io: get rid of bounce buffering in websock write path
[qemu/ar7.git] / hw / vfio / pci-quirks.c
blob14291c2a16b28346dfe70fc4ac63d1df2284ca3a
1 /*
2 * device quirks for PCI devices
4 * Copyright Red Hat, Inc. 2012-2015
6 * Authors:
7 * Alex Williamson <alex.williamson@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
13 #include "qemu/osdep.h"
14 #include "qemu/error-report.h"
15 #include "qemu/range.h"
16 #include "qapi/error.h"
17 #include "qapi/visitor.h"
18 #include "hw/nvram/fw_cfg.h"
19 #include "pci.h"
20 #include "trace.h"
22 /* Use uin32_t for vendor & device so PCI_ANY_ID expands and cannot match hw */
23 static bool vfio_pci_is(VFIOPCIDevice *vdev, uint32_t vendor, uint32_t device)
25 return (vendor == PCI_ANY_ID || vendor == vdev->vendor_id) &&
26 (device == PCI_ANY_ID || device == vdev->device_id);
29 static bool vfio_is_vga(VFIOPCIDevice *vdev)
31 PCIDevice *pdev = &vdev->pdev;
32 uint16_t class = pci_get_word(pdev->config + PCI_CLASS_DEVICE);
34 return class == PCI_CLASS_DISPLAY_VGA;
38 * List of device ids/vendor ids for which to disable
39 * option rom loading. This avoids the guest hangs during rom
40 * execution as noticed with the BCM 57810 card for lack of a
41 * more better way to handle such issues.
42 * The user can still override by specifying a romfile or
43 * rombar=1.
44 * Please see https://bugs.launchpad.net/qemu/+bug/1284874
45 * for an analysis of the 57810 card hang. When adding
46 * a new vendor id/device id combination below, please also add
47 * your card/environment details and information that could
48 * help in debugging to the bug tracking this issue
50 static const struct {
51 uint32_t vendor;
52 uint32_t device;
53 } romblacklist[] = {
54 { 0x14e4, 0x168e }, /* Broadcom BCM 57810 */
57 bool vfio_blacklist_opt_rom(VFIOPCIDevice *vdev)
59 int i;
61 for (i = 0 ; i < ARRAY_SIZE(romblacklist); i++) {
62 if (vfio_pci_is(vdev, romblacklist[i].vendor, romblacklist[i].device)) {
63 trace_vfio_quirk_rom_blacklisted(vdev->vbasedev.name,
64 romblacklist[i].vendor,
65 romblacklist[i].device);
66 return true;
69 return false;
73 * Device specific region quirks (mostly backdoors to PCI config space)
77 * The generic window quirks operate on an address and data register,
78 * vfio_generic_window_address_quirk handles the address register and
79 * vfio_generic_window_data_quirk handles the data register. These ops
80 * pass reads and writes through to hardware until a value matching the
81 * stored address match/mask is written. When this occurs, the data
82 * register access emulated PCI config space for the device rather than
83 * passing through accesses. This enables devices where PCI config space
84 * is accessible behind a window register to maintain the virtualization
85 * provided through vfio.
87 typedef struct VFIOConfigWindowMatch {
88 uint32_t match;
89 uint32_t mask;
90 } VFIOConfigWindowMatch;
92 typedef struct VFIOConfigWindowQuirk {
93 struct VFIOPCIDevice *vdev;
95 uint32_t address_val;
97 uint32_t address_offset;
98 uint32_t data_offset;
100 bool window_enabled;
101 uint8_t bar;
103 MemoryRegion *addr_mem;
104 MemoryRegion *data_mem;
106 uint32_t nr_matches;
107 VFIOConfigWindowMatch matches[];
108 } VFIOConfigWindowQuirk;
110 static uint64_t vfio_generic_window_quirk_address_read(void *opaque,
111 hwaddr addr,
112 unsigned size)
114 VFIOConfigWindowQuirk *window = opaque;
115 VFIOPCIDevice *vdev = window->vdev;
117 return vfio_region_read(&vdev->bars[window->bar].region,
118 addr + window->address_offset, size);
121 static void vfio_generic_window_quirk_address_write(void *opaque, hwaddr addr,
122 uint64_t data,
123 unsigned size)
125 VFIOConfigWindowQuirk *window = opaque;
126 VFIOPCIDevice *vdev = window->vdev;
127 int i;
129 window->window_enabled = false;
131 vfio_region_write(&vdev->bars[window->bar].region,
132 addr + window->address_offset, data, size);
134 for (i = 0; i < window->nr_matches; i++) {
135 if ((data & ~window->matches[i].mask) == window->matches[i].match) {
136 window->window_enabled = true;
137 window->address_val = data & window->matches[i].mask;
138 trace_vfio_quirk_generic_window_address_write(vdev->vbasedev.name,
139 memory_region_name(window->addr_mem), data);
140 break;
145 static const MemoryRegionOps vfio_generic_window_address_quirk = {
146 .read = vfio_generic_window_quirk_address_read,
147 .write = vfio_generic_window_quirk_address_write,
148 .endianness = DEVICE_LITTLE_ENDIAN,
151 static uint64_t vfio_generic_window_quirk_data_read(void *opaque,
152 hwaddr addr, unsigned size)
154 VFIOConfigWindowQuirk *window = opaque;
155 VFIOPCIDevice *vdev = window->vdev;
156 uint64_t data;
158 /* Always read data reg, discard if window enabled */
159 data = vfio_region_read(&vdev->bars[window->bar].region,
160 addr + window->data_offset, size);
162 if (window->window_enabled) {
163 data = vfio_pci_read_config(&vdev->pdev, window->address_val, size);
164 trace_vfio_quirk_generic_window_data_read(vdev->vbasedev.name,
165 memory_region_name(window->data_mem), data);
168 return data;
171 static void vfio_generic_window_quirk_data_write(void *opaque, hwaddr addr,
172 uint64_t data, unsigned size)
174 VFIOConfigWindowQuirk *window = opaque;
175 VFIOPCIDevice *vdev = window->vdev;
177 if (window->window_enabled) {
178 vfio_pci_write_config(&vdev->pdev, window->address_val, data, size);
179 trace_vfio_quirk_generic_window_data_write(vdev->vbasedev.name,
180 memory_region_name(window->data_mem), data);
181 return;
184 vfio_region_write(&vdev->bars[window->bar].region,
185 addr + window->data_offset, data, size);
188 static const MemoryRegionOps vfio_generic_window_data_quirk = {
189 .read = vfio_generic_window_quirk_data_read,
190 .write = vfio_generic_window_quirk_data_write,
191 .endianness = DEVICE_LITTLE_ENDIAN,
195 * The generic mirror quirk handles devices which expose PCI config space
196 * through a region within a BAR. When enabled, reads and writes are
197 * redirected through to emulated PCI config space. XXX if PCI config space
198 * used memory regions, this could just be an alias.
200 typedef struct VFIOConfigMirrorQuirk {
201 struct VFIOPCIDevice *vdev;
202 uint32_t offset;
203 uint8_t bar;
204 MemoryRegion *mem;
205 } VFIOConfigMirrorQuirk;
207 static uint64_t vfio_generic_quirk_mirror_read(void *opaque,
208 hwaddr addr, unsigned size)
210 VFIOConfigMirrorQuirk *mirror = opaque;
211 VFIOPCIDevice *vdev = mirror->vdev;
212 uint64_t data;
214 /* Read and discard in case the hardware cares */
215 (void)vfio_region_read(&vdev->bars[mirror->bar].region,
216 addr + mirror->offset, size);
218 data = vfio_pci_read_config(&vdev->pdev, addr, size);
219 trace_vfio_quirk_generic_mirror_read(vdev->vbasedev.name,
220 memory_region_name(mirror->mem),
221 addr, data);
222 return data;
225 static void vfio_generic_quirk_mirror_write(void *opaque, hwaddr addr,
226 uint64_t data, unsigned size)
228 VFIOConfigMirrorQuirk *mirror = opaque;
229 VFIOPCIDevice *vdev = mirror->vdev;
231 vfio_pci_write_config(&vdev->pdev, addr, data, size);
232 trace_vfio_quirk_generic_mirror_write(vdev->vbasedev.name,
233 memory_region_name(mirror->mem),
234 addr, data);
237 static const MemoryRegionOps vfio_generic_mirror_quirk = {
238 .read = vfio_generic_quirk_mirror_read,
239 .write = vfio_generic_quirk_mirror_write,
240 .endianness = DEVICE_LITTLE_ENDIAN,
243 /* Is range1 fully contained within range2? */
244 static bool vfio_range_contained(uint64_t first1, uint64_t len1,
245 uint64_t first2, uint64_t len2) {
246 return (first1 >= first2 && first1 + len1 <= first2 + len2);
249 #define PCI_VENDOR_ID_ATI 0x1002
252 * Radeon HD cards (HD5450 & HD7850) report the upper byte of the I/O port BAR
253 * through VGA register 0x3c3. On newer cards, the I/O port BAR is always
254 * BAR4 (older cards like the X550 used BAR1, but we don't care to support
255 * those). Note that on bare metal, a read of 0x3c3 doesn't always return the
256 * I/O port BAR address. Originally this was coded to return the virtual BAR
257 * address only if the physical register read returns the actual BAR address,
258 * but users have reported greater success if we return the virtual address
259 * unconditionally.
