2 * Generic vector operation expansion
4 * Copyright (c) 2018 Linaro
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
22 #include "tcg/tcg-op.h"
23 #include "tcg/tcg-op-gvec.h"
24 #include "qemu/main-loop.h"
25 #include "tcg/tcg-gvec-desc.h"
29 #ifdef CONFIG_DEBUG_TCG
30 static const TCGOpcode vecop_list_empty
[1] = { 0 };
32 #define vecop_list_empty NULL
36 /* Verify vector size and alignment rules. OFS should be the OR of all
37 of the operand offsets so that we can check them all at once. */
38 static void check_size_align(uint32_t oprsz
, uint32_t maxsz
, uint32_t ofs
)
40 uint32_t opr_align
= oprsz
>= 16 ? 15 : 7;
41 uint32_t max_align
= maxsz
>= 16 || oprsz
>= 16 ? 15 : 7;
42 tcg_debug_assert(oprsz
> 0);
43 tcg_debug_assert(oprsz
<= maxsz
);
44 tcg_debug_assert((oprsz
& opr_align
) == 0);
45 tcg_debug_assert((maxsz
& max_align
) == 0);
46 tcg_debug_assert((ofs
& max_align
) == 0);
49 /* Verify vector overlap rules for two operands. */
50 static void check_overlap_2(uint32_t d
, uint32_t a
, uint32_t s
)
52 tcg_debug_assert(d
== a
|| d
+ s
<= a
|| a
+ s
<= d
);
55 /* Verify vector overlap rules for three operands. */
56 static void check_overlap_3(uint32_t d
, uint32_t a
, uint32_t b
, uint32_t s
)
58 check_overlap_2(d
, a
, s
);
59 check_overlap_2(d
, b
, s
);
60 check_overlap_2(a
, b
, s
);
63 /* Verify vector overlap rules for four operands. */
64 static void check_overlap_4(uint32_t d
, uint32_t a
, uint32_t b
,
65 uint32_t c
, uint32_t s
)
67 check_overlap_2(d
, a
, s
);
68 check_overlap_2(d
, b
, s
);
69 check_overlap_2(d
, c
, s
);
70 check_overlap_2(a
, b
, s
);
71 check_overlap_2(a
, c
, s
);
72 check_overlap_2(b
, c
, s
);
75 /* Create a descriptor from components. */
76 uint32_t simd_desc(uint32_t oprsz
, uint32_t maxsz
, int32_t data
)
80 assert(oprsz
% 8 == 0 && oprsz
<= (8 << SIMD_OPRSZ_BITS
));
81 assert(maxsz
% 8 == 0 && maxsz
<= (8 << SIMD_MAXSZ_BITS
));
82 assert(data
== sextract32(data
, 0, SIMD_DATA_BITS
));
84 oprsz
= (oprsz
/ 8) - 1;
85 maxsz
= (maxsz
/ 8) - 1;
86 desc
= deposit32(desc
, SIMD_OPRSZ_SHIFT
, SIMD_OPRSZ_BITS
, oprsz
);
87 desc
= deposit32(desc
, SIMD_MAXSZ_SHIFT
, SIMD_MAXSZ_BITS
, maxsz
);
88 desc
= deposit32(desc
, SIMD_DATA_SHIFT
, SIMD_DATA_BITS
, data
);
93 /* Generate a call to a gvec-style helper with two vector operands. */
94 void tcg_gen_gvec_2_ool(uint32_t dofs
, uint32_t aofs
,
95 uint32_t oprsz
, uint32_t maxsz
, int32_t data
,
96 gen_helper_gvec_2
*fn
)
99 TCGv_i32 desc
= tcg_const_i32(simd_desc(oprsz
, maxsz
, data
));
101 a0
= tcg_temp_new_ptr();
102 a1
= tcg_temp_new_ptr();
104 tcg_gen_addi_ptr(a0
, cpu_env
, dofs
);
105 tcg_gen_addi_ptr(a1
, cpu_env
, aofs
);
109 tcg_temp_free_ptr(a0
);
110 tcg_temp_free_ptr(a1
);
111 tcg_temp_free_i32(desc
);
114 /* Generate a call to a gvec-style helper with two vector operands
115 and one scalar operand. */
116 void tcg_gen_gvec_2i_ool(uint32_t dofs
, uint32_t aofs
, TCGv_i64 c
,
117 uint32_t oprsz
, uint32_t maxsz
, int32_t data
,
118 gen_helper_gvec_2i
*fn
)
121 TCGv_i32 desc
= tcg_const_i32(simd_desc(oprsz
, maxsz
, data
));
123 a0
= tcg_temp_new_ptr();
124 a1
= tcg_temp_new_ptr();
126 tcg_gen_addi_ptr(a0
, cpu_env
, dofs
);
127 tcg_gen_addi_ptr(a1
, cpu_env
, aofs
);
131 tcg_temp_free_ptr(a0
);
132 tcg_temp_free_ptr(a1
);
133 tcg_temp_free_i32(desc
);
136 /* Generate a call to a gvec-style helper with three vector operands. */
137 void tcg_gen_gvec_3_ool(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
138 uint32_t oprsz
, uint32_t maxsz
, int32_t data
,
139 gen_helper_gvec_3
*fn
)
142 TCGv_i32 desc
= tcg_const_i32(simd_desc(oprsz
, maxsz
, data
));
144 a0
= tcg_temp_new_ptr();
145 a1
= tcg_temp_new_ptr();
146 a2
= tcg_temp_new_ptr();
148 tcg_gen_addi_ptr(a0
, cpu_env
, dofs
);
149 tcg_gen_addi_ptr(a1
, cpu_env
, aofs
);
150 tcg_gen_addi_ptr(a2
, cpu_env
, bofs
);
152 fn(a0
, a1
, a2
, desc
);
154 tcg_temp_free_ptr(a0
);
155 tcg_temp_free_ptr(a1
);
156 tcg_temp_free_ptr(a2
);
157 tcg_temp_free_i32(desc
);
160 /* Generate a call to a gvec-style helper with four vector operands. */
161 void tcg_gen_gvec_4_ool(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
162 uint32_t cofs
, uint32_t oprsz
, uint32_t maxsz
,
163 int32_t data
, gen_helper_gvec_4
*fn
)
165 TCGv_ptr a0
, a1
, a2
, a3
;
166 TCGv_i32 desc
= tcg_const_i32(simd_desc(oprsz
, maxsz
, data
));
168 a0
= tcg_temp_new_ptr();
169 a1
= tcg_temp_new_ptr();
170 a2
= tcg_temp_new_ptr();
171 a3
= tcg_temp_new_ptr();
173 tcg_gen_addi_ptr(a0
, cpu_env
, dofs
);
174 tcg_gen_addi_ptr(a1
, cpu_env
, aofs
);
175 tcg_gen_addi_ptr(a2
, cpu_env
, bofs
);
176 tcg_gen_addi_ptr(a3
, cpu_env
, cofs
);
178 fn(a0
, a1
, a2
, a3
, desc
);
180 tcg_temp_free_ptr(a0
);
181 tcg_temp_free_ptr(a1
);
182 tcg_temp_free_ptr(a2
);
183 tcg_temp_free_ptr(a3
);
184 tcg_temp_free_i32(desc
);
187 /* Generate a call to a gvec-style helper with five vector operands. */
188 void tcg_gen_gvec_5_ool(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
189 uint32_t cofs
, uint32_t xofs
, uint32_t oprsz
,
190 uint32_t maxsz
, int32_t data
, gen_helper_gvec_5
*fn
)
192 TCGv_ptr a0
, a1
, a2
, a3
, a4
;
193 TCGv_i32 desc
= tcg_const_i32(simd_desc(oprsz
, maxsz
, data
));
195 a0
= tcg_temp_new_ptr();
196 a1
= tcg_temp_new_ptr();
197 a2
= tcg_temp_new_ptr();
198 a3
= tcg_temp_new_ptr();
199 a4
= tcg_temp_new_ptr();
201 tcg_gen_addi_ptr(a0
, cpu_env
, dofs
);
202 tcg_gen_addi_ptr(a1
, cpu_env
, aofs
);
203 tcg_gen_addi_ptr(a2
, cpu_env
, bofs
);
204 tcg_gen_addi_ptr(a3
, cpu_env
, cofs
);
205 tcg_gen_addi_ptr(a4
, cpu_env
, xofs
);
207 fn(a0
, a1
, a2
, a3
, a4
, desc
);
209 tcg_temp_free_ptr(a0
);
210 tcg_temp_free_ptr(a1
);
211 tcg_temp_free_ptr(a2
);
212 tcg_temp_free_ptr(a3
);
213 tcg_temp_free_ptr(a4
);
214 tcg_temp_free_i32(desc
);
217 /* Generate a call to a gvec-style helper with three vector operands
218 and an extra pointer operand. */
219 void tcg_gen_gvec_2_ptr(uint32_t dofs
, uint32_t aofs
,
220 TCGv_ptr ptr
, uint32_t oprsz
, uint32_t maxsz
,
221 int32_t data
, gen_helper_gvec_2_ptr
*fn
)
224 TCGv_i32 desc
= tcg_const_i32(simd_desc(oprsz
, maxsz
, data
));
226 a0
= tcg_temp_new_ptr();
227 a1
= tcg_temp_new_ptr();
229 tcg_gen_addi_ptr(a0
, cpu_env
, dofs
);
230 tcg_gen_addi_ptr(a1
, cpu_env
, aofs
);
232 fn(a0
, a1
, ptr
, desc
);
234 tcg_temp_free_ptr(a0
);
235 tcg_temp_free_ptr(a1
);
236 tcg_temp_free_i32(desc
);
239 /* Generate a call to a gvec-style helper with three vector operands
240 and an extra pointer operand. */
241 void tcg_gen_gvec_3_ptr(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
242 TCGv_ptr ptr
, uint32_t oprsz
, uint32_t maxsz
,
243 int32_t data
, gen_helper_gvec_3_ptr
*fn
)
246 TCGv_i32 desc
= tcg_const_i32(simd_desc(oprsz
, maxsz
, data
));
248 a0
= tcg_temp_new_ptr();
249 a1
= tcg_temp_new_ptr();
250 a2
= tcg_temp_new_ptr();
252 tcg_gen_addi_ptr(a0
, cpu_env
, dofs
);
253 tcg_gen_addi_ptr(a1
, cpu_env
, aofs
);
254 tcg_gen_addi_ptr(a2
, cpu_env
, bofs
);
256 fn(a0
, a1
, a2
, ptr
, desc
);
258 tcg_temp_free_ptr(a0
);
259 tcg_temp_free_ptr(a1
);
260 tcg_temp_free_ptr(a2
);
261 tcg_temp_free_i32(desc
);
264 /* Generate a call to a gvec-style helper with four vector operands
265 and an extra pointer operand. */
266 void tcg_gen_gvec_4_ptr(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
267 uint32_t cofs
, TCGv_ptr ptr
, uint32_t oprsz
,
268 uint32_t maxsz
, int32_t data
,
269 gen_helper_gvec_4_ptr
*fn
)
271 TCGv_ptr a0
, a1
, a2
, a3
;
272 TCGv_i32 desc
= tcg_const_i32(simd_desc(oprsz
, maxsz
, data
));
274 a0
= tcg_temp_new_ptr();
275 a1
= tcg_temp_new_ptr();
276 a2
= tcg_temp_new_ptr();
277 a3
= tcg_temp_new_ptr();
279 tcg_gen_addi_ptr(a0
, cpu_env
, dofs
);
280 tcg_gen_addi_ptr(a1
, cpu_env
, aofs
);
281 tcg_gen_addi_ptr(a2
, cpu_env
, bofs
);
282 tcg_gen_addi_ptr(a3
, cpu_env
, cofs
);
284 fn(a0
, a1
, a2
, a3
, ptr
, desc
);
286 tcg_temp_free_ptr(a0
);
287 tcg_temp_free_ptr(a1
);
288 tcg_temp_free_ptr(a2
);
289 tcg_temp_free_ptr(a3
);
290 tcg_temp_free_i32(desc
);
293 /* Generate a call to a gvec-style helper with five vector operands
294 and an extra pointer operand. */
295 void tcg_gen_gvec_5_ptr(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
296 uint32_t cofs
, uint32_t eofs
, TCGv_ptr ptr
,
297 uint32_t oprsz
, uint32_t maxsz
, int32_t data
,
298 gen_helper_gvec_5_ptr
*fn
)
300 TCGv_ptr a0
, a1
, a2
, a3
, a4
;
301 TCGv_i32 desc
= tcg_const_i32(simd_desc(oprsz
, maxsz
, data
));
303 a0
= tcg_temp_new_ptr();
304 a1
= tcg_temp_new_ptr();
305 a2
= tcg_temp_new_ptr();
306 a3
= tcg_temp_new_ptr();
307 a4
= tcg_temp_new_ptr();
309 tcg_gen_addi_ptr(a0
, cpu_env
, dofs
);
310 tcg_gen_addi_ptr(a1
, cpu_env
, aofs
);
311 tcg_gen_addi_ptr(a2
, cpu_env
, bofs
);
312 tcg_gen_addi_ptr(a3
, cpu_env
, cofs
);
313 tcg_gen_addi_ptr(a4
, cpu_env
, eofs
);
315 fn(a0
, a1
, a2
, a3
, a4
, ptr
, desc
);
317 tcg_temp_free_ptr(a0
);
318 tcg_temp_free_ptr(a1
);
319 tcg_temp_free_ptr(a2
);
320 tcg_temp_free_ptr(a3
);
321 tcg_temp_free_ptr(a4
);
322 tcg_temp_free_i32(desc
);
325 /* Return true if we want to implement something of OPRSZ bytes
326 in units of LNSZ. This limits the expansion of inline code. */
327 static inline bool check_size_impl(uint32_t oprsz
, uint32_t lnsz
)
337 tcg_debug_assert((r
& 7) == 0);
340 /* For sizes below 16, accept no remainder. */
346 * Recall that ARM SVE allows vector sizes that are not a
347 * power of 2, but always a multiple of 16. The intent is
348 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
349 * In addition, expand_clr needs to handle a multiple of 8.
350 * Thus we can handle the tail with one more operation per
351 * diminishing power of 2.
356 return q
<= MAX_UNROLL
;
359 static void expand_clr(uint32_t dofs
, uint32_t maxsz
);
361 /* Duplicate C as per VECE. */
362 uint64_t (dup_const
)(unsigned vece
, uint64_t c
)
366 return 0x0101010101010101ull
* (uint8_t)c
;
368 return 0x0001000100010001ull
* (uint16_t)c
;
370 return 0x0000000100000001ull
* (uint32_t)c
;
374 g_assert_not_reached();
378 /* Duplicate IN into OUT as per VECE. */
379 static void gen_dup_i32(unsigned vece
, TCGv_i32 out
, TCGv_i32 in
)
383 tcg_gen_ext8u_i32(out
, in
);
384 tcg_gen_muli_i32(out
, out
, 0x01010101);
387 tcg_gen_deposit_i32(out
, in
, in
, 16, 16);
390 tcg_gen_mov_i32(out
, in
);
393 g_assert_not_reached();
397 static void gen_dup_i64(unsigned vece
, TCGv_i64 out
, TCGv_i64 in
)
401 tcg_gen_ext8u_i64(out
, in
);
402 tcg_gen_muli_i64(out
, out
, 0x0101010101010101ull
);
405 tcg_gen_ext16u_i64(out
, in
);
406 tcg_gen_muli_i64(out
, out
, 0x0001000100010001ull
);
409 tcg_gen_deposit_i64(out
, in
, in
, 32, 32);
412 tcg_gen_mov_i64(out
, in
);
415 g_assert_not_reached();
419 /* Select a supported vector type for implementing an operation on SIZE
420 * bytes. If OP is 0, assume that the real operation to be performed is
421 * required by all backends. Otherwise, make sure than OP can be performed
422 * on elements of size VECE in the selected type. Do not select V64 if
423 * PREFER_I64 is true. Return 0 if no vector type is selected.
425 static TCGType
choose_vector_type(const TCGOpcode
*list
, unsigned vece
,
426 uint32_t size
, bool prefer_i64
)
429 * Recall that ARM SVE allows vector sizes that are not a
430 * power of 2, but always a multiple of 16. The intent is
431 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
432 * It is hard to imagine a case in which v256 is supported
433 * but v128 is not, but check anyway.
434 * In addition, expand_clr needs to handle a multiple of 8.
