crypto/builtin: Merge qcrypto_cipher_aes_{ecb,xts}_{en,de}crypt
[qemu/ar7.git] / block / nvme.c
blob05485fdd1189fe0ceb745b99338f93186371a093
1 /*
2 * NVMe block driver based on vfio
4 * Copyright 2016 - 2018 Red Hat, Inc.
6 * Authors:
7 * Fam Zheng <famz@redhat.com>
8 * Paolo Bonzini <pbonzini@redhat.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
14 #include "qemu/osdep.h"
15 #include <linux/vfio.h>
16 #include "qapi/error.h"
17 #include "qapi/qmp/qdict.h"
18 #include "qapi/qmp/qstring.h"
19 #include "qemu/error-report.h"
20 #include "qemu/main-loop.h"
21 #include "qemu/module.h"
22 #include "qemu/cutils.h"
23 #include "qemu/option.h"
24 #include "qemu/vfio-helpers.h"
25 #include "block/block_int.h"
26 #include "sysemu/replay.h"
27 #include "trace.h"
29 #include "block/nvme.h"
31 #define NVME_SQ_ENTRY_BYTES 64
32 #define NVME_CQ_ENTRY_BYTES 16
33 #define NVME_QUEUE_SIZE 128
34 #define NVME_BAR_SIZE 8192
37 * We have to leave one slot empty as that is the full queue case where
38 * head == tail + 1.
40 #define NVME_NUM_REQS (NVME_QUEUE_SIZE - 1)
42 typedef struct BDRVNVMeState BDRVNVMeState;
44 typedef struct {
45 int32_t head, tail;
46 uint8_t *queue;
47 uint64_t iova;
48 /* Hardware MMIO register */
49 volatile uint32_t *doorbell;
50 } NVMeQueue;
52 typedef struct {
53 BlockCompletionFunc *cb;
54 void *opaque;
55 int cid;
56 void *prp_list_page;
57 uint64_t prp_list_iova;
58 int free_req_next; /* q->reqs[] index of next free req */
59 } NVMeRequest;
61 typedef struct {
62 QemuMutex lock;
64 /* Read from I/O code path, initialized under BQL */
65 BDRVNVMeState *s;
66 int index;
68 /* Fields protected by BQL */
69 uint8_t *prp_list_pages;
71 /* Fields protected by @lock */
72 CoQueue free_req_queue;
73 NVMeQueue sq, cq;
74 int cq_phase;
75 int free_req_head;
76 NVMeRequest reqs[NVME_NUM_REQS];
77 int need_kick;
78 int inflight;
80 /* Thread-safe, no lock necessary */
81 QEMUBH *completion_bh;
82 } NVMeQueuePair;
84 /* Memory mapped registers */
85 typedef volatile struct {
86 uint64_t cap;
87 uint32_t vs;
88 uint32_t intms;
89 uint32_t intmc;
90 uint32_t cc;
91 uint32_t reserved0;
92 uint32_t csts;
93 uint32_t nssr;
94 uint32_t aqa;
95 uint64_t asq;
96 uint64_t acq;
97 uint32_t cmbloc;
98 uint32_t cmbsz;
99 uint8_t reserved1[0xec0];
100 uint8_t cmd_set_specfic[0x100];
101 uint32_t doorbells[];
102 } NVMeRegs;
104 QEMU_BUILD_BUG_ON(offsetof(NVMeRegs, doorbells) != 0x1000);
106 struct BDRVNVMeState {
107 AioContext *aio_context;
108 QEMUVFIOState *vfio;
109 NVMeRegs *regs;
110 /* The submission/completion queue pairs.
111 * [0]: admin queue.
112 * [1..]: io queues.
114 NVMeQueuePair **queues;
115 int nr_queues;
116 size_t page_size;
117 /* How many uint32_t elements does each doorbell entry take. */
118 size_t doorbell_scale;
119 bool write_cache_supported;
120 EventNotifier irq_notifier;
122 uint64_t nsze; /* Namespace size reported by identify command */
123 int nsid; /* The namespace id to read/write data. */
124 int blkshift;
126 uint64_t max_transfer;
127 bool plugged;
129 bool supports_write_zeroes;
130 bool supports_discard;
132 CoMutex dma_map_lock;
133 CoQueue dma_flush_queue;
135 /* Total size of mapped qiov, accessed under dma_map_lock */
136 int dma_map_count;
138 /* PCI address (required for nvme_refresh_filename()) */
139 char *device;
142 #define NVME_BLOCK_OPT_DEVICE "device"
143 #define NVME_BLOCK_OPT_NAMESPACE "namespace"
145 static void nvme_process_completion_bh(void *opaque);
147 static QemuOptsList runtime_opts = {
148 .name = "nvme",
149 .head = QTAILQ_HEAD_INITIALIZER(runtime_opts.head),
150 .desc = {
152 .name = NVME_BLOCK_OPT_DEVICE,
153 .type = QEMU_OPT_STRING,
154 .help = "NVMe PCI device address",
157 .name = NVME_BLOCK_OPT_NAMESPACE,
158 .type = QEMU_OPT_NUMBER,
159 .help = "NVMe namespace",
161 { /* end of list */ }
165 static void nvme_init_queue(BlockDriverState *bs, NVMeQueue *q,
166 int nentries, int entry_bytes, Error **errp)
168 BDRVNVMeState *s = bs->opaque;
169 size_t bytes;
170 int r;
172 bytes = ROUND_UP(nentries * entry_bytes, s->page_size);
173 q->head = q->tail = 0;
174 q->queue = qemu_try_blockalign0(bs, bytes);
176 if (!q->queue) {
177 error_setg(errp, "Cannot allocate queue");
178 return;
180 r = qemu_vfio_dma_map(s->vfio, q->queue, bytes, false, &q->iova);
181 if (r) {
182 error_setg(errp, "Cannot map queue");
186 static void nvme_free_queue_pair(NVMeQueuePair *q)
188 if (q->completion_bh) {
189 qemu_bh_delete(q->completion_bh);
191 qemu_vfree(q->prp_list_pages);
192 qemu_vfree(q->sq.queue);
193 qemu_vfree(q->cq.queue);
194 qemu_mutex_destroy(&q->lock);
195 g_free(q);