261 static uint64_t vfio_ati_3c3_quirk_read(void *opaque,
262 hwaddr addr, unsigned size)
264 VFIOPCIDevice *vdev = opaque;
265 uint64_t data = vfio_pci_read_config(&vdev->pdev,
266 PCI_BASE_ADDRESS_4 + 1, size);
268 trace_vfio_quirk_ati_3c3_read(vdev->vbasedev.name, data);
270 return data;
273 static const MemoryRegionOps vfio_ati_3c3_quirk = {
274 .read = vfio_ati_3c3_quirk_read,
275 .endianness = DEVICE_LITTLE_ENDIAN,
278 static void vfio_vga_probe_ati_3c3_quirk(VFIOPCIDevice *vdev)
280 VFIOQuirk *quirk;
283 * As long as the BAR is >= 256 bytes it will be aligned such that the
284 * lower byte is always zero. Filter out anything else, if it exists.
286 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) ||
287 !vdev->bars[4].ioport || vdev->bars[4].region.size < 256) {
288 return;
291 quirk = g_malloc0(sizeof(*quirk));
292 quirk->mem = g_new0(MemoryRegion, 1);
293 quirk->nr_mem = 1;
295 memory_region_init_io(quirk->mem, OBJECT(vdev), &vfio_ati_3c3_quirk, vdev,
296 "vfio-ati-3c3-quirk", 1);
297 memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem,
298 3 /* offset 3 bytes from 0x3c0 */, quirk->mem);
300 QLIST_INSERT_HEAD(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].quirks,
301 quirk, next);
303 trace_vfio_quirk_ati_3c3_probe(vdev->vbasedev.name);
307 * Newer ATI/AMD devices, including HD5450 and HD7850, have a mirror to PCI
308 * config space through MMIO BAR2 at offset 0x4000. Nothing seems to access
309 * the MMIO space directly, but a window to this space is provided through
310 * I/O port BAR4. Offset 0x0 is the address register and offset 0x4 is the
311 * data register. When the address is programmed to a range of 0x4000-0x4fff
312 * PCI configuration space is available. Experimentation seems to indicate
313 * that read-only may be provided by hardware.
315 static void vfio_probe_ati_bar4_quirk(VFIOPCIDevice *vdev, int nr)
317 VFIOQuirk *quirk;
318 VFIOConfigWindowQuirk *window;
320 /* This windows doesn't seem to be used except by legacy VGA code */
321 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) ||
322 !vdev->vga || nr != 4) {
323 return;
326 quirk = g_malloc0(sizeof(*quirk));
327 quirk->mem = g_new0(MemoryRegion, 2);
328 quirk->nr_mem = 2;
329 window = quirk->data = g_malloc0(sizeof(*window) +
330 sizeof(VFIOConfigWindowMatch));
331 window->vdev = vdev;
332 window->address_offset = 0;
333 window->data_offset = 4;
334 window->nr_matches = 1;
335 window->matches[0].match = 0x4000;
336 window->matches[0].mask = vdev->config_size - 1;
337 window->bar = nr;
338 window->addr_mem = &quirk->mem[0];
339 window->data_mem = &quirk->mem[1];
341 memory_region_init_io(window->addr_mem, OBJECT(vdev),
342 &vfio_generic_window_address_quirk, window,
343 "vfio-ati-bar4-window-address-quirk", 4);
344 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
345 window->address_offset,
346 window->addr_mem, 1);
348 memory_region_init_io(window->data_mem, OBJECT(vdev),
349 &vfio_generic_window_data_quirk, window,
350 "vfio-ati-bar4-window-data-quirk", 4);
351 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
352 window->data_offset,
353 window->data_mem, 1);
355 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
357 trace_vfio_quirk_ati_bar4_probe(vdev->vbasedev.name);
361 * Trap the BAR2 MMIO mirror to config space as well.
363 static void vfio_probe_ati_bar2_quirk(VFIOPCIDevice *vdev, int nr)
365 VFIOQuirk *quirk;
366 VFIOConfigMirrorQuirk *mirror;
368 /* Only enable on newer devices where BAR2 is 64bit */
369 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) ||
370 !vdev->vga || nr != 2 || !vdev->bars[2].mem64) {
371 return;
374 quirk = g_malloc0(sizeof(*quirk));
375 mirror = quirk->data = g_malloc0(sizeof(*mirror));
376 mirror->mem = quirk->mem = g_new0(MemoryRegion, 1);
377 quirk->nr_mem = 1;
378 mirror->vdev = vdev;
379 mirror->offset = 0x4000;
380 mirror->bar = nr;
382 memory_region_init_io(mirror->mem, OBJECT(vdev),
383 &vfio_generic_mirror_quirk, mirror,
384 "vfio-ati-bar2-4000-quirk", PCI_CONFIG_SPACE_SIZE);
385 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
386 mirror->offset, mirror->mem, 1);
388 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
390 trace_vfio_quirk_ati_bar2_probe(vdev->vbasedev.name);
394 * Older ATI/AMD cards like the X550 have a similar window to that above.
395 * I/O port BAR1 provides a window to a mirror of PCI config space located
396 * in BAR2 at offset 0xf00. We don't care to support such older cards, but
397 * note it for future reference.
400 #define PCI_VENDOR_ID_NVIDIA 0x10de
403 * Nvidia has several different methods to get to config space, the
404 * nouveu project has several of these documented here:
405 * https://github.com/pathscale/envytools/tree/master/hwdocs
407 * The first quirk is actually not documented in envytools and is found
408 * on 10de:01d1 (NVIDIA Corporation G72 [GeForce 7300 LE]). This is an
409 * NV46 chipset. The backdoor uses the legacy VGA I/O ports to access
410 * the mirror of PCI config space found at BAR0 offset 0x1800. The access
411 * sequence first writes 0x338 to I/O port 0x3d4. The target offset is
412 * then written to 0x3d0. Finally 0x538 is written for a read and 0x738
413 * is written for a write to 0x3d4. The BAR0 offset is then accessible
414 * through 0x3d0. This quirk doesn't seem to be necessary on newer cards
415 * that use the I/O port BAR5 window but it doesn't hurt to leave it.
417 typedef enum {NONE = 0, SELECT, WINDOW, READ, WRITE} VFIONvidia3d0State;
418 static const char *nv3d0_states[] = { "NONE", "SELECT",
419 "WINDOW", "READ", "WRITE" };
421 typedef struct VFIONvidia3d0Quirk {
422 VFIOPCIDevice *vdev;
423 VFIONvidia3d0State state;
424 uint32_t offset;
425 } VFIONvidia3d0Quirk;
427 static uint64_t vfio_nvidia_3d4_quirk_read(void *opaque,
428 hwaddr addr, unsigned size)
430 VFIONvidia3d0Quirk *quirk = opaque;
431 VFIOPCIDevice *vdev = quirk->vdev;
433 quirk->state = NONE;
435 return vfio_vga_read(&vdev->vga->region[QEMU_PCI_VGA_IO_HI],
436 addr + 0x14, size);
439 static void vfio_nvidia_3d4_quirk_write(void *opaque, hwaddr addr,
440 uint64_t data, unsigned size)
442 VFIONvidia3d0Quirk *quirk = opaque;
443 VFIOPCIDevice *vdev = quirk->vdev;
444 VFIONvidia3d0State old_state = quirk->state;
446 quirk->state = NONE;
448 switch (data) {
449 case 0x338:
450 if (old_state == NONE) {
451 quirk->state = SELECT;
452 trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name,
453 nv3d0_states[quirk->state]);
455 break;
456 case 0x538:
457 if (old_state == WINDOW) {
458 quirk->state = READ;
459 trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name,
460 nv3d0_states[quirk->state]);
462 break;
463 case 0x738:
464 if (old_state == WINDOW) {
465 quirk->state = WRITE;
466 trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name,
467 nv3d0_states[quirk->state]);
469 break;
472 vfio_vga_write(&vdev->vga->region[QEMU_PCI_VGA_IO_HI],
473 addr + 0x14, data, size);
476 static const MemoryRegionOps vfio_nvidia_3d4_quirk = {
477 .read = vfio_nvidia_3d4_quirk_read,
478 .write = vfio_nvidia_3d4_quirk_write,
479 .endianness = DEVICE_LITTLE_ENDIAN,
482 static uint64_t vfio_nvidia_3d0_quirk_read(void *opaque,
483 hwaddr addr, unsigned size)
485 VFIONvidia3d0Quirk *quirk = opaque;
486 VFIOPCIDevice *vdev = quirk->vdev;
487 VFIONvidia3d0State old_state = quirk->state;
488 uint64_t data = vfio_vga_read(&vdev->vga->region[QEMU_PCI_VGA_IO_HI],
489 addr + 0x10, size);
491 quirk->state = NONE;
493 if (old_state == READ &&
494 (quirk->offset & ~(PCI_CONFIG_SPACE_SIZE - 1)) == 0x1800) {
495 uint8_t offset = quirk->offset & (PCI_CONFIG_SPACE_SIZE - 1);
497 data = vfio_pci_read_config(&vdev->pdev, offset, size);
498 trace_vfio_quirk_nvidia_3d0_read(vdev->vbasedev.name,
499 offset, size, data);
502 return data;
505 static void vfio_nvidia_3d0_quirk_write(void *opaque, hwaddr addr,
506 uint64_t data, unsigned size)
508 VFIONvidia3d0Quirk *quirk = opaque;
509 VFIOPCIDevice *vdev = quirk->vdev;
510 VFIONvidia3d0State old_state = quirk->state;
512 quirk->state = NONE;
514 if (old_state == SELECT) {
515 quirk->offset = (uint32_t)data;
516 quirk->state = WINDOW;
517 trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name,
518 nv3d0_states[quirk->state]);
519 } else if (old_state == WRITE) {
520 if ((quirk->offset & ~(PCI_CONFIG_SPACE_SIZE - 1)) == 0x1800) {
521 uint8_t offset = quirk->offset & (PCI_CONFIG_SPACE_SIZE - 1);
523 vfio_pci_write_config(&vdev->pdev, offset, data, size);
524 trace_vfio_quirk_nvidia_3d0_write(vdev->vbasedev.name,
525 offset, data, size);
526 return;
530 vfio_vga_write(&vdev->vga->region[QEMU_PCI_VGA_IO_HI],
531 addr + 0x10, data, size);
534 static const MemoryRegionOps vfio_nvidia_3d0_quirk = {
535 .read = vfio_nvidia_3d0_quirk_read,
536 .write = vfio_nvidia_3d0_quirk_write,
537 .endianness = DEVICE_LITTLE_ENDIAN,
540 static void vfio_vga_probe_nvidia_3d0_quirk(VFIOPCIDevice *vdev)
542 VFIOQuirk *quirk;
543 VFIONvidia3d0Quirk *data;
545 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) ||
546 !vdev->bars[1].region.size) {
547 return;
550 quirk = g_malloc0(sizeof(*quirk));
551 quirk->data = data = g_malloc0(sizeof(*data));
552 quirk->mem = g_new0(MemoryRegion, 2);
553 quirk->nr_mem = 2;
554 data->vdev = vdev;
556 memory_region_init_io(&quirk->mem[0], OBJECT(vdev), &vfio_nvidia_3d4_quirk,
557 data, "vfio-nvidia-3d4-quirk", 2);
558 memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem,
559 0x14 /* 0x3c0 + 0x14 */, &quirk->mem[0]);
561 memory_region_init_io(&quirk->mem[1], OBJECT(vdev), &vfio_nvidia_3d0_quirk,
562 data, "vfio-nvidia-3d0-quirk", 2);
563 memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem,
564 0x10 /* 0x3c0 + 0x10 */, &quirk->mem[1]);
566 QLIST_INSERT_HEAD(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].quirks,
567 quirk, next);
569 trace_vfio_quirk_nvidia_3d0_probe(vdev->vbasedev.name);
573 * The second quirk is documented in envytools. The I/O port BAR5 is just
574 * a set of address/data ports to the MMIO BARs. The BAR we care about is
575 * again BAR0. This backdoor is apparently a bit newer than the one above
576 * so we need to not only trap 256 bytes @0x1800, but all of PCI config
577 * space, including extended space is available at the 4k @0x88000.
