hw/xen/hvm: Propagate page_mask to a pair of functions
[qemu/ar7.git] / migration / ram.c
blob003c28e1336a5fbe7a3877512b8fc3cf62f1bab3
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 * Copyright (c) 2011-2015 Red Hat Inc
7 * Authors:
8 * Juan Quintela <quintela@redhat.com>
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
29 #include "qemu/osdep.h"
30 #include "qemu/cutils.h"
31 #include "qemu/bitops.h"
32 #include "qemu/bitmap.h"
33 #include "qemu/madvise.h"
34 #include "qemu/main-loop.h"
35 #include "xbzrle.h"
36 #include "ram-compress.h"
37 #include "ram.h"
38 #include "migration.h"
39 #include "migration-stats.h"
40 #include "migration/register.h"
41 #include "migration/misc.h"
42 #include "qemu-file.h"
43 #include "postcopy-ram.h"
44 #include "page_cache.h"
45 #include "qemu/error-report.h"
46 #include "qapi/error.h"
47 #include "qapi/qapi-types-migration.h"
48 #include "qapi/qapi-events-migration.h"
49 #include "qapi/qapi-commands-migration.h"
50 #include "qapi/qmp/qerror.h"
51 #include "trace.h"
52 #include "exec/ram_addr.h"
53 #include "exec/target_page.h"
54 #include "qemu/rcu_queue.h"
55 #include "migration/colo.h"
56 #include "block.h"
57 #include "sysemu/cpu-throttle.h"
58 #include "savevm.h"
59 #include "qemu/iov.h"
60 #include "multifd.h"
61 #include "sysemu/runstate.h"
62 #include "rdma.h"
63 #include "options.h"
64 #include "sysemu/dirtylimit.h"
65 #include "sysemu/kvm.h"
67 #include "hw/boards.h" /* for machine_dump_guest_core() */
69 #if defined(__linux__)
70 #include "qemu/userfaultfd.h"
71 #endif /* defined(__linux__) */
73 /***********************************************************/
74 /* ram save/restore */
77 * RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
78 * worked for pages that were filled with the same char. We switched
79 * it to only search for the zero value. And to avoid confusion with
80 * RAM_SAVE_FLAG_COMPRESS_PAGE just rename it.
83 * RAM_SAVE_FLAG_FULL was obsoleted in 2009, it can be reused now
85 #define RAM_SAVE_FLAG_FULL 0x01
86 #define RAM_SAVE_FLAG_ZERO 0x02
87 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
88 #define RAM_SAVE_FLAG_PAGE 0x08
89 #define RAM_SAVE_FLAG_EOS 0x10
90 #define RAM_SAVE_FLAG_CONTINUE 0x20
91 #define RAM_SAVE_FLAG_XBZRLE 0x40
92 /* 0x80 is reserved in rdma.h for RAM_SAVE_FLAG_HOOK */
93 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
94 #define RAM_SAVE_FLAG_MULTIFD_FLUSH 0x200
95 /* We can't use any flag that is bigger than 0x200 */
98 * mapped-ram migration supports O_DIRECT, so we need to make sure the
99 * userspace buffer, the IO operation size and the file offset are
100 * aligned according to the underlying device's block size. The first
101 * two are already aligned to page size, but we need to add padding to
102 * the file to align the offset. We cannot read the block size
103 * dynamically because the migration file can be moved between
104 * different systems, so use 1M to cover most block sizes and to keep
105 * the file offset aligned at page size as well.
107 #define MAPPED_RAM_FILE_OFFSET_ALIGNMENT 0x100000
110 * When doing mapped-ram migration, this is the amount we read from
111 * the pages region in the migration file at a time.
113 #define MAPPED_RAM_LOAD_BUF_SIZE 0x100000
115 XBZRLECacheStats xbzrle_counters;
117 /* used by the search for pages to send */
118 struct PageSearchStatus {
119 /* The migration channel used for a specific host page */
120 QEMUFile *pss_channel;
121 /* Last block from where we have sent data */
122 RAMBlock *last_sent_block;
123 /* Current block being searched */
124 RAMBlock *block;
125 /* Current page to search from */
126 unsigned long page;
127 /* Set once we wrap around */
128 bool complete_round;
129 /* Whether we're sending a host page */
130 bool host_page_sending;
131 /* The start/end of current host page. Invalid if host_page_sending==false */
132 unsigned long host_page_start;
133 unsigned long host_page_end;
135 typedef struct PageSearchStatus PageSearchStatus;
137 /* struct contains XBZRLE cache and a static page
138 used by the compression */
139 static struct {
140 /* buffer used for XBZRLE encoding */
141 uint8_t *encoded_buf;
142 /* buffer for storing page content */
143 uint8_t *current_buf;
144 /* Cache for XBZRLE, Protected by lock. */
145 PageCache *cache;
146 QemuMutex lock;
147 /* it will store a page full of zeros */
148 uint8_t *zero_target_page;
149 /* buffer used for XBZRLE decoding */
150 uint8_t *decoded_buf;
151 } XBZRLE;
153 static void XBZRLE_cache_lock(void)
155 if (migrate_xbzrle()) {
156 qemu_mutex_lock(&XBZRLE.lock);
160 static void XBZRLE_cache_unlock(void)
162 if (migrate_xbzrle()) {
163 qemu_mutex_unlock(&XBZRLE.lock);
168 * xbzrle_cache_resize: resize the xbzrle cache
170 * This function is called from migrate_params_apply in main
171 * thread, possibly while a migration is in progress. A running
172 * migration may be using the cache and might finish during this call,
173 * hence changes to the cache are protected by XBZRLE.lock().
175 * Returns 0 for success or -1 for error
177 * @new_size: new cache size
178 * @errp: set *errp if the check failed, with reason
180 int xbzrle_cache_resize(uint64_t new_size, Error **errp)
182 PageCache *new_cache;
183 int64_t ret = 0;
185 /* Check for truncation */
186 if (new_size != (size_t)new_size) {
187 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
188 "exceeding address space");
189 return -1;
192 if (new_size == migrate_xbzrle_cache_size()) {
193 /* nothing to do */
194 return 0;
197 XBZRLE_cache_lock();
199 if (XBZRLE.cache != NULL) {
200 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
201 if (!new_cache) {
202 ret = -1;
203 goto out;
206 cache_fini(XBZRLE.cache);
207 XBZRLE.cache = new_cache;
209 out:
210 XBZRLE_cache_unlock();
211 return ret;
214 static bool postcopy_preempt_active(void)
216 return migrate_postcopy_preempt() && migration_in_postcopy();
219 bool migrate_ram_is_ignored(RAMBlock *block)
221 return !qemu_ram_is_migratable(block) ||
222 (migrate_ignore_shared() && qemu_ram_is_shared(block)
223 && qemu_ram_is_named_file(block));
226 #undef RAMBLOCK_FOREACH
228 int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque)
230 RAMBlock *block;
231 int ret = 0;
233 RCU_READ_LOCK_GUARD();
235 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
236 ret = func(block, opaque);
237 if (ret) {
238 break;
241 return ret;
244 static void ramblock_recv_map_init(void)
246 RAMBlock *rb;
248 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
249 assert(!rb->receivedmap);
250 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
254 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
256 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
257 rb->receivedmap);
260 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset)
262 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
265 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
267 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
270 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
271 size_t nr)
273 bitmap_set_atomic(rb->receivedmap,
274 ramblock_recv_bitmap_offset(host_addr, rb),
275 nr);
278 #define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL)
281 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes).
283 * Returns >0 if success with sent bytes, or <0 if error.
285 int64_t ramblock_recv_bitmap_send(QEMUFile *file,
286 const char *block_name)
288 RAMBlock *block = qemu_ram_block_by_name(block_name);
289 unsigned long *le_bitmap, nbits;
290 uint64_t size;
292 if (!block) {
293 error_report("%s: invalid block name: %s", __func__, block_name);
294 return -1;
297 nbits = block->postcopy_length >> TARGET_PAGE_BITS;
300 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit
301 * machines we may need 4 more bytes for padding (see below
302 * comment). So extend it a bit before hand.
304 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
307 * Always use little endian when sending the bitmap. This is
308 * required that when source and destination VMs are not using the
309 * same endianness. (Note: big endian won't work.)
311 bitmap_to_le(le_bitmap, block->receivedmap, nbits);
313 /* Size of the bitmap, in bytes */
314 size = DIV_ROUND_UP(nbits, 8);
317 * size is always aligned to 8 bytes for 64bit machines, but it
318 * may not be true for 32bit machines. We need this padding to
319 * make sure the migration can survive even between 32bit and
320 * 64bit machines.
322 size = ROUND_UP(size, 8);
324 qemu_put_be64(file, size);
325 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size);
326 g_free(le_bitmap);
328 * Mark as an end, in case the middle part is screwed up due to
329 * some "mysterious" reason.
331 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING);
332 int ret = qemu_fflush(file);
333 if (ret) {
334 return ret;
337 return size + sizeof(size);
341 * An outstanding page request, on the source, having been received
342 * and queued
344 struct RAMSrcPageRequest {
345 RAMBlock *rb;
346 hwaddr offset;
347 hwaddr len;
349 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
352 /* State of RAM for migration */
353 struct RAMState {
355 * PageSearchStatus structures for the channels when send pages.
356 * Protected by the bitmap_mutex.
358 PageSearchStatus pss[RAM_CHANNEL_MAX];
359 /* UFFD file descriptor, used in 'write-tracking' migration */
360 int uffdio_fd;
361 /* total ram size in bytes */
362 uint64_t ram_bytes_total;
363 /* Last block that we have visited searching for dirty pages */
364 RAMBlock *last_seen_block;
365 /* Last dirty target page we have sent */
366 ram_addr_t last_page;
367 /* last ram version we have seen */
368 uint32_t last_version;
369 /* How many times we have dirty too many pages */
370 int dirty_rate_high_cnt;
371 /* these variables are used for bitmap sync */
372 /* last time we did a full bitmap_sync */
373 int64_t time_last_bitmap_sync;
374 /* bytes transferred at start_time */
375 uint64_t bytes_xfer_prev;
376 /* number of dirty pages since start_time */
377 uint64_t num_dirty_pages_period;
378 /* xbzrle misses since the beginning of the period */
379 uint64_t xbzrle_cache_miss_prev;
380 /* Amount of xbzrle pages since the beginning of the period */
381 uint64_t xbzrle_pages_prev;
382 /* Amount of xbzrle encoded bytes since the beginning of the period */
383 uint64_t xbzrle_bytes_prev;
384 /* Are we really using XBZRLE (e.g., after the first round). */
385 bool xbzrle_started;
386 /* Are we on the last stage of migration */
387 bool last_stage;
389 /* total handled target pages at the beginning of period */
390 uint64_t target_page_count_prev;
391 /* total handled target pages since start */
392 uint64_t target_page_count;
393 /* number of dirty bits in the bitmap */
394 uint64_t migration_dirty_pages;
396 * Protects:
397 * - dirty/clear bitmap
398 * - migration_dirty_pages
399 * - pss structures
401 QemuMutex bitmap_mutex;
402 /* The RAMBlock used in the last src_page_requests */
403 RAMBlock *last_req_rb;
404 /* Queue of outstanding page requests from the destination */
405 QemuMutex src_page_req_mutex;
406 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests;
409 * This is only used when postcopy is in recovery phase, to communicate
410 * between the migration thread and the return path thread on dirty
411 * bitmap synchronizations. This field is unused in other stages of
412 * RAM migration.
414 unsigned int postcopy_bmap_sync_requested;
416 typedef struct RAMState RAMState;
418 static RAMState *ram_state;
420 static NotifierWithReturnList precopy_notifier_list;
422 /* Whether postcopy has queued requests? */
423 static bool postcopy_has_request(RAMState *rs)
425 return !QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests);
428 void precopy_infrastructure_init(void)
430 notifier_with_return_list_init(&precopy_notifier_list);
433 void precopy_add_notifier(NotifierWithReturn *n)
435 notifier_with_return_list_add(&precopy_notifier_list, n);
438 void precopy_remove_notifier(NotifierWithReturn *n)
440 notifier_with_return_remove(n);
443 int precopy_notify(PrecopyNotifyReason reason, Error **errp)
445 PrecopyNotifyData pnd;
446 pnd.reason = reason;
448 return notifier_with_return_list_notify(&precopy_notifier_list, &pnd, errp);
451 uint64_t ram_bytes_remaining(void)
453 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
457 void ram_transferred_add(uint64_t bytes)
459 if (runstate_is_running()) {
460 stat64_add(&mig_stats.precopy_bytes, bytes);
461 } else if (migration_in_postcopy()) {
462 stat64_add(&mig_stats.postcopy_bytes, bytes);
463 } else {
464 stat64_add(&mig_stats.downtime_bytes, bytes);
468 struct MigrationOps {
469 int (*ram_save_target_page)(RAMState *rs, PageSearchStatus *pss);
471 typedef struct MigrationOps MigrationOps;
473 MigrationOps *migration_ops;
475 static int ram_save_host_page_urgent(PageSearchStatus *pss);
477 /* NOTE: page is the PFN not real ram_addr_t. */
478 static void pss_init(PageSearchStatus *pss, RAMBlock *rb, ram_addr_t page)
480 pss->block = rb;
481 pss->page = page;
482 pss->complete_round = false;
486 * Check whether two PSSs are actively sending the same page. Return true
487 * if it is, false otherwise.
489 static bool pss_overlap(PageSearchStatus *pss1, PageSearchStatus *pss2)
491 return pss1->host_page_sending && pss2->host_page_sending &&
492 (pss1->host_page_start == pss2->host_page_start);
496 * save_page_header: write page header to wire
498 * If this is the 1st block, it also writes the block identification
500 * Returns the number of bytes written
502 * @pss: current PSS channel status
503 * @block: block that contains the page we want to send
504 * @offset: offset inside the block for the page
505 * in the lower bits, it contains flags
507 static size_t save_page_header(PageSearchStatus *pss, QEMUFile *f,
508 RAMBlock *block, ram_addr_t offset)
510 size_t size, len;
511 bool same_block = (block == pss->last_sent_block);
513 if (same_block) {
514 offset |= RAM_SAVE_FLAG_CONTINUE;
516 qemu_put_be64(f, offset);
517 size = 8;
519 if (!same_block) {
520 len = strlen(block->idstr);
521 qemu_put_byte(f, len);
522 qemu_put_buffer(f, (uint8_t *)block->idstr, len);
523 size += 1 + len;
524 pss->last_sent_block = block;
526 return size;
530 * mig_throttle_guest_down: throttle down the guest
532 * Reduce amount of guest cpu execution to hopefully slow down memory
533 * writes. If guest dirty memory rate is reduced below the rate at
534 * which we can transfer pages to the destination then we should be
535 * able to complete migration. Some workloads dirty memory way too
536 * fast and will not effectively converge, even with auto-converge.
538 static void mig_throttle_guest_down(uint64_t bytes_dirty_period,
539 uint64_t bytes_dirty_threshold)
541 uint64_t pct_initial = migrate_cpu_throttle_initial();
542 uint64_t pct_increment = migrate_cpu_throttle_increment();
543 bool pct_tailslow = migrate_cpu_throttle_tailslow();
544 int pct_max = migrate_max_cpu_throttle();
546 uint64_t throttle_now = cpu_throttle_get_percentage();
547 uint64_t cpu_now, cpu_ideal, throttle_inc;
549 /* We have not started throttling yet. Let's start it. */
550 if (!cpu_throttle_active()) {
551 cpu_throttle_set(pct_initial);
552 } else {
553 /* Throttling already on, just increase the rate */
554 if (!pct_tailslow) {
555 throttle_inc = pct_increment;
556 } else {
557 /* Compute the ideal CPU percentage used by Guest, which may
558 * make the dirty rate match the dirty rate threshold. */
559 cpu_now = 100 - throttle_now;
560 cpu_ideal = cpu_now * (bytes_dirty_threshold * 1.0 /
561 bytes_dirty_period);
562 throttle_inc = MIN(cpu_now - cpu_ideal, pct_increment);
564 cpu_throttle_set(MIN(throttle_now + throttle_inc, pct_max));
568 void mig_throttle_counter_reset(void)
570 RAMState *rs = ram_state;
572 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
573 rs->num_dirty_pages_period = 0;
574 rs->bytes_xfer_prev = migration_transferred_bytes();
578 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
580 * @current_addr: address for the zero page
582 * Update the xbzrle cache to reflect a page that's been sent as all 0.
583 * The important thing is that a stale (not-yet-0'd) page be replaced
584 * by the new data.
585 * As a bonus, if the page wasn't in the cache it gets added so that
586 * when a small write is made into the 0'd page it gets XBZRLE sent.