198 static void nvme_free_req_queue_cb(void *opaque)
200 NVMeQueuePair *q = opaque;
202 qemu_mutex_lock(&q->lock);
203 while (qemu_co_enter_next(&q->free_req_queue, &q->lock)) {
204 /* Retry all pending requests */
206 qemu_mutex_unlock(&q->lock);
209 static NVMeQueuePair *nvme_create_queue_pair(BlockDriverState *bs,
210 int idx, int size,
211 Error **errp)
213 int i, r;
214 BDRVNVMeState *s = bs->opaque;
215 Error *local_err = NULL;
216 NVMeQueuePair *q = g_new0(NVMeQueuePair, 1);
217 uint64_t prp_list_iova;
219 qemu_mutex_init(&q->lock);
220 q->s = s;
221 q->index = idx;
222 qemu_co_queue_init(&q->free_req_queue);
223 q->prp_list_pages = qemu_blockalign0(bs, s->page_size * NVME_NUM_REQS);
224 q->completion_bh = aio_bh_new(bdrv_get_aio_context(bs),
225 nvme_process_completion_bh, q);
226 r = qemu_vfio_dma_map(s->vfio, q->prp_list_pages,
227 s->page_size * NVME_NUM_REQS,
228 false, &prp_list_iova);
229 if (r) {
230 goto fail;
232 q->free_req_head = -1;
233 for (i = 0; i < NVME_NUM_REQS; i++) {
234 NVMeRequest *req = &q->reqs[i];
235 req->cid = i + 1;
236 req->free_req_next = q->free_req_head;
237 q->free_req_head = i;
238 req->prp_list_page = q->prp_list_pages + i * s->page_size;
239 req->prp_list_iova = prp_list_iova + i * s->page_size;
242 nvme_init_queue(bs, &q->sq, size, NVME_SQ_ENTRY_BYTES, &local_err);
243 if (local_err) {
244 error_propagate(errp, local_err);
245 goto fail;
247 q->sq.doorbell = &s->regs->doorbells[idx * 2 * s->doorbell_scale];
249 nvme_init_queue(bs, &q->cq, size, NVME_CQ_ENTRY_BYTES, &local_err);
250 if (local_err) {
251 error_propagate(errp, local_err);
252 goto fail;
254 q->cq.doorbell = &s->regs->doorbells[(idx * 2 + 1) * s->doorbell_scale];
256 return q;
257 fail:
258 nvme_free_queue_pair(q);
259 return NULL;
262 /* With q->lock */
263 static void nvme_kick(NVMeQueuePair *q)
265 BDRVNVMeState *s = q->s;
267 if (s->plugged || !q->need_kick) {
268 return;
270 trace_nvme_kick(s, q->index);
271 assert(!(q->sq.tail & 0xFF00));
272 /* Fence the write to submission queue entry before notifying the device. */
273 smp_wmb();
274 *q->sq.doorbell = cpu_to_le32(q->sq.tail);
275 q->inflight += q->need_kick;
276 q->need_kick = 0;
279 /* Find a free request element if any, otherwise:
280 * a) if in coroutine context, try to wait for one to become available;
281 * b) if not in coroutine, return NULL;
283 static NVMeRequest *nvme_get_free_req(NVMeQueuePair *q)
285 NVMeRequest *req;
287 qemu_mutex_lock(&q->lock);
289 while (q->free_req_head == -1) {
290 if (qemu_in_coroutine()) {
291 trace_nvme_free_req_queue_wait(q);
292 qemu_co_queue_wait(&q->free_req_queue, &q->lock);
293 } else {
294 qemu_mutex_unlock(&q->lock);
295 return NULL;
299 req = &q->reqs[q->free_req_head];
300 q->free_req_head = req->free_req_next;
301 req->free_req_next = -1;
303 qemu_mutex_unlock(&q->lock);
304 return req;
307 /* With q->lock */
308 static void nvme_put_free_req_locked(NVMeQueuePair *q, NVMeRequest *req)
310 req->free_req_next = q->free_req_head;
311 q->free_req_head = req - q->reqs;
314 /* With q->lock */
315 static void nvme_wake_free_req_locked(NVMeQueuePair *q)
317 if (!qemu_co_queue_empty(&q->free_req_queue)) {
318 replay_bh_schedule_oneshot_event(q->s->aio_context,
319 nvme_free_req_queue_cb, q);
323 /* Insert a request in the freelist and wake waiters */
324 static void nvme_put_free_req_and_wake(NVMeQueuePair *q, NVMeRequest *req)
326 qemu_mutex_lock(&q->lock);
327 nvme_put_free_req_locked(q, req);
328 nvme_wake_free_req_locked(q);
329 qemu_mutex_unlock(&q->lock);
332 static inline int nvme_translate_error(const NvmeCqe *c)
334 uint16_t status = (le16_to_cpu(c->status) >> 1) & 0xFF;
335 if (status) {
336 trace_nvme_error(le32_to_cpu(c->result),
337 le16_to_cpu(c->sq_head),
338 le16_to_cpu(c->sq_id),
339 le16_to_cpu(c->cid),
340 le16_to_cpu(status));
342 switch (status) {
343 case 0:
344 return 0;
345 case 1:
346 return -ENOSYS;
347 case 2:
348 return -EINVAL;
349 default:
350 return -EIO;
354 /* With q->lock */
355 static bool nvme_process_completion(NVMeQueuePair *q)
357 BDRVNVMeState *s = q->s;
358 bool progress = false;
359 NVMeRequest *preq;
360 NVMeRequest req;
361 NvmeCqe *c;
363 trace_nvme_process_completion(s, q->index, q->inflight);
364 if (s->plugged) {
365 trace_nvme_process_completion_queue_plugged(s, q->index);
366 return false;
370 * Support re-entrancy when a request cb() function invokes aio_poll().
371 * Pending completions must be visible to aio_poll() so that a cb()
372 * function can wait for the completion of another request.
374 * The aio_poll() loop will execute our BH and we'll resume completion
375 * processing there.