579 typedef struct VFIONvidiaBAR5Quirk {
580 uint32_t master;
581 uint32_t enable;
582 MemoryRegion *addr_mem;
583 MemoryRegion *data_mem;
584 bool enabled;
585 VFIOConfigWindowQuirk window; /* last for match data */
586 } VFIONvidiaBAR5Quirk;
588 static void vfio_nvidia_bar5_enable(VFIONvidiaBAR5Quirk *bar5)
590 VFIOPCIDevice *vdev = bar5->window.vdev;
592 if (((bar5->master & bar5->enable) & 0x1) == bar5->enabled) {
593 return;
596 bar5->enabled = !bar5->enabled;
597 trace_vfio_quirk_nvidia_bar5_state(vdev->vbasedev.name,
598 bar5->enabled ? "Enable" : "Disable");
599 memory_region_set_enabled(bar5->addr_mem, bar5->enabled);
600 memory_region_set_enabled(bar5->data_mem, bar5->enabled);
603 static uint64_t vfio_nvidia_bar5_quirk_master_read(void *opaque,
604 hwaddr addr, unsigned size)
606 VFIONvidiaBAR5Quirk *bar5 = opaque;
607 VFIOPCIDevice *vdev = bar5->window.vdev;
609 return vfio_region_read(&vdev->bars[5].region, addr, size);
612 static void vfio_nvidia_bar5_quirk_master_write(void *opaque, hwaddr addr,
613 uint64_t data, unsigned size)
615 VFIONvidiaBAR5Quirk *bar5 = opaque;
616 VFIOPCIDevice *vdev = bar5->window.vdev;
618 vfio_region_write(&vdev->bars[5].region, addr, data, size);
620 bar5->master = data;
621 vfio_nvidia_bar5_enable(bar5);
624 static const MemoryRegionOps vfio_nvidia_bar5_quirk_master = {
625 .read = vfio_nvidia_bar5_quirk_master_read,
626 .write = vfio_nvidia_bar5_quirk_master_write,
627 .endianness = DEVICE_LITTLE_ENDIAN,
630 static uint64_t vfio_nvidia_bar5_quirk_enable_read(void *opaque,
631 hwaddr addr, unsigned size)
633 VFIONvidiaBAR5Quirk *bar5 = opaque;
634 VFIOPCIDevice *vdev = bar5->window.vdev;
636 return vfio_region_read(&vdev->bars[5].region, addr + 4, size);
639 static void vfio_nvidia_bar5_quirk_enable_write(void *opaque, hwaddr addr,
640 uint64_t data, unsigned size)
642 VFIONvidiaBAR5Quirk *bar5 = opaque;
643 VFIOPCIDevice *vdev = bar5->window.vdev;
645 vfio_region_write(&vdev->bars[5].region, addr + 4, data, size);
647 bar5->enable = data;
648 vfio_nvidia_bar5_enable(bar5);
651 static const MemoryRegionOps vfio_nvidia_bar5_quirk_enable = {
652 .read = vfio_nvidia_bar5_quirk_enable_read,
653 .write = vfio_nvidia_bar5_quirk_enable_write,
654 .endianness = DEVICE_LITTLE_ENDIAN,
657 static void vfio_probe_nvidia_bar5_quirk(VFIOPCIDevice *vdev, int nr)
659 VFIOQuirk *quirk;
660 VFIONvidiaBAR5Quirk *bar5;
661 VFIOConfigWindowQuirk *window;
663 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) ||
664 !vdev->vga || nr != 5 || !vdev->bars[5].ioport) {
665 return;
668 quirk = g_malloc0(sizeof(*quirk));
669 quirk->mem = g_new0(MemoryRegion, 4);
670 quirk->nr_mem = 4;
671 bar5 = quirk->data = g_malloc0(sizeof(*bar5) +
672 (sizeof(VFIOConfigWindowMatch) * 2));
673 window = &bar5->window;
675 window->vdev = vdev;
676 window->address_offset = 0x8;
677 window->data_offset = 0xc;
678 window->nr_matches = 2;
679 window->matches[0].match = 0x1800;
680 window->matches[0].mask = PCI_CONFIG_SPACE_SIZE - 1;
681 window->matches[1].match = 0x88000;
682 window->matches[1].mask = vdev->config_size - 1;
683 window->bar = nr;
684 window->addr_mem = bar5->addr_mem = &quirk->mem[0];
685 window->data_mem = bar5->data_mem = &quirk->mem[1];
687 memory_region_init_io(window->addr_mem, OBJECT(vdev),
688 &vfio_generic_window_address_quirk, window,
689 "vfio-nvidia-bar5-window-address-quirk", 4);
690 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
691 window->address_offset,
692 window->addr_mem, 1);
693 memory_region_set_enabled(window->addr_mem, false);
695 memory_region_init_io(window->data_mem, OBJECT(vdev),
696 &vfio_generic_window_data_quirk, window,
697 "vfio-nvidia-bar5-window-data-quirk", 4);
698 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
699 window->data_offset,
700 window->data_mem, 1);
701 memory_region_set_enabled(window->data_mem, false);
703 memory_region_init_io(&quirk->mem[2], OBJECT(vdev),
704 &vfio_nvidia_bar5_quirk_master, bar5,
705 "vfio-nvidia-bar5-master-quirk", 4);
706 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
707 0, &quirk->mem[2], 1);
709 memory_region_init_io(&quirk->mem[3], OBJECT(vdev),
710 &vfio_nvidia_bar5_quirk_enable, bar5,
711 "vfio-nvidia-bar5-enable-quirk", 4);
712 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
713 4, &quirk->mem[3], 1);
715 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
717 trace_vfio_quirk_nvidia_bar5_probe(vdev->vbasedev.name);
721 * Finally, BAR0 itself. We want to redirect any accesses to either
722 * 0x1800 or 0x88000 through the PCI config space access functions.
724 static void vfio_nvidia_quirk_mirror_write(void *opaque, hwaddr addr,
725 uint64_t data, unsigned size)
727 VFIOConfigMirrorQuirk *mirror = opaque;
728 VFIOPCIDevice *vdev = mirror->vdev;
729 PCIDevice *pdev = &vdev->pdev;
731 vfio_generic_quirk_mirror_write(opaque, addr, data, size);
734 * Nvidia seems to acknowledge MSI interrupts by writing 0xff to the
735 * MSI capability ID register. Both the ID and next register are
736 * read-only, so we allow writes covering either of those to real hw.
