Generalize QOM publishing of date and time from mc146818rtc.c
[qemu/ar7.git] / arch_init.c
blob691b5e2e91648f6c2b955e8e95e51f4e0d48e07c
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include <stdint.h>
25 #include <stdarg.h>
26 #include <stdlib.h>
27 #ifndef _WIN32
28 #include <sys/types.h>
29 #include <sys/mman.h>
30 #endif
31 #include "config.h"
32 #include "monitor/monitor.h"
33 #include "sysemu/sysemu.h"
34 #include "qemu/bitops.h"
35 #include "qemu/bitmap.h"
36 #include "sysemu/arch_init.h"
37 #include "audio/audio.h"
38 #include "hw/i386/pc.h"
39 #include "hw/pci/pci.h"
40 #include "hw/audio/audio.h"
41 #include "sysemu/kvm.h"
42 #include "migration/migration.h"
43 #include "hw/i386/smbios.h"
44 #include "exec/address-spaces.h"
45 #include "hw/audio/pcspk.h"
46 #include "migration/page_cache.h"
47 #include "qemu/config-file.h"
48 #include "qemu/error-report.h"
49 #include "qmp-commands.h"
50 #include "trace.h"
51 #include "exec/cpu-all.h"
52 #include "exec/ram_addr.h"
53 #include "hw/acpi/acpi.h"
54 #include "qemu/host-utils.h"
55 #include "qemu/rcu_queue.h"
57 #ifdef DEBUG_ARCH_INIT
58 #define DPRINTF(fmt, ...) \
59 do { fprintf(stdout, "arch_init: " fmt, ## __VA_ARGS__); } while (0)
60 #else
61 #define DPRINTF(fmt, ...) \
62 do { } while (0)
63 #endif
65 #ifdef TARGET_SPARC
66 int graphic_width = 1024;
67 int graphic_height = 768;
68 int graphic_depth = 8;
69 #else
70 int graphic_width = 800;
71 int graphic_height = 600;
72 int graphic_depth = 32;
73 #endif
76 #if defined(TARGET_ALPHA)
77 #define QEMU_ARCH QEMU_ARCH_ALPHA
78 #elif defined(TARGET_ARM)
79 #define QEMU_ARCH QEMU_ARCH_ARM
80 #elif defined(TARGET_CRIS)
81 #define QEMU_ARCH QEMU_ARCH_CRIS
82 #elif defined(TARGET_I386)
83 #define QEMU_ARCH QEMU_ARCH_I386
84 #elif defined(TARGET_M68K)
85 #define QEMU_ARCH QEMU_ARCH_M68K
86 #elif defined(TARGET_LM32)
87 #define QEMU_ARCH QEMU_ARCH_LM32
88 #elif defined(TARGET_MICROBLAZE)
89 #define QEMU_ARCH QEMU_ARCH_MICROBLAZE
90 #elif defined(TARGET_MIPS)
91 #define QEMU_ARCH QEMU_ARCH_MIPS
92 #elif defined(TARGET_MOXIE)
93 #define QEMU_ARCH QEMU_ARCH_MOXIE
94 #elif defined(TARGET_OPENRISC)
95 #define QEMU_ARCH QEMU_ARCH_OPENRISC
96 #elif defined(TARGET_PPC)
97 #define QEMU_ARCH QEMU_ARCH_PPC
98 #elif defined(TARGET_S390X)
99 #define QEMU_ARCH QEMU_ARCH_S390X
100 #elif defined(TARGET_SH4)
101 #define QEMU_ARCH QEMU_ARCH_SH4
102 #elif defined(TARGET_SPARC)
103 #define QEMU_ARCH QEMU_ARCH_SPARC
104 #elif defined(TARGET_XTENSA)
105 #define QEMU_ARCH QEMU_ARCH_XTENSA
106 #elif defined(TARGET_UNICORE32)
107 #define QEMU_ARCH QEMU_ARCH_UNICORE32
108 #elif defined(TARGET_TRICORE)
109 #define QEMU_ARCH QEMU_ARCH_TRICORE
110 #endif
112 const uint32_t arch_type = QEMU_ARCH;
113 static bool mig_throttle_on;
114 static int dirty_rate_high_cnt;
115 static void check_guest_throttling(void);
117 static uint64_t bitmap_sync_count;
119 /***********************************************************/
120 /* ram save/restore */
122 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
123 #define RAM_SAVE_FLAG_COMPRESS 0x02
124 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
125 #define RAM_SAVE_FLAG_PAGE 0x08
126 #define RAM_SAVE_FLAG_EOS 0x10
127 #define RAM_SAVE_FLAG_CONTINUE 0x20
128 #define RAM_SAVE_FLAG_XBZRLE 0x40
129 /* 0x80 is reserved in migration.h start with 0x100 next */
131 static struct defconfig_file {
132 const char *filename;
133 /* Indicates it is an user config file (disabled by -no-user-config) */
134 bool userconfig;
135 } default_config_files[] = {
136 { CONFIG_QEMU_CONFDIR "/qemu.conf", true },
137 { CONFIG_QEMU_CONFDIR "/target-" TARGET_NAME ".conf", true },
138 { NULL }, /* end of list */
141 static const uint8_t ZERO_TARGET_PAGE[TARGET_PAGE_SIZE];
143 int qemu_read_default_config_files(bool userconfig)
145 int ret;
146 struct defconfig_file *f;
148 for (f = default_config_files; f->filename; f++) {
149 if (!userconfig && f->userconfig) {
150 continue;
152 ret = qemu_read_config_file(f->filename);
153 if (ret < 0 && ret != -ENOENT) {
154 return ret;
158 return 0;
161 static inline bool is_zero_range(uint8_t *p, uint64_t size)
163 return buffer_find_nonzero_offset(p, size) == size;
166 /* struct contains XBZRLE cache and a static page
167 used by the compression */
168 static struct {
169 /* buffer used for XBZRLE encoding */
170 uint8_t *encoded_buf;
171 /* buffer for storing page content */
172 uint8_t *current_buf;
173 /* Cache for XBZRLE, Protected by lock. */
174 PageCache *cache;
175 QemuMutex lock;
176 } XBZRLE;
178 /* buffer used for XBZRLE decoding */
179 static uint8_t *xbzrle_decoded_buf;
181 static void XBZRLE_cache_lock(void)
183 if (migrate_use_xbzrle())
184 qemu_mutex_lock(&XBZRLE.lock);
187 static void XBZRLE_cache_unlock(void)
189 if (migrate_use_xbzrle())
190 qemu_mutex_unlock(&XBZRLE.lock);
194 * called from qmp_migrate_set_cache_size in main thread, possibly while
195 * a migration is in progress.