377 qemu_bh_schedule(q->completion_bh);
379 assert(q->inflight >= 0);
380 while (q->inflight) {
381 int ret;
382 int16_t cid;
384 c = (NvmeCqe *)&q->cq.queue[q->cq.head * NVME_CQ_ENTRY_BYTES];
385 if ((le16_to_cpu(c->status) & 0x1) == q->cq_phase) {
386 break;
388 ret = nvme_translate_error(c);
389 q->cq.head = (q->cq.head + 1) % NVME_QUEUE_SIZE;
390 if (!q->cq.head) {
391 q->cq_phase = !q->cq_phase;
393 cid = le16_to_cpu(c->cid);
394 if (cid == 0 || cid > NVME_QUEUE_SIZE) {
395 fprintf(stderr, "Unexpected CID in completion queue: %" PRIu32 "\n",
396 cid);
397 continue;
399 trace_nvme_complete_command(s, q->index, cid);
400 preq = &q->reqs[cid - 1];
401 req = *preq;
402 assert(req.cid == cid);
403 assert(req.cb);
404 nvme_put_free_req_locked(q, preq);
405 preq->cb = preq->opaque = NULL;
406 q->inflight--;
407 qemu_mutex_unlock(&q->lock);
408 req.cb(req.opaque, ret);
409 qemu_mutex_lock(&q->lock);
410 progress = true;
412 if (progress) {
413 /* Notify the device so it can post more completions. */
414 smp_mb_release();
415 *q->cq.doorbell = cpu_to_le32(q->cq.head);
416 nvme_wake_free_req_locked(q);
419 qemu_bh_cancel(q->completion_bh);
421 return progress;
424 static void nvme_process_completion_bh(void *opaque)
426 NVMeQueuePair *q = opaque;
429 * We're being invoked because a nvme_process_completion() cb() function
430 * called aio_poll(). The callback may be waiting for further completions
431 * so notify the device that it has space to fill in more completions now.
433 smp_mb_release();
434 *q->cq.doorbell = cpu_to_le32(q->cq.head);
435 nvme_wake_free_req_locked(q);
437 nvme_process_completion(q);
440 static void nvme_trace_command(const NvmeCmd *cmd)
442 int i;
444 for (i = 0; i < 8; ++i) {
445 uint8_t *cmdp = (uint8_t *)cmd + i * 8;
446 trace_nvme_submit_command_raw(cmdp[0], cmdp[1], cmdp[2], cmdp[3],
447 cmdp[4], cmdp[5], cmdp[6], cmdp[7]);
451 static void nvme_submit_command(NVMeQueuePair *q, NVMeRequest *req,
452 NvmeCmd *cmd, BlockCompletionFunc cb,
453 void *opaque)
455 assert(!req->cb);
456 req->cb = cb;
457 req->opaque = opaque;
458 cmd->cid = cpu_to_le32(req->cid);
460 trace_nvme_submit_command(q->s, q->index, req->cid);
461 nvme_trace_command(cmd);
462 qemu_mutex_lock(&q->lock);
463 memcpy((uint8_t *)q->sq.queue +
464 q->sq.tail * NVME_SQ_ENTRY_BYTES, cmd, sizeof(*cmd));
465 q->sq.tail = (q->sq.tail + 1) % NVME_QUEUE_SIZE;
466 q->need_kick++;
467 nvme_kick(q);
468 nvme_process_completion(q);
469 qemu_mutex_unlock(&q->lock);
472 static void nvme_cmd_sync_cb(void *opaque, int ret)
474 int *pret = opaque;
475 *pret = ret;
476 aio_wait_kick();
479 static int nvme_cmd_sync(BlockDriverState *bs, NVMeQueuePair *q,
480 NvmeCmd *cmd)
482 NVMeRequest *req;
483 int ret = -EINPROGRESS;
484 req = nvme_get_free_req(q);
485 if (!req) {
486 return -EBUSY;
488 nvme_submit_command(q, req, cmd, nvme_cmd_sync_cb, &ret);
490 BDRV_POLL_WHILE(bs, ret == -EINPROGRESS);
491 return ret;
494 static void nvme_identify(BlockDriverState *bs, int namespace, Error **errp)
496 BDRVNVMeState *s = bs->opaque;
497 NvmeIdCtrl *idctrl;
498 NvmeIdNs *idns;
499 NvmeLBAF *lbaf;
500 uint8_t *resp;
501 uint16_t oncs;
502 int r;
503 uint64_t iova;
504 NvmeCmd cmd = {
505 .opcode = NVME_ADM_CMD_IDENTIFY,
506 .cdw10 = cpu_to_le32(0x1),
509 resp = qemu_try_blockalign0(bs, sizeof(NvmeIdCtrl));
510 if (!resp) {
511 error_setg(errp, "Cannot allocate buffer for identify response");
512 goto out;
514 idctrl = (NvmeIdCtrl *)resp;
515 idns = (NvmeIdNs *)resp;
516 r = qemu_vfio_dma_map(s->vfio, resp, sizeof(NvmeIdCtrl), true, &iova);
517 if (r) {
518 error_setg(errp, "Cannot map buffer for DMA");
519 goto out;
521 cmd.dptr.prp1 = cpu_to_le64(iova);
523 if (nvme_cmd_sync(bs, s->queues[0], &cmd)) {
524 error_setg(errp, "Failed to identify controller");
525 goto out;
528 if (le32_to_cpu(idctrl->nn) < namespace) {
529 error_setg(errp, "Invalid namespace");
530 goto out;
532 s->write_cache_supported = le32_to_cpu(idctrl->vwc) & 0x1;
533 s->max_transfer = (idctrl->mdts ? 1 << idctrl->mdts : 0) * s->page_size;
534 /* For now the page list buffer per command is one page, to hold at most
535 * s->page_size / sizeof(uint64_t) entries. */
536 s->max_transfer = MIN_NON_ZERO(s->max_transfer,
537 s->page_size / sizeof(uint64_t) * s->page_size);
539 oncs = le16_to_cpu(idctrl->oncs);
540 s->supports_write_zeroes = !!(oncs & NVME_ONCS_WRITE_ZEROES);
541 s->supports_discard = !!(oncs & NVME_ONCS_DSM);
543 memset(resp, 0, 4096);
545 cmd.cdw10 = 0;
546 cmd.nsid = cpu_to_le32(namespace);
547 if (nvme_cmd_sync(bs, s->queues[0], &cmd)) {
548 error_setg(errp, "Failed to identify namespace");
549 goto out;
552 s->nsze = le64_to_cpu(idns->nsze);
553 lbaf = &idns->lbaf[NVME_ID_NS_FLBAS_INDEX(idns->flbas)];
555 if (NVME_ID_NS_DLFEAT_WRITE_ZEROES(idns->dlfeat) &&
556 NVME_ID_NS_DLFEAT_READ_BEHAVIOR(idns->dlfeat) ==
557 NVME_ID_NS_DLFEAT_READ_BEHAVIOR_ZEROES) {
558 bs->supported_write_flags |= BDRV_REQ_MAY_UNMAP;
561 if (lbaf->ms) {
562 error_setg(errp, "Namespaces with metadata are not yet supported");
563 goto out;
566 if (lbaf->ds < BDRV_SECTOR_BITS || lbaf->ds > 12 ||
567 (1 << lbaf->ds) > s->page_size)
569 error_setg(errp, "Namespace has unsupported block size (2^%d)",
570 lbaf->ds);
571 goto out;
574 s->blkshift = lbaf->ds;
575 out:
576 qemu_vfio_dma_unmap(s->vfio, resp);
577 qemu_vfree(resp);
580 static bool nvme_poll_queues(BDRVNVMeState *s)
582 bool progress = false;
583 int i;
585 for (i = 0; i < s->nr_queues; i++) {
586 NVMeQueuePair *q = s->queues[i];
587 const size_t cqe_offset = q->cq.head * NVME_CQ_ENTRY_BYTES;
588 NvmeCqe *cqe = (NvmeCqe *)&q->cq.queue[cqe_offset];
591 * Do an early check for completions. q->lock isn't needed because
592 * nvme_process_completion() only runs in the event loop thread and
593 * cannot race with itself.