738 if ((pdev->cap_present & QEMU_PCI_CAP_MSI) &&
739 vfio_range_contained(addr, size, pdev->msi_cap, PCI_MSI_FLAGS)) {
740 vfio_region_write(&vdev->bars[mirror->bar].region,
741 addr + mirror->offset, data, size);
742 trace_vfio_quirk_nvidia_bar0_msi_ack(vdev->vbasedev.name);
746 static const MemoryRegionOps vfio_nvidia_mirror_quirk = {
747 .read = vfio_generic_quirk_mirror_read,
748 .write = vfio_nvidia_quirk_mirror_write,
749 .endianness = DEVICE_LITTLE_ENDIAN,
752 static void vfio_probe_nvidia_bar0_quirk(VFIOPCIDevice *vdev, int nr)
754 VFIOQuirk *quirk;
755 VFIOConfigMirrorQuirk *mirror;
757 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) ||
758 !vfio_is_vga(vdev) || nr != 0) {
759 return;
762 quirk = g_malloc0(sizeof(*quirk));
763 mirror = quirk->data = g_malloc0(sizeof(*mirror));
764 mirror->mem = quirk->mem = g_new0(MemoryRegion, 1);
765 quirk->nr_mem = 1;
766 mirror->vdev = vdev;
767 mirror->offset = 0x88000;
768 mirror->bar = nr;
770 memory_region_init_io(mirror->mem, OBJECT(vdev),
771 &vfio_nvidia_mirror_quirk, mirror,
772 "vfio-nvidia-bar0-88000-mirror-quirk",
773 vdev->config_size);
774 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
775 mirror->offset, mirror->mem, 1);
777 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
779 /* The 0x1800 offset mirror only seems to get used by legacy VGA */
780 if (vdev->vga) {
781 quirk = g_malloc0(sizeof(*quirk));
782 mirror = quirk->data = g_malloc0(sizeof(*mirror));
783 mirror->mem = quirk->mem = g_new0(MemoryRegion, 1);
784 quirk->nr_mem = 1;
785 mirror->vdev = vdev;
786 mirror->offset = 0x1800;
787 mirror->bar = nr;
789 memory_region_init_io(mirror->mem, OBJECT(vdev),
790 &vfio_nvidia_mirror_quirk, mirror,
791 "vfio-nvidia-bar0-1800-mirror-quirk",
792 PCI_CONFIG_SPACE_SIZE);
793 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
794 mirror->offset, mirror->mem, 1);
796 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
799 trace_vfio_quirk_nvidia_bar0_probe(vdev->vbasedev.name);
803 * TODO - Some Nvidia devices provide config access to their companion HDA
804 * device and even to their parent bridge via these config space mirrors.
805 * Add quirks for those regions.
808 #define PCI_VENDOR_ID_REALTEK 0x10ec
811 * RTL8168 devices have a backdoor that can access the MSI-X table. At BAR2
812 * offset 0x70 there is a dword data register, offset 0x74 is a dword address
813 * register. According to the Linux r8169 driver, the MSI-X table is addressed
814 * when the "type" portion of the address register is set to 0x1. This appears
815 * to be bits 16:30. Bit 31 is both a write indicator and some sort of
816 * "address latched" indicator. Bits 12:15 are a mask field, which we can
817 * ignore because the MSI-X table should always be accessed as a dword (full
818 * mask). Bits 0:11 is offset within the type.
820 * Example trace:
822 * Read from MSI-X table offset 0
823 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x1f000, 4) // store read addr
824 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x8001f000 // latch
825 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x70, 4) = 0xfee00398 // read data
827 * Write 0xfee00000 to MSI-X table offset 0
828 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x70, 0xfee00000, 4) // write data
829 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x8001f000, 4) // do write
830 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x1f000 // complete
832 typedef struct VFIOrtl8168Quirk {
833 VFIOPCIDevice *vdev;
834 uint32_t addr;
835 uint32_t data;
836 bool enabled;
837 } VFIOrtl8168Quirk;
839 static uint64_t vfio_rtl8168_quirk_address_read(void *opaque,
840 hwaddr addr, unsigned size)
842 VFIOrtl8168Quirk *rtl = opaque;
843 VFIOPCIDevice *vdev = rtl->vdev;
844 uint64_t data = vfio_region_read(&vdev->bars[2].region, addr + 0x74, size);
846 if (rtl->enabled) {
847 data = rtl->addr ^ 0x80000000U; /* latch/complete */
848 trace_vfio_quirk_rtl8168_fake_latch(vdev->vbasedev.name, data);
851 return data;
854 static void vfio_rtl8168_quirk_address_write(void *opaque, hwaddr addr,
855 uint64_t data, unsigned size)
857 VFIOrtl8168Quirk *rtl = opaque;
858 VFIOPCIDevice *vdev = rtl->vdev;
860 rtl->enabled = false;
862 if ((data & 0x7fff0000) == 0x10000) { /* MSI-X table */
863 rtl->enabled = true;
864 rtl->addr = (uint32_t)data;
866 if (data & 0x80000000U) { /* Do write */
867 if (vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX) {
868 hwaddr offset = data & 0xfff;
869 uint64_t val = rtl->data;
871 trace_vfio_quirk_rtl8168_msix_write(vdev->vbasedev.name,
872 (uint16_t)offset, val);
874 /* Write to the proper guest MSI-X table instead */
875 memory_region_dispatch_write(&vdev->pdev.msix_table_mmio,
876 offset, val, size,
877 MEMTXATTRS_UNSPECIFIED);
879 return; /* Do not write guest MSI-X data to hardware */
883 vfio_region_write(&vdev->bars[2].region, addr + 0x74, data, size);
886 static const MemoryRegionOps vfio_rtl_address_quirk = {
887 .read = vfio_rtl8168_quirk_address_read,
888 .write = vfio_rtl8168_quirk_address_write,
889 .valid = {
890 .min_access_size = 4,
891 .max_access_size = 4,
892 .unaligned = false,
894 .endianness = DEVICE_LITTLE_ENDIAN,
897 static uint64_t vfio_rtl8168_quirk_data_read(void *opaque,
898 hwaddr addr, unsigned size)
900 VFIOrtl8168Quirk *rtl = opaque;
901 VFIOPCIDevice *vdev = rtl->vdev;
902 uint64_t data = vfio_region_read(&vdev->bars[2].region, addr + 0x70, size);
904 if (rtl->enabled && (vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX)) {
905 hwaddr offset = rtl->addr & 0xfff;
906 memory_region_dispatch_read(&vdev->pdev.msix_table_mmio, offset,
907 &data, size, MEMTXATTRS_UNSPECIFIED);
908 trace_vfio_quirk_rtl8168_msix_read(vdev->vbasedev.name, offset, data);
911 return data;
914 static void vfio_rtl8168_quirk_data_write(void *opaque, hwaddr addr,
915 uint64_t data, unsigned size)
917 VFIOrtl8168Quirk *rtl = opaque;
918 VFIOPCIDevice *vdev = rtl->vdev;
920 rtl->data = (uint32_t)data;
922 vfio_region_write(&vdev->bars[2].region, addr + 0x70, data, size);
925 static const MemoryRegionOps vfio_rtl_data_quirk = {
926 .read = vfio_rtl8168_quirk_data_read,
927 .write = vfio_rtl8168_quirk_data_write,
928 .valid = {
929 .min_access_size = 4,
930 .max_access_size = 4,
931 .unaligned = false,
933 .endianness = DEVICE_LITTLE_ENDIAN,
936 static void vfio_probe_rtl8168_bar2_quirk(VFIOPCIDevice *vdev, int nr)
938 VFIOQuirk *quirk;
939 VFIOrtl8168Quirk *rtl;
941 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_REALTEK, 0x8168) || nr != 2) {
942 return;
945 quirk = g_malloc0(sizeof(*quirk));
946 quirk->mem = g_new0(MemoryRegion, 2);
947 quirk->nr_mem = 2;
948 quirk->data = rtl = g_malloc0(sizeof(*rtl));
949 rtl->vdev = vdev;
951 memory_region_init_io(&quirk->mem[0], OBJECT(vdev),
952 &vfio_rtl_address_quirk, rtl,
953 "vfio-rtl8168-window-address-quirk", 4);
954 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
955 0x74, &quirk->mem[0], 1);
957 memory_region_init_io(&quirk->mem[1], OBJECT(vdev),
958 &vfio_rtl_data_quirk, rtl,
959 "vfio-rtl8168-window-data-quirk", 4);
960 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
961 0x70, &quirk->mem[1], 1);
963 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
965 trace_vfio_quirk_rtl8168_probe(vdev->vbasedev.name);
969 * Intel IGD support
971 * Obviously IGD is not a discrete device, this is evidenced not only by it
972 * being integrated into the CPU, but by the various chipset and BIOS
973 * dependencies that it brings along with it. Intel is trying to move away
974 * from this and Broadwell and newer devices can run in what Intel calls
975 * "Universal Pass-Through" mode, or UPT. Theoretically in UPT mode, nothing
976 * more is required beyond assigning the IGD device to a VM. There are
977 * however support limitations to this mode. It only supports IGD as a
978 * secondary graphics device in the VM and it doesn't officially support any
979 * physical outputs.
981 * The code here attempts to enable what we'll call legacy mode assignment,
982 * IGD retains most of the capabilities we expect for it to have on bare
983 * metal. To enable this mode, the IGD device must be assigned to the VM
984 * at PCI address 00:02.0, it must have a ROM, it very likely needs VGA
985 * support, we must have VM BIOS support for reserving and populating some
986 * of the required tables, and we need to tweak the chipset with revisions
987 * and IDs and an LPC/ISA bridge device. The intention is to make all of
988 * this happen automatically by installing the device at the correct VM PCI
989 * bus address. If any of the conditions are not met, we cross our fingers
990 * and hope the user knows better.
992 * NB - It is possible to enable physical outputs in UPT mode by supplying
993 * an OpRegion table. We don't do this by default because the guest driver
994 * behaves differently if an OpRegion is provided and no monitor is attached
995 * vs no OpRegion and a monitor being attached or not. Effectively, if a
996 * headless setup is desired, the OpRegion gets in the way of that.
1000 * This presumes the device is already known to be an Intel VGA device, so we
1001 * take liberties in which device ID bits match which generation. This should
1002 * not be taken as an indication that all the devices are supported, or even
1003 * supportable, some of them don't even support VT-d.
1004 * See linux:include/drm/i915_pciids.h for IDs.
