curl: remove compatibility code, require 7.29.0
[qemu/ar7.git] / target / s390x / kvm.c
blobb8385e6b95d365e089c4c756ef8933fa2c4f09e2
1 /*
2 * QEMU S390x KVM implementation
4 * Copyright (c) 2009 Alexander Graf <agraf@suse.de>
5 * Copyright IBM Corp. 2012
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, see <http://www.gnu.org/licenses/>.
21 #include "qemu/osdep.h"
22 #include <sys/ioctl.h>
24 #include <linux/kvm.h>
25 #include <asm/ptrace.h>
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "internal.h"
30 #include "kvm_s390x.h"
31 #include "sysemu/kvm_int.h"
32 #include "qapi/error.h"
33 #include "qemu/error-report.h"
34 #include "qemu/timer.h"
35 #include "qemu/units.h"
36 #include "qemu/main-loop.h"
37 #include "qemu/mmap-alloc.h"
38 #include "qemu/log.h"
39 #include "sysemu/sysemu.h"
40 #include "sysemu/hw_accel.h"
41 #include "sysemu/runstate.h"
42 #include "sysemu/device_tree.h"
43 #include "exec/gdbstub.h"
44 #include "exec/ram_addr.h"
45 #include "trace.h"
46 #include "hw/s390x/s390-pci-inst.h"
47 #include "hw/s390x/s390-pci-bus.h"
48 #include "hw/s390x/ipl.h"
49 #include "hw/s390x/ebcdic.h"
50 #include "exec/memattrs.h"
51 #include "hw/s390x/s390-virtio-ccw.h"
52 #include "hw/s390x/s390-virtio-hcall.h"
53 #include "hw/s390x/pv.h"
55 #ifndef DEBUG_KVM
56 #define DEBUG_KVM 0
57 #endif
59 #define DPRINTF(fmt, ...) do { \
60 if (DEBUG_KVM) { \
61 fprintf(stderr, fmt, ## __VA_ARGS__); \
62 } \
63 } while (0)
65 #define kvm_vm_check_mem_attr(s, attr) \
66 kvm_vm_check_attr(s, KVM_S390_VM_MEM_CTRL, attr)
68 #define IPA0_DIAG 0x8300
69 #define IPA0_SIGP 0xae00
70 #define IPA0_B2 0xb200
71 #define IPA0_B9 0xb900
72 #define IPA0_EB 0xeb00
73 #define IPA0_E3 0xe300
75 #define PRIV_B2_SCLP_CALL 0x20
76 #define PRIV_B2_CSCH 0x30
77 #define PRIV_B2_HSCH 0x31
78 #define PRIV_B2_MSCH 0x32
79 #define PRIV_B2_SSCH 0x33
80 #define PRIV_B2_STSCH 0x34
81 #define PRIV_B2_TSCH 0x35
82 #define PRIV_B2_TPI 0x36
83 #define PRIV_B2_SAL 0x37
84 #define PRIV_B2_RSCH 0x38
85 #define PRIV_B2_STCRW 0x39
86 #define PRIV_B2_STCPS 0x3a
87 #define PRIV_B2_RCHP 0x3b
88 #define PRIV_B2_SCHM 0x3c
89 #define PRIV_B2_CHSC 0x5f
90 #define PRIV_B2_SIGA 0x74
91 #define PRIV_B2_XSCH 0x76
93 #define PRIV_EB_SQBS 0x8a
94 #define PRIV_EB_PCISTB 0xd0
95 #define PRIV_EB_SIC 0xd1
97 #define PRIV_B9_EQBS 0x9c
98 #define PRIV_B9_CLP 0xa0
99 #define PRIV_B9_PCISTG 0xd0
100 #define PRIV_B9_PCILG 0xd2
101 #define PRIV_B9_RPCIT 0xd3
103 #define PRIV_E3_MPCIFC 0xd0
104 #define PRIV_E3_STPCIFC 0xd4
106 #define DIAG_TIMEREVENT 0x288
107 #define DIAG_IPL 0x308
108 #define DIAG_SET_CONTROL_PROGRAM_CODES 0x318
109 #define DIAG_KVM_HYPERCALL 0x500
110 #define DIAG_KVM_BREAKPOINT 0x501
112 #define ICPT_INSTRUCTION 0x04
113 #define ICPT_PROGRAM 0x08
114 #define ICPT_EXT_INT 0x14
115 #define ICPT_WAITPSW 0x1c
116 #define ICPT_SOFT_INTERCEPT 0x24
117 #define ICPT_CPU_STOP 0x28
118 #define ICPT_OPEREXC 0x2c
119 #define ICPT_IO 0x40
120 #define ICPT_PV_INSTR 0x68
121 #define ICPT_PV_INSTR_NOTIFICATION 0x6c
123 #define NR_LOCAL_IRQS 32
125 * Needs to be big enough to contain max_cpus emergency signals
126 * and in addition NR_LOCAL_IRQS interrupts
128 #define VCPU_IRQ_BUF_SIZE(max_cpus) (sizeof(struct kvm_s390_irq) * \
129 (max_cpus + NR_LOCAL_IRQS))
131 * KVM does only support memory slots up to KVM_MEM_MAX_NR_PAGES pages
132 * as the dirty bitmap must be managed by bitops that take an int as
133 * position indicator. This would end at an unaligned address
134 * (0x7fffff00000). As future variants might provide larger pages
135 * and to make all addresses properly aligned, let us split at 4TB.
137 #define KVM_SLOT_MAX_BYTES (4UL * TiB)
139 static CPUWatchpoint hw_watchpoint;
141 * We don't use a list because this structure is also used to transmit the
142 * hardware breakpoints to the kernel.
144 static struct kvm_hw_breakpoint *hw_breakpoints;
145 static int nb_hw_breakpoints;
147 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
148 KVM_CAP_LAST_INFO
151 static int cap_sync_regs;
152 static int cap_async_pf;
153 static int cap_mem_op;
154 static int cap_s390_irq;
155 static int cap_ri;
156 static int cap_gs;
157 static int cap_hpage_1m;
158 static int cap_vcpu_resets;
159 static int cap_protected;
161 static int active_cmma;
163 static void *legacy_s390_alloc(size_t size, uint64_t *align, bool shared);
165 static int kvm_s390_query_mem_limit(uint64_t *memory_limit)
167 struct kvm_device_attr attr = {
168 .group = KVM_S390_VM_MEM_CTRL,
169 .attr = KVM_S390_VM_MEM_LIMIT_SIZE,
170 .addr = (uint64_t) memory_limit,
173 return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
176 int kvm_s390_set_mem_limit(uint64_t new_limit, uint64_t *hw_limit)
178 int rc;
180 struct kvm_device_attr attr = {
181 .group = KVM_S390_VM_MEM_CTRL,
182 .attr = KVM_S390_VM_MEM_LIMIT_SIZE,
183 .addr = (uint64_t) &new_limit,
186 if (!kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_LIMIT_SIZE)) {
187 return 0;
190 rc = kvm_s390_query_mem_limit(hw_limit);
191 if (rc) {
192 return rc;
193 } else if (*hw_limit < new_limit) {
194 return -E2BIG;
197 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
200 int kvm_s390_cmma_active(void)
202 return active_cmma;
205 static bool kvm_s390_cmma_available(void)
207 static bool initialized, value;
209 if (!initialized) {
210 initialized = true;
211 value = kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_ENABLE_CMMA) &&
212 kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_CLR_CMMA);
214 return value;
217 void kvm_s390_cmma_reset(void)
219 int rc;
220 struct kvm_device_attr attr = {
221 .group = KVM_S390_VM_MEM_CTRL,
222 .attr = KVM_S390_VM_MEM_CLR_CMMA,
225 if (!kvm_s390_cmma_active()) {
226 return;
229 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
230 trace_kvm_clear_cmma(rc);
233 static void kvm_s390_enable_cmma(void)
235 int rc;
236 struct kvm_device_attr attr = {
237 .group = KVM_S390_VM_MEM_CTRL,
238 .attr = KVM_S390_VM_MEM_ENABLE_CMMA,
241 if (cap_hpage_1m) {
242 warn_report("CMM will not be enabled because it is not "
243 "compatible with huge memory backings.");
244 return;
246 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
247 active_cmma = !rc;
248 trace_kvm_enable_cmma(rc);
251 static void kvm_s390_set_attr(uint64_t attr)
253 struct kvm_device_attr attribute = {
254 .group = KVM_S390_VM_CRYPTO,
255 .attr = attr,
258 int ret = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attribute);
260 if (ret) {
261 error_report("Failed to set crypto device attribute %lu: %s",
262 attr, strerror(-ret));
266 static void kvm_s390_init_aes_kw(void)
268 uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_AES_KW;
270 if (object_property_get_bool(OBJECT(qdev_get_machine()), "aes-key-wrap",
271 NULL)) {
272 attr = KVM_S390_VM_CRYPTO_ENABLE_AES_KW;
275 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
276 kvm_s390_set_attr(attr);
280 static void kvm_s390_init_dea_kw(void)
282 uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_DEA_KW;
284 if (object_property_get_bool(OBJECT(qdev_get_machine()), "dea-key-wrap",
285 NULL)) {
286 attr = KVM_S390_VM_CRYPTO_ENABLE_DEA_KW;
289 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
290 kvm_s390_set_attr(attr);
294 void kvm_s390_crypto_reset(void)
296 if (s390_has_feat(S390_FEAT_MSA_EXT_3)) {
297 kvm_s390_init_aes_kw();
298 kvm_s390_init_dea_kw();
302 void kvm_s390_set_max_pagesize(uint64_t pagesize, Error **errp)
304 if (pagesize == 4 * KiB) {
305 return;
308 if (!hpage_1m_allowed()) {
309 error_setg(errp, "This QEMU machine does not support huge page "
310 "mappings");
311 return;
314 if (pagesize != 1 * MiB) {
315 error_setg(errp, "Memory backing with 2G pages was specified, "
316 "but KVM does not support this memory backing");
317 return;
320 if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_HPAGE_1M, 0)) {
321 error_setg(errp, "Memory backing with 1M pages was specified, "
322 "but KVM does not support this memory backing");
323 return;
326 cap_hpage_1m = 1;
329 int kvm_s390_get_hpage_1m(void)
331 return cap_hpage_1m;
334 static void ccw_machine_class_foreach(ObjectClass *oc, void *opaque)
336 MachineClass *mc = MACHINE_CLASS(oc);
338 mc->default_cpu_type = S390_CPU_TYPE_NAME("host");
341 int kvm_arch_init(MachineState *ms, KVMState *s)
343 object_class_foreach(ccw_machine_class_foreach, TYPE_S390_CCW_MACHINE,
344 false, NULL);
346 if (!kvm_check_extension(kvm_state, KVM_CAP_DEVICE_CTRL)) {
347 error_report("KVM is missing capability KVM_CAP_DEVICE_CTRL - "
348 "please use kernel 3.15 or newer");
349 return -1;
352 cap_sync_regs = kvm_check_extension(s, KVM_CAP_SYNC_REGS);
353 cap_async_pf = kvm_check_extension(s, KVM_CAP_ASYNC_PF);
354 cap_mem_op = kvm_check_extension(s, KVM_CAP_S390_MEM_OP);
355 cap_s390_irq = kvm_check_extension(s, KVM_CAP_S390_INJECT_IRQ);
356 cap_vcpu_resets = kvm_check_extension(s, KVM_CAP_S390_VCPU_RESETS);
357 cap_protected = kvm_check_extension(s, KVM_CAP_S390_PROTECTED);
359 if (!kvm_check_extension(s, KVM_CAP_S390_GMAP)
360 || !kvm_check_extension(s, KVM_CAP_S390_COW)) {
361 phys_mem_set_alloc(legacy_s390_alloc);
364 kvm_vm_enable_cap(s, KVM_CAP_S390_USER_SIGP, 0);
365 kvm_vm_enable_cap(s, KVM_CAP_S390_VECTOR_REGISTERS, 0);
366 kvm_vm_enable_cap(s, KVM_CAP_S390_USER_STSI, 0);
367 if (ri_allowed()) {
368 if (kvm_vm_enable_cap(s, KVM_CAP_S390_RI, 0) == 0) {
369 cap_ri = 1;
372 if (cpu_model_allowed()) {
373 if (kvm_vm_enable_cap(s, KVM_CAP_S390_GS, 0) == 0) {
374 cap_gs = 1;
379 * The migration interface for ais was introduced with kernel 4.13
380 * but the capability itself had been active since 4.12. As migration
381 * support is considered necessary, we only try to enable this for
382 * newer machine types if KVM_CAP_S390_AIS_MIGRATION is available.