436 if (TCG_TARGET_HAS_v256
&&
437 check_size_impl(size
, 32) &&
438 tcg_can_emit_vecop_list(list
, TCG_TYPE_V256
, vece
) &&
440 (TCG_TARGET_HAS_v128
&&
441 tcg_can_emit_vecop_list(list
, TCG_TYPE_V128
, vece
))) &&
443 (TCG_TARGET_HAS_v64
&&
444 tcg_can_emit_vecop_list(list
, TCG_TYPE_V64
, vece
)))) {
445 return TCG_TYPE_V256
;
447 if (TCG_TARGET_HAS_v128
&&
448 check_size_impl(size
, 16) &&
449 tcg_can_emit_vecop_list(list
, TCG_TYPE_V128
, vece
) &&
451 (TCG_TARGET_HAS_v64
&&
452 tcg_can_emit_vecop_list(list
, TCG_TYPE_V64
, vece
)))) {
453 return TCG_TYPE_V128
;
455 if (TCG_TARGET_HAS_v64
&& !prefer_i64
&& check_size_impl(size
, 8)
456 && tcg_can_emit_vecop_list(list
, TCG_TYPE_V64
, vece
)) {
462 static void do_dup_store(TCGType type
, uint32_t dofs
, uint32_t oprsz
,
463 uint32_t maxsz
, TCGv_vec t_vec
)
467 tcg_debug_assert(oprsz
>= 8);
470 * This may be expand_clr for the tail of an operation, e.g.
471 * oprsz == 8 && maxsz == 64. The first 8 bytes of this store
472 * are misaligned wrt the maximum vector size, so do that first.
475 tcg_gen_stl_vec(t_vec
, cpu_env
, dofs
+ i
, TCG_TYPE_V64
);
482 * Recall that ARM SVE allows vector sizes that are not a
483 * power of 2, but always a multiple of 16. The intent is
484 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
486 for (; i
+ 32 <= oprsz
; i
+= 32) {
487 tcg_gen_stl_vec(t_vec
, cpu_env
, dofs
+ i
, TCG_TYPE_V256
);
491 for (; i
+ 16 <= oprsz
; i
+= 16) {
492 tcg_gen_stl_vec(t_vec
, cpu_env
, dofs
+ i
, TCG_TYPE_V128
);
496 for (; i
< oprsz
; i
+= 8) {
497 tcg_gen_stl_vec(t_vec
, cpu_env
, dofs
+ i
, TCG_TYPE_V64
);
501 g_assert_not_reached();
505 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
509 /* Set OPRSZ bytes at DOFS to replications of IN_32, IN_64 or IN_C.
510 * Only one of IN_32 or IN_64 may be set;
511 * IN_C is used if IN_32 and IN_64 are unset.
513 static void do_dup(unsigned vece
, uint32_t dofs
, uint32_t oprsz
,
514 uint32_t maxsz
, TCGv_i32 in_32
, TCGv_i64 in_64
,
519 TCGv_i32 t_32
, t_desc
;
523 assert(vece
<= (in_32
? MO_32
: MO_64
));
524 assert(in_32
== NULL
|| in_64
== NULL
);
526 /* If we're storing 0, expand oprsz to maxsz. */
527 if (in_32
== NULL
&& in_64
== NULL
) {
528 in_c
= dup_const(vece
, in_c
);
534 /* Implement inline with a vector type, if possible.
535 * Prefer integer when 64-bit host and no variable dup.
537 type
= choose_vector_type(NULL
, vece
, oprsz
,
538 (TCG_TARGET_REG_BITS
== 64 && in_32
== NULL
539 && (in_64
== NULL
|| vece
== MO_64
)));
541 TCGv_vec t_vec
= tcg_temp_new_vec(type
);
544 tcg_gen_dup_i32_vec(vece
, t_vec
, in_32
);
546 tcg_gen_dup_i64_vec(vece
, t_vec
, in_64
);
548 tcg_gen_dupi_vec(vece
, t_vec
, in_c
);
550 do_dup_store(type
, dofs
, oprsz
, maxsz
, t_vec
);
551 tcg_temp_free_vec(t_vec
);
555 /* Otherwise, inline with an integer type, unless "large". */
556 if (check_size_impl(oprsz
, TCG_TARGET_REG_BITS
/ 8)) {
561 /* We are given a 32-bit variable input. For a 64-bit host,
562 use a 64-bit operation unless the 32-bit operation would
564 if (TCG_TARGET_REG_BITS
== 64
565 && (vece
!= MO_32
|| !check_size_impl(oprsz
, 4))) {
566 t_64
= tcg_temp_new_i64();
567 tcg_gen_extu_i32_i64(t_64
, in_32
);
568 gen_dup_i64(vece
, t_64
, t_64
);
570 t_32
= tcg_temp_new_i32();
571 gen_dup_i32(vece
, t_32
, in_32
);
574 /* We are given a 64-bit variable input. */
575 t_64
= tcg_temp_new_i64();
576 gen_dup_i64(vece
, t_64
, in_64
);
578 /* We are given a constant input. */
579 /* For 64-bit hosts, use 64-bit constants for "simple" constants
580 or when we'd need too many 32-bit stores, or when a 64-bit
581 constant is really required. */
583 || (TCG_TARGET_REG_BITS
== 64
584 && (in_c
== 0 || in_c
== -1
585 || !check_size_impl(oprsz
, 4)))) {
586 t_64
= tcg_const_i64(in_c
);
588 t_32
= tcg_const_i32(in_c
);
592 /* Implement inline if we picked an implementation size above. */
594 for (i
= 0; i
< oprsz
; i
+= 4) {
595 tcg_gen_st_i32(t_32
, cpu_env
, dofs
+ i
);
597 tcg_temp_free_i32(t_32
);
601 for (i
= 0; i
< oprsz
; i
+= 8) {
602 tcg_gen_st_i64(t_64
, cpu_env
, dofs
+ i
);
604 tcg_temp_free_i64(t_64
);
609 /* Otherwise implement out of line. */
610 t_ptr
= tcg_temp_new_ptr();
611 tcg_gen_addi_ptr(t_ptr
, cpu_env
, dofs
);
612 t_desc
= tcg_const_i32(simd_desc(oprsz
, maxsz
, 0));
616 gen_helper_gvec_dup64(t_ptr
, t_desc
, in_64
);
618 t_64
= tcg_const_i64(in_c
);
619 gen_helper_gvec_dup64(t_ptr
, t_desc
, t_64
);
620 tcg_temp_free_i64(t_64
);
623 typedef void dup_fn(TCGv_ptr
, TCGv_i32
, TCGv_i32
);
624 static dup_fn
* const fns
[3] = {
625 gen_helper_gvec_dup8
,
626 gen_helper_gvec_dup16
,
627 gen_helper_gvec_dup32
631 fns
[vece
](t_ptr
, t_desc
, in_32
);
633 t_32
= tcg_temp_new_i32();
635 tcg_gen_extrl_i64_i32(t_32
, in_64
);
636 } else if (vece
== MO_8
) {
637 tcg_gen_movi_i32(t_32
, in_c
& 0xff);
638 } else if (vece
== MO_16
) {
639 tcg_gen_movi_i32(t_32
, in_c
& 0xffff);
641 tcg_gen_movi_i32(t_32
, in_c
);
643 fns
[vece
](t_ptr
, t_desc
, t_32
);
644 tcg_temp_free_i32(t_32
);
648 tcg_temp_free_ptr(t_ptr
);
649 tcg_temp_free_i32(t_desc
);
654 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
658 /* Likewise, but with zero. */
659 static void expand_clr(uint32_t dofs
, uint32_t maxsz
)
661 do_dup(MO_8
, dofs
, maxsz
, maxsz
, NULL
, NULL
, 0);
664 /* Expand OPSZ bytes worth of two-operand operations using i32 elements. */
665 static void expand_2_i32(uint32_t dofs
, uint32_t aofs
, uint32_t oprsz
,
666 bool load_dest
, void (*fni
)(TCGv_i32
, TCGv_i32
))
668 TCGv_i32 t0
= tcg_temp_new_i32();
669 TCGv_i32 t1
= tcg_temp_new_i32();
672 for (i
= 0; i
< oprsz
; i
+= 4) {
673 tcg_gen_ld_i32(t0
, cpu_env
, aofs
+ i
);
675 tcg_gen_ld_i32(t1
, cpu_env
, dofs
+ i
);
678 tcg_gen_st_i32(t1
, cpu_env
, dofs
+ i
);
680 tcg_temp_free_i32(t0
);
681 tcg_temp_free_i32(t1
);
684 static void expand_2i_i32(uint32_t dofs
, uint32_t aofs
, uint32_t oprsz
,
685 int32_t c
, bool load_dest
,
686 void (*fni
)(TCGv_i32
, TCGv_i32
, int32_t))
688 TCGv_i32 t0
= tcg_temp_new_i32();
689 TCGv_i32 t1
= tcg_temp_new_i32();
692 for (i
= 0; i
< oprsz
; i
+= 4) {
693 tcg_gen_ld_i32(t0
, cpu_env
, aofs
+ i
);
695 tcg_gen_ld_i32(t1
, cpu_env
, dofs
+ i
);
698 tcg_gen_st_i32(t1
, cpu_env
, dofs
+ i
);
700 tcg_temp_free_i32(t0
);
701 tcg_temp_free_i32(t1
);
704 static void expand_2s_i32(uint32_t dofs
, uint32_t aofs
, uint32_t oprsz
,
705 TCGv_i32 c
, bool scalar_first
,
706 void (*fni
)(TCGv_i32
, TCGv_i32
, TCGv_i32
))
708 TCGv_i32 t0
= tcg_temp_new_i32();
709 TCGv_i32 t1
= tcg_temp_new_i32();
712 for (i
= 0; i
< oprsz
; i
+= 4) {
713 tcg_gen_ld_i32(t0
, cpu_env
, aofs
+ i
);
719 tcg_gen_st_i32(t1
, cpu_env
, dofs
+ i
);
721 tcg_temp_free_i32(t0
);
722 tcg_temp_free_i32(t1
);
725 /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
726 static void expand_3_i32(uint32_t dofs
, uint32_t aofs
,
727 uint32_t bofs
, uint32_t oprsz
, bool load_dest
,
728 void (*fni
)(TCGv_i32
, TCGv_i32
, TCGv_i32
))
730 TCGv_i32 t0
= tcg_temp_new_i32();
731 TCGv_i32 t1
= tcg_temp_new_i32();
732 TCGv_i32 t2
= tcg_temp_new_i32();
735 for (i
= 0; i
< oprsz
; i
+= 4) {
736 tcg_gen_ld_i32(t0
, cpu_env
, aofs
+ i
);
737 tcg_gen_ld_i32(t1
, cpu_env
, bofs
+ i
);
739 tcg_gen_ld_i32(t2
, cpu_env
, dofs
+ i
);
742 tcg_gen_st_i32(t2
, cpu_env
, dofs
+ i
);
744 tcg_temp_free_i32(t2
);
745 tcg_temp_free_i32(t1
);
746 tcg_temp_free_i32(t0
);
749 static void expand_3i_i32(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
750 uint32_t oprsz
, int32_t c
, bool load_dest
,
751 void (*fni
)(TCGv_i32
, TCGv_i32
, TCGv_i32
, int32_t))
753 TCGv_i32 t0
= tcg_temp_new_i32();
754 TCGv_i32 t1
= tcg_temp_new_i32();
755 TCGv_i32 t2
= tcg_temp_new_i32();
758 for (i
= 0; i
< oprsz
; i
+= 4) {
759 tcg_gen_ld_i32(t0
, cpu_env
, aofs
+ i
);
760 tcg_gen_ld_i32(t1
, cpu_env
, bofs
+ i
);
762 tcg_gen_ld_i32(t2
, cpu_env
, dofs
+ i
);
765 tcg_gen_st_i32(t2
, cpu_env
, dofs
+ i
);
767 tcg_temp_free_i32(t0
);
768 tcg_temp_free_i32(t1
);
769 tcg_temp_free_i32(t2
);
772 /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
773 static void expand_4_i32(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
774 uint32_t cofs
, uint32_t oprsz
, bool write_aofs
,
775 void (*fni
)(TCGv_i32
, TCGv_i32
, TCGv_i32
, TCGv_i32
))
777 TCGv_i32 t0
= tcg_temp_new_i32();
778 TCGv_i32 t1
= tcg_temp_new_i32();
779 TCGv_i32 t2
= tcg_temp_new_i32();
780 TCGv_i32 t3
= tcg_temp_new_i32();
783 for (i
= 0; i
< oprsz
; i
+= 4) {
784 tcg_gen_ld_i32(t1
, cpu_env
, aofs
+ i
);
785 tcg_gen_ld_i32(t2
, cpu_env
, bofs
+ i
);
786 tcg_gen_ld_i32(t3
, cpu_env
, cofs
+ i
);
788 tcg_gen_st_i32(t0
, cpu_env
, dofs
+ i
);
790 tcg_gen_st_i32(t1
, cpu_env
, aofs
+ i
);
793 tcg_temp_free_i32(t3
);
794 tcg_temp_free_i32(t2
);
795 tcg_temp_free_i32(t1
);
796 tcg_temp_free_i32(t0
);
799 /* Expand OPSZ bytes worth of two-operand operations using i64 elements. */
800 static void expand_2_i64(uint32_t dofs
, uint32_t aofs
, uint32_t oprsz
,
801 bool load_dest
, void (*fni
)(TCGv_i64
, TCGv_i64
))
803 TCGv_i64 t0
= tcg_temp_new_i64();
804 TCGv_i64 t1
= tcg_temp_new_i64();
807 for (i
= 0; i
< oprsz
; i
+= 8) {
808 tcg_gen_ld_i64(t0
, cpu_env
, aofs
+ i
);
810 tcg_gen_ld_i64(t1
, cpu_env
, dofs
+ i
);
813 tcg_gen_st_i64(t1
, cpu_env
, dofs
+ i
);
815 tcg_temp_free_i64(t0
);
816 tcg_temp_free_i64(t1
);
819 static void expand_2i_i64(uint32_t dofs
, uint32_t aofs
, uint32_t oprsz
,
820 int64_t c
, bool load_dest
,
821 void (*fni
)(TCGv_i64
, TCGv_i64
, int64_t))
823 TCGv_i64 t0
= tcg_temp_new_i64();
824 TCGv_i64 t1
= tcg_temp_new_i64();
827 for (i
= 0; i
< oprsz
; i
+= 8) {
828 tcg_gen_ld_i64(t0
, cpu_env
, aofs
+ i
);
830 tcg_gen_ld_i64(t1
, cpu_env
, dofs
+ i
);
833 tcg_gen_st_i64(t1
, cpu_env
, dofs
+ i
);
835 tcg_temp_free_i64(t0
);
836 tcg_temp_free_i64(t1
);
839 static void expand_2s_i64(uint32_t dofs
, uint32_t aofs
, uint32_t oprsz
,
840 TCGv_i64 c
, bool scalar_first
,
841 void (*fni
)(TCGv_i64
, TCGv_i64
, TCGv_i64
))
843 TCGv_i64 t0
= tcg_temp_new_i64();
844 TCGv_i64 t1
= tcg_temp_new_i64();
847 for (i
= 0; i
< oprsz
; i
+= 8) {
848 tcg_gen_ld_i64(t0
, cpu_env
, aofs
+ i
);
854 tcg_gen_st_i64(t1
, cpu_env
, dofs
+ i
);
856 tcg_temp_free_i64(t0
);
857 tcg_temp_free_i64(t1
);
860 /* Expand OPSZ bytes worth of three-operand operations using i64 elements. */
861 static void expand_3_i64(uint32_t dofs
, uint32_t aofs
,
862 uint32_t bofs
, uint32_t oprsz
, bool load_dest
,
863 void (*fni
)(TCGv_i64
, TCGv_i64
, TCGv_i64
))
865 TCGv_i64 t0
= tcg_temp_new_i64();
866 TCGv_i64 t1
= tcg_temp_new_i64();
867 TCGv_i64 t2
= tcg_temp_new_i64();
870 for (i
= 0; i
< oprsz
; i
+= 8) {
871 tcg_gen_ld_i64(t0
, cpu_env
, aofs
+ i
);
872 tcg_gen_ld_i64(t1
, cpu_env
, bofs
+ i
);
874 tcg_gen_ld_i64(t2
, cpu_env
, dofs
+ i
);
877 tcg_gen_st_i64(t2
, cpu_env
, dofs
+ i
);
879 tcg_temp_free_i64(t2
);
880 tcg_temp_free_i64(t1
);
881 tcg_temp_free_i64(t0
);
884 static void expand_3i_i64(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
885 uint32_t oprsz
, int64_t c
, bool load_dest
,
886 void (*fni
)(TCGv_i64
, TCGv_i64
, TCGv_i64
, int64_t))
888 TCGv_i64 t0
= tcg_temp_new_i64();
889 TCGv_i64 t1
= tcg_temp_new_i64();
890 TCGv_i64 t2
= tcg_temp_new_i64();
893 for (i
= 0; i
< oprsz
; i
+= 8) {
894 tcg_gen_ld_i64(t0
, cpu_env
, aofs
+ i
);
895 tcg_gen_ld_i64(t1
, cpu_env
, bofs
+ i
);
897 tcg_gen_ld_i64(t2
, cpu_env
, dofs
+ i
);
900 tcg_gen_st_i64(t2
, cpu_env
, dofs
+ i
);
902 tcg_temp_free_i64(t0
);
903 tcg_temp_free_i64(t1
);
904 tcg_temp_free_i64(t2
);
907 /* Expand OPSZ bytes worth of three-operand operations using i64 elements. */
908 static void expand_4_i64(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
909 uint32_t cofs
, uint32_t oprsz
, bool write_aofs
,
910 void (*fni
)(TCGv_i64
, TCGv_i64
, TCGv_i64
, TCGv_i64
))
912 TCGv_i64 t0
= tcg_temp_new_i64();
913 TCGv_i64 t1
= tcg_temp_new_i64();
914 TCGv_i64 t2
= tcg_temp_new_i64();
915 TCGv_i64 t3
= tcg_temp_new_i64();
918 for (i
= 0; i
< oprsz
; i
+= 8) {
919 tcg_gen_ld_i64(t1
, cpu_env
, aofs
+ i
);
920 tcg_gen_ld_i64(t2
, cpu_env
, bofs
+ i
);
921 tcg_gen_ld_i64(t3
, cpu_env
, cofs
+ i
);
923 tcg_gen_st_i64(t0
, cpu_env
, dofs
+ i
);
925 tcg_gen_st_i64(t1
, cpu_env
, aofs
+ i
);
928 tcg_temp_free_i64(t3
);
929 tcg_temp_free_i64(t2
);
930 tcg_temp_free_i64(t1
);
931 tcg_temp_free_i64(t0
);
934 /* Expand OPSZ bytes worth of two-operand operations using host vectors. */
935 static void expand_2_vec(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
936 uint32_t oprsz
, uint32_t tysz
, TCGType type
,
938 void (*fni
)(unsigned, TCGv_vec
, TCGv_vec
))
940 TCGv_vec t0
= tcg_temp_new_vec(type
);
941 TCGv_vec t1
= tcg_temp_new_vec(type
);
944 for (i
= 0; i
< oprsz
; i
+= tysz
) {
945 tcg_gen_ld_vec(t0
, cpu_env
, aofs
+ i
);
947 tcg_gen_ld_vec(t1
, cpu_env
, dofs
+ i
);
950 tcg_gen_st_vec(t1
, cpu_env
, dofs
+ i
);
952 tcg_temp_free_vec(t0
);
953 tcg_temp_free_vec(t1
);
956 /* Expand OPSZ bytes worth of two-vector operands and an immediate operand
957 using host vectors. */
958 static void expand_2i_vec(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
959 uint32_t oprsz
, uint32_t tysz
, TCGType type
,
960 int64_t c
, bool load_dest
,
961 void (*fni
)(unsigned, TCGv_vec
, TCGv_vec
, int64_t))
963 TCGv_vec t0
= tcg_temp_new_vec(type
);
964 TCGv_vec t1
= tcg_temp_new_vec(type
);
967 for (i
= 0; i
< oprsz
; i
+= tysz
) {
968 tcg_gen_ld_vec(t0
, cpu_env
, aofs
+ i
);
970 tcg_gen_ld_vec(t1
, cpu_env
, dofs
+ i
);
972 fni(vece
, t1
, t0
, c
);
973 tcg_gen_st_vec(t1
, cpu_env
, dofs
+ i
);
975 tcg_temp_free_vec(t0
);
976 tcg_temp_free_vec(t1
);
