memhp: consolidate scattered MHPD device declaration
[qemu/ar7.git] / target / arm / kvm.c
blobc00b94e42a93a1defaa140f5eb792690996412b3
1 /*
2 * ARM implementation of KVM hooks
4 * Copyright Christoffer Dall 2009-2010
6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
7 * See the COPYING file in the top-level directory.
9 */
11 #include "qemu/osdep.h"
12 #include <sys/ioctl.h>
14 #include <linux/kvm.h>
16 #include "qemu-common.h"
17 #include "qemu/timer.h"
18 #include "qemu/error-report.h"
19 #include "sysemu/sysemu.h"
20 #include "sysemu/kvm.h"
21 #include "kvm_arm.h"
22 #include "cpu.h"
23 #include "internals.h"
24 #include "hw/arm/arm.h"
25 #include "exec/memattrs.h"
26 #include "exec/address-spaces.h"
27 #include "hw/boards.h"
28 #include "qemu/log.h"
30 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
31 KVM_CAP_LAST_INFO
34 static bool cap_has_mp_state;
36 int kvm_arm_vcpu_init(CPUState *cs)
38 ARMCPU *cpu = ARM_CPU(cs);
39 struct kvm_vcpu_init init;
41 init.target = cpu->kvm_target;
42 memcpy(init.features, cpu->kvm_init_features, sizeof(init.features));
44 return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init);
47 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
48 int *fdarray,
49 struct kvm_vcpu_init *init)
51 int ret, kvmfd = -1, vmfd = -1, cpufd = -1;
53 kvmfd = qemu_open("/dev/kvm", O_RDWR);
54 if (kvmfd < 0) {
55 goto err;
57 vmfd = ioctl(kvmfd, KVM_CREATE_VM, 0);
58 if (vmfd < 0) {
59 goto err;
61 cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0);
62 if (cpufd < 0) {
63 goto err;
66 if (!init) {
67 /* Caller doesn't want the VCPU to be initialized, so skip it */
68 goto finish;
71 ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, init);
72 if (ret >= 0) {
73 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
74 if (ret < 0) {
75 goto err;
77 } else if (cpus_to_try) {
78 /* Old kernel which doesn't know about the
79 * PREFERRED_TARGET ioctl: we know it will only support
80 * creating one kind of guest CPU which is its preferred
81 * CPU type.
83 while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) {
84 init->target = *cpus_to_try++;
85 memset(init->features, 0, sizeof(init->features));
86 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
87 if (ret >= 0) {
88 break;
91 if (ret < 0) {
92 goto err;
94 } else {
95 /* Treat a NULL cpus_to_try argument the same as an empty
96 * list, which means we will fail the call since this must
97 * be an old kernel which doesn't support PREFERRED_TARGET.
99 goto err;
102 finish:
103 fdarray[0] = kvmfd;
104 fdarray[1] = vmfd;
105 fdarray[2] = cpufd;
107 return true;
109 err:
110 if (cpufd >= 0) {
111 close(cpufd);
113 if (vmfd >= 0) {
114 close(vmfd);
116 if (kvmfd >= 0) {
117 close(kvmfd);
120 return false;
123 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray)
125 int i;
127 for (i = 2; i >= 0; i--) {
128 close(fdarray[i]);
132 static void kvm_arm_host_cpu_class_init(ObjectClass *oc, void *data)
134 ARMHostCPUClass *ahcc = ARM_HOST_CPU_CLASS(oc);
136 /* All we really need to set up for the 'host' CPU
137 * is the feature bits -- we rely on the fact that the
138 * various ID register values in ARMCPU are only used for
139 * TCG CPUs.