588 static void xbzrle_cache_zero_page(ram_addr_t current_addr)
590 /* We don't care if this fails to allocate a new cache page
591 * as long as it updated an old one */
592 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
593 stat64_get(&mig_stats.dirty_sync_count));
596 #define ENCODING_FLAG_XBZRLE 0x1
599 * save_xbzrle_page: compress and send current page
601 * Returns: 1 means that we wrote the page
602 * 0 means that page is identical to the one already sent
603 * -1 means that xbzrle would be longer than normal
605 * @rs: current RAM state
606 * @pss: current PSS channel
607 * @current_data: pointer to the address of the page contents
608 * @current_addr: addr of the page
609 * @block: block that contains the page we want to send
610 * @offset: offset inside the block for the page
612 static int save_xbzrle_page(RAMState *rs, PageSearchStatus *pss,
613 uint8_t **current_data, ram_addr_t current_addr,
614 RAMBlock *block, ram_addr_t offset)
616 int encoded_len = 0, bytes_xbzrle;
617 uint8_t *prev_cached_page;
618 QEMUFile *file = pss->pss_channel;
619 uint64_t generation = stat64_get(&mig_stats.dirty_sync_count);
621 if (!cache_is_cached(XBZRLE.cache, current_addr, generation)) {
622 xbzrle_counters.cache_miss++;
623 if (!rs->last_stage) {
624 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
625 generation) == -1) {
626 return -1;
627 } else {
628 /* update *current_data when the page has been
629 inserted into cache */
630 *current_data = get_cached_data(XBZRLE.cache, current_addr);
633 return -1;
637 * Reaching here means the page has hit the xbzrle cache, no matter what
638 * encoding result it is (normal encoding, overflow or skipping the page),
639 * count the page as encoded. This is used to calculate the encoding rate.
641 * Example: 2 pages (8KB) being encoded, first page encoding generates 2KB,
642 * 2nd page turns out to be skipped (i.e. no new bytes written to the
643 * page), the overall encoding rate will be 8KB / 2KB = 4, which has the
644 * skipped page included. In this way, the encoding rate can tell if the
645 * guest page is good for xbzrle encoding.
647 xbzrle_counters.pages++;
648 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
650 /* save current buffer into memory */
651 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
653 /* XBZRLE encoding (if there is no overflow) */
654 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
655 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
656 TARGET_PAGE_SIZE);
659 * Update the cache contents, so that it corresponds to the data
660 * sent, in all cases except where we skip the page.
662 if (!rs->last_stage && encoded_len != 0) {
663 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
665 * In the case where we couldn't compress, ensure that the caller
666 * sends the data from the cache, since the guest might have
667 * changed the RAM since we copied it.
669 *current_data = prev_cached_page;
672 if (encoded_len == 0) {
673 trace_save_xbzrle_page_skipping();
674 return 0;
675 } else if (encoded_len == -1) {
676 trace_save_xbzrle_page_overflow();
677 xbzrle_counters.overflow++;
678 xbzrle_counters.bytes += TARGET_PAGE_SIZE;
679 return -1;
682 /* Send XBZRLE based compressed page */
683 bytes_xbzrle = save_page_header(pss, pss->pss_channel, block,
684 offset | RAM_SAVE_FLAG_XBZRLE);
685 qemu_put_byte(file, ENCODING_FLAG_XBZRLE);
686 qemu_put_be16(file, encoded_len);
687 qemu_put_buffer(file, XBZRLE.encoded_buf, encoded_len);
688 bytes_xbzrle += encoded_len + 1 + 2;
690 * Like compressed_size (please see update_compress_thread_counts),
691 * the xbzrle encoded bytes don't count the 8 byte header with
692 * RAM_SAVE_FLAG_CONTINUE.
694 xbzrle_counters.bytes += bytes_xbzrle - 8;
695 ram_transferred_add(bytes_xbzrle);
697 return 1;
701 * pss_find_next_dirty: find the next dirty page of current ramblock
703 * This function updates pss->page to point to the next dirty page index
704 * within the ramblock to migrate, or the end of ramblock when nothing
705 * found. Note that when pss->host_page_sending==true it means we're
706 * during sending a host page, so we won't look for dirty page that is
707 * outside the host page boundary.
709 * @pss: the current page search status
711 static void pss_find_next_dirty(PageSearchStatus *pss)
713 RAMBlock *rb = pss->block;
714 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
715 unsigned long *bitmap = rb->bmap;
717 if (migrate_ram_is_ignored(rb)) {
718 /* Points directly to the end, so we know no dirty page */
719 pss->page = size;
720 return;
724 * If during sending a host page, only look for dirty pages within the
725 * current host page being send.
727 if (pss->host_page_sending) {
728 assert(pss->host_page_end);
729 size = MIN(size, pss->host_page_end);
732 pss->page = find_next_bit(bitmap, size, pss->page);
735 static void migration_clear_memory_region_dirty_bitmap(RAMBlock *rb,
736 unsigned long page)
738 uint8_t shift;
739 hwaddr size, start;
741 if (!rb->clear_bmap || !clear_bmap_test_and_clear(rb, page)) {
742 return;
745 shift = rb->clear_bmap_shift;
747 * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this
748 * can make things easier sometimes since then start address
749 * of the small chunk will always be 64 pages aligned so the
750 * bitmap will always be aligned to unsigned long. We should
751 * even be able to remove this restriction but I'm simply
752 * keeping it.
754 assert(shift >= 6);
756 size = 1ULL << (TARGET_PAGE_BITS + shift);
757 start = QEMU_ALIGN_DOWN((ram_addr_t)page << TARGET_PAGE_BITS, size);
758 trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page);
759 memory_region_clear_dirty_bitmap(rb->mr, start, size);
762 static void
763 migration_clear_memory_region_dirty_bitmap_range(RAMBlock *rb,
764 unsigned long start,
765 unsigned long npages)
767 unsigned long i, chunk_pages = 1UL << rb->clear_bmap_shift;
768 unsigned long chunk_start = QEMU_ALIGN_DOWN(start, chunk_pages);
769 unsigned long chunk_end = QEMU_ALIGN_UP(start + npages, chunk_pages);
772 * Clear pages from start to start + npages - 1, so the end boundary is
773 * exclusive.
775 for (i = chunk_start; i < chunk_end; i += chunk_pages) {
776 migration_clear_memory_region_dirty_bitmap(rb, i);
781 * colo_bitmap_find_diry:find contiguous dirty pages from start
783 * Returns the page offset within memory region of the start of the contiguout
784 * dirty page
786 * @rs: current RAM state
787 * @rb: RAMBlock where to search for dirty pages
788 * @start: page where we start the search
789 * @num: the number of contiguous dirty pages
791 static inline
792 unsigned long colo_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
793 unsigned long start, unsigned long *num)
795 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
796 unsigned long *bitmap = rb->bmap;
797 unsigned long first, next;
799 *num = 0;
801 if (migrate_ram_is_ignored(rb)) {
802 return size;
805 first = find_next_bit(bitmap, size, start);
806 if (first >= size) {
807 return first;
809 next = find_next_zero_bit(bitmap, size, first + 1);
810 assert(next >= first);
811 *num = next - first;
812 return first;
815 static inline bool migration_bitmap_clear_dirty(RAMState *rs,
816 RAMBlock *rb,
817 unsigned long page)
819 bool ret;
822 * Clear dirty bitmap if needed. This _must_ be called before we
823 * send any of the page in the chunk because we need to make sure
824 * we can capture further page content changes when we sync dirty
825 * log the next time. So as long as we are going to send any of
826 * the page in the chunk we clear the remote dirty bitmap for all.
827 * Clearing it earlier won't be a problem, but too late will.
829 migration_clear_memory_region_dirty_bitmap(rb, page);
831 ret = test_and_clear_bit(page, rb->bmap);
832 if (ret) {
833 rs->migration_dirty_pages--;
836 return ret;
839 static void dirty_bitmap_clear_section(MemoryRegionSection *section,
840 void *opaque)
842 const hwaddr offset = section->offset_within_region;
843 const hwaddr size = int128_get64(section->size);
844 const unsigned long start = offset >> TARGET_PAGE_BITS;
845 const unsigned long npages = size >> TARGET_PAGE_BITS;
846 RAMBlock *rb = section->mr->ram_block;
847 uint64_t *cleared_bits = opaque;
850 * We don't grab ram_state->bitmap_mutex because we expect to run
851 * only when starting migration or during postcopy recovery where
852 * we don't have concurrent access.
854 if (!migration_in_postcopy() && !migrate_background_snapshot()) {
855 migration_clear_memory_region_dirty_bitmap_range(rb, start, npages);
857 *cleared_bits += bitmap_count_one_with_offset(rb->bmap, start, npages);
858 bitmap_clear(rb->bmap, start, npages);
862 * Exclude all dirty pages from migration that fall into a discarded range as
863 * managed by a RamDiscardManager responsible for the mapped memory region of
864 * the RAMBlock. Clear the corresponding bits in the dirty bitmaps.
866 * Discarded pages ("logically unplugged") have undefined content and must
867 * not get migrated, because even reading these pages for migration might
868 * result in undesired behavior.
870 * Returns the number of cleared bits in the RAMBlock dirty bitmap.
872 * Note: The result is only stable while migrating (precopy/postcopy).
874 static uint64_t ramblock_dirty_bitmap_clear_discarded_pages(RAMBlock *rb)
876 uint64_t cleared_bits = 0;
878 if (rb->mr && rb->bmap && memory_region_has_ram_discard_manager(rb->mr)) {
879 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
880 MemoryRegionSection section = {
881 .mr = rb->mr,
882 .offset_within_region = 0,
883 .size = int128_make64(qemu_ram_get_used_length(rb)),
886 ram_discard_manager_replay_discarded(rdm, &section,
887 dirty_bitmap_clear_section,
888 &cleared_bits);
890 return cleared_bits;
894 * Check if a host-page aligned page falls into a discarded range as managed by
895 * a RamDiscardManager responsible for the mapped memory region of the RAMBlock.
897 * Note: The result is only stable while migrating (precopy/postcopy).
899 bool ramblock_page_is_discarded(RAMBlock *rb, ram_addr_t start)
901 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
902 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
903 MemoryRegionSection section = {
904 .mr = rb->mr,
905 .offset_within_region = start,
906 .size = int128_make64(qemu_ram_pagesize(rb)),
909 return !ram_discard_manager_is_populated(rdm, &section);
911 return false;
914 /* Called with RCU critical section */
915 static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb)
917 uint64_t new_dirty_pages =
918 cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length);
920 rs->migration_dirty_pages += new_dirty_pages;
921 rs->num_dirty_pages_period += new_dirty_pages;
925 * ram_pagesize_summary: calculate all the pagesizes of a VM
927 * Returns a summary bitmap of the page sizes of all RAMBlocks
929 * For VMs with just normal pages this is equivalent to the host page
930 * size. If it's got some huge pages then it's the OR of all the
931 * different page sizes.
933 uint64_t ram_pagesize_summary(void)
935 RAMBlock *block;
936 uint64_t summary = 0;
938 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
939 summary |= block->page_size;
942 return summary;
945 uint64_t ram_get_total_transferred_pages(void)
947 return stat64_get(&mig_stats.normal_pages) +
948 stat64_get(&mig_stats.zero_pages) +
949 compress_ram_pages() + xbzrle_counters.pages;
952 static void migration_update_rates(RAMState *rs, int64_t end_time)
954 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev;
956 /* calculate period counters */
957 stat64_set(&mig_stats.dirty_pages_rate,
958 rs->num_dirty_pages_period * 1000 /
959 (end_time - rs->time_last_bitmap_sync));
961 if (!page_count) {
962 return;
965 if (migrate_xbzrle()) {
966 double encoded_size, unencoded_size;
968 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss -
969 rs->xbzrle_cache_miss_prev) / page_count;
970 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
971 unencoded_size = (xbzrle_counters.pages - rs->xbzrle_pages_prev) *
972 TARGET_PAGE_SIZE;
973 encoded_size = xbzrle_counters.bytes - rs->xbzrle_bytes_prev;
974 if (xbzrle_counters.pages == rs->xbzrle_pages_prev || !encoded_size) {
975 xbzrle_counters.encoding_rate = 0;
976 } else {
977 xbzrle_counters.encoding_rate = unencoded_size / encoded_size;
979 rs->xbzrle_pages_prev = xbzrle_counters.pages;
980 rs->xbzrle_bytes_prev = xbzrle_counters.bytes;
982 compress_update_rates(page_count);
986 * Enable dirty-limit to throttle down the guest
988 static void migration_dirty_limit_guest(void)
991 * dirty page rate quota for all vCPUs fetched from
992 * migration parameter 'vcpu_dirty_limit'
994 static int64_t quota_dirtyrate;
995 MigrationState *s = migrate_get_current();
998 * If dirty limit already enabled and migration parameter
999 * vcpu-dirty-limit untouched.
1001 if (dirtylimit_in_service() &&
1002 quota_dirtyrate == s->parameters.vcpu_dirty_limit) {
1003 return;
1006 quota_dirtyrate = s->parameters.vcpu_dirty_limit;
1009 * Set all vCPU a quota dirtyrate, note that the second
1010 * parameter will be ignored if setting all vCPU for the vm
1012 qmp_set_vcpu_dirty_limit(false, -1, quota_dirtyrate, NULL);
1013 trace_migration_dirty_limit_guest(quota_dirtyrate);
1016 static void migration_trigger_throttle(RAMState *rs)
1018 uint64_t threshold = migrate_throttle_trigger_threshold();
1019 uint64_t bytes_xfer_period =
1020 migration_transferred_bytes() - rs->bytes_xfer_prev;
1021 uint64_t bytes_dirty_period = rs->num_dirty_pages_period * TARGET_PAGE_SIZE;
1022 uint64_t bytes_dirty_threshold = bytes_xfer_period * threshold / 100;
1024 /* During block migration the auto-converge logic incorrectly detects
1025 * that ram migration makes no progress. Avoid this by disabling the
1026 * throttling logic during the bulk phase of block migration. */
1027 if (blk_mig_bulk_active()) {
1028 return;
1032 * The following detection logic can be refined later. For now:
1033 * Check to see if the ratio between dirtied bytes and the approx.
1034 * amount of bytes that just got transferred since the last time
1035 * we were in this routine reaches the threshold. If that happens
1036 * twice, start or increase throttling.
1038 if ((bytes_dirty_period > bytes_dirty_threshold) &&
1039 (++rs->dirty_rate_high_cnt >= 2)) {
1040 rs->dirty_rate_high_cnt = 0;
1041 if (migrate_auto_converge()) {
1042 trace_migration_throttle();
1043 mig_throttle_guest_down(bytes_dirty_period,
1044 bytes_dirty_threshold);
1045 } else if (migrate_dirty_limit()) {
1046 migration_dirty_limit_guest();
1051 static void migration_bitmap_sync(RAMState *rs, bool last_stage)
1053 RAMBlock *block;
1054 int64_t end_time;
1056 stat64_add(&mig_stats.dirty_sync_count, 1);
1058 if (!rs->time_last_bitmap_sync) {
1059 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1062 trace_migration_bitmap_sync_start();
1063 memory_global_dirty_log_sync(last_stage);
1065 qemu_mutex_lock(&rs->bitmap_mutex);
1066 WITH_RCU_READ_LOCK_GUARD() {
1067 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1068 ramblock_sync_dirty_bitmap(rs, block);
1070 stat64_set(&mig_stats.dirty_bytes_last_sync, ram_bytes_remaining());
1072 qemu_mutex_unlock(&rs->bitmap_mutex);
1074 memory_global_after_dirty_log_sync();
1075 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
1077 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1079 /* more than 1 second = 1000 millisecons */
1080 if (end_time > rs->time_last_bitmap_sync + 1000) {
1081 migration_trigger_throttle(rs);
1083 migration_update_rates(rs, end_time);
1085 rs->target_page_count_prev = rs->target_page_count;
1087 /* reset period counters */
1088 rs->time_last_bitmap_sync = end_time;
1089 rs->num_dirty_pages_period = 0;
1090 rs->bytes_xfer_prev = migration_transferred_bytes();
1092 if (migrate_events()) {
1093 uint64_t generation = stat64_get(&mig_stats.dirty_sync_count);
1094 qapi_event_send_migration_pass(generation);
1098 static void migration_bitmap_sync_precopy(RAMState *rs, bool last_stage)
1100 Error *local_err = NULL;
1103 * The current notifier usage is just an optimization to migration, so we
1104 * don't stop the normal migration process in the error case.
1106 if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) {
1107 error_report_err(local_err);
1108 local_err = NULL;
1111 migration_bitmap_sync(rs, last_stage);
1113 if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) {
1114 error_report_err(local_err);
1118 void ram_release_page(const char *rbname, uint64_t offset)
1120 if (!migrate_release_ram() || !migration_in_postcopy()) {
1121 return;
1124 ram_discard_range(rbname, offset, TARGET_PAGE_SIZE);
1128 * save_zero_page: send the zero page to the stream
1130 * Returns the number of pages written.
1132 * @rs: current RAM state
1133 * @pss: current PSS channel
1134 * @offset: offset inside the block for the page
1136 static int save_zero_page(RAMState *rs, PageSearchStatus *pss,
1137 ram_addr_t offset)
1139 uint8_t *p = pss->block->host + offset;
1140 QEMUFile *file = pss->pss_channel;
1141 int len = 0;
1143 if (!buffer_is_zero(p, TARGET_PAGE_SIZE)) {
1144 return 0;
1147 stat64_add(&mig_stats.zero_pages, 1);
1149 if (migrate_mapped_ram()) {
1150 /* zero pages are not transferred with mapped-ram */
1151 clear_bit_atomic(offset >> TARGET_PAGE_BITS, pss->block->file_bmap);
1152 return 1;
1155 len += save_page_header(pss, file, pss->block, offset | RAM_SAVE_FLAG_ZERO);
1156 qemu_put_byte(file, 0);
1157 len += 1;
1158 ram_release_page(pss->block->idstr, offset);
1159 ram_transferred_add(len);
1162 * Must let xbzrle know, otherwise a previous (now 0'd) cached
1163 * page would be stale.