384 if (cpu_model_allowed() && kvm_kernel_irqchip_allowed() &&
385 kvm_check_extension(s, KVM_CAP_S390_AIS_MIGRATION)) {
386 kvm_vm_enable_cap(s, KVM_CAP_S390_AIS, 0);
389 kvm_set_max_memslot_size(KVM_SLOT_MAX_BYTES);
390 return 0;
393 int kvm_arch_irqchip_create(KVMState *s)
395 return 0;
398 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
400 return cpu->cpu_index;
403 int kvm_arch_init_vcpu(CPUState *cs)
405 unsigned int max_cpus = MACHINE(qdev_get_machine())->smp.max_cpus;
406 S390CPU *cpu = S390_CPU(cs);
407 kvm_s390_set_cpu_state(cpu, cpu->env.cpu_state);
408 cpu->irqstate = g_malloc0(VCPU_IRQ_BUF_SIZE(max_cpus));
409 return 0;
412 int kvm_arch_destroy_vcpu(CPUState *cs)
414 S390CPU *cpu = S390_CPU(cs);
416 g_free(cpu->irqstate);
417 cpu->irqstate = NULL;
419 return 0;
422 static void kvm_s390_reset_vcpu(S390CPU *cpu, unsigned long type)
424 CPUState *cs = CPU(cpu);
427 * The reset call is needed here to reset in-kernel vcpu data that
428 * we can't access directly from QEMU (i.e. with older kernels
429 * which don't support sync_regs/ONE_REG). Before this ioctl
430 * cpu_synchronize_state() is called in common kvm code
431 * (kvm-all).
433 if (kvm_vcpu_ioctl(cs, type)) {
434 error_report("CPU reset failed on CPU %i type %lx",
435 cs->cpu_index, type);
439 void kvm_s390_reset_vcpu_initial(S390CPU *cpu)
441 kvm_s390_reset_vcpu(cpu, KVM_S390_INITIAL_RESET);
444 void kvm_s390_reset_vcpu_clear(S390CPU *cpu)
446 if (cap_vcpu_resets) {
447 kvm_s390_reset_vcpu(cpu, KVM_S390_CLEAR_RESET);
448 } else {
449 kvm_s390_reset_vcpu(cpu, KVM_S390_INITIAL_RESET);
453 void kvm_s390_reset_vcpu_normal(S390CPU *cpu)
455 if (cap_vcpu_resets) {
456 kvm_s390_reset_vcpu(cpu, KVM_S390_NORMAL_RESET);
460 static int can_sync_regs(CPUState *cs, int regs)
462 return cap_sync_regs && (cs->kvm_run->kvm_valid_regs & regs) == regs;
465 int kvm_arch_put_registers(CPUState *cs, int level)
467 S390CPU *cpu = S390_CPU(cs);
468 CPUS390XState *env = &cpu->env;
469 struct kvm_sregs sregs;
470 struct kvm_regs regs;
471 struct kvm_fpu fpu = {};
472 int r;
473 int i;
475 /* always save the PSW and the GPRS*/
476 cs->kvm_run->psw_addr = env->psw.addr;
477 cs->kvm_run->psw_mask = env->psw.mask;
479 if (can_sync_regs(cs, KVM_SYNC_GPRS)) {
480 for (i = 0; i < 16; i++) {
481 cs->kvm_run->s.regs.gprs[i] = env->regs[i];
482 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GPRS;
484 } else {
485 for (i = 0; i < 16; i++) {
486 regs.gprs[i] = env->regs[i];
488 r = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
489 if (r < 0) {
490 return r;
494 if (can_sync_regs(cs, KVM_SYNC_VRS)) {
495 for (i = 0; i < 32; i++) {
496 cs->kvm_run->s.regs.vrs[i][0] = env->vregs[i][0];
497 cs->kvm_run->s.regs.vrs[i][1] = env->vregs[i][1];
499 cs->kvm_run->s.regs.fpc = env->fpc;
500 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_VRS;
501 } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) {
502 for (i = 0; i < 16; i++) {
503 cs->kvm_run->s.regs.fprs[i] = *get_freg(env, i);
505 cs->kvm_run->s.regs.fpc = env->fpc;
506 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_FPRS;
507 } else {
508 /* Floating point */
509 for (i = 0; i < 16; i++) {
510 fpu.fprs[i] = *get_freg(env, i);
512 fpu.fpc = env->fpc;
514 r = kvm_vcpu_ioctl(cs, KVM_SET_FPU, &fpu);
515 if (r < 0) {
516 return r;
520 /* Do we need to save more than that? */
521 if (level == KVM_PUT_RUNTIME_STATE) {
522 return 0;
525 if (can_sync_regs(cs, KVM_SYNC_ARCH0)) {
526 cs->kvm_run->s.regs.cputm = env->cputm;
527 cs->kvm_run->s.regs.ckc = env->ckc;
528 cs->kvm_run->s.regs.todpr = env->todpr;
529 cs->kvm_run->s.regs.gbea = env->gbea;
530 cs->kvm_run->s.regs.pp = env->pp;
531 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ARCH0;
532 } else {
534 * These ONE_REGS are not protected by a capability. As they are only
535 * necessary for migration we just trace a possible error, but don't
536 * return with an error return code.
538 kvm_set_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm);
539 kvm_set_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc);
540 kvm_set_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr);
541 kvm_set_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea);
542 kvm_set_one_reg(cs, KVM_REG_S390_PP, &env->pp);
545 if (can_sync_regs(cs, KVM_SYNC_RICCB)) {
546 memcpy(cs->kvm_run->s.regs.riccb, env->riccb, 64);
547 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_RICCB;
550 /* pfault parameters */
551 if (can_sync_regs(cs, KVM_SYNC_PFAULT)) {
552 cs->kvm_run->s.regs.pft = env->pfault_token;
553 cs->kvm_run->s.regs.pfs = env->pfault_select;
554 cs->kvm_run->s.regs.pfc = env->pfault_compare;
555 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PFAULT;
556 } else if (cap_async_pf) {
557 r = kvm_set_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token);
558 if (r < 0) {
559 return r;
561 r = kvm_set_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare);
562 if (r < 0) {
563 return r;
565 r = kvm_set_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select);
566 if (r < 0) {
567 return r;
571 /* access registers and control registers*/
572 if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) {
573 for (i = 0; i < 16; i++) {
574 cs->kvm_run->s.regs.acrs[i] = env->aregs[i];
575 cs->kvm_run->s.regs.crs[i] = env->cregs[i];
577 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ACRS;
578 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_CRS;
579 } else {
580 for (i = 0; i < 16; i++) {
581 sregs.acrs[i] = env->aregs[i];
582 sregs.crs[i] = env->cregs[i];
584 r = kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
585 if (r < 0) {
586 return r;
590 if (can_sync_regs(cs, KVM_SYNC_GSCB)) {
591 memcpy(cs->kvm_run->s.regs.gscb, env->gscb, 32);
592 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GSCB;
595 if (can_sync_regs(cs, KVM_SYNC_BPBC)) {
596 cs->kvm_run->s.regs.bpbc = env->bpbc;
597 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_BPBC;
600 if (can_sync_regs(cs, KVM_SYNC_ETOKEN)) {
601 cs->kvm_run->s.regs.etoken = env->etoken;
602 cs->kvm_run->s.regs.etoken_extension = env->etoken_extension;
603 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ETOKEN;
606 if (can_sync_regs(cs, KVM_SYNC_DIAG318)) {
607 cs->kvm_run->s.regs.diag318 = env->diag318_info;
608 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_DIAG318;
611 /* Finally the prefix */
612 if (can_sync_regs(cs, KVM_SYNC_PREFIX)) {
613 cs->kvm_run->s.regs.prefix = env->psa;
614 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PREFIX;
615 } else {
616 /* prefix is only supported via sync regs */
618 return 0;
621 int kvm_arch_get_registers(CPUState *cs)
623 S390CPU *cpu = S390_CPU(cs);
624 CPUS390XState *env = &cpu->env;
625 struct kvm_sregs sregs;
626 struct kvm_regs regs;
627 struct kvm_fpu fpu;
628 int i, r;
630 /* get the PSW */
631 env->psw.addr = cs->kvm_run->psw_addr;
632 env->psw.mask = cs->kvm_run->psw_mask;
634 /* the GPRS */
635 if (can_sync_regs(cs, KVM_SYNC_GPRS)) {
636 for (i = 0; i < 16; i++) {
637 env->regs[i] = cs->kvm_run->s.regs.gprs[i];
639 } else {
640 r = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
641 if (r < 0) {
642 return r;
644 for (i = 0; i < 16; i++) {
645 env->regs[i] = regs.gprs[i];
649 /* The ACRS and CRS */
650 if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) {
651 for (i = 0; i < 16; i++) {
652 env->aregs[i] = cs->kvm_run->s.regs.acrs[i];
653 env->cregs[i] = cs->kvm_run->s.regs.crs[i];
655 } else {
656 r = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
657 if (r < 0) {
658 return r;
660 for (i = 0; i < 16; i++) {
661 env->aregs[i] = sregs.acrs[i];
662 env->cregs[i] = sregs.crs[i];
666 /* Floating point and vector registers */
667 if (can_sync_regs(cs, KVM_SYNC_VRS)) {
668 for (i = 0; i < 32; i++) {
669 env->vregs[i][0] = cs->kvm_run->s.regs.vrs[i][0];
670 env->vregs[i][1] = cs->kvm_run->s.regs.vrs[i][1];
672 env->fpc = cs->kvm_run->s.regs.fpc;
673 } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) {
674 for (i = 0; i < 16; i++) {
675 *get_freg(env, i) = cs->kvm_run->s.regs.fprs[i];
677 env->fpc = cs->kvm_run->s.regs.fpc;
678 } else {
679 r = kvm_vcpu_ioctl(cs, KVM_GET_FPU, &fpu);
680 if (r < 0) {
681 return r;
683 for (i = 0; i < 16; i++) {
684 *get_freg(env, i) = fpu.fprs[i];
686 env->fpc = fpu.fpc;
689 /* The prefix */
690 if (can_sync_regs(cs, KVM_SYNC_PREFIX)) {
691 env->psa = cs->kvm_run->s.regs.prefix;
694 if (can_sync_regs(cs, KVM_SYNC_ARCH0)) {
695 env->cputm = cs->kvm_run->s.regs.cputm;
696 env->ckc = cs->kvm_run->s.regs.ckc;
697 env->todpr = cs->kvm_run->s.regs.todpr;
698 env->gbea = cs->kvm_run->s.regs.gbea;
699 env->pp = cs->kvm_run->s.regs.pp;
700 } else {
702 * These ONE_REGS are not protected by a capability. As they are only
703 * necessary for migration we just trace a possible error, but don't
704 * return with an error return code.