141 if (!kvm_arm_get_host_cpu_features(ahcc)) {
142 fprintf(stderr, "Failed to retrieve host CPU features!\n");
143 abort();
147 static void kvm_arm_host_cpu_initfn(Object *obj)
149 ARMHostCPUClass *ahcc = ARM_HOST_CPU_GET_CLASS(obj);
150 ARMCPU *cpu = ARM_CPU(obj);
151 CPUARMState *env = &cpu->env;
153 cpu->kvm_target = ahcc->target;
154 cpu->dtb_compatible = ahcc->dtb_compatible;
155 env->features = ahcc->features;
158 static const TypeInfo host_arm_cpu_type_info = {
159 .name = TYPE_ARM_HOST_CPU,
160 #ifdef TARGET_AARCH64
161 .parent = TYPE_AARCH64_CPU,
162 #else
163 .parent = TYPE_ARM_CPU,
164 #endif
165 .instance_init = kvm_arm_host_cpu_initfn,
166 .class_init = kvm_arm_host_cpu_class_init,
167 .class_size = sizeof(ARMHostCPUClass),
170 int kvm_arch_init(MachineState *ms, KVMState *s)
172 /* For ARM interrupt delivery is always asynchronous,
173 * whether we are using an in-kernel VGIC or not.
175 kvm_async_interrupts_allowed = true;
177 cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
179 type_register_static(&host_arm_cpu_type_info);
181 return 0;
184 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
186 return cpu->cpu_index;
189 /* We track all the KVM devices which need their memory addresses
190 * passing to the kernel in a list of these structures.
191 * When board init is complete we run through the list and
192 * tell the kernel the base addresses of the memory regions.
193 * We use a MemoryListener to track mapping and unmapping of
194 * the regions during board creation, so the board models don't
195 * need to do anything special for the KVM case.
197 typedef struct KVMDevice {
198 struct kvm_arm_device_addr kda;
199 struct kvm_device_attr kdattr;
200 MemoryRegion *mr;
201 QSLIST_ENTRY(KVMDevice) entries;
202 int dev_fd;
203 } KVMDevice;
205 static QSLIST_HEAD(kvm_devices_head, KVMDevice) kvm_devices_head;
207 static void kvm_arm_devlistener_add(MemoryListener *listener,
208 MemoryRegionSection *section)
210 KVMDevice *kd;
212 QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
213 if (section->mr == kd->mr) {
214 kd->kda.addr = section->offset_within_address_space;
219 static void kvm_arm_devlistener_del(MemoryListener *listener,
220 MemoryRegionSection *section)
222 KVMDevice *kd;
224 QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
225 if (section->mr == kd->mr) {
226 kd->kda.addr = -1;
231 static MemoryListener devlistener = {
232 .region_add = kvm_arm_devlistener_add,
233 .region_del = kvm_arm_devlistener_del,
236 static void kvm_arm_set_device_addr(KVMDevice *kd)
238 struct kvm_device_attr *attr = &kd->kdattr;
239 int ret;
241 /* If the device control API is available and we have a device fd on the
242 * KVMDevice struct, let's use the newer API
244 if (kd->dev_fd >= 0) {
245 uint64_t addr = kd->kda.addr;
246 attr->addr = (uintptr_t)&addr;
247 ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr);
248 } else {
249 ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda);
252 if (ret < 0) {
253 fprintf(stderr, "Failed to set device address: %s\n",
254 strerror(-ret));
255 abort();
259 static void kvm_arm_machine_init_done(Notifier *notifier, void *data)
261 KVMDevice *kd, *tkd;
263 memory_listener_unregister(&devlistener);
264 QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) {
265 if (kd->kda.addr != -1) {
266 kvm_arm_set_device_addr(kd);
268 memory_region_unref(kd->mr);
269 g_free(kd);
273 static Notifier notify = {
274 .notify = kvm_arm_machine_init_done,
277 void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
278 uint64_t attr, int dev_fd)
280 KVMDevice *kd;
282 if (!kvm_irqchip_in_kernel()) {
283 return;
286 if (QSLIST_EMPTY(&kvm_devices_head)) {
287 memory_listener_register(&devlistener, &address_space_memory);
288 qemu_add_machine_init_done_notifier(&notify);
290 kd = g_new0(KVMDevice, 1);
291 kd->mr = mr;
292 kd->kda.id = devid;
293 kd->kda.addr = -1;
294 kd->kdattr.flags = 0;
295 kd->kdattr.group = group;
296 kd->kdattr.attr = attr;
297 kd->dev_fd = dev_fd;
298 QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
299 memory_region_ref(kd->mr);
302 static int compare_u64(const void *a, const void *b)
304 if (*(uint64_t *)a > *(uint64_t *)b) {
305 return 1;
307 if (*(uint64_t *)a < *(uint64_t *)b) {
308 return -1;
310 return 0;
313 /* Initialize the CPUState's cpreg list according to the kernel's
314 * definition of what CPU registers it knows about (and throw away
315 * the previous TCG-created cpreg list).