196 * A running migration maybe using the cache and might finish during this
197 * call, hence changes to the cache are protected by XBZRLE.lock().
199 int64_t xbzrle_cache_resize(int64_t new_size)
201 PageCache *new_cache;
202 int64_t ret;
204 if (new_size < TARGET_PAGE_SIZE) {
205 return -1;
208 XBZRLE_cache_lock();
210 if (XBZRLE.cache != NULL) {
211 if (pow2floor(new_size) == migrate_xbzrle_cache_size()) {
212 goto out_new_size;
214 new_cache = cache_init(new_size / TARGET_PAGE_SIZE,
215 TARGET_PAGE_SIZE);
216 if (!new_cache) {
217 error_report("Error creating cache");
218 ret = -1;
219 goto out;
222 cache_fini(XBZRLE.cache);
223 XBZRLE.cache = new_cache;
226 out_new_size:
227 ret = pow2floor(new_size);
228 out:
229 XBZRLE_cache_unlock();
230 return ret;
233 /* accounting for migration statistics */
234 typedef struct AccountingInfo {
235 uint64_t dup_pages;
236 uint64_t skipped_pages;
237 uint64_t norm_pages;
238 uint64_t iterations;
239 uint64_t xbzrle_bytes;
240 uint64_t xbzrle_pages;
241 uint64_t xbzrle_cache_miss;
242 double xbzrle_cache_miss_rate;
243 uint64_t xbzrle_overflows;
244 } AccountingInfo;
246 static AccountingInfo acct_info;
248 static void acct_clear(void)
250 memset(&acct_info, 0, sizeof(acct_info));
253 uint64_t dup_mig_bytes_transferred(void)
255 return acct_info.dup_pages * TARGET_PAGE_SIZE;
258 uint64_t dup_mig_pages_transferred(void)
260 return acct_info.dup_pages;
263 uint64_t skipped_mig_bytes_transferred(void)
265 return acct_info.skipped_pages * TARGET_PAGE_SIZE;
268 uint64_t skipped_mig_pages_transferred(void)
270 return acct_info.skipped_pages;
273 uint64_t norm_mig_bytes_transferred(void)
275 return acct_info.norm_pages * TARGET_PAGE_SIZE;
278 uint64_t norm_mig_pages_transferred(void)
280 return acct_info.norm_pages;
283 uint64_t xbzrle_mig_bytes_transferred(void)
285 return acct_info.xbzrle_bytes;
288 uint64_t xbzrle_mig_pages_transferred(void)
290 return acct_info.xbzrle_pages;
293 uint64_t xbzrle_mig_pages_cache_miss(void)
295 return acct_info.xbzrle_cache_miss;
298 double xbzrle_mig_cache_miss_rate(void)
300 return acct_info.xbzrle_cache_miss_rate;
303 uint64_t xbzrle_mig_pages_overflow(void)
305 return acct_info.xbzrle_overflows;
308 static size_t save_block_hdr(QEMUFile *f, RAMBlock *block, ram_addr_t offset,
309 int cont, int flag)
311 size_t size;
313 qemu_put_be64(f, offset | cont | flag);
314 size = 8;
316 if (!cont) {
317 qemu_put_byte(f, strlen(block->idstr));
318 qemu_put_buffer(f, (uint8_t *)block->idstr,
319 strlen(block->idstr));
320 size += 1 + strlen(block->idstr);
322 return size;
325 /* This is the last block that we have visited serching for dirty pages
327 static RAMBlock *last_seen_block;
328 /* This is the last block from where we have sent data */
329 static RAMBlock *last_sent_block;
330 static ram_addr_t last_offset;
331 static unsigned long *migration_bitmap;
332 static uint64_t migration_dirty_pages;
333 static uint32_t last_version;
334 static bool ram_bulk_stage;
336 /* Update the xbzrle cache to reflect a page that's been sent as all 0.