706 kvm_get_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm);
707 kvm_get_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc);
708 kvm_get_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr);
709 kvm_get_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea);
710 kvm_get_one_reg(cs, KVM_REG_S390_PP, &env->pp);
713 if (can_sync_regs(cs, KVM_SYNC_RICCB)) {
714 memcpy(env->riccb, cs->kvm_run->s.regs.riccb, 64);
717 if (can_sync_regs(cs, KVM_SYNC_GSCB)) {
718 memcpy(env->gscb, cs->kvm_run->s.regs.gscb, 32);
721 if (can_sync_regs(cs, KVM_SYNC_BPBC)) {
722 env->bpbc = cs->kvm_run->s.regs.bpbc;
725 if (can_sync_regs(cs, KVM_SYNC_ETOKEN)) {
726 env->etoken = cs->kvm_run->s.regs.etoken;
727 env->etoken_extension = cs->kvm_run->s.regs.etoken_extension;
730 /* pfault parameters */
731 if (can_sync_regs(cs, KVM_SYNC_PFAULT)) {
732 env->pfault_token = cs->kvm_run->s.regs.pft;
733 env->pfault_select = cs->kvm_run->s.regs.pfs;
734 env->pfault_compare = cs->kvm_run->s.regs.pfc;
735 } else if (cap_async_pf) {
736 r = kvm_get_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token);
737 if (r < 0) {
738 return r;
740 r = kvm_get_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare);
741 if (r < 0) {
742 return r;
744 r = kvm_get_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select);
745 if (r < 0) {
746 return r;
750 if (can_sync_regs(cs, KVM_SYNC_DIAG318)) {
751 env->diag318_info = cs->kvm_run->s.regs.diag318;
754 return 0;
757 int kvm_s390_get_clock(uint8_t *tod_high, uint64_t *tod_low)
759 int r;
760 struct kvm_device_attr attr = {
761 .group = KVM_S390_VM_TOD,
762 .attr = KVM_S390_VM_TOD_LOW,
763 .addr = (uint64_t)tod_low,
766 r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
767 if (r) {
768 return r;
771 attr.attr = KVM_S390_VM_TOD_HIGH;
772 attr.addr = (uint64_t)tod_high;
773 return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
776 int kvm_s390_get_clock_ext(uint8_t *tod_high, uint64_t *tod_low)
778 int r;
779 struct kvm_s390_vm_tod_clock gtod;
780 struct kvm_device_attr attr = {
781 .group = KVM_S390_VM_TOD,
782 .attr = KVM_S390_VM_TOD_EXT,
783 .addr = (uint64_t)&gtod,
786 r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
787 *tod_high = gtod.epoch_idx;
788 *tod_low = gtod.tod;
790 return r;
793 int kvm_s390_set_clock(uint8_t tod_high, uint64_t tod_low)
795 int r;
796 struct kvm_device_attr attr = {
797 .group = KVM_S390_VM_TOD,
798 .attr = KVM_S390_VM_TOD_LOW,
799 .addr = (uint64_t)&tod_low,
802 r = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
803 if (r) {
804 return r;
807 attr.attr = KVM_S390_VM_TOD_HIGH;
808 attr.addr = (uint64_t)&tod_high;
809 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
812 int kvm_s390_set_clock_ext(uint8_t tod_high, uint64_t tod_low)
814 struct kvm_s390_vm_tod_clock gtod = {
815 .epoch_idx = tod_high,
816 .tod = tod_low,
818 struct kvm_device_attr attr = {
819 .group = KVM_S390_VM_TOD,
820 .attr = KVM_S390_VM_TOD_EXT,
821 .addr = (uint64_t)&gtod,
824 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
828 * kvm_s390_mem_op:
829 * @addr: the logical start address in guest memory
830 * @ar: the access register number
831 * @hostbuf: buffer in host memory. NULL = do only checks w/o copying
832 * @len: length that should be transferred
833 * @is_write: true = write, false = read
834 * Returns: 0 on success, non-zero if an exception or error occurred
836 * Use KVM ioctl to read/write from/to guest memory. An access exception
837 * is injected into the vCPU in case of translation errors.
839 int kvm_s390_mem_op(S390CPU *cpu, vaddr addr, uint8_t ar, void *hostbuf,
840 int len, bool is_write)
842 struct kvm_s390_mem_op mem_op = {
843 .gaddr = addr,
844 .flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION,
845 .size = len,
846 .op = is_write ? KVM_S390_MEMOP_LOGICAL_WRITE
847 : KVM_S390_MEMOP_LOGICAL_READ,
848 .buf = (uint64_t)hostbuf,
849 .ar = ar,
851 int ret;
853 if (!cap_mem_op) {
854 return -ENOSYS;
856 if (!hostbuf) {
857 mem_op.flags |= KVM_S390_MEMOP_F_CHECK_ONLY;
860 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_S390_MEM_OP, &mem_op);
861 if (ret < 0) {
862 warn_report("KVM_S390_MEM_OP failed: %s", strerror(-ret));
864 return ret;
867 int kvm_s390_mem_op_pv(S390CPU *cpu, uint64_t offset, void *hostbuf,
868 int len, bool is_write)
870 struct kvm_s390_mem_op mem_op = {
871 .sida_offset = offset,
872 .size = len,
873 .op = is_write ? KVM_S390_MEMOP_SIDA_WRITE
874 : KVM_S390_MEMOP_SIDA_READ,
875 .buf = (uint64_t)hostbuf,
877 int ret;
879 if (!cap_mem_op || !cap_protected) {
880 return -ENOSYS;
883 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_S390_MEM_OP, &mem_op);
884 if (ret < 0) {
885 error_report("KVM_S390_MEM_OP failed: %s", strerror(-ret));
886 abort();
888 return ret;
892 * Legacy layout for s390:
893 * Older S390 KVM requires the topmost vma of the RAM to be
894 * smaller than an system defined value, which is at least 256GB.
895 * Larger systems have larger values. We put the guest between
896 * the end of data segment (system break) and this value. We
897 * use 32GB as a base to have enough room for the system break
898 * to grow. We also have to use MAP parameters that avoid
899 * read-only mapping of guest pages.
901 static void *legacy_s390_alloc(size_t size, uint64_t *align, bool shared)
903 static void *mem;
905 if (mem) {
906 /* we only support one allocation, which is enough for initial ram */
907 return NULL;
910 mem = mmap((void *) 0x800000000ULL, size,
911 PROT_EXEC|PROT_READ|PROT_WRITE,
912 MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
913 if (mem == MAP_FAILED) {
914 mem = NULL;
916 if (mem && align) {
917 *align = QEMU_VMALLOC_ALIGN;
919 return mem;
922 static uint8_t const *sw_bp_inst;
923 static uint8_t sw_bp_ilen;
925 static void determine_sw_breakpoint_instr(void)
927 /* DIAG 501 is used for sw breakpoints with old kernels */
928 static const uint8_t diag_501[] = {0x83, 0x24, 0x05, 0x01};
929 /* Instruction 0x0000 is used for sw breakpoints with recent kernels */
930 static const uint8_t instr_0x0000[] = {0x00, 0x00};
932 if (sw_bp_inst) {
933 return;
935 if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_USER_INSTR0, 0)) {
936 sw_bp_inst = diag_501;
937 sw_bp_ilen = sizeof(diag_501);
938 DPRINTF("KVM: will use 4-byte sw breakpoints.\n");
939 } else {
940 sw_bp_inst = instr_0x0000;
941 sw_bp_ilen = sizeof(instr_0x0000);
942 DPRINTF("KVM: will use 2-byte sw breakpoints.\n");
946 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
948 determine_sw_breakpoint_instr();
950 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
951 sw_bp_ilen, 0) ||
952 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)sw_bp_inst, sw_bp_ilen, 1)) {
953 return -EINVAL;
955 return 0;
958 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
960 uint8_t t[MAX_ILEN];
962 if (cpu_memory_rw_debug(cs, bp->pc, t, sw_bp_ilen, 0)) {
963 return -EINVAL;
964 } else if (memcmp(t, sw_bp_inst, sw_bp_ilen)) {
965 return -EINVAL;
966 } else if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
967 sw_bp_ilen, 1)) {
968 return -EINVAL;
971 return 0;
974 static struct kvm_hw_breakpoint *find_hw_breakpoint(target_ulong addr,
975 int len, int type)
977 int n;
979 for (n = 0; n < nb_hw_breakpoints; n++) {
980 if (hw_breakpoints[n].addr == addr && hw_breakpoints[n].type == type &&
981 (hw_breakpoints[n].len == len || len == -1)) {
982 return &hw_breakpoints[n];
986 return NULL;
989 static int insert_hw_breakpoint(target_ulong addr, int len, int type)
991 int size;
993 if (find_hw_breakpoint(addr, len, type)) {
994 return -EEXIST;
997 size = (nb_hw_breakpoints + 1) * sizeof(struct kvm_hw_breakpoint);
999 if (!hw_breakpoints) {
1000 nb_hw_breakpoints = 0;
1001 hw_breakpoints = (struct kvm_hw_breakpoint *)g_try_malloc(size);
1002 } else {
1003 hw_breakpoints =
1004 (struct kvm_hw_breakpoint *)g_try_realloc(hw_breakpoints, size);
1007 if (!hw_breakpoints) {
1008 nb_hw_breakpoints = 0;
1009 return -ENOMEM;
1012 hw_breakpoints[nb_hw_breakpoints].addr = addr;
1013 hw_breakpoints[nb_hw_breakpoints].len = len;
1014 hw_breakpoints[nb_hw_breakpoints].type = type;
1016 nb_hw_breakpoints++;
1018 return 0;
1021 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1022 target_ulong len, int type)
1024 switch (type) {
1025 case GDB_BREAKPOINT_HW:
1026 type = KVM_HW_BP;
1027 break;
1028 case GDB_WATCHPOINT_WRITE:
1029 if (len < 1) {
1030 return -EINVAL;
1032 type = KVM_HW_WP_WRITE;
1033 break;
1034 default:
1035 return -ENOSYS;
1037 return insert_hw_breakpoint(addr, len, type);
1040 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1041 target_ulong len, int type)
1043 int size;
1044 struct kvm_hw_breakpoint *bp = find_hw_breakpoint(addr, len, type);
1046 if (bp == NULL) {
1047 return -ENOENT;
1050 nb_hw_breakpoints--;
1051 if (nb_hw_breakpoints > 0) {
1053 * In order to trim the array, move the last element to the position to
1054 * be removed - if necessary.
