hw/arm/armsse: Use Clock to set system_clock_scale
[qemu/ar7.git] / hw / arm / armsse.c
blob9a6b24c79aab1f99282cb9f5bfde608e5589fa70
1 /*
2 * Arm SSE (Subsystems for Embedded): IoTKit
4 * Copyright (c) 2018 Linaro Limited
5 * Written by Peter Maydell
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 or
9 * (at your option) any later version.
12 #include "qemu/osdep.h"
13 #include "qemu/log.h"
14 #include "qemu/module.h"
15 #include "qemu/bitops.h"
16 #include "qapi/error.h"
17 #include "trace.h"
18 #include "hw/sysbus.h"
19 #include "migration/vmstate.h"
20 #include "hw/registerfields.h"
21 #include "hw/arm/armsse.h"
22 #include "hw/arm/boot.h"
23 #include "hw/irq.h"
24 #include "hw/qdev-clock.h"
26 /* Format of the System Information block SYS_CONFIG register */
27 typedef enum SysConfigFormat {
28 IoTKitFormat,
29 SSE200Format,
30 } SysConfigFormat;
32 struct ARMSSEInfo {
33 const char *name;
34 int sram_banks;
35 int num_cpus;
36 uint32_t sys_version;
37 uint32_t cpuwait_rst;
38 SysConfigFormat sys_config_format;
39 bool has_mhus;
40 bool has_ppus;
41 bool has_cachectrl;
42 bool has_cpusecctrl;
43 bool has_cpuid;
44 Property *props;
47 static Property iotkit_properties[] = {
48 DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
49 MemoryRegion *),
50 DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
51 DEFINE_PROP_UINT32("MAINCLK_FRQ", ARMSSE, mainclk_frq, 0),
52 DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
53 DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
54 DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], true),
55 DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], true),
56 DEFINE_PROP_END_OF_LIST()
59 static Property armsse_properties[] = {
60 DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
61 MemoryRegion *),
62 DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
63 DEFINE_PROP_UINT32("MAINCLK_FRQ", ARMSSE, mainclk_frq, 0),
64 DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
65 DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
66 DEFINE_PROP_BOOL("CPU0_FPU", ARMSSE, cpu_fpu[0], false),
67 DEFINE_PROP_BOOL("CPU0_DSP", ARMSSE, cpu_dsp[0], false),
68 DEFINE_PROP_BOOL("CPU1_FPU", ARMSSE, cpu_fpu[1], true),
69 DEFINE_PROP_BOOL("CPU1_DSP", ARMSSE, cpu_dsp[1], true),
70 DEFINE_PROP_END_OF_LIST()
73 static const ARMSSEInfo armsse_variants[] = {
75 .name = TYPE_IOTKIT,
76 .sram_banks = 1,
77 .num_cpus = 1,
78 .sys_version = 0x41743,
79 .cpuwait_rst = 0,
80 .sys_config_format = IoTKitFormat,
81 .has_mhus = false,
82 .has_ppus = false,
83 .has_cachectrl = false,
84 .has_cpusecctrl = false,
85 .has_cpuid = false,
86 .props = iotkit_properties,
89 .name = TYPE_SSE200,
90 .sram_banks = 4,
91 .num_cpus = 2,
92 .sys_version = 0x22041743,
93 .cpuwait_rst = 2,
94 .sys_config_format = SSE200Format,
95 .has_mhus = true,
96 .has_ppus = true,
97 .has_cachectrl = true,
98 .has_cpusecctrl = true,
99 .has_cpuid = true,
100 .props = armsse_properties,
104 static uint32_t armsse_sys_config_value(ARMSSE *s, const ARMSSEInfo *info)
106 /* Return the SYS_CONFIG value for this SSE */
107 uint32_t sys_config;
109 switch (info->sys_config_format) {
110 case IoTKitFormat:
111 sys_config = 0;
112 sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
113 sys_config = deposit32(sys_config, 4, 4, s->sram_addr_width - 12);
114 break;
115 case SSE200Format:
116 sys_config = 0;
117 sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
118 sys_config = deposit32(sys_config, 4, 5, s->sram_addr_width);
119 sys_config = deposit32(sys_config, 24, 4, 2);
120 if (info->num_cpus > 1) {
121 sys_config = deposit32(sys_config, 10, 1, 1);
122 sys_config = deposit32(sys_config, 20, 4, info->sram_banks - 1);
123 sys_config = deposit32(sys_config, 28, 4, 2);
125 break;
126 default:
127 g_assert_not_reached();
129 return sys_config;
132 /* Clock frequency in HZ of the 32KHz "slow clock" */
133 #define S32KCLK (32 * 1000)
135 /* Is internal IRQ n shared between CPUs in a multi-core SSE ? */
136 static bool irq_is_common[32] = {
137 [0 ... 5] = true,
138 /* 6, 7: per-CPU MHU interrupts */
139 [8 ... 12] = true,
140 /* 13: per-CPU icache interrupt */
141 /* 14: reserved */
142 [15 ... 20] = true,
143 /* 21: reserved */
144 [22 ... 26] = true,
145 /* 27: reserved */
146 /* 28, 29: per-CPU CTI interrupts */
147 /* 30, 31: reserved */
151 * Create an alias region in @container of @size bytes starting at @base
152 * which mirrors the memory starting at @orig.
154 static void make_alias(ARMSSE *s, MemoryRegion *mr, MemoryRegion *container,
155 const char *name, hwaddr base, hwaddr size, hwaddr orig)
157 memory_region_init_alias(mr, NULL, name, container, orig, size);
158 /* The alias is even lower priority than unimplemented_device regions */
159 memory_region_add_subregion_overlap(container, base, mr, -1500);
162 static void irq_status_forwarder(void *opaque, int n, int level)
164 qemu_irq destirq = opaque;
166 qemu_set_irq(destirq, level);
169 static void nsccfg_handler(void *opaque, int n, int level)
171 ARMSSE *s = ARM_SSE(opaque);
173 s->nsccfg = level;
176 static void armsse_forward_ppc(ARMSSE *s, const char *ppcname, int ppcnum)
178 /* Each of the 4 AHB and 4 APB PPCs that might be present in a
179 * system using the ARMSSE has a collection of control lines which
180 * are provided by the security controller and which we want to
181 * expose as control lines on the ARMSSE device itself, so the
182 * code using the ARMSSE can wire them up to the PPCs.