979 static void expand_2s_vec(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
980 uint32_t oprsz
, uint32_t tysz
, TCGType type
,
981 TCGv_vec c
, bool scalar_first
,
982 void (*fni
)(unsigned, TCGv_vec
, TCGv_vec
, TCGv_vec
))
984 TCGv_vec t0
= tcg_temp_new_vec(type
);
985 TCGv_vec t1
= tcg_temp_new_vec(type
);
988 for (i
= 0; i
< oprsz
; i
+= tysz
) {
989 tcg_gen_ld_vec(t0
, cpu_env
, aofs
+ i
);
991 fni(vece
, t1
, c
, t0
);
993 fni(vece
, t1
, t0
, c
);
995 tcg_gen_st_vec(t1
, cpu_env
, dofs
+ i
);
997 tcg_temp_free_vec(t0
);
998 tcg_temp_free_vec(t1
);
1001 /* Expand OPSZ bytes worth of three-operand operations using host vectors. */
1002 static void expand_3_vec(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1003 uint32_t bofs
, uint32_t oprsz
,
1004 uint32_t tysz
, TCGType type
, bool load_dest
,
1005 void (*fni
)(unsigned, TCGv_vec
, TCGv_vec
, TCGv_vec
))
1007 TCGv_vec t0
= tcg_temp_new_vec(type
);
1008 TCGv_vec t1
= tcg_temp_new_vec(type
);
1009 TCGv_vec t2
= tcg_temp_new_vec(type
);
1012 for (i
= 0; i
< oprsz
; i
+= tysz
) {
1013 tcg_gen_ld_vec(t0
, cpu_env
, aofs
+ i
);
1014 tcg_gen_ld_vec(t1
, cpu_env
, bofs
+ i
);
1016 tcg_gen_ld_vec(t2
, cpu_env
, dofs
+ i
);
1018 fni(vece
, t2
, t0
, t1
);
1019 tcg_gen_st_vec(t2
, cpu_env
, dofs
+ i
);
1021 tcg_temp_free_vec(t2
);
1022 tcg_temp_free_vec(t1
);
1023 tcg_temp_free_vec(t0
);
1027 * Expand OPSZ bytes worth of three-vector operands and an immediate operand
1028 * using host vectors.
1030 static void expand_3i_vec(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1031 uint32_t bofs
, uint32_t oprsz
, uint32_t tysz
,
1032 TCGType type
, int64_t c
, bool load_dest
,
1033 void (*fni
)(unsigned, TCGv_vec
, TCGv_vec
, TCGv_vec
,
1036 TCGv_vec t0
= tcg_temp_new_vec(type
);
1037 TCGv_vec t1
= tcg_temp_new_vec(type
);
1038 TCGv_vec t2
= tcg_temp_new_vec(type
);
1041 for (i
= 0; i
< oprsz
; i
+= tysz
) {
1042 tcg_gen_ld_vec(t0
, cpu_env
, aofs
+ i
);
1043 tcg_gen_ld_vec(t1
, cpu_env
, bofs
+ i
);
1045 tcg_gen_ld_vec(t2
, cpu_env
, dofs
+ i
);
1047 fni(vece
, t2
, t0
, t1
, c
);
1048 tcg_gen_st_vec(t2
, cpu_env
, dofs
+ i
);
1050 tcg_temp_free_vec(t0
);
1051 tcg_temp_free_vec(t1
);
1052 tcg_temp_free_vec(t2
);
1055 /* Expand OPSZ bytes worth of four-operand operations using host vectors. */
1056 static void expand_4_vec(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1057 uint32_t bofs
, uint32_t cofs
, uint32_t oprsz
,
1058 uint32_t tysz
, TCGType type
, bool write_aofs
,
1059 void (*fni
)(unsigned, TCGv_vec
, TCGv_vec
,
1060 TCGv_vec
, TCGv_vec
))
1062 TCGv_vec t0
= tcg_temp_new_vec(type
);
1063 TCGv_vec t1
= tcg_temp_new_vec(type
);
1064 TCGv_vec t2
= tcg_temp_new_vec(type
);
1065 TCGv_vec t3
= tcg_temp_new_vec(type
);
1068 for (i
= 0; i
< oprsz
; i
+= tysz
) {
1069 tcg_gen_ld_vec(t1
, cpu_env
, aofs
+ i
);
1070 tcg_gen_ld_vec(t2
, cpu_env
, bofs
+ i
);
1071 tcg_gen_ld_vec(t3
, cpu_env
, cofs
+ i
);
1072 fni(vece
, t0
, t1
, t2
, t3
);
1073 tcg_gen_st_vec(t0
, cpu_env
, dofs
+ i
);
1075 tcg_gen_st_vec(t1
, cpu_env
, aofs
+ i
);
1078 tcg_temp_free_vec(t3
);
1079 tcg_temp_free_vec(t2
);
1080 tcg_temp_free_vec(t1
);
1081 tcg_temp_free_vec(t0
);
1084 /* Expand a vector two-operand operation. */
1085 void tcg_gen_gvec_2(uint32_t dofs
, uint32_t aofs
,
1086 uint32_t oprsz
, uint32_t maxsz
, const GVecGen2
*g
)
1088 const TCGOpcode
*this_list
= g
->opt_opc
? : vecop_list_empty
;
1089 const TCGOpcode
*hold_list
= tcg_swap_vecop_list(this_list
);
1093 check_size_align(oprsz
, maxsz
, dofs
| aofs
);
1094 check_overlap_2(dofs
, aofs
, maxsz
);
1098 type
= choose_vector_type(g
->opt_opc
, g
->vece
, oprsz
, g
->prefer_i64
);
1102 /* Recall that ARM SVE allows vector sizes that are not a
1103 * power of 2, but always a multiple of 16. The intent is
1104 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1106 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
1107 expand_2_vec(g
->vece
, dofs
, aofs
, some
, 32, TCG_TYPE_V256
,
1108 g
->load_dest
, g
->fniv
);
1109 if (some
== oprsz
) {
1118 expand_2_vec(g
->vece
, dofs
, aofs
, oprsz
, 16, TCG_TYPE_V128
,
1119 g
->load_dest
, g
->fniv
);
1122 expand_2_vec(g
->vece
, dofs
, aofs
, oprsz
, 8, TCG_TYPE_V64
,
1123 g
->load_dest
, g
->fniv
);
1127 if (g
->fni8
&& check_size_impl(oprsz
, 8)) {
1128 expand_2_i64(dofs
, aofs
, oprsz
, g
->load_dest
, g
->fni8
);
1129 } else if (g
->fni4
&& check_size_impl(oprsz
, 4)) {
1130 expand_2_i32(dofs
, aofs
, oprsz
, g
->load_dest
, g
->fni4
);
1132 assert(g
->fno
!= NULL
);
1133 tcg_gen_gvec_2_ool(dofs
, aofs
, oprsz
, maxsz
, g
->data
, g
->fno
);
1139 g_assert_not_reached();
1141 tcg_swap_vecop_list(hold_list
);
1143 if (oprsz
< maxsz
) {
1144 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
1148 /* Expand a vector operation with two vectors and an immediate. */
1149 void tcg_gen_gvec_2i(uint32_t dofs
, uint32_t aofs
, uint32_t oprsz
,
1150 uint32_t maxsz
, int64_t c
, const GVecGen2i
*g
)
1152 const TCGOpcode
*this_list
= g
->opt_opc
? : vecop_list_empty
;
1153 const TCGOpcode
*hold_list
= tcg_swap_vecop_list(this_list
);
1157 check_size_align(oprsz
, maxsz
, dofs
| aofs
);
1158 check_overlap_2(dofs
, aofs
, maxsz
);
1162 type
= choose_vector_type(g
->opt_opc
, g
->vece
, oprsz
, g
->prefer_i64
);
1166 /* Recall that ARM SVE allows vector sizes that are not a
1167 * power of 2, but always a multiple of 16. The intent is
1168 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1170 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
1171 expand_2i_vec(g
->vece
, dofs
, aofs
, some
, 32, TCG_TYPE_V256
,
1172 c
, g
->load_dest
, g
->fniv
);
1173 if (some
== oprsz
) {
1182 expand_2i_vec(g
->vece
, dofs
, aofs
, oprsz
, 16, TCG_TYPE_V128
,
1183 c
, g
->load_dest
, g
->fniv
);
1186 expand_2i_vec(g
->vece
, dofs
, aofs
, oprsz
, 8, TCG_TYPE_V64
,
1187 c
, g
->load_dest
, g
->fniv
);
1191 if (g
->fni8
&& check_size_impl(oprsz
, 8)) {
1192 expand_2i_i64(dofs
, aofs
, oprsz
, c
, g
->load_dest
, g
->fni8
);
1193 } else if (g
->fni4
&& check_size_impl(oprsz
, 4)) {
1194 expand_2i_i32(dofs
, aofs
, oprsz
, c
, g
->load_dest
, g
->fni4
);
1197 tcg_gen_gvec_2_ool(dofs
, aofs
, oprsz
, maxsz
, c
, g
->fno
);
1199 TCGv_i64 tcg_c
= tcg_const_i64(c
);
1200 tcg_gen_gvec_2i_ool(dofs
, aofs
, tcg_c
, oprsz
,
1202 tcg_temp_free_i64(tcg_c
);
1209 g_assert_not_reached();
1211 tcg_swap_vecop_list(hold_list
);
1213 if (oprsz
< maxsz
) {
1214 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
1218 /* Expand a vector operation with two vectors and a scalar. */
1219 void tcg_gen_gvec_2s(uint32_t dofs
, uint32_t aofs
, uint32_t oprsz
,
1220 uint32_t maxsz
, TCGv_i64 c
, const GVecGen2s
*g
)
1224 check_size_align(oprsz
, maxsz
, dofs
| aofs
);
1225 check_overlap_2(dofs
, aofs
, maxsz
);
1229 type
= choose_vector_type(g
->opt_opc
, g
->vece
, oprsz
, g
->prefer_i64
);
1232 const TCGOpcode
*this_list
= g
->opt_opc
? : vecop_list_empty
;
1233 const TCGOpcode
*hold_list
= tcg_swap_vecop_list(this_list
);
1234 TCGv_vec t_vec
= tcg_temp_new_vec(type
);
1237 tcg_gen_dup_i64_vec(g
->vece
, t_vec
, c
);
1241 /* Recall that ARM SVE allows vector sizes that are not a
1242 * power of 2, but always a multiple of 16. The intent is
1243 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1245 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
1246 expand_2s_vec(g
->vece
, dofs
, aofs
, some
, 32, TCG_TYPE_V256
,
1247 t_vec
, g
->scalar_first
, g
->fniv
);
1248 if (some
== oprsz
) {
1258 expand_2s_vec(g
->vece
, dofs
, aofs
, oprsz
, 16, TCG_TYPE_V128
,
1259 t_vec
, g
->scalar_first
, g
->fniv
);
1263 expand_2s_vec(g
->vece
, dofs
, aofs
, oprsz
, 8, TCG_TYPE_V64
,
1264 t_vec
, g
->scalar_first
, g
->fniv
);
1268 g_assert_not_reached();
1270 tcg_temp_free_vec(t_vec
);
1271 tcg_swap_vecop_list(hold_list
);
1272 } else if (g
->fni8
&& check_size_impl(oprsz
, 8)) {
1273 TCGv_i64 t64
= tcg_temp_new_i64();
1275 gen_dup_i64(g
->vece
, t64
, c
);
1276 expand_2s_i64(dofs
, aofs
, oprsz
, t64
, g
->scalar_first
, g
->fni8
);
1277 tcg_temp_free_i64(t64
);
1278 } else if (g
->fni4
&& check_size_impl(oprsz
, 4)) {
1279 TCGv_i32 t32
= tcg_temp_new_i32();
1281 tcg_gen_extrl_i64_i32(t32
, c
);
1282 gen_dup_i32(g
->vece
, t32
, t32
);
1283 expand_2s_i32(dofs
, aofs
, oprsz
, t32
, g
->scalar_first
, g
->fni4
);
1284 tcg_temp_free_i32(t32
);
1286 tcg_gen_gvec_2i_ool(dofs
, aofs
, c
, oprsz
, maxsz
, 0, g
->fno
);
1290 if (oprsz
< maxsz
) {
1291 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
1295 /* Expand a vector three-operand operation. */
1296 void tcg_gen_gvec_3(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
1297 uint32_t oprsz
, uint32_t maxsz
, const GVecGen3
*g
)
1299 const TCGOpcode
*this_list
= g
->opt_opc
? : vecop_list_empty
;
1300 const TCGOpcode
*hold_list
= tcg_swap_vecop_list(this_list
);
1304 check_size_align(oprsz
, maxsz
, dofs
| aofs
| bofs
);
1305 check_overlap_3(dofs
, aofs
, bofs
, maxsz
);
1309 type
= choose_vector_type(g
->opt_opc
, g
->vece
, oprsz
, g
->prefer_i64
);
1313 /* Recall that ARM SVE allows vector sizes that are not a
1314 * power of 2, but always a multiple of 16. The intent is
1315 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1317 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
1318 expand_3_vec(g
->vece
, dofs
, aofs
, bofs
, some
, 32, TCG_TYPE_V256
,
1319 g
->load_dest
, g
->fniv
);
1320 if (some
== oprsz
) {
1330 expand_3_vec(g
->vece
, dofs
, aofs
, bofs
, oprsz
, 16, TCG_TYPE_V128
,
1331 g
->load_dest
, g
->fniv
);
1334 expand_3_vec(g
->vece
, dofs
, aofs
, bofs
, oprsz
, 8, TCG_TYPE_V64
,
1335 g
->load_dest
, g
->fniv
);
1339 if (g
->fni8
&& check_size_impl(oprsz
, 8)) {
1340 expand_3_i64(dofs
, aofs
, bofs
, oprsz
, g
->load_dest
, g
->fni8
);
1341 } else if (g
->fni4
&& check_size_impl(oprsz
, 4)) {
1342 expand_3_i32(dofs
, aofs
, bofs
, oprsz
, g
->load_dest
, g
->fni4
);
1344 assert(g
->fno
!= NULL
);
1345 tcg_gen_gvec_3_ool(dofs
, aofs
, bofs
, oprsz
,
1346 maxsz
, g
->data
, g
->fno
);
1352 g_assert_not_reached();
1354 tcg_swap_vecop_list(hold_list
);
1356 if (oprsz
< maxsz
) {
1357 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
1361 /* Expand a vector operation with three vectors and an immediate. */
1362 void tcg_gen_gvec_3i(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
1363 uint32_t oprsz
, uint32_t maxsz
, int64_t c
,
1366 const TCGOpcode
*this_list
= g
->opt_opc
? : vecop_list_empty
;
1367 const TCGOpcode
*hold_list
= tcg_swap_vecop_list(this_list
);
1371 check_size_align(oprsz
, maxsz
, dofs
| aofs
| bofs
);
1372 check_overlap_3(dofs
, aofs
, bofs
, maxsz
);
1376 type
= choose_vector_type(g
->opt_opc
, g
->vece
, oprsz
, g
->prefer_i64
);
1381 * Recall that ARM SVE allows vector sizes that are not a
1382 * power of 2, but always a multiple of 16. The intent is
1383 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1385 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
1386 expand_3i_vec(g
->vece
, dofs
, aofs
, bofs
, some
, 32, TCG_TYPE_V256
,
1387 c
, g
->load_dest
, g
->fniv
);
1388 if (some
== oprsz
) {
1398 expand_3i_vec(g
->vece
, dofs
, aofs
, bofs
, oprsz
, 16, TCG_TYPE_V128
,
1399 c
, g
->load_dest
, g
->fniv
);
1402 expand_3i_vec(g
->vece
, dofs
, aofs
, bofs
, oprsz
, 8, TCG_TYPE_V64
,
1403 c
, g
->load_dest
, g
->fniv
);
1407 if (g
->fni8
&& check_size_impl(oprsz
, 8)) {
1408 expand_3i_i64(dofs
, aofs
, bofs
, oprsz
, c
, g
->load_dest
, g
->fni8
);
1409 } else if (g
->fni4
&& check_size_impl(oprsz
, 4)) {
1410 expand_3i_i32(dofs
, aofs
, bofs
, oprsz
, c
, g
->load_dest
, g
->fni4
);
1412 assert(g
->fno
!= NULL
);
1413 tcg_gen_gvec_3_ool(dofs
, aofs
, bofs
, oprsz
, maxsz
, c
, g
->fno
);
1419 g_assert_not_reached();
1421 tcg_swap_vecop_list(hold_list
);
1423 if (oprsz
< maxsz
) {
1424 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
1428 /* Expand a vector four-operand operation. */
1429 void tcg_gen_gvec_4(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
, uint32_t cofs
,
1430 uint32_t oprsz
, uint32_t maxsz
, const GVecGen4
*g
)
1432 const TCGOpcode
*this_list
= g
->opt_opc
? : vecop_list_empty
;
1433 const TCGOpcode
*hold_list
= tcg_swap_vecop_list(this_list
);
1437 check_size_align(oprsz
, maxsz
, dofs
| aofs
| bofs
| cofs
);
1438 check_overlap_4(dofs
, aofs
, bofs
, cofs
, maxsz
);
1442 type
= choose_vector_type(g
->opt_opc
, g
->vece
, oprsz
, g
->prefer_i64
);
1446 /* Recall that ARM SVE allows vector sizes that are not a
1447 * power of 2, but always a multiple of 16. The intent is
1448 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1450 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
1451 expand_4_vec(g
->vece
, dofs
, aofs
, bofs
, cofs
, some
,
1452 32, TCG_TYPE_V256
, g
->write_aofs
, g
->fniv
);
1453 if (some
== oprsz
) {
1464 expand_4_vec(g
->vece
, dofs
, aofs
, bofs
, cofs
, oprsz
,
1465 16, TCG_TYPE_V128
, g
->write_aofs
, g
->fniv
);
1468 expand_4_vec(g
->vece
, dofs
, aofs
, bofs
, cofs
, oprsz
,
1469 8, TCG_TYPE_V64
, g
->write_aofs
, g
->fniv
);
1473 if (g
->fni8
&& check_size_impl(oprsz
, 8)) {
1474 expand_4_i64(dofs
, aofs
, bofs
, cofs
, oprsz
,
1475 g
->write_aofs
, g
->fni8
);
1476 } else if (g
->fni4
&& check_size_impl(oprsz
, 4)) {
1477 expand_4_i32(dofs
, aofs
, bofs
, cofs
, oprsz
,
1478 g
->write_aofs
, g
->fni4
);
1480 assert(g
->fno
!= NULL
);
1481 tcg_gen_gvec_4_ool(dofs
, aofs
, bofs
, cofs
,
1482 oprsz
, maxsz
, g
->data
, g
->fno
);
1488 g_assert_not_reached();
1490 tcg_swap_vecop_list(hold_list
);
1492 if (oprsz
< maxsz
) {
1493 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
1498 * Expand specific vector operations.