595 if ((le16_to_cpu(cqe->status) & 0x1) == q->cq_phase) {
596 continue;
599 qemu_mutex_lock(&q->lock);
600 while (nvme_process_completion(q)) {
601 /* Keep polling */
602 progress = true;
604 qemu_mutex_unlock(&q->lock);
606 return progress;
609 static void nvme_handle_event(EventNotifier *n)
611 BDRVNVMeState *s = container_of(n, BDRVNVMeState, irq_notifier);
613 trace_nvme_handle_event(s);
614 event_notifier_test_and_clear(n);
615 nvme_poll_queues(s);
618 static bool nvme_add_io_queue(BlockDriverState *bs, Error **errp)
620 BDRVNVMeState *s = bs->opaque;
621 int n = s->nr_queues;
622 NVMeQueuePair *q;
623 NvmeCmd cmd;
624 int queue_size = NVME_QUEUE_SIZE;
626 q = nvme_create_queue_pair(bs, n, queue_size, errp);
627 if (!q) {
628 return false;
630 cmd = (NvmeCmd) {
631 .opcode = NVME_ADM_CMD_CREATE_CQ,
632 .dptr.prp1 = cpu_to_le64(q->cq.iova),
633 .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | (n & 0xFFFF)),
634 .cdw11 = cpu_to_le32(0x3),
636 if (nvme_cmd_sync(bs, s->queues[0], &cmd)) {
637 error_setg(errp, "Failed to create io queue [%d]", n);
638 nvme_free_queue_pair(q);
639 return false;
641 cmd = (NvmeCmd) {
642 .opcode = NVME_ADM_CMD_CREATE_SQ,
643 .dptr.prp1 = cpu_to_le64(q->sq.iova),
644 .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | (n & 0xFFFF)),
645 .cdw11 = cpu_to_le32(0x1 | (n << 16)),
647 if (nvme_cmd_sync(bs, s->queues[0], &cmd)) {
648 error_setg(errp, "Failed to create io queue [%d]", n);
649 nvme_free_queue_pair(q);
650 return false;
652 s->queues = g_renew(NVMeQueuePair *, s->queues, n + 1);
653 s->queues[n] = q;
654 s->nr_queues++;
655 return true;
658 static bool nvme_poll_cb(void *opaque)
660 EventNotifier *e = opaque;
661 BDRVNVMeState *s = container_of(e, BDRVNVMeState, irq_notifier);
663 trace_nvme_poll_cb(s);
664 return nvme_poll_queues(s);
667 static int nvme_init(BlockDriverState *bs, const char *device, int namespace,
668 Error **errp)
670 BDRVNVMeState *s = bs->opaque;
671 int ret;
672 uint64_t cap;
673 uint64_t timeout_ms;
674 uint64_t deadline, now;
675 Error *local_err = NULL;
677 qemu_co_mutex_init(&s->dma_map_lock);
678 qemu_co_queue_init(&s->dma_flush_queue);
679 s->device = g_strdup(device);
680 s->nsid = namespace;
681 s->aio_context = bdrv_get_aio_context(bs);
682 ret = event_notifier_init(&s->irq_notifier, 0);
683 if (ret) {
684 error_setg(errp, "Failed to init event notifier");
685 return ret;
688 s->vfio = qemu_vfio_open_pci(device, errp);
689 if (!s->vfio) {
690 ret = -EINVAL;
691 goto out;
694 s->regs = qemu_vfio_pci_map_bar(s->vfio, 0, 0, NVME_BAR_SIZE, errp);
695 if (!s->regs) {
696 ret = -EINVAL;
697 goto out;
700 /* Perform initialize sequence as described in NVMe spec "7.6.1
701 * Initialization". */
703 cap = le64_to_cpu(s->regs->cap);
704 if (!(cap & (1ULL << 37))) {
705 error_setg(errp, "Device doesn't support NVMe command set");
706 ret = -EINVAL;
707 goto out;
710 s->page_size = MAX(4096, 1 << (12 + ((cap >> 48) & 0xF)));
711 s->doorbell_scale = (4 << (((cap >> 32) & 0xF))) / sizeof(uint32_t);
712 bs->bl.opt_mem_alignment = s->page_size;
713 timeout_ms = MIN(500 * ((cap >> 24) & 0xFF), 30000);
715 /* Reset device to get a clean state. */
716 s->regs->cc = cpu_to_le32(le32_to_cpu(s->regs->cc) & 0xFE);
717 /* Wait for CSTS.RDY = 0. */
718 deadline = qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + timeout_ms * 1000000ULL;
719 while (le32_to_cpu(s->regs->csts) & 0x1) {
720 if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
721 error_setg(errp, "Timeout while waiting for device to reset (%"
722 PRId64 " ms)",
723 timeout_ms);
724 ret = -ETIMEDOUT;
725 goto out;
729 /* Set up admin queue. */
730 s->queues = g_new(NVMeQueuePair *, 1);
731 s->queues[0] = nvme_create_queue_pair(bs, 0, NVME_QUEUE_SIZE, errp);
732 if (!s->queues[0]) {
733 ret = -EINVAL;
734 goto out;
736 s->nr_queues = 1;
737 QEMU_BUILD_BUG_ON(NVME_QUEUE_SIZE & 0xF000);
738 s->regs->aqa = cpu_to_le32((NVME_QUEUE_SIZE << 16) | NVME_QUEUE_SIZE);
739 s->regs->asq = cpu_to_le64(s->queues[0]->sq.iova);
740 s->regs->acq = cpu_to_le64(s->queues[0]->cq.iova);
742 /* After setting up all control registers we can enable device now. */
743 s->regs->cc = cpu_to_le32((ctz32(NVME_CQ_ENTRY_BYTES) << 20) |
744 (ctz32(NVME_SQ_ENTRY_BYTES) << 16) |
745 0x1);
746 /* Wait for CSTS.RDY = 1. */
747 now = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
748 deadline = now + timeout_ms * 1000000;
749 while (!(le32_to_cpu(s->regs->csts) & 0x1)) {
750 if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
751 error_setg(errp, "Timeout while waiting for device to start (%"