1006 static int igd_gen(VFIOPCIDevice *vdev)
1008 if ((vdev->device_id & 0xfff) == 0xa84) {
1009 return 8; /* Broxton */
1012 switch (vdev->device_id & 0xff00) {
1013 /* Old, untested, unavailable, unknown */
1014 case 0x0000:
1015 case 0x2500:
1016 case 0x2700:
1017 case 0x2900:
1018 case 0x2a00:
1019 case 0x2e00:
1020 case 0x3500:
1021 case 0xa000:
1022 return -1;
1023 /* SandyBridge, IvyBridge, ValleyView, Haswell */
1024 case 0x0100:
1025 case 0x0400:
1026 case 0x0a00:
1027 case 0x0c00:
1028 case 0x0d00:
1029 case 0x0f00:
1030 return 6;
1031 /* BroadWell, CherryView, SkyLake, KabyLake */
1032 case 0x1600:
1033 case 0x1900:
1034 case 0x2200:
1035 case 0x5900:
1036 return 8;
1039 return 8; /* Assume newer is compatible */
1042 typedef struct VFIOIGDQuirk {
1043 struct VFIOPCIDevice *vdev;
1044 uint32_t index;
1045 uint32_t bdsm;
1046 } VFIOIGDQuirk;
1048 #define IGD_GMCH 0x50 /* Graphics Control Register */
1049 #define IGD_BDSM 0x5c /* Base Data of Stolen Memory */
1050 #define IGD_ASLS 0xfc /* ASL Storage Register */
1053 * The OpRegion includes the Video BIOS Table, which seems important for
1054 * telling the driver what sort of outputs it has. Without this, the device
1055 * may work in the guest, but we may not get output. This also requires BIOS
1056 * support to reserve and populate a section of guest memory sufficient for
1057 * the table and to write the base address of that memory to the ASLS register
1058 * of the IGD device.
1060 int vfio_pci_igd_opregion_init(VFIOPCIDevice *vdev,
1061 struct vfio_region_info *info, Error **errp)
1063 int ret;
1065 vdev->igd_opregion = g_malloc0(info->size);
1066 ret = pread(vdev->vbasedev.fd, vdev->igd_opregion,
1067 info->size, info->offset);
1068 if (ret != info->size) {
1069 error_setg(errp, "failed to read IGD OpRegion");
1070 g_free(vdev->igd_opregion);
1071 vdev->igd_opregion = NULL;
1072 return -EINVAL;
1076 * Provide fw_cfg with a copy of the OpRegion which the VM firmware is to
1077 * allocate 32bit reserved memory for, copy these contents into, and write
1078 * the reserved memory base address to the device ASLS register at 0xFC.
1079 * Alignment of this reserved region seems flexible, but using a 4k page
1080 * alignment seems to work well. This interface assumes a single IGD
1081 * device, which may be at VM address 00:02.0 in legacy mode or another
1082 * address in UPT mode.
1084 * NB, there may be future use cases discovered where the VM should have
1085 * direct interaction with the host OpRegion, in which case the write to
1086 * the ASLS register would trigger MemoryRegion setup to enable that.
1088 fw_cfg_add_file(fw_cfg_find(), "etc/igd-opregion",
1089 vdev->igd_opregion, info->size);
1091 trace_vfio_pci_igd_opregion_enabled(vdev->vbasedev.name);
1093 pci_set_long(vdev->pdev.config + IGD_ASLS, 0);
1094 pci_set_long(vdev->pdev.wmask + IGD_ASLS, ~0);
1095 pci_set_long(vdev->emulated_config_bits + IGD_ASLS, ~0);
1097 return 0;
1101 * The rather short list of registers that we copy from the host devices.
1102 * The LPC/ISA bridge values are definitely needed to support the vBIOS, the
1103 * host bridge values may or may not be needed depending on the guest OS.
1104 * Since we're only munging revision and subsystem values on the host bridge,
1105 * we don't require our own device. The LPC/ISA bridge needs to be our very
1106 * own though.
1108 typedef struct {
1109 uint8_t offset;
1110 uint8_t len;
1111 } IGDHostInfo;
1113 static const IGDHostInfo igd_host_bridge_infos[] = {
1114 {PCI_REVISION_ID, 2},
1115 {PCI_SUBSYSTEM_VENDOR_ID, 2},
1116 {PCI_SUBSYSTEM_ID, 2},
1119 static const IGDHostInfo igd_lpc_bridge_infos[] = {
1120 {PCI_VENDOR_ID, 2},
1121 {PCI_DEVICE_ID, 2},
1122 {PCI_REVISION_ID, 2},
1123 {PCI_SUBSYSTEM_VENDOR_ID, 2},
1124 {PCI_SUBSYSTEM_ID, 2},
1127 static int vfio_pci_igd_copy(VFIOPCIDevice *vdev, PCIDevice *pdev,
1128 struct vfio_region_info *info,
1129 const IGDHostInfo *list, int len)
1131 int i, ret;
1133 for (i = 0; i < len; i++) {
1134 ret = pread(vdev->vbasedev.fd, pdev->config + list[i].offset,
1135 list[i].len, info->offset + list[i].offset);
1136 if (ret != list[i].len) {
1137 error_report("IGD copy failed: %m");
1138 return -errno;
1142 return 0;
1146 * Stuff a few values into the host bridge.
1148 static int vfio_pci_igd_host_init(VFIOPCIDevice *vdev,
1149 struct vfio_region_info *info)
1151 PCIBus *bus;
1152 PCIDevice *host_bridge;
1153 int ret;
1155 bus = pci_device_root_bus(&vdev->pdev);
1156 host_bridge = pci_find_device(bus, 0, PCI_DEVFN(0, 0));
1158 if (!host_bridge) {
1159 error_report("Can't find host bridge");
1160 return -ENODEV;
1163 ret = vfio_pci_igd_copy(vdev, host_bridge, info, igd_host_bridge_infos,
1164 ARRAY_SIZE(igd_host_bridge_infos));
1165 if (!ret) {
1166 trace_vfio_pci_igd_host_bridge_enabled(vdev->vbasedev.name);
1169 return ret;
1173 * IGD LPC/ISA bridge support code. The vBIOS needs this, but we can't write
1174 * arbitrary values into just any bridge, so we must create our own. We try
1175 * to handle if the user has created it for us, which they might want to do
1176 * to enable multifunction so we don't occupy the whole PCI slot.
1178 static void vfio_pci_igd_lpc_bridge_realize(PCIDevice *pdev, Error **errp)
1180 if (pdev->devfn != PCI_DEVFN(0x1f, 0)) {
1181 error_setg(errp, "VFIO dummy ISA/LPC bridge must have address 1f.0");
1185 static void vfio_pci_igd_lpc_bridge_class_init(ObjectClass *klass, void *data)
1187 DeviceClass *dc = DEVICE_CLASS(klass);
1188 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
1190 set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
1191 dc->desc = "VFIO dummy ISA/LPC bridge for IGD assignment";
1192 dc->hotpluggable = false;
1193 k->realize = vfio_pci_igd_lpc_bridge_realize;
1194 k->class_id = PCI_CLASS_BRIDGE_ISA;
1197 static TypeInfo vfio_pci_igd_lpc_bridge_info = {
1198 .name = "vfio-pci-igd-lpc-bridge",
1199 .parent = TYPE_PCI_DEVICE,
1200 .class_init = vfio_pci_igd_lpc_bridge_class_init,
1203 static void vfio_pci_igd_register_types(void)
1205 type_register_static(&vfio_pci_igd_lpc_bridge_info);
1208 type_init(vfio_pci_igd_register_types)
1210 static int vfio_pci_igd_lpc_init(VFIOPCIDevice *vdev,
1211 struct vfio_region_info *info)
1213 PCIDevice *lpc_bridge;
1214 int ret;
1216 lpc_bridge = pci_find_device(pci_device_root_bus(&vdev->pdev),
1217 0, PCI_DEVFN(0x1f, 0));
1218 if (!lpc_bridge) {
1219 lpc_bridge = pci_create_simple(pci_device_root_bus(&vdev->pdev),
1220 PCI_DEVFN(0x1f, 0), "vfio-pci-igd-lpc-bridge");
1223 ret = vfio_pci_igd_copy(vdev, lpc_bridge, info, igd_lpc_bridge_infos,
1224 ARRAY_SIZE(igd_lpc_bridge_infos));
1225 if (!ret) {
1226 trace_vfio_pci_igd_lpc_bridge_enabled(vdev->vbasedev.name);
1229 return ret;
1233 * IGD Gen8 and newer support up to 8MB for the GTT and use a 64bit PTE
1234 * entry, older IGDs use 2MB and 32bit. Each PTE maps a 4k page. Therefore
1235 * we either have 2M/4k * 4 = 2k or 8M/4k * 8 = 16k as the maximum iobar index
1236 * for programming the GTT.
1238 * See linux:include/drm/i915_drm.h for shift and mask values.
1240 static int vfio_igd_gtt_max(VFIOPCIDevice *vdev)
1242 uint32_t gmch = vfio_pci_read_config(&vdev->pdev, IGD_GMCH, sizeof(gmch));
1243 int ggms, gen = igd_gen(vdev);
1245 gmch = vfio_pci_read_config(&vdev->pdev, IGD_GMCH, sizeof(gmch));
1246 ggms = (gmch >> (gen < 8 ? 8 : 6)) & 0x3;
1247 if (gen > 6) {
1248 ggms = 1 << ggms;
1251 ggms *= 1024 * 1024;
1253 return (ggms / (4 * 1024)) * (gen < 8 ? 4 : 8);
1257 * The IGD ROM will make use of stolen memory (GGMS) for support of VESA modes.
