an overlap was found
1986 * Remember that in the return value the @offset_within_region is
1987 * relative to the returned region (in the .@mr field), not to the
1988 * @mr argument.
1990 * Similarly, the .@offset_within_address_space is relative to the
1991 * address space that contains both regions, the passed and the
1992 * returned one. However, in the special case where the @mr argument
1993 * has no container (and thus is the root of the address space), the
1994 * following will hold:
1995 * - @offset_within_address_space >= @addr
1996 * - @offset_within_address_space + .@size <= @addr + @size
1998 * @mr: a MemoryRegion within which @addr is a relative address
1999 * @addr: start of the area within @as to be searched
2000 * @size: size of the area to be searched
2002 MemoryRegionSection memory_region_find(MemoryRegion *mr,
2003 hwaddr addr, uint64_t size);
2006 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
2008 * Synchronizes the dirty page log for all address spaces.
2010 void memory_global_dirty_log_sync(void);
2013 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
2015 * Synchronizes the vCPUs with a thread that is reading the dirty bitmap.
2016 * This function must be called after the dirty log bitmap is cleared, and
2017 * before dirty guest memory pages are read. If you are using
2018 * #DirtyBitmapSnapshot, memory_region_snapshot_and_clear_dirty() takes
2019 * care of doing this.
2021 void memory_global_after_dirty_log_sync(void);
2024 * memory_region_transaction_begin: Start a transaction.
2026 * During a transaction, changes will be accumulated and made visible
2027 * only when the transaction ends (is committed).
2029 void memory_region_transaction_begin(void);
2032 * memory_region_transaction_commit: Commit a transaction and make changes
2033 * visible to the guest.
2035 void memory_region_transaction_commit(void);
2038 * memory_listener_register: register callbacks to be called when memory
2039 * sections are mapped or unmapped into an address
2040 * space
2042 * @listener: an object containing the callbacks to be called
2043 * @filter: if non-%NULL, only regions in this address space will be observed
2045 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
2048 * memory_listener_unregister: undo the effect of memory_listener_register()
2050 * @listener: an object containing the callbacks to be removed
2052 void memory_listener_unregister(MemoryListener *listener);
2055 * memory_global_dirty_log_start: begin dirty logging for all regions
2057 void memory_global_dirty_log_start(void);
2060 * memory_global_dirty_log_stop: end dirty logging for all regions
2062 void memory_global_dirty_log_stop(void);
2064 void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled);
2067 * memory_region_dispatch_read: perform a read directly to the specified
2068 * MemoryRegion.
2070 * @mr: #MemoryRegion to access
2071 * @addr: address within that region
2072 * @pval: pointer to uint64_t which the data is written to
2073 * @op: size, sign, and endianness of the memory operation
2074 * @attrs: memory transaction attributes to use for the access
2076 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
2077 hwaddr addr,
2078 uint64_t *pval,
2079 MemOp op,
2080 MemTxAttrs attrs);
2082 * memory_region_dispatch_write: perform a write directly to the specified
2083 * MemoryRegion.
2085 * @mr: #MemoryRegion to access
2086 * @addr: address within that region
2087 * @data: data to write
2088 * @op: size, sign, and endianness of the memory operation
2089 * @attrs: memory transaction attributes to use for the access
2091 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
2092 hwaddr addr,
2093 uint64_t data,
2094 MemOp op,
2095 MemTxAttrs attrs);
2098 * address_space_init: initializes an address space
2100 * @as: an uninitialized #AddressSpace
2101 * @root: a #MemoryRegion that routes addresses for the address space
2102 * @name: an address space name. The name is only used for debugging
2103 * output.
2105 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
2108 * address_space_destroy: destroy an address space
2110 * Releases all resources associated with an address space. After an address space
2111 * is destroyed, its root memory region (given by address_space_init()) may be destroyed
2112 * as well.
2114 * @as: address space to be destroyed
2116 void address_space_destroy(AddressSpace *as);
2119 * address_space_remove_listeners: unregister all listeners of an address space
2121 * Removes all callbacks previously registered with memory_listener_register()
2122 * for @as.
2124 * @as: an initialized #AddressSpace
2126 void address_space_remove_listeners(AddressSpace *as);
2129 * address_space_rw: read from or write to an address space.