752 PRId64 " ms)",
753 timeout_ms);
754 ret = -ETIMEDOUT;
755 goto out;
759 ret = qemu_vfio_pci_init_irq(s->vfio, &s->irq_notifier,
760 VFIO_PCI_MSIX_IRQ_INDEX, errp);
761 if (ret) {
762 goto out;
764 aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier,
765 false, nvme_handle_event, nvme_poll_cb);
767 nvme_identify(bs, namespace, &local_err);
768 if (local_err) {
769 error_propagate(errp, local_err);
770 ret = -EIO;
771 goto out;
774 /* Set up command queues. */
775 if (!nvme_add_io_queue(bs, errp)) {
776 ret = -EIO;
778 out:
779 /* Cleaning up is done in nvme_file_open() upon error. */
780 return ret;
783 /* Parse a filename in the format of nvme://XXXX:XX:XX.X/X. Example:
785 * nvme://0000:44:00.0/1
787 * where the "nvme://" is a fixed form of the protocol prefix, the middle part
788 * is the PCI address, and the last part is the namespace number starting from
789 * 1 according to the NVMe spec. */
790 static void nvme_parse_filename(const char *filename, QDict *options,
791 Error **errp)
793 int pref = strlen("nvme://");
795 if (strlen(filename) > pref && !strncmp(filename, "nvme://", pref)) {
796 const char *tmp = filename + pref;
797 char *device;
798 const char *namespace;
799 unsigned long ns;
800 const char *slash = strchr(tmp, '/');
801 if (!slash) {
802 qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, tmp);
803 return;
805 device = g_strndup(tmp, slash - tmp);
806 qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, device);
807 g_free(device);
808 namespace = slash + 1;
809 if (*namespace && qemu_strtoul(namespace, NULL, 10, &ns)) {
810 error_setg(errp, "Invalid namespace '%s', positive number expected",
811 namespace);
812 return;
814 qdict_put_str(options, NVME_BLOCK_OPT_NAMESPACE,
815 *namespace ? namespace : "1");
819 static int nvme_enable_disable_write_cache(BlockDriverState *bs, bool enable,
820 Error **errp)
822 int ret;
823 BDRVNVMeState *s = bs->opaque;
824 NvmeCmd cmd = {
825 .opcode = NVME_ADM_CMD_SET_FEATURES,
826 .nsid = cpu_to_le32(s->nsid),
827 .cdw10 = cpu_to_le32(0x06),
828 .cdw11 = cpu_to_le32(enable ? 0x01 : 0x00),
831 ret = nvme_cmd_sync(bs, s->queues[0], &cmd);
832 if (ret) {
833 error_setg(errp, "Failed to configure NVMe write cache");
835 return ret;
838 static void nvme_close(BlockDriverState *bs)
840 int i;
841 BDRVNVMeState *s = bs->opaque;
843 for (i = 0; i < s->nr_queues; ++i) {
844 nvme_free_queue_pair(s->queues[i]);
846 g_free(s->queues);
847 aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier,
848 false, NULL, NULL);
849 event_notifier_cleanup(&s->irq_notifier);
850 qemu_vfio_pci_unmap_bar(s->vfio, 0, (void *)s->regs, 0, NVME_BAR_SIZE);
851 qemu_vfio_close(s->vfio);
853 g_free(s->device);
856 static int nvme_file_open(BlockDriverState *bs, QDict *options, int flags,
857 Error **errp)
859 const char *device;
860 QemuOpts *opts;
861 int namespace;
862 int ret;
863 BDRVNVMeState *s = bs->opaque;
865 bs->supported_write_flags = BDRV_REQ_FUA;
867 opts = qemu_opts_create(&runtime_opts, NULL, 0, &error_abort);
868 qemu_opts_absorb_qdict(opts, options, &error_abort);
869 device = qemu_opt_get(opts, NVME_BLOCK_OPT_DEVICE);
870 if (!device) {
871 error_setg(errp, "'" NVME_BLOCK_OPT_DEVICE "' option is required");
872 qemu_opts_del(opts);
873 return -EINVAL;
876 namespace = qemu_opt_get_number(opts, NVME_BLOCK_OPT_NAMESPACE, 1);
877 ret = nvme_init(bs, device, namespace, errp);
878 qemu_opts_del(opts);
879 if (ret) {
880 goto fail;
882 if (flags & BDRV_O_NOCACHE) {
883 if (!s->write_cache_supported) {
884 error_setg(errp,
885 "NVMe controller doesn't support write cache configuration");
886 ret = -EINVAL;
887 } else {
888 ret = nvme_enable_disable_write_cache(bs, !(flags & BDRV_O_NOCACHE),
889 errp);
891 if (ret) {
892 goto fail;
895 return 0;
896 fail:
897 nvme_close(bs);
898 return ret;
901 static int64_t nvme_getlength(BlockDriverState *bs)
903 BDRVNVMeState *s = bs->opaque;
904 return s->nsze << s->blkshift;
907 static uint32_t nvme_get_blocksize(BlockDriverState *bs)
909 BDRVNVMeState *s = bs->opaque;
910 assert(s->blkshift >= BDRV_SECTOR_BITS && s->blkshift <= 12);
911 return UINT32_C(1) << s->blkshift;
914 static int nvme_probe_blocksizes(BlockDriverState *bs, BlockSizes *bsz)
916 uint32_t blocksize = nvme_get_blocksize(bs);
917 bsz->phys = blocksize;
918 bsz->log = blocksize;
919 return 0;
922 /* Called with s->dma_map_lock */
923 static coroutine_fn int nvme_cmd_unmap_qiov(BlockDriverState *bs,
924 QEMUIOVector *qiov)
926 int r = 0;
927 BDRVNVMeState *s = bs->opaque;
929 s->dma_map_count -= qiov->size;