337 * The important thing is that a stale (not-yet-0'd) page be replaced
338 * by the new data.
339 * As a bonus, if the page wasn't in the cache it gets added so that
340 * when a small write is made into the 0'd page it gets XBZRLE sent
342 static void xbzrle_cache_zero_page(ram_addr_t current_addr)
344 if (ram_bulk_stage || !migrate_use_xbzrle()) {
345 return;
348 /* We don't care if this fails to allocate a new cache page
349 * as long as it updated an old one */
350 cache_insert(XBZRLE.cache, current_addr, ZERO_TARGET_PAGE,
351 bitmap_sync_count);
354 #define ENCODING_FLAG_XBZRLE 0x1
356 static int save_xbzrle_page(QEMUFile *f, uint8_t **current_data,
357 ram_addr_t current_addr, RAMBlock *block,
358 ram_addr_t offset, int cont, bool last_stage)
360 int encoded_len = 0, bytes_sent = -1;
361 uint8_t *prev_cached_page;
363 if (!cache_is_cached(XBZRLE.cache, current_addr, bitmap_sync_count)) {
364 acct_info.xbzrle_cache_miss++;
365 if (!last_stage) {
366 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
367 bitmap_sync_count) == -1) {
368 return -1;
369 } else {
370 /* update *current_data when the page has been
371 inserted into cache */
372 *current_data = get_cached_data(XBZRLE.cache, current_addr);
375 return -1;
378 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
380 /* save current buffer into memory */
381 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
383 /* XBZRLE encoding (if there is no overflow) */
384 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
385 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
386 TARGET_PAGE_SIZE);
387 if (encoded_len == 0) {
388 DPRINTF("Skipping unmodified page\n");
389 return 0;
390 } else if (encoded_len == -1) {
391 DPRINTF("Overflow\n");
392 acct_info.xbzrle_overflows++;
393 /* update data in the cache */
394 if (!last_stage) {
395 memcpy(prev_cached_page, *current_data, TARGET_PAGE_SIZE);
396 *current_data = prev_cached_page;
398 return -1;
401 /* we need to update the data in the cache, in order to get the same data */
402 if (!last_stage) {
403 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
406 /* Send XBZRLE based compressed page */
407 bytes_sent = save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_XBZRLE);
408 qemu_put_byte(f, ENCODING_FLAG_XBZRLE);
409 qemu_put_be16(f, encoded_len);
410 qemu_put_buffer(f, XBZRLE.encoded_buf, encoded_len);
411 bytes_sent += encoded_len + 1 + 2;
412 acct_info.xbzrle_pages++;
413 acct_info.xbzrle_bytes += bytes_sent;
415 return bytes_sent;
418 static inline
419 ram_addr_t migration_bitmap_find_and_reset_dirty(MemoryRegion *mr,
420 ram_addr_t start)
422 unsigned long base = mr->ram_addr >> TARGET_PAGE_BITS;
423 unsigned long nr = base + (start >> TARGET_PAGE_BITS);
424 uint64_t mr_size = TARGET_PAGE_ALIGN(memory_region_size(mr));
425 unsigned long size = base + (mr_size >> TARGET_PAGE_BITS);
427 unsigned long next;
429 if (ram_bulk_stage && nr > base) {
430 next = nr + 1;
431 } else {
432 next = find_next_bit(migration_bitmap, size, nr);
435 if (next < size) {
436 clear_bit(next, migration_bitmap);
437 migration_dirty_pages--;
439 return (next - base) << TARGET_PAGE_BITS;
442 static inline bool migration_bitmap_set_dirty(ram_addr_t addr)
444 bool ret;
445 int nr = addr >> TARGET_PAGE_BITS;
447 ret = test_and_set_bit(nr, migration_bitmap);
449 if (!ret) {
450 migration_dirty_pages++;
452 return ret;
455 static void migration_bitmap_sync_range(ram_addr_t start, ram_addr_t length)
457 ram_addr_t addr;
458 unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS);
460 /* start address is aligned at the start of a word? */
461 if (((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) {
462 int k;
463 int nr = BITS_TO_LONGS(length >> TARGET_PAGE_BITS);
464 unsigned long *src = ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION];
466 for (k = page; k < page + nr; k++) {
467 if (src[k]) {
468 unsigned long new_dirty;
469 new_dirty = ~migration_bitmap[k];
470 migration_bitmap[k] |= src[k];
471 new_dirty &= src[k];
472 migration_dirty_pages += ctpopl(new_dirty);
473 src[k] = 0;
476 } else {
477 for (addr = 0; addr < length; addr += TARGET_PAGE_SIZE) {
478 if (cpu_physical_memory_get_dirty(start + addr,
479 TARGET_PAGE_SIZE,
480 DIRTY_MEMORY_MIGRATION)) {
481 cpu_physical_memory_reset_dirty(start + addr,
482 TARGET_PAGE_SIZE,
483 DIRTY_MEMORY_MIGRATION);
484 migration_bitmap_set_dirty(start + addr);
491 /* Fix me: there are too many global variables used in migration process. */
492 static int64_t start_time;
493 static int64_t bytes_xfer_prev;
494 static int64_t num_dirty_pages_period;
496 static void migration_bitmap_sync_init(void)
498 start_time = 0;
499 bytes_xfer_prev = 0;
500 num_dirty_pages_period = 0;
503 /* Called with iothread lock held, to protect ram_list.dirty_memory[] */
504 static void migration_bitmap_sync(void)
506 RAMBlock *block;
507 uint64_t num_dirty_pages_init = migration_dirty_pages;
508 MigrationState *s = migrate_get_current();
509 int64_t end_time;
510 int64_t bytes_xfer_now;
511 static uint64_t xbzrle_cache_miss_prev;
512 static uint64_t iterations_prev;
514 bitmap_sync_count++;
516 if (!bytes_xfer_prev) {
517 bytes_xfer_prev = ram_bytes_transferred();
520 if (!start_time) {
521 start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
524 trace_migration_bitmap_sync_start();
525 address_space_sync_dirty_bitmap(&address_space_memory);
527 rcu_read_lock();
528 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
529 migration_bitmap_sync_range(block->mr->ram_addr, block->used_length);
531 rcu_read_unlock();
533 trace_migration_bitmap_sync_end(migration_dirty_pages
534 - num_dirty_pages_init);
535 num_dirty_pages_period += migration_dirty_pages - num_dirty_pages_init;
536 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
538 /* more than 1 second = 1000 millisecons */
539 if (end_time > start_time + 1000) {
540 if (migrate_auto_converge()) {
541 /* The following detection logic can be refined later. For now:
542 Check to see if the dirtied bytes is 50% more than the approx.
543 amount of bytes that just got transferred since the last time we
544 were in this routine. If that happens >N times (for now N==4)
545 we turn on the throttle down logic */
546 bytes_xfer_now = ram_bytes_transferred();
547 if (s->dirty_pages_rate &&
548 (num_dirty_pages_period * TARGET_PAGE_SIZE >
549 (bytes_xfer_now - bytes_xfer_prev)/2) &&
550 (dirty_rate_high_cnt++ > 4)) {
551 trace_migration_throttle();
552 mig_throttle_on = true;
553 dirty_rate_high_cnt = 0;
555 bytes_xfer_prev = bytes_xfer_now;
556 } else {
557 mig_throttle_on = false;
559 if (migrate_use_xbzrle()) {
560 if (iterations_prev != 0) {
561 acct_info.xbzrle_cache_miss_rate =
562 (double)(acct_info.xbzrle_cache_miss -
563 xbzrle_cache_miss_prev) /
564 (acct_info.iterations - iterations_prev);
566 iterations_prev = acct_info.iterations;
567 xbzrle_cache_miss_prev = acct_info.xbzrle_cache_miss;
569 s->dirty_pages_rate = num_dirty_pages_period * 1000
570 / (end_time - start_time);
571 s->dirty_bytes_rate = s->dirty_pages_rate * TARGET_PAGE_SIZE;
572 start_time = end_time;
573 num_dirty_pages_period = 0;
574 s->dirty_sync_count = bitmap_sync_count;
579 * ram_save_page: Send the given page to the stream
581 * Returns: Number of bytes written.
583 static int ram_save_page(QEMUFile *f, RAMBlock* block, ram_addr_t offset,
584 bool last_stage)
586 int bytes_sent;
587 int cont;
588 ram_addr_t current_addr;
589 MemoryRegion *mr = block->mr;
590 uint8_t *p;
591 int ret;
592 bool send_async = true;
594 cont = (block == last_sent_block) ? RAM_SAVE_FLAG_CONTINUE : 0;
596 p = memory_region_get_ram_ptr(mr) + offset;
598 /* In doubt sent page as normal */
599 bytes_sent = -1;
600 ret = ram_control_save_page(f, block->offset,
601 offset, TARGET_PAGE_SIZE, &bytes_sent);
603 XBZRLE_cache_lock();
605 current_addr = block->offset + offset;
606 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
607 if (ret != RAM_SAVE_CONTROL_DELAYED) {
608 if (bytes_sent > 0) {
609 acct_info.norm_pages++;
610 } else if (bytes_sent == 0) {
611 acct_info.dup_pages++;
614 } else if (is_zero_range(p, TARGET_PAGE_SIZE)) {
615 acct_info.dup_pages++;
616 bytes_sent = save_block_hdr(f, block, offset, cont,
617 RAM_SAVE_FLAG_COMPRESS);
618 qemu_put_byte(f, 0);
619 bytes_sent++;
620 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
621 * page would be stale
623 xbzrle_cache_zero_page(current_addr);
624 } else if (!ram_bulk_stage && migrate_use_xbzrle()) {
625 bytes_sent = save_xbzrle_page(f, &p, current_addr, block,
626 offset, cont, last_stage);
627 if (!last_stage) {
628 /* Can't send this cached data async, since the cache page
629 * might get updated before it gets to the wire
631 send_async = false;
635 /* XBZRLE overflow or normal page */
636 if (bytes_sent == -1) {
637 bytes_sent = save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_PAGE);
638 if (send_async) {
639 qemu_put_buffer_async(f, p, TARGET_PAGE_SIZE);
640 } else {
641 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
643 bytes_sent += TARGET_PAGE_SIZE;
644 acct_info.norm_pages++;
647 XBZRLE_cache_unlock();
649 return bytes_sent;
653 * ram_find_and_save_block: Finds a page to send and sends it to f
655 * Called within an RCU critical section.