2131 * Return a MemTxResult indicating whether the operation succeeded
2132 * or failed (eg unassigned memory, device rejected the transaction,
2133 * IOMMU fault).
2135 * @as: #AddressSpace to be accessed
2136 * @addr: address within that address space
2137 * @attrs: memory transaction attributes
2138 * @buf: buffer with the data transferred
2139 * @len: the number of bytes to read or write
2140 * @is_write: indicates the transfer direction
2142 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
2143 MemTxAttrs attrs, void *buf,
2144 hwaddr len, bool is_write);
2147 * address_space_write: write to address space.
2149 * Return a MemTxResult indicating whether the operation succeeded
2150 * or failed (eg unassigned memory, device rejected the transaction,
2151 * IOMMU fault).
2153 * @as: #AddressSpace to be accessed
2154 * @addr: address within that address space
2155 * @attrs: memory transaction attributes
2156 * @buf: buffer with the data transferred
2157 * @len: the number of bytes to write
2159 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2160 MemTxAttrs attrs,
2161 const void *buf, hwaddr len);
2164 * address_space_write_rom: write to address space, including ROM.
2166 * This function writes to the specified address space, but will
2167 * write data to both ROM and RAM. This is used for non-guest
2168 * writes like writes from the gdb debug stub or initial loading
2169 * of ROM contents.
2171 * Note that portions of the write which attempt to write data to
2172 * a device will be silently ignored -- only real RAM and ROM will
2173 * be written to.
2175 * Return a MemTxResult indicating whether the operation succeeded
2176 * or failed (eg unassigned memory, device rejected the transaction,
2177 * IOMMU fault).
2179 * @as: #AddressSpace to be accessed
2180 * @addr: address within that address space
2181 * @attrs: memory transaction attributes
2182 * @buf: buffer with the data transferred
2183 * @len: the number of bytes to write
2185 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
2186 MemTxAttrs attrs,
2187 const void *buf, hwaddr len);
2189 /* address_space_ld*: load from an address space
2190 * address_space_st*: store to an address space
2192 * These functions perform a load or store of the byte, word,
2193 * longword or quad to the specified address within the AddressSpace.
2194 * The _le suffixed functions treat the data as little endian;
2195 * _be indicates big endian; no suffix indicates "same endianness
2196 * as guest CPU".
2198 * The "guest CPU endianness" accessors are deprecated for use outside
2199 * target-* code; devices should be CPU-agnostic and use either the LE
2200 * or the BE accessors.
2202 * @as #AddressSpace to be accessed
2203 * @addr: address within that address space
2204 * @val: data value, for stores
2205 * @attrs: memory transaction attributes
2206 * @result: location to write the success/failure of the transaction;
2207 * if NULL, this information is discarded
2210 #define SUFFIX
2211 #define ARG1 as
2212 #define ARG1_DECL AddressSpace *as
2213 #include "exec/memory_ldst.h.inc"
2215 #define SUFFIX
2216 #define ARG1 as
2217 #define ARG1_DECL AddressSpace *as
2218 #include "exec/memory_ldst_phys.h.inc"
2220 struct MemoryRegionCache {
2221 void *ptr;
2222 hwaddr xlat;
2223 hwaddr len;
2224 FlatView *fv;
2225 MemoryRegionSection mrs;
2226 bool is_write;
2229 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .mrs.mr = NULL })
2232 /* address_space_ld*_cached: load from a cached #MemoryRegion
2233 * address_space_st*_cached: store into a cached #MemoryRegion
2235 * These functions perform a load or store of the byte, word,
2236 * longword or quad to the specified address. The address is
2237 * a physical address in the AddressSpace, but it must lie within
2238 * a #MemoryRegion that was mapped with address_space_cache_init.
2240 * The _le suffixed functions treat the data as little endian;
2241 * _be indicates big endian; no suffix indicates "same endianness
2242 * as guest CPU".
2244 * The "guest CPU endianness" accessors are deprecated for use outside
2245 * target-* code; devices should be CPU-agnostic and use either the LE
2246 * or the BE accessors.