1165 if (rs->xbzrle_started) {
1166 XBZRLE_cache_lock();
1167 xbzrle_cache_zero_page(pss->block->offset + offset);
1168 XBZRLE_cache_unlock();
1171 return len;
1175 * @pages: the number of pages written by the control path,
1176 * < 0 - error
1177 * > 0 - number of pages written
1179 * Return true if the pages has been saved, otherwise false is returned.
1181 static bool control_save_page(PageSearchStatus *pss,
1182 ram_addr_t offset, int *pages)
1184 int ret;
1186 ret = rdma_control_save_page(pss->pss_channel, pss->block->offset, offset,
1187 TARGET_PAGE_SIZE);
1188 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) {
1189 return false;
1192 if (ret == RAM_SAVE_CONTROL_DELAYED) {
1193 *pages = 1;
1194 return true;
1196 *pages = ret;
1197 return true;
1201 * directly send the page to the stream
1203 * Returns the number of pages written.
1205 * @pss: current PSS channel
1206 * @block: block that contains the page we want to send
1207 * @offset: offset inside the block for the page
1208 * @buf: the page to be sent
1209 * @async: send to page asyncly
1211 static int save_normal_page(PageSearchStatus *pss, RAMBlock *block,
1212 ram_addr_t offset, uint8_t *buf, bool async)
1214 QEMUFile *file = pss->pss_channel;
1216 if (migrate_mapped_ram()) {
1217 qemu_put_buffer_at(file, buf, TARGET_PAGE_SIZE,
1218 block->pages_offset + offset);
1219 set_bit(offset >> TARGET_PAGE_BITS, block->file_bmap);
1220 } else {
1221 ram_transferred_add(save_page_header(pss, pss->pss_channel, block,
1222 offset | RAM_SAVE_FLAG_PAGE));
1223 if (async) {
1224 qemu_put_buffer_async(file, buf, TARGET_PAGE_SIZE,
1225 migrate_release_ram() &&
1226 migration_in_postcopy());
1227 } else {
1228 qemu_put_buffer(file, buf, TARGET_PAGE_SIZE);
1231 ram_transferred_add(TARGET_PAGE_SIZE);
1232 stat64_add(&mig_stats.normal_pages, 1);
1233 return 1;
1237 * ram_save_page: send the given page to the stream
1239 * Returns the number of pages written.
1240 * < 0 - error
1241 * >=0 - Number of pages written - this might legally be 0
1242 * if xbzrle noticed the page was the same.
1244 * @rs: current RAM state
1245 * @block: block that contains the page we want to send
1246 * @offset: offset inside the block for the page
1248 static int ram_save_page(RAMState *rs, PageSearchStatus *pss)
1250 int pages = -1;
1251 uint8_t *p;
1252 bool send_async = true;
1253 RAMBlock *block = pss->block;
1254 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
1255 ram_addr_t current_addr = block->offset + offset;
1257 p = block->host + offset;
1258 trace_ram_save_page(block->idstr, (uint64_t)offset, p);
1260 XBZRLE_cache_lock();
1261 if (rs->xbzrle_started && !migration_in_postcopy()) {
1262 pages = save_xbzrle_page(rs, pss, &p, current_addr,
1263 block, offset);
1264 if (!rs->last_stage) {
1265 /* Can't send this cached data async, since the cache page
1266 * might get updated before it gets to the wire
1268 send_async = false;
1272 /* XBZRLE overflow or normal page */
1273 if (pages == -1) {
1274 pages = save_normal_page(pss, block, offset, p, send_async);
1277 XBZRLE_cache_unlock();
1279 return pages;
1282 static int ram_save_multifd_page(RAMBlock *block, ram_addr_t offset)
1284 if (!multifd_queue_page(block, offset)) {
1285 return -1;
1287 stat64_add(&mig_stats.normal_pages, 1);
1289 return 1;
1292 int compress_send_queued_data(CompressParam *param)
1294 PageSearchStatus *pss = &ram_state->pss[RAM_CHANNEL_PRECOPY];
1295 MigrationState *ms = migrate_get_current();
1296 QEMUFile *file = ms->to_dst_file;
1297 int len = 0;
1299 RAMBlock *block = param->block;
1300 ram_addr_t offset = param->offset;
1302 if (param->result == RES_NONE) {
1303 return 0;
1306 assert(block == pss->last_sent_block);
1308 if (param->result == RES_ZEROPAGE) {
1309 assert(qemu_file_buffer_empty(param->file));
1310 len += save_page_header(pss, file, block, offset | RAM_SAVE_FLAG_ZERO);
1311 qemu_put_byte(file, 0);
1312 len += 1;
1313 ram_release_page(block->idstr, offset);
1314 } else if (param->result == RES_COMPRESS) {
1315 assert(!qemu_file_buffer_empty(param->file));
1316 len += save_page_header(pss, file, block,
1317 offset | RAM_SAVE_FLAG_COMPRESS_PAGE);
1318 len += qemu_put_qemu_file(file, param->file);
1319 } else {
1320 abort();
1323 update_compress_thread_counts(param, len);
1325 return len;
1328 #define PAGE_ALL_CLEAN 0
1329 #define PAGE_TRY_AGAIN 1
1330 #define PAGE_DIRTY_FOUND 2
1332 * find_dirty_block: find the next dirty page and update any state
1333 * associated with the search process.
1335 * Returns:
1336 * <0: An error happened
1337 * PAGE_ALL_CLEAN: no dirty page found, give up
1338 * PAGE_TRY_AGAIN: no dirty page found, retry for next block
1339 * PAGE_DIRTY_FOUND: dirty page found
1341 * @rs: current RAM state
1342 * @pss: data about the state of the current dirty page scan
1343 * @again: set to false if the search has scanned the whole of RAM
1345 static int find_dirty_block(RAMState *rs, PageSearchStatus *pss)
1347 /* Update pss->page for the next dirty bit in ramblock */
1348 pss_find_next_dirty(pss);
1350 if (pss->complete_round && pss->block == rs->last_seen_block &&
1351 pss->page >= rs->last_page) {
1353 * We've been once around the RAM and haven't found anything.
1354 * Give up.
1356 return PAGE_ALL_CLEAN;
1358 if (!offset_in_ramblock(pss->block,
1359 ((ram_addr_t)pss->page) << TARGET_PAGE_BITS)) {
1360 /* Didn't find anything in this RAM Block */
1361 pss->page = 0;
1362 pss->block = QLIST_NEXT_RCU(pss->block, next);
1363 if (!pss->block) {
1364 if (migrate_multifd() &&
1365 (!migrate_multifd_flush_after_each_section() ||
1366 migrate_mapped_ram())) {
1367 QEMUFile *f = rs->pss[RAM_CHANNEL_PRECOPY].pss_channel;
1368 int ret = multifd_send_sync_main();
1369 if (ret < 0) {
1370 return ret;
1373 if (!migrate_mapped_ram()) {
1374 qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH);
1375 qemu_fflush(f);
1379 * If memory migration starts over, we will meet a dirtied page
1380 * which may still exists in compression threads's ring, so we
1381 * should flush the compressed data to make sure the new page
1382 * is not overwritten by the old one in the destination.
1384 * Also If xbzrle is on, stop using the data compression at this
1385 * point. In theory, xbzrle can do better than compression.
1387 compress_flush_data();
1389 /* Hit the end of the list */
1390 pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
1391 /* Flag that we've looped */
1392 pss->complete_round = true;
1393 /* After the first round, enable XBZRLE. */
1394 if (migrate_xbzrle()) {
1395 rs->xbzrle_started = true;
1398 /* Didn't find anything this time, but try again on the new block */
1399 return PAGE_TRY_AGAIN;
1400 } else {
1401 /* We've found something */
1402 return PAGE_DIRTY_FOUND;
1407 * unqueue_page: gets a page of the queue
1409 * Helper for 'get_queued_page' - gets a page off the queue
1411 * Returns the block of the page (or NULL if none available)
1413 * @rs: current RAM state
1414 * @offset: used to return the offset within the RAMBlock
1416 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
1418 struct RAMSrcPageRequest *entry;
1419 RAMBlock *block = NULL;
1421 if (!postcopy_has_request(rs)) {
1422 return NULL;
1425 QEMU_LOCK_GUARD(&rs->src_page_req_mutex);
1428 * This should _never_ change even after we take the lock, because no one
1429 * should be taking anything off the request list other than us.
1431 assert(postcopy_has_request(rs));
1433 entry = QSIMPLEQ_FIRST(&rs->src_page_requests);
1434 block = entry->rb;
1435 *offset = entry->offset;
1437 if (entry->len > TARGET_PAGE_SIZE) {
1438 entry->len -= TARGET_PAGE_SIZE;
1439 entry->offset += TARGET_PAGE_SIZE;
1440 } else {
1441 memory_region_unref(block->mr);
1442 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
1443 g_free(entry);
1444 migration_consume_urgent_request();
1447 return block;
1450 #if defined(__linux__)
1452 * poll_fault_page: try to get next UFFD write fault page and, if pending fault
1453 * is found, return RAM block pointer and page offset
1455 * Returns pointer to the RAMBlock containing faulting page,
1456 * NULL if no write faults are pending
1458 * @rs: current RAM state
1459 * @offset: page offset from the beginning of the block
1461 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset)
1463 struct uffd_msg uffd_msg;
1464 void *page_address;
1465 RAMBlock *block;
1466 int res;
1468 if (!migrate_background_snapshot()) {
1469 return NULL;
1472 res = uffd_read_events(rs->uffdio_fd, &uffd_msg, 1);
1473 if (res <= 0) {
1474 return NULL;
1477 page_address = (void *)(uintptr_t) uffd_msg.arg.pagefault.address;
1478 block = qemu_ram_block_from_host(page_address, false, offset);
1479 assert(block && (block->flags & RAM_UF_WRITEPROTECT) != 0);
1480 return block;
1484 * ram_save_release_protection: release UFFD write protection after
1485 * a range of pages has been saved
1487 * @rs: current RAM state
1488 * @pss: page-search-status structure
1489 * @start_page: index of the first page in the range relative to pss->block
1491 * Returns 0 on success, negative value in case of an error
1493 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss,
1494 unsigned long start_page)
1496 int res = 0;
1498 /* Check if page is from UFFD-managed region. */
1499 if (pss->block->flags & RAM_UF_WRITEPROTECT) {
1500 void *page_address = pss->block->host + (start_page << TARGET_PAGE_BITS);
1501 uint64_t run_length = (pss->page - start_page) << TARGET_PAGE_BITS;
1503 /* Flush async buffers before un-protect. */
1504 qemu_fflush(pss->pss_channel);
1505 /* Un-protect memory range. */
1506 res = uffd_change_protection(rs->uffdio_fd, page_address, run_length,
1507 false, false);
1510 return res;
1513 /* ram_write_tracking_available: check if kernel supports required UFFD features
1515 * Returns true if supports, false otherwise
1517 bool ram_write_tracking_available(void)
1519 uint64_t uffd_features;
1520 int res;
1522 res = uffd_query_features(&uffd_features);
1523 return (res == 0 &&
1524 (uffd_features & UFFD_FEATURE_PAGEFAULT_FLAG_WP) != 0);
1527 /* ram_write_tracking_compatible: check if guest configuration is
1528 * compatible with 'write-tracking'
1530 * Returns true if compatible, false otherwise
1532 bool ram_write_tracking_compatible(void)
1534 const uint64_t uffd_ioctls_mask = BIT(_UFFDIO_WRITEPROTECT);
1535 int uffd_fd;
1536 RAMBlock *block;
1537 bool ret = false;
1539 /* Open UFFD file descriptor */
1540 uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, false);
1541 if (uffd_fd < 0) {
1542 return false;
1545 RCU_READ_LOCK_GUARD();
1547 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1548 uint64_t uffd_ioctls;
1550 /* Nothing to do with read-only and MMIO-writable regions */
1551 if (block->mr->readonly || block->mr->rom_device) {
1552 continue;
1554 /* Try to register block memory via UFFD-IO to track writes */
1555 if (uffd_register_memory(uffd_fd, block->host, block->max_length,
1556 UFFDIO_REGISTER_MODE_WP, &uffd_ioctls)) {
1557 goto out;
1559 if ((uffd_ioctls & uffd_ioctls_mask) != uffd_ioctls_mask) {
1560 goto out;
1563 ret = true;
1565 out:
1566 uffd_close_fd(uffd_fd);
1567 return ret;
1570 static inline void populate_read_range(RAMBlock *block, ram_addr_t offset,
1571 ram_addr_t size)
1573 const ram_addr_t end = offset + size;
1576 * We read one byte of each page; this will preallocate page tables if
1577 * required and populate the shared zeropage on MAP_PRIVATE anonymous memory
1578 * where no page was populated yet. This might require adaption when
1579 * supporting other mappings, like shmem.
1581 for (; offset < end; offset += block->page_size) {
1582 char tmp = *((char *)block->host + offset);
1584 /* Don't optimize the read out */
1585 asm volatile("" : "+r" (tmp));
1589 static inline int populate_read_section(MemoryRegionSection *section,
1590 void *opaque)
1592 const hwaddr size = int128_get64(section->size);
1593 hwaddr offset = section->offset_within_region;
1594 RAMBlock *block = section->mr->ram_block;
1596 populate_read_range(block, offset, size);
1597 return 0;
1601 * ram_block_populate_read: preallocate page tables and populate pages in the
1602 * RAM block by reading a byte of each page.
1604 * Since it's solely used for userfault_fd WP feature, here we just
1605 * hardcode page size to qemu_real_host_page_size.
1607 * @block: RAM block to populate
1609 static void ram_block_populate_read(RAMBlock *rb)
1612 * Skip populating all pages that fall into a discarded range as managed by
1613 * a RamDiscardManager responsible for the mapped memory region of the
1614 * RAMBlock. Such discarded ("logically unplugged") parts of a RAMBlock
1615 * must not get populated automatically. We don't have to track
1616 * modifications via userfaultfd WP reliably, because these pages will
1617 * not be part of the migration stream either way -- see
1618 * ramblock_dirty_bitmap_exclude_discarded_pages().
1620 * Note: The result is only stable while migrating (precopy/postcopy).
1622 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
1623 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
1624 MemoryRegionSection section = {
1625 .mr = rb->mr,
1626 .offset_within_region = 0,
1627 .size = rb->mr->size,
1630 ram_discard_manager_replay_populated(rdm, &section,
1631 populate_read_section, NULL);
1632 } else {
1633 populate_read_range(rb, 0, rb->used_length);
1638 * ram_write_tracking_prepare: prepare for UFFD-WP memory tracking
1640 void ram_write_tracking_prepare(void)
1642 RAMBlock *block;
1644 RCU_READ_LOCK_GUARD();
1646 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1647 /* Nothing to do with read-only and MMIO-writable regions */
1648 if (block->mr->readonly || block->mr->rom_device) {
1649 continue;
1653 * Populate pages of the RAM block before enabling userfault_fd
1654 * write protection.
1656 * This stage is required since ioctl(UFFDIO_WRITEPROTECT) with
1657 * UFFDIO_WRITEPROTECT_MODE_WP mode setting would silently skip
1658 * pages with pte_none() entries in page table.