184 SplitIRQ *splitter = &s->ppc_irq_splitter[ppcnum];
185 DeviceState *armssedev = DEVICE(s);
186 DeviceState *dev_secctl = DEVICE(&s->secctl);
187 DeviceState *dev_splitter = DEVICE(splitter);
188 char *name;
190 name = g_strdup_printf("%s_nonsec", ppcname);
191 qdev_pass_gpios(dev_secctl, armssedev, name);
192 g_free(name);
193 name = g_strdup_printf("%s_ap", ppcname);
194 qdev_pass_gpios(dev_secctl, armssedev, name);
195 g_free(name);
196 name = g_strdup_printf("%s_irq_enable", ppcname);
197 qdev_pass_gpios(dev_secctl, armssedev, name);
198 g_free(name);
199 name = g_strdup_printf("%s_irq_clear", ppcname);
200 qdev_pass_gpios(dev_secctl, armssedev, name);
201 g_free(name);
203 /* irq_status is a little more tricky, because we need to
204 * split it so we can send it both to the security controller
205 * and to our OR gate for the NVIC interrupt line.
206 * Connect up the splitter's outputs, and create a GPIO input
207 * which will pass the line state to the input splitter.
209 name = g_strdup_printf("%s_irq_status", ppcname);
210 qdev_connect_gpio_out(dev_splitter, 0,
211 qdev_get_gpio_in_named(dev_secctl,
212 name, 0));
213 qdev_connect_gpio_out(dev_splitter, 1,
214 qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), ppcnum));
215 s->irq_status_in[ppcnum] = qdev_get_gpio_in(dev_splitter, 0);
216 qdev_init_gpio_in_named_with_opaque(armssedev, irq_status_forwarder,
217 s->irq_status_in[ppcnum], name, 1);
218 g_free(name);
221 static void armsse_forward_sec_resp_cfg(ARMSSE *s)
223 /* Forward the 3rd output from the splitter device as a
224 * named GPIO output of the armsse object.
226 DeviceState *dev = DEVICE(s);
227 DeviceState *dev_splitter = DEVICE(&s->sec_resp_splitter);
229 qdev_init_gpio_out_named(dev, &s->sec_resp_cfg, "sec_resp_cfg", 1);
230 s->sec_resp_cfg_in = qemu_allocate_irq(irq_status_forwarder,
231 s->sec_resp_cfg, 1);
232 qdev_connect_gpio_out(dev_splitter, 2, s->sec_resp_cfg_in);
235 static void armsse_mainclk_update(void *opaque)
237 ARMSSE *s = ARM_SSE(opaque);
239 * Set system_clock_scale from our Clock input; this is what
240 * controls the tick rate of the CPU SysTick timer.
242 system_clock_scale = clock_ticks_to_ns(s->mainclk, 1);
245 static void armsse_init(Object *obj)
247 ARMSSE *s = ARM_SSE(obj);
248 ARMSSEClass *asc = ARM_SSE_GET_CLASS(obj);
249 const ARMSSEInfo *info = asc->info;
250 int i;
252 assert(info->sram_banks <= MAX_SRAM_BANKS);
253 assert(info->num_cpus <= SSE_MAX_CPUS);
255 s->mainclk = qdev_init_clock_in(DEVICE(s), "MAINCLK",
256 armsse_mainclk_update, s);
257 s->s32kclk = qdev_init_clock_in(DEVICE(s), "S32KCLK", NULL, NULL);
259 memory_region_init(&s->container, obj, "armsse-container", UINT64_MAX);
261 for (i = 0; i < info->num_cpus; i++) {
263 * We put each CPU in its own cluster as they are logically
264 * distinct and may be configured differently.
266 char *name;
268 name = g_strdup_printf("cluster%d", i);
269 object_initialize_child(obj, name, &s->cluster[i], TYPE_CPU_CLUSTER);
270 qdev_prop_set_uint32(DEVICE(&s->cluster[i]), "cluster-id", i);
271 g_free(name);
273 name = g_strdup_printf("armv7m%d", i);
274 object_initialize_child(OBJECT(&s->cluster[i]), name, &s->armv7m[i],
275 TYPE_ARMV7M);
276 qdev_prop_set_string(DEVICE(&s->armv7m[i]), "cpu-type",
277 ARM_CPU_TYPE_NAME("cortex-m33"));
278 g_free(name);
279 name = g_strdup_printf("arm-sse-cpu-container%d", i);
280 memory_region_init(&s->cpu_container[i], obj, name, UINT64_MAX);
281 g_free(name);
282 if (i > 0) {
283 name = g_strdup_printf("arm-sse-container-alias%d", i);
284 memory_region_init_alias(&s->container_alias[i - 1], obj,
285 name, &s->container, 0, UINT64_MAX);
286 g_free(name);
290 object_initialize_child(obj, "secctl", &s->secctl, TYPE_IOTKIT_SECCTL);
291 object_initialize_child(obj, "apb-ppc0", &s->apb_ppc0, TYPE_TZ_PPC);
292 object_initialize_child(obj, "apb-ppc1", &s->apb_ppc1, TYPE_TZ_PPC);
293 for (i = 0; i < info->sram_banks; i++) {
294 char *name = g_strdup_printf("mpc%d", i);
295 object_initialize_child(obj, name, &s->mpc[i], TYPE_TZ_MPC);
296 g_free(name);
298 object_initialize_child(obj, "mpc-irq-orgate", &s->mpc_irq_orgate,
299 TYPE_OR_IRQ);
301 for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
302 char *name = g_strdup_printf("mpc-irq-splitter-%d", i);
303 SplitIRQ *splitter = &s->mpc_irq_splitter[i];
305 object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
306 g_free(name);
308 object_initialize_child(obj, "timer0", &s->timer0, TYPE_CMSDK_APB_TIMER);
309 object_initialize_child(obj, "timer1", &s->timer1, TYPE_CMSDK_APB_TIMER);
310 object_initialize_child(obj, "s32ktimer", &s->s32ktimer,
311 TYPE_CMSDK_APB_TIMER);
312 object_initialize_child(obj, "dualtimer", &s->dualtimer,
313 TYPE_CMSDK_APB_DUALTIMER);
314 object_initialize_child(obj, "s32kwatchdog", &s->s32kwatchdog,
315 TYPE_CMSDK_APB_WATCHDOG);
316 object_initialize_child(obj, "nswatchdog", &s->nswatchdog,
317 TYPE_CMSDK_APB_WATCHDOG);
318 object_initialize_child(obj, "swatchdog", &s->swatchdog,