2248 * @cache: previously initialized #MemoryRegionCache to be accessed
2249 * @addr: address within the address space
2250 * @val: data value, for stores
2251 * @attrs: memory transaction attributes
2252 * @result: location to write the success/failure of the transaction;
2253 * if NULL, this information is discarded
2256 #define SUFFIX _cached_slow
2257 #define ARG1 cache
2258 #define ARG1_DECL MemoryRegionCache *cache
2259 #include "exec/memory_ldst.h.inc"
2261 /* Inline fast path for direct RAM access. */
2262 static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache,
2263 hwaddr addr, MemTxAttrs attrs, MemTxResult *result)
2265 assert(addr < cache->len);
2266 if (likely(cache->ptr)) {
2267 return ldub_p(cache->ptr + addr);
2268 } else {
2269 return address_space_ldub_cached_slow(cache, addr, attrs, result);
2273 static inline void address_space_stb_cached(MemoryRegionCache *cache,
2274 hwaddr addr, uint32_t val, MemTxAttrs attrs, MemTxResult *result)
2276 assert(addr < cache->len);
2277 if (likely(cache->ptr)) {
2278 stb_p(cache->ptr + addr, val);
2279 } else {
2280 address_space_stb_cached_slow(cache, addr, val, attrs, result);
2284 #define ENDIANNESS _le
2285 #include "exec/memory_ldst_cached.h.inc"
2287 #define ENDIANNESS _be
2288 #include "exec/memory_ldst_cached.h.inc"
2290 #define SUFFIX _cached
2291 #define ARG1 cache
2292 #define ARG1_DECL MemoryRegionCache *cache
2293 #include "exec/memory_ldst_phys.h.inc"
2295 /* address_space_cache_init: prepare for repeated access to a physical
2296 * memory region
2298 * @cache: #MemoryRegionCache to be filled
2299 * @as: #AddressSpace to be accessed
2300 * @addr: address within that address space
2301 * @len: length of buffer
2302 * @is_write: indicates the transfer direction
2304 * Will only work with RAM, and may map a subset of the requested range by
2305 * returning a value that is less than @len. On failure, return a negative
2306 * errno value.
2308 * Because it only works with RAM, this function can be used for
2309 * read-modify-write operations. In this case, is_write should be %true.
2311 * Note that addresses passed to the address_space_*_cached functions
2312 * are relative to @addr.
2314 int64_t address_space_cache_init(MemoryRegionCache *cache,
2315 AddressSpace *as,
2316 hwaddr addr,
2317 hwaddr len,
2318 bool is_write);
2321 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
2323 * @cache: The #MemoryRegionCache to operate on.
2324 * @addr: The first physical address that was written, relative to the
2325 * address that was passed to @address_space_cache_init.
2326 * @access_len: The number of bytes that were written starting at @addr.
2328 void address_space_cache_invalidate(MemoryRegionCache *cache,
2329 hwaddr addr,
2330 hwaddr access_len);
2333 * address_space_cache_destroy: free a #MemoryRegionCache
2335 * @cache: The #MemoryRegionCache whose memory should be released.
2337 void address_space_cache_destroy(MemoryRegionCache *cache);
2339 /* address_space_get_iotlb_entry: translate an address into an IOTLB
2340 * entry. Should be called from an RCU critical section.
2342 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
2343 bool is_write, MemTxAttrs attrs);
2345 /* address_space_translate: translate an address range into an address space
2346 * into a MemoryRegion and an address range into that section. Should be
2347 * called from an RCU critical section, to avoid that the last reference
2348 * to the returned region disappears after address_space_translate returns.
2350 * @fv: #FlatView to be accessed
2351 * @addr: address within that address space
2352 * @xlat: pointer to address within the returned memory region section's
2353 * #MemoryRegion.
2354 * @len: pointer to length
2355 * @is_write: indicates the transfer direction
2356 * @attrs: memory attributes
2358 MemoryRegion *flatview_translate(FlatView *fv,
2359 hwaddr addr, hwaddr *xlat,
2360 hwaddr *len, bool is_write,
2361 MemTxAttrs attrs);
2363 static inline MemoryRegion *address_space_translate(AddressSpace *as,
2364 hwaddr addr, hwaddr *xlat,
2365 hwaddr *len, bool is_write,
2366 MemTxAttrs attrs)
2368 return flatview_translate(address_space_to_flatview(as),
2369 addr, xlat, len, is_write, attrs);
2372 /* address_space_access_valid: check for validity of accessing an address
2373 * space range
2375 * Check whether memory is assigned to the given address space range, and
2376 * access is permitted by any IOMMU regions that are active for the address
2377 * space.