1056 if (bp != &hw_breakpoints[nb_hw_breakpoints]) {
1057 *bp = hw_breakpoints[nb_hw_breakpoints];
1059 size = nb_hw_breakpoints * sizeof(struct kvm_hw_breakpoint);
1060 hw_breakpoints =
1061 (struct kvm_hw_breakpoint *)g_realloc(hw_breakpoints, size);
1062 } else {
1063 g_free(hw_breakpoints);
1064 hw_breakpoints = NULL;
1067 return 0;
1070 void kvm_arch_remove_all_hw_breakpoints(void)
1072 nb_hw_breakpoints = 0;
1073 g_free(hw_breakpoints);
1074 hw_breakpoints = NULL;
1077 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
1079 int i;
1081 if (nb_hw_breakpoints > 0) {
1082 dbg->arch.nr_hw_bp = nb_hw_breakpoints;
1083 dbg->arch.hw_bp = hw_breakpoints;
1085 for (i = 0; i < nb_hw_breakpoints; ++i) {
1086 hw_breakpoints[i].phys_addr = s390_cpu_get_phys_addr_debug(cpu,
1087 hw_breakpoints[i].addr);
1089 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1090 } else {
1091 dbg->arch.nr_hw_bp = 0;
1092 dbg->arch.hw_bp = NULL;
1096 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
1100 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
1102 return MEMTXATTRS_UNSPECIFIED;
1105 int kvm_arch_process_async_events(CPUState *cs)
1107 return cs->halted;
1110 static int s390_kvm_irq_to_interrupt(struct kvm_s390_irq *irq,
1111 struct kvm_s390_interrupt *interrupt)
1113 int r = 0;
1115 interrupt->type = irq->type;
1116 switch (irq->type) {
1117 case KVM_S390_INT_VIRTIO:
1118 interrupt->parm = irq->u.ext.ext_params;
1119 /* fall through */
1120 case KVM_S390_INT_PFAULT_INIT:
1121 case KVM_S390_INT_PFAULT_DONE:
1122 interrupt->parm64 = irq->u.ext.ext_params2;
1123 break;
1124 case KVM_S390_PROGRAM_INT:
1125 interrupt->parm = irq->u.pgm.code;
1126 break;
1127 case KVM_S390_SIGP_SET_PREFIX:
1128 interrupt->parm = irq->u.prefix.address;
1129 break;
1130 case KVM_S390_INT_SERVICE:
1131 interrupt->parm = irq->u.ext.ext_params;
1132 break;
1133 case KVM_S390_MCHK:
1134 interrupt->parm = irq->u.mchk.cr14;
1135 interrupt->parm64 = irq->u.mchk.mcic;
1136 break;
1137 case KVM_S390_INT_EXTERNAL_CALL:
1138 interrupt->parm = irq->u.extcall.code;
1139 break;
1140 case KVM_S390_INT_EMERGENCY:
1141 interrupt->parm = irq->u.emerg.code;
1142 break;
1143 case KVM_S390_SIGP_STOP:
1144 case KVM_S390_RESTART:
1145 break; /* These types have no parameters */
1146 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
1147 interrupt->parm = irq->u.io.subchannel_id << 16;
1148 interrupt->parm |= irq->u.io.subchannel_nr;
1149 interrupt->parm64 = (uint64_t)irq->u.io.io_int_parm << 32;
1150 interrupt->parm64 |= irq->u.io.io_int_word;
1151 break;
1152 default:
1153 r = -EINVAL;
1154 break;
1156 return r;
1159 static void inject_vcpu_irq_legacy(CPUState *cs, struct kvm_s390_irq *irq)
1161 struct kvm_s390_interrupt kvmint = {};
1162 int r;
1164 r = s390_kvm_irq_to_interrupt(irq, &kvmint);
1165 if (r < 0) {
1166 fprintf(stderr, "%s called with bogus interrupt\n", __func__);
1167 exit(1);
1170 r = kvm_vcpu_ioctl(cs, KVM_S390_INTERRUPT, &kvmint);
1171 if (r < 0) {
1172 fprintf(stderr, "KVM failed to inject interrupt\n");
1173 exit(1);
1177 void kvm_s390_vcpu_interrupt(S390CPU *cpu, struct kvm_s390_irq *irq)
1179 CPUState *cs = CPU(cpu);
1180 int r;
1182 if (cap_s390_irq) {
1183 r = kvm_vcpu_ioctl(cs, KVM_S390_IRQ, irq);
1184 if (!r) {
1185 return;
1187 error_report("KVM failed to inject interrupt %llx", irq->type);
1188 exit(1);
1191 inject_vcpu_irq_legacy(cs, irq);
1194 void kvm_s390_floating_interrupt_legacy(struct kvm_s390_irq *irq)
1196 struct kvm_s390_interrupt kvmint = {};
1197 int r;
1199 r = s390_kvm_irq_to_interrupt(irq, &kvmint);
1200 if (r < 0) {
1201 fprintf(stderr, "%s called with bogus interrupt\n", __func__);
1202 exit(1);
1205 r = kvm_vm_ioctl(kvm_state, KVM_S390_INTERRUPT, &kvmint);
1206 if (r < 0) {
1207 fprintf(stderr, "KVM failed to inject interrupt\n");
1208 exit(1);
1212 void kvm_s390_program_interrupt(S390CPU *cpu, uint16_t code)
1214 struct kvm_s390_irq irq = {
1215 .type = KVM_S390_PROGRAM_INT,
1216 .u.pgm.code = code,
1218 qemu_log_mask(CPU_LOG_INT, "program interrupt at %#" PRIx64 "\n",
1219 cpu->env.psw.addr);
1220 kvm_s390_vcpu_interrupt(cpu, &irq);
1223 void kvm_s390_access_exception(S390CPU *cpu, uint16_t code, uint64_t te_code)
1225 struct kvm_s390_irq irq = {
1226 .type = KVM_S390_PROGRAM_INT,
1227 .u.pgm.code = code,
1228 .u.pgm.trans_exc_code = te_code,
1229 .u.pgm.exc_access_id = te_code & 3,
1232 kvm_s390_vcpu_interrupt(cpu, &irq);
1235 static void kvm_sclp_service_call(S390CPU *cpu, struct kvm_run *run,
1236 uint16_t ipbh0)
1238 CPUS390XState *env = &cpu->env;
1239 uint64_t sccb;
1240 uint32_t code;
1241 int r;
1243 sccb = env->regs[ipbh0 & 0xf];
1244 code = env->regs[(ipbh0 & 0xf0) >> 4];
1246 switch (run->s390_sieic.icptcode) {
1247 case ICPT_PV_INSTR_NOTIFICATION:
1248 g_assert(s390_is_pv());
1249 /* The notification intercepts are currently handled by KVM */
1250 error_report("unexpected SCLP PV notification");
1251 exit(1);
1252 break;
1253 case ICPT_PV_INSTR:
1254 g_assert(s390_is_pv());
1255 sclp_service_call_protected(env, sccb, code);
1256 /* Setting the CC is done by the Ultravisor. */
1257 break;
1258 case ICPT_INSTRUCTION:
1259 g_assert(!s390_is_pv());
1260 r = sclp_service_call(env, sccb, code);
1261 if (r < 0) {
1262 kvm_s390_program_interrupt(cpu, -r);
1263 return;
1265 setcc(cpu, r);
1269 static int handle_b2(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
1271 CPUS390XState *env = &cpu->env;
1272 int rc = 0;
1273 uint16_t ipbh0 = (run->s390_sieic.ipb & 0xffff0000) >> 16;
1275 switch (ipa1) {
1276 case PRIV_B2_XSCH:
1277 ioinst_handle_xsch(cpu, env->regs[1], RA_IGNORED);
1278 break;
1279 case PRIV_B2_CSCH:
1280 ioinst_handle_csch(cpu, env->regs[1], RA_IGNORED);
1281 break;
1282 case PRIV_B2_HSCH:
1283 ioinst_handle_hsch(cpu, env->regs[1], RA_IGNORED);
1284 break;
1285 case PRIV_B2_MSCH:
1286 ioinst_handle_msch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED);
1287 break;
1288 case PRIV_B2_SSCH:
1289 ioinst_handle_ssch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED);
1290 break;
1291 case PRIV_B2_STCRW:
1292 ioinst_handle_stcrw(cpu, run->s390_sieic.ipb, RA_IGNORED);
1293 break;
1294 case PRIV_B2_STSCH:
1295 ioinst_handle_stsch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED);
1296 break;
1297 case PRIV_B2_TSCH:
1298 /* We should only get tsch via KVM_EXIT_S390_TSCH. */
1299 fprintf(stderr, "Spurious tsch intercept\n");
1300 break;
1301 case PRIV_B2_CHSC:
1302 ioinst_handle_chsc(cpu, run->s390_sieic.ipb, RA_IGNORED);
1303 break;
1304 case PRIV_B2_TPI:
1305 /* This should have been handled by kvm already. */
1306 fprintf(stderr, "Spurious tpi intercept\n");
1307 break;
1308 case PRIV_B2_SCHM:
1309 ioinst_handle_schm(cpu, env->regs[1], env->regs[2],
1310 run->s390_sieic.ipb, RA_IGNORED);
1311 break;
1312 case PRIV_B2_RSCH:
1313 ioinst_handle_rsch(cpu, env->regs[1], RA_IGNORED);
1314 break;
1315 case PRIV_B2_RCHP:
1316 ioinst_handle_rchp(cpu, env->regs[1], RA_IGNORED);
1317 break;
1318 case PRIV_B2_STCPS:
1319 /* We do not provide this instruction, it is suppressed. */
1320 break;
1321 case PRIV_B2_SAL:
1322 ioinst_handle_sal(cpu, env->regs[1], RA_IGNORED);
1323 break;
1324 case PRIV_B2_SIGA:
1325 /* Not provided, set CC = 3 for subchannel not operational */
1326 setcc(cpu, 3);
1327 break;
1328 case PRIV_B2_SCLP_CALL:
1329 kvm_sclp_service_call(cpu, run, ipbh0);
1330 break;
1331 default:
1332 rc = -1;
1333 DPRINTF("KVM: unhandled PRIV: 0xb2%x\n", ipa1);
1334 break;
1337 return rc;
1340 static uint64_t get_base_disp_rxy(S390CPU *cpu, struct kvm_run *run,