657 * Returns: The number of bytes written.
658 * 0 means no dirty pages
661 static int ram_find_and_save_block(QEMUFile *f, bool last_stage)
663 RAMBlock *block = last_seen_block;
664 ram_addr_t offset = last_offset;
665 bool complete_round = false;
666 int bytes_sent = 0;
667 MemoryRegion *mr;
669 if (!block)
670 block = QLIST_FIRST_RCU(&ram_list.blocks);
672 while (true) {
673 mr = block->mr;
674 offset = migration_bitmap_find_and_reset_dirty(mr, offset);
675 if (complete_round && block == last_seen_block &&
676 offset >= last_offset) {
677 break;
679 if (offset >= block->used_length) {
680 offset = 0;
681 block = QLIST_NEXT_RCU(block, next);
682 if (!block) {
683 block = QLIST_FIRST_RCU(&ram_list.blocks);
684 complete_round = true;
685 ram_bulk_stage = false;
687 } else {
688 bytes_sent = ram_save_page(f, block, offset, last_stage);
690 /* if page is unmodified, continue to the next */
691 if (bytes_sent > 0) {
692 last_sent_block = block;
693 break;
698 last_seen_block = block;
699 last_offset = offset;
700 return bytes_sent;
703 static uint64_t bytes_transferred;
705 void acct_update_position(QEMUFile *f, size_t size, bool zero)
707 uint64_t pages = size / TARGET_PAGE_SIZE;
708 if (zero) {
709 acct_info.dup_pages += pages;
710 } else {
711 acct_info.norm_pages += pages;
712 bytes_transferred += size;
713 qemu_update_position(f, size);
717 static ram_addr_t ram_save_remaining(void)
719 return migration_dirty_pages;
722 uint64_t ram_bytes_remaining(void)
724 return ram_save_remaining() * TARGET_PAGE_SIZE;
727 uint64_t ram_bytes_transferred(void)
729 return bytes_transferred;
732 uint64_t ram_bytes_total(void)
734 RAMBlock *block;
735 uint64_t total = 0;
737 rcu_read_lock();
738 QLIST_FOREACH_RCU(block, &ram_list.blocks, next)
739 total += block->used_length;
740 rcu_read_unlock();
741 return total;
744 void free_xbzrle_decoded_buf(void)
746 g_free(xbzrle_decoded_buf);
747 xbzrle_decoded_buf = NULL;
750 static void migration_end(void)
752 if (migration_bitmap) {
753 memory_global_dirty_log_stop();
754 g_free(migration_bitmap);
755 migration_bitmap = NULL;
758 XBZRLE_cache_lock();
759 if (XBZRLE.cache) {
760 cache_fini(XBZRLE.cache);
761 g_free(XBZRLE.encoded_buf);
762 g_free(XBZRLE.current_buf);
763 XBZRLE.cache = NULL;
764 XBZRLE.encoded_buf = NULL;
765 XBZRLE.current_buf = NULL;
767 XBZRLE_cache_unlock();
770 static void ram_migration_cancel(void *opaque)
772 migration_end();
775 static void reset_ram_globals(void)
777 last_seen_block = NULL;
778 last_sent_block = NULL;
779 last_offset = 0;
780 last_version = ram_list.version;
781 ram_bulk_stage = true;
784 #define MAX_WAIT 50 /* ms, half buffered_file limit */
787 /* Each of ram_save_setup, ram_save_iterate and ram_save_complete has
788 * long-running RCU critical section. When rcu-reclaims in the code
789 * start to become numerous it will be necessary to reduce the
790 * granularity of these critical sections.
793 static int ram_save_setup(QEMUFile *f, void *opaque)
795 RAMBlock *block;
796 int64_t ram_bitmap_pages; /* Size of bitmap in pages, including gaps */
798 mig_throttle_on = false;
799 dirty_rate_high_cnt = 0;
800 bitmap_sync_count = 0;
801 migration_bitmap_sync_init();
803 if (migrate_use_xbzrle()) {
804 XBZRLE_cache_lock();
805 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() /
806 TARGET_PAGE_SIZE,
807 TARGET_PAGE_SIZE);
808 if (!XBZRLE.cache) {
809 XBZRLE_cache_unlock();
810 error_report("Error creating cache");
811 return -1;
813 XBZRLE_cache_unlock();
815 /* We prefer not to abort if there is no memory */
816 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
817 if (!XBZRLE.encoded_buf) {
818 error_report("Error allocating encoded_buf");
819 return -1;
822 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
823 if (!XBZRLE.current_buf) {
824 error_report("Error allocating current_buf");
825 g_free(XBZRLE.encoded_buf);
826 XBZRLE.encoded_buf = NULL;
827 return -1;
830 acct_clear();
833 /* iothread lock needed for ram_list.dirty_memory[] */
834 qemu_mutex_lock_iothread();
835 qemu_mutex_lock_ramlist();
836 rcu_read_lock();
837 bytes_transferred = 0;
838 reset_ram_globals();
840 ram_bitmap_pages = last_ram_offset() >> TARGET_PAGE_BITS;
841 migration_bitmap = bitmap_new(ram_bitmap_pages);
842 bitmap_set(migration_bitmap, 0, ram_bitmap_pages);
845 * Count the total number of pages used by ram blocks not including any
846 * gaps due to alignment or unplugs.