317 int kvm_arm_init_cpreg_list(ARMCPU *cpu)
319 struct kvm_reg_list rl;
320 struct kvm_reg_list *rlp;
321 int i, ret, arraylen;
322 CPUState *cs = CPU(cpu);
324 rl.n = 0;
325 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
326 if (ret != -E2BIG) {
327 return ret;
329 rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
330 rlp->n = rl.n;
331 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
332 if (ret) {
333 goto out;
335 /* Sort the list we get back from the kernel, since cpreg_tuples
336 * must be in strictly ascending order.
338 qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);
340 for (i = 0, arraylen = 0; i < rlp->n; i++) {
341 if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) {
342 continue;
344 switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
345 case KVM_REG_SIZE_U32:
346 case KVM_REG_SIZE_U64:
347 break;
348 default:
349 fprintf(stderr, "Can't handle size of register in kernel list\n");
350 ret = -EINVAL;
351 goto out;
354 arraylen++;
357 cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
358 cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
359 cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
360 arraylen);
361 cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
362 arraylen);
363 cpu->cpreg_array_len = arraylen;
364 cpu->cpreg_vmstate_array_len = arraylen;
366 for (i = 0, arraylen = 0; i < rlp->n; i++) {
367 uint64_t regidx = rlp->reg[i];
368 if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) {
369 continue;
371 cpu->cpreg_indexes[arraylen] = regidx;
372 arraylen++;
374 assert(cpu->cpreg_array_len == arraylen);
376 if (!write_kvmstate_to_list(cpu)) {
377 /* Shouldn't happen unless kernel is inconsistent about
378 * what registers exist.
380 fprintf(stderr, "Initial read of kernel register state failed\n");
381 ret = -EINVAL;
382 goto out;
385 out:
386 g_free(rlp);
387 return ret;
390 bool write_kvmstate_to_list(ARMCPU *cpu)
392 CPUState *cs = CPU(cpu);
393 int i;
394 bool ok = true;
396 for (i = 0; i < cpu->cpreg_array_len; i++) {
397 struct kvm_one_reg r;
398 uint64_t regidx = cpu->cpreg_indexes[i];
399 uint32_t v32;
400 int ret;
402 r.id = regidx;
404 switch (regidx & KVM_REG_SIZE_MASK) {
405 case KVM_REG_SIZE_U32:
406 r.addr = (uintptr_t)&v32;
407 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
408 if (!ret) {
409 cpu->cpreg_values[i] = v32;
411 break;
412 case KVM_REG_SIZE_U64:
413 r.addr = (uintptr_t)(cpu->cpreg_values + i);
414 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
415 break;
416 default:
417 abort();
419 if (ret) {
420 ok = false;
423 return ok;
426 bool write_list_to_kvmstate(ARMCPU *cpu, int level)
428 CPUState *cs = CPU(cpu);
429 int i;
430 bool ok = true;
432 for (i = 0; i < cpu->cpreg_array_len; i++) {
433 struct kvm_one_reg r;
434 uint64_t regidx = cpu->cpreg_indexes[i];
435 uint32_t v32;
436 int ret;
438 if (kvm_arm_cpreg_level(regidx) > level) {
439 continue;
442 r.id = regidx;
443 switch (regidx & KVM_REG_SIZE_MASK) {
444 case KVM_REG_SIZE_U32:
445 v32 = cpu->cpreg_values[i];
446 r.addr = (uintptr_t)&v32;
447 break;
448 case KVM_REG_SIZE_U64:
449 r.addr = (uintptr_t)(cpu->cpreg_values + i);
450 break;
451 default:
452 abort();
454 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
455 if (ret) {
456 /* We might fail for "unknown register" and also for
457 * "you tried to set a register which is constant with
458 * a different value from what it actually contains".