319 TYPE_CMSDK_APB_WATCHDOG);
320 object_initialize_child(obj, "armsse-sysctl", &s->sysctl,
321 TYPE_IOTKIT_SYSCTL);
322 object_initialize_child(obj, "armsse-sysinfo", &s->sysinfo,
323 TYPE_IOTKIT_SYSINFO);
324 if (info->has_mhus) {
325 object_initialize_child(obj, "mhu0", &s->mhu[0], TYPE_ARMSSE_MHU);
326 object_initialize_child(obj, "mhu1", &s->mhu[1], TYPE_ARMSSE_MHU);
328 if (info->has_ppus) {
329 for (i = 0; i < info->num_cpus; i++) {
330 char *name = g_strdup_printf("CPU%dCORE_PPU", i);
331 int ppuidx = CPU0CORE_PPU + i;
333 object_initialize_child(obj, name, &s->ppu[ppuidx],
334 TYPE_UNIMPLEMENTED_DEVICE);
335 g_free(name);
337 object_initialize_child(obj, "DBG_PPU", &s->ppu[DBG_PPU],
338 TYPE_UNIMPLEMENTED_DEVICE);
339 for (i = 0; i < info->sram_banks; i++) {
340 char *name = g_strdup_printf("RAM%d_PPU", i);
341 int ppuidx = RAM0_PPU + i;
343 object_initialize_child(obj, name, &s->ppu[ppuidx],
344 TYPE_UNIMPLEMENTED_DEVICE);
345 g_free(name);
348 if (info->has_cachectrl) {
349 for (i = 0; i < info->num_cpus; i++) {
350 char *name = g_strdup_printf("cachectrl%d", i);
352 object_initialize_child(obj, name, &s->cachectrl[i],
353 TYPE_UNIMPLEMENTED_DEVICE);
354 g_free(name);
357 if (info->has_cpusecctrl) {
358 for (i = 0; i < info->num_cpus; i++) {
359 char *name = g_strdup_printf("cpusecctrl%d", i);
361 object_initialize_child(obj, name, &s->cpusecctrl[i],
362 TYPE_UNIMPLEMENTED_DEVICE);
363 g_free(name);
366 if (info->has_cpuid) {
367 for (i = 0; i < info->num_cpus; i++) {
368 char *name = g_strdup_printf("cpuid%d", i);
370 object_initialize_child(obj, name, &s->cpuid[i],
371 TYPE_ARMSSE_CPUID);
372 g_free(name);
375 object_initialize_child(obj, "nmi-orgate", &s->nmi_orgate, TYPE_OR_IRQ);
376 object_initialize_child(obj, "ppc-irq-orgate", &s->ppc_irq_orgate,
377 TYPE_OR_IRQ);
378 object_initialize_child(obj, "sec-resp-splitter", &s->sec_resp_splitter,
379 TYPE_SPLIT_IRQ);
380 for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
381 char *name = g_strdup_printf("ppc-irq-splitter-%d", i);
382 SplitIRQ *splitter = &s->ppc_irq_splitter[i];
384 object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
385 g_free(name);
387 if (info->num_cpus > 1) {
388 for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
389 if (irq_is_common[i]) {
390 char *name = g_strdup_printf("cpu-irq-splitter%d", i);
391 SplitIRQ *splitter = &s->cpu_irq_splitter[i];
393 object_initialize_child(obj, name, splitter, TYPE_SPLIT_IRQ);
394 g_free(name);
400 static void armsse_exp_irq(void *opaque, int n, int level)
402 qemu_irq *irqarray = opaque;
404 qemu_set_irq(irqarray[n], level);
407 static void armsse_mpcexp_status(void *opaque, int n, int level)
409 ARMSSE *s = ARM_SSE(opaque);
410 qemu_set_irq(s->mpcexp_status_in[n], level);
413 static qemu_irq armsse_get_common_irq_in(ARMSSE *s, int irqno)
416 * Return a qemu_irq which can be used to signal IRQ n to
417 * all CPUs in the SSE.
419 ARMSSEClass *asc = ARM_SSE_GET_CLASS(s);
420 const ARMSSEInfo *info = asc->info;
422 assert(irq_is_common[irqno]);
424 if (info->num_cpus == 1) {
425 /* Only one CPU -- just connect directly to it */
426 return qdev_get_gpio_in(DEVICE(&s->armv7m[0]), irqno);
427 } else {
428 /* Connect to the splitter which feeds all CPUs */
429 return qdev_get_gpio_in(DEVICE(&s->cpu_irq_splitter[irqno]), 0);
433 static void map_ppu(ARMSSE *s, int ppuidx, const char *name, hwaddr addr)
435 /* Map a PPU unimplemented device stub */
436 DeviceState *dev = DEVICE(&s->ppu[ppuidx]);
438 qdev_prop_set_string(dev, "name", name);
439 qdev_prop_set_uint64(dev, "size", 0x1000);
440 sysbus_realize(SYS_BUS_DEVICE(dev), &error_fatal);
441 sysbus_mmio_map(SYS_BUS_DEVICE(&s->ppu[ppuidx]), 0, addr);
444 static void armsse_realize(DeviceState *dev, Error **errp)
446 ARMSSE *s = ARM_SSE(dev);
447 ARMSSEClass *asc = ARM_SSE_GET_CLASS(dev);
448 const ARMSSEInfo *info = asc->info;
449 int i;
450 MemoryRegion *mr;
451 Error *err = NULL;
452 SysBusDevice *sbd_apb_ppc0;
453 SysBusDevice *sbd_secctl;
454 DeviceState *dev_apb_ppc0;
455 DeviceState *dev_apb_ppc1;
456 DeviceState *dev_secctl;
457 DeviceState *dev_splitter;
458 uint32_t addr_width_max;
460 if (!s->board_memory) {
461 error_setg(errp, "memory property was not set");
462 return;
465 if (!clock_has_source(s->mainclk)) {
466 error_setg(errp, "MAINCLK clock was not connected");
468 if (!clock_has_source(s->s32kclk)) {
469 error_setg(errp, "S32KCLK clock was not connected");
472 assert(info->num_cpus <= SSE_MAX_CPUS);
474 /* max SRAM_ADDR_WIDTH: 24 - log2(SRAM_NUM_BANK) */
475 assert(is_power_of_2(info->sram_banks));
476 addr_width_max = 24 - ctz32(info->sram_banks);
477 if (s->sram_addr_width < 1 || s->sram_addr_width > addr_width_max) {
478 error_setg(errp, "SRAM_ADDR_WIDTH must be between 1 and %d",
479 addr_width_max);
480 return;
483 /* Handling of which devices should be available only to secure
484 * code is usually done differently for M profile than for A profile.