930 if (!s->dma_map_count && !qemu_co_queue_empty(&s->dma_flush_queue)) {
931 r = qemu_vfio_dma_reset_temporary(s->vfio);
932 if (!r) {
933 qemu_co_queue_restart_all(&s->dma_flush_queue);
936 return r;
939 /* Called with s->dma_map_lock */
940 static coroutine_fn int nvme_cmd_map_qiov(BlockDriverState *bs, NvmeCmd *cmd,
941 NVMeRequest *req, QEMUIOVector *qiov)
943 BDRVNVMeState *s = bs->opaque;
944 uint64_t *pagelist = req->prp_list_page;
945 int i, j, r;
946 int entries = 0;
948 assert(qiov->size);
949 assert(QEMU_IS_ALIGNED(qiov->size, s->page_size));
950 assert(qiov->size / s->page_size <= s->page_size / sizeof(uint64_t));
951 for (i = 0; i < qiov->niov; ++i) {
952 bool retry = true;
953 uint64_t iova;
954 try_map:
955 r = qemu_vfio_dma_map(s->vfio,
956 qiov->iov[i].iov_base,
957 qiov->iov[i].iov_len,
958 true, &iova);
959 if (r == -ENOMEM && retry) {
960 retry = false;
961 trace_nvme_dma_flush_queue_wait(s);
962 if (s->dma_map_count) {
963 trace_nvme_dma_map_flush(s);
964 qemu_co_queue_wait(&s->dma_flush_queue, &s->dma_map_lock);
965 } else {
966 r = qemu_vfio_dma_reset_temporary(s->vfio);
967 if (r) {
968 goto fail;
971 goto try_map;
973 if (r) {
974 goto fail;
977 for (j = 0; j < qiov->iov[i].iov_len / s->page_size; j++) {
978 pagelist[entries++] = cpu_to_le64(iova + j * s->page_size);
980 trace_nvme_cmd_map_qiov_iov(s, i, qiov->iov[i].iov_base,
981 qiov->iov[i].iov_len / s->page_size);
984 s->dma_map_count += qiov->size;
986 assert(entries <= s->page_size / sizeof(uint64_t));
987 switch (entries) {
988 case 0:
989 abort();
990 case 1:
991 cmd->dptr.prp1 = pagelist[0];
992 cmd->dptr.prp2 = 0;
993 break;
994 case 2:
995 cmd->dptr.prp1 = pagelist[0];
996 cmd->dptr.prp2 = pagelist[1];
997 break;
998 default:
999 cmd->dptr.prp1 = pagelist[0];
1000 cmd->dptr.prp2 = cpu_to_le64(req->prp_list_iova + sizeof(uint64_t));
1001 break;
1003 trace_nvme_cmd_map_qiov(s, cmd, req, qiov, entries);
1004 for (i = 0; i < entries; ++i) {
1005 trace_nvme_cmd_map_qiov_pages(s, i, pagelist[i]);
1007 return 0;
1008 fail:
1009 /* No need to unmap [0 - i) iovs even if we've failed, since we don't
1010 * increment s->dma_map_count. This is okay for fixed mapping memory areas
1011 * because they are already mapped before calling this function; for
1012 * temporary mappings, a later nvme_cmd_(un)map_qiov will reclaim by
1013 * calling qemu_vfio_dma_reset_temporary when necessary. */
1014 return r;
1017 typedef struct {
1018 Coroutine *co;
1019 int ret;
1020 AioContext *ctx;
1021 } NVMeCoData;
1023 static void nvme_rw_cb_bh(void *opaque)
1025 NVMeCoData *data = opaque;
1026 qemu_coroutine_enter(data->co);
1029 static void nvme_rw_cb(void *opaque, int ret)
1031 NVMeCoData *data = opaque;
1032 data->ret = ret;
1033 if (!data->co) {
1034 /* The rw coroutine hasn't yielded, don't try to enter. */
1035 return;
1037 replay_bh_schedule_oneshot_event(data->ctx, nvme_rw_cb_bh, data);
1040 static coroutine_fn int nvme_co_prw_aligned(BlockDriverState *bs,
1041 uint64_t offset, uint64_t bytes,
1042 QEMUIOVector *qiov,
1043 bool is_write,
1044 int flags)
1046 int r;
1047 BDRVNVMeState *s = bs->opaque;
1048 NVMeQueuePair *ioq = s->queues[1];
1049 NVMeRequest *req;
1051 uint32_t cdw12 = (((bytes >> s->blkshift) - 1) & 0xFFFF) |
1052 (flags & BDRV_REQ_FUA ? 1 << 30 : 0);
1053 NvmeCmd cmd = {
1054 .opcode = is_write ? NVME_CMD_WRITE : NVME_CMD_READ,
1055 .nsid = cpu_to_le32(s->nsid),
1056 .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF),
1057 .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF),
1058 .cdw12 = cpu_to_le32(cdw12),
1060 NVMeCoData data = {
1061 .ctx = bdrv_get_aio_context(bs),
1062 .ret = -EINPROGRESS,
1065 trace_nvme_prw_aligned(s, is_write, offset, bytes, flags, qiov->niov);
1066 assert(s->nr_queues > 1);
1067 req = nvme_get_free_req(ioq);
1068 assert(req);
1070 qemu_co_mutex_lock(&s->dma_map_lock);
1071 r = nvme_cmd_map_qiov(bs, &cmd, req, qiov);
1072 qemu_co_mutex_unlock(&s->dma_map_lock);
1073 if (r) {
1074 nvme_put_free_req_and_wake(ioq, req);
1075 return r;
1077 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1079 data.co = qemu_coroutine_self();
1080 while (data.ret == -EINPROGRESS) {
1081 qemu_coroutine_yield();
1084 qemu_co_mutex_lock(&s->dma_map_lock);
1085 r = nvme_cmd_unmap_qiov(bs, qiov);
1086 qemu_co_mutex_unlock(&s->dma_map_lock);
1087 if (r) {
1088 return r;
1091 trace_nvme_rw_done(s, is_write, offset, bytes, data.ret);
1092 return data.ret;
1095 static inline bool nvme_qiov_aligned(BlockDriverState *bs,
1096 const QEMUIOVector *qiov)
1098 int i;
1099 BDRVNVMeState *s = bs->opaque;
1101 for (i = 0; i < qiov->niov; ++i) {