460 ok = false;
463 return ok;
466 void kvm_arm_reset_vcpu(ARMCPU *cpu)
468 int ret;
470 /* Re-init VCPU so that all registers are set to
471 * their respective reset values.
473 ret = kvm_arm_vcpu_init(CPU(cpu));
474 if (ret < 0) {
475 fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret));
476 abort();
478 if (!write_kvmstate_to_list(cpu)) {
479 fprintf(stderr, "write_kvmstate_to_list failed\n");
480 abort();
485 * Update KVM's MP_STATE based on what QEMU thinks it is
487 int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
489 if (cap_has_mp_state) {
490 struct kvm_mp_state mp_state = {
491 .mp_state =
492 cpu->powered_off ? KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE
494 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
495 if (ret) {
496 fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n",
497 __func__, ret, strerror(-ret));
498 return -1;
502 return 0;
506 * Sync the KVM MP_STATE into QEMU
508 int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
510 if (cap_has_mp_state) {
511 struct kvm_mp_state mp_state;
512 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
513 if (ret) {
514 fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n",
515 __func__, ret, strerror(-ret));
516 abort();
518 cpu->powered_off = (mp_state.mp_state == KVM_MP_STATE_STOPPED);
521 return 0;
524 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
528 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
530 return MEMTXATTRS_UNSPECIFIED;
534 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
536 int ret = 0;
538 switch (run->exit_reason) {
539 case KVM_EXIT_DEBUG:
540 if (kvm_arm_handle_debug(cs, &run->debug.arch)) {
541 ret = EXCP_DEBUG;
542 } /* otherwise return to guest */
543 break;
544 default:
545 qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n",
546 __func__, run->exit_reason);
547 break;
549 return ret;
552 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
554 return true;
557 int kvm_arch_process_async_events(CPUState *cs)
559 return 0;
562 int kvm_arch_on_sigbus_vcpu(CPUState *cs, int code, void *addr)
564 return 1;
567 int kvm_arch_on_sigbus(int code, void *addr)
569 return 1;
572 /* The #ifdef protections are until 32bit headers are imported and can
573 * be removed once both 32 and 64 bit reach feature parity.
575 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
577 #ifdef KVM_GUESTDBG_USE_SW_BP
578 if (kvm_sw_breakpoints_active(cs)) {
579 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
581 #endif
582 #ifdef KVM_GUESTDBG_USE_HW
583 if (kvm_arm_hw_debug_active(cs)) {
584 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW;
585 kvm_arm_copy_hw_debug_data(&dbg->arch);
587 #endif
590 void kvm_arch_init_irq_routing(KVMState *s)
594 int kvm_arch_irqchip_create(MachineState *ms, KVMState *s)
596 if (machine_kernel_irqchip_split(ms)) {
597 perror("-machine kernel_irqchip=split is not supported on ARM.");
598 exit(1);
601 /* If we can create the VGIC using the newer device control API, we
602 * let the device do this when it initializes itself, otherwise we
603 * fall back to the old API */
604 return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL);
607 int kvm_arm_vgic_probe(void)
609 if (kvm_create_device(kvm_state,
610 KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) {
611 return 3;
612 } else if (kvm_create_device(kvm_state,
613 KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) {
614 return 2;
615 } else {
616 return 0;
620 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
621 uint64_t address, uint32_t data, PCIDevice *dev)
623 return 0;
626 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
627 int vector, PCIDevice *dev)
629 return 0;
632 int kvm_arch_release_virq_post(int virq)
634 return 0;
637 int kvm_arch_msi_data_to_gsi(uint32_t data)
639 return (data - 32) & 0xffff;