1501 static void vec_mov2(unsigned vece
, TCGv_vec a
, TCGv_vec b
)
1503 tcg_gen_mov_vec(a
, b
);
1506 void tcg_gen_gvec_mov(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1507 uint32_t oprsz
, uint32_t maxsz
)
1509 static const GVecGen2 g
= {
1510 .fni8
= tcg_gen_mov_i64
,
1512 .fno
= gen_helper_gvec_mov
,
1513 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
1516 tcg_gen_gvec_2(dofs
, aofs
, oprsz
, maxsz
, &g
);
1518 check_size_align(oprsz
, maxsz
, dofs
);
1519 if (oprsz
< maxsz
) {
1520 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
1525 void tcg_gen_gvec_dup_i32(unsigned vece
, uint32_t dofs
, uint32_t oprsz
,
1526 uint32_t maxsz
, TCGv_i32 in
)
1528 check_size_align(oprsz
, maxsz
, dofs
);
1529 tcg_debug_assert(vece
<= MO_32
);
1530 do_dup(vece
, dofs
, oprsz
, maxsz
, in
, NULL
, 0);
1533 void tcg_gen_gvec_dup_i64(unsigned vece
, uint32_t dofs
, uint32_t oprsz
,
1534 uint32_t maxsz
, TCGv_i64 in
)
1536 check_size_align(oprsz
, maxsz
, dofs
);
1537 tcg_debug_assert(vece
<= MO_64
);
1538 do_dup(vece
, dofs
, oprsz
, maxsz
, NULL
, in
, 0);
1541 void tcg_gen_gvec_dup_mem(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1542 uint32_t oprsz
, uint32_t maxsz
)
1544 check_size_align(oprsz
, maxsz
, dofs
);
1545 if (vece
<= MO_64
) {
1546 TCGType type
= choose_vector_type(NULL
, vece
, oprsz
, 0);
1548 TCGv_vec t_vec
= tcg_temp_new_vec(type
);
1549 tcg_gen_dup_mem_vec(vece
, t_vec
, cpu_env
, aofs
);
1550 do_dup_store(type
, dofs
, oprsz
, maxsz
, t_vec
);
1551 tcg_temp_free_vec(t_vec
);
1552 } else if (vece
<= MO_32
) {
1553 TCGv_i32 in
= tcg_temp_new_i32();
1556 tcg_gen_ld8u_i32(in
, cpu_env
, aofs
);
1559 tcg_gen_ld16u_i32(in
, cpu_env
, aofs
);
1562 tcg_gen_ld_i32(in
, cpu_env
, aofs
);
1565 do_dup(vece
, dofs
, oprsz
, maxsz
, in
, NULL
, 0);
1566 tcg_temp_free_i32(in
);
1568 TCGv_i64 in
= tcg_temp_new_i64();
1569 tcg_gen_ld_i64(in
, cpu_env
, aofs
);
1570 do_dup(vece
, dofs
, oprsz
, maxsz
, NULL
, in
, 0);
1571 tcg_temp_free_i64(in
);
1574 /* 128-bit duplicate. */
1575 /* ??? Dup to 256-bit vector. */
1578 tcg_debug_assert(vece
== 4);
1579 tcg_debug_assert(oprsz
>= 16);
1580 if (TCG_TARGET_HAS_v128
) {
1581 TCGv_vec in
= tcg_temp_new_vec(TCG_TYPE_V128
);
1583 tcg_gen_ld_vec(in
, cpu_env
, aofs
);
1584 for (i
= 0; i
< oprsz
; i
+= 16) {
1585 tcg_gen_st_vec(in
, cpu_env
, dofs
+ i
);
1587 tcg_temp_free_vec(in
);
1589 TCGv_i64 in0
= tcg_temp_new_i64();
1590 TCGv_i64 in1
= tcg_temp_new_i64();
1592 tcg_gen_ld_i64(in0
, cpu_env
, aofs
);
1593 tcg_gen_ld_i64(in1
, cpu_env
, aofs
+ 8);
1594 for (i
= 0; i
< oprsz
; i
+= 16) {
1595 tcg_gen_st_i64(in0
, cpu_env
, dofs
+ i
);
1596 tcg_gen_st_i64(in1
, cpu_env
, dofs
+ i
+ 8);
1598 tcg_temp_free_i64(in0
);
1599 tcg_temp_free_i64(in1
);
1601 if (oprsz
< maxsz
) {
1602 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
1607 void tcg_gen_gvec_dup_imm(unsigned vece
, uint32_t dofs
, uint32_t oprsz
,
1608 uint32_t maxsz
, uint64_t x
)
1610 check_size_align(oprsz
, maxsz
, dofs
);
1611 do_dup(vece
, dofs
, oprsz
, maxsz
, NULL
, NULL
, x
);
1614 void tcg_gen_gvec_not(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1615 uint32_t oprsz
, uint32_t maxsz
)
1617 static const GVecGen2 g
= {
1618 .fni8
= tcg_gen_not_i64
,
1619 .fniv
= tcg_gen_not_vec
,
1620 .fno
= gen_helper_gvec_not
,
1621 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
1623 tcg_gen_gvec_2(dofs
, aofs
, oprsz
, maxsz
, &g
);
1626 /* Perform a vector addition using normal addition and a mask. The mask
1627 should be the sign bit of each lane. This 6-operation form is more
1628 efficient than separate additions when there are 4 or more lanes in
1629 the 64-bit operation. */
1630 static void gen_addv_mask(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
, TCGv_i64 m
)
1632 TCGv_i64 t1
= tcg_temp_new_i64();
1633 TCGv_i64 t2
= tcg_temp_new_i64();
1634 TCGv_i64 t3
= tcg_temp_new_i64();
1636 tcg_gen_andc_i64(t1
, a
, m
);
1637 tcg_gen_andc_i64(t2
, b
, m
);
1638 tcg_gen_xor_i64(t3
, a
, b
);
1639 tcg_gen_add_i64(d
, t1
, t2
);
1640 tcg_gen_and_i64(t3
, t3
, m
);
1641 tcg_gen_xor_i64(d
, d
, t3
);
1643 tcg_temp_free_i64(t1
);
1644 tcg_temp_free_i64(t2
);
1645 tcg_temp_free_i64(t3
);
1648 void tcg_gen_vec_add8_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
1650 TCGv_i64 m
= tcg_const_i64(dup_const(MO_8
, 0x80));
1651 gen_addv_mask(d
, a
, b
, m
);
1652 tcg_temp_free_i64(m
);
1655 void tcg_gen_vec_add16_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
1657 TCGv_i64 m
= tcg_const_i64(dup_const(MO_16
, 0x8000));
1658 gen_addv_mask(d
, a
, b
, m
);
1659 tcg_temp_free_i64(m
);
1662 void tcg_gen_vec_add32_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
1664 TCGv_i64 t1
= tcg_temp_new_i64();
1665 TCGv_i64 t2
= tcg_temp_new_i64();
1667 tcg_gen_andi_i64(t1
, a
, ~0xffffffffull
);
1668 tcg_gen_add_i64(t2
, a
, b
);
1669 tcg_gen_add_i64(t1
, t1
, b
);
1670 tcg_gen_deposit_i64(d
, t1
, t2
, 0, 32);
1672 tcg_temp_free_i64(t1
);
1673 tcg_temp_free_i64(t2
);
1676 static const TCGOpcode vecop_list_add
[] = { INDEX_op_add_vec
, 0 };
1678 void tcg_gen_gvec_add(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1679 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
1681 static const GVecGen3 g
[4] = {
1682 { .fni8
= tcg_gen_vec_add8_i64
,
1683 .fniv
= tcg_gen_add_vec
,
1684 .fno
= gen_helper_gvec_add8
,
1685 .opt_opc
= vecop_list_add
,
1687 { .fni8
= tcg_gen_vec_add16_i64
,
1688 .fniv
= tcg_gen_add_vec
,
1689 .fno
= gen_helper_gvec_add16
,
1690 .opt_opc
= vecop_list_add
,
1692 { .fni4
= tcg_gen_add_i32
,
1693 .fniv
= tcg_gen_add_vec
,
1694 .fno
= gen_helper_gvec_add32
,
1695 .opt_opc
= vecop_list_add
,
1697 { .fni8
= tcg_gen_add_i64
,
1698 .fniv
= tcg_gen_add_vec
,
1699 .fno
= gen_helper_gvec_add64
,
1700 .opt_opc
= vecop_list_add
,
1701 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
1705 tcg_debug_assert(vece
<= MO_64
);
1706 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
1709 void tcg_gen_gvec_adds(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1710 TCGv_i64 c
, uint32_t oprsz
, uint32_t maxsz
)
1712 static const GVecGen2s g
[4] = {
1713 { .fni8
= tcg_gen_vec_add8_i64
,
1714 .fniv
= tcg_gen_add_vec
,
1715 .fno
= gen_helper_gvec_adds8
,
1716 .opt_opc
= vecop_list_add
,
1718 { .fni8
= tcg_gen_vec_add16_i64
,
1719 .fniv
= tcg_gen_add_vec
,
1720 .fno
= gen_helper_gvec_adds16
,
1721 .opt_opc
= vecop_list_add
,
1723 { .fni4
= tcg_gen_add_i32
,
1724 .fniv
= tcg_gen_add_vec
,
1725 .fno
= gen_helper_gvec_adds32
,
1726 .opt_opc
= vecop_list_add
,
1728 { .fni8
= tcg_gen_add_i64
,
1729 .fniv
= tcg_gen_add_vec
,
1730 .fno
= gen_helper_gvec_adds64
,
1731 .opt_opc
= vecop_list_add
,
1732 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
1736 tcg_debug_assert(vece
<= MO_64
);
1737 tcg_gen_gvec_2s(dofs
, aofs
, oprsz
, maxsz
, c
, &g
[vece
]);
1740 void tcg_gen_gvec_addi(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1741 int64_t c
, uint32_t oprsz
, uint32_t maxsz
)
1743 TCGv_i64 tmp
= tcg_const_i64(c
);
1744 tcg_gen_gvec_adds(vece
, dofs
, aofs
, tmp
, oprsz
, maxsz
);
1745 tcg_temp_free_i64(tmp
);
1748 static const TCGOpcode vecop_list_sub
[] = { INDEX_op_sub_vec
, 0 };
1750 void tcg_gen_gvec_subs(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1751 TCGv_i64 c
, uint32_t oprsz
, uint32_t maxsz
)
1753 static const GVecGen2s g
[4] = {
1754 { .fni8
= tcg_gen_vec_sub8_i64
,
1755 .fniv
= tcg_gen_sub_vec
,
1756 .fno
= gen_helper_gvec_subs8
,
1757 .opt_opc
= vecop_list_sub
,
1759 { .fni8
= tcg_gen_vec_sub16_i64
,
1760 .fniv
= tcg_gen_sub_vec
,
1761 .fno
= gen_helper_gvec_subs16
,
1762 .opt_opc
= vecop_list_sub
,
1764 { .fni4
= tcg_gen_sub_i32
,
1765 .fniv
= tcg_gen_sub_vec
,
1766 .fno
= gen_helper_gvec_subs32
,
1767 .opt_opc
= vecop_list_sub
,
1769 { .fni8
= tcg_gen_sub_i64
,
1770 .fniv
= tcg_gen_sub_vec
,
1771 .fno
= gen_helper_gvec_subs64
,
1772 .opt_opc
= vecop_list_sub
,
1773 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
1777 tcg_debug_assert(vece
<= MO_64
);
1778 tcg_gen_gvec_2s(dofs
, aofs
, oprsz
, maxsz
, c
, &g
[vece
]);
1781 /* Perform a vector subtraction using normal subtraction and a mask.