1341 uint8_t *ar)
1343 CPUS390XState *env = &cpu->env;
1344 uint32_t x2 = (run->s390_sieic.ipa & 0x000f);
1345 uint32_t base2 = run->s390_sieic.ipb >> 28;
1346 uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) +
1347 ((run->s390_sieic.ipb & 0xff00) << 4);
1349 if (disp2 & 0x80000) {
1350 disp2 += 0xfff00000;
1352 if (ar) {
1353 *ar = base2;
1356 return (base2 ? env->regs[base2] : 0) +
1357 (x2 ? env->regs[x2] : 0) + (long)(int)disp2;
1360 static uint64_t get_base_disp_rsy(S390CPU *cpu, struct kvm_run *run,
1361 uint8_t *ar)
1363 CPUS390XState *env = &cpu->env;
1364 uint32_t base2 = run->s390_sieic.ipb >> 28;
1365 uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) +
1366 ((run->s390_sieic.ipb & 0xff00) << 4);
1368 if (disp2 & 0x80000) {
1369 disp2 += 0xfff00000;
1371 if (ar) {
1372 *ar = base2;
1375 return (base2 ? env->regs[base2] : 0) + (long)(int)disp2;
1378 static int kvm_clp_service_call(S390CPU *cpu, struct kvm_run *run)
1380 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1382 if (s390_has_feat(S390_FEAT_ZPCI)) {
1383 return clp_service_call(cpu, r2, RA_IGNORED);
1384 } else {
1385 return -1;
1389 static int kvm_pcilg_service_call(S390CPU *cpu, struct kvm_run *run)
1391 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1392 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1394 if (s390_has_feat(S390_FEAT_ZPCI)) {
1395 return pcilg_service_call(cpu, r1, r2, RA_IGNORED);
1396 } else {
1397 return -1;
1401 static int kvm_pcistg_service_call(S390CPU *cpu, struct kvm_run *run)
1403 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1404 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1406 if (s390_has_feat(S390_FEAT_ZPCI)) {
1407 return pcistg_service_call(cpu, r1, r2, RA_IGNORED);
1408 } else {
1409 return -1;
1413 static int kvm_stpcifc_service_call(S390CPU *cpu, struct kvm_run *run)
1415 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1416 uint64_t fiba;
1417 uint8_t ar;
1419 if (s390_has_feat(S390_FEAT_ZPCI)) {
1420 fiba = get_base_disp_rxy(cpu, run, &ar);
1422 return stpcifc_service_call(cpu, r1, fiba, ar, RA_IGNORED);
1423 } else {
1424 return -1;
1428 static int kvm_sic_service_call(S390CPU *cpu, struct kvm_run *run)
1430 CPUS390XState *env = &cpu->env;
1431 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1432 uint8_t r3 = run->s390_sieic.ipa & 0x000f;
1433 uint8_t isc;
1434 uint16_t mode;
1435 int r;
1437 mode = env->regs[r1] & 0xffff;
1438 isc = (env->regs[r3] >> 27) & 0x7;
1439 r = css_do_sic(env, isc, mode);
1440 if (r) {
1441 kvm_s390_program_interrupt(cpu, -r);
1444 return 0;
1447 static int kvm_rpcit_service_call(S390CPU *cpu, struct kvm_run *run)
1449 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1450 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1452 if (s390_has_feat(S390_FEAT_ZPCI)) {
1453 return rpcit_service_call(cpu, r1, r2, RA_IGNORED);
1454 } else {
1455 return -1;
1459 static int kvm_pcistb_service_call(S390CPU *cpu, struct kvm_run *run)
1461 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1462 uint8_t r3 = run->s390_sieic.ipa & 0x000f;
1463 uint64_t gaddr;
1464 uint8_t ar;
1466 if (s390_has_feat(S390_FEAT_ZPCI)) {
1467 gaddr = get_base_disp_rsy(cpu, run, &ar);
1469 return pcistb_service_call(cpu, r1, r3, gaddr, ar, RA_IGNORED);
1470 } else {
1471 return -1;
1475 static int kvm_mpcifc_service_call(S390CPU *cpu, struct kvm_run *run)
1477 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1478 uint64_t fiba;
1479 uint8_t ar;
1481 if (s390_has_feat(S390_FEAT_ZPCI)) {
1482 fiba = get_base_disp_rxy(cpu, run, &ar);
1484 return mpcifc_service_call(cpu, r1, fiba, ar, RA_IGNORED);
1485 } else {
1486 return -1;
1490 static int handle_b9(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
1492 int r = 0;
1494 switch (ipa1) {
1495 case PRIV_B9_CLP:
1496 r = kvm_clp_service_call(cpu, run);
1497 break;
1498 case PRIV_B9_PCISTG:
1499 r = kvm_pcistg_service_call(cpu, run);
1500 break;
1501 case PRIV_B9_PCILG:
1502 r = kvm_pcilg_service_call(cpu, run);
1503 break;
1504 case PRIV_B9_RPCIT:
1505 r = kvm_rpcit_service_call(cpu, run);
1506 break;
1507 case PRIV_B9_EQBS:
1508 /* just inject exception */
1509 r = -1;
1510 break;
1511 default:
1512 r = -1;
1513 DPRINTF("KVM: unhandled PRIV: 0xb9%x\n", ipa1);
1514 break;
1517 return r;
1520 static int handle_eb(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl)
1522 int r = 0;
1524 switch (ipbl) {
1525 case PRIV_EB_PCISTB:
1526 r = kvm_pcistb_service_call(cpu, run);
1527 break;
1528 case PRIV_EB_SIC:
1529 r = kvm_sic_service_call(cpu, run);
1530 break;
1531 case PRIV_EB_SQBS:
1532 /* just inject exception */
1533 r = -1;
1534 break;
1535 default:
1536 r = -1;
1537 DPRINTF("KVM: unhandled PRIV: 0xeb%x\n", ipbl);
1538 break;
1541 return r;
1544 static int handle_e3(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl)
1546 int r = 0;
1548 switch (ipbl) {
1549 case PRIV_E3_MPCIFC:
1550 r = kvm_mpcifc_service_call(cpu, run);
1551 break;
1552 case PRIV_E3_STPCIFC:
1553 r = kvm_stpcifc_service_call(cpu, run);
1554 break;
1555 default:
1556 r = -1;
1557 DPRINTF("KVM: unhandled PRIV: 0xe3%x\n", ipbl);
1558 break;
1561 return r;
1564 static int handle_hypercall(S390CPU *cpu, struct kvm_run *run)
1566 CPUS390XState *env = &cpu->env;
1567 int ret;
1569 ret = s390_virtio_hypercall(env);
1570 if (ret == -EINVAL) {
1571 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1572 return 0;
1575 return ret;
1578 static void kvm_handle_diag_288(S390CPU *cpu, struct kvm_run *run)
1580 uint64_t r1, r3;
1581 int rc;
1583 r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1584 r3 = run->s390_sieic.ipa & 0x000f;
1585 rc = handle_diag_288(&cpu->env, r1, r3);
1586 if (rc) {
1587 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1591 static void kvm_handle_diag_308(S390CPU *cpu, struct kvm_run *run)
1593 uint64_t r1, r3;
1595 r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1596 r3 = run->s390_sieic.ipa & 0x000f;
1597 handle_diag_308(&cpu->env, r1, r3, RA_IGNORED);
1600 static int handle_sw_breakpoint(S390CPU *cpu, struct kvm_run *run)
1602 CPUS390XState *env = &cpu->env;
1603 unsigned long pc;
1605 pc = env->psw.addr - sw_bp_ilen;
1606 if (kvm_find_sw_breakpoint(CPU(cpu), pc)) {
1607 env->psw.addr = pc;
1608 return EXCP_DEBUG;
1611 return -ENOENT;
1614 void kvm_s390_set_diag318(CPUState *cs, uint64_t diag318_info)
1616 CPUS390XState *env = &S390_CPU(cs)->env;
1618 /* Feat bit is set only if KVM supports sync for diag318 */
1619 if (s390_has_feat(S390_FEAT_DIAG_318)) {
1620 env->diag318_info = diag318_info;
1621 cs->kvm_run->s.regs.diag318 = diag318_info;
1622 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_DIAG318;
1626 static void handle_diag_318(S390CPU *cpu, struct kvm_run *run)
1628 uint64_t reg = (run->s390_sieic.ipa & 0x00f0) >> 4;
1629 uint64_t diag318_info = run->s.regs.gprs[reg];
1630 CPUState *t;
1633 * DIAG 318 can only be enabled with KVM support. As such, let's
1634 * ensure a guest cannot execute this instruction erroneously.
1636 if (!s390_has_feat(S390_FEAT_DIAG_318)) {
1637 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1638 return;
1641 CPU_FOREACH(t) {
1642 run_on_cpu(t, s390_do_cpu_set_diag318,
1643 RUN_ON_CPU_HOST_ULONG(diag318_info));
1647 #define DIAG_KVM_CODE_MASK 0x000000000000ffff
1649 static int handle_diag(S390CPU *cpu, struct kvm_run *run, uint32_t ipb)
1651 int r = 0;
1652 uint16_t func_code;
1655 * For any diagnose call we support, bits 48-63 of the resulting
1656 * address specify the function code; the remainder is ignored.