1258 * Somehow the host stolen memory range is used for this, but how the ROM gets
1259 * it is a mystery, perhaps it's hardcoded into the ROM. Thankfully though, it
1260 * reprograms the GTT through the IOBAR where we can trap it and transpose the
1261 * programming to the VM allocated buffer. That buffer gets reserved by the VM
1262 * firmware via the fw_cfg entry added below. Here we're just monitoring the
1263 * IOBAR address and data registers to detect a write sequence targeting the
1264 * GTTADR. This code is developed by observed behavior and doesn't have a
1265 * direct spec reference, unfortunately.
1267 static uint64_t vfio_igd_quirk_data_read(void *opaque,
1268 hwaddr addr, unsigned size)
1270 VFIOIGDQuirk *igd = opaque;
1271 VFIOPCIDevice *vdev = igd->vdev;
1273 igd->index = ~0;
1275 return vfio_region_read(&vdev->bars[4].region, addr + 4, size);
1278 static void vfio_igd_quirk_data_write(void *opaque, hwaddr addr,
1279 uint64_t data, unsigned size)
1281 VFIOIGDQuirk *igd = opaque;
1282 VFIOPCIDevice *vdev = igd->vdev;
1283 uint64_t val = data;
1284 int gen = igd_gen(vdev);
1287 * Programming the GGMS starts at index 0x1 and uses every 4th index (ie.
1288 * 0x1, 0x5, 0x9, 0xd,...). For pre-Gen8 each 4-byte write is a whole PTE
1289 * entry, with 0th bit enable set. For Gen8 and up, PTEs are 64bit, so
1290 * entries 0x5 & 0xd are the high dword, in our case zero. Each PTE points
1291 * to a 4k page, which we translate to a page from the VM allocated region,
1292 * pointed to by the BDSM register. If this is not set, we fail.
1294 * We trap writes to the full configured GTT size, but we typically only
1295 * see the vBIOS writing up to (nearly) the 1MB barrier. In fact it often
1296 * seems to miss the last entry for an even 1MB GTT. Doing a gratuitous
1297 * write of that last entry does work, but is hopefully unnecessary since
1298 * we clear the previous GTT on initialization.
1300 if ((igd->index % 4 == 1) && igd->index < vfio_igd_gtt_max(vdev)) {
1301 if (gen < 8 || (igd->index % 8 == 1)) {
1302 uint32_t base;
1304 base = pci_get_long(vdev->pdev.config + IGD_BDSM);
1305 if (!base) {
1306 hw_error("vfio-igd: Guest attempted to program IGD GTT before "
1307 "BIOS reserved stolen memory. Unsupported BIOS?");
1310 val = data - igd->bdsm + base;
1311 } else {
1312 val = 0; /* upper 32bits of pte, we only enable below 4G PTEs */
1315 trace_vfio_pci_igd_bar4_write(vdev->vbasedev.name,
1316 igd->index, data, val);
1319 vfio_region_write(&vdev->bars[4].region, addr + 4, val, size);
1321 igd->index = ~0;
1324 static const MemoryRegionOps vfio_igd_data_quirk = {
1325 .read = vfio_igd_quirk_data_read,
1326 .write = vfio_igd_quirk_data_write,
1327 .endianness = DEVICE_LITTLE_ENDIAN,
1330 static uint64_t vfio_igd_quirk_index_read(void *opaque,
1331 hwaddr addr, unsigned size)
1333 VFIOIGDQuirk *igd = opaque;
1334 VFIOPCIDevice *vdev = igd->vdev;
1336 igd->index = ~0;
1338 return vfio_region_read(&vdev->bars[4].region, addr, size);
1341 static void vfio_igd_quirk_index_write(void *opaque, hwaddr addr,
1342 uint64_t data, unsigned size)
1344 VFIOIGDQuirk *igd = opaque;
1345 VFIOPCIDevice *vdev = igd->vdev;
1347 igd->index = data;
1349 vfio_region_write(&vdev->bars[4].region, addr, data, size);
1352 static const MemoryRegionOps vfio_igd_index_quirk = {
1353 .read = vfio_igd_quirk_index_read,
1354 .write = vfio_igd_quirk_index_write,
1355 .endianness = DEVICE_LITTLE_ENDIAN,
1358 static void vfio_probe_igd_bar4_quirk(VFIOPCIDevice *vdev, int nr)
1360 struct vfio_region_info *rom = NULL, *opregion = NULL,
1361 *host = NULL, *lpc = NULL;
1362 VFIOQuirk *quirk;
1363 VFIOIGDQuirk *igd;
1364 PCIDevice *lpc_bridge;
1365 int i, ret, ggms_mb, gms_mb = 0, gen;
1366 uint64_t *bdsm_size;
1367 uint32_t gmch;
1368 uint16_t cmd_orig, cmd;
1369 Error *err = NULL;
1372 * This must be an Intel VGA device at address 00:02.0 for us to even
1373 * consider enabling legacy mode. The vBIOS has dependencies on the
1374 * PCI bus address.
1376 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_INTEL, PCI_ANY_ID) ||
1377 !vfio_is_vga(vdev) || nr != 4 ||
1378 &vdev->pdev != pci_find_device(pci_device_root_bus(&vdev->pdev),
1379 0, PCI_DEVFN(0x2, 0))) {
1380 return;
1384 * We need to create an LPC/ISA bridge at PCI bus address 00:1f.0 that we
1385 * can stuff host values into, so if there's already one there and it's not
1386 * one we can hack on, legacy mode is no-go. Sorry Q35.
1388 lpc_bridge = pci_find_device(pci_device_root_bus(&vdev->pdev),
1389 0, PCI_DEVFN(0x1f, 0));
1390 if (lpc_bridge && !object_dynamic_cast(OBJECT(lpc_bridge),
1391 "vfio-pci-igd-lpc-bridge")) {
1392 error_report("IGD device %s cannot support legacy mode due to existing "
1393 "devices at address 1f.0", vdev->vbasedev.name);
1394 return;
1398 * IGD is not a standard, they like to change their specs often. We
1399 * only attempt to support back to SandBridge and we hope that newer
1400 * devices maintain compatibility with generation 8.
1402 gen = igd_gen(vdev);
1403 if (gen != 6 && gen != 8) {
1404 error_report("IGD device %s is unsupported in legacy mode, "
1405 "try SandyBridge or newer", vdev->vbasedev.name);
1406 return;
1410 * Most of what we're doing here is to enable the ROM to run, so if
1411 * there's no ROM, there's no point in setting up this quirk.
1412 * NB. We only seem to get BIOS ROMs, so a UEFI VM would need CSM support.
1414 ret = vfio_get_region_info(&vdev->vbasedev,
1415 VFIO_PCI_ROM_REGION_INDEX, &rom);
1416 if ((ret || !rom->size) && !vdev->pdev.romfile) {
1417 error_report("IGD device %s has no ROM, legacy mode disabled",
1418 vdev->vbasedev.name);
1419 goto out;
1423 * Ignore the hotplug corner case, mark the ROM failed, we can't
1424 * create the devices we need for legacy mode in the hotplug scenario.
1426 if (vdev->pdev.qdev.hotplugged) {
1427 error_report("IGD device %s hotplugged, ROM disabled, "
1428 "legacy mode disabled", vdev->vbasedev.name);
1429 vdev->rom_read_failed = true;
1430 goto out;
1434 * Check whether we have all the vfio device specific regions to
1435 * support legacy mode (added in Linux v4.6). If not, bail.
1437 ret = vfio_get_dev_region_info(&vdev->vbasedev,
1438 VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL,
1439 VFIO_REGION_SUBTYPE_INTEL_IGD_OPREGION, &opregion);
1440 if (ret) {
1441 error_report("IGD device %s does not support OpRegion access,"
1442 "legacy mode disabled", vdev->vbasedev.name);
1443 goto out;
1446 ret = vfio_get_dev_region_info(&vdev->vbasedev,
1447 VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL,
1448 VFIO_REGION_SUBTYPE_INTEL_IGD_HOST_CFG, &host);
1449 if (ret) {
1450 error_report("IGD device %s does not support host bridge access,"
1451 "legacy mode disabled", vdev->vbasedev.name);
1452 goto out;
1455 ret = vfio_get_dev_region_info(&vdev->vbasedev,
1456 VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL,
1457 VFIO_REGION_SUBTYPE_INTEL_IGD_LPC_CFG, &lpc);
1458 if (ret) {
1459 error_report("IGD device %s does not support LPC bridge access,"
1460 "legacy mode disabled", vdev->vbasedev.name);
1461 goto out;
1464 gmch = vfio_pci_read_config(&vdev->pdev, IGD_GMCH, 4);
1467 * If IGD VGA Disable is clear (expected) and VGA is not already enabled,
1468 * try to enable it. Probably shouldn't be using legacy mode without VGA,
1469 * but also no point in us enabling VGA if disabled in hardware.