485 * Instead of putting some devices only into the secure address space,
486 * devices exist in both address spaces but with hard-wired security
487 * permissions that will cause the CPU to fault for non-secure accesses.
489 * The ARMSSE has an IDAU (Implementation Defined Access Unit),
490 * which specifies hard-wired security permissions for different
491 * areas of the physical address space. For the ARMSSE IDAU, the
492 * top 4 bits of the physical address are the IDAU region ID, and
493 * if bit 28 (ie the lowest bit of the ID) is 0 then this is an NS
494 * region, otherwise it is an S region.
496 * The various devices and RAMs are generally all mapped twice,
497 * once into a region that the IDAU defines as secure and once
498 * into a non-secure region. They sit behind either a Memory
499 * Protection Controller (for RAM) or a Peripheral Protection
500 * Controller (for devices), which allow a more fine grained
501 * configuration of whether non-secure accesses are permitted.
503 * (The other place that guest software can configure security
504 * permissions is in the architected SAU (Security Attribution
505 * Unit), which is entirely inside the CPU. The IDAU can upgrade
506 * the security attributes for a region to more restrictive than
507 * the SAU specifies, but cannot downgrade them.)
509 * 0x10000000..0x1fffffff alias of 0x00000000..0x0fffffff
510 * 0x20000000..0x2007ffff 32KB FPGA block RAM
511 * 0x30000000..0x3fffffff alias of 0x20000000..0x2fffffff
512 * 0x40000000..0x4000ffff base peripheral region 1
513 * 0x40010000..0x4001ffff CPU peripherals (none for ARMSSE)
514 * 0x40020000..0x4002ffff system control element peripherals
515 * 0x40080000..0x400fffff base peripheral region 2
516 * 0x50000000..0x5fffffff alias of 0x40000000..0x4fffffff
519 memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -2);
521 for (i = 0; i < info->num_cpus; i++) {
522 DeviceState *cpudev = DEVICE(&s->armv7m[i]);
523 Object *cpuobj = OBJECT(&s->armv7m[i]);
524 int j;
525 char *gpioname;
527 qdev_prop_set_uint32(cpudev, "num-irq", s->exp_numirq + 32);
529 * In real hardware the initial Secure VTOR is set from the INITSVTOR*
530 * registers in the IoT Kit System Control Register block. In QEMU
531 * we set the initial value here, and also the reset value of the
532 * sysctl register, from this object's QOM init-svtor property.
533 * If the guest changes the INITSVTOR* registers at runtime then the
534 * code in iotkit-sysctl.c will update the CPU init-svtor property
535 * (which will then take effect on the next CPU warm-reset).
537 * Note that typically a board using the SSE-200 will have a system
538 * control processor whose boot firmware initializes the INITSVTOR*
539 * registers before powering up the CPUs. QEMU doesn't emulate
540 * the control processor, so instead we behave in the way that the
541 * firmware does: the initial value should be set by the board code
542 * (using the init-svtor property on the ARMSSE object) to match
543 * whatever its firmware does.
545 qdev_prop_set_uint32(cpudev, "init-svtor", s->init_svtor);
547 * CPUs start powered down if the corresponding bit in the CPUWAIT
548 * register is 1. In real hardware the CPUWAIT register reset value is
549 * a configurable property of the SSE-200 (via the CPUWAIT0_RST and
550 * CPUWAIT1_RST parameters), but since all the boards we care about
551 * start CPU0 and leave CPU1 powered off, we hard-code that in
552 * info->cpuwait_rst for now. We can add QOM properties for this
553 * later if necessary.
555 if (extract32(info->cpuwait_rst, i, 1)) {
556 if (!object_property_set_bool(cpuobj, "start-powered-off", true,
557 errp)) {
558 return;
561 if (!s->cpu_fpu[i]) {
562 if (!object_property_set_bool(cpuobj, "vfp", false, errp)) {
563 return;
566 if (!s->cpu_dsp[i]) {
567 if (!object_property_set_bool(cpuobj, "dsp", false, errp)) {
568 return;
572 if (i > 0) {
573 memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
574 &s->container_alias[i - 1], -1);
575 } else {
576 memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
577 &s->container, -1);
579 object_property_set_link(cpuobj, "memory",
580 OBJECT(&s->cpu_container[i]), &error_abort);
581 object_property_set_link(cpuobj, "idau", OBJECT(s), &error_abort);
582 if (!sysbus_realize(SYS_BUS_DEVICE(cpuobj), errp)) {
583 return;
586 * The cluster must be realized after the armv7m container, as
587 * the container's CPU object is only created on realize, and the
588 * CPU must exist and have been parented into the cluster before
589 * the cluster is realized.
591 if (!qdev_realize(DEVICE(&s->cluster[i]), NULL, errp)) {
592 return;
595 /* Connect EXP_IRQ/EXP_CPUn_IRQ GPIOs to the NVIC's lines 32 and up */
596 s->exp_irqs[i] = g_new(qemu_irq, s->exp_numirq);
597 for (j = 0; j < s->exp_numirq; j++) {
598 s->exp_irqs[i][j] = qdev_get_gpio_in(cpudev, j + 32);
600 if (i == 0) {
601 gpioname = g_strdup("EXP_IRQ");
602 } else {
603 gpioname = g_strdup_printf("EXP_CPU%d_IRQ", i);
605 qdev_init_gpio_in_named_with_opaque(dev, armsse_exp_irq,
606 s->exp_irqs[i],
607 gpioname, s->exp_numirq);
608 g_free(gpioname);
611 /* Wire up the splitters that connect common IRQs to all CPUs */
612 if (info->num_cpus > 1) {
613 for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
614 if (irq_is_common[i]) {
615 Object *splitter = OBJECT(&s->cpu_irq_splitter[i]);
616 DeviceState *devs = DEVICE(splitter);
617 int cpunum;
619 if (!object_property_set_int(splitter, "num-lines",
620 info->num_cpus, errp)) {
621 return;
623 if (!qdev_realize(DEVICE(splitter), NULL, errp)) {
624 return;
626 for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
627 DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
629 qdev_connect_gpio_out(devs, cpunum,
630 qdev_get_gpio_in(cpudev, i));
636 /* Set up the big aliases first */
637 make_alias(s, &s->alias1, &s->container, "alias 1",
638 0x10000000, 0x10000000, 0x00000000);
639 make_alias(s, &s->alias2, &s->container,
640 "alias 2", 0x30000000, 0x10000000, 0x20000000);
641 /* The 0x50000000..0x5fffffff region is not a pure alias: it has
642 * a few extra devices that only appear there (generally the
643 * control interfaces for the protection controllers).