1658 func_code = decode_basedisp_rs(&cpu->env, ipb, NULL) & DIAG_KVM_CODE_MASK;
1659 switch (func_code) {
1660 case DIAG_TIMEREVENT:
1661 kvm_handle_diag_288(cpu, run);
1662 break;
1663 case DIAG_IPL:
1664 kvm_handle_diag_308(cpu, run);
1665 break;
1666 case DIAG_SET_CONTROL_PROGRAM_CODES:
1667 handle_diag_318(cpu, run);
1668 break;
1669 case DIAG_KVM_HYPERCALL:
1670 r = handle_hypercall(cpu, run);
1671 break;
1672 case DIAG_KVM_BREAKPOINT:
1673 r = handle_sw_breakpoint(cpu, run);
1674 break;
1675 default:
1676 DPRINTF("KVM: unknown DIAG: 0x%x\n", func_code);
1677 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1678 break;
1681 return r;
1684 static int kvm_s390_handle_sigp(S390CPU *cpu, uint8_t ipa1, uint32_t ipb)
1686 CPUS390XState *env = &cpu->env;
1687 const uint8_t r1 = ipa1 >> 4;
1688 const uint8_t r3 = ipa1 & 0x0f;
1689 int ret;
1690 uint8_t order;
1692 /* get order code */
1693 order = decode_basedisp_rs(env, ipb, NULL) & SIGP_ORDER_MASK;
1695 ret = handle_sigp(env, order, r1, r3);
1696 setcc(cpu, ret);
1697 return 0;
1700 static int handle_instruction(S390CPU *cpu, struct kvm_run *run)
1702 unsigned int ipa0 = (run->s390_sieic.ipa & 0xff00);
1703 uint8_t ipa1 = run->s390_sieic.ipa & 0x00ff;
1704 int r = -1;
1706 DPRINTF("handle_instruction 0x%x 0x%x\n",
1707 run->s390_sieic.ipa, run->s390_sieic.ipb);
1708 switch (ipa0) {
1709 case IPA0_B2:
1710 r = handle_b2(cpu, run, ipa1);
1711 break;
1712 case IPA0_B9:
1713 r = handle_b9(cpu, run, ipa1);
1714 break;
1715 case IPA0_EB:
1716 r = handle_eb(cpu, run, run->s390_sieic.ipb & 0xff);
1717 break;
1718 case IPA0_E3:
1719 r = handle_e3(cpu, run, run->s390_sieic.ipb & 0xff);
1720 break;
1721 case IPA0_DIAG:
1722 r = handle_diag(cpu, run, run->s390_sieic.ipb);
1723 break;
1724 case IPA0_SIGP:
1725 r = kvm_s390_handle_sigp(cpu, ipa1, run->s390_sieic.ipb);
1726 break;
1729 if (r < 0) {
1730 r = 0;
1731 kvm_s390_program_interrupt(cpu, PGM_OPERATION);
1734 return r;
1737 static void unmanageable_intercept(S390CPU *cpu, S390CrashReason reason,
1738 int pswoffset)
1740 CPUState *cs = CPU(cpu);
1742 s390_cpu_halt(cpu);
1743 cpu->env.crash_reason = reason;
1744 qemu_system_guest_panicked(cpu_get_crash_info(cs));
1747 /* try to detect pgm check loops */
1748 static int handle_oper_loop(S390CPU *cpu, struct kvm_run *run)
1750 CPUState *cs = CPU(cpu);
1751 PSW oldpsw, newpsw;
1753 newpsw.mask = ldq_phys(cs->as, cpu->env.psa +
1754 offsetof(LowCore, program_new_psw));
1755 newpsw.addr = ldq_phys(cs->as, cpu->env.psa +
1756 offsetof(LowCore, program_new_psw) + 8);
1757 oldpsw.mask = run->psw_mask;
1758 oldpsw.addr = run->psw_addr;
1760 * Avoid endless loops of operation exceptions, if the pgm new
1761 * PSW will cause a new operation exception.
1762 * The heuristic checks if the pgm new psw is within 6 bytes before
1763 * the faulting psw address (with same DAT, AS settings) and the
1764 * new psw is not a wait psw and the fault was not triggered by
1765 * problem state. In that case go into crashed state.
1768 if (oldpsw.addr - newpsw.addr <= 6 &&
1769 !(newpsw.mask & PSW_MASK_WAIT) &&
1770 !(oldpsw.mask & PSW_MASK_PSTATE) &&
1771 (newpsw.mask & PSW_MASK_ASC) == (oldpsw.mask & PSW_MASK_ASC) &&
1772 (newpsw.mask & PSW_MASK_DAT) == (oldpsw.mask & PSW_MASK_DAT)) {
1773 unmanageable_intercept(cpu, S390_CRASH_REASON_OPINT_LOOP,
1774 offsetof(LowCore, program_new_psw));
1775 return EXCP_HALTED;
1777 return 0;
1780 static int handle_intercept(S390CPU *cpu)
1782 CPUState *cs = CPU(cpu);
1783 struct kvm_run *run = cs->kvm_run;
1784 int icpt_code = run->s390_sieic.icptcode;
1785 int r = 0;
1787 DPRINTF("intercept: 0x%x (at 0x%lx)\n", icpt_code,
1788 (long)cs->kvm_run->psw_addr);
1789 switch (icpt_code) {
1790 case ICPT_INSTRUCTION:
1791 case ICPT_PV_INSTR:
1792 case ICPT_PV_INSTR_NOTIFICATION:
1793 r = handle_instruction(cpu, run);
1794 break;
1795 case ICPT_PROGRAM:
1796 unmanageable_intercept(cpu, S390_CRASH_REASON_PGMINT_LOOP,
1797 offsetof(LowCore, program_new_psw));
1798 r = EXCP_HALTED;
1799 break;
1800 case ICPT_EXT_INT:
1801 unmanageable_intercept(cpu, S390_CRASH_REASON_EXTINT_LOOP,
1802 offsetof(LowCore, external_new_psw));
1803 r = EXCP_HALTED;
1804 break;
1805 case ICPT_WAITPSW:
1806 /* disabled wait, since enabled wait is handled in kernel */
1807 s390_handle_wait(cpu);
1808 r = EXCP_HALTED;
1809 break;
1810 case ICPT_CPU_STOP:
1811 do_stop_interrupt(&cpu->env);
1812 r = EXCP_HALTED;
1813 break;
1814 case ICPT_OPEREXC:
1815 /* check for break points */
1816 r = handle_sw_breakpoint(cpu, run);
1817 if (r == -ENOENT) {
1818 /* Then check for potential pgm check loops */
1819 r = handle_oper_loop(cpu, run);
1820 if (r == 0) {
1821 kvm_s390_program_interrupt(cpu, PGM_OPERATION);
1824 break;
1825 case ICPT_SOFT_INTERCEPT:
1826 fprintf(stderr, "KVM unimplemented icpt SOFT\n");
1827 exit(1);
1828 break;
1829 case ICPT_IO:
1830 fprintf(stderr, "KVM unimplemented icpt IO\n");
1831 exit(1);
1832 break;
1833 default:
1834 fprintf(stderr, "Unknown intercept code: %d\n", icpt_code);
1835 exit(1);
1836 break;
1839 return r;
1842 static int handle_tsch(S390CPU *cpu)
1844 CPUState *cs = CPU(cpu);
1845 struct kvm_run *run = cs->kvm_run;
1846 int ret;
1848 ret = ioinst_handle_tsch(cpu, cpu->env.regs[1], run->s390_tsch.ipb,
1849 RA_IGNORED);
1850 if (ret < 0) {
1852 * Failure.
1853 * If an I/O interrupt had been dequeued, we have to reinject it.
1855 if (run->s390_tsch.dequeued) {
1856 s390_io_interrupt(run->s390_tsch.subchannel_id,
1857 run->s390_tsch.subchannel_nr,
1858 run->s390_tsch.io_int_parm,
1859 run->s390_tsch.io_int_word);
1861 ret = 0;
1863 return ret;
1866 static void insert_stsi_3_2_2(S390CPU *cpu, __u64 addr, uint8_t ar)
1868 const MachineState *ms = MACHINE(qdev_get_machine());
1869 uint16_t conf_cpus = 0, reserved_cpus = 0;
1870 SysIB_322 sysib;
1871 int del, i;
1873 if (s390_is_pv()) {
1874 s390_cpu_pv_mem_read(cpu, 0, &sysib, sizeof(sysib));
1875 } else if (s390_cpu_virt_mem_read(cpu, addr, ar, &sysib, sizeof(sysib))) {
1876 return;
1878 /* Shift the stack of Extended Names to prepare for our own data */
1879 memmove(&sysib.ext_names[1], &sysib.ext_names[0],
1880 sizeof(sysib.ext_names[0]) * (sysib.count - 1));
1881 /* First virt level, that doesn't provide Ext Names delimits stack. It is
1882 * assumed it's not capable of managing Extended Names for lower levels.
1884 for (del = 1; del < sysib.count; del++) {
1885 if (!sysib.vm[del].ext_name_encoding || !sysib.ext_names[del][0]) {
1886 break;
1889 if (del < sysib.count) {
1890 memset(sysib.ext_names[del], 0,
1891 sizeof(sysib.ext_names[0]) * (sysib.count - del));
1894 /* count the cpus and split them into configured and reserved ones */
1895 for (i = 0; i < ms->possible_cpus->len; i++) {
1896 if (ms->possible_cpus->cpus[i].cpu) {
1897 conf_cpus++;
1898 } else {
1899 reserved_cpus++;
1902 sysib.vm[0].total_cpus = conf_cpus + reserved_cpus;
1903 sysib.vm[0].conf_cpus = conf_cpus;
1904 sysib.vm[0].reserved_cpus = reserved_cpus;
1906 /* Insert short machine name in EBCDIC, padded with blanks */
1907 if (qemu_name) {
1908 memset(sysib.vm[0].name, 0x40, sizeof(sysib.vm[0].name));
1909 ebcdic_put(sysib.vm[0].name, qemu_name, MIN(sizeof(sysib.vm[0].name),
1910 strlen(qemu_name)));
1912 sysib.vm[0].ext_name_encoding = 2; /* 2 = UTF-8 */
1913 memset(sysib.ext_names[0], 0, sizeof(sysib.ext_names[0]));
1914 /* If hypervisor specifies zero Extended Name in STSI322 SYSIB, it's
1915 * considered by s390 as not capable of providing any Extended Name.
1916 * Therefore if no name was specified on qemu invocation, we go with the
1917 * same "KVMguest" default, which KVM has filled into short name field.
1919 if (qemu_name) {
1920 strncpy((char *)sysib.ext_names[0], qemu_name,
1921 sizeof(sysib.ext_names[0]));
1922 } else {
1923 strcpy((char *)sysib.ext_names[0], "KVMguest");
1925 /* Insert UUID */
1926 memcpy(sysib.vm[0].uuid, &qemu_uuid, sizeof(sysib.vm[0].uuid));
1928 if (s390_is_pv()) {
1929 s390_cpu_pv_mem_write(cpu, 0, &sysib, sizeof(sysib));
1930 } else {
1931 s390_cpu_virt_mem_write(cpu, addr, ar, &sysib, sizeof(sysib));
1935 static int handle_stsi(S390CPU *cpu)
1937 CPUState *cs = CPU(cpu);
1938 struct kvm_run *run = cs->kvm_run;
1940 switch (run->s390_stsi.fc) {
1941 case 3:
1942 if (run->s390_stsi.sel1 != 2 || run->s390_stsi.sel2 != 2) {
1943 return 0;
1945 /* Only sysib 3.2.2 needs post-handling for now. */
1946 insert_stsi_3_2_2(cpu, run->s390_stsi.addr, run->s390_stsi.ar);
1947 return 0;
1948 default:
1949 return 0;
1953 static int kvm_arch_handle_debug_exit(S390CPU *cpu)
1955 CPUState *cs = CPU(cpu);
1956 struct kvm_run *run = cs->kvm_run;
1958 int ret = 0;
1959 struct kvm_debug_exit_arch *arch_info = &run->debug.arch;
1961 switch (arch_info->type) {
1962 case KVM_HW_WP_WRITE:
1963 if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) {
1964 cs->watchpoint_hit = &hw_watchpoint;
1965 hw_watchpoint.vaddr = arch_info->addr;
1966 hw_watchpoint.flags = BP_MEM_WRITE;
1967 ret = EXCP_DEBUG;
1969 break;
1970 case KVM_HW_BP:
1971 if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) {
1972 ret = EXCP_DEBUG;
1974 break;
1975 case KVM_SINGLESTEP:
1976 if (cs->singlestep_enabled) {
1977 ret = EXCP_DEBUG;
1979 break;
1980 default:
1981 ret = -ENOSYS;
1984 return ret;
1987 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
1989 S390CPU *cpu = S390_CPU(cs);
1990 int ret = 0;
1992 qemu_mutex_lock_iothread();
1994 kvm_cpu_synchronize_state(cs);
1996 switch (run->exit_reason) {
1997 case KVM_EXIT_S390_SIEIC:
1998 ret = handle_intercept(cpu);
1999 break;
2000 case KVM_EXIT_S390_RESET:
2001 s390_ipl_reset_request(cs, S390_RESET_REIPL);
2002 break;
2003 case KVM_EXIT_S390_TSCH:
2004 ret = handle_tsch(cpu);
2005 break;
2006 case KVM_EXIT_S390_STSI:
2007 ret = handle_stsi(cpu);
2008 break;
2009 case KVM_EXIT_DEBUG:
2010 ret = kvm_arch_handle_debug_exit(cpu);
2011 break;
2012 default:
2013 fprintf(stderr, "Unknown KVM exit: %d\n", run->exit_reason);
2014 break;
2016 qemu_mutex_unlock_iothread();
2018 if (ret == 0) {
2019 ret = EXCP_INTERRUPT;
2021 return ret;
2024 bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
2026 return true;
2029 void kvm_s390_enable_css_support(S390CPU *cpu)
2031 int r;
2033 /* Activate host kernel channel subsystem support. */
2034 r = kvm_vcpu_enable_cap(CPU(cpu), KVM_CAP_S390_CSS_SUPPORT, 0);
2035 assert(r == 0);
2038 void kvm_arch_init_irq_routing(KVMState *s)
2041 * Note that while irqchip capabilities generally imply that cpustates
2042 * are handled in-kernel, it is not true for s390 (yet); therefore, we
2043 * have to override the common code kvm_halt_in_kernel_allowed setting.
