target/s390x: Fix typo
[qemu/ar7.git] / target / i386 / smm_helper.c
blobf051a77c4ae0e3eb2801d98571af05893c45c333
1 /*
2 * x86 SMM helpers
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu/main-loop.h"
22 #include "cpu.h"
23 #include "exec/helper-proto.h"
24 #include "exec/log.h"
26 /* SMM support */
28 #if defined(CONFIG_USER_ONLY)
30 void do_smm_enter(X86CPU *cpu)
34 void helper_rsm(CPUX86State *env)
38 #else
40 #ifdef TARGET_X86_64
41 #define SMM_REVISION_ID 0x00020064
42 #else
43 #define SMM_REVISION_ID 0x00020000
44 #endif
46 /* Called with iothread lock taken */
47 void cpu_smm_update(X86CPU *cpu)
49 CPUX86State *env = &cpu->env;
50 bool smm_enabled = (env->hflags & HF_SMM_MASK);
52 g_assert(qemu_mutex_iothread_locked());
54 if (cpu->smram) {
55 memory_region_set_enabled(cpu->smram, smm_enabled);
59 void do_smm_enter(X86CPU *cpu)
61 CPUX86State *env = &cpu->env;
62 CPUState *cs = CPU(cpu);
63 target_ulong sm_state;
64 SegmentCache *dt;
65 int i, offset;
67 qemu_log_mask(CPU_LOG_INT, "SMM: enter\n");
68 log_cpu_state_mask(CPU_LOG_INT, CPU(cpu), CPU_DUMP_CCOP);
70 env->hflags |= HF_SMM_MASK;
71 if (env->hflags2 & HF2_NMI_MASK) {
72 env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
73 } else {
74 env->hflags2 |= HF2_NMI_MASK;
76 cpu_smm_update(cpu);
78 sm_state = env->smbase + 0x8000;
80 #ifdef TARGET_X86_64
81 for (i = 0; i < 6; i++) {
82 dt = &env->segs[i];
83 offset = 0x7e00 + i * 16;
84 x86_stw_phys(cs, sm_state + offset, dt->selector);
85 x86_stw_phys(cs, sm_state + offset + 2, (dt->flags >> 8) & 0xf0ff);
86 x86_stl_phys(cs, sm_state + offset + 4, dt->limit);
87 x86_stq_phys(cs, sm_state + offset + 8, dt->base);
90 x86_stq_phys(cs, sm_state + 0x7e68, env->gdt.base);
91 x86_stl_phys(cs, sm_state + 0x7e64, env->gdt.limit);
93 x86_stw_phys(cs, sm_state + 0x7e70, env->ldt.selector);
94 x86_stq_phys(cs, sm_state + 0x7e78, env->ldt.base);
95 x86_stl_phys(cs, sm_state + 0x7e74, env->ldt.limit);
96 x86_stw_phys(cs, sm_state + 0x7e72, (env->ldt.flags >> 8) & 0xf0ff);
98 x86_stq_phys(cs, sm_state + 0x7e88, env->idt.base);
99 x86_stl_phys(cs, sm_state + 0x7e84, env->idt.limit);
101 x86_stw_phys(cs, sm_state + 0x7e90, env->tr.selector);
102 x86_stq_phys(cs, sm_state + 0x7e98, env->tr.base);
103 x86_stl_phys(cs, sm_state + 0x7e94, env->tr.limit);
104 x86_stw_phys(cs, sm_state + 0x7e92, (env->tr.flags >> 8) & 0xf0ff);
106 /* ??? Vol 1, 16.5.6 Intel MPX and SMM says that IA32_BNDCFGS
107 is saved at offset 7ED0. Vol 3, 34.4.1.1, Table 32-2, has
108 7EA0-7ED7 as "reserved". What's this, and what's really
109 supposed to happen? */
110 x86_stq_phys(cs, sm_state + 0x7ed0, env->efer);
112 x86_stq_phys(cs, sm_state + 0x7ff8, env->regs[R_EAX]);
113 x86_stq_phys(cs, sm_state + 0x7ff0, env->regs[R_ECX]);
114 x86_stq_phys(cs, sm_state + 0x7fe8, env->regs[R_EDX]);
115 x86_stq_phys(cs, sm_state + 0x7fe0, env->regs[R_EBX]);
116 x86_stq_phys(cs, sm_state + 0x7fd8, env->regs[R_ESP]);
117 x86_stq_phys(cs, sm_state + 0x7fd0, env->regs[R_EBP]);
118 x86_stq_phys(cs, sm_state + 0x7fc8, env->regs[R_ESI]);
119 x86_stq_phys(cs, sm_state + 0x7fc0, env->regs[R_EDI]);