848 migration_dirty_pages = 0;
849 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
850 uint64_t block_pages;
852 block_pages = block->used_length >> TARGET_PAGE_BITS;
853 migration_dirty_pages += block_pages;
856 memory_global_dirty_log_start();
857 migration_bitmap_sync();
858 qemu_mutex_unlock_ramlist();
859 qemu_mutex_unlock_iothread();
861 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
863 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
864 qemu_put_byte(f, strlen(block->idstr));
865 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
866 qemu_put_be64(f, block->used_length);
869 rcu_read_unlock();
871 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
872 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
874 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
876 return 0;
879 static int ram_save_iterate(QEMUFile *f, void *opaque)
881 int ret;
882 int i;
883 int64_t t0;
884 int total_sent = 0;
886 rcu_read_lock();
887 if (ram_list.version != last_version) {
888 reset_ram_globals();
891 /* Read version before ram_list.blocks */
892 smp_rmb();
894 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
896 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
897 i = 0;
898 while ((ret = qemu_file_rate_limit(f)) == 0) {
899 int bytes_sent;
901 bytes_sent = ram_find_and_save_block(f, false);
902 /* no more blocks to sent */
903 if (bytes_sent == 0) {
904 break;
906 total_sent += bytes_sent;
907 acct_info.iterations++;
908 check_guest_throttling();
909 /* we want to check in the 1st loop, just in case it was the 1st time
910 and we had to sync the dirty bitmap.
911 qemu_get_clock_ns() is a bit expensive, so we only check each some
912 iterations
914 if ((i & 63) == 0) {
915 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000;
916 if (t1 > MAX_WAIT) {
917 DPRINTF("big wait: %" PRIu64 " milliseconds, %d iterations\n",
918 t1, i);
919 break;
922 i++;
924 rcu_read_unlock();
927 * Must occur before EOS (or any QEMUFile operation)
928 * because of RDMA protocol.
930 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
932 bytes_transferred += total_sent;
935 * Do not count these 8 bytes into total_sent, so that we can
936 * return 0 if no page had been dirtied.
938 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
939 bytes_transferred += 8;
941 ret = qemu_file_get_error(f);
942 if (ret < 0) {
943 return ret;
946 return total_sent;
949 /* Called with iothread lock */
950 static int ram_save_complete(QEMUFile *f, void *opaque)
952 rcu_read_lock();
954 migration_bitmap_sync();
956 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
958 /* try transferring iterative blocks of memory */
960 /* flush all remaining blocks regardless of rate limiting */
961 while (true) {
962 int bytes_sent;
964 bytes_sent = ram_find_and_save_block(f, true);
965 /* no more blocks to sent */
966 if (bytes_sent == 0) {
967 break;
969 bytes_transferred += bytes_sent;
972 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
973 migration_end();
975 rcu_read_unlock();
976 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
978 return 0;
981 static uint64_t ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size)
983 uint64_t remaining_size;
985 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
987 if (remaining_size < max_size) {
988 qemu_mutex_lock_iothread();
989 rcu_read_lock();
990 migration_bitmap_sync();
991 rcu_read_unlock();
992 qemu_mutex_unlock_iothread();
993 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
995 return remaining_size;
998 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
1000 unsigned int xh_len;
1001 int xh_flags;
1003 if (!xbzrle_decoded_buf) {
1004 xbzrle_decoded_buf = g_malloc(TARGET_PAGE_SIZE);
1007 /* extract RLE header */
1008 xh_flags = qemu_get_byte(f);
1009 xh_len = qemu_get_be16(f);
1011 if (xh_flags != ENCODING_FLAG_XBZRLE) {
1012 error_report("Failed to load XBZRLE page - wrong compression!");
1013 return -1;
1016 if (xh_len > TARGET_PAGE_SIZE) {
1017 error_report("Failed to load XBZRLE page - len overflow!");
1018 return -1;
1020 /* load data and decode */
1021 qemu_get_buffer(f, xbzrle_decoded_buf, xh_len);
1023 /* decode RLE */
1024 if (xbzrle_decode_buffer(xbzrle_decoded_buf, xh_len, host,
1025 TARGET_PAGE_SIZE) == -1) {
1026 error_report("Failed to load XBZRLE page - decode error!");
1027 return -1;
1030 return 0;
1033 /* Must be called from within a rcu critical section.
1034 * Returns a pointer from within the RCU-protected ram_list.
1036 static inline void *host_from_stream_offset(QEMUFile *f,
1037 ram_addr_t offset,
1038 int flags)
1040 static RAMBlock *block = NULL;
1041 char id[256];
1042 uint8_t len;
1044 if (flags & RAM_SAVE_FLAG_CONTINUE) {
1045 if (!block || block->max_length <= offset) {
1046 error_report("Ack, bad migration stream!");
1047 return NULL;
1050 return memory_region_get_ram_ptr(block->mr) + offset;
1053 len = qemu_get_byte(f);
1054 qemu_get_buffer(f, (uint8_t *)id, len);
1055 id[len] = 0;
1057 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1058 if (!strncmp(id, block->idstr, sizeof(id)) &&
1059 block->max_length > offset) {
1060 return memory_region_get_ram_ptr(block->mr) + offset;
1064 error_report("Can't find block %s!", id);
1065 return NULL;
1069 * If a page (or a whole RDMA chunk) has been
1070 * determined to be zero, then zap it.