644 * We implement this by mapping those devices over the top of this
645 * alias MR at a higher priority. Some of the devices in this range
646 * are per-CPU, so we must put this alias in the per-cpu containers.
648 for (i = 0; i < info->num_cpus; i++) {
649 make_alias(s, &s->alias3[i], &s->cpu_container[i],
650 "alias 3", 0x50000000, 0x10000000, 0x40000000);
653 /* Security controller */
654 if (!sysbus_realize(SYS_BUS_DEVICE(&s->secctl), errp)) {
655 return;
657 sbd_secctl = SYS_BUS_DEVICE(&s->secctl);
658 dev_secctl = DEVICE(&s->secctl);
659 sysbus_mmio_map(sbd_secctl, 0, 0x50080000);
660 sysbus_mmio_map(sbd_secctl, 1, 0x40080000);
662 s->nsc_cfg_in = qemu_allocate_irq(nsccfg_handler, s, 1);
663 qdev_connect_gpio_out_named(dev_secctl, "nsc_cfg", 0, s->nsc_cfg_in);
665 /* The sec_resp_cfg output from the security controller must be split into
666 * multiple lines, one for each of the PPCs within the ARMSSE and one
667 * that will be an output from the ARMSSE to the system.
669 if (!object_property_set_int(OBJECT(&s->sec_resp_splitter),
670 "num-lines", 3, errp)) {
671 return;
673 if (!qdev_realize(DEVICE(&s->sec_resp_splitter), NULL, errp)) {
674 return;
676 dev_splitter = DEVICE(&s->sec_resp_splitter);
677 qdev_connect_gpio_out_named(dev_secctl, "sec_resp_cfg", 0,
678 qdev_get_gpio_in(dev_splitter, 0));
680 /* Each SRAM bank lives behind its own Memory Protection Controller */
681 for (i = 0; i < info->sram_banks; i++) {
682 char *ramname = g_strdup_printf("armsse.sram%d", i);
683 SysBusDevice *sbd_mpc;
684 uint32_t sram_bank_size = 1 << s->sram_addr_width;
686 memory_region_init_ram(&s->sram[i], NULL, ramname,
687 sram_bank_size, &err);
688 g_free(ramname);
689 if (err) {
690 error_propagate(errp, err);
691 return;
693 object_property_set_link(OBJECT(&s->mpc[i]), "downstream",
694 OBJECT(&s->sram[i]), &error_abort);
695 if (!sysbus_realize(SYS_BUS_DEVICE(&s->mpc[i]), errp)) {
696 return;
698 /* Map the upstream end of the MPC into the right place... */
699 sbd_mpc = SYS_BUS_DEVICE(&s->mpc[i]);
700 memory_region_add_subregion(&s->container,
701 0x20000000 + i * sram_bank_size,
702 sysbus_mmio_get_region(sbd_mpc, 1));
703 /* ...and its register interface */
704 memory_region_add_subregion(&s->container, 0x50083000 + i * 0x1000,
705 sysbus_mmio_get_region(sbd_mpc, 0));
708 /* We must OR together lines from the MPC splitters to go to the NVIC */
709 if (!object_property_set_int(OBJECT(&s->mpc_irq_orgate), "num-lines",
710 IOTS_NUM_EXP_MPC + info->sram_banks,
711 errp)) {
712 return;
714 if (!qdev_realize(DEVICE(&s->mpc_irq_orgate), NULL, errp)) {
715 return;
717 qdev_connect_gpio_out(DEVICE(&s->mpc_irq_orgate), 0,
718 armsse_get_common_irq_in(s, 9));
720 /* Devices behind APB PPC0:
721 * 0x40000000: timer0
722 * 0x40001000: timer1
723 * 0x40002000: dual timer
724 * 0x40003000: MHU0 (SSE-200 only)
725 * 0x40004000: MHU1 (SSE-200 only)
726 * We must configure and realize each downstream device and connect
727 * it to the appropriate PPC port; then we can realize the PPC and
728 * map its upstream ends to the right place in the container.
730 qdev_prop_set_uint32(DEVICE(&s->timer0), "pclk-frq", s->mainclk_frq);
731 qdev_connect_clock_in(DEVICE(&s->timer0), "pclk", s->mainclk);
732 if (!sysbus_realize(SYS_BUS_DEVICE(&s->timer0), errp)) {
733 return;
735 sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer0), 0,
736 armsse_get_common_irq_in(s, 3));
737 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer0), 0);
738 object_property_set_link(OBJECT(&s->apb_ppc0), "port[0]", OBJECT(mr),
739 &error_abort);
741 qdev_prop_set_uint32(DEVICE(&s->timer1), "pclk-frq", s->mainclk_frq);
742 qdev_connect_clock_in(DEVICE(&s->timer1), "pclk", s->mainclk);
743 if (!sysbus_realize(SYS_BUS_DEVICE(&s->timer1), errp)) {
744 return;
746 sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer1), 0,
747 armsse_get_common_irq_in(s, 4));
748 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer1), 0);
749 object_property_set_link(OBJECT(&s->apb_ppc0), "port[1]", OBJECT(mr),
750 &error_abort);
752 qdev_prop_set_uint32(DEVICE(&s->dualtimer), "pclk-frq", s->mainclk_frq);
753 qdev_connect_clock_in(DEVICE(&s->dualtimer), "TIMCLK", s->mainclk);
754 if (!sysbus_realize(SYS_BUS_DEVICE(&s->dualtimer), errp)) {
755 return;
757 sysbus_connect_irq(SYS_BUS_DEVICE(&s->dualtimer), 0,
758 armsse_get_common_irq_in(s, 5));
759 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->dualtimer), 0);
760 object_property_set_link(OBJECT(&s->apb_ppc0), "port[2]", OBJECT(mr),
761 &error_abort);
763 if (info->has_mhus) {
765 * An SSE-200 with only one CPU should have only one MHU created,
766 * with the region where the second MHU usually is being RAZ/WI.
767 * We don't implement that SSE-200 config; if we want to support
768 * it then this code needs to be enhanced to handle creating the
769 * RAZ/WI region instead of the second MHU.