1660 ram_block_populate_read(block);
1664 static inline int uffd_protect_section(MemoryRegionSection *section,
1665 void *opaque)
1667 const hwaddr size = int128_get64(section->size);
1668 const hwaddr offset = section->offset_within_region;
1669 RAMBlock *rb = section->mr->ram_block;
1670 int uffd_fd = (uintptr_t)opaque;
1672 return uffd_change_protection(uffd_fd, rb->host + offset, size, true,
1673 false);
1676 static int ram_block_uffd_protect(RAMBlock *rb, int uffd_fd)
1678 assert(rb->flags & RAM_UF_WRITEPROTECT);
1680 /* See ram_block_populate_read() */
1681 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
1682 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
1683 MemoryRegionSection section = {
1684 .mr = rb->mr,
1685 .offset_within_region = 0,
1686 .size = rb->mr->size,
1689 return ram_discard_manager_replay_populated(rdm, &section,
1690 uffd_protect_section,
1691 (void *)(uintptr_t)uffd_fd);
1693 return uffd_change_protection(uffd_fd, rb->host,
1694 rb->used_length, true, false);
1698 * ram_write_tracking_start: start UFFD-WP memory tracking
1700 * Returns 0 for success or negative value in case of error
1702 int ram_write_tracking_start(void)
1704 int uffd_fd;
1705 RAMState *rs = ram_state;
1706 RAMBlock *block;
1708 /* Open UFFD file descriptor */
1709 uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, true);
1710 if (uffd_fd < 0) {
1711 return uffd_fd;
1713 rs->uffdio_fd = uffd_fd;
1715 RCU_READ_LOCK_GUARD();
1717 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1718 /* Nothing to do with read-only and MMIO-writable regions */
1719 if (block->mr->readonly || block->mr->rom_device) {
1720 continue;
1723 /* Register block memory with UFFD to track writes */
1724 if (uffd_register_memory(rs->uffdio_fd, block->host,
1725 block->max_length, UFFDIO_REGISTER_MODE_WP, NULL)) {
1726 goto fail;
1728 block->flags |= RAM_UF_WRITEPROTECT;
1729 memory_region_ref(block->mr);
1731 /* Apply UFFD write protection to the block memory range */
1732 if (ram_block_uffd_protect(block, uffd_fd)) {
1733 goto fail;
1736 trace_ram_write_tracking_ramblock_start(block->idstr, block->page_size,
1737 block->host, block->max_length);
1740 return 0;
1742 fail:
1743 error_report("ram_write_tracking_start() failed: restoring initial memory state");
1745 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1746 if ((block->flags & RAM_UF_WRITEPROTECT) == 0) {
1747 continue;
1749 uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length);
1750 /* Cleanup flags and remove reference */
1751 block->flags &= ~RAM_UF_WRITEPROTECT;
1752 memory_region_unref(block->mr);
1755 uffd_close_fd(uffd_fd);
1756 rs->uffdio_fd = -1;
1757 return -1;
1761 * ram_write_tracking_stop: stop UFFD-WP memory tracking and remove protection
1763 void ram_write_tracking_stop(void)
1765 RAMState *rs = ram_state;
1766 RAMBlock *block;
1768 RCU_READ_LOCK_GUARD();
1770 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1771 if ((block->flags & RAM_UF_WRITEPROTECT) == 0) {
1772 continue;
1774 uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length);
1776 trace_ram_write_tracking_ramblock_stop(block->idstr, block->page_size,
1777 block->host, block->max_length);
1779 /* Cleanup flags and remove reference */
1780 block->flags &= ~RAM_UF_WRITEPROTECT;
1781 memory_region_unref(block->mr);
1784 /* Finally close UFFD file descriptor */
1785 uffd_close_fd(rs->uffdio_fd);
1786 rs->uffdio_fd = -1;
1789 #else
1790 /* No target OS support, stubs just fail or ignore */
1792 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset)
1794 (void) rs;
1795 (void) offset;
1797 return NULL;
1800 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss,
1801 unsigned long start_page)
1803 (void) rs;
1804 (void) pss;
1805 (void) start_page;
1807 return 0;
1810 bool ram_write_tracking_available(void)
1812 return false;
1815 bool ram_write_tracking_compatible(void)
1817 assert(0);
1818 return false;
1821 int ram_write_tracking_start(void)
1823 assert(0);
1824 return -1;
1827 void ram_write_tracking_stop(void)
1829 assert(0);
1831 #endif /* defined(__linux__) */
1834 * get_queued_page: unqueue a page from the postcopy requests
1836 * Skips pages that are already sent (!dirty)
1838 * Returns true if a queued page is found
1840 * @rs: current RAM state
1841 * @pss: data about the state of the current dirty page scan
1843 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
1845 RAMBlock *block;
1846 ram_addr_t offset;
1847 bool dirty;
1849 do {
1850 block = unqueue_page(rs, &offset);
1852 * We're sending this page, and since it's postcopy nothing else
1853 * will dirty it, and we must make sure it doesn't get sent again
1854 * even if this queue request was received after the background
1855 * search already sent it.
1857 if (block) {
1858 unsigned long page;
1860 page = offset >> TARGET_PAGE_BITS;
1861 dirty = test_bit(page, block->bmap);
1862 if (!dirty) {
1863 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
1864 page);
1865 } else {
1866 trace_get_queued_page(block->idstr, (uint64_t)offset, page);
1870 } while (block && !dirty);
1872 if (!block) {
1874 * Poll write faults too if background snapshot is enabled; that's
1875 * when we have vcpus got blocked by the write protected pages.
1877 block = poll_fault_page(rs, &offset);
1880 if (block) {
1882 * We want the background search to continue from the queued page
1883 * since the guest is likely to want other pages near to the page
1884 * it just requested.
1886 pss->block = block;
1887 pss->page = offset >> TARGET_PAGE_BITS;
1890 * This unqueued page would break the "one round" check, even is
1891 * really rare.
1893 pss->complete_round = false;
1896 return !!block;
1900 * migration_page_queue_free: drop any remaining pages in the ram
1901 * request queue
1903 * It should be empty at the end anyway, but in error cases there may
1904 * be some left. in case that there is any page left, we drop it.
1907 static void migration_page_queue_free(RAMState *rs)
1909 struct RAMSrcPageRequest *mspr, *next_mspr;
1910 /* This queue generally should be empty - but in the case of a failed
1911 * migration might have some droppings in.
1913 RCU_READ_LOCK_GUARD();
1914 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
1915 memory_region_unref(mspr->rb->mr);
1916 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
1917 g_free(mspr);
1922 * ram_save_queue_pages: queue the page for transmission
1924 * A request from postcopy destination for example.
1926 * Returns zero on success or negative on error
1928 * @rbname: Name of the RAMBLock of the request. NULL means the
1929 * same that last one.
1930 * @start: starting address from the start of the RAMBlock
1931 * @len: length (in bytes) to send
1933 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len,
1934 Error **errp)
1936 RAMBlock *ramblock;
1937 RAMState *rs = ram_state;
1939 stat64_add(&mig_stats.postcopy_requests, 1);
1940 RCU_READ_LOCK_GUARD();
1942 if (!rbname) {
1943 /* Reuse last RAMBlock */
1944 ramblock = rs->last_req_rb;
1946 if (!ramblock) {
1948 * Shouldn't happen, we can't reuse the last RAMBlock if
1949 * it's the 1st request.
1951 error_setg(errp, "MIG_RP_MSG_REQ_PAGES has no previous block");
1952 return -1;
1954 } else {
1955 ramblock = qemu_ram_block_by_name(rbname);
1957 if (!ramblock) {
1958 /* We shouldn't be asked for a non-existent RAMBlock */
1959 error_setg(errp, "MIG_RP_MSG_REQ_PAGES has no block '%s'", rbname);
1960 return -1;
1962 rs->last_req_rb = ramblock;
1964 trace_ram_save_queue_pages(ramblock->idstr, start, len);
1965 if (!offset_in_ramblock(ramblock, start + len - 1)) {
1966 error_setg(errp, "MIG_RP_MSG_REQ_PAGES request overrun, "
1967 "start=" RAM_ADDR_FMT " len="
1968 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
1969 start, len, ramblock->used_length);
1970 return -1;
1974 * When with postcopy preempt, we send back the page directly in the
1975 * rp-return thread.
1977 if (postcopy_preempt_active()) {
1978 ram_addr_t page_start = start >> TARGET_PAGE_BITS;
1979 size_t page_size = qemu_ram_pagesize(ramblock);
1980 PageSearchStatus *pss = &ram_state->pss[RAM_CHANNEL_POSTCOPY];
1981 int ret = 0;
1983 qemu_mutex_lock(&rs->bitmap_mutex);
1985 pss_init(pss, ramblock, page_start);
1987 * Always use the preempt channel, and make sure it's there. It's
1988 * safe to access without lock, because when rp-thread is running
1989 * we should be the only one who operates on the qemufile
1991 pss->pss_channel = migrate_get_current()->postcopy_qemufile_src;
1992 assert(pss->pss_channel);
1995 * It must be either one or multiple of host page size. Just
1996 * assert; if something wrong we're mostly split brain anyway.
1998 assert(len % page_size == 0);
1999 while (len) {
2000 if (ram_save_host_page_urgent(pss)) {
2001 error_setg(errp, "ram_save_host_page_urgent() failed: "
2002 "ramblock=%s, start_addr=0x"RAM_ADDR_FMT,
2003 ramblock->idstr, start);
2004 ret = -1;
2005 break;
2008 * NOTE: after ram_save_host_page_urgent() succeeded, pss->page
2009 * will automatically be moved and point to the next host page
2010 * we're going to send, so no need to update here.
2012 * Normally QEMU never sends >1 host page in requests, so
2013 * logically we don't even need that as the loop should only
2014 * run once, but just to be consistent.
2016 len -= page_size;
2018 qemu_mutex_unlock(&rs->bitmap_mutex);
2020 return ret;
2023 struct RAMSrcPageRequest *new_entry =
2024 g_new0(struct RAMSrcPageRequest, 1);
2025 new_entry->rb = ramblock;
2026 new_entry->offset = start;
2027 new_entry->len = len;
2029 memory_region_ref(ramblock->mr);
2030 qemu_mutex_lock(&rs->src_page_req_mutex);
2031 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
2032 migration_make_urgent_request();
2033 qemu_mutex_unlock(&rs->src_page_req_mutex);
2035 return 0;
2039 * try to compress the page before posting it out, return true if the page
2040 * has been properly handled by compression, otherwise needs other
2041 * paths to handle it
2043 static bool save_compress_page(RAMState *rs, PageSearchStatus *pss,
2044 ram_addr_t offset)
2046 if (!migrate_compress()) {
2047 return false;
2051 * When starting the process of a new block, the first page of
2052 * the block should be sent out before other pages in the same
2053 * block, and all the pages in last block should have been sent
2054 * out, keeping this order is important, because the 'cont' flag
2055 * is used to avoid resending the block name.
2057 * We post the fist page as normal page as compression will take
2058 * much CPU resource.
2060 if (pss->block != pss->last_sent_block) {
2061 compress_flush_data();
2062 return false;
2065 return compress_page_with_multi_thread(pss->block, offset,
2066 compress_send_queued_data);
2070 * ram_save_target_page_legacy: save one target page
2072 * Returns the number of pages written
2074 * @rs: current RAM state
2075 * @pss: data about the page we want to send
2077 static int ram_save_target_page_legacy(RAMState *rs, PageSearchStatus *pss)
2079 RAMBlock *block = pss->block;
2080 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
2081 int res;
2083 if (control_save_page(pss, offset, &res)) {
2084 return res;
2087 if (save_compress_page(rs, pss, offset)) {
2088 return 1;
2091 if (save_zero_page(rs, pss, offset)) {
2092 return 1;
2096 * Do not use multifd in postcopy as one whole host page should be
2097 * placed. Meanwhile postcopy requires atomic update of pages, so even
2098 * if host page size == guest page size the dest guest during run may
2099 * still see partially copied pages which is data corruption.
2101 if (migrate_multifd() && !migration_in_postcopy()) {
2102 return ram_save_multifd_page(block, offset);
2105 return ram_save_page(rs, pss);
2108 /* Should be called before sending a host page */
2109 static void pss_host_page_prepare(PageSearchStatus *pss)
2111 /* How many guest pages are there in one host page? */
2112 size_t guest_pfns = qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2114 pss->host_page_sending = true;
2115 if (guest_pfns <= 1) {
2117 * This covers both when guest psize == host psize, or when guest
2118 * has larger psize than the host (guest_pfns==0).
2120 * For the latter, we always send one whole guest page per
2121 * iteration of the host page (example: an Alpha VM on x86 host
2122 * will have guest psize 8K while host psize 4K).
2124 pss->host_page_start = pss->page;
2125 pss->host_page_end = pss->page + 1;
2126 } else {
2128 * The host page spans over multiple guest pages, we send them
2129 * within the same host page iteration.
2131 pss->host_page_start = ROUND_DOWN(pss->page, guest_pfns);
2132 pss->host_page_end = ROUND_UP(pss->page + 1, guest_pfns);
2137 * Whether the page pointed by PSS is within the host page being sent.
2138 * Must be called after a previous pss_host_page_prepare().
2140 static bool pss_within_range(PageSearchStatus *pss)
2142 ram_addr_t ram_addr;
2144 assert(pss->host_page_sending);
2146 /* Over host-page boundary? */
2147 if (pss->page >= pss->host_page_end) {
2148 return false;
2151 ram_addr = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
2153 return offset_in_ramblock(pss->block, ram_addr);
2156 static void pss_host_page_finish(PageSearchStatus *pss)
2158 pss->host_page_sending = false;
2159 /* This is not needed, but just to reset it */
2160 pss->host_page_start = pss->host_page_end = 0;
2164 * Send an urgent host page specified by `pss'. Need to be called with
2165 * bitmap_mutex held.
2167 * Returns 0 if save host page succeeded, false otherwise.
2169 static int ram_save_host_page_urgent(PageSearchStatus *pss)
2171 bool page_dirty, sent = false;
2172 RAMState *rs = ram_state;
2173 int ret = 0;
2175 trace_postcopy_preempt_send_host_page(pss->block->idstr, pss->page);
2176 pss_host_page_prepare(pss);
2179 * If precopy is sending the same page, let it be done in precopy, or
2180 * we could send the same page in two channels and none of them will
2181 * receive the whole page.
2183 if (pss_overlap(pss, &ram_state->pss[RAM_CHANNEL_PRECOPY])) {
2184 trace_postcopy_preempt_hit(pss->block->idstr,
2185 pss->page << TARGET_PAGE_BITS);
2186 return 0;
2189 do {
2190 page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page);
2192 if (page_dirty) {
2193 /* Be strict to return code; it must be 1, or what else? */
2194 if (migration_ops->ram_save_target_page(rs, pss) != 1) {
2195 error_report_once("%s: ram_save_target_page failed", __func__);
2196 ret = -1;
2197 goto out;
2199 sent = true;
2201 pss_find_next_dirty(pss);
2202 } while (pss_within_range(pss));
2203 out:
2204 pss_host_page_finish(pss);
2205 /* For urgent requests, flush immediately if sent */
2206 if (sent) {
2207 qemu_fflush(pss->pss_channel);
2209 return ret;
2213 * ram_save_host_page: save a whole host page
2215 * Starting at *offset send pages up to the end of the current host
2216 * page. It's valid for the initial offset to point into the middle of
2217 * a host page in which case the remainder of the hostpage is sent.
2218 * Only dirty target pages are sent. Note that the host page size may
2219 * be a huge page for this block.
2221 * The saving stops at the boundary of the used_length of the block
2222 * if the RAMBlock isn't a multiple of the host page size.
2224 * The caller must be with ram_state.bitmap_mutex held to call this
2225 * function. Note that this function can temporarily release the lock, but
2226 * when the function is returned it'll make sure the lock is still held.
2228 * Returns the number of pages written or negative on error
2230 * @rs: current RAM state
2231 * @pss: data about the page we want to send
2233 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss)
2235 bool page_dirty, preempt_active = postcopy_preempt_active();
2236 int tmppages, pages = 0;
2237 size_t pagesize_bits =
2238 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2239 unsigned long start_page = pss->page;
2240 int res;
2242 if (migrate_ram_is_ignored(pss->block)) {
2243 error_report("block %s should not be migrated !", pss->block->idstr);
2244 return 0;
2247 /* Update host page boundary information */
2248 pss_host_page_prepare(pss);
2250 do {
2251 page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page);
2253 /* Check the pages is dirty and if it is send it */
2254 if (page_dirty) {
2256 * Properly yield the lock only in postcopy preempt mode
2257 * because both migration thread and rp-return thread can
2258 * operate on the bitmaps.
2260 if (preempt_active) {
2261 qemu_mutex_unlock(&rs->bitmap_mutex);
2263 tmppages = migration_ops->ram_save_target_page(rs, pss);
2264 if (tmppages >= 0) {
2265 pages += tmppages;
2267 * Allow rate limiting to happen in the middle of huge pages if
2268 * something is sent in the current iteration.
2270 if (pagesize_bits > 1 && tmppages > 0) {
2271 migration_rate_limit();
2274 if (preempt_active) {
2275 qemu_mutex_lock(&rs->bitmap_mutex);
2277 } else {
2278 tmppages = 0;
2281 if (tmppages < 0) {
2282 pss_host_page_finish(pss);
2283 return tmppages;
2286 pss_find_next_dirty(pss);
2287 } while (pss_within_range(pss));
2289 pss_host_page_finish(pss);
2291 res = ram_save_release_protection(rs, pss, start_page);
2292 return (res < 0 ? res : pages);
2296 * ram_find_and_save_block: finds a dirty page and sends it to f
2298 * Called within an RCU critical section.
2300 * Returns the number of pages written where zero means no dirty pages,
2301 * or negative on error
2303 * @rs: current RAM state
2305 * On systems where host-page-size > target-page-size it will send all the
2306 * pages in a host page that are dirty.
2308 static int ram_find_and_save_block(RAMState *rs)
2310 PageSearchStatus *pss = &rs->pss[RAM_CHANNEL_PRECOPY];
2311 int pages = 0;
2313 /* No dirty page as there is zero RAM */
2314 if (!rs->ram_bytes_total) {
2315 return pages;
2319 * Always keep last_seen_block/last_page valid during this procedure,
2320 * because find_dirty_block() relies on these values (e.g., we compare
2321 * last_seen_block with pss.block to see whether we searched all the
2322 * ramblocks) to detect the completion of migration. Having NULL value
2323 * of last_seen_block can conditionally cause below loop to run forever.