120 for (i = 8; i < 16; i++) {
121 x86_stq_phys(cs, sm_state + 0x7ff8 - i * 8, env->regs[i]);
123 x86_stq_phys(cs, sm_state + 0x7f78, env->eip);
124 x86_stl_phys(cs, sm_state + 0x7f70, cpu_compute_eflags(env));
125 x86_stl_phys(cs, sm_state + 0x7f68, env->dr[6]);
126 x86_stl_phys(cs, sm_state + 0x7f60, env->dr[7]);
128 x86_stl_phys(cs, sm_state + 0x7f48, env->cr[4]);
129 x86_stq_phys(cs, sm_state + 0x7f50, env->cr[3]);
130 x86_stl_phys(cs, sm_state + 0x7f58, env->cr[0]);
132 x86_stl_phys(cs, sm_state + 0x7efc, SMM_REVISION_ID);
133 x86_stl_phys(cs, sm_state + 0x7f00, env->smbase);
134 #else
135 x86_stl_phys(cs, sm_state + 0x7ffc, env->cr[0]);
136 x86_stl_phys(cs, sm_state + 0x7ff8, env->cr[3]);
137 x86_stl_phys(cs, sm_state + 0x7ff4, cpu_compute_eflags(env));
138 x86_stl_phys(cs, sm_state + 0x7ff0, env->eip);
139 x86_stl_phys(cs, sm_state + 0x7fec, env->regs[R_EDI]);
140 x86_stl_phys(cs, sm_state + 0x7fe8, env->regs[R_ESI]);
141 x86_stl_phys(cs, sm_state + 0x7fe4, env->regs[R_EBP]);
142 x86_stl_phys(cs, sm_state + 0x7fe0, env->regs[R_ESP]);
143 x86_stl_phys(cs, sm_state + 0x7fdc, env->regs[R_EBX]);
144 x86_stl_phys(cs, sm_state + 0x7fd8, env->regs[R_EDX]);
145 x86_stl_phys(cs, sm_state + 0x7fd4, env->regs[R_ECX]);
146 x86_stl_phys(cs, sm_state + 0x7fd0, env->regs[R_EAX]);
147 x86_stl_phys(cs, sm_state + 0x7fcc, env->dr[6]);
148 x86_stl_phys(cs, sm_state + 0x7fc8, env->dr[7]);
150 x86_stl_phys(cs, sm_state + 0x7fc4, env->tr.selector);
151 x86_stl_phys(cs, sm_state + 0x7f64, env->tr.base);
152 x86_stl_phys(cs, sm_state + 0x7f60, env->tr.limit);
153 x86_stl_phys(cs, sm_state + 0x7f5c, (env->tr.flags >> 8) & 0xf0ff);
155 x86_stl_phys(cs, sm_state + 0x7fc0, env->ldt.selector);
156 x86_stl_phys(cs, sm_state + 0x7f80, env->ldt.base);
157 x86_stl_phys(cs, sm_state + 0x7f7c, env->ldt.limit);
158 x86_stl_phys(cs, sm_state + 0x7f78, (env->ldt.flags >> 8) & 0xf0ff);
160 x86_stl_phys(cs, sm_state + 0x7f74, env->gdt.base);
161 x86_stl_phys(cs, sm_state + 0x7f70, env->gdt.limit);
163 x86_stl_phys(cs, sm_state + 0x7f58, env->idt.base);
164 x86_stl_phys(cs, sm_state + 0x7f54, env->idt.limit);
166 for (i = 0; i < 6; i++) {
167 dt = &env->segs[i];
168 if (i < 3) {
169 offset = 0x7f84 + i * 12;
170 } else {
171 offset = 0x7f2c + (i - 3) * 12;
173 x86_stl_phys(cs, sm_state + 0x7fa8 + i * 4, dt->selector);
174 x86_stl_phys(cs, sm_state + offset + 8, dt->base);
175 x86_stl_phys(cs, sm_state + offset + 4, dt->limit);
176 x86_stl_phys(cs, sm_state + offset, (dt->flags >> 8) & 0xf0ff);
178 x86_stl_phys(cs, sm_state + 0x7f14, env->cr[4]);
180 x86_stl_phys(cs, sm_state + 0x7efc, SMM_REVISION_ID);
181 x86_stl_phys(cs, sm_state + 0x7ef8, env->smbase);
182 #endif
183 /* init SMM cpu state */
185 #ifdef TARGET_X86_64
186 cpu_load_efer(env, 0);
187 #endif
188 cpu_load_eflags(env, 0, ~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C |
189 DF_MASK));
190 env->eip = 0x00008000;
191 cpu_x86_update_cr0(env,
192 env->cr[0] & ~(CR0_PE_MASK | CR0_EM_MASK | CR0_TS_MASK |
193 CR0_PG_MASK));
194 cpu_x86_update_cr4(env, 0);