771 assert(info->num_cpus == ARRAY_SIZE(s->mhu));
773 for (i = 0; i < ARRAY_SIZE(s->mhu); i++) {
774 char *port;
775 int cpunum;
776 SysBusDevice *mhu_sbd = SYS_BUS_DEVICE(&s->mhu[i]);
778 if (!sysbus_realize(SYS_BUS_DEVICE(&s->mhu[i]), errp)) {
779 return;
781 port = g_strdup_printf("port[%d]", i + 3);
782 mr = sysbus_mmio_get_region(mhu_sbd, 0);
783 object_property_set_link(OBJECT(&s->apb_ppc0), port, OBJECT(mr),
784 &error_abort);
785 g_free(port);
788 * Each MHU has an irq line for each CPU:
789 * MHU 0 irq line 0 -> CPU 0 IRQ 6
790 * MHU 0 irq line 1 -> CPU 1 IRQ 6
791 * MHU 1 irq line 0 -> CPU 0 IRQ 7
792 * MHU 1 irq line 1 -> CPU 1 IRQ 7
794 for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
795 DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
797 sysbus_connect_irq(mhu_sbd, cpunum,
798 qdev_get_gpio_in(cpudev, 6 + i));
803 if (!sysbus_realize(SYS_BUS_DEVICE(&s->apb_ppc0), errp)) {
804 return;
807 sbd_apb_ppc0 = SYS_BUS_DEVICE(&s->apb_ppc0);
808 dev_apb_ppc0 = DEVICE(&s->apb_ppc0);
810 mr = sysbus_mmio_get_region(sbd_apb_ppc0, 0);
811 memory_region_add_subregion(&s->container, 0x40000000, mr);
812 mr = sysbus_mmio_get_region(sbd_apb_ppc0, 1);
813 memory_region_add_subregion(&s->container, 0x40001000, mr);
814 mr = sysbus_mmio_get_region(sbd_apb_ppc0, 2);
815 memory_region_add_subregion(&s->container, 0x40002000, mr);
816 if (info->has_mhus) {
817 mr = sysbus_mmio_get_region(sbd_apb_ppc0, 3);
818 memory_region_add_subregion(&s->container, 0x40003000, mr);
819 mr = sysbus_mmio_get_region(sbd_apb_ppc0, 4);
820 memory_region_add_subregion(&s->container, 0x40004000, mr);
822 for (i = 0; i < IOTS_APB_PPC0_NUM_PORTS; i++) {
823 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_nonsec", i,
824 qdev_get_gpio_in_named(dev_apb_ppc0,
825 "cfg_nonsec", i));
826 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_ap", i,
827 qdev_get_gpio_in_named(dev_apb_ppc0,
828 "cfg_ap", i));
830 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_enable", 0,
831 qdev_get_gpio_in_named(dev_apb_ppc0,
832 "irq_enable", 0));
833 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_clear", 0,
834 qdev_get_gpio_in_named(dev_apb_ppc0,
835 "irq_clear", 0));
836 qdev_connect_gpio_out(dev_splitter, 0,
837 qdev_get_gpio_in_named(dev_apb_ppc0,
838 "cfg_sec_resp", 0));
840 /* All the PPC irq lines (from the 2 internal PPCs and the 8 external
841 * ones) are sent individually to the security controller, and also
842 * ORed together to give a single combined PPC interrupt to the NVIC.
844 if (!object_property_set_int(OBJECT(&s->ppc_irq_orgate),
845 "num-lines", NUM_PPCS, errp)) {
846 return;
848 if (!qdev_realize(DEVICE(&s->ppc_irq_orgate), NULL, errp)) {
849 return;
851 qdev_connect_gpio_out(DEVICE(&s->ppc_irq_orgate), 0,
852 armsse_get_common_irq_in(s, 10));
855 * 0x40010000 .. 0x4001ffff (and the 0x5001000... secure-only alias):
856 * private per-CPU region (all these devices are SSE-200 only):
857 * 0x50010000: L1 icache control registers
858 * 0x50011000: CPUSECCTRL (CPU local security control registers)
859 * 0x4001f000 and 0x5001f000: CPU_IDENTITY register block
861 if (info->has_cachectrl) {
862 for (i = 0; i < info->num_cpus; i++) {
863 char *name = g_strdup_printf("cachectrl%d", i);
864 MemoryRegion *mr;
866 qdev_prop_set_string(DEVICE(&s->cachectrl[i]), "name", name);
867 g_free(name);
868 qdev_prop_set_uint64(DEVICE(&s->cachectrl[i]), "size", 0x1000);
869 if (!sysbus_realize(SYS_BUS_DEVICE(&s->cachectrl[i]), errp)) {
870 return;
873 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cachectrl[i]), 0);
874 memory_region_add_subregion(&s->cpu_container[i], 0x50010000, mr);
877 if (info->has_cpusecctrl) {
878 for (i = 0; i < info->num_cpus; i++) {
879 char *name = g_strdup_printf("CPUSECCTRL%d", i);
880 MemoryRegion *mr;
882 qdev_prop_set_string(DEVICE(&s->cpusecctrl[i]), "name", name);
883 g_free(name);
884 qdev_prop_set_uint64(DEVICE(&s->cpusecctrl[i]), "size", 0x1000);
885 if (!sysbus_realize(SYS_BUS_DEVICE(&s->cpusecctrl[i]), errp)) {
886 return;
889 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpusecctrl[i]), 0);
890 memory_region_add_subregion(&s->cpu_container[i], 0x50011000, mr);
893 if (info->has_cpuid) {
894 for (i = 0; i < info->num_cpus; i++) {
895 MemoryRegion *mr;
897 qdev_prop_set_uint32(DEVICE(&s->cpuid[i]), "CPUID", i);
898 if (!sysbus_realize(SYS_BUS_DEVICE(&s->cpuid[i]), errp)) {
899 return;
902 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpuid[i]), 0);
903 memory_region_add_subregion(&s->cpu_container[i], 0x4001F000, mr);
907 /* 0x40020000 .. 0x4002ffff : ARMSSE system control peripheral region */
908 /* Devices behind APB PPC1:
909 * 0x4002f000: S32K timer
911 qdev_prop_set_uint32(DEVICE(&s->s32ktimer), "pclk-frq", S32KCLK);
912 qdev_connect_clock_in(DEVICE(&s->s32ktimer), "pclk", s->s32kclk);
913 if (!sysbus_realize(SYS_BUS_DEVICE(&s->s32ktimer), errp)) {
914 return;
916 sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32ktimer), 0,