1102 if (!QEMU_PTR_IS_ALIGNED(qiov->iov[i].iov_base, s->page_size) ||
1103 !QEMU_IS_ALIGNED(qiov->iov[i].iov_len, s->page_size)) {
1104 trace_nvme_qiov_unaligned(qiov, i, qiov->iov[i].iov_base,
1105 qiov->iov[i].iov_len, s->page_size);
1106 return false;
1109 return true;
1112 static int nvme_co_prw(BlockDriverState *bs, uint64_t offset, uint64_t bytes,
1113 QEMUIOVector *qiov, bool is_write, int flags)
1115 BDRVNVMeState *s = bs->opaque;
1116 int r;
1117 uint8_t *buf = NULL;
1118 QEMUIOVector local_qiov;
1120 assert(QEMU_IS_ALIGNED(offset, s->page_size));
1121 assert(QEMU_IS_ALIGNED(bytes, s->page_size));
1122 assert(bytes <= s->max_transfer);
1123 if (nvme_qiov_aligned(bs, qiov)) {
1124 return nvme_co_prw_aligned(bs, offset, bytes, qiov, is_write, flags);
1126 trace_nvme_prw_buffered(s, offset, bytes, qiov->niov, is_write);
1127 buf = qemu_try_blockalign(bs, bytes);
1129 if (!buf) {
1130 return -ENOMEM;
1132 qemu_iovec_init(&local_qiov, 1);
1133 if (is_write) {
1134 qemu_iovec_to_buf(qiov, 0, buf, bytes);
1136 qemu_iovec_add(&local_qiov, buf, bytes);
1137 r = nvme_co_prw_aligned(bs, offset, bytes, &local_qiov, is_write, flags);
1138 qemu_iovec_destroy(&local_qiov);
1139 if (!r && !is_write) {
1140 qemu_iovec_from_buf(qiov, 0, buf, bytes);
1142 qemu_vfree(buf);
1143 return r;
1146 static coroutine_fn int nvme_co_preadv(BlockDriverState *bs,
1147 uint64_t offset, uint64_t bytes,
1148 QEMUIOVector *qiov, int flags)
1150 return nvme_co_prw(bs, offset, bytes, qiov, false, flags);
1153 static coroutine_fn int nvme_co_pwritev(BlockDriverState *bs,
1154 uint64_t offset, uint64_t bytes,
1155 QEMUIOVector *qiov, int flags)
1157 return nvme_co_prw(bs, offset, bytes, qiov, true, flags);
1160 static coroutine_fn int nvme_co_flush(BlockDriverState *bs)
1162 BDRVNVMeState *s = bs->opaque;
1163 NVMeQueuePair *ioq = s->queues[1];
1164 NVMeRequest *req;
1165 NvmeCmd cmd = {
1166 .opcode = NVME_CMD_FLUSH,
1167 .nsid = cpu_to_le32(s->nsid),
1169 NVMeCoData data = {
1170 .ctx = bdrv_get_aio_context(bs),
1171 .ret = -EINPROGRESS,
1174 assert(s->nr_queues > 1);
1175 req = nvme_get_free_req(ioq);
1176 assert(req);
1177 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1179 data.co = qemu_coroutine_self();
1180 if (data.ret == -EINPROGRESS) {
1181 qemu_coroutine_yield();
1184 return data.ret;
1188 static coroutine_fn int nvme_co_pwrite_zeroes(BlockDriverState *bs,
1189 int64_t offset,
1190 int bytes,
1191 BdrvRequestFlags flags)
1193 BDRVNVMeState *s = bs->opaque;
1194 NVMeQueuePair *ioq = s->queues[1];
1195 NVMeRequest *req;
1197 uint32_t cdw12 = ((bytes >> s->blkshift) - 1) & 0xFFFF;
1199 if (!s->supports_write_zeroes) {
1200 return -ENOTSUP;
1203 NvmeCmd cmd = {
1204 .opcode = NVME_CMD_WRITE_ZEROES,
1205 .nsid = cpu_to_le32(s->nsid),
1206 .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF),
1207 .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF),
1210 NVMeCoData data = {
1211 .ctx = bdrv_get_aio_context(bs),
1212 .ret = -EINPROGRESS,
1215 if (flags & BDRV_REQ_MAY_UNMAP) {
1216 cdw12 |= (1 << 25);
1219 if (flags & BDRV_REQ_FUA) {
1220 cdw12 |= (1 << 30);
1223 cmd.cdw12 = cpu_to_le32(cdw12);
1225 trace_nvme_write_zeroes(s, offset, bytes, flags);
1226 assert(s->nr_queues > 1);
1227 req = nvme_get_free_req(ioq);
1228 assert(req);
1230 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1232 data.co = qemu_coroutine_self();
1233 while (data.ret == -EINPROGRESS) {
1234 qemu_coroutine_yield();
1237 trace_nvme_rw_done(s, true, offset, bytes, data.ret);
1238 return data.ret;
1242 static int coroutine_fn nvme_co_pdiscard(BlockDriverState *bs,
1243 int64_t offset,
1244 int bytes)
1246 BDRVNVMeState *s = bs->opaque;
1247 NVMeQueuePair *ioq = s->queues[1];
1248 NVMeRequest *req;
1249 NvmeDsmRange *buf;
1250 QEMUIOVector local_qiov;
1251 int ret;
1253 NvmeCmd cmd = {
1254 .opcode = NVME_CMD_DSM,
1255 .nsid = cpu_to_le32(s->nsid),
1256 .cdw10 = cpu_to_le32(0), /*number of ranges - 0 based*/
1257 .cdw11 = cpu_to_le32(1 << 2), /*deallocate bit*/
1260 NVMeCoData data = {
1261 .ctx = bdrv_get_aio_context(bs),
1262 .ret = -EINPROGRESS,
1265 if (!s->supports_discard) {
1266 return -ENOTSUP;
1269 assert(s->nr_queues > 1);
1271 buf = qemu_try_blockalign0(bs, s->page_size);
1272 if (!buf) {
1273 return -ENOMEM;
1276 buf->nlb = cpu_to_le32(bytes >> s->blkshift);
1277 buf->slba = cpu_to_le64(offset >> s->blkshift);
1278 buf->cattr = 0;
1280 qemu_iovec_init(&local_qiov, 1);
1281 qemu_iovec_add(&local_qiov, buf, 4096);
1283 req = nvme_get_free_req(ioq);
1284 assert(req);
1286 qemu_co_mutex_lock(&s->dma_map_lock);