2379 * For now, addr and len should be aligned to a page size. This limitation
2380 * will be lifted in the future.
2382 * @as: #AddressSpace to be accessed
2383 * @addr: address within that address space
2384 * @len: length of the area to be checked
2385 * @is_write: indicates the transfer direction
2386 * @attrs: memory attributes
2388 bool address_space_access_valid(AddressSpace *as, hwaddr addr, hwaddr len,
2389 bool is_write, MemTxAttrs attrs);
2391 /* address_space_map: map a physical memory region into a host virtual address
2393 * May map a subset of the requested range, given by and returned in @plen.
2394 * May return %NULL and set *@plen to zero(0), if resources needed to perform
2395 * the mapping are exhausted.
2396 * Use only for reads OR writes - not for read-modify-write operations.
2397 * Use cpu_register_map_client() to know when retrying the map operation is
2398 * likely to succeed.
2400 * @as: #AddressSpace to be accessed
2401 * @addr: address within that address space
2402 * @plen: pointer to length of buffer; updated on return
2403 * @is_write: indicates the transfer direction
2404 * @attrs: memory attributes
2406 void *address_space_map(AddressSpace *as, hwaddr addr,
2407 hwaddr *plen, bool is_write, MemTxAttrs attrs);
2409 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
2411 * Will also mark the memory as dirty if @is_write == %true. @access_len gives
2412 * the amount of memory that was actually read or written by the caller.
2414 * @as: #AddressSpace used
2415 * @buffer: host pointer as returned by address_space_map()
2416 * @len: buffer length as returned by address_space_map()
2417 * @access_len: amount of data actually transferred
2418 * @is_write: indicates the transfer direction
2420 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2421 bool is_write, hwaddr access_len);
2424 /* Internal functions, part of the implementation of address_space_read. */
2425 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2426 MemTxAttrs attrs, void *buf, hwaddr len);
2427 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2428 MemTxAttrs attrs, void *buf,
2429 hwaddr len, hwaddr addr1, hwaddr l,
2430 MemoryRegion *mr);
2431 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
2433 /* Internal functions, part of the implementation of address_space_read_cached
2434 * and address_space_write_cached. */
2435 MemTxResult address_space_read_cached_slow(MemoryRegionCache *cache,
2436 hwaddr addr, void *buf, hwaddr len);
2437 MemTxResult address_space_write_cached_slow(MemoryRegionCache *cache,
2438 hwaddr addr, const void *buf,
2439 hwaddr len);
2441 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
2443 if (is_write) {
2444 return memory_region_is_ram(mr) && !mr->readonly &&
2445 !mr->rom_device && !memory_region_is_ram_device(mr);
2446 } else {
2447 return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
2448 memory_region_is_romd(mr);
2453 * address_space_read: read from an address space.
2455 * Return a MemTxResult indicating whether the operation succeeded
2456 * or failed (eg unassigned memory, device rejected the transaction,
2457 * IOMMU fault). Called within RCU critical section.