1072 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
1074 if (ch != 0 || !is_zero_range(host, size)) {
1075 memset(host, ch, size);
1079 static int ram_load(QEMUFile *f, void *opaque, int version_id)
1081 int flags = 0, ret = 0;
1082 static uint64_t seq_iter;
1084 seq_iter++;
1086 if (version_id != 4) {
1087 ret = -EINVAL;
1090 /* This RCU critical section can be very long running.
1091 * When RCU reclaims in the code start to become numerous,
1092 * it will be necessary to reduce the granularity of this
1093 * critical section.
1095 rcu_read_lock();
1096 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
1097 ram_addr_t addr, total_ram_bytes;
1098 void *host;
1099 uint8_t ch;
1101 addr = qemu_get_be64(f);
1102 flags = addr & ~TARGET_PAGE_MASK;
1103 addr &= TARGET_PAGE_MASK;
1105 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
1106 case RAM_SAVE_FLAG_MEM_SIZE:
1107 /* Synchronize RAM block list */
1108 total_ram_bytes = addr;
1109 while (!ret && total_ram_bytes) {
1110 RAMBlock *block;
1111 uint8_t len;
1112 char id[256];
1113 ram_addr_t length;
1115 len = qemu_get_byte(f);
1116 qemu_get_buffer(f, (uint8_t *)id, len);
1117 id[len] = 0;
1118 length = qemu_get_be64(f);
1120 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1121 if (!strncmp(id, block->idstr, sizeof(id))) {
1122 if (length != block->used_length) {
1123 Error *local_err = NULL;
1125 ret = qemu_ram_resize(block->offset, length, &local_err);
1126 if (local_err) {
1127 error_report_err(local_err);
1130 break;
1134 if (!block) {
1135 error_report("Unknown ramblock \"%s\", cannot "
1136 "accept migration", id);
1137 ret = -EINVAL;
1140 total_ram_bytes -= length;
1142 break;
1143 case RAM_SAVE_FLAG_COMPRESS:
1144 host = host_from_stream_offset(f, addr, flags);
1145 if (!host) {
1146 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
1147 ret = -EINVAL;
1148 break;
1150 ch = qemu_get_byte(f);
1151 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
1152 break;
1153 case RAM_SAVE_FLAG_PAGE:
1154 host = host_from_stream_offset(f, addr, flags);
1155 if (!host) {
1156 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
1157 ret = -EINVAL;
1158 break;
1160 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
1161 break;
1162 case RAM_SAVE_FLAG_XBZRLE:
1163 host = host_from_stream_offset(f, addr, flags);
1164 if (!host) {
1165 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
1166 ret = -EINVAL;
1167 break;
1169 if (load_xbzrle(f, addr, host) < 0) {
1170 error_report("Failed to decompress XBZRLE page at "
1171 RAM_ADDR_FMT, addr);
1172 ret = -EINVAL;
1173 break;
1175 break;
1176 case RAM_SAVE_FLAG_EOS:
1177 /* normal exit */
1178 break;
1179 default:
1180 if (flags & RAM_SAVE_FLAG_HOOK) {
1181 ram_control_load_hook(f, flags);
1182 } else {
1183 error_report("Unknown combination of migration flags: %#x",
1184 flags);
1185 ret = -EINVAL;
1188 if (!ret) {
1189 ret = qemu_file_get_error(f);
1193 rcu_read_unlock();
1194 DPRINTF("Completed load of VM with exit code %d seq iteration "
1195 "%" PRIu64 "\n", ret, seq_iter);
1196 return ret;
1199 static SaveVMHandlers savevm_ram_handlers = {
1200 .save_live_setup = ram_save_setup,
1201 .save_live_iterate = ram_save_iterate,
1202 .save_live_complete = ram_save_complete,
1203 .save_live_pending = ram_save_pending,
1204 .load_state = ram_load,
1205 .cancel = ram_migration_cancel,
1208 void ram_mig_init(void)
1210 qemu_mutex_init(&XBZRLE.lock);
1211 register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, NULL);
1214 struct soundhw {
1215 const char *name;
1216 const char *descr;
1217 int enabled;
1218 int isa;
1219 union {
1220 int (*init_isa) (ISABus *bus);
1221 int (*init_pci) (PCIBus *bus);
1222 } init;
1225 static struct soundhw soundhw[9];
1226 static int soundhw_count;
1228 void isa_register_soundhw(const char *name, const char *descr,
1229 int (*init_isa)(ISABus *bus))
1231 assert(soundhw_count < ARRAY_SIZE(soundhw) - 1);
1232 soundhw[soundhw_count].name = name;
1233 soundhw[soundhw_count].descr = descr;
1234 soundhw[soundhw_count].isa = 1;
1235 soundhw[soundhw_count].init.init_isa = init_isa;
1236 soundhw_count++;
1239 void pci_register_soundhw(const char *name, const char *descr,
1240 int (*init_pci)(PCIBus *bus))
1242 assert(soundhw_count < ARRAY_SIZE(soundhw) - 1);
1243 soundhw[soundhw_count].name = name;