195 env->dr[7] = 0x00000400;
197 cpu_x86_load_seg_cache(env, R_CS, (env->smbase >> 4) & 0xffff, env->smbase,
198 0xffffffff,
199 DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
200 DESC_G_MASK | DESC_A_MASK);
201 cpu_x86_load_seg_cache(env, R_DS, 0, 0, 0xffffffff,
202 DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
203 DESC_G_MASK | DESC_A_MASK);
204 cpu_x86_load_seg_cache(env, R_ES, 0, 0, 0xffffffff,
205 DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
206 DESC_G_MASK | DESC_A_MASK);
207 cpu_x86_load_seg_cache(env, R_SS, 0, 0, 0xffffffff,
208 DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
209 DESC_G_MASK | DESC_A_MASK);
210 cpu_x86_load_seg_cache(env, R_FS, 0, 0, 0xffffffff,
211 DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
212 DESC_G_MASK | DESC_A_MASK);
213 cpu_x86_load_seg_cache(env, R_GS, 0, 0, 0xffffffff,
214 DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
215 DESC_G_MASK | DESC_A_MASK);
218 void helper_rsm(CPUX86State *env)
220 X86CPU *cpu = x86_env_get_cpu(env);
221 CPUState *cs = CPU(cpu);
222 target_ulong sm_state;
223 int i, offset;
224 uint32_t val;
226 sm_state = env->smbase + 0x8000;
227 #ifdef TARGET_X86_64
228 cpu_load_efer(env, x86_ldq_phys(cs, sm_state + 0x7ed0));
230 env->gdt.base = x86_ldq_phys(cs, sm_state + 0x7e68);
231 env->gdt.limit = x86_ldl_phys(cs, sm_state + 0x7e64);
233 env->ldt.selector = x86_lduw_phys(cs, sm_state + 0x7e70);
234 env->ldt.base = x86_ldq_phys(cs, sm_state + 0x7e78);
235 env->ldt.limit = x86_ldl_phys(cs, sm_state + 0x7e74);
236 env->ldt.flags = (x86_lduw_phys(cs, sm_state + 0x7e72) & 0xf0ff) << 8;
238 env->idt.base = x86_ldq_phys(cs, sm_state + 0x7e88);
239 env->idt.limit = x86_ldl_phys(cs, sm_state + 0x7e84);
241 env->tr.selector = x86_lduw_phys(cs, sm_state + 0x7e90);
242 env->tr.base = x86_ldq_phys(cs, sm_state + 0x7e98);
243 env->tr.limit = x86_ldl_phys(cs, sm_state + 0x7e94);
244 env->tr.flags = (x86_lduw_phys(cs, sm_state + 0x7e92) & 0xf0ff) << 8;
246 env->regs[R_EAX] = x86_ldq_phys(cs, sm_state + 0x7ff8);
247 env->regs[R_ECX] = x86_ldq_phys(cs, sm_state + 0x7ff0);
248 env->regs[R_EDX] = x86_ldq_phys(cs, sm_state + 0x7fe8);
249 env->regs[R_EBX] = x86_ldq_phys(cs, sm_state + 0x7fe0);
250 env->regs[R_ESP] = x86_ldq_phys(cs, sm_state + 0x7fd8);
251 env->regs[R_EBP] = x86_ldq_phys(cs, sm_state + 0x7fd0);
252 env->regs[R_ESI] = x86_ldq_phys(cs, sm_state + 0x7fc8);
253 env->regs[R_EDI] = x86_ldq_phys(cs, sm_state + 0x7fc0);
254 for (i = 8; i < 16; i++) {
255 env->regs[i] = x86_ldq_phys(cs, sm_state + 0x7ff8 - i * 8);
257 env->eip = x86_ldq_phys(cs, sm_state + 0x7f78);
258 cpu_load_eflags(env, x86_ldl_phys(cs, sm_state + 0x7f70),
259 ~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C | DF_MASK));
260 env->dr[6] = x86_ldl_phys(cs, sm_state + 0x7f68);
261 env->dr[7] = x86_ldl_phys(cs, sm_state + 0x7f60);
263 cpu_x86_update_cr4(env, x86_ldl_phys(cs, sm_state + 0x7f48));
264 cpu_x86_update_cr3(env, x86_ldq_phys(cs, sm_state + 0x7f50));
265 cpu_x86_update_cr0(env, x86_ldl_phys(cs, sm_state + 0x7f58));
267 for (i = 0; i < 6; i++) {