917 armsse_get_common_irq_in(s, 2));
918 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->s32ktimer), 0);
919 object_property_set_link(OBJECT(&s->apb_ppc1), "port[0]", OBJECT(mr),
920 &error_abort);
922 if (!sysbus_realize(SYS_BUS_DEVICE(&s->apb_ppc1), errp)) {
923 return;
925 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->apb_ppc1), 0);
926 memory_region_add_subregion(&s->container, 0x4002f000, mr);
928 dev_apb_ppc1 = DEVICE(&s->apb_ppc1);
929 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_nonsec", 0,
930 qdev_get_gpio_in_named(dev_apb_ppc1,
931 "cfg_nonsec", 0));
932 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_ap", 0,
933 qdev_get_gpio_in_named(dev_apb_ppc1,
934 "cfg_ap", 0));
935 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_enable", 0,
936 qdev_get_gpio_in_named(dev_apb_ppc1,
937 "irq_enable", 0));
938 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_clear", 0,
939 qdev_get_gpio_in_named(dev_apb_ppc1,
940 "irq_clear", 0));
941 qdev_connect_gpio_out(dev_splitter, 1,
942 qdev_get_gpio_in_named(dev_apb_ppc1,
943 "cfg_sec_resp", 0));
945 if (!object_property_set_int(OBJECT(&s->sysinfo), "SYS_VERSION",
946 info->sys_version, errp)) {
947 return;
949 if (!object_property_set_int(OBJECT(&s->sysinfo), "SYS_CONFIG",
950 armsse_sys_config_value(s, info), errp)) {
951 return;
953 if (!sysbus_realize(SYS_BUS_DEVICE(&s->sysinfo), errp)) {
954 return;
956 /* System information registers */
957 sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysinfo), 0, 0x40020000);
958 /* System control registers */
959 object_property_set_int(OBJECT(&s->sysctl), "SYS_VERSION",
960 info->sys_version, &error_abort);
961 object_property_set_int(OBJECT(&s->sysctl), "CPUWAIT_RST",
962 info->cpuwait_rst, &error_abort);
963 object_property_set_int(OBJECT(&s->sysctl), "INITSVTOR0_RST",
964 s->init_svtor, &error_abort);
965 object_property_set_int(OBJECT(&s->sysctl), "INITSVTOR1_RST",
966 s->init_svtor, &error_abort);
967 if (!sysbus_realize(SYS_BUS_DEVICE(&s->sysctl), errp)) {
968 return;
970 sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysctl), 0, 0x50021000);
972 if (info->has_ppus) {
973 /* CPUnCORE_PPU for each CPU */
974 for (i = 0; i < info->num_cpus; i++) {
975 char *name = g_strdup_printf("CPU%dCORE_PPU", i);
977 map_ppu(s, CPU0CORE_PPU + i, name, 0x50023000 + i * 0x2000);
979 * We don't support CPU debug so don't create the
980 * CPU0DEBUG_PPU at 0x50024000 and 0x50026000.
982 g_free(name);
984 map_ppu(s, DBG_PPU, "DBG_PPU", 0x50029000);
986 for (i = 0; i < info->sram_banks; i++) {
987 char *name = g_strdup_printf("RAM%d_PPU", i);
989 map_ppu(s, RAM0_PPU + i, name, 0x5002a000 + i * 0x1000);
990 g_free(name);
994 /* This OR gate wires together outputs from the secure watchdogs to NMI */
995 if (!object_property_set_int(OBJECT(&s->nmi_orgate), "num-lines", 2,
996 errp)) {
997 return;
999 if (!qdev_realize(DEVICE(&s->nmi_orgate), NULL, errp)) {
1000 return;
1002 qdev_connect_gpio_out(DEVICE(&s->nmi_orgate), 0,
1003 qdev_get_gpio_in_named(DEVICE(&s->armv7m), "NMI", 0));
1005 qdev_prop_set_uint32(DEVICE(&s->s32kwatchdog), "wdogclk-frq", S32KCLK);
1006 qdev_connect_clock_in(DEVICE(&s->s32kwatchdog), "WDOGCLK", s->s32kclk);
1007 if (!sysbus_realize(SYS_BUS_DEVICE(&s->s32kwatchdog), errp)) {
1008 return;
1010 sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32kwatchdog), 0,
1011 qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 0));
1012 sysbus_mmio_map(SYS_BUS_DEVICE(&s->s32kwatchdog), 0, 0x5002e000);
1014 /* 0x40080000 .. 0x4008ffff : ARMSSE second Base peripheral region */
1016 qdev_prop_set_uint32(DEVICE(&s->nswatchdog), "wdogclk-frq", s->mainclk_frq);
1017 qdev_connect_clock_in(DEVICE(&s->nswatchdog), "WDOGCLK", s->mainclk);
1018 if (!sysbus_realize(SYS_BUS_DEVICE(&s->nswatchdog), errp)) {
1019 return;
1021 sysbus_connect_irq(SYS_BUS_DEVICE(&s->nswatchdog), 0,
1022 armsse_get_common_irq_in(s, 1));
1023 sysbus_mmio_map(SYS_BUS_DEVICE(&s->nswatchdog), 0, 0x40081000);
1025 qdev_prop_set_uint32(DEVICE(&s->swatchdog), "wdogclk-frq", s->mainclk_frq);
1026 qdev_connect_clock_in(DEVICE(&s->swatchdog), "WDOGCLK", s->mainclk);
1027 if (!sysbus_realize(SYS_BUS_DEVICE(&s->swatchdog), errp)) {
1028 return;
1030 sysbus_connect_irq(SYS_BUS_DEVICE(&s->swatchdog), 0,
1031 qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 1));
1032 sysbus_mmio_map(SYS_BUS_DEVICE(&s->swatchdog), 0, 0x50081000);
1034 for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
1035 Object *splitter = OBJECT(&s->ppc_irq_splitter[i]);
1037 if (!object_property_set_int(splitter, "num-lines", 2, errp)) {
1038 return;
1040 if (!qdev_realize(DEVICE(splitter), NULL, errp)) {
1041 return;
1045 for (i = 0; i < IOTS_NUM_AHB_EXP_PPC; i++) {
1046 char *ppcname = g_strdup_printf("ahb_ppcexp%d", i);
1048 armsse_forward_ppc(s, ppcname, i);
1049 g_free(ppcname);
1052 for (i = 0; i < IOTS_NUM_APB_EXP_PPC; i++) {
1053 char *ppcname = g_strdup_printf("apb_ppcexp%d", i);