1244 soundhw[soundhw_count].descr = descr;
1245 soundhw[soundhw_count].isa = 0;
1246 soundhw[soundhw_count].init.init_pci = init_pci;
1247 soundhw_count++;
1250 void select_soundhw(const char *optarg)
1252 struct soundhw *c;
1254 if (is_help_option(optarg)) {
1255 show_valid_cards:
1257 if (soundhw_count) {
1258 printf("Valid sound card names (comma separated):\n");
1259 for (c = soundhw; c->name; ++c) {
1260 printf ("%-11s %s\n", c->name, c->descr);
1262 printf("\n-soundhw all will enable all of the above\n");
1263 } else {
1264 printf("Machine has no user-selectable audio hardware "
1265 "(it may or may not have always-present audio hardware).\n");
1267 exit(!is_help_option(optarg));
1269 else {
1270 size_t l;
1271 const char *p;
1272 char *e;
1273 int bad_card = 0;
1275 if (!strcmp(optarg, "all")) {
1276 for (c = soundhw; c->name; ++c) {
1277 c->enabled = 1;
1279 return;
1282 p = optarg;
1283 while (*p) {
1284 e = strchr(p, ',');
1285 l = !e ? strlen(p) : (size_t) (e - p);
1287 for (c = soundhw; c->name; ++c) {
1288 if (!strncmp(c->name, p, l) && !c->name[l]) {
1289 c->enabled = 1;
1290 break;
1294 if (!c->name) {
1295 if (l > 80) {
1296 error_report("Unknown sound card name (too big to show)");
1298 else {
1299 error_report("Unknown sound card name `%.*s'",
1300 (int) l, p);
1302 bad_card = 1;
1304 p += l + (e != NULL);
1307 if (bad_card) {
1308 goto show_valid_cards;
1313 void audio_init(void)
1315 struct soundhw *c;
1316 ISABus *isa_bus = (ISABus *) object_resolve_path_type("", TYPE_ISA_BUS, NULL);
1317 PCIBus *pci_bus = (PCIBus *) object_resolve_path_type("", TYPE_PCI_BUS, NULL);
1319 for (c = soundhw; c->name; ++c) {
1320 if (c->enabled) {
1321 if (c->isa) {
1322 if (!isa_bus) {
1323 error_report("ISA bus not available for %s", c->name);
1324 exit(1);
1326 c->init.init_isa(isa_bus);
1327 } else {
1328 if (!pci_bus) {
1329 error_report("PCI bus not available for %s", c->name);
1330 exit(1);
1332 c->init.init_pci(pci_bus);
1338 int qemu_uuid_parse(const char *str, uint8_t *uuid)
1340 int ret;
1342 if (strlen(str) != 36) {
1343 return -1;
1346 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
1347 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
1348 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14],
1349 &uuid[15]);
1351 if (ret != 16) {
1352 return -1;
1354 return 0;
1357 void do_acpitable_option(const QemuOpts *opts)
1359 #ifdef TARGET_I386
1360 Error *err = NULL;
1362 acpi_table_add(opts, &err);
1363 if (err) {
1364 error_report("Wrong acpi table provided: %s",
1365 error_get_pretty(err));
1366 error_free(err);
1367 exit(1);
1369 #endif
1372 void do_smbios_option(QemuOpts *opts)
1374 #ifdef TARGET_I386
1375 smbios_entry_add(opts);
1376 #endif
1379 void cpudef_init(void)
1381 #if defined(cpudef_setup)
1382 cpudef_setup(); /* parse cpu definitions in target config file */
1383 #endif
1386 int kvm_available(void)
1388 #ifdef CONFIG_KVM
1389 return 1;
1390 #else
1391 return 0;
1392 #endif
1395 int xen_available(void)
1397 #ifdef CONFIG_XEN
1398 return 1;
1399 #else
1400 return 0;
1401 #endif
1405 TargetInfo *qmp_query_target(Error **errp)
1407 TargetInfo *info = g_malloc0(sizeof(*info));
1409 info->arch = g_strdup(TARGET_NAME);
1411 return info;
1414 /* Stub function that's gets run on the vcpu when its brought out of the
1415 VM to run inside qemu via async_run_on_cpu()*/
1416 static void mig_sleep_cpu(void *opq)
1418 qemu_mutex_unlock_iothread();
1419 g_usleep(30*1000);
1420 qemu_mutex_lock_iothread();
1423 /* To reduce the dirty rate explicitly disallow the VCPUs from spending
1424 much time in the VM. The migration thread will try to catchup.
1425 Workload will experience a performance drop.
1427 static void mig_throttle_guest_down(void)
1429 CPUState *cpu;
1431 qemu_mutex_lock_iothread();
1432 CPU_FOREACH(cpu) {
1433 async_run_on_cpu(cpu, mig_sleep_cpu, NULL);
1435 qemu_mutex_unlock_iothread();
1438 static void check_guest_throttling(void)
1440 static int64_t t0;
1441 int64_t t1;
1443 if (!mig_throttle_on) {
1444 return;
1447 if (!t0) {
1448 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1449 return;
1452 t1 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1454 /* If it has been more than 40 ms since the last time the guest
1455 * was throttled then do it again.
1457 if (40 < (t1-t0)/1000000) {
1458 mig_throttle_guest_down();
1459 t0 = t1;