268 offset = 0x7e00 + i * 16;
269 cpu_x86_load_seg_cache(env, i,
270 x86_lduw_phys(cs, sm_state + offset),
271 x86_ldq_phys(cs, sm_state + offset + 8),
272 x86_ldl_phys(cs, sm_state + offset + 4),
273 (x86_lduw_phys(cs, sm_state + offset + 2) &
274 0xf0ff) << 8);
277 val = x86_ldl_phys(cs, sm_state + 0x7efc); /* revision ID */
278 if (val & 0x20000) {
279 env->smbase = x86_ldl_phys(cs, sm_state + 0x7f00);
281 #else
282 cpu_x86_update_cr0(env, x86_ldl_phys(cs, sm_state + 0x7ffc));
283 cpu_x86_update_cr3(env, x86_ldl_phys(cs, sm_state + 0x7ff8));
284 cpu_load_eflags(env, x86_ldl_phys(cs, sm_state + 0x7ff4),
285 ~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C | DF_MASK));
286 env->eip = x86_ldl_phys(cs, sm_state + 0x7ff0);
287 env->regs[R_EDI] = x86_ldl_phys(cs, sm_state + 0x7fec);
288 env->regs[R_ESI] = x86_ldl_phys(cs, sm_state + 0x7fe8);
289 env->regs[R_EBP] = x86_ldl_phys(cs, sm_state + 0x7fe4);
290 env->regs[R_ESP] = x86_ldl_phys(cs, sm_state + 0x7fe0);
291 env->regs[R_EBX] = x86_ldl_phys(cs, sm_state + 0x7fdc);
292 env->regs[R_EDX] = x86_ldl_phys(cs, sm_state + 0x7fd8);
293 env->regs[R_ECX] = x86_ldl_phys(cs, sm_state + 0x7fd4);
294 env->regs[R_EAX] = x86_ldl_phys(cs, sm_state + 0x7fd0);
295 env->dr[6] = x86_ldl_phys(cs, sm_state + 0x7fcc);
296 env->dr[7] = x86_ldl_phys(cs, sm_state + 0x7fc8);
298 env->tr.selector = x86_ldl_phys(cs, sm_state + 0x7fc4) & 0xffff;
299 env->tr.base = x86_ldl_phys(cs, sm_state + 0x7f64);
300 env->tr.limit = x86_ldl_phys(cs, sm_state + 0x7f60);
301 env->tr.flags = (x86_ldl_phys(cs, sm_state + 0x7f5c) & 0xf0ff) << 8;
303 env->ldt.selector = x86_ldl_phys(cs, sm_state + 0x7fc0) & 0xffff;
304 env->ldt.base = x86_ldl_phys(cs, sm_state + 0x7f80);
305 env->ldt.limit = x86_ldl_phys(cs, sm_state + 0x7f7c);
306 env->ldt.flags = (x86_ldl_phys(cs, sm_state + 0x7f78) & 0xf0ff) << 8;
308 env->gdt.base = x86_ldl_phys(cs, sm_state + 0x7f74);
309 env->gdt.limit = x86_ldl_phys(cs, sm_state + 0x7f70);
311 env->idt.base = x86_ldl_phys(cs, sm_state + 0x7f58);
312 env->idt.limit = x86_ldl_phys(cs, sm_state + 0x7f54);
314 for (i = 0; i < 6; i++) {
315 if (i < 3) {
316 offset = 0x7f84 + i * 12;
317 } else {
318 offset = 0x7f2c + (i - 3) * 12;
320 cpu_x86_load_seg_cache(env, i,
321 x86_ldl_phys(cs,
322 sm_state + 0x7fa8 + i * 4) & 0xffff,
323 x86_ldl_phys(cs, sm_state + offset + 8),
324 x86_ldl_phys(cs, sm_state + offset + 4),
325 (x86_ldl_phys(cs,
326 sm_state + offset) & 0xf0ff) << 8);
328 cpu_x86_update_cr4(env, x86_ldl_phys(cs, sm_state + 0x7f14));
330 val = x86_ldl_phys(cs, sm_state + 0x7efc); /* revision ID */
331 if (val & 0x20000) {
332 env->smbase = x86_ldl_phys(cs, sm_state + 0x7ef8);
334 #endif
335 if ((env->hflags2 & HF2_SMM_INSIDE_NMI_MASK) == 0) {
336 env->hflags2 &= ~HF2_NMI_MASK;
338 env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
339 env->hflags &= ~HF_SMM_MASK;
341 qemu_mutex_lock_iothread();
342 cpu_smm_update(cpu);
343 qemu_mutex_unlock_iothread();
345 qemu_log_mask(CPU_LOG_INT, "SMM: after RSM\n");
346 log_cpu_state_mask(CPU_LOG_INT, CPU(cpu), CPU_DUMP_CCOP);
349 #endif /* !CONFIG_USER_ONLY */