2325 if (!rs->last_seen_block) {
2326 rs->last_seen_block = QLIST_FIRST_RCU(&ram_list.blocks);
2327 rs->last_page = 0;
2330 pss_init(pss, rs->last_seen_block, rs->last_page);
2332 while (true){
2333 if (!get_queued_page(rs, pss)) {
2334 /* priority queue empty, so just search for something dirty */
2335 int res = find_dirty_block(rs, pss);
2336 if (res != PAGE_DIRTY_FOUND) {
2337 if (res == PAGE_ALL_CLEAN) {
2338 break;
2339 } else if (res == PAGE_TRY_AGAIN) {
2340 continue;
2341 } else if (res < 0) {
2342 pages = res;
2343 break;
2347 pages = ram_save_host_page(rs, pss);
2348 if (pages) {
2349 break;
2353 rs->last_seen_block = pss->block;
2354 rs->last_page = pss->page;
2356 return pages;
2359 static uint64_t ram_bytes_total_with_ignored(void)
2361 RAMBlock *block;
2362 uint64_t total = 0;
2364 RCU_READ_LOCK_GUARD();
2366 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2367 total += block->used_length;
2369 return total;
2372 uint64_t ram_bytes_total(void)
2374 RAMBlock *block;
2375 uint64_t total = 0;
2377 RCU_READ_LOCK_GUARD();
2379 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2380 total += block->used_length;
2382 return total;
2385 static void xbzrle_load_setup(void)
2387 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
2390 static void xbzrle_load_cleanup(void)
2392 g_free(XBZRLE.decoded_buf);
2393 XBZRLE.decoded_buf = NULL;
2396 static void ram_state_cleanup(RAMState **rsp)
2398 if (*rsp) {
2399 migration_page_queue_free(*rsp);
2400 qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
2401 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
2402 g_free(*rsp);
2403 *rsp = NULL;
2407 static void xbzrle_cleanup(void)
2409 XBZRLE_cache_lock();
2410 if (XBZRLE.cache) {
2411 cache_fini(XBZRLE.cache);
2412 g_free(XBZRLE.encoded_buf);
2413 g_free(XBZRLE.current_buf);
2414 g_free(XBZRLE.zero_target_page);
2415 XBZRLE.cache = NULL;
2416 XBZRLE.encoded_buf = NULL;
2417 XBZRLE.current_buf = NULL;
2418 XBZRLE.zero_target_page = NULL;
2420 XBZRLE_cache_unlock();
2423 static void ram_save_cleanup(void *opaque)
2425 RAMState **rsp = opaque;
2426 RAMBlock *block;
2428 /* We don't use dirty log with background snapshots */
2429 if (!migrate_background_snapshot()) {
2430 /* caller have hold BQL or is in a bh, so there is
2431 * no writing race against the migration bitmap
2433 if (global_dirty_tracking & GLOBAL_DIRTY_MIGRATION) {
2435 * do not stop dirty log without starting it, since
2436 * memory_global_dirty_log_stop will assert that
2437 * memory_global_dirty_log_start/stop used in pairs
2439 memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION);
2443 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2444 g_free(block->clear_bmap);
2445 block->clear_bmap = NULL;
2446 g_free(block->bmap);
2447 block->bmap = NULL;
2450 xbzrle_cleanup();
2451 compress_threads_save_cleanup();
2452 ram_state_cleanup(rsp);
2453 g_free(migration_ops);
2454 migration_ops = NULL;
2457 static void ram_state_reset(RAMState *rs)
2459 int i;
2461 for (i = 0; i < RAM_CHANNEL_MAX; i++) {
2462 rs->pss[i].last_sent_block = NULL;
2465 rs->last_seen_block = NULL;
2466 rs->last_page = 0;
2467 rs->last_version = ram_list.version;
2468 rs->xbzrle_started = false;
2471 #define MAX_WAIT 50 /* ms, half buffered_file limit */
2473 /* **** functions for postcopy ***** */
2475 void ram_postcopy_migrated_memory_release(MigrationState *ms)
2477 struct RAMBlock *block;
2479 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2480 unsigned long *bitmap = block->bmap;
2481 unsigned long range = block->used_length >> TARGET_PAGE_BITS;
2482 unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
2484 while (run_start < range) {
2485 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
2486 ram_discard_range(block->idstr,
2487 ((ram_addr_t)run_start) << TARGET_PAGE_BITS,
2488 ((ram_addr_t)(run_end - run_start))
2489 << TARGET_PAGE_BITS);
2490 run_start = find_next_zero_bit(bitmap, range, run_end + 1);
2496 * postcopy_send_discard_bm_ram: discard a RAMBlock
2498 * Callback from postcopy_each_ram_send_discard for each RAMBlock
2500 * @ms: current migration state
2501 * @block: RAMBlock to discard
2503 static void postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block)
2505 unsigned long end = block->used_length >> TARGET_PAGE_BITS;
2506 unsigned long current;
2507 unsigned long *bitmap = block->bmap;
2509 for (current = 0; current < end; ) {
2510 unsigned long one = find_next_bit(bitmap, end, current);
2511 unsigned long zero, discard_length;
2513 if (one >= end) {
2514 break;
2517 zero = find_next_zero_bit(bitmap, end, one + 1);
2519 if (zero >= end) {
2520 discard_length = end - one;
2521 } else {
2522 discard_length = zero - one;
2524 postcopy_discard_send_range(ms, one, discard_length);
2525 current = one + discard_length;
2529 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block);
2532 * postcopy_each_ram_send_discard: discard all RAMBlocks
2534 * Utility for the outgoing postcopy code.
2535 * Calls postcopy_send_discard_bm_ram for each RAMBlock
2536 * passing it bitmap indexes and name.
2537 * (qemu_ram_foreach_block ends up passing unscaled lengths
2538 * which would mean postcopy code would have to deal with target page)
2540 * @ms: current migration state
2542 static void postcopy_each_ram_send_discard(MigrationState *ms)
2544 struct RAMBlock *block;
2546 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2547 postcopy_discard_send_init(ms, block->idstr);
2550 * Deal with TPS != HPS and huge pages. It discard any partially sent
2551 * host-page size chunks, mark any partially dirty host-page size
2552 * chunks as all dirty. In this case the host-page is the host-page
2553 * for the particular RAMBlock, i.e. it might be a huge page.
2555 postcopy_chunk_hostpages_pass(ms, block);
2558 * Postcopy sends chunks of bitmap over the wire, but it
2559 * just needs indexes at this point, avoids it having
2560 * target page specific code.
2562 postcopy_send_discard_bm_ram(ms, block);
2563 postcopy_discard_send_finish(ms);
2568 * postcopy_chunk_hostpages_pass: canonicalize bitmap in hostpages
2570 * Helper for postcopy_chunk_hostpages; it's called twice to
2571 * canonicalize the two bitmaps, that are similar, but one is
2572 * inverted.
2574 * Postcopy requires that all target pages in a hostpage are dirty or
2575 * clean, not a mix. This function canonicalizes the bitmaps.
2577 * @ms: current migration state
2578 * @block: block that contains the page we want to canonicalize
2580 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block)
2582 RAMState *rs = ram_state;
2583 unsigned long *bitmap = block->bmap;
2584 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
2585 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
2586 unsigned long run_start;
2588 if (block->page_size == TARGET_PAGE_SIZE) {
2589 /* Easy case - TPS==HPS for a non-huge page RAMBlock */
2590 return;
2593 /* Find a dirty page */
2594 run_start = find_next_bit(bitmap, pages, 0);
2596 while (run_start < pages) {
2599 * If the start of this run of pages is in the middle of a host
2600 * page, then we need to fixup this host page.
2602 if (QEMU_IS_ALIGNED(run_start, host_ratio)) {
2603 /* Find the end of this run */
2604 run_start = find_next_zero_bit(bitmap, pages, run_start + 1);
2606 * If the end isn't at the start of a host page, then the
2607 * run doesn't finish at the end of a host page
2608 * and we need to discard.
2612 if (!QEMU_IS_ALIGNED(run_start, host_ratio)) {
2613 unsigned long page;
2614 unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start,
2615 host_ratio);
2616 run_start = QEMU_ALIGN_UP(run_start, host_ratio);
2618 /* Clean up the bitmap */
2619 for (page = fixup_start_addr;
2620 page < fixup_start_addr + host_ratio; page++) {
2622 * Remark them as dirty, updating the count for any pages
2623 * that weren't previously dirty.
2625 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
2629 /* Find the next dirty page for the next iteration */
2630 run_start = find_next_bit(bitmap, pages, run_start);
2635 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
2637 * Transmit the set of pages to be discarded after precopy to the target
2638 * these are pages that:
2639 * a) Have been previously transmitted but are now dirty again
2640 * b) Pages that have never been transmitted, this ensures that
2641 * any pages on the destination that have been mapped by background
2642 * tasks get discarded (transparent huge pages is the specific concern)
2643 * Hopefully this is pretty sparse
2645 * @ms: current migration state
2647 void ram_postcopy_send_discard_bitmap(MigrationState *ms)
2649 RAMState *rs = ram_state;
2651 RCU_READ_LOCK_GUARD();
2653 /* This should be our last sync, the src is now paused */
2654 migration_bitmap_sync(rs, false);
2656 /* Easiest way to make sure we don't resume in the middle of a host-page */
2657 rs->pss[RAM_CHANNEL_PRECOPY].last_sent_block = NULL;
2658 rs->last_seen_block = NULL;
2659 rs->last_page = 0;
2661 postcopy_each_ram_send_discard(ms);
2663 trace_ram_postcopy_send_discard_bitmap();
2667 * ram_discard_range: discard dirtied pages at the beginning of postcopy
2669 * Returns zero on success
2671 * @rbname: name of the RAMBlock of the request. NULL means the
2672 * same that last one.
2673 * @start: RAMBlock starting page
2674 * @length: RAMBlock size
2676 int ram_discard_range(const char *rbname, uint64_t start, size_t length)
2678 trace_ram_discard_range(rbname, start, length);
2680 RCU_READ_LOCK_GUARD();
2681 RAMBlock *rb = qemu_ram_block_by_name(rbname);
2683 if (!rb) {
2684 error_report("ram_discard_range: Failed to find block '%s'", rbname);
2685 return -1;
2689 * On source VM, we don't need to update the received bitmap since
2690 * we don't even have one.
2692 if (rb->receivedmap) {
2693 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
2694 length >> qemu_target_page_bits());
2697 return ram_block_discard_range(rb, start, length);
2701 * For every allocation, we will try not to crash the VM if the
2702 * allocation failed.
2704 static int xbzrle_init(void)
2706 Error *local_err = NULL;
2708 if (!migrate_xbzrle()) {
2709 return 0;
2712 XBZRLE_cache_lock();
2714 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
2715 if (!XBZRLE.zero_target_page) {
2716 error_report("%s: Error allocating zero page", __func__);
2717 goto err_out;
2720 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
2721 TARGET_PAGE_SIZE, &local_err);
2722 if (!XBZRLE.cache) {
2723 error_report_err(local_err);
2724 goto free_zero_page;
2727 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
2728 if (!XBZRLE.encoded_buf) {
2729 error_report("%s: Error allocating encoded_buf", __func__);
2730 goto free_cache;
2733 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
2734 if (!XBZRLE.current_buf) {
2735 error_report("%s: Error allocating current_buf", __func__);
2736 goto free_encoded_buf;
2739 /* We are all good */
2740 XBZRLE_cache_unlock();
2741 return 0;
2743 free_encoded_buf:
2744 g_free(XBZRLE.encoded_buf);
2745 XBZRLE.encoded_buf = NULL;
2746 free_cache:
2747 cache_fini(XBZRLE.cache);
2748 XBZRLE.cache = NULL;
2749 free_zero_page:
2750 g_free(XBZRLE.zero_target_page);
2751 XBZRLE.zero_target_page = NULL;
2752 err_out:
2753 XBZRLE_cache_unlock();
2754 return -ENOMEM;
2757 static int ram_state_init(RAMState **rsp)
2759 *rsp = g_try_new0(RAMState, 1);
2761 if (!*rsp) {
2762 error_report("%s: Init ramstate fail", __func__);
2763 return -1;
2766 qemu_mutex_init(&(*rsp)->bitmap_mutex);
2767 qemu_mutex_init(&(*rsp)->src_page_req_mutex);
2768 QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
2769 (*rsp)->ram_bytes_total = ram_bytes_total();
2772 * Count the total number of pages used by ram blocks not including any
2773 * gaps due to alignment or unplugs.
2774 * This must match with the initial values of dirty bitmap.
2776 (*rsp)->migration_dirty_pages = (*rsp)->ram_bytes_total >> TARGET_PAGE_BITS;
2777 ram_state_reset(*rsp);
2779 return 0;
2782 static void ram_list_init_bitmaps(void)
2784 MigrationState *ms = migrate_get_current();
2785 RAMBlock *block;
2786 unsigned long pages;
2787 uint8_t shift;
2789 /* Skip setting bitmap if there is no RAM */
2790 if (ram_bytes_total()) {
2791 shift = ms->clear_bitmap_shift;
2792 if (shift > CLEAR_BITMAP_SHIFT_MAX) {
2793 error_report("clear_bitmap_shift (%u) too big, using "
2794 "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX);
2795 shift = CLEAR_BITMAP_SHIFT_MAX;
2796 } else if (shift < CLEAR_BITMAP_SHIFT_MIN) {
2797 error_report("clear_bitmap_shift (%u) too small, using "
2798 "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN);
2799 shift = CLEAR_BITMAP_SHIFT_MIN;
2802 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2803 pages = block->max_length >> TARGET_PAGE_BITS;
2805 * The initial dirty bitmap for migration must be set with all
2806 * ones to make sure we'll migrate every guest RAM page to
2807 * destination.
2808 * Here we set RAMBlock.bmap all to 1 because when rebegin a
2809 * new migration after a failed migration, ram_list.
2810 * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole
2811 * guest memory.
2813 block->bmap = bitmap_new(pages);
2814 bitmap_set(block->bmap, 0, pages);
2815 if (migrate_mapped_ram()) {
2816 block->file_bmap = bitmap_new(pages);
2818 block->clear_bmap_shift = shift;
2819 block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift));
2824 static void migration_bitmap_clear_discarded_pages(RAMState *rs)
2826 unsigned long pages;
2827 RAMBlock *rb;
2829 RCU_READ_LOCK_GUARD();
2831 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
2832 pages = ramblock_dirty_bitmap_clear_discarded_pages(rb);
2833 rs->migration_dirty_pages -= pages;
2837 static void ram_init_bitmaps(RAMState *rs)
2839 qemu_mutex_lock_ramlist();
2841 WITH_RCU_READ_LOCK_GUARD() {
2842 ram_list_init_bitmaps();
2843 /* We don't use dirty log with background snapshots */
2844 if (!migrate_background_snapshot()) {
2845 memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION);
2846 migration_bitmap_sync_precopy(rs, false);
2849 qemu_mutex_unlock_ramlist();
2852 * After an eventual first bitmap sync, fixup the initial bitmap
2853 * containing all 1s to exclude any discarded pages from migration.
2855 migration_bitmap_clear_discarded_pages(rs);
2858 static int ram_init_all(RAMState **rsp)
2860 if (ram_state_init(rsp)) {
2861 return -1;
2864 if (xbzrle_init()) {
2865 ram_state_cleanup(rsp);
2866 return -1;
2869 ram_init_bitmaps(*rsp);
2871 return 0;
2874 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out)
2876 RAMBlock *block;
2877 uint64_t pages = 0;
2880 * Postcopy is not using xbzrle/compression, so no need for that.
2881 * Also, since source are already halted, we don't need to care
2882 * about dirty page logging as well.
2885 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2886 pages += bitmap_count_one(block->bmap,
2887 block->used_length >> TARGET_PAGE_BITS);
2890 /* This may not be aligned with current bitmaps. Recalculate. */
2891 rs->migration_dirty_pages = pages;
2893 ram_state_reset(rs);
2895 /* Update RAMState cache of output QEMUFile */
2896 rs->pss[RAM_CHANNEL_PRECOPY].pss_channel = out;
2898 trace_ram_state_resume_prepare(pages);
2902 * This function clears bits of the free pages reported by the caller from the
2903 * migration dirty bitmap. @addr is the host address corresponding to the
2904 * start of the continuous guest free pages, and @len is the total bytes of
2905 * those pages.
2907 void qemu_guest_free_page_hint(void *addr, size_t len)
2909 RAMBlock *block;
2910 ram_addr_t offset;
2911 size_t used_len, start, npages;
2912 MigrationState *s = migrate_get_current();
2914 /* This function is currently expected to be used during live migration */
2915 if (!migration_is_setup_or_active(s->state)) {
2916 return;
2919 for (; len > 0; len -= used_len, addr += used_len) {
2920 block = qemu_ram_block_from_host(addr, false, &offset);
2921 if (unlikely(!block || offset >= block->used_length)) {
2923 * The implementation might not support RAMBlock resize during
2924 * live migration, but it could happen in theory with future
2925 * updates. So we add a check here to capture that case.
2927 error_report_once("%s unexpected error", __func__);
2928 return;
2931 if (len <= block->used_length - offset) {
2932 used_len = len;
2933 } else {
2934 used_len = block->used_length - offset;
2937 start = offset >> TARGET_PAGE_BITS;
2938 npages = used_len >> TARGET_PAGE_BITS;
2940 qemu_mutex_lock(&ram_state->bitmap_mutex);
2942 * The skipped free pages are equavalent to be sent from clear_bmap's
2943 * perspective, so clear the bits from the memory region bitmap which
2944 * are initially set. Otherwise those skipped pages will be sent in
2945 * the next round after syncing from the memory region bitmap.