1782 Compare gen_addv_mask above. */
1783 static void gen_subv_mask(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
, TCGv_i64 m
)
1785 TCGv_i64 t1
= tcg_temp_new_i64();
1786 TCGv_i64 t2
= tcg_temp_new_i64();
1787 TCGv_i64 t3
= tcg_temp_new_i64();
1789 tcg_gen_or_i64(t1
, a
, m
);
1790 tcg_gen_andc_i64(t2
, b
, m
);
1791 tcg_gen_eqv_i64(t3
, a
, b
);
1792 tcg_gen_sub_i64(d
, t1
, t2
);
1793 tcg_gen_and_i64(t3
, t3
, m
);
1794 tcg_gen_xor_i64(d
, d
, t3
);
1796 tcg_temp_free_i64(t1
);
1797 tcg_temp_free_i64(t2
);
1798 tcg_temp_free_i64(t3
);
1801 void tcg_gen_vec_sub8_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
1803 TCGv_i64 m
= tcg_const_i64(dup_const(MO_8
, 0x80));
1804 gen_subv_mask(d
, a
, b
, m
);
1805 tcg_temp_free_i64(m
);
1808 void tcg_gen_vec_sub16_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
1810 TCGv_i64 m
= tcg_const_i64(dup_const(MO_16
, 0x8000));
1811 gen_subv_mask(d
, a
, b
, m
);
1812 tcg_temp_free_i64(m
);
1815 void tcg_gen_vec_sub32_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
1817 TCGv_i64 t1
= tcg_temp_new_i64();
1818 TCGv_i64 t2
= tcg_temp_new_i64();
1820 tcg_gen_andi_i64(t1
, b
, ~0xffffffffull
);
1821 tcg_gen_sub_i64(t2
, a
, b
);
1822 tcg_gen_sub_i64(t1
, a
, t1
);
1823 tcg_gen_deposit_i64(d
, t1
, t2
, 0, 32);
1825 tcg_temp_free_i64(t1
);
1826 tcg_temp_free_i64(t2
);
1829 void tcg_gen_gvec_sub(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1830 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
1832 static const GVecGen3 g
[4] = {
1833 { .fni8
= tcg_gen_vec_sub8_i64
,
1834 .fniv
= tcg_gen_sub_vec
,
1835 .fno
= gen_helper_gvec_sub8
,
1836 .opt_opc
= vecop_list_sub
,
1838 { .fni8
= tcg_gen_vec_sub16_i64
,
1839 .fniv
= tcg_gen_sub_vec
,
1840 .fno
= gen_helper_gvec_sub16
,
1841 .opt_opc
= vecop_list_sub
,
1843 { .fni4
= tcg_gen_sub_i32
,
1844 .fniv
= tcg_gen_sub_vec
,
1845 .fno
= gen_helper_gvec_sub32
,
1846 .opt_opc
= vecop_list_sub
,
1848 { .fni8
= tcg_gen_sub_i64
,
1849 .fniv
= tcg_gen_sub_vec
,
1850 .fno
= gen_helper_gvec_sub64
,
1851 .opt_opc
= vecop_list_sub
,
1852 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
1856 tcg_debug_assert(vece
<= MO_64
);
1857 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
1860 static const TCGOpcode vecop_list_mul
[] = { INDEX_op_mul_vec
, 0 };
1862 void tcg_gen_gvec_mul(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1863 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
1865 static const GVecGen3 g
[4] = {
1866 { .fniv
= tcg_gen_mul_vec
,
1867 .fno
= gen_helper_gvec_mul8
,
1868 .opt_opc
= vecop_list_mul
,
1870 { .fniv
= tcg_gen_mul_vec
,
1871 .fno
= gen_helper_gvec_mul16
,
1872 .opt_opc
= vecop_list_mul
,
1874 { .fni4
= tcg_gen_mul_i32
,
1875 .fniv
= tcg_gen_mul_vec
,
1876 .fno
= gen_helper_gvec_mul32
,
1877 .opt_opc
= vecop_list_mul
,
1879 { .fni8
= tcg_gen_mul_i64
,
1880 .fniv
= tcg_gen_mul_vec
,
1881 .fno
= gen_helper_gvec_mul64
,
1882 .opt_opc
= vecop_list_mul
,
1883 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
1887 tcg_debug_assert(vece
<= MO_64
);
1888 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
1891 void tcg_gen_gvec_muls(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1892 TCGv_i64 c
, uint32_t oprsz
, uint32_t maxsz
)
1894 static const GVecGen2s g
[4] = {
1895 { .fniv
= tcg_gen_mul_vec
,
1896 .fno
= gen_helper_gvec_muls8
,
1897 .opt_opc
= vecop_list_mul
,
1899 { .fniv
= tcg_gen_mul_vec
,
1900 .fno
= gen_helper_gvec_muls16
,
1901 .opt_opc
= vecop_list_mul
,
1903 { .fni4
= tcg_gen_mul_i32
,
1904 .fniv
= tcg_gen_mul_vec
,
1905 .fno
= gen_helper_gvec_muls32
,
1906 .opt_opc
= vecop_list_mul
,
1908 { .fni8
= tcg_gen_mul_i64
,
1909 .fniv
= tcg_gen_mul_vec
,
1910 .fno
= gen_helper_gvec_muls64
,
1911 .opt_opc
= vecop_list_mul
,
1912 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
1916 tcg_debug_assert(vece
<= MO_64
);
1917 tcg_gen_gvec_2s(dofs
, aofs
, oprsz
, maxsz
, c
, &g
[vece
]);
1920 void tcg_gen_gvec_muli(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1921 int64_t c
, uint32_t oprsz
, uint32_t maxsz
)
1923 TCGv_i64 tmp
= tcg_const_i64(c
);
1924 tcg_gen_gvec_muls(vece
, dofs
, aofs
, tmp
, oprsz
, maxsz
);
1925 tcg_temp_free_i64(tmp
);
1928 void tcg_gen_gvec_ssadd(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1929 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
1931 static const TCGOpcode vecop_list
[] = { INDEX_op_ssadd_vec
, 0 };
1932 static const GVecGen3 g
[4] = {
1933 { .fniv
= tcg_gen_ssadd_vec
,
1934 .fno
= gen_helper_gvec_ssadd8
,
1935 .opt_opc
= vecop_list
,
1937 { .fniv
= tcg_gen_ssadd_vec
,
1938 .fno
= gen_helper_gvec_ssadd16
,
1939 .opt_opc
= vecop_list
,
1941 { .fniv
= tcg_gen_ssadd_vec
,
1942 .fno
= gen_helper_gvec_ssadd32
,
1943 .opt_opc
= vecop_list
,
1945 { .fniv
= tcg_gen_ssadd_vec
,
1946 .fno
= gen_helper_gvec_ssadd64
,
1947 .opt_opc
= vecop_list
,
1950 tcg_debug_assert(vece
<= MO_64
);
1951 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
1954 void tcg_gen_gvec_sssub(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1955 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
1957 static const TCGOpcode vecop_list
[] = { INDEX_op_sssub_vec
, 0 };
1958 static const GVecGen3 g
[4] = {
1959 { .fniv
= tcg_gen_sssub_vec
,
1960 .fno
= gen_helper_gvec_sssub8
,
1961 .opt_opc
= vecop_list
,
1963 { .fniv
= tcg_gen_sssub_vec
,
1964 .fno
= gen_helper_gvec_sssub16
,
1965 .opt_opc
= vecop_list
,
1967 { .fniv
= tcg_gen_sssub_vec
,
1968 .fno
= gen_helper_gvec_sssub32
,
1969 .opt_opc
= vecop_list
,
1971 { .fniv
= tcg_gen_sssub_vec
,
1972 .fno
= gen_helper_gvec_sssub64
,
1973 .opt_opc
= vecop_list
,
1976 tcg_debug_assert(vece
<= MO_64
);
1977 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
1980 static void tcg_gen_usadd_i32(TCGv_i32 d
, TCGv_i32 a
, TCGv_i32 b
)
1982 TCGv_i32 max
= tcg_const_i32(-1);
1983 tcg_gen_add_i32(d
, a
, b
);
1984 tcg_gen_movcond_i32(TCG_COND_LTU
, d
, d
, a
, max
, d
);
1985 tcg_temp_free_i32(max
);
1988 static void tcg_gen_usadd_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
1990 TCGv_i64 max
= tcg_const_i64(-1);
1991 tcg_gen_add_i64(d
, a
, b
);
1992 tcg_gen_movcond_i64(TCG_COND_LTU
, d
, d
, a
, max
, d
);
1993 tcg_temp_free_i64(max
);
1996 void tcg_gen_gvec_usadd(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1997 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
1999 static const TCGOpcode vecop_list
[] = { INDEX_op_usadd_vec
, 0 };
2000 static const GVecGen3 g
[4] = {
2001 { .fniv
= tcg_gen_usadd_vec
,
2002 .fno
= gen_helper_gvec_usadd8
,
2003 .opt_opc
= vecop_list
,
2005 { .fniv
= tcg_gen_usadd_vec
,
2006 .fno
= gen_helper_gvec_usadd16
,
2007 .opt_opc
= vecop_list
,
2009 { .fni4
= tcg_gen_usadd_i32
,
2010 .fniv
= tcg_gen_usadd_vec
,
2011 .fno
= gen_helper_gvec_usadd32
,
2012 .opt_opc
= vecop_list
,
2014 { .fni8
= tcg_gen_usadd_i64
,
2015 .fniv
= tcg_gen_usadd_vec
,
2016 .fno
= gen_helper_gvec_usadd64
,
2017 .opt_opc
= vecop_list
,
2020 tcg_debug_assert(vece
<= MO_64
);
2021 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
2024 static void tcg_gen_ussub_i32(TCGv_i32 d
, TCGv_i32 a
, TCGv_i32 b
)
2026 TCGv_i32 min
= tcg_const_i32(0);
2027 tcg_gen_sub_i32(d
, a
, b
);
2028 tcg_gen_movcond_i32(TCG_COND_LTU
, d
, a
, b
, min
, d
);
2029 tcg_temp_free_i32(min
);
2032 static void tcg_gen_ussub_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
2034 TCGv_i64 min
= tcg_const_i64(0);
2035 tcg_gen_sub_i64(d
, a
, b
);
2036 tcg_gen_movcond_i64(TCG_COND_LTU
, d
, a
, b
, min
, d
);
2037 tcg_temp_free_i64(min
);
2040 void tcg_gen_gvec_ussub(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2041 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2043 static const TCGOpcode vecop_list
[] = { INDEX_op_ussub_vec
, 0 };
2044 static const GVecGen3 g
[4] = {
2045 { .fniv
= tcg_gen_ussub_vec
,
2046 .fno
= gen_helper_gvec_ussub8
,
2047 .opt_opc
= vecop_list
,
2049 { .fniv
= tcg_gen_ussub_vec
,
2050 .fno
= gen_helper_gvec_ussub16
,
2051 .opt_opc
= vecop_list
,
2053 { .fni4
= tcg_gen_ussub_i32
,
2054 .fniv
= tcg_gen_ussub_vec
,
2055 .fno
= gen_helper_gvec_ussub32
,
2056 .opt_opc
= vecop_list
,
2058 { .fni8
= tcg_gen_ussub_i64
,
2059 .fniv
= tcg_gen_ussub_vec
,
2060 .fno
= gen_helper_gvec_ussub64
,
2061 .opt_opc
= vecop_list
,
2064 tcg_debug_assert(vece
<= MO_64
);
2065 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
2068 void tcg_gen_gvec_smin(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2069 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2071 static const TCGOpcode vecop_list
[] = { INDEX_op_smin_vec
, 0 };
2072 static const GVecGen3 g
[4] = {
2073 { .fniv
= tcg_gen_smin_vec
,
2074 .fno
= gen_helper_gvec_smin8
,
2075 .opt_opc
= vecop_list
,
2077 { .fniv
= tcg_gen_smin_vec
,
2078 .fno
= gen_helper_gvec_smin16
,
2079 .opt_opc
= vecop_list
,
2081 { .fni4
= tcg_gen_smin_i32
,
2082 .fniv
= tcg_gen_smin_vec
,
2083 .fno
= gen_helper_gvec_smin32
,
2084 .opt_opc
= vecop_list
,
2086 { .fni8
= tcg_gen_smin_i64
,
2087 .fniv
= tcg_gen_smin_vec
,
2088 .fno
= gen_helper_gvec_smin64
,
2089 .opt_opc
= vecop_list
,
2092 tcg_debug_assert(vece
<= MO_64
);
2093 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
2096 void tcg_gen_gvec_umin(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2097 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2099 static const TCGOpcode vecop_list
[] = { INDEX_op_umin_vec
, 0 };
2100 static const GVecGen3 g
[4] = {
2101 { .fniv
= tcg_gen_umin_vec
,
2102 .fno
= gen_helper_gvec_umin8
,
2103 .opt_opc
= vecop_list
,
2105 { .fniv
= tcg_gen_umin_vec
,
2106 .fno
= gen_helper_gvec_umin16
,
2107 .opt_opc
= vecop_list
,
2109 { .fni4
= tcg_gen_umin_i32
,
2110 .fniv
= tcg_gen_umin_vec
,
2111 .fno
= gen_helper_gvec_umin32
,
2112 .opt_opc
= vecop_list
,
2114 { .fni8
= tcg_gen_umin_i64
,
2115 .fniv
= tcg_gen_umin_vec
,
2116 .fno
= gen_helper_gvec_umin64
,
2117 .opt_opc
= vecop_list
,
2120 tcg_debug_assert(vece
<= MO_64
);
2121 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
2124 void tcg_gen_gvec_smax(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2125 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2127 static const TCGOpcode vecop_list
[] = { INDEX_op_smax_vec
, 0 };
2128 static const GVecGen3 g
[4] = {
2129 { .fniv
= tcg_gen_smax_vec
,
2130 .fno
= gen_helper_gvec_smax8
,
2131 .opt_opc
= vecop_list
,
2133 { .fniv
= tcg_gen_smax_vec
,
2134 .fno
= gen_helper_gvec_smax16
,
2135 .opt_opc
= vecop_list
,
2137 { .fni4
= tcg_gen_smax_i32
,
2138 .fniv
= tcg_gen_smax_vec
,
2139 .fno
= gen_helper_gvec_smax32
,
2140 .opt_opc
= vecop_list
,
2142 { .fni8
= tcg_gen_smax_i64
,
2143 .fniv
= tcg_gen_smax_vec
,
2144 .fno
= gen_helper_gvec_smax64
,
2145 .opt_opc
= vecop_list
,
2148 tcg_debug_assert(vece
<= MO_64
);
2149 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
2152 void tcg_gen_gvec_umax(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2153 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2155 static const TCGOpcode vecop_list
[] = { INDEX_op_umax_vec
, 0 };
2156 static const GVecGen3 g
[4] = {
2157 { .fniv
= tcg_gen_umax_vec
,
2158 .fno
= gen_helper_gvec_umax8
,
2159 .opt_opc
= vecop_list
,
2161 { .fniv
= tcg_gen_umax_vec
,
2162 .fno
= gen_helper_gvec_umax16
,
2163 .opt_opc
= vecop_list
,
2165 { .fni4
= tcg_gen_umax_i32
,
2166 .fniv
= tcg_gen_umax_vec
,
2167 .fno
= gen_helper_gvec_umax32
,
2168 .opt_opc
= vecop_list
,
2170 { .fni8
= tcg_gen_umax_i64
,
2171 .fniv
= tcg_gen_umax_vec
,
2172 .fno
= gen_helper_gvec_umax64
,
2173 .opt_opc
= vecop_list
,
2176 tcg_debug_assert(vece
<= MO_64
);
2177 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
2180 /* Perform a vector negation using normal negation and a mask.