1471 if (!(gmch & 0x2) && !vdev->vga && vfio_populate_vga(vdev, &err)) {
1472 error_reportf_err(err, ERR_PREFIX, vdev->vbasedev.name);
1473 error_report("IGD device %s failed to enable VGA access, "
1474 "legacy mode disabled", vdev->vbasedev.name);
1475 goto out;
1478 /* Create our LPC/ISA bridge */
1479 ret = vfio_pci_igd_lpc_init(vdev, lpc);
1480 if (ret) {
1481 error_report("IGD device %s failed to create LPC bridge, "
1482 "legacy mode disabled", vdev->vbasedev.name);
1483 goto out;
1486 /* Stuff some host values into the VM PCI host bridge */
1487 ret = vfio_pci_igd_host_init(vdev, host);
1488 if (ret) {
1489 error_report("IGD device %s failed to modify host bridge, "
1490 "legacy mode disabled", vdev->vbasedev.name);
1491 goto out;
1494 /* Setup OpRegion access */
1495 ret = vfio_pci_igd_opregion_init(vdev, opregion, &err);
1496 if (ret) {
1497 error_append_hint(&err, "IGD legacy mode disabled\n");
1498 error_reportf_err(err, ERR_PREFIX, vdev->vbasedev.name);
1499 goto out;
1502 /* Setup our quirk to munge GTT addresses to the VM allocated buffer */
1503 quirk = g_malloc0(sizeof(*quirk));
1504 quirk->mem = g_new0(MemoryRegion, 2);
1505 quirk->nr_mem = 2;
1506 igd = quirk->data = g_malloc0(sizeof(*igd));
1507 igd->vdev = vdev;
1508 igd->index = ~0;
1509 igd->bdsm = vfio_pci_read_config(&vdev->pdev, IGD_BDSM, 4);
1510 igd->bdsm &= ~((1 << 20) - 1); /* 1MB aligned */
1512 memory_region_init_io(&quirk->mem[0], OBJECT(vdev), &vfio_igd_index_quirk,
1513 igd, "vfio-igd-index-quirk", 4);
1514 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
1515 0, &quirk->mem[0], 1);
1517 memory_region_init_io(&quirk->mem[1], OBJECT(vdev), &vfio_igd_data_quirk,
1518 igd, "vfio-igd-data-quirk", 4);
1519 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
1520 4, &quirk->mem[1], 1);
1522 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
1524 /* Determine the size of stolen memory needed for GTT */
1525 ggms_mb = (gmch >> (gen < 8 ? 8 : 6)) & 0x3;
1526 if (gen > 6) {
1527 ggms_mb = 1 << ggms_mb;
1531 * Assume we have no GMS memory, but allow it to be overrided by device
1532 * option (experimental). The spec doesn't actually allow zero GMS when
1533 * when IVD (IGD VGA Disable) is clear, but the claim is that it's unused,
1534 * so let's not waste VM memory for it.
1536 gmch &= ~((gen < 8 ? 0x1f : 0xff) << (gen < 8 ? 3 : 8));
1538 if (vdev->igd_gms) {
1539 if (vdev->igd_gms <= 0x10) {
1540 gms_mb = vdev->igd_gms * 32;
1541 gmch |= vdev->igd_gms << (gen < 8 ? 3 : 8);
1542 } else {
1543 error_report("Unsupported IGD GMS value 0x%x", vdev->igd_gms);
1544 vdev->igd_gms = 0;
1549 * Request reserved memory for stolen memory via fw_cfg. VM firmware
1550 * must allocate a 1MB aligned reserved memory region below 4GB with
1551 * the requested size (in bytes) for use by the Intel PCI class VGA
1552 * device at VM address 00:02.0. The base address of this reserved
1553 * memory region must be written to the device BDSM regsiter at PCI
1554 * config offset 0x5C.
1556 bdsm_size = g_malloc(sizeof(*bdsm_size));
1557 *bdsm_size = cpu_to_le64((ggms_mb + gms_mb) * 1024 * 1024);
1558 fw_cfg_add_file(fw_cfg_find(), "etc/igd-bdsm-size",
1559 bdsm_size, sizeof(*bdsm_size));
1561 /* GMCH is read-only, emulated */
1562 pci_set_long(vdev->pdev.config + IGD_GMCH, gmch);
1563 pci_set_long(vdev->pdev.wmask + IGD_GMCH, 0);
1564 pci_set_long(vdev->emulated_config_bits + IGD_GMCH, ~0);
1566 /* BDSM is read-write, emulated. The BIOS needs to be able to write it */
1567 pci_set_long(vdev->pdev.config + IGD_BDSM, 0);
1568 pci_set_long(vdev->pdev.wmask + IGD_BDSM, ~0);
1569 pci_set_long(vdev->emulated_config_bits + IGD_BDSM, ~0);
1572 * This IOBAR gives us access to GTTADR, which allows us to write to
1573 * the GTT itself. So let's go ahead and write zero to all the GTT
1574 * entries to avoid spurious DMA faults. Be sure I/O access is enabled
1575 * before talking to the device.
1577 if (pread(vdev->vbasedev.fd, &cmd_orig, sizeof(cmd_orig),
1578 vdev->config_offset + PCI_COMMAND) != sizeof(cmd_orig)) {
1579 error_report("IGD device %s - failed to read PCI command register",
1580 vdev->vbasedev.name);
1583 cmd = cmd_orig | PCI_COMMAND_IO;
1585 if (pwrite(vdev->vbasedev.fd, &cmd, sizeof(cmd),
1586 vdev->config_offset + PCI_COMMAND) != sizeof(cmd)) {
1587 error_report("IGD device %s - failed to write PCI command register",
1588 vdev->vbasedev.name);
1591 for (i = 1; i < vfio_igd_gtt_max(vdev); i += 4) {
1592 vfio_region_write(&vdev->bars[4].region, 0, i, 4);
1593 vfio_region_write(&vdev->bars[4].region, 4, 0, 4);
1596 if (pwrite(vdev->vbasedev.fd, &cmd_orig, sizeof(cmd_orig),
1597 vdev->config_offset + PCI_COMMAND) != sizeof(cmd_orig)) {
1598 error_report("IGD device %s - failed to restore PCI command register",
1599 vdev->vbasedev.name);
1602 trace_vfio_pci_igd_bdsm_enabled(vdev->vbasedev.name, ggms_mb + gms_mb);
1604 out:
1605 g_free(rom);
1606 g_free(opregion);
1607 g_free(host);
1608 g_free(lpc);
1612 * Common quirk probe entry points.
1614 void vfio_vga_quirk_setup(VFIOPCIDevice *vdev)
1616 vfio_vga_probe_ati_3c3_quirk(vdev);
1617 vfio_vga_probe_nvidia_3d0_quirk(vdev);
1620 void vfio_vga_quirk_exit(VFIOPCIDevice *vdev)
1622 VFIOQuirk *quirk;
1623 int i, j;
1625 for (i = 0; i < ARRAY_SIZE(vdev->vga->region); i++) {
1626 QLIST_FOREACH(quirk, &vdev->vga->region[i].quirks, next) {
1627 for (j = 0; j < quirk->nr_mem; j++) {
1628 memory_region_del_subregion(&vdev->vga->region[i].mem,
1629 &quirk->mem[j]);
1635 void vfio_vga_quirk_finalize(VFIOPCIDevice *vdev)
1637 int i, j;
1639 for (i = 0; i < ARRAY_SIZE(vdev->vga->region); i++) {
1640 while (!QLIST_EMPTY(&vdev->vga->region[i].quirks)) {
1641 VFIOQuirk *quirk = QLIST_FIRST(&vdev->vga->region[i].quirks);
1642 QLIST_REMOVE(quirk, next);
1643 for (j = 0; j < quirk->nr_mem; j++) {
1644 object_unparent(OBJECT(&quirk->mem[j]));
1646 g_free(quirk->mem);
1647 g_free(quirk->data);
1648 g_free(quirk);
1653 void vfio_bar_quirk_setup(VFIOPCIDevice *vdev, int nr)
1655 vfio_probe_ati_bar4_quirk(vdev, nr);
1656 vfio_probe_ati_bar2_quirk(vdev, nr);
1657 vfio_probe_nvidia_bar5_quirk(vdev, nr);
1658 vfio_probe_nvidia_bar0_quirk(vdev, nr);
1659 vfio_probe_rtl8168_bar2_quirk(vdev, nr);
1660 vfio_probe_igd_bar4_quirk(vdev, nr);
1663 void vfio_bar_quirk_exit(VFIOPCIDevice *vdev, int nr)
1665 VFIOBAR *bar = &vdev->bars[nr];
1666 VFIOQuirk *quirk;
1667 int i;
1669 QLIST_FOREACH(quirk, &bar->quirks, next) {
1670 for (i = 0; i < quirk->nr_mem; i++) {
1671 memory_region_del_subregion(bar->region.mem, &quirk->mem[i]);
1676 void vfio_bar_quirk_finalize(VFIOPCIDevice *vdev, int nr)
1678 VFIOBAR *bar = &vdev->bars[nr];
1679 int i;
1681 while (!QLIST_EMPTY(&bar->quirks)) {
1682 VFIOQuirk *quirk = QLIST_FIRST(&bar->quirks);
1683 QLIST_REMOVE(quirk, next);
1684 for (i = 0; i < quirk->nr_mem; i++) {
1685 object_unparent(OBJECT(&quirk->mem[i]));
1687 g_free(quirk->mem);
1688 g_free(quirk->data);
1689 g_free(quirk);
1694 * Reset quirks
1698 * AMD Radeon PCI config reset, based on Linux:
1699 * drivers/gpu/drm/radeon/ci_smc.c:ci_is_smc_running()
1700 * drivers/gpu/drm/radeon/radeon_device.c:radeon_pci_config_reset
1701 * drivers/gpu/drm/radeon/ci_smc.c:ci_reset_smc()
1702 * drivers/gpu/drm/radeon/ci_smc.c:ci_stop_smc_clock()
1703 * IDs: include/drm/drm_pciids.h
1704 * Registers: http://cgit.freedesktop.org/~agd5f/linux/commit/?id=4e2aa447f6f0
1706 * Bonaire and Hawaii GPUs do not respond to a bus reset. This is a bug in the
1707 * hardware that should be fixed on future ASICs. The symptom of this is that
1708 * once the accerlated driver loads, Windows guests will bsod on subsequent
1709 * attmpts to load the driver, such as after VM reset or shutdown/restart. To
1710 * work around this, we do an AMD specific PCI config reset, followed by an SMC
1711 * reset. The PCI config reset only works if SMC firmware is running, so we
1712 * have a dependency on the state of the device as to whether this reset will
1713 * be effective. There are still cases where we won't be able to kick the
1714 * device into working, but this greatly improves the usability overall. The
1715 * config reset magic is relatively common on AMD GPUs, but the setup and SMC
1716 * poking is largely ASIC specific.