2947 migration_clear_memory_region_dirty_bitmap_range(block, start, npages);
2948 ram_state->migration_dirty_pages -=
2949 bitmap_count_one_with_offset(block->bmap, start, npages);
2950 bitmap_clear(block->bmap, start, npages);
2951 qemu_mutex_unlock(&ram_state->bitmap_mutex);
2955 #define MAPPED_RAM_HDR_VERSION 1
2956 struct MappedRamHeader {
2957 uint32_t version;
2959 * The target's page size, so we know how many pages are in the
2960 * bitmap.
2962 uint64_t page_size;
2964 * The offset in the migration file where the pages bitmap is
2965 * stored.
2967 uint64_t bitmap_offset;
2969 * The offset in the migration file where the actual pages (data)
2970 * are stored.
2972 uint64_t pages_offset;
2973 } QEMU_PACKED;
2974 typedef struct MappedRamHeader MappedRamHeader;
2976 static void mapped_ram_setup_ramblock(QEMUFile *file, RAMBlock *block)
2978 g_autofree MappedRamHeader *header = NULL;
2979 size_t header_size, bitmap_size;
2980 long num_pages;
2982 header = g_new0(MappedRamHeader, 1);
2983 header_size = sizeof(MappedRamHeader);
2985 num_pages = block->used_length >> TARGET_PAGE_BITS;
2986 bitmap_size = BITS_TO_LONGS(num_pages) * sizeof(unsigned long);
2989 * Save the file offsets of where the bitmap and the pages should
2990 * go as they are written at the end of migration and during the
2991 * iterative phase, respectively.
2993 block->bitmap_offset = qemu_get_offset(file) + header_size;
2994 block->pages_offset = ROUND_UP(block->bitmap_offset +
2995 bitmap_size,
2996 MAPPED_RAM_FILE_OFFSET_ALIGNMENT);
2998 header->version = cpu_to_be32(MAPPED_RAM_HDR_VERSION);
2999 header->page_size = cpu_to_be64(TARGET_PAGE_SIZE);
3000 header->bitmap_offset = cpu_to_be64(block->bitmap_offset);
3001 header->pages_offset = cpu_to_be64(block->pages_offset);
3003 qemu_put_buffer(file, (uint8_t *) header, header_size);
3005 /* prepare offset for next ramblock */
3006 qemu_set_offset(file, block->pages_offset + block->used_length, SEEK_SET);
3009 static bool mapped_ram_read_header(QEMUFile *file, MappedRamHeader *header,
3010 Error **errp)
3012 size_t ret, header_size = sizeof(MappedRamHeader);
3014 ret = qemu_get_buffer(file, (uint8_t *)header, header_size);
3015 if (ret != header_size) {
3016 error_setg(errp, "Could not read whole mapped-ram migration header "
3017 "(expected %zd, got %zd bytes)", header_size, ret);
3018 return false;
3021 /* migration stream is big-endian */
3022 header->version = be32_to_cpu(header->version);
3024 if (header->version > MAPPED_RAM_HDR_VERSION) {
3025 error_setg(errp, "Migration mapped-ram capability version not "
3026 "supported (expected <= %d, got %d)", MAPPED_RAM_HDR_VERSION,
3027 header->version);
3028 return false;
3031 header->page_size = be64_to_cpu(header->page_size);
3032 header->bitmap_offset = be64_to_cpu(header->bitmap_offset);
3033 header->pages_offset = be64_to_cpu(header->pages_offset);
3035 return true;
3039 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
3040 * long-running RCU critical section. When rcu-reclaims in the code
3041 * start to become numerous it will be necessary to reduce the
3042 * granularity of these critical sections.
3046 * ram_save_setup: Setup RAM for migration
3048 * Returns zero to indicate success and negative for error
3050 * @f: QEMUFile where to send the data
3051 * @opaque: RAMState pointer
3053 static int ram_save_setup(QEMUFile *f, void *opaque)
3055 RAMState **rsp = opaque;
3056 RAMBlock *block;
3057 int ret, max_hg_page_size;
3059 if (compress_threads_save_setup()) {
3060 return -1;
3063 /* migration has already setup the bitmap, reuse it. */
3064 if (!migration_in_colo_state()) {
3065 if (ram_init_all(rsp) != 0) {
3066 compress_threads_save_cleanup();
3067 return -1;
3070 (*rsp)->pss[RAM_CHANNEL_PRECOPY].pss_channel = f;
3073 * ??? Mirrors the previous value of qemu_host_page_size,
3074 * but is this really what was intended for the migration?
3076 max_hg_page_size = MAX(qemu_real_host_page_size(), TARGET_PAGE_SIZE);
3078 WITH_RCU_READ_LOCK_GUARD() {
3079 qemu_put_be64(f, ram_bytes_total_with_ignored()
3080 | RAM_SAVE_FLAG_MEM_SIZE);
3082 RAMBLOCK_FOREACH_MIGRATABLE(block) {
3083 qemu_put_byte(f, strlen(block->idstr));
3084 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
3085 qemu_put_be64(f, block->used_length);
3086 if (migrate_postcopy_ram() &&
3087 block->page_size != max_hg_page_size) {
3088 qemu_put_be64(f, block->page_size);
3090 if (migrate_ignore_shared()) {
3091 qemu_put_be64(f, block->mr->addr);
3094 if (migrate_mapped_ram()) {
3095 mapped_ram_setup_ramblock(f, block);
3100 ret = rdma_registration_start(f, RAM_CONTROL_SETUP);
3101 if (ret < 0) {
3102 qemu_file_set_error(f, ret);
3103 return ret;
3106 ret = rdma_registration_stop(f, RAM_CONTROL_SETUP);
3107 if (ret < 0) {
3108 qemu_file_set_error(f, ret);
3109 return ret;
3112 migration_ops = g_malloc0(sizeof(MigrationOps));
3113 migration_ops->ram_save_target_page = ram_save_target_page_legacy;
3115 bql_unlock();
3116 ret = multifd_send_sync_main();
3117 bql_lock();
3118 if (ret < 0) {
3119 return ret;
3122 if (migrate_multifd() && !migrate_multifd_flush_after_each_section()
3123 && !migrate_mapped_ram()) {
3124 qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH);
3127 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3128 return qemu_fflush(f);
3131 static void ram_save_file_bmap(QEMUFile *f)
3133 RAMBlock *block;
3135 RAMBLOCK_FOREACH_MIGRATABLE(block) {
3136 long num_pages = block->used_length >> TARGET_PAGE_BITS;
3137 long bitmap_size = BITS_TO_LONGS(num_pages) * sizeof(unsigned long);
3139 qemu_put_buffer_at(f, (uint8_t *)block->file_bmap, bitmap_size,
3140 block->bitmap_offset);
3141 ram_transferred_add(bitmap_size);
3144 * Free the bitmap here to catch any synchronization issues
3145 * with multifd channels. No channels should be sending pages
3146 * after we've written the bitmap to file.
3148 g_free(block->file_bmap);
3149 block->file_bmap = NULL;
3153 void ramblock_set_file_bmap_atomic(RAMBlock *block, ram_addr_t offset)
3155 set_bit_atomic(offset >> TARGET_PAGE_BITS, block->file_bmap);
3159 * ram_save_iterate: iterative stage for migration
3161 * Returns zero to indicate success and negative for error
3163 * @f: QEMUFile where to send the data
3164 * @opaque: RAMState pointer
3166 static int ram_save_iterate(QEMUFile *f, void *opaque)
3168 RAMState **temp = opaque;
3169 RAMState *rs = *temp;
3170 int ret = 0;
3171 int i;
3172 int64_t t0;
3173 int done = 0;
3175 if (blk_mig_bulk_active()) {
3176 /* Avoid transferring ram during bulk phase of block migration as
3177 * the bulk phase will usually take a long time and transferring
3178 * ram updates during that time is pointless. */
3179 goto out;
3183 * We'll take this lock a little bit long, but it's okay for two reasons.
3184 * Firstly, the only possible other thread to take it is who calls
3185 * qemu_guest_free_page_hint(), which should be rare; secondly, see
3186 * MAX_WAIT (if curious, further see commit 4508bd9ed8053ce) below, which
3187 * guarantees that we'll at least released it in a regular basis.
3189 WITH_QEMU_LOCK_GUARD(&rs->bitmap_mutex) {
3190 WITH_RCU_READ_LOCK_GUARD() {
3191 if (ram_list.version != rs->last_version) {
3192 ram_state_reset(rs);
3195 /* Read version before ram_list.blocks */
3196 smp_rmb();
3198 ret = rdma_registration_start(f, RAM_CONTROL_ROUND);
3199 if (ret < 0) {
3200 qemu_file_set_error(f, ret);
3201 goto out;
3204 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
3205 i = 0;
3206 while ((ret = migration_rate_exceeded(f)) == 0 ||
3207 postcopy_has_request(rs)) {
3208 int pages;
3210 if (qemu_file_get_error(f)) {
3211 break;
3214 pages = ram_find_and_save_block(rs);
3215 /* no more pages to sent */
3216 if (pages == 0) {
3217 done = 1;
3218 break;
3221 if (pages < 0) {
3222 qemu_file_set_error(f, pages);
3223 break;
3226 rs->target_page_count += pages;
3229 * During postcopy, it is necessary to make sure one whole host
3230 * page is sent in one chunk.
3232 if (migrate_postcopy_ram()) {
3233 compress_flush_data();
3237 * we want to check in the 1st loop, just in case it was the 1st
3238 * time and we had to sync the dirty bitmap.
3239 * qemu_clock_get_ns() is a bit expensive, so we only check each
3240 * some iterations
3242 if ((i & 63) == 0) {
3243 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) /
3244 1000000;
3245 if (t1 > MAX_WAIT) {
3246 trace_ram_save_iterate_big_wait(t1, i);
3247 break;
3250 i++;
3256 * Must occur before EOS (or any QEMUFile operation)
3257 * because of RDMA protocol.
3259 ret = rdma_registration_stop(f, RAM_CONTROL_ROUND);
3260 if (ret < 0) {
3261 qemu_file_set_error(f, ret);
3264 out:
3265 if (ret >= 0
3266 && migration_is_setup_or_active(migrate_get_current()->state)) {
3267 if (migrate_multifd() && migrate_multifd_flush_after_each_section() &&
3268 !migrate_mapped_ram()) {
3269 ret = multifd_send_sync_main();
3270 if (ret < 0) {
3271 return ret;
3275 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3276 ram_transferred_add(8);
3277 ret = qemu_fflush(f);
3279 if (ret < 0) {
3280 return ret;
3283 return done;
3287 * ram_save_complete: function called to send the remaining amount of ram
3289 * Returns zero to indicate success or negative on error
3291 * Called with the BQL
3293 * @f: QEMUFile where to send the data
3294 * @opaque: RAMState pointer
3296 static int ram_save_complete(QEMUFile *f, void *opaque)
3298 RAMState **temp = opaque;
3299 RAMState *rs = *temp;
3300 int ret = 0;
3302 rs->last_stage = !migration_in_colo_state();
3304 WITH_RCU_READ_LOCK_GUARD() {
3305 if (!migration_in_postcopy()) {
3306 migration_bitmap_sync_precopy(rs, true);
3309 ret = rdma_registration_start(f, RAM_CONTROL_FINISH);
3310 if (ret < 0) {
3311 qemu_file_set_error(f, ret);
3312 return ret;
3315 /* try transferring iterative blocks of memory */
3317 /* flush all remaining blocks regardless of rate limiting */
3318 qemu_mutex_lock(&rs->bitmap_mutex);
3319 while (true) {
3320 int pages;
3322 pages = ram_find_and_save_block(rs);
3323 /* no more blocks to sent */
3324 if (pages == 0) {
3325 break;
3327 if (pages < 0) {
3328 qemu_mutex_unlock(&rs->bitmap_mutex);
3329 return pages;
3332 qemu_mutex_unlock(&rs->bitmap_mutex);
3334 compress_flush_data();
3336 ret = rdma_registration_stop(f, RAM_CONTROL_FINISH);
3337 if (ret < 0) {
3338 qemu_file_set_error(f, ret);
3339 return ret;
3343 ret = multifd_send_sync_main();
3344 if (ret < 0) {
3345 return ret;
3348 if (migrate_mapped_ram()) {
3349 ram_save_file_bmap(f);
3351 if (qemu_file_get_error(f)) {
3352 Error *local_err = NULL;
3353 int err = qemu_file_get_error_obj(f, &local_err);
3355 error_reportf_err(local_err, "Failed to write bitmap to file: ");
3356 return -err;
3360 if (migrate_multifd() && !migrate_multifd_flush_after_each_section() &&
3361 !migrate_mapped_ram()) {
3362 qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH);
3364 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3365 return qemu_fflush(f);
3368 static void ram_state_pending_estimate(void *opaque, uint64_t *must_precopy,
3369 uint64_t *can_postcopy)
3371 RAMState **temp = opaque;
3372 RAMState *rs = *temp;
3374 uint64_t remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3376 if (migrate_postcopy_ram()) {
3377 /* We can do postcopy, and all the data is postcopiable */
3378 *can_postcopy += remaining_size;
3379 } else {
3380 *must_precopy += remaining_size;
3384 static void ram_state_pending_exact(void *opaque, uint64_t *must_precopy,
3385 uint64_t *can_postcopy)
3387 RAMState **temp = opaque;
3388 RAMState *rs = *temp;
3389 uint64_t remaining_size;
3391 if (!migration_in_postcopy()) {
3392 bql_lock();
3393 WITH_RCU_READ_LOCK_GUARD() {
3394 migration_bitmap_sync_precopy(rs, false);
3396 bql_unlock();
3399 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3401 if (migrate_postcopy_ram()) {
3402 /* We can do postcopy, and all the data is postcopiable */
3403 *can_postcopy += remaining_size;
3404 } else {
3405 *must_precopy += remaining_size;
3409 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
3411 unsigned int xh_len;
3412 int xh_flags;
3413 uint8_t *loaded_data;
3415 /* extract RLE header */
3416 xh_flags = qemu_get_byte(f);
3417 xh_len = qemu_get_be16(f);
3419 if (xh_flags != ENCODING_FLAG_XBZRLE) {
3420 error_report("Failed to load XBZRLE page - wrong compression!");
3421 return -1;
3424 if (xh_len > TARGET_PAGE_SIZE) {
3425 error_report("Failed to load XBZRLE page - len overflow!");
3426 return -1;
3428 loaded_data = XBZRLE.decoded_buf;
3429 /* load data and decode */
3430 /* it can change loaded_data to point to an internal buffer */
3431 qemu_get_buffer_in_place(f, &loaded_data, xh_len);
3433 /* decode RLE */
3434 if (xbzrle_decode_buffer(loaded_data, xh_len, host,
3435 TARGET_PAGE_SIZE) == -1) {
3436 error_report("Failed to load XBZRLE page - decode error!");
3437 return -1;
3440 return 0;
3444 * ram_block_from_stream: read a RAMBlock id from the migration stream
3446 * Must be called from within a rcu critical section.
3448 * Returns a pointer from within the RCU-protected ram_list.
3450 * @mis: the migration incoming state pointer
3451 * @f: QEMUFile where to read the data from
3452 * @flags: Page flags (mostly to see if it's a continuation of previous block)
3453 * @channel: the channel we're using
3455 static inline RAMBlock *ram_block_from_stream(MigrationIncomingState *mis,
3456 QEMUFile *f, int flags,
3457 int channel)
3459 RAMBlock *block = mis->last_recv_block[channel];
3460 char id[256];
3461 uint8_t len;
3463 if (flags & RAM_SAVE_FLAG_CONTINUE) {
3464 if (!block) {
3465 error_report("Ack, bad migration stream!");
3466 return NULL;
3468 return block;
3471 len = qemu_get_byte(f);
3472 qemu_get_buffer(f, (uint8_t *)id, len);
3473 id[len] = 0;
3475 block = qemu_ram_block_by_name(id);
3476 if (!block) {
3477 error_report("Can't find block %s", id);
3478 return NULL;
3481 if (migrate_ram_is_ignored(block)) {
3482 error_report("block %s should not be migrated !", id);
3483 return NULL;
3486 mis->last_recv_block[channel] = block;
3488 return block;
3491 static inline void *host_from_ram_block_offset(RAMBlock *block,
3492 ram_addr_t offset)
3494 if (!offset_in_ramblock(block, offset)) {
3495 return NULL;
3498 return block->host + offset;
3501 static void *host_page_from_ram_block_offset(RAMBlock *block,
3502 ram_addr_t offset)
3504 /* Note: Explicitly no check against offset_in_ramblock(). */
3505 return (void *)QEMU_ALIGN_DOWN((uintptr_t)(block->host + offset),
3506 block->page_size);
3509 static ram_addr_t host_page_offset_from_ram_block_offset(RAMBlock *block,
3510 ram_addr_t offset)
3512 return ((uintptr_t)block->host + offset) & (block->page_size - 1);
3515 void colo_record_bitmap(RAMBlock *block, ram_addr_t *normal, uint32_t pages)
3517 qemu_mutex_lock(&ram_state->bitmap_mutex);
3518 for (int i = 0; i < pages; i++) {
3519 ram_addr_t offset = normal[i];
3520 ram_state->migration_dirty_pages += !test_and_set_bit(
3521 offset >> TARGET_PAGE_BITS,
3522 block->bmap);
3524 qemu_mutex_unlock(&ram_state->bitmap_mutex);
3527 static inline void *colo_cache_from_block_offset(RAMBlock *block,
3528 ram_addr_t offset, bool record_bitmap)
3530 if (!offset_in_ramblock(block, offset)) {
3531 return NULL;
3533 if (!block->colo_cache) {
3534 error_report("%s: colo_cache is NULL in block :%s",
3535 __func__, block->idstr);
3536 return NULL;
3540 * During colo checkpoint, we need bitmap of these migrated pages.