2181 Compare gen_subv_mask above. */
2182 static void gen_negv_mask(TCGv_i64 d
, TCGv_i64 b
, TCGv_i64 m
)
2184 TCGv_i64 t2
= tcg_temp_new_i64();
2185 TCGv_i64 t3
= tcg_temp_new_i64();
2187 tcg_gen_andc_i64(t3
, m
, b
);
2188 tcg_gen_andc_i64(t2
, b
, m
);
2189 tcg_gen_sub_i64(d
, m
, t2
);
2190 tcg_gen_xor_i64(d
, d
, t3
);
2192 tcg_temp_free_i64(t2
);
2193 tcg_temp_free_i64(t3
);
2196 void tcg_gen_vec_neg8_i64(TCGv_i64 d
, TCGv_i64 b
)
2198 TCGv_i64 m
= tcg_const_i64(dup_const(MO_8
, 0x80));
2199 gen_negv_mask(d
, b
, m
);
2200 tcg_temp_free_i64(m
);
2203 void tcg_gen_vec_neg16_i64(TCGv_i64 d
, TCGv_i64 b
)
2205 TCGv_i64 m
= tcg_const_i64(dup_const(MO_16
, 0x8000));
2206 gen_negv_mask(d
, b
, m
);
2207 tcg_temp_free_i64(m
);
2210 void tcg_gen_vec_neg32_i64(TCGv_i64 d
, TCGv_i64 b
)
2212 TCGv_i64 t1
= tcg_temp_new_i64();
2213 TCGv_i64 t2
= tcg_temp_new_i64();
2215 tcg_gen_andi_i64(t1
, b
, ~0xffffffffull
);
2216 tcg_gen_neg_i64(t2
, b
);
2217 tcg_gen_neg_i64(t1
, t1
);
2218 tcg_gen_deposit_i64(d
, t1
, t2
, 0, 32);
2220 tcg_temp_free_i64(t1
);
2221 tcg_temp_free_i64(t2
);
2224 void tcg_gen_gvec_neg(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2225 uint32_t oprsz
, uint32_t maxsz
)
2227 static const TCGOpcode vecop_list
[] = { INDEX_op_neg_vec
, 0 };
2228 static const GVecGen2 g
[4] = {
2229 { .fni8
= tcg_gen_vec_neg8_i64
,
2230 .fniv
= tcg_gen_neg_vec
,
2231 .fno
= gen_helper_gvec_neg8
,
2232 .opt_opc
= vecop_list
,
2234 { .fni8
= tcg_gen_vec_neg16_i64
,
2235 .fniv
= tcg_gen_neg_vec
,
2236 .fno
= gen_helper_gvec_neg16
,
2237 .opt_opc
= vecop_list
,
2239 { .fni4
= tcg_gen_neg_i32
,
2240 .fniv
= tcg_gen_neg_vec
,
2241 .fno
= gen_helper_gvec_neg32
,
2242 .opt_opc
= vecop_list
,
2244 { .fni8
= tcg_gen_neg_i64
,
2245 .fniv
= tcg_gen_neg_vec
,
2246 .fno
= gen_helper_gvec_neg64
,
2247 .opt_opc
= vecop_list
,
2248 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2252 tcg_debug_assert(vece
<= MO_64
);
2253 tcg_gen_gvec_2(dofs
, aofs
, oprsz
, maxsz
, &g
[vece
]);
2256 static void gen_absv_mask(TCGv_i64 d
, TCGv_i64 b
, unsigned vece
)
2258 TCGv_i64 t
= tcg_temp_new_i64();
2259 int nbit
= 8 << vece
;
2261 /* Create -1 for each negative element. */
2262 tcg_gen_shri_i64(t
, b
, nbit
- 1);
2263 tcg_gen_andi_i64(t
, t
, dup_const(vece
, 1));
2264 tcg_gen_muli_i64(t
, t
, (1 << nbit
) - 1);
2267 * Invert (via xor -1) and add one (via sub -1).
2268 * Because of the ordering the msb is cleared,
2269 * so we never have carry into the next element.
2271 tcg_gen_xor_i64(d
, b
, t
);
2272 tcg_gen_sub_i64(d
, d
, t
);
2274 tcg_temp_free_i64(t
);
2277 static void tcg_gen_vec_abs8_i64(TCGv_i64 d
, TCGv_i64 b
)
2279 gen_absv_mask(d
, b
, MO_8
);
2282 static void tcg_gen_vec_abs16_i64(TCGv_i64 d
, TCGv_i64 b
)
2284 gen_absv_mask(d
, b
, MO_16
);
2287 void tcg_gen_gvec_abs(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2288 uint32_t oprsz
, uint32_t maxsz
)
2290 static const TCGOpcode vecop_list
[] = { INDEX_op_abs_vec
, 0 };
2291 static const GVecGen2 g
[4] = {
2292 { .fni8
= tcg_gen_vec_abs8_i64
,
2293 .fniv
= tcg_gen_abs_vec
,
2294 .fno
= gen_helper_gvec_abs8
,
2295 .opt_opc
= vecop_list
,
2297 { .fni8
= tcg_gen_vec_abs16_i64
,
2298 .fniv
= tcg_gen_abs_vec
,
2299 .fno
= gen_helper_gvec_abs16
,
2300 .opt_opc
= vecop_list
,
2302 { .fni4
= tcg_gen_abs_i32
,
2303 .fniv
= tcg_gen_abs_vec
,
2304 .fno
= gen_helper_gvec_abs32
,
2305 .opt_opc
= vecop_list
,
2307 { .fni8
= tcg_gen_abs_i64
,
2308 .fniv
= tcg_gen_abs_vec
,
2309 .fno
= gen_helper_gvec_abs64
,
2310 .opt_opc
= vecop_list
,
2311 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2315 tcg_debug_assert(vece
<= MO_64
);
2316 tcg_gen_gvec_2(dofs
, aofs
, oprsz
, maxsz
, &g
[vece
]);
2319 void tcg_gen_gvec_and(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2320 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2322 static const GVecGen3 g
= {
2323 .fni8
= tcg_gen_and_i64
,
2324 .fniv
= tcg_gen_and_vec
,
2325 .fno
= gen_helper_gvec_and
,
2326 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2330 tcg_gen_gvec_mov(vece
, dofs
, aofs
, oprsz
, maxsz
);
2332 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
);
2336 void tcg_gen_gvec_or(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2337 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2339 static const GVecGen3 g
= {
2340 .fni8
= tcg_gen_or_i64
,
2341 .fniv
= tcg_gen_or_vec
,
2342 .fno
= gen_helper_gvec_or
,
2343 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2347 tcg_gen_gvec_mov(vece
, dofs
, aofs
, oprsz
, maxsz
);
2349 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
);
2353 void tcg_gen_gvec_xor(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2354 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2356 static const GVecGen3 g
= {
2357 .fni8
= tcg_gen_xor_i64
,
2358 .fniv
= tcg_gen_xor_vec
,
2359 .fno
= gen_helper_gvec_xor
,
2360 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2364 tcg_gen_gvec_dup_imm(MO_64
, dofs
, oprsz
, maxsz
, 0);
2366 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
);
2370 void tcg_gen_gvec_andc(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2371 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2373 static const GVecGen3 g
= {
2374 .fni8
= tcg_gen_andc_i64
,
2375 .fniv
= tcg_gen_andc_vec
,
2376 .fno
= gen_helper_gvec_andc
,
2377 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2381 tcg_gen_gvec_dup_imm(MO_64
, dofs
, oprsz
, maxsz
, 0);
2383 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
);
2387 void tcg_gen_gvec_orc(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2388 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2390 static const GVecGen3 g
= {
2391 .fni8
= tcg_gen_orc_i64
,
2392 .fniv
= tcg_gen_orc_vec
,
2393 .fno
= gen_helper_gvec_orc
,
2394 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2398 tcg_gen_gvec_dup_imm(MO_64
, dofs
, oprsz
, maxsz
, -1);
2400 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
);
2404 void tcg_gen_gvec_nand(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2405 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2407 static const GVecGen3 g
= {
2408 .fni8
= tcg_gen_nand_i64
,
2409 .fniv
= tcg_gen_nand_vec
,
2410 .fno
= gen_helper_gvec_nand
,
2411 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2415 tcg_gen_gvec_not(vece
, dofs
, aofs
, oprsz
, maxsz
);
2417 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
);
2421 void tcg_gen_gvec_nor(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2422 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2424 static const GVecGen3 g
= {
2425 .fni8
= tcg_gen_nor_i64
,
2426 .fniv
= tcg_gen_nor_vec
,
2427 .fno
= gen_helper_gvec_nor
,
2428 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2432 tcg_gen_gvec_not(vece
, dofs
, aofs
, oprsz
, maxsz
);
2434 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
);
2438 void tcg_gen_gvec_eqv(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2439 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2441 static const GVecGen3 g
= {
2442 .fni8
= tcg_gen_eqv_i64
,
2443 .fniv
= tcg_gen_eqv_vec
,
2444 .fno
= gen_helper_gvec_eqv
,
2445 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2449 tcg_gen_gvec_dup_imm(MO_64
, dofs
, oprsz
, maxsz
, -1);
2451 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
);
2455 static const GVecGen2s gop_ands
= {
2456 .fni8
= tcg_gen_and_i64
,
2457 .fniv
= tcg_gen_and_vec
,
2458 .fno
= gen_helper_gvec_ands
,
2459 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2463 void tcg_gen_gvec_ands(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2464 TCGv_i64 c
, uint32_t oprsz
, uint32_t maxsz
)
2466 TCGv_i64 tmp
= tcg_temp_new_i64();
2467 gen_dup_i64(vece
, tmp
, c
);
2468 tcg_gen_gvec_2s(dofs
, aofs
, oprsz
, maxsz
, tmp
, &gop_ands
);
2469 tcg_temp_free_i64(tmp
);
2472 void tcg_gen_gvec_andi(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2473 int64_t c
, uint32_t oprsz
, uint32_t maxsz
)
2475 TCGv_i64 tmp
= tcg_const_i64(dup_const(vece
, c
));
2476 tcg_gen_gvec_2s(dofs
, aofs
, oprsz
, maxsz
, tmp
, &gop_ands
);
2477 tcg_temp_free_i64(tmp
);
2480 static const GVecGen2s gop_xors
= {
2481 .fni8
= tcg_gen_xor_i64
,
2482 .fniv
= tcg_gen_xor_vec
,
2483 .fno
= gen_helper_gvec_xors
,
2484 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2488 void tcg_gen_gvec_xors(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2489 TCGv_i64 c
, uint32_t oprsz
, uint32_t maxsz
)
2491 TCGv_i64 tmp
= tcg_temp_new_i64();
2492 gen_dup_i64(vece
, tmp
, c
);
2493 tcg_gen_gvec_2s(dofs
, aofs
, oprsz
, maxsz
, tmp
, &gop_xors
);
2494 tcg_temp_free_i64(tmp
);
2497 void tcg_gen_gvec_xori(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2498 int64_t c
, uint32_t oprsz
, uint32_t maxsz
)
2500 TCGv_i64 tmp
= tcg_const_i64(dup_const(vece
, c
));
2501 tcg_gen_gvec_2s(dofs
, aofs
, oprsz
, maxsz
, tmp
, &gop_xors
);
2502 tcg_temp_free_i64(tmp
);
2505 static const GVecGen2s gop_ors
= {
2506 .fni8
= tcg_gen_or_i64
,
2507 .fniv
= tcg_gen_or_vec
,
2508 .fno
= gen_helper_gvec_ors
,
2509 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2513 void tcg_gen_gvec_ors(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2514 TCGv_i64 c
, uint32_t oprsz
, uint32_t maxsz
)
2516 TCGv_i64 tmp
= tcg_temp_new_i64();
2517 gen_dup_i64(vece
, tmp
, c
);
2518 tcg_gen_gvec_2s(dofs
, aofs
, oprsz
, maxsz
, tmp
, &gop_ors
);
2519 tcg_temp_free_i64(tmp
);
2522 void tcg_gen_gvec_ori(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2523 int64_t c
, uint32_t oprsz
, uint32_t maxsz
)
2525 TCGv_i64 tmp
= tcg_const_i64(dup_const(vece
, c
));
2526 tcg_gen_gvec_2s(dofs
, aofs
, oprsz
, maxsz
, tmp
, &gop_ors
);
2527 tcg_temp_free_i64(tmp
);
2530 void tcg_gen_vec_shl8i_i64(TCGv_i64 d
, TCGv_i64 a
, int64_t c
)
2532 uint64_t mask
= dup_const(MO_8
, 0xff << c
);
2533 tcg_gen_shli_i64(d
, a
, c
);
2534 tcg_gen_andi_i64(d
, d
, mask
);
2537 void tcg_gen_vec_shl16i_i64(TCGv_i64 d
, TCGv_i64 a
, int64_t c
)
2539 uint64_t mask
= dup_const(MO_16
, 0xffff << c
);
2540 tcg_gen_shli_i64(d
, a
, c
);
2541 tcg_gen_andi_i64(d
, d
, mask
);
2544 void tcg_gen_gvec_shli(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2545 int64_t shift
, uint32_t oprsz
, uint32_t maxsz
)
2547 static const TCGOpcode vecop_list
[] = { INDEX_op_shli_vec
, 0 };
2548 static const GVecGen2i g
[4] = {
2549 { .fni8
= tcg_gen_vec_shl8i_i64
,
2550 .fniv
= tcg_gen_shli_vec
,
2551 .fno
= gen_helper_gvec_shl8i
,
2552 .opt_opc
= vecop_list
,
2554 { .fni8
= tcg_gen_vec_shl16i_i64
,
2555 .fniv
= tcg_gen_shli_vec
,
2556 .fno
= gen_helper_gvec_shl16i
,
2557 .opt_opc
= vecop_list
,
2559 { .fni4
= tcg_gen_shli_i32
,
2560 .fniv
= tcg_gen_shli_vec
,
2561 .fno
= gen_helper_gvec_shl32i
,
2562 .opt_opc
= vecop_list
,
2564 { .fni8
= tcg_gen_shli_i64
,
2565 .fniv
= tcg_gen_shli_vec
,
2566 .fno
= gen_helper_gvec_shl64i
,
2567 .opt_opc
= vecop_list
,
2568 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2572 tcg_debug_assert(vece
<= MO_64
);
2573 tcg_debug_assert(shift
>= 0 && shift
< (8 << vece
));
2575 tcg_gen_gvec_mov(vece
, dofs
, aofs
, oprsz
, maxsz
);
2577 tcg_gen_gvec_2i(dofs
, aofs
, oprsz
, maxsz
, shift
, &g
[vece
]);
2581 void tcg_gen_vec_shr8i_i64(TCGv_i64 d
, TCGv_i64 a
, int64_t c
)
2583 uint64_t mask
= dup_const(MO_8
, 0xff >> c
);
2584 tcg_gen_shri_i64(d
, a
, c
);
2585 tcg_gen_andi_i64(d
, d
, mask
);
2588 void tcg_gen_vec_shr16i_i64(TCGv_i64 d
, TCGv_i64 a
, int64_t c
)
2590 uint64_t mask
= dup_const(MO_16
, 0xffff >> c
);
2591 tcg_gen_shri_i64(d
, a
, c
);
2592 tcg_gen_andi_i64(d
, d
, mask
);
2595 void tcg_gen_gvec_shri(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2596 int64_t shift
, uint32_t oprsz
, uint32_t maxsz
)
2598 static const TCGOpcode vecop_list
[] = { INDEX_op_shri_vec
, 0 };
2599 static const GVecGen2i g
[4] = {
2600 { .fni8
= tcg_gen_vec_shr8i_i64
,
2601 .fniv
= tcg_gen_shri_vec
,
2602 .fno
= gen_helper_gvec_shr8i
,
2603 .opt_opc
= vecop_list
,
2605 { .fni8
= tcg_gen_vec_shr16i_i64
,
2606 .fniv
= tcg_gen_shri_vec
,
2607 .fno
= gen_helper_gvec_shr16i
,
2608 .opt_opc
= vecop_list
,
2610 { .fni4
= tcg_gen_shri_i32
,
2611 .fniv
= tcg_gen_shri_vec
,
2612 .fno
= gen_helper_gvec_shr32i
,
2613 .opt_opc
= vecop_list
,
2615 { .fni8
= tcg_gen_shri_i64
,
2616 .fniv
= tcg_gen_shri_vec
,
2617 .fno
= gen_helper_gvec_shr64i
,
2618 .opt_opc
= vecop_list
,
2619 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2623 tcg_debug_assert(vece
<= MO_64
);
2624 tcg_debug_assert(shift
>= 0 && shift
< (8 << vece
));
2626 tcg_gen_gvec_mov(vece
, dofs
, aofs
, oprsz
, maxsz
);
2628 tcg_gen_gvec_2i(dofs
, aofs
, oprsz
, maxsz
, shift
, &g
[vece
]);
2632 void tcg_gen_vec_sar8i_i64(TCGv_i64 d
, TCGv_i64 a
, int64_t c
)
2634 uint64_t s_mask
= dup_const(MO_8
, 0x80 >> c
);
2635 uint64_t c_mask
= dup_const(MO_8
, 0xff >> c
);
2636 TCGv_i64 s
= tcg_temp_new_i64();
2638 tcg_gen_shri_i64(d
, a
, c
);
2639 tcg_gen_andi_i64(s
, d
, s_mask
); /* isolate (shifted) sign bit */
2640 tcg_gen_muli_i64(s
, s
, (2 << c
) - 2); /* replicate isolated signs */
2641 tcg_gen_andi_i64(d
, d
, c_mask
); /* clear out bits above sign */
2642 tcg_gen_or_i64(d
, d
, s
); /* include sign extension */
2643 tcg_temp_free_i64(s
);
2646 void tcg_gen_vec_sar16i_i64(TCGv_i64 d
, TCGv_i64 a
, int64_t c
)
2648 uint64_t s_mask
= dup_const(MO_16
, 0x8000 >> c
);
2649 uint64_t c_mask
= dup_const(MO_16
, 0xffff >> c
);
2650 TCGv_i64 s
= tcg_temp_new_i64();
2652 tcg_gen_shri_i64(d
, a
, c
);
2653 tcg_gen_andi_i64(s
, d
, s_mask
); /* isolate (shifted) sign bit */
2654 tcg_gen_andi_i64(d
, d
, c_mask
); /* clear out bits above sign */
2655 tcg_gen_muli_i64(s
, s
, (2 << c
) - 2); /* replicate isolated signs */
2656 tcg_gen_or_i64(d
, d
, s
); /* include sign extension */
2657 tcg_temp_free_i64(s
);
2660 void tcg_gen_gvec_sari(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2661 int64_t shift
, uint32_t oprsz
, uint32_t maxsz
)
2663 static const TCGOpcode vecop_list
[] = { INDEX_op_sari_vec
, 0 };
2664 static const GVecGen2i g
[4] = {
2665 { .fni8
= tcg_gen_vec_sar8i_i64
,
2666 .fniv
= tcg_gen_sari_vec
,
2667 .fno
= gen_helper_gvec_sar8i
,
2668 .opt_opc
= vecop_list
,
2670 { .fni8
= tcg_gen_vec_sar16i_i64
,
2671 .fniv
= tcg_gen_sari_vec
,
2672 .fno
= gen_helper_gvec_sar16i
,
2673 .opt_opc
= vecop_list
,
2675 { .fni4
= tcg_gen_sari_i32
,
2676 .fniv
= tcg_gen_sari_vec
,
2677 .fno
= gen_helper_gvec_sar32i
,
2678 .opt_opc
= vecop_list
,
2680 { .fni8
= tcg_gen_sari_i64
,
2681 .fniv
= tcg_gen_sari_vec
,
2682 .fno
= gen_helper_gvec_sar64i
,
2683 .opt_opc
= vecop_list
,
2684 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2688 tcg_debug_assert(vece
<= MO_64
);
2689 tcg_debug_assert(shift
>= 0 && shift
< (8 << vece
));
2691 tcg_gen_gvec_mov(vece
, dofs
, aofs
, oprsz
, maxsz
);
2693 tcg_gen_gvec_2i(dofs
, aofs
, oprsz
, maxsz
, shift
, &g
[vece
]);
2697 void tcg_gen_vec_rotl8i_i64(TCGv_i64 d
, TCGv_i64 a
, int64_t c
)
2699 uint64_t mask
= dup_const(MO_8
, 0xff << c
);
2701 tcg_gen_shli_i64(d
, a
, c
);
2702 tcg_gen_shri_i64(a
, a
, 8 - c
);
2703 tcg_gen_andi_i64(d
, d
, mask
);
2704 tcg_gen_andi_i64(a
, a
, ~mask
);
2705 tcg_gen_or_i64(d
, d
, a
);
2708 void tcg_gen_vec_rotl16i_i64(TCGv_i64 d
, TCGv_i64 a
, int64_t c
)
2710 uint64_t mask
= dup_const(MO_16
, 0xffff << c
);
2712 tcg_gen_shli_i64(d
, a
, c
);
2713 tcg_gen_shri_i64(a
, a
, 16 - c
);
2714 tcg_gen_andi_i64(d
, d
, mask
);
2715 tcg_gen_andi_i64(a
, a
, ~mask
);
2716 tcg_gen_or_i64(d
, d
, a
);
2719 void tcg_gen_gvec_rotli(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2720 int64_t shift
, uint32_t oprsz
, uint32_t maxsz
)
2722 static const TCGOpcode vecop_list
[] = { INDEX_op_rotli_vec
, 0 };
2723 static const GVecGen2i g
[4] = {
2724 { .fni8
= tcg_gen_vec_rotl8i_i64
,
2725 .fniv
= tcg_gen_rotli_vec
,
2726 .fno
= gen_helper_gvec_rotl8i
,
2727 .opt_opc
= vecop_list
,
2729 { .fni8
= tcg_gen_vec_rotl16i_i64
,
2730 .fniv
= tcg_gen_rotli_vec
,
2731 .fno
= gen_helper_gvec_rotl16i
,
2732 .opt_opc
= vecop_list
,
2734 { .fni4
= tcg_gen_rotli_i32
,
2735 .fniv
= tcg_gen_rotli_vec
,
2736 .fno
= gen_helper_gvec_rotl32i
,
2737 .opt_opc
= vecop_list
,
2739 { .fni8
= tcg_gen_rotli_i64
,
2740 .fniv
= tcg_gen_rotli_vec
,
2741 .fno
= gen_helper_gvec_rotl64i
,
2742 .opt_opc
= vecop_list
,
2743 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2747 tcg_debug_assert(vece
<= MO_64
);
2748 tcg_debug_assert(shift
>= 0 && shift
< (8 << vece
));
2750 tcg_gen_gvec_mov(vece
, dofs
, aofs
, oprsz
, maxsz
);
2752 tcg_gen_gvec_2i(dofs
, aofs
, oprsz
, maxsz
, shift
, &g
[vece
]);
2756 void tcg_gen_gvec_rotri(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2757 int64_t shift
, uint32_t oprsz
, uint32_t maxsz
)
2759 tcg_debug_assert(vece
<= MO_64
);
2760 tcg_debug_assert(shift
>= 0 && shift
< (8 << vece
));
2761 tcg_gen_gvec_rotli(vece
, dofs
, aofs
, -shift
& ((8 << vece
) - 1),
2766 * Specialized generation vector shifts by a non-constant scalar.