1718 static bool vfio_radeon_smc_is_running(VFIOPCIDevice *vdev)
1720 uint32_t clk, pc_c;
1723 * Registers 200h and 204h are index and data registers for accessing
1724 * indirect configuration registers within the device.
1726 vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000004, 4);
1727 clk = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
1728 vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000370, 4);
1729 pc_c = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
1731 return (!(clk & 1) && (0x20100 <= pc_c));
1735 * The scope of a config reset is controlled by a mode bit in the misc register
1736 * and a fuse, exposed as a bit in another register. The fuse is the default
1737 * (0 = GFX, 1 = whole GPU), the misc bit is a toggle, with the forumula
1738 * scope = !(misc ^ fuse), where the resulting scope is defined the same as
1739 * the fuse. A truth table therefore tells us that if misc == fuse, we need
1740 * to flip the value of the bit in the misc register.
1742 static void vfio_radeon_set_gfx_only_reset(VFIOPCIDevice *vdev)
1744 uint32_t misc, fuse;
1745 bool a, b;
1747 vfio_region_write(&vdev->bars[5].region, 0x200, 0xc00c0000, 4);
1748 fuse = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
1749 b = fuse & 64;
1751 vfio_region_write(&vdev->bars[5].region, 0x200, 0xc0000010, 4);
1752 misc = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
1753 a = misc & 2;
1755 if (a == b) {
1756 vfio_region_write(&vdev->bars[5].region, 0x204, misc ^ 2, 4);
1757 vfio_region_read(&vdev->bars[5].region, 0x204, 4); /* flush */
1761 static int vfio_radeon_reset(VFIOPCIDevice *vdev)
1763 PCIDevice *pdev = &vdev->pdev;
1764 int i, ret = 0;
1765 uint32_t data;
1767 /* Defer to a kernel implemented reset */
1768 if (vdev->vbasedev.reset_works) {
1769 trace_vfio_quirk_ati_bonaire_reset_skipped(vdev->vbasedev.name);
1770 return -ENODEV;
1773 /* Enable only memory BAR access */
1774 vfio_pci_write_config(pdev, PCI_COMMAND, PCI_COMMAND_MEMORY, 2);
1776 /* Reset only works if SMC firmware is loaded and running */
1777 if (!vfio_radeon_smc_is_running(vdev)) {
1778 ret = -EINVAL;
1779 trace_vfio_quirk_ati_bonaire_reset_no_smc(vdev->vbasedev.name);
1780 goto out;
1783 /* Make sure only the GFX function is reset */
1784 vfio_radeon_set_gfx_only_reset(vdev);
1786 /* AMD PCI config reset */
1787 vfio_pci_write_config(pdev, 0x7c, 0x39d5e86b, 4);
1788 usleep(100);
1790 /* Read back the memory size to make sure we're out of reset */
1791 for (i = 0; i < 100000; i++) {
1792 if (vfio_region_read(&vdev->bars[5].region, 0x5428, 4) != 0xffffffff) {
1793 goto reset_smc;
1795 usleep(1);
1798 trace_vfio_quirk_ati_bonaire_reset_timeout(vdev->vbasedev.name);
1800 reset_smc:
1801 /* Reset SMC */
1802 vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000000, 4);
1803 data = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
1804 data |= 1;
1805 vfio_region_write(&vdev->bars[5].region, 0x204, data, 4);
1807 /* Disable SMC clock */
1808 vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000004, 4);
1809 data = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
1810 data |= 1;
1811 vfio_region_write(&vdev->bars[5].region, 0x204, data, 4);
1813 trace_vfio_quirk_ati_bonaire_reset_done(vdev->vbasedev.name);
1815 out:
1816 /* Restore PCI command register */
1817 vfio_pci_write_config(pdev, PCI_COMMAND, 0, 2);
1819 return ret;
1822 void vfio_setup_resetfn_quirk(VFIOPCIDevice *vdev)
1824 switch (vdev->vendor_id) {
1825 case 0x1002:
1826 switch (vdev->device_id) {
1827 /* Bonaire */
1828 case 0x6649: /* Bonaire [FirePro W5100] */
1829 case 0x6650:
1830 case 0x6651:
1831 case 0x6658: /* Bonaire XTX [Radeon R7 260X] */
1832 case 0x665c: /* Bonaire XT [Radeon HD 7790/8770 / R9 260 OEM] */
1833 case 0x665d: /* Bonaire [Radeon R7 200 Series] */
1834 /* Hawaii */
1835 case 0x67A0: /* Hawaii XT GL [FirePro W9100] */
1836 case 0x67A1: /* Hawaii PRO GL [FirePro W8100] */
1837 case 0x67A2:
1838 case 0x67A8:
1839 case 0x67A9:
1840 case 0x67AA:
1841 case 0x67B0: /* Hawaii XT [Radeon R9 290X] */
1842 case 0x67B1: /* Hawaii PRO [Radeon R9 290] */
1843 case 0x67B8:
1844 case 0x67B9:
1845 case 0x67BA:
1846 case 0x67BE:
1847 vdev->resetfn = vfio_radeon_reset;
1848 trace_vfio_quirk_ati_bonaire_reset(vdev->vbasedev.name);
1849 break;
1851 break;
1856 * The NVIDIA GPUDirect P2P Vendor capability allows the user to specify
1857 * devices as a member of a clique. Devices within the same clique ID
1858 * are capable of direct P2P. It's the user's responsibility that this
1859 * is correct. The spec says that this may reside at any unused config
1860 * offset, but reserves and recommends hypervisors place this at C8h.
1861 * The spec also states that the hypervisor should place this capability
1862 * at the end of the capability list, thus next is defined as 0h.
1864 * +----------------+----------------+----------------+----------------+
1865 * | sig 7:0 ('P') | vndr len (8h) | next (0h) | cap id (9h) |
1866 * +----------------+----------------+----------------+----------------+
1867 * | rsvd 15:7(0h),id 6:3,ver 2:0(0h)| sig 23:8 ('P2') |
1868 * +---------------------------------+---------------------------------+
1870 * https://lists.gnu.org/archive/html/qemu-devel/2017-08/pdfUda5iEpgOS.pdf
1872 static void get_nv_gpudirect_clique_id(Object *obj, Visitor *v,
1873 const char *name, void *opaque,
1874 Error **errp)
1876 DeviceState *dev = DEVICE(obj);
1877 Property *prop = opaque;
1878 uint8_t *ptr = qdev_get_prop_ptr(dev, prop);
1880 visit_type_uint8(v, name, ptr, errp);
1883 static void set_nv_gpudirect_clique_id(Object *obj, Visitor *v,
1884 const char *name, void *opaque,
1885 Error **errp)
1887 DeviceState *dev = DEVICE(obj);
1888 Property *prop = opaque;
1889 uint8_t value, *ptr = qdev_get_prop_ptr(dev, prop);
1890 Error *local_err = NULL;
1892 if (dev->realized) {
1893 qdev_prop_set_after_realize(dev, name, errp);
1894 return;
1897 visit_type_uint8(v, name, &value, &local_err);
1898 if (local_err) {
1899 error_propagate(errp, local_err);
1900 return;
1903 if (value & ~0xF) {
1904 error_setg(errp, "Property %s: valid range 0-15", name);
1905 return;
1908 *ptr = value;
1911 const PropertyInfo qdev_prop_nv_gpudirect_clique = {
1912 .name = "uint4",
1913 .description = "NVIDIA GPUDirect Clique ID (0 - 15)",
1914 .get = get_nv_gpudirect_clique_id,
1915 .set = set_nv_gpudirect_clique_id,
1918 static int vfio_add_nv_gpudirect_cap(VFIOPCIDevice *vdev, Error **errp)
1920 PCIDevice *pdev = &vdev->pdev;
1921 int ret, pos = 0xC8;
1923 if (vdev->nv_gpudirect_clique == 0xFF) {
1924 return 0;
1927 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID)) {
1928 error_setg(errp, "NVIDIA GPUDirect Clique ID: invalid device vendor");
1929 return -EINVAL;
1932 if (pci_get_byte(pdev->config + PCI_CLASS_DEVICE + 1) !=
1933 PCI_BASE_CLASS_DISPLAY) {
1934 error_setg(errp, "NVIDIA GPUDirect Clique ID: unsupported PCI class");
1935 return -EINVAL;
1938 ret = pci_add_capability(pdev, PCI_CAP_ID_VNDR, pos, 8, errp);
1939 if (ret < 0) {
1940 error_prepend(errp, "Failed to add NVIDIA GPUDirect cap: ");
1941 return ret;
1944 memset(vdev->emulated_config_bits + pos, 0xFF, 8);
1945 pos += PCI_CAP_FLAGS;
1946 pci_set_byte(pdev->config + pos++, 8);
1947 pci_set_byte(pdev->config + pos++, 'P');
1948 pci_set_byte(pdev->config + pos++, '2');
1949 pci_set_byte(pdev->config + pos++, 'P');
1950 pci_set_byte(pdev->config + pos++, vdev->nv_gpudirect_clique << 3);
1951 pci_set_byte(pdev->config + pos, 0);
1953 return 0;
1956 int vfio_add_virt_caps(VFIOPCIDevice *vdev, Error **errp)
1958 int ret;
1960 ret = vfio_add_nv_gpudirect_cap(vdev, errp);
1961 if (ret) {
1962 return ret;
1965 return 0;