2459 * @as: #AddressSpace to be accessed
2460 * @addr: address within that address space
2461 * @attrs: memory transaction attributes
2462 * @buf: buffer with the data transferred
2463 * @len: length of the data transferred
2465 static inline __attribute__((__always_inline__))
2466 MemTxResult address_space_read(AddressSpace *as, hwaddr addr,
2467 MemTxAttrs attrs, void *buf,
2468 hwaddr len)
2470 MemTxResult result = MEMTX_OK;
2471 hwaddr l, addr1;
2472 void *ptr;
2473 MemoryRegion *mr;
2474 FlatView *fv;
2476 if (__builtin_constant_p(len)) {
2477 if (len) {
2478 RCU_READ_LOCK_GUARD();
2479 fv = address_space_to_flatview(as);
2480 l = len;
2481 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2482 if (len == l && memory_access_is_direct(mr, false)) {
2483 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2484 memcpy(buf, ptr, len);
2485 } else {
2486 result = flatview_read_continue(fv, addr, attrs, buf, len,
2487 addr1, l, mr);
2490 } else {
2491 result = address_space_read_full(as, addr, attrs, buf, len);
2493 return result;
2497 * address_space_read_cached: read from a cached RAM region
2499 * @cache: Cached region to be addressed
2500 * @addr: address relative to the base of the RAM region
2501 * @buf: buffer with the data transferred
2502 * @len: length of the data transferred
2504 static inline MemTxResult
2505 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
2506 void *buf, hwaddr len)
2508 assert(addr < cache->len && len <= cache->len - addr);
2509 fuzz_dma_read_cb(cache->xlat + addr, len, cache->mrs.mr, false);
2510 if (likely(cache->ptr)) {
2511 memcpy(buf, cache->ptr + addr, len);
2512 return MEMTX_OK;
2513 } else {
2514 return address_space_read_cached_slow(cache, addr, buf, len);
2519 * address_space_write_cached: write to a cached RAM region
2521 * @cache: Cached region to be addressed
2522 * @addr: address relative to the base of the RAM region
2523 * @buf: buffer with the data transferred
2524 * @len: length of the data transferred
2526 static inline MemTxResult
2527 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
2528 const void *buf, hwaddr len)
2530 assert(addr < cache->len && len <= cache->len - addr);
2531 if (likely(cache->ptr)) {
2532 memcpy(cache->ptr + addr, buf, len);
2533 return MEMTX_OK;
2534 } else {
2535 return address_space_write_cached_slow(cache, addr, buf, len);
2539 #ifdef NEED_CPU_H
2540 /* enum device_endian to MemOp. */
2541 static inline MemOp devend_memop(enum device_endian end)
2543 QEMU_BUILD_BUG_ON(DEVICE_HOST_ENDIAN != DEVICE_LITTLE_ENDIAN &&
2544 DEVICE_HOST_ENDIAN != DEVICE_BIG_ENDIAN);
2546 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
2547 /* Swap if non-host endianness or native (target) endianness */
2548 return (end == DEVICE_HOST_ENDIAN) ? 0 : MO_BSWAP;
2549 #else
2550 const int non_host_endianness =
2551 DEVICE_LITTLE_ENDIAN ^ DEVICE_BIG_ENDIAN ^ DEVICE_HOST_ENDIAN;
2553 /* In this case, native (target) endianness needs no swap. */
2554 return (end == non_host_endianness) ? MO_BSWAP : 0;
2555 #endif
2557 #endif
2560 * Inhibit technologies that require discarding of pages in RAM blocks, e.g.,
2561 * to manage the actual amount of memory consumed by the VM (then, the memory
2562 * provided by RAM blocks might be bigger than the desired memory consumption).
2563 * This *must* be set if:
2564 * - Discarding parts of a RAM blocks does not result in the change being
2565 * reflected in the VM and the pages getting freed.
2566 * - All memory in RAM blocks is pinned or duplicated, invaldiating any previous
2567 * discards blindly.
2568 * - Discarding parts of a RAM blocks will result in integrity issues (e.g.,
2569 * encrypted VMs).
2570 * Technologies that only temporarily pin the current working set of a
2571 * driver are fine, because we don't expect such pages to be discarded
2572 * (esp. based on guest action like balloon inflation).
2574 * This is *not* to be used to protect from concurrent discards (esp.,
2575 * postcopy).
2577 * Returns 0 if successful. Returns -EBUSY if a technology that relies on
2578 * discards to work reliably is active.
2580 int ram_block_discard_disable(bool state);
2583 * Inhibit technologies that disable discarding of pages in RAM blocks.
2585 * Returns 0 if successful. Returns -EBUSY if discards are already set to
2586 * broken.
2588 int ram_block_discard_require(bool state);
2591 * Test if discarding of memory in ram blocks is disabled.
2593 bool ram_block_discard_is_disabled(void);
2596 * Test if discarding of memory in ram blocks is required to work reliably.
2598 bool ram_block_discard_is_required(void);
2600 #endif
2602 #endif