2770 void (*fni4
)(TCGv_i32
, TCGv_i32
, TCGv_i32
);
2771 void (*fni8
)(TCGv_i64
, TCGv_i64
, TCGv_i64
);
2772 void (*fniv_s
)(unsigned, TCGv_vec
, TCGv_vec
, TCGv_i32
);
2773 void (*fniv_v
)(unsigned, TCGv_vec
, TCGv_vec
, TCGv_vec
);
2774 gen_helper_gvec_2
*fno
[4];
2775 TCGOpcode s_list
[2];
2776 TCGOpcode v_list
[2];
2779 static void expand_2sh_vec(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2780 uint32_t oprsz
, uint32_t tysz
, TCGType type
,
2782 void (*fni
)(unsigned, TCGv_vec
, TCGv_vec
, TCGv_i32
))
2784 TCGv_vec t0
= tcg_temp_new_vec(type
);
2787 for (i
= 0; i
< oprsz
; i
+= tysz
) {
2788 tcg_gen_ld_vec(t0
, cpu_env
, aofs
+ i
);
2789 fni(vece
, t0
, t0
, shift
);
2790 tcg_gen_st_vec(t0
, cpu_env
, dofs
+ i
);
2792 tcg_temp_free_vec(t0
);
2796 do_gvec_shifts(unsigned vece
, uint32_t dofs
, uint32_t aofs
, TCGv_i32 shift
,
2797 uint32_t oprsz
, uint32_t maxsz
, const GVecGen2sh
*g
)
2802 check_size_align(oprsz
, maxsz
, dofs
| aofs
);
2803 check_overlap_2(dofs
, aofs
, maxsz
);
2805 /* If the backend has a scalar expansion, great. */
2806 type
= choose_vector_type(g
->s_list
, vece
, oprsz
, vece
== MO_64
);
2808 const TCGOpcode
*hold_list
= tcg_swap_vecop_list(NULL
);
2811 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
2812 expand_2sh_vec(vece
, dofs
, aofs
, some
, 32,
2813 TCG_TYPE_V256
, shift
, g
->fniv_s
);
2814 if (some
== oprsz
) {
2823 expand_2sh_vec(vece
, dofs
, aofs
, oprsz
, 16,
2824 TCG_TYPE_V128
, shift
, g
->fniv_s
);
2827 expand_2sh_vec(vece
, dofs
, aofs
, oprsz
, 8,
2828 TCG_TYPE_V64
, shift
, g
->fniv_s
);
2831 g_assert_not_reached();
2833 tcg_swap_vecop_list(hold_list
);
2837 /* If the backend supports variable vector shifts, also cool. */
2838 type
= choose_vector_type(g
->v_list
, vece
, oprsz
, vece
== MO_64
);
2840 const TCGOpcode
*hold_list
= tcg_swap_vecop_list(NULL
);
2841 TCGv_vec v_shift
= tcg_temp_new_vec(type
);
2843 if (vece
== MO_64
) {
2844 TCGv_i64 sh64
= tcg_temp_new_i64();
2845 tcg_gen_extu_i32_i64(sh64
, shift
);
2846 tcg_gen_dup_i64_vec(MO_64
, v_shift
, sh64
);
2847 tcg_temp_free_i64(sh64
);
2849 tcg_gen_dup_i32_vec(vece
, v_shift
, shift
);
2854 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
2855 expand_2s_vec(vece
, dofs
, aofs
, some
, 32, TCG_TYPE_V256
,
2856 v_shift
, false, g
->fniv_v
);
2857 if (some
== oprsz
) {
2866 expand_2s_vec(vece
, dofs
, aofs
, oprsz
, 16, TCG_TYPE_V128
,
2867 v_shift
, false, g
->fniv_v
);
2870 expand_2s_vec(vece
, dofs
, aofs
, oprsz
, 8, TCG_TYPE_V64
,
2871 v_shift
, false, g
->fniv_v
);
2874 g_assert_not_reached();
2876 tcg_temp_free_vec(v_shift
);
2877 tcg_swap_vecop_list(hold_list
);
2881 /* Otherwise fall back to integral... */
2882 if (vece
== MO_32
&& check_size_impl(oprsz
, 4)) {
2883 expand_2s_i32(dofs
, aofs
, oprsz
, shift
, false, g
->fni4
);
2884 } else if (vece
== MO_64
&& check_size_impl(oprsz
, 8)) {
2885 TCGv_i64 sh64
= tcg_temp_new_i64();
2886 tcg_gen_extu_i32_i64(sh64
, shift
);
2887 expand_2s_i64(dofs
, aofs
, oprsz
, sh64
, false, g
->fni8
);
2888 tcg_temp_free_i64(sh64
);
2890 TCGv_ptr a0
= tcg_temp_new_ptr();
2891 TCGv_ptr a1
= tcg_temp_new_ptr();
2892 TCGv_i32 desc
= tcg_temp_new_i32();
2894 tcg_gen_shli_i32(desc
, shift
, SIMD_DATA_SHIFT
);
2895 tcg_gen_ori_i32(desc
, desc
, simd_desc(oprsz
, maxsz
, 0));
2896 tcg_gen_addi_ptr(a0
, cpu_env
, dofs
);
2897 tcg_gen_addi_ptr(a1
, cpu_env
, aofs
);
2899 g
->fno
[vece
](a0
, a1
, desc
);
2901 tcg_temp_free_ptr(a0
);
2902 tcg_temp_free_ptr(a1
);
2903 tcg_temp_free_i32(desc
);
2908 if (oprsz
< maxsz
) {
2909 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
2913 void tcg_gen_gvec_shls(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2914 TCGv_i32 shift
, uint32_t oprsz
, uint32_t maxsz
)
2916 static const GVecGen2sh g
= {
2917 .fni4
= tcg_gen_shl_i32
,
2918 .fni8
= tcg_gen_shl_i64
,
2919 .fniv_s
= tcg_gen_shls_vec
,
2920 .fniv_v
= tcg_gen_shlv_vec
,
2922 gen_helper_gvec_shl8i
,
2923 gen_helper_gvec_shl16i
,
2924 gen_helper_gvec_shl32i
,
2925 gen_helper_gvec_shl64i
,
2927 .s_list
= { INDEX_op_shls_vec
, 0 },
2928 .v_list
= { INDEX_op_shlv_vec
, 0 },
2931 tcg_debug_assert(vece
<= MO_64
);
2932 do_gvec_shifts(vece
, dofs
, aofs
, shift
, oprsz
, maxsz
, &g
);
2935 void tcg_gen_gvec_shrs(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2936 TCGv_i32 shift
, uint32_t oprsz
, uint32_t maxsz
)
2938 static const GVecGen2sh g
= {
2939 .fni4
= tcg_gen_shr_i32
,
2940 .fni8
= tcg_gen_shr_i64
,
2941 .fniv_s
= tcg_gen_shrs_vec
,
2942 .fniv_v
= tcg_gen_shrv_vec
,
2944 gen_helper_gvec_shr8i
,
2945 gen_helper_gvec_shr16i
,
2946 gen_helper_gvec_shr32i
,
2947 gen_helper_gvec_shr64i
,
2949 .s_list
= { INDEX_op_shrs_vec
, 0 },
2950 .v_list
= { INDEX_op_shrv_vec
, 0 },
2953 tcg_debug_assert(vece
<= MO_64
);
2954 do_gvec_shifts(vece
, dofs
, aofs
, shift
, oprsz
, maxsz
, &g
);
2957 void tcg_gen_gvec_sars(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2958 TCGv_i32 shift
, uint32_t oprsz
, uint32_t maxsz
)
2960 static const GVecGen2sh g
= {
2961 .fni4
= tcg_gen_sar_i32
,
2962 .fni8
= tcg_gen_sar_i64
,
2963 .fniv_s
= tcg_gen_sars_vec
,
2964 .fniv_v
= tcg_gen_sarv_vec
,
2966 gen_helper_gvec_sar8i
,
2967 gen_helper_gvec_sar16i
,
2968 gen_helper_gvec_sar32i
,
2969 gen_helper_gvec_sar64i
,
2971 .s_list
= { INDEX_op_sars_vec
, 0 },
2972 .v_list
= { INDEX_op_sarv_vec
, 0 },
2975 tcg_debug_assert(vece
<= MO_64
);
2976 do_gvec_shifts(vece
, dofs
, aofs
, shift
, oprsz
, maxsz
, &g
);
2979 void tcg_gen_gvec_rotls(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2980 TCGv_i32 shift
, uint32_t oprsz
, uint32_t maxsz
)
2982 static const GVecGen2sh g
= {
2983 .fni4
= tcg_gen_rotl_i32
,
2984 .fni8
= tcg_gen_rotl_i64
,
2985 .fniv_s
= tcg_gen_rotls_vec
,
2986 .fniv_v
= tcg_gen_rotlv_vec
,
2988 gen_helper_gvec_rotl8i
,
2989 gen_helper_gvec_rotl16i
,
2990 gen_helper_gvec_rotl32i
,
2991 gen_helper_gvec_rotl64i
,
2993 .s_list
= { INDEX_op_rotls_vec
, 0 },
2994 .v_list
= { INDEX_op_rotlv_vec
, 0 },
2997 tcg_debug_assert(vece
<= MO_64
);
2998 do_gvec_shifts(vece
, dofs
, aofs
, shift
, oprsz
, maxsz
, &g
);
3002 * Expand D = A << (B % element bits)
3004 * Unlike scalar shifts, where it is easy for the target front end
3005 * to include the modulo as part of the expansion. If the target
3006 * naturally includes the modulo as part of the operation, great!
3007 * If the target has some other behaviour from out-of-range shifts,
3008 * then it could not use this function anyway, and would need to
3009 * do it's own expansion with custom functions.
3011 static void tcg_gen_shlv_mod_vec(unsigned vece
, TCGv_vec d
,
3012 TCGv_vec a
, TCGv_vec b
)
3014 TCGv_vec t
= tcg_temp_new_vec_matching(d
);
3016 tcg_gen_dupi_vec(vece
, t
, (8 << vece
) - 1);
3017 tcg_gen_and_vec(vece
, t
, t
, b
);
3018 tcg_gen_shlv_vec(vece
, d
, a
, t
);
3019 tcg_temp_free_vec(t
);
3022 static void tcg_gen_shl_mod_i32(TCGv_i32 d
, TCGv_i32 a
, TCGv_i32 b
)
3024 TCGv_i32 t
= tcg_temp_new_i32();
3026 tcg_gen_andi_i32(t
, b
, 31);
3027 tcg_gen_shl_i32(d
, a
, t
);
3028 tcg_temp_free_i32(t
);
3031 static void tcg_gen_shl_mod_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
3033 TCGv_i64 t
= tcg_temp_new_i64();
3035 tcg_gen_andi_i64(t
, b
, 63);
3036 tcg_gen_shl_i64(d
, a
, t
);
3037 tcg_temp_free_i64(t
);
3040 void tcg_gen_gvec_shlv(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3041 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
3043 static const TCGOpcode vecop_list
[] = { INDEX_op_shlv_vec
, 0 };
3044 static const GVecGen3 g
[4] = {
3045 { .fniv
= tcg_gen_shlv_mod_vec
,
3046 .fno
= gen_helper_gvec_shl8v
,
3047 .opt_opc
= vecop_list
,
3049 { .fniv
= tcg_gen_shlv_mod_vec
,
3050 .fno
= gen_helper_gvec_shl16v
,
3051 .opt_opc
= vecop_list
,
3053 { .fni4
= tcg_gen_shl_mod_i32
,
3054 .fniv
= tcg_gen_shlv_mod_vec
,
3055 .fno
= gen_helper_gvec_shl32v
,
3056 .opt_opc
= vecop_list
,
3058 { .fni8
= tcg_gen_shl_mod_i64
,
3059 .fniv
= tcg_gen_shlv_mod_vec
,
3060 .fno
= gen_helper_gvec_shl64v
,
3061 .opt_opc
= vecop_list
,
3062 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
3066 tcg_debug_assert(vece
<= MO_64
);
3067 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
3071 * Similarly for logical right shifts.