2045 if (kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2046 kvm_gsi_routing_allowed = true;
2047 kvm_halt_in_kernel_allowed = false;
2051 int kvm_s390_assign_subch_ioeventfd(EventNotifier *notifier, uint32_t sch,
2052 int vq, bool assign)
2054 struct kvm_ioeventfd kick = {
2055 .flags = KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY |
2056 KVM_IOEVENTFD_FLAG_DATAMATCH,
2057 .fd = event_notifier_get_fd(notifier),
2058 .datamatch = vq,
2059 .addr = sch,
2060 .len = 8,
2062 trace_kvm_assign_subch_ioeventfd(kick.fd, kick.addr, assign,
2063 kick.datamatch);
2064 if (!kvm_check_extension(kvm_state, KVM_CAP_IOEVENTFD)) {
2065 return -ENOSYS;
2067 if (!assign) {
2068 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
2070 return kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
2073 int kvm_s390_get_ri(void)
2075 return cap_ri;
2078 int kvm_s390_get_gs(void)
2080 return cap_gs;
2083 int kvm_s390_set_cpu_state(S390CPU *cpu, uint8_t cpu_state)
2085 struct kvm_mp_state mp_state = {};
2086 int ret;
2088 /* the kvm part might not have been initialized yet */
2089 if (CPU(cpu)->kvm_state == NULL) {
2090 return 0;
2093 switch (cpu_state) {
2094 case S390_CPU_STATE_STOPPED:
2095 mp_state.mp_state = KVM_MP_STATE_STOPPED;
2096 break;
2097 case S390_CPU_STATE_CHECK_STOP:
2098 mp_state.mp_state = KVM_MP_STATE_CHECK_STOP;
2099 break;
2100 case S390_CPU_STATE_OPERATING:
2101 mp_state.mp_state = KVM_MP_STATE_OPERATING;
2102 break;
2103 case S390_CPU_STATE_LOAD:
2104 mp_state.mp_state = KVM_MP_STATE_LOAD;
2105 break;
2106 default:
2107 error_report("Requested CPU state is not a valid S390 CPU state: %u",
2108 cpu_state);
2109 exit(1);
2112 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
2113 if (ret) {
2114 trace_kvm_failed_cpu_state_set(CPU(cpu)->cpu_index, cpu_state,
2115 strerror(-ret));
2118 return ret;
2121 void kvm_s390_vcpu_interrupt_pre_save(S390CPU *cpu)
2123 unsigned int max_cpus = MACHINE(qdev_get_machine())->smp.max_cpus;
2124 struct kvm_s390_irq_state irq_state = {
2125 .buf = (uint64_t) cpu->irqstate,
2126 .len = VCPU_IRQ_BUF_SIZE(max_cpus),
2128 CPUState *cs = CPU(cpu);
2129 int32_t bytes;
2131 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) {
2132 return;
2135 bytes = kvm_vcpu_ioctl(cs, KVM_S390_GET_IRQ_STATE, &irq_state);
2136 if (bytes < 0) {
2137 cpu->irqstate_saved_size = 0;
2138 error_report("Migration of interrupt state failed");
2139 return;
2142 cpu->irqstate_saved_size = bytes;
2145 int kvm_s390_vcpu_interrupt_post_load(S390CPU *cpu)
2147 CPUState *cs = CPU(cpu);
2148 struct kvm_s390_irq_state irq_state = {
2149 .buf = (uint64_t) cpu->irqstate,
2150 .len = cpu->irqstate_saved_size,
2152 int r;
2154 if (cpu->irqstate_saved_size == 0) {
2155 return 0;
2158 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) {
2159 return -ENOSYS;
2162 r = kvm_vcpu_ioctl(cs, KVM_S390_SET_IRQ_STATE, &irq_state);
2163 if (r) {
2164 error_report("Setting interrupt state failed %d", r);
2166 return r;
2169 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
2170 uint64_t address, uint32_t data, PCIDevice *dev)
2172 S390PCIBusDevice *pbdev;
2173 uint32_t vec = data & ZPCI_MSI_VEC_MASK;
2175 if (!dev) {
2176 DPRINTF("add_msi_route no pci device\n");
2177 return -ENODEV;
2180 pbdev = s390_pci_find_dev_by_target(s390_get_phb(), DEVICE(dev)->id);
2181 if (!pbdev) {
2182 DPRINTF("add_msi_route no zpci device\n");
2183 return -ENODEV;
2186 route->type = KVM_IRQ_ROUTING_S390_ADAPTER;
2187 route->flags = 0;
2188 route->u.adapter.summary_addr = pbdev->routes.adapter.summary_addr;
2189 route->u.adapter.ind_addr = pbdev->routes.adapter.ind_addr;
2190 route->u.adapter.summary_offset = pbdev->routes.adapter.summary_offset;
2191 route->u.adapter.ind_offset = pbdev->routes.adapter.ind_offset + vec;
2192 route->u.adapter.adapter_id = pbdev->routes.adapter.adapter_id;
2193 return 0;
2196 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
2197 int vector, PCIDevice *dev)
2199 return 0;
2202 int kvm_arch_release_virq_post(int virq)
2204 return 0;
2207 int kvm_arch_msi_data_to_gsi(uint32_t data)
2209 abort();
2212 static int query_cpu_subfunc(S390FeatBitmap features)
2214 struct kvm_s390_vm_cpu_subfunc prop = {};
2215 struct kvm_device_attr attr = {
2216 .group = KVM_S390_VM_CPU_MODEL,
2217 .attr = KVM_S390_VM_CPU_MACHINE_SUBFUNC,
2218 .addr = (uint64_t) &prop,
2220 int rc;
2222 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2223 if (rc) {
2224 return rc;
2228 * We're going to add all subfunctions now, if the corresponding feature
2229 * is available that unlocks the query functions.
2231 s390_add_from_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo);
2232 if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) {
2233 s390_add_from_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff);
2235 if (test_bit(S390_FEAT_MSA, features)) {
2236 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac);
2237 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc);
2238 s390_add_from_feat_block(features, S390_FEAT_TYPE_KM, prop.km);
2239 s390_add_from_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd);
2240 s390_add_from_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd);
2242 if (test_bit(S390_FEAT_MSA_EXT_3, features)) {
2243 s390_add_from_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo);
2245 if (test_bit(S390_FEAT_MSA_EXT_4, features)) {
2246 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr);
2247 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf);
2248 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo);
2249 s390_add_from_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc);
2251 if (test_bit(S390_FEAT_MSA_EXT_5, features)) {
2252 s390_add_from_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno);
2254 if (test_bit(S390_FEAT_MSA_EXT_8, features)) {
2255 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma);
2257 if (test_bit(S390_FEAT_MSA_EXT_9, features)) {
2258 s390_add_from_feat_block(features, S390_FEAT_TYPE_KDSA, prop.kdsa);
2260 if (test_bit(S390_FEAT_ESORT_BASE, features)) {
2261 s390_add_from_feat_block(features, S390_FEAT_TYPE_SORTL, prop.sortl);
2263 if (test_bit(S390_FEAT_DEFLATE_BASE, features)) {
2264 s390_add_from_feat_block(features, S390_FEAT_TYPE_DFLTCC, prop.dfltcc);
2266 return 0;
2269 static int configure_cpu_subfunc(const S390FeatBitmap features)
2271 struct kvm_s390_vm_cpu_subfunc prop = {};
2272 struct kvm_device_attr attr = {
2273 .group = KVM_S390_VM_CPU_MODEL,
2274 .attr = KVM_S390_VM_CPU_PROCESSOR_SUBFUNC,
2275 .addr = (uint64_t) &prop,
2278 if (!kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2279 KVM_S390_VM_CPU_PROCESSOR_SUBFUNC)) {
2280 /* hardware support might be missing, IBC will handle most of this */
2281 return 0;
2284 s390_fill_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo);
2285 if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) {
2286 s390_fill_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff);
2288 if (test_bit(S390_FEAT_MSA, features)) {
2289 s390_fill_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac);
2290 s390_fill_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc);
2291 s390_fill_feat_block(features, S390_FEAT_TYPE_KM, prop.km);
2292 s390_fill_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd);
2293 s390_fill_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd);
2295 if (test_bit(S390_FEAT_MSA_EXT_3, features)) {
2296 s390_fill_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo);
2298 if (test_bit(S390_FEAT_MSA_EXT_4, features)) {
2299 s390_fill_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr);
2300 s390_fill_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf);
2301 s390_fill_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo);
2302 s390_fill_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc);
2304 if (test_bit(S390_FEAT_MSA_EXT_5, features)) {
2305 s390_fill_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno);
2307 if (test_bit(S390_FEAT_MSA_EXT_8, features)) {
2308 s390_fill_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma);
2310 if (test_bit(S390_FEAT_MSA_EXT_9, features)) {
2311 s390_fill_feat_block(features, S390_FEAT_TYPE_KDSA, prop.kdsa);
2313 if (test_bit(S390_FEAT_ESORT_BASE, features)) {
2314 s390_fill_feat_block(features, S390_FEAT_TYPE_SORTL, prop.sortl);
2316 if (test_bit(S390_FEAT_DEFLATE_BASE, features)) {
2317 s390_fill_feat_block(features, S390_FEAT_TYPE_DFLTCC, prop.dfltcc);
2319 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2322 static int kvm_to_feat[][2] = {
2323 { KVM_S390_VM_CPU_FEAT_ESOP, S390_FEAT_ESOP },
2324 { KVM_S390_VM_CPU_FEAT_SIEF2, S390_FEAT_SIE_F2 },
2325 { KVM_S390_VM_CPU_FEAT_64BSCAO , S390_FEAT_SIE_64BSCAO },