3541 * It help us to decide which pages in ram cache should be flushed
3542 * into VM's RAM later.
3544 if (record_bitmap) {
3545 colo_record_bitmap(block, &offset, 1);
3547 return block->colo_cache + offset;
3551 * ram_handle_zero: handle the zero page case
3553 * If a page (or a whole RDMA chunk) has been
3554 * determined to be zero, then zap it.
3556 * @host: host address for the zero page
3557 * @ch: what the page is filled from. We only support zero
3558 * @size: size of the zero page
3560 void ram_handle_zero(void *host, uint64_t size)
3562 if (!buffer_is_zero(host, size)) {
3563 memset(host, 0, size);
3567 static void colo_init_ram_state(void)
3569 ram_state_init(&ram_state);
3573 * colo cache: this is for secondary VM, we cache the whole
3574 * memory of the secondary VM, it is need to hold the global lock
3575 * to call this helper.
3577 int colo_init_ram_cache(void)
3579 RAMBlock *block;
3581 WITH_RCU_READ_LOCK_GUARD() {
3582 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3583 block->colo_cache = qemu_anon_ram_alloc(block->used_length,
3584 NULL, false, false);
3585 if (!block->colo_cache) {
3586 error_report("%s: Can't alloc memory for COLO cache of block %s,"
3587 "size 0x" RAM_ADDR_FMT, __func__, block->idstr,
3588 block->used_length);
3589 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3590 if (block->colo_cache) {
3591 qemu_anon_ram_free(block->colo_cache, block->used_length);
3592 block->colo_cache = NULL;
3595 return -errno;
3597 if (!machine_dump_guest_core(current_machine)) {
3598 qemu_madvise(block->colo_cache, block->used_length,
3599 QEMU_MADV_DONTDUMP);
3605 * Record the dirty pages that sent by PVM, we use this dirty bitmap together
3606 * with to decide which page in cache should be flushed into SVM's RAM. Here
3607 * we use the same name 'ram_bitmap' as for migration.
3609 if (ram_bytes_total()) {
3610 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3611 unsigned long pages = block->max_length >> TARGET_PAGE_BITS;
3612 block->bmap = bitmap_new(pages);
3616 colo_init_ram_state();
3617 return 0;
3620 /* TODO: duplicated with ram_init_bitmaps */
3621 void colo_incoming_start_dirty_log(void)
3623 RAMBlock *block = NULL;
3624 /* For memory_global_dirty_log_start below. */
3625 bql_lock();
3626 qemu_mutex_lock_ramlist();
3628 memory_global_dirty_log_sync(false);
3629 WITH_RCU_READ_LOCK_GUARD() {
3630 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3631 ramblock_sync_dirty_bitmap(ram_state, block);
3632 /* Discard this dirty bitmap record */
3633 bitmap_zero(block->bmap, block->max_length >> TARGET_PAGE_BITS);
3635 memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION);
3637 ram_state->migration_dirty_pages = 0;
3638 qemu_mutex_unlock_ramlist();
3639 bql_unlock();
3642 /* It is need to hold the global lock to call this helper */
3643 void colo_release_ram_cache(void)
3645 RAMBlock *block;
3647 memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION);
3648 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3649 g_free(block->bmap);
3650 block->bmap = NULL;
3653 WITH_RCU_READ_LOCK_GUARD() {
3654 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3655 if (block->colo_cache) {
3656 qemu_anon_ram_free(block->colo_cache, block->used_length);
3657 block->colo_cache = NULL;
3661 ram_state_cleanup(&ram_state);
3665 * ram_load_setup: Setup RAM for migration incoming side
3667 * Returns zero to indicate success and negative for error
3669 * @f: QEMUFile where to receive the data
3670 * @opaque: RAMState pointer
3672 static int ram_load_setup(QEMUFile *f, void *opaque)
3674 xbzrle_load_setup();
3675 ramblock_recv_map_init();
3677 return 0;
3680 static int ram_load_cleanup(void *opaque)
3682 RAMBlock *rb;
3684 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
3685 qemu_ram_block_writeback(rb);
3688 xbzrle_load_cleanup();
3690 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
3691 g_free(rb->receivedmap);
3692 rb->receivedmap = NULL;
3695 return 0;
3699 * ram_postcopy_incoming_init: allocate postcopy data structures
3701 * Returns 0 for success and negative if there was one error
3703 * @mis: current migration incoming state
3705 * Allocate data structures etc needed by incoming migration with
3706 * postcopy-ram. postcopy-ram's similarly names
3707 * postcopy_ram_incoming_init does the work.
3709 int ram_postcopy_incoming_init(MigrationIncomingState *mis)
3711 return postcopy_ram_incoming_init(mis);
3715 * ram_load_postcopy: load a page in postcopy case
3717 * Returns 0 for success or -errno in case of error
3719 * Called in postcopy mode by ram_load().
3720 * rcu_read_lock is taken prior to this being called.
3722 * @f: QEMUFile where to send the data
3723 * @channel: the channel to use for loading
3725 int ram_load_postcopy(QEMUFile *f, int channel)
3727 int flags = 0, ret = 0;
3728 bool place_needed = false;
3729 bool matches_target_page_size = false;
3730 MigrationIncomingState *mis = migration_incoming_get_current();
3731 PostcopyTmpPage *tmp_page = &mis->postcopy_tmp_pages[channel];
3733 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
3734 ram_addr_t addr;
3735 void *page_buffer = NULL;
3736 void *place_source = NULL;
3737 RAMBlock *block = NULL;
3738 uint8_t ch;
3739 int len;
3741 addr = qemu_get_be64(f);
3744 * If qemu file error, we should stop here, and then "addr"
3745 * may be invalid
3747 ret = qemu_file_get_error(f);
3748 if (ret) {
3749 break;
3752 flags = addr & ~TARGET_PAGE_MASK;
3753 addr &= TARGET_PAGE_MASK;
3755 trace_ram_load_postcopy_loop(channel, (uint64_t)addr, flags);
3756 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
3757 RAM_SAVE_FLAG_COMPRESS_PAGE)) {
3758 block = ram_block_from_stream(mis, f, flags, channel);
3759 if (!block) {
3760 ret = -EINVAL;
3761 break;
3765 * Relying on used_length is racy and can result in false positives.
3766 * We might place pages beyond used_length in case RAM was shrunk
3767 * while in postcopy, which is fine - trying to place via
3768 * UFFDIO_COPY/UFFDIO_ZEROPAGE will never segfault.
3770 if (!block->host || addr >= block->postcopy_length) {
3771 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
3772 ret = -EINVAL;
3773 break;
3775 tmp_page->target_pages++;
3776 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE;
3778 * Postcopy requires that we place whole host pages atomically;
3779 * these may be huge pages for RAMBlocks that are backed by
3780 * hugetlbfs.
3781 * To make it atomic, the data is read into a temporary page
3782 * that's moved into place later.
3783 * The migration protocol uses, possibly smaller, target-pages
3784 * however the source ensures it always sends all the components
3785 * of a host page in one chunk.
3787 page_buffer = tmp_page->tmp_huge_page +
3788 host_page_offset_from_ram_block_offset(block, addr);
3789 /* If all TP are zero then we can optimise the place */
3790 if (tmp_page->target_pages == 1) {
3791 tmp_page->host_addr =
3792 host_page_from_ram_block_offset(block, addr);
3793 } else if (tmp_page->host_addr !=
3794 host_page_from_ram_block_offset(block, addr)) {
3795 /* not the 1st TP within the HP */
3796 error_report("Non-same host page detected on channel %d: "
3797 "Target host page %p, received host page %p "
3798 "(rb %s offset 0x"RAM_ADDR_FMT" target_pages %d)",
3799 channel, tmp_page->host_addr,
3800 host_page_from_ram_block_offset(block, addr),
3801 block->idstr, addr, tmp_page->target_pages);
3802 ret = -EINVAL;
3803 break;
3807 * If it's the last part of a host page then we place the host
3808 * page
3810 if (tmp_page->target_pages ==
3811 (block->page_size / TARGET_PAGE_SIZE)) {
3812 place_needed = true;
3814 place_source = tmp_page->tmp_huge_page;
3817 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
3818 case RAM_SAVE_FLAG_ZERO:
3819 ch = qemu_get_byte(f);
3820 if (ch != 0) {
3821 error_report("Found a zero page with value %d", ch);
3822 ret = -EINVAL;
3823 break;
3826 * Can skip to set page_buffer when
3827 * this is a zero page and (block->page_size == TARGET_PAGE_SIZE).
3829 if (!matches_target_page_size) {
3830 memset(page_buffer, ch, TARGET_PAGE_SIZE);
3832 break;
3834 case RAM_SAVE_FLAG_PAGE:
3835 tmp_page->all_zero = false;
3836 if (!matches_target_page_size) {
3837 /* For huge pages, we always use temporary buffer */
3838 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
3839 } else {
3841 * For small pages that matches target page size, we
3842 * avoid the qemu_file copy. Instead we directly use
3843 * the buffer of QEMUFile to place the page. Note: we
3844 * cannot do any QEMUFile operation before using that
3845 * buffer to make sure the buffer is valid when
3846 * placing the page.
3848 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
3849 TARGET_PAGE_SIZE);
3851 break;
3852 case RAM_SAVE_FLAG_COMPRESS_PAGE:
3853 tmp_page->all_zero = false;
3854 len = qemu_get_be32(f);
3855 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
3856 error_report("Invalid compressed data length: %d", len);
3857 ret = -EINVAL;
3858 break;
3860 decompress_data_with_multi_threads(f, page_buffer, len);
3861 break;
3862 case RAM_SAVE_FLAG_MULTIFD_FLUSH:
3863 multifd_recv_sync_main();
3864 break;
3865 case RAM_SAVE_FLAG_EOS:
3866 /* normal exit */
3867 if (migrate_multifd() &&
3868 migrate_multifd_flush_after_each_section()) {
3869 multifd_recv_sync_main();
3871 break;
3872 default:
3873 error_report("Unknown combination of migration flags: 0x%x"
3874 " (postcopy mode)", flags);
3875 ret = -EINVAL;
3876 break;
3879 /* Got the whole host page, wait for decompress before placing. */
3880 if (place_needed) {
3881 ret |= wait_for_decompress_done();
3884 /* Detect for any possible file errors */
3885 if (!ret && qemu_file_get_error(f)) {
3886 ret = qemu_file_get_error(f);
3889 if (!ret && place_needed) {
3890 if (tmp_page->all_zero) {
3891 ret = postcopy_place_page_zero(mis, tmp_page->host_addr, block);
3892 } else {
3893 ret = postcopy_place_page(mis, tmp_page->host_addr,
3894 place_source, block);
3896 place_needed = false;
3897 postcopy_temp_page_reset(tmp_page);
3901 return ret;
3904 static bool postcopy_is_running(void)
3906 PostcopyState ps = postcopy_state_get();
3907 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
3911 * Flush content of RAM cache into SVM's memory.
3912 * Only flush the pages that be dirtied by PVM or SVM or both.
3914 void colo_flush_ram_cache(void)
3916 RAMBlock *block = NULL;
3917 void *dst_host;
3918 void *src_host;
3919 unsigned long offset = 0;
3921 memory_global_dirty_log_sync(false);
3922 qemu_mutex_lock(&ram_state->bitmap_mutex);
3923 WITH_RCU_READ_LOCK_GUARD() {
3924 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3925 ramblock_sync_dirty_bitmap(ram_state, block);
3929 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages);
3930 WITH_RCU_READ_LOCK_GUARD() {
3931 block = QLIST_FIRST_RCU(&ram_list.blocks);
3933 while (block) {
3934 unsigned long num = 0;
3936 offset = colo_bitmap_find_dirty(ram_state, block, offset, &num);
3937 if (!offset_in_ramblock(block,
3938 ((ram_addr_t)offset) << TARGET_PAGE_BITS)) {
3939 offset = 0;
3940 num = 0;
3941 block = QLIST_NEXT_RCU(block, next);
3942 } else {
3943 unsigned long i = 0;
3945 for (i = 0; i < num; i++) {
3946 migration_bitmap_clear_dirty(ram_state, block, offset + i);
3948 dst_host = block->host
3949 + (((ram_addr_t)offset) << TARGET_PAGE_BITS);
3950 src_host = block->colo_cache
3951 + (((ram_addr_t)offset) << TARGET_PAGE_BITS);
3952 memcpy(dst_host, src_host, TARGET_PAGE_SIZE * num);
3953 offset += num;
3957 qemu_mutex_unlock(&ram_state->bitmap_mutex);
3958 trace_colo_flush_ram_cache_end();
3961 static size_t ram_load_multifd_pages(void *host_addr, size_t size,
3962 uint64_t offset)
3964 MultiFDRecvData *data = multifd_get_recv_data();
3966 data->opaque = host_addr;
3967 data->file_offset = offset;
3968 data->size = size;
3970 if (!multifd_recv()) {
3971 return 0;
3974 return size;
3977 static bool read_ramblock_mapped_ram(QEMUFile *f, RAMBlock *block,
3978 long num_pages, unsigned long *bitmap,
3979 Error **errp)
3981 ERRP_GUARD();
3982 unsigned long set_bit_idx, clear_bit_idx;
3983 ram_addr_t offset;
3984 void *host;
3985 size_t read, unread, size;
3987 for (set_bit_idx = find_first_bit(bitmap, num_pages);
3988 set_bit_idx < num_pages;
3989 set_bit_idx = find_next_bit(bitmap, num_pages, clear_bit_idx + 1)) {
3991 clear_bit_idx = find_next_zero_bit(bitmap, num_pages, set_bit_idx + 1);
3993 unread = TARGET_PAGE_SIZE * (clear_bit_idx - set_bit_idx);
3994 offset = set_bit_idx << TARGET_PAGE_BITS;
3996 while (unread > 0) {
3997 host = host_from_ram_block_offset(block, offset);
3998 if (!host) {
3999 error_setg(errp, "page outside of ramblock %s range",
4000 block->idstr);
4001 return false;
4004 size = MIN(unread, MAPPED_RAM_LOAD_BUF_SIZE);
4006 if (migrate_multifd()) {
4007 read = ram_load_multifd_pages(host, size,
4008 block->pages_offset + offset);
4009 } else {
4010 read = qemu_get_buffer_at(f, host, size,
4011 block->pages_offset + offset);
4014 if (!read) {
4015 goto err;
4017 offset += read;
4018 unread -= read;
4022 return true;
4024 err:
4025 qemu_file_get_error_obj(f, errp);
4026 error_prepend(errp, "(%s) failed to read page " RAM_ADDR_FMT
4027 "from file offset %" PRIx64 ": ", block->idstr, offset,
4028 block->pages_offset + offset);
4029 return false;
4032 static void parse_ramblock_mapped_ram(QEMUFile *f, RAMBlock *block,
4033 ram_addr_t length, Error **errp)
4035 g_autofree unsigned long *bitmap = NULL;
4036 MappedRamHeader header;
4037 size_t bitmap_size;
4038 long num_pages;
4040 if (!mapped_ram_read_header(f, &header, errp)) {
4041 return;
4044 block->pages_offset = header.pages_offset;
4047 * Check the alignment of the file region that contains pages. We
4048 * don't enforce MAPPED_RAM_FILE_OFFSET_ALIGNMENT to allow that
4049 * value to change in the future. Do only a sanity check with page
4050 * size alignment.
4052 if (!QEMU_IS_ALIGNED(block->pages_offset, TARGET_PAGE_SIZE)) {
4053 error_setg(errp,
4054 "Error reading ramblock %s pages, region has bad alignment",
4055 block->idstr);
4056 return;
4059 num_pages = length / header.page_size;
4060 bitmap_size = BITS_TO_LONGS(num_pages) * sizeof(unsigned long);
4062 bitmap = g_malloc0(bitmap_size);
4063 if (qemu_get_buffer_at(f, (uint8_t *)bitmap, bitmap_size,
4064 header.bitmap_offset) != bitmap_size) {
4065 error_setg(errp, "Error reading dirty bitmap");
4066 return;
4069 if (!read_ramblock_mapped_ram(f, block, num_pages, bitmap, errp)) {
4070 return;
4073 /* Skip pages array */
4074 qemu_set_offset(f, block->pages_offset + length, SEEK_SET);
4076 return;
4079 static int parse_ramblock(QEMUFile *f, RAMBlock *block, ram_addr_t length)
4081 int ret = 0;
4082 /* ADVISE is earlier, it shows the source has the postcopy capability on */
4083 bool postcopy_advised = migration_incoming_postcopy_advised();
4084 int max_hg_page_size;
4085 Error *local_err = NULL;
4087 assert(block);
4089 if (migrate_mapped_ram()) {
4090 parse_ramblock_mapped_ram(f, block, length, &local_err);
4091 if (local_err) {
4092 error_report_err(local_err);
4093 return -EINVAL;
4095 return 0;
4098 if (!qemu_ram_is_migratable(block)) {
4099 error_report("block %s should not be migrated !", block->idstr);
4100 return -EINVAL;
4103 if (length != block->used_length) {
4104 ret = qemu_ram_resize(block, length, &local_err);
4105 if (local_err) {
4106 error_report_err(local_err);
4107 return ret;
4112 * ??? Mirrors the previous value of qemu_host_page_size,
4113 * but is this really what was intended for the migration?