3074 static void tcg_gen_shrv_mod_vec(unsigned vece
, TCGv_vec d
,
3075 TCGv_vec a
, TCGv_vec b
)
3077 TCGv_vec t
= tcg_temp_new_vec_matching(d
);
3079 tcg_gen_dupi_vec(vece
, t
, (8 << vece
) - 1);
3080 tcg_gen_and_vec(vece
, t
, t
, b
);
3081 tcg_gen_shrv_vec(vece
, d
, a
, t
);
3082 tcg_temp_free_vec(t
);
3085 static void tcg_gen_shr_mod_i32(TCGv_i32 d
, TCGv_i32 a
, TCGv_i32 b
)
3087 TCGv_i32 t
= tcg_temp_new_i32();
3089 tcg_gen_andi_i32(t
, b
, 31);
3090 tcg_gen_shr_i32(d
, a
, t
);
3091 tcg_temp_free_i32(t
);
3094 static void tcg_gen_shr_mod_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
3096 TCGv_i64 t
= tcg_temp_new_i64();
3098 tcg_gen_andi_i64(t
, b
, 63);
3099 tcg_gen_shr_i64(d
, a
, t
);
3100 tcg_temp_free_i64(t
);
3103 void tcg_gen_gvec_shrv(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3104 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
3106 static const TCGOpcode vecop_list
[] = { INDEX_op_shrv_vec
, 0 };
3107 static const GVecGen3 g
[4] = {
3108 { .fniv
= tcg_gen_shrv_mod_vec
,
3109 .fno
= gen_helper_gvec_shr8v
,
3110 .opt_opc
= vecop_list
,
3112 { .fniv
= tcg_gen_shrv_mod_vec
,
3113 .fno
= gen_helper_gvec_shr16v
,
3114 .opt_opc
= vecop_list
,
3116 { .fni4
= tcg_gen_shr_mod_i32
,
3117 .fniv
= tcg_gen_shrv_mod_vec
,
3118 .fno
= gen_helper_gvec_shr32v
,
3119 .opt_opc
= vecop_list
,
3121 { .fni8
= tcg_gen_shr_mod_i64
,
3122 .fniv
= tcg_gen_shrv_mod_vec
,
3123 .fno
= gen_helper_gvec_shr64v
,
3124 .opt_opc
= vecop_list
,
3125 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
3129 tcg_debug_assert(vece
<= MO_64
);
3130 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
3134 * Similarly for arithmetic right shifts.
3137 static void tcg_gen_sarv_mod_vec(unsigned vece
, TCGv_vec d
,
3138 TCGv_vec a
, TCGv_vec b
)
3140 TCGv_vec t
= tcg_temp_new_vec_matching(d
);
3142 tcg_gen_dupi_vec(vece
, t
, (8 << vece
) - 1);
3143 tcg_gen_and_vec(vece
, t
, t
, b
);
3144 tcg_gen_sarv_vec(vece
, d
, a
, t
);
3145 tcg_temp_free_vec(t
);
3148 static void tcg_gen_sar_mod_i32(TCGv_i32 d
, TCGv_i32 a
, TCGv_i32 b
)
3150 TCGv_i32 t
= tcg_temp_new_i32();
3152 tcg_gen_andi_i32(t
, b
, 31);
3153 tcg_gen_sar_i32(d
, a
, t
);
3154 tcg_temp_free_i32(t
);
3157 static void tcg_gen_sar_mod_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
3159 TCGv_i64 t
= tcg_temp_new_i64();
3161 tcg_gen_andi_i64(t
, b
, 63);
3162 tcg_gen_sar_i64(d
, a
, t
);
3163 tcg_temp_free_i64(t
);
3166 void tcg_gen_gvec_sarv(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3167 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
3169 static const TCGOpcode vecop_list
[] = { INDEX_op_sarv_vec
, 0 };
3170 static const GVecGen3 g
[4] = {
3171 { .fniv
= tcg_gen_sarv_mod_vec
,
3172 .fno
= gen_helper_gvec_sar8v
,
3173 .opt_opc
= vecop_list
,
3175 { .fniv
= tcg_gen_sarv_mod_vec
,
3176 .fno
= gen_helper_gvec_sar16v
,
3177 .opt_opc
= vecop_list
,
3179 { .fni4
= tcg_gen_sar_mod_i32
,
3180 .fniv
= tcg_gen_sarv_mod_vec
,
3181 .fno
= gen_helper_gvec_sar32v
,
3182 .opt_opc
= vecop_list
,
3184 { .fni8
= tcg_gen_sar_mod_i64
,
3185 .fniv
= tcg_gen_sarv_mod_vec
,
3186 .fno
= gen_helper_gvec_sar64v
,
3187 .opt_opc
= vecop_list
,
3188 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
3192 tcg_debug_assert(vece
<= MO_64
);
3193 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
3197 * Similarly for rotates.
3200 static void tcg_gen_rotlv_mod_vec(unsigned vece
, TCGv_vec d
,
3201 TCGv_vec a
, TCGv_vec b
)
3203 TCGv_vec t
= tcg_temp_new_vec_matching(d
);
3205 tcg_gen_dupi_vec(vece
, t
, (8 << vece
) - 1);
3206 tcg_gen_and_vec(vece
, t
, t
, b
);
3207 tcg_gen_rotlv_vec(vece
, d
, a
, t
);
3208 tcg_temp_free_vec(t
);
3211 static void tcg_gen_rotl_mod_i32(TCGv_i32 d
, TCGv_i32 a
, TCGv_i32 b
)
3213 TCGv_i32 t
= tcg_temp_new_i32();
3215 tcg_gen_andi_i32(t
, b
, 31);
3216 tcg_gen_rotl_i32(d
, a
, t
);
3217 tcg_temp_free_i32(t
);
3220 static void tcg_gen_rotl_mod_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
3222 TCGv_i64 t
= tcg_temp_new_i64();
3224 tcg_gen_andi_i64(t
, b
, 63);
3225 tcg_gen_rotl_i64(d
, a
, t
);
3226 tcg_temp_free_i64(t
);
3229 void tcg_gen_gvec_rotlv(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3230 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
3232 static const TCGOpcode vecop_list
[] = { INDEX_op_rotlv_vec
, 0 };
3233 static const GVecGen3 g
[4] = {
3234 { .fniv
= tcg_gen_rotlv_mod_vec
,
3235 .fno
= gen_helper_gvec_rotl8v
,
3236 .opt_opc
= vecop_list
,
3238 { .fniv
= tcg_gen_rotlv_mod_vec
,
3239 .fno
= gen_helper_gvec_rotl16v
,
3240 .opt_opc
= vecop_list
,
3242 { .fni4
= tcg_gen_rotl_mod_i32
,
3243 .fniv
= tcg_gen_rotlv_mod_vec
,
3244 .fno
= gen_helper_gvec_rotl32v
,
3245 .opt_opc
= vecop_list
,
3247 { .fni8
= tcg_gen_rotl_mod_i64
,
3248 .fniv
= tcg_gen_rotlv_mod_vec
,
3249 .fno
= gen_helper_gvec_rotl64v
,
3250 .opt_opc
= vecop_list
,
3251 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
3255 tcg_debug_assert(vece
<= MO_64
);
3256 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
3259 static void tcg_gen_rotrv_mod_vec(unsigned vece
, TCGv_vec d
,
3260 TCGv_vec a
, TCGv_vec b
)
3262 TCGv_vec t
= tcg_temp_new_vec_matching(d
);
3264 tcg_gen_dupi_vec(vece
, t
, (8 << vece
) - 1);
3265 tcg_gen_and_vec(vece
, t
, t
, b
);
3266 tcg_gen_rotrv_vec(vece
, d
, a
, t
);
3267 tcg_temp_free_vec(t
);
3270 static void tcg_gen_rotr_mod_i32(TCGv_i32 d
, TCGv_i32 a
, TCGv_i32 b
)
3272 TCGv_i32 t
= tcg_temp_new_i32();
3274 tcg_gen_andi_i32(t
, b
, 31);
3275 tcg_gen_rotr_i32(d
, a
, t
);
3276 tcg_temp_free_i32(t
);
3279 static void tcg_gen_rotr_mod_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
3281 TCGv_i64 t
= tcg_temp_new_i64();
3283 tcg_gen_andi_i64(t
, b
, 63);
3284 tcg_gen_rotr_i64(d
, a
, t
);
3285 tcg_temp_free_i64(t
);
3288 void tcg_gen_gvec_rotrv(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3289 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
3291 static const TCGOpcode vecop_list
[] = { INDEX_op_rotrv_vec
, 0 };
3292 static const GVecGen3 g
[4] = {
3293 { .fniv
= tcg_gen_rotrv_mod_vec
,
3294 .fno
= gen_helper_gvec_rotr8v
,
3295 .opt_opc
= vecop_list
,
3297 { .fniv
= tcg_gen_rotrv_mod_vec
,
3298 .fno
= gen_helper_gvec_rotr16v
,
3299 .opt_opc
= vecop_list
,
3301 { .fni4
= tcg_gen_rotr_mod_i32
,
3302 .fniv
= tcg_gen_rotrv_mod_vec
,
3303 .fno
= gen_helper_gvec_rotr32v
,
3304 .opt_opc
= vecop_list
,
3306 { .fni8
= tcg_gen_rotr_mod_i64
,
3307 .fniv
= tcg_gen_rotrv_mod_vec
,
3308 .fno
= gen_helper_gvec_rotr64v
,
3309 .opt_opc
= vecop_list
,
3310 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
3314 tcg_debug_assert(vece
<= MO_64
);
3315 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
3318 /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
3319 static void expand_cmp_i32(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
3320 uint32_t oprsz
, TCGCond cond
)
3322 TCGv_i32 t0
= tcg_temp_new_i32();
3323 TCGv_i32 t1
= tcg_temp_new_i32();
3326 for (i
= 0; i
< oprsz
; i
+= 4) {
3327 tcg_gen_ld_i32(t0
, cpu_env
, aofs
+ i
);
3328 tcg_gen_ld_i32(t1
, cpu_env
, bofs
+ i
);
3329 tcg_gen_setcond_i32(cond
, t0
, t0
, t1
);
3330 tcg_gen_neg_i32(t0
, t0
);
3331 tcg_gen_st_i32(t0
, cpu_env
, dofs
+ i
);
3333 tcg_temp_free_i32(t1
);
3334 tcg_temp_free_i32(t0
);
3337 static void expand_cmp_i64(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
3338 uint32_t oprsz
, TCGCond cond
)
3340 TCGv_i64 t0
= tcg_temp_new_i64();
3341 TCGv_i64 t1
= tcg_temp_new_i64();
3344 for (i
= 0; i
< oprsz
; i
+= 8) {
3345 tcg_gen_ld_i64(t0
, cpu_env
, aofs
+ i
);
3346 tcg_gen_ld_i64(t1
, cpu_env
, bofs
+ i
);
3347 tcg_gen_setcond_i64(cond
, t0
, t0
, t1
);
3348 tcg_gen_neg_i64(t0
, t0
);
3349 tcg_gen_st_i64(t0
, cpu_env
, dofs
+ i
);
3351 tcg_temp_free_i64(t1
);
3352 tcg_temp_free_i64(t0
);
3355 static void expand_cmp_vec(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3356 uint32_t bofs
, uint32_t oprsz
, uint32_t tysz
,
3357 TCGType type
, TCGCond cond
)
3359 TCGv_vec t0
= tcg_temp_new_vec(type
);
3360 TCGv_vec t1
= tcg_temp_new_vec(type
);
3363 for (i
= 0; i
< oprsz
; i
+= tysz
) {
3364 tcg_gen_ld_vec(t0
, cpu_env
, aofs
+ i
);
3365 tcg_gen_ld_vec(t1
, cpu_env
, bofs
+ i
);
3366 tcg_gen_cmp_vec(cond
, vece
, t0
, t0
, t1
);
3367 tcg_gen_st_vec(t0
, cpu_env
, dofs
+ i
);
3369 tcg_temp_free_vec(t1
);
3370 tcg_temp_free_vec(t0
);
3373 void tcg_gen_gvec_cmp(TCGCond cond
, unsigned vece
, uint32_t dofs
,
3374 uint32_t aofs
, uint32_t bofs
,
3375 uint32_t oprsz
, uint32_t maxsz
)
3377 static const TCGOpcode cmp_list
[] = { INDEX_op_cmp_vec
, 0 };
3378 static gen_helper_gvec_3
* const eq_fn
[4] = {
3379 gen_helper_gvec_eq8
, gen_helper_gvec_eq16
,
3380 gen_helper_gvec_eq32
, gen_helper_gvec_eq64
3382 static gen_helper_gvec_3
* const ne_fn
[4] = {
3383 gen_helper_gvec_ne8
, gen_helper_gvec_ne16
,
3384 gen_helper_gvec_ne32
, gen_helper_gvec_ne64
3386 static gen_helper_gvec_3
* const lt_fn
[4] = {
3387 gen_helper_gvec_lt8
, gen_helper_gvec_lt16
,
3388 gen_helper_gvec_lt32
, gen_helper_gvec_lt64
3390 static gen_helper_gvec_3
* const le_fn
[4] = {
3391 gen_helper_gvec_le8
, gen_helper_gvec_le16
,
3392 gen_helper_gvec_le32
, gen_helper_gvec_le64
3394 static gen_helper_gvec_3
* const ltu_fn
[4] = {
3395 gen_helper_gvec_ltu8
, gen_helper_gvec_ltu16
,
3396 gen_helper_gvec_ltu32
, gen_helper_gvec_ltu64
3398 static gen_helper_gvec_3
* const leu_fn
[4] = {
3399 gen_helper_gvec_leu8
, gen_helper_gvec_leu16
,
3400 gen_helper_gvec_leu32
, gen_helper_gvec_leu64
3402 static gen_helper_gvec_3
* const * const fns
[16] = {
3403 [TCG_COND_EQ
] = eq_fn
,
3404 [TCG_COND_NE
] = ne_fn
,
3405 [TCG_COND_LT
] = lt_fn
,
3406 [TCG_COND_LE
] = le_fn
,
3407 [TCG_COND_LTU
] = ltu_fn
,
3408 [TCG_COND_LEU
] = leu_fn
,
3411 const TCGOpcode
*hold_list
;
3415 check_size_align(oprsz
, maxsz
, dofs
| aofs
| bofs
);
3416 check_overlap_3(dofs
, aofs
, bofs
, maxsz
);
3418 if (cond
== TCG_COND_NEVER
|| cond
== TCG_COND_ALWAYS
) {
3419 do_dup(MO_8
, dofs
, oprsz
, maxsz
,
3420 NULL
, NULL
, -(cond
== TCG_COND_ALWAYS
));
3425 * Implement inline with a vector type, if possible.
3426 * Prefer integer when 64-bit host and 64-bit comparison.
3428 hold_list
= tcg_swap_vecop_list(cmp_list
);
3429 type
= choose_vector_type(cmp_list
, vece
, oprsz
,
3430 TCG_TARGET_REG_BITS
== 64 && vece
== MO_64
);
3433 /* Recall that ARM SVE allows vector sizes that are not a
3434 * power of 2, but always a multiple of 16. The intent is
3435 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
3437 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
3438 expand_cmp_vec(vece
, dofs
, aofs
, bofs
, some
, 32, TCG_TYPE_V256
, cond
);
3439 if (some
== oprsz
) {
3449 expand_cmp_vec(vece
, dofs
, aofs
, bofs
, oprsz
, 16, TCG_TYPE_V128
, cond
);
3452 expand_cmp_vec(vece
, dofs
, aofs
, bofs
, oprsz
, 8, TCG_TYPE_V64
, cond
);
3456 if (vece
== MO_64
&& check_size_impl(oprsz
, 8)) {
3457 expand_cmp_i64(dofs
, aofs
, bofs
, oprsz
, cond
);
3458 } else if (vece
== MO_32
&& check_size_impl(oprsz
, 4)) {
3459 expand_cmp_i32(dofs
, aofs
, bofs
, oprsz
, cond
);
3461 gen_helper_gvec_3
* const *fn
= fns
[cond
];
3465 tmp
= aofs
, aofs
= bofs
, bofs
= tmp
;
3466 cond
= tcg_swap_cond(cond
);
3470 tcg_gen_gvec_3_ool(dofs
, aofs
, bofs
, oprsz
, maxsz
, 0, fn
[vece
]);
3476 g_assert_not_reached();
3478 tcg_swap_vecop_list(hold_list
);
3480 if (oprsz
< maxsz
) {
3481 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
3485 static void tcg_gen_bitsel_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
, TCGv_i64 c
)
3487 TCGv_i64 t
= tcg_temp_new_i64();
3489 tcg_gen_and_i64(t
, b
, a
);
3490 tcg_gen_andc_i64(d
, c
, a
);
3491 tcg_gen_or_i64(d
, d
, t
);
3492 tcg_temp_free_i64(t
);
3495 void tcg_gen_gvec_bitsel(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3496 uint32_t bofs
, uint32_t cofs
,
3497 uint32_t oprsz
, uint32_t maxsz
)
3499 static const GVecGen4 g
= {
3500 .fni8
= tcg_gen_bitsel_i64
,
3501 .fniv
= tcg_gen_bitsel_vec
,
3502 .fno
= gen_helper_gvec_bitsel
,
3505 tcg_gen_gvec_4(dofs
, aofs
, bofs
, cofs
, oprsz
, maxsz
, &g
);