1055 armsse_forward_ppc(s, ppcname, i + IOTS_NUM_AHB_EXP_PPC);
1056 g_free(ppcname);
1059 for (i = NUM_EXTERNAL_PPCS; i < NUM_PPCS; i++) {
1060 /* Wire up IRQ splitter for internal PPCs */
1061 DeviceState *devs = DEVICE(&s->ppc_irq_splitter[i]);
1062 char *gpioname = g_strdup_printf("apb_ppc%d_irq_status",
1063 i - NUM_EXTERNAL_PPCS);
1064 TZPPC *ppc = (i == NUM_EXTERNAL_PPCS) ? &s->apb_ppc0 : &s->apb_ppc1;
1066 qdev_connect_gpio_out(devs, 0,
1067 qdev_get_gpio_in_named(dev_secctl, gpioname, 0));
1068 qdev_connect_gpio_out(devs, 1,
1069 qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), i));
1070 qdev_connect_gpio_out_named(DEVICE(ppc), "irq", 0,
1071 qdev_get_gpio_in(devs, 0));
1072 g_free(gpioname);
1075 /* Wire up the splitters for the MPC IRQs */
1076 for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
1077 SplitIRQ *splitter = &s->mpc_irq_splitter[i];
1078 DeviceState *dev_splitter = DEVICE(splitter);
1080 if (!object_property_set_int(OBJECT(splitter), "num-lines", 2,
1081 errp)) {
1082 return;
1084 if (!qdev_realize(DEVICE(splitter), NULL, errp)) {
1085 return;
1088 if (i < IOTS_NUM_EXP_MPC) {
1089 /* Splitter input is from GPIO input line */
1090 s->mpcexp_status_in[i] = qdev_get_gpio_in(dev_splitter, 0);
1091 qdev_connect_gpio_out(dev_splitter, 0,
1092 qdev_get_gpio_in_named(dev_secctl,
1093 "mpcexp_status", i));
1094 } else {
1095 /* Splitter input is from our own MPC */
1096 qdev_connect_gpio_out_named(DEVICE(&s->mpc[i - IOTS_NUM_EXP_MPC]),
1097 "irq", 0,
1098 qdev_get_gpio_in(dev_splitter, 0));
1099 qdev_connect_gpio_out(dev_splitter, 0,
1100 qdev_get_gpio_in_named(dev_secctl,
1101 "mpc_status",
1102 i - IOTS_NUM_EXP_MPC));
1105 qdev_connect_gpio_out(dev_splitter, 1,
1106 qdev_get_gpio_in(DEVICE(&s->mpc_irq_orgate), i));
1108 /* Create GPIO inputs which will pass the line state for our
1109 * mpcexp_irq inputs to the correct splitter devices.
1111 qdev_init_gpio_in_named(dev, armsse_mpcexp_status, "mpcexp_status",
1112 IOTS_NUM_EXP_MPC);
1114 armsse_forward_sec_resp_cfg(s);
1116 /* Forward the MSC related signals */
1117 qdev_pass_gpios(dev_secctl, dev, "mscexp_status");
1118 qdev_pass_gpios(dev_secctl, dev, "mscexp_clear");
1119 qdev_pass_gpios(dev_secctl, dev, "mscexp_ns");
1120 qdev_connect_gpio_out_named(dev_secctl, "msc_irq", 0,
1121 armsse_get_common_irq_in(s, 11));
1124 * Expose our container region to the board model; this corresponds
1125 * to the AHB Slave Expansion ports which allow bus master devices
1126 * (eg DMA controllers) in the board model to make transactions into
1127 * devices in the ARMSSE.
1129 sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->container);
1131 /* Set initial system_clock_scale from MAINCLK */
1132 armsse_mainclk_update(s);
1135 static void armsse_idau_check(IDAUInterface *ii, uint32_t address,
1136 int *iregion, bool *exempt, bool *ns, bool *nsc)
1139 * For ARMSSE systems the IDAU responses are simple logical functions
1140 * of the address bits. The NSC attribute is guest-adjustable via the
1141 * NSCCFG register in the security controller.
1143 ARMSSE *s = ARM_SSE(ii);
1144 int region = extract32(address, 28, 4);
1146 *ns = !(region & 1);
1147 *nsc = (region == 1 && (s->nsccfg & 1)) || (region == 3 && (s->nsccfg & 2));
1148 /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
1149 *exempt = (address & 0xeff00000) == 0xe0000000;
1150 *iregion = region;
1153 static const VMStateDescription armsse_vmstate = {
1154 .name = "iotkit",
1155 .version_id = 2,
1156 .minimum_version_id = 2,
1157 .fields = (VMStateField[]) {
1158 VMSTATE_CLOCK(mainclk, ARMSSE),
1159 VMSTATE_CLOCK(s32kclk, ARMSSE),
1160 VMSTATE_UINT32(nsccfg, ARMSSE),
1161 VMSTATE_END_OF_LIST()
1165 static void armsse_reset(DeviceState *dev)
1167 ARMSSE *s = ARM_SSE(dev);
1169 s->nsccfg = 0;
1172 static void armsse_class_init(ObjectClass *klass, void *data)
1174 DeviceClass *dc = DEVICE_CLASS(klass);
1175 IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(klass);
1176 ARMSSEClass *asc = ARM_SSE_CLASS(klass);
1177 const ARMSSEInfo *info = data;
1179 dc->realize = armsse_realize;
1180 dc->vmsd = &armsse_vmstate;
1181 device_class_set_props(dc, info->props);
1182 dc->reset = armsse_reset;
1183 iic->check = armsse_idau_check;
1184 asc->info = info;
1187 static const TypeInfo armsse_info = {
1188 .name = TYPE_ARM_SSE,
1189 .parent = TYPE_SYS_BUS_DEVICE,
1190 .instance_size = sizeof(ARMSSE),
1191 .class_size = sizeof(ARMSSEClass),
1192 .instance_init = armsse_init,
1193 .abstract = true,
1194 .interfaces = (InterfaceInfo[]) {
1195 { TYPE_IDAU_INTERFACE },
1200 static void armsse_register_types(void)
1202 int i;
1204 type_register_static(&armsse_info);
1206 for (i = 0; i < ARRAY_SIZE(armsse_variants); i++) {
1207 TypeInfo ti = {
1208 .name = armsse_variants[i].name,
1209 .parent = TYPE_ARM_SSE,
1210 .class_init = armsse_class_init,
1211 .class_data = (void *)&armsse_variants[i],
1213 type_register(&ti);
1217 type_init(armsse_register_types);