1287 ret = nvme_cmd_map_qiov(bs, &cmd, req, &local_qiov);
1288 qemu_co_mutex_unlock(&s->dma_map_lock);
1290 if (ret) {
1291 nvme_put_free_req_and_wake(ioq, req);
1292 goto out;
1295 trace_nvme_dsm(s, offset, bytes);
1297 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1299 data.co = qemu_coroutine_self();
1300 while (data.ret == -EINPROGRESS) {
1301 qemu_coroutine_yield();
1304 qemu_co_mutex_lock(&s->dma_map_lock);
1305 ret = nvme_cmd_unmap_qiov(bs, &local_qiov);
1306 qemu_co_mutex_unlock(&s->dma_map_lock);
1308 if (ret) {
1309 goto out;
1312 ret = data.ret;
1313 trace_nvme_dsm_done(s, offset, bytes, ret);
1314 out:
1315 qemu_iovec_destroy(&local_qiov);
1316 qemu_vfree(buf);
1317 return ret;
1322 static int nvme_reopen_prepare(BDRVReopenState *reopen_state,
1323 BlockReopenQueue *queue, Error **errp)
1325 return 0;
1328 static void nvme_refresh_filename(BlockDriverState *bs)
1330 BDRVNVMeState *s = bs->opaque;
1332 snprintf(bs->exact_filename, sizeof(bs->exact_filename), "nvme://%s/%i",
1333 s->device, s->nsid);
1336 static void nvme_refresh_limits(BlockDriverState *bs, Error **errp)
1338 BDRVNVMeState *s = bs->opaque;
1340 bs->bl.opt_mem_alignment = s->page_size;
1341 bs->bl.request_alignment = s->page_size;
1342 bs->bl.max_transfer = s->max_transfer;
1345 static void nvme_detach_aio_context(BlockDriverState *bs)
1347 BDRVNVMeState *s = bs->opaque;
1349 for (int i = 0; i < s->nr_queues; i++) {
1350 NVMeQueuePair *q = s->queues[i];
1352 qemu_bh_delete(q->completion_bh);
1353 q->completion_bh = NULL;
1356 aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier,
1357 false, NULL, NULL);
1360 static void nvme_attach_aio_context(BlockDriverState *bs,
1361 AioContext *new_context)
1363 BDRVNVMeState *s = bs->opaque;
1365 s->aio_context = new_context;
1366 aio_set_event_notifier(new_context, &s->irq_notifier,
1367 false, nvme_handle_event, nvme_poll_cb);
1369 for (int i = 0; i < s->nr_queues; i++) {
1370 NVMeQueuePair *q = s->queues[i];
1372 q->completion_bh =
1373 aio_bh_new(new_context, nvme_process_completion_bh, q);
1377 static void nvme_aio_plug(BlockDriverState *bs)
1379 BDRVNVMeState *s = bs->opaque;
1380 assert(!s->plugged);
1381 s->plugged = true;
1384 static void nvme_aio_unplug(BlockDriverState *bs)
1386 int i;
1387 BDRVNVMeState *s = bs->opaque;
1388 assert(s->plugged);
1389 s->plugged = false;
1390 for (i = 1; i < s->nr_queues; i++) {
1391 NVMeQueuePair *q = s->queues[i];
1392 qemu_mutex_lock(&q->lock);
1393 nvme_kick(q);
1394 nvme_process_completion(q);
1395 qemu_mutex_unlock(&q->lock);
1399 static void nvme_register_buf(BlockDriverState *bs, void *host, size_t size)
1401 int ret;
1402 BDRVNVMeState *s = bs->opaque;
1404 ret = qemu_vfio_dma_map(s->vfio, host, size, false, NULL);
1405 if (ret) {
1406 /* FIXME: we may run out of IOVA addresses after repeated
1407 * bdrv_register_buf/bdrv_unregister_buf, because nvme_vfio_dma_unmap
1408 * doesn't reclaim addresses for fixed mappings. */
1409 error_report("nvme_register_buf failed: %s", strerror(-ret));
1413 static void nvme_unregister_buf(BlockDriverState *bs, void *host)
1415 BDRVNVMeState *s = bs->opaque;
1417 qemu_vfio_dma_unmap(s->vfio, host);
1420 static const char *const nvme_strong_runtime_opts[] = {
1421 NVME_BLOCK_OPT_DEVICE,
1422 NVME_BLOCK_OPT_NAMESPACE,
1424 NULL
1427 static BlockDriver bdrv_nvme = {
1428 .format_name = "nvme",
1429 .protocol_name = "nvme",
1430 .instance_size = sizeof(BDRVNVMeState),
1432 .bdrv_co_create_opts = bdrv_co_create_opts_simple,
1433 .create_opts = &bdrv_create_opts_simple,
1435 .bdrv_parse_filename = nvme_parse_filename,
1436 .bdrv_file_open = nvme_file_open,
1437 .bdrv_close = nvme_close,
1438 .bdrv_getlength = nvme_getlength,
1439 .bdrv_probe_blocksizes = nvme_probe_blocksizes,
1441 .bdrv_co_preadv = nvme_co_preadv,
1442 .bdrv_co_pwritev = nvme_co_pwritev,
1444 .bdrv_co_pwrite_zeroes = nvme_co_pwrite_zeroes,
1445 .bdrv_co_pdiscard = nvme_co_pdiscard,
1447 .bdrv_co_flush_to_disk = nvme_co_flush,
1448 .bdrv_reopen_prepare = nvme_reopen_prepare,
1450 .bdrv_refresh_filename = nvme_refresh_filename,
1451 .bdrv_refresh_limits = nvme_refresh_limits,
1452 .strong_runtime_opts = nvme_strong_runtime_opts,
1454 .bdrv_detach_aio_context = nvme_detach_aio_context,
1455 .bdrv_attach_aio_context = nvme_attach_aio_context,
1457 .bdrv_io_plug = nvme_aio_plug,
1458 .bdrv_io_unplug = nvme_aio_unplug,
1460 .bdrv_register_buf = nvme_register_buf,
1461 .bdrv_unregister_buf = nvme_unregister_buf,
1464 static void bdrv_nvme_init(void)
1466 bdrv_register(&bdrv_nvme);
1469 block_init(bdrv_nvme_init);