2326 { KVM_S390_VM_CPU_FEAT_SIIF, S390_FEAT_SIE_SIIF },
2327 { KVM_S390_VM_CPU_FEAT_GPERE, S390_FEAT_SIE_GPERE },
2328 { KVM_S390_VM_CPU_FEAT_GSLS, S390_FEAT_SIE_GSLS },
2329 { KVM_S390_VM_CPU_FEAT_IB, S390_FEAT_SIE_IB },
2330 { KVM_S390_VM_CPU_FEAT_CEI, S390_FEAT_SIE_CEI },
2331 { KVM_S390_VM_CPU_FEAT_IBS, S390_FEAT_SIE_IBS },
2332 { KVM_S390_VM_CPU_FEAT_SKEY, S390_FEAT_SIE_SKEY },
2333 { KVM_S390_VM_CPU_FEAT_CMMA, S390_FEAT_SIE_CMMA },
2334 { KVM_S390_VM_CPU_FEAT_PFMFI, S390_FEAT_SIE_PFMFI},
2335 { KVM_S390_VM_CPU_FEAT_SIGPIF, S390_FEAT_SIE_SIGPIF},
2336 { KVM_S390_VM_CPU_FEAT_KSS, S390_FEAT_SIE_KSS},
2339 static int query_cpu_feat(S390FeatBitmap features)
2341 struct kvm_s390_vm_cpu_feat prop = {};
2342 struct kvm_device_attr attr = {
2343 .group = KVM_S390_VM_CPU_MODEL,
2344 .attr = KVM_S390_VM_CPU_MACHINE_FEAT,
2345 .addr = (uint64_t) &prop,
2347 int rc;
2348 int i;
2350 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2351 if (rc) {
2352 return rc;
2355 for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) {
2356 if (test_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat)) {
2357 set_bit(kvm_to_feat[i][1], features);
2360 return 0;
2363 static int configure_cpu_feat(const S390FeatBitmap features)
2365 struct kvm_s390_vm_cpu_feat prop = {};
2366 struct kvm_device_attr attr = {
2367 .group = KVM_S390_VM_CPU_MODEL,
2368 .attr = KVM_S390_VM_CPU_PROCESSOR_FEAT,
2369 .addr = (uint64_t) &prop,
2371 int i;
2373 for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) {
2374 if (test_bit(kvm_to_feat[i][1], features)) {
2375 set_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat);
2378 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2381 bool kvm_s390_cpu_models_supported(void)
2383 if (!cpu_model_allowed()) {
2384 /* compatibility machines interfere with the cpu model */
2385 return false;
2387 return kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2388 KVM_S390_VM_CPU_MACHINE) &&
2389 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2390 KVM_S390_VM_CPU_PROCESSOR) &&
2391 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2392 KVM_S390_VM_CPU_MACHINE_FEAT) &&
2393 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2394 KVM_S390_VM_CPU_PROCESSOR_FEAT) &&
2395 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2396 KVM_S390_VM_CPU_MACHINE_SUBFUNC);
2399 void kvm_s390_get_host_cpu_model(S390CPUModel *model, Error **errp)
2401 struct kvm_s390_vm_cpu_machine prop = {};
2402 struct kvm_device_attr attr = {
2403 .group = KVM_S390_VM_CPU_MODEL,
2404 .attr = KVM_S390_VM_CPU_MACHINE,
2405 .addr = (uint64_t) &prop,
2407 uint16_t unblocked_ibc = 0, cpu_type = 0;
2408 int rc;
2410 memset(model, 0, sizeof(*model));
2412 if (!kvm_s390_cpu_models_supported()) {
2413 error_setg(errp, "KVM doesn't support CPU models");
2414 return;
2417 /* query the basic cpu model properties */
2418 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2419 if (rc) {
2420 error_setg(errp, "KVM: Error querying host CPU model: %d", rc);
2421 return;
2424 cpu_type = cpuid_type(prop.cpuid);
2425 if (has_ibc(prop.ibc)) {
2426 model->lowest_ibc = lowest_ibc(prop.ibc);
2427 unblocked_ibc = unblocked_ibc(prop.ibc);
2429 model->cpu_id = cpuid_id(prop.cpuid);
2430 model->cpu_id_format = cpuid_format(prop.cpuid);
2431 model->cpu_ver = 0xff;
2433 /* get supported cpu features indicated via STFL(E) */
2434 s390_add_from_feat_block(model->features, S390_FEAT_TYPE_STFL,
2435 (uint8_t *) prop.fac_mask);
2436 /* dat-enhancement facility 2 has no bit but was introduced with stfle */
2437 if (test_bit(S390_FEAT_STFLE, model->features)) {
2438 set_bit(S390_FEAT_DAT_ENH_2, model->features);
2440 /* get supported cpu features indicated e.g. via SCLP */
2441 rc = query_cpu_feat(model->features);
2442 if (rc) {
2443 error_setg(errp, "KVM: Error querying CPU features: %d", rc);
2444 return;
2446 /* get supported cpu subfunctions indicated via query / test bit */
2447 rc = query_cpu_subfunc(model->features);
2448 if (rc) {
2449 error_setg(errp, "KVM: Error querying CPU subfunctions: %d", rc);
2450 return;
2453 /* PTFF subfunctions might be indicated although kernel support missing */
2454 if (!test_bit(S390_FEAT_MULTIPLE_EPOCH, model->features)) {
2455 clear_bit(S390_FEAT_PTFF_QSIE, model->features);
2456 clear_bit(S390_FEAT_PTFF_QTOUE, model->features);
2457 clear_bit(S390_FEAT_PTFF_STOE, model->features);
2458 clear_bit(S390_FEAT_PTFF_STOUE, model->features);
2461 /* with cpu model support, CMM is only indicated if really available */
2462 if (kvm_s390_cmma_available()) {
2463 set_bit(S390_FEAT_CMM, model->features);
2464 } else {
2465 /* no cmm -> no cmm nt */
2466 clear_bit(S390_FEAT_CMM_NT, model->features);
2469 /* bpb needs kernel support for migration, VSIE and reset */
2470 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_BPB)) {
2471 clear_bit(S390_FEAT_BPB, model->features);
2475 * If we have support for protected virtualization, indicate
2476 * the protected virtualization IPL unpack facility.
2478 if (cap_protected) {
2479 set_bit(S390_FEAT_UNPACK, model->features);
2482 /* We emulate a zPCI bus and AEN, therefore we don't need HW support */
2483 set_bit(S390_FEAT_ZPCI, model->features);
2484 set_bit(S390_FEAT_ADAPTER_EVENT_NOTIFICATION, model->features);
2486 if (s390_known_cpu_type(cpu_type)) {
2487 /* we want the exact model, even if some features are missing */
2488 model->def = s390_find_cpu_def(cpu_type, ibc_gen(unblocked_ibc),
2489 ibc_ec_ga(unblocked_ibc), NULL);
2490 } else {
2491 /* model unknown, e.g. too new - search using features */
2492 model->def = s390_find_cpu_def(0, ibc_gen(unblocked_ibc),
2493 ibc_ec_ga(unblocked_ibc),
2494 model->features);
2496 if (!model->def) {
2497 error_setg(errp, "KVM: host CPU model could not be identified");
2498 return;
2500 /* for now, we can only provide the AP feature with HW support */
2501 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO,
2502 KVM_S390_VM_CRYPTO_ENABLE_APIE)) {
2503 set_bit(S390_FEAT_AP, model->features);
2507 * Extended-Length SCCB is handled entirely within QEMU.
2508 * For PV guests this is completely fenced by the Ultravisor, as Service
2509 * Call error checking and STFLE interpretation are handled via SIE.
2511 set_bit(S390_FEAT_EXTENDED_LENGTH_SCCB, model->features);
2513 if (kvm_check_extension(kvm_state, KVM_CAP_S390_DIAG318)) {
2514 set_bit(S390_FEAT_DIAG_318, model->features);
2517 /* strip of features that are not part of the maximum model */
2518 bitmap_and(model->features, model->features, model->def->full_feat,
2519 S390_FEAT_MAX);
2522 static void kvm_s390_configure_apie(bool interpret)
2524 uint64_t attr = interpret ? KVM_S390_VM_CRYPTO_ENABLE_APIE :
2525 KVM_S390_VM_CRYPTO_DISABLE_APIE;
2527 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
2528 kvm_s390_set_attr(attr);
2532 void kvm_s390_apply_cpu_model(const S390CPUModel *model, Error **errp)
2534 struct kvm_s390_vm_cpu_processor prop = {
2535 .fac_list = { 0 },
2537 struct kvm_device_attr attr = {
2538 .group = KVM_S390_VM_CPU_MODEL,
2539 .attr = KVM_S390_VM_CPU_PROCESSOR,
2540 .addr = (uint64_t) &prop,
2542 int rc;
2544 if (!model) {
2545 /* compatibility handling if cpu models are disabled */
2546 if (kvm_s390_cmma_available()) {
2547 kvm_s390_enable_cmma();
2549 return;
2551 if (!kvm_s390_cpu_models_supported()) {
2552 error_setg(errp, "KVM doesn't support CPU models");
2553 return;
2555 prop.cpuid = s390_cpuid_from_cpu_model(model);
2556 prop.ibc = s390_ibc_from_cpu_model(model);
2557 /* configure cpu features indicated via STFL(e) */
2558 s390_fill_feat_block(model->features, S390_FEAT_TYPE_STFL,
2559 (uint8_t *) prop.fac_list);
2560 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2561 if (rc) {
2562 error_setg(errp, "KVM: Error configuring the CPU model: %d", rc);
2563 return;
2565 /* configure cpu features indicated e.g. via SCLP */
2566 rc = configure_cpu_feat(model->features);
2567 if (rc) {
2568 error_setg(errp, "KVM: Error configuring CPU features: %d", rc);
2569 return;
2571 /* configure cpu subfunctions indicated via query / test bit */
2572 rc = configure_cpu_subfunc(model->features);
2573 if (rc) {
2574 error_setg(errp, "KVM: Error configuring CPU subfunctions: %d", rc);
2575 return;
2577 /* enable CMM via CMMA */
2578 if (test_bit(S390_FEAT_CMM, model->features)) {
2579 kvm_s390_enable_cmma();
2582 if (test_bit(S390_FEAT_AP, model->features)) {
2583 kvm_s390_configure_apie(true);
2587 void kvm_s390_restart_interrupt(S390CPU *cpu)
2589 struct kvm_s390_irq irq = {
2590 .type = KVM_S390_RESTART,
2593 kvm_s390_vcpu_interrupt(cpu, &irq);
2596 void kvm_s390_stop_interrupt(S390CPU *cpu)
2598 struct kvm_s390_irq irq = {
2599 .type = KVM_S390_SIGP_STOP,
2602 kvm_s390_vcpu_interrupt(cpu, &irq);