4115 max_hg_page_size = MAX(qemu_real_host_page_size(), TARGET_PAGE_SIZE);
4117 /* For postcopy we need to check hugepage sizes match */
4118 if (postcopy_advised && migrate_postcopy_ram() &&
4119 block->page_size != max_hg_page_size) {
4120 uint64_t remote_page_size = qemu_get_be64(f);
4121 if (remote_page_size != block->page_size) {
4122 error_report("Mismatched RAM page size %s "
4123 "(local) %zd != %" PRId64, block->idstr,
4124 block->page_size, remote_page_size);
4125 return -EINVAL;
4128 if (migrate_ignore_shared()) {
4129 hwaddr addr = qemu_get_be64(f);
4130 if (migrate_ram_is_ignored(block) &&
4131 block->mr->addr != addr) {
4132 error_report("Mismatched GPAs for block %s "
4133 "%" PRId64 "!= %" PRId64, block->idstr,
4134 (uint64_t)addr, (uint64_t)block->mr->addr);
4135 return -EINVAL;
4138 ret = rdma_block_notification_handle(f, block->idstr);
4139 if (ret < 0) {
4140 qemu_file_set_error(f, ret);
4143 return ret;
4146 static int parse_ramblocks(QEMUFile *f, ram_addr_t total_ram_bytes)
4148 int ret = 0;
4150 /* Synchronize RAM block list */
4151 while (!ret && total_ram_bytes) {
4152 RAMBlock *block;
4153 char id[256];
4154 ram_addr_t length;
4155 int len = qemu_get_byte(f);
4157 qemu_get_buffer(f, (uint8_t *)id, len);
4158 id[len] = 0;
4159 length = qemu_get_be64(f);
4161 block = qemu_ram_block_by_name(id);
4162 if (block) {
4163 ret = parse_ramblock(f, block, length);
4164 } else {
4165 error_report("Unknown ramblock \"%s\", cannot accept "
4166 "migration", id);
4167 ret = -EINVAL;
4169 total_ram_bytes -= length;
4172 return ret;
4176 * ram_load_precopy: load pages in precopy case
4178 * Returns 0 for success or -errno in case of error
4180 * Called in precopy mode by ram_load().
4181 * rcu_read_lock is taken prior to this being called.
4183 * @f: QEMUFile where to send the data
4185 static int ram_load_precopy(QEMUFile *f)
4187 MigrationIncomingState *mis = migration_incoming_get_current();
4188 int flags = 0, ret = 0, invalid_flags = 0, len = 0, i = 0;
4190 if (!migrate_compress()) {
4191 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE;
4194 if (migrate_mapped_ram()) {
4195 invalid_flags |= (RAM_SAVE_FLAG_HOOK | RAM_SAVE_FLAG_MULTIFD_FLUSH |
4196 RAM_SAVE_FLAG_PAGE | RAM_SAVE_FLAG_XBZRLE |
4197 RAM_SAVE_FLAG_ZERO);
4200 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
4201 ram_addr_t addr;
4202 void *host = NULL, *host_bak = NULL;
4203 uint8_t ch;
4206 * Yield periodically to let main loop run, but an iteration of
4207 * the main loop is expensive, so do it each some iterations
4209 if ((i & 32767) == 0 && qemu_in_coroutine()) {
4210 aio_co_schedule(qemu_get_current_aio_context(),
4211 qemu_coroutine_self());
4212 qemu_coroutine_yield();
4214 i++;
4216 addr = qemu_get_be64(f);
4217 flags = addr & ~TARGET_PAGE_MASK;
4218 addr &= TARGET_PAGE_MASK;
4220 if (flags & invalid_flags) {
4221 error_report("Unexpected RAM flags: %d", flags & invalid_flags);
4223 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) {
4224 error_report("Received an unexpected compressed page");
4227 ret = -EINVAL;
4228 break;
4231 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
4232 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
4233 RAMBlock *block = ram_block_from_stream(mis, f, flags,
4234 RAM_CHANNEL_PRECOPY);
4236 host = host_from_ram_block_offset(block, addr);
4238 * After going into COLO stage, we should not load the page
4239 * into SVM's memory directly, we put them into colo_cache firstly.
4240 * NOTE: We need to keep a copy of SVM's ram in colo_cache.
4241 * Previously, we copied all these memory in preparing stage of COLO
4242 * while we need to stop VM, which is a time-consuming process.
4243 * Here we optimize it by a trick, back-up every page while in
4244 * migration process while COLO is enabled, though it affects the
4245 * speed of the migration, but it obviously reduce the downtime of
4246 * back-up all SVM'S memory in COLO preparing stage.
4248 if (migration_incoming_colo_enabled()) {
4249 if (migration_incoming_in_colo_state()) {
4250 /* In COLO stage, put all pages into cache temporarily */
4251 host = colo_cache_from_block_offset(block, addr, true);
4252 } else {
4254 * In migration stage but before COLO stage,
4255 * Put all pages into both cache and SVM's memory.
4257 host_bak = colo_cache_from_block_offset(block, addr, false);
4260 if (!host) {
4261 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4262 ret = -EINVAL;
4263 break;
4265 if (!migration_incoming_in_colo_state()) {
4266 ramblock_recv_bitmap_set(block, host);
4269 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
4272 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
4273 case RAM_SAVE_FLAG_MEM_SIZE:
4274 ret = parse_ramblocks(f, addr);
4276 * For mapped-ram migration (to a file) using multifd, we sync
4277 * once and for all here to make sure all tasks we queued to
4278 * multifd threads are completed, so that all the ramblocks
4279 * (including all the guest memory pages within) are fully
4280 * loaded after this sync returns.
4282 if (migrate_mapped_ram()) {
4283 multifd_recv_sync_main();
4285 break;
4287 case RAM_SAVE_FLAG_ZERO:
4288 ch = qemu_get_byte(f);
4289 if (ch != 0) {
4290 error_report("Found a zero page with value %d", ch);
4291 ret = -EINVAL;
4292 break;
4294 ram_handle_zero(host, TARGET_PAGE_SIZE);
4295 break;
4297 case RAM_SAVE_FLAG_PAGE:
4298 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
4299 break;
4301 case RAM_SAVE_FLAG_COMPRESS_PAGE:
4302 len = qemu_get_be32(f);
4303 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
4304 error_report("Invalid compressed data length: %d", len);
4305 ret = -EINVAL;
4306 break;
4308 decompress_data_with_multi_threads(f, host, len);
4309 break;
4311 case RAM_SAVE_FLAG_XBZRLE:
4312 if (load_xbzrle(f, addr, host) < 0) {
4313 error_report("Failed to decompress XBZRLE page at "
4314 RAM_ADDR_FMT, addr);
4315 ret = -EINVAL;
4316 break;
4318 break;
4319 case RAM_SAVE_FLAG_MULTIFD_FLUSH:
4320 multifd_recv_sync_main();
4321 break;
4322 case RAM_SAVE_FLAG_EOS:
4323 /* normal exit */
4324 if (migrate_multifd() &&
4325 migrate_multifd_flush_after_each_section() &&
4327 * Mapped-ram migration flushes once and for all after
4328 * parsing ramblocks. Always ignore EOS for it.
4330 !migrate_mapped_ram()) {
4331 multifd_recv_sync_main();
4333 break;
4334 case RAM_SAVE_FLAG_HOOK:
4335 ret = rdma_registration_handle(f);
4336 if (ret < 0) {
4337 qemu_file_set_error(f, ret);
4339 break;
4340 default:
4341 error_report("Unknown combination of migration flags: 0x%x", flags);
4342 ret = -EINVAL;
4344 if (!ret) {
4345 ret = qemu_file_get_error(f);
4347 if (!ret && host_bak) {
4348 memcpy(host_bak, host, TARGET_PAGE_SIZE);
4352 ret |= wait_for_decompress_done();
4353 return ret;
4356 static int ram_load(QEMUFile *f, void *opaque, int version_id)
4358 int ret = 0;
4359 static uint64_t seq_iter;
4361 * If system is running in postcopy mode, page inserts to host memory must
4362 * be atomic
4364 bool postcopy_running = postcopy_is_running();
4366 seq_iter++;
4368 if (version_id != 4) {
4369 return -EINVAL;
4373 * This RCU critical section can be very long running.
4374 * When RCU reclaims in the code start to become numerous,
4375 * it will be necessary to reduce the granularity of this
4376 * critical section.
4378 WITH_RCU_READ_LOCK_GUARD() {
4379 if (postcopy_running) {
4381 * Note! Here RAM_CHANNEL_PRECOPY is the precopy channel of
4382 * postcopy migration, we have another RAM_CHANNEL_POSTCOPY to
4383 * service fast page faults.
4385 ret = ram_load_postcopy(f, RAM_CHANNEL_PRECOPY);
4386 } else {
4387 ret = ram_load_precopy(f);
4390 trace_ram_load_complete(ret, seq_iter);
4392 return ret;
4395 static bool ram_has_postcopy(void *opaque)
4397 RAMBlock *rb;
4398 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
4399 if (ramblock_is_pmem(rb)) {
4400 info_report("Block: %s, host: %p is a nvdimm memory, postcopy"
4401 "is not supported now!", rb->idstr, rb->host);
4402 return false;
4406 return migrate_postcopy_ram();
4409 /* Sync all the dirty bitmap with destination VM. */
4410 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs)
4412 RAMBlock *block;
4413 QEMUFile *file = s->to_dst_file;
4415 trace_ram_dirty_bitmap_sync_start();
4417 qatomic_set(&rs->postcopy_bmap_sync_requested, 0);
4418 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4419 qemu_savevm_send_recv_bitmap(file, block->idstr);
4420 trace_ram_dirty_bitmap_request(block->idstr);
4421 qatomic_inc(&rs->postcopy_bmap_sync_requested);
4424 trace_ram_dirty_bitmap_sync_wait();
4426 /* Wait until all the ramblocks' dirty bitmap synced */
4427 while (qatomic_read(&rs->postcopy_bmap_sync_requested)) {
4428 if (migration_rp_wait(s)) {
4429 return -1;
4433 trace_ram_dirty_bitmap_sync_complete();
4435 return 0;
4439 * Read the received bitmap, revert it as the initial dirty bitmap.
4440 * This is only used when the postcopy migration is paused but wants
4441 * to resume from a middle point.
4443 * Returns true if succeeded, false for errors.
4445 bool ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block, Error **errp)
4447 /* from_dst_file is always valid because we're within rp_thread */
4448 QEMUFile *file = s->rp_state.from_dst_file;
4449 g_autofree unsigned long *le_bitmap = NULL;
4450 unsigned long nbits = block->used_length >> TARGET_PAGE_BITS;
4451 uint64_t local_size = DIV_ROUND_UP(nbits, 8);
4452 uint64_t size, end_mark;
4453 RAMState *rs = ram_state;
4455 trace_ram_dirty_bitmap_reload_begin(block->idstr);
4457 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
4458 error_setg(errp, "Reload bitmap in incorrect state %s",
4459 MigrationStatus_str(s->state));
4460 return false;
4464 * Note: see comments in ramblock_recv_bitmap_send() on why we
4465 * need the endianness conversion, and the paddings.
4467 local_size = ROUND_UP(local_size, 8);
4469 /* Add paddings */
4470 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
4472 size = qemu_get_be64(file);
4474 /* The size of the bitmap should match with our ramblock */
4475 if (size != local_size) {
4476 error_setg(errp, "ramblock '%s' bitmap size mismatch (0x%"PRIx64
4477 " != 0x%"PRIx64")", block->idstr, size, local_size);
4478 return false;
4481 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size);
4482 end_mark = qemu_get_be64(file);
4484 if (qemu_file_get_error(file) || size != local_size) {
4485 error_setg(errp, "read bitmap failed for ramblock '%s': "
4486 "(size 0x%"PRIx64", got: 0x%"PRIx64")",
4487 block->idstr, local_size, size);
4488 return false;
4491 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) {
4492 error_setg(errp, "ramblock '%s' end mark incorrect: 0x%"PRIx64,
4493 block->idstr, end_mark);
4494 return false;
4498 * Endianness conversion. We are during postcopy (though paused).
4499 * The dirty bitmap won't change. We can directly modify it.
4501 bitmap_from_le(block->bmap, le_bitmap, nbits);
4504 * What we received is "received bitmap". Revert it as the initial
4505 * dirty bitmap for this ramblock.
4507 bitmap_complement(block->bmap, block->bmap, nbits);
4509 /* Clear dirty bits of discarded ranges that we don't want to migrate. */
4510 ramblock_dirty_bitmap_clear_discarded_pages(block);
4512 /* We'll recalculate migration_dirty_pages in ram_state_resume_prepare(). */
4513 trace_ram_dirty_bitmap_reload_complete(block->idstr);
4515 qatomic_dec(&rs->postcopy_bmap_sync_requested);
4518 * We succeeded to sync bitmap for current ramblock. Always kick the
4519 * migration thread to check whether all requested bitmaps are
4520 * reloaded. NOTE: it's racy to only kick when requested==0, because
4521 * we don't know whether the migration thread may still be increasing
4522 * it.
4524 migration_rp_kick(s);
4526 return true;
4529 static int ram_resume_prepare(MigrationState *s, void *opaque)
4531 RAMState *rs = *(RAMState **)opaque;
4532 int ret;
4534 ret = ram_dirty_bitmap_sync_all(s, rs);
4535 if (ret) {
4536 return ret;
4539 ram_state_resume_prepare(rs, s->to_dst_file);
4541 return 0;
4544 void postcopy_preempt_shutdown_file(MigrationState *s)
4546 qemu_put_be64(s->postcopy_qemufile_src, RAM_SAVE_FLAG_EOS);
4547 qemu_fflush(s->postcopy_qemufile_src);
4550 static SaveVMHandlers savevm_ram_handlers = {
4551 .save_setup = ram_save_setup,
4552 .save_live_iterate = ram_save_iterate,
4553 .save_live_complete_postcopy = ram_save_complete,
4554 .save_live_complete_precopy = ram_save_complete,
4555 .has_postcopy = ram_has_postcopy,
4556 .state_pending_exact = ram_state_pending_exact,
4557 .state_pending_estimate = ram_state_pending_estimate,
4558 .load_state = ram_load,
4559 .save_cleanup = ram_save_cleanup,
4560 .load_setup = ram_load_setup,
4561 .load_cleanup = ram_load_cleanup,
4562 .resume_prepare = ram_resume_prepare,
4565 static void ram_mig_ram_block_resized(RAMBlockNotifier *n, void *host,
4566 size_t old_size, size_t new_size)
4568 PostcopyState ps = postcopy_state_get();
4569 ram_addr_t offset;
4570 RAMBlock *rb = qemu_ram_block_from_host(host, false, &offset);
4571 Error *err = NULL;
4573 if (!rb) {
4574 error_report("RAM block not found");
4575 return;
4578 if (migrate_ram_is_ignored(rb)) {
4579 return;
4582 if (!migration_is_idle()) {
4584 * Precopy code on the source cannot deal with the size of RAM blocks
4585 * changing at random points in time - especially after sending the
4586 * RAM block sizes in the migration stream, they must no longer change.
4587 * Abort and indicate a proper reason.
4589 error_setg(&err, "RAM block '%s' resized during precopy.", rb->idstr);
4590 migration_cancel(err);
4591 error_free(err);
4594 switch (ps) {
4595 case POSTCOPY_INCOMING_ADVISE:
4597 * Update what ram_postcopy_incoming_init()->init_range() does at the
4598 * time postcopy was advised. Syncing RAM blocks with the source will
4599 * result in RAM resizes.
4601 if (old_size < new_size) {
4602 if (ram_discard_range(rb->idstr, old_size, new_size - old_size)) {
4603 error_report("RAM block '%s' discard of resized RAM failed",
4604 rb->idstr);
4607 rb->postcopy_length = new_size;
4608 break;
4609 case POSTCOPY_INCOMING_NONE:
4610 case POSTCOPY_INCOMING_RUNNING:
4611 case POSTCOPY_INCOMING_END:
4613 * Once our guest is running, postcopy does no longer care about
4614 * resizes. When growing, the new memory was not available on the
4615 * source, no handler needed.
4617 break;
4618 default:
4619 error_report("RAM block '%s' resized during postcopy state: %d",
4620 rb->idstr, ps);
4621 exit(-1);
4625 static RAMBlockNotifier ram_mig_ram_notifier = {
4626 .ram_block_resized = ram_mig_ram_block_resized,
4629 void ram_mig_init(void)
4631 qemu_mutex_init(&XBZRLE.lock);
4632 register_savevm_live("ram", 0, 4, &savevm_ram_handlers, &ram_state);
4633 ram_block_notifier_add(&ram_mig_ram_notifier);