target/s390x: Fix typo
[qemu/ar7.git] / hw / net / mcf_fec.c
bloba3eca7e0f5bcf0ef3ee4432527f7b9fc91e2d9b7
1 /*
2 * ColdFire Fast Ethernet Controller emulation.
4 * Copyright (c) 2007 CodeSourcery.
6 * This code is licensed under the GPL
7 */
8 #include "qemu/osdep.h"
9 #include "hw/hw.h"
10 #include "net/net.h"
11 #include "hw/m68k/mcf.h"
12 #include "hw/m68k/mcf_fec.h"
13 #include "hw/net/mii.h"
14 #include "hw/sysbus.h"
15 /* For crc32 */
16 #include <zlib.h>
17 #include "exec/address-spaces.h"
19 //#define DEBUG_FEC 1
21 #ifdef DEBUG_FEC
22 #define DPRINTF(fmt, ...) \
23 do { printf("mcf_fec: " fmt , ## __VA_ARGS__); } while (0)
24 #else
25 #define DPRINTF(fmt, ...) do {} while(0)
26 #endif
28 #define FEC_MAX_DESC 1024
29 #define FEC_MAX_FRAME_SIZE 2032
31 typedef struct {
32 SysBusDevice parent_obj;
34 MemoryRegion iomem;
35 qemu_irq irq[FEC_NUM_IRQ];
36 NICState *nic;
37 NICConf conf;
38 uint32_t irq_state;
39 uint32_t eir;
40 uint32_t eimr;
41 int rx_enabled;
42 uint32_t rx_descriptor;
43 uint32_t tx_descriptor;
44 uint32_t ecr;
45 uint32_t mmfr;
46 uint32_t mscr;
47 uint32_t rcr;
48 uint32_t tcr;
49 uint32_t tfwr;
50 uint32_t rfsr;
51 uint32_t erdsr;
52 uint32_t etdsr;
53 uint32_t emrbr;
54 } mcf_fec_state;
56 #define FEC_INT_HB 0x80000000
57 #define FEC_INT_BABR 0x40000000
58 #define FEC_INT_BABT 0x20000000
59 #define FEC_INT_GRA 0x10000000
60 #define FEC_INT_TXF 0x08000000
61 #define FEC_INT_TXB 0x04000000
62 #define FEC_INT_RXF 0x02000000
63 #define FEC_INT_RXB 0x01000000
64 #define FEC_INT_MII 0x00800000
65 #define FEC_INT_EB 0x00400000
66 #define FEC_INT_LC 0x00200000
67 #define FEC_INT_RL 0x00100000
68 #define FEC_INT_UN 0x00080000
70 #define FEC_EN 2
71 #define FEC_RESET 1
73 /* Map interrupt flags onto IRQ lines. */
74 static const uint32_t mcf_fec_irq_map[FEC_NUM_IRQ] = {
75 FEC_INT_TXF,
76 FEC_INT_TXB,
77 FEC_INT_UN,
78 FEC_INT_RL,
79 FEC_INT_RXF,
80 FEC_INT_RXB,
81 FEC_INT_MII,
82 FEC_INT_LC,
83 FEC_INT_HB,
84 FEC_INT_GRA,
85 FEC_INT_EB,
86 FEC_INT_BABT,
87 FEC_INT_BABR
90 /* Buffer Descriptor. */
91 typedef struct {
92 uint16_t flags;
93 uint16_t length;
94 uint32_t data;
95 } mcf_fec_bd;
97 #define FEC_BD_R 0x8000
98 #define FEC_BD_E 0x8000
99 #define FEC_BD_O1 0x4000
100 #define FEC_BD_W 0x2000
101 #define FEC_BD_O2 0x1000
102 #define FEC_BD_L 0x0800
103 #define FEC_BD_TC 0x0400
104 #define FEC_BD_ABC 0x0200
105 #define FEC_BD_M 0x0100
106 #define FEC_BD_BC 0x0080
107 #define FEC_BD_MC 0x0040
108 #define FEC_BD_LG 0x0020
109 #define FEC_BD_NO 0x0010
110 #define FEC_BD_CR 0x0004
111 #define FEC_BD_OV 0x0002
112 #define FEC_BD_TR 0x0001
114 static void mcf_fec_read_bd(mcf_fec_bd *bd, uint32_t addr)
116 cpu_physical_memory_read(addr, bd, sizeof(*bd));
117 be16_to_cpus(&bd->flags);
118 be16_to_cpus(&bd->length);
119 be32_to_cpus(&bd->data);
122 static void mcf_fec_write_bd(mcf_fec_bd *bd, uint32_t addr)
124 mcf_fec_bd tmp;
125 tmp.flags = cpu_to_be16(bd->flags);
126 tmp.length = cpu_to_be16(bd->length);
127 tmp.data = cpu_to_be32(bd->data);
128 cpu_physical_memory_write(addr, &tmp, sizeof(tmp));
131 static void mcf_fec_update(mcf_fec_state *s)
133 uint32_t active;
134 uint32_t changed;
135 uint32_t mask;
136 int i;
138 active = s->eir & s->eimr;
139 changed = active ^s->irq_state;
140 for (i = 0; i < FEC_NUM_IRQ; i++) {
141 mask = mcf_fec_irq_map[i];
142 if (changed & mask) {
143 DPRINTF("IRQ %d = %d\n", i, (active & mask) != 0);
144 qemu_set_irq(s->irq[i], (active & mask) != 0);
147 s->irq_state = active;
150 static void mcf_fec_do_tx(mcf_fec_state *s)
152 uint32_t addr;
153 mcf_fec_bd bd;
154 int frame_size;
155 int len, descnt = 0;
156 uint8_t frame[FEC_MAX_FRAME_SIZE];
157 uint8_t *ptr;
159 DPRINTF("do_tx\n");
160 ptr = frame;
161 frame_size = 0;
162 addr = s->tx_descriptor;
163 while (descnt++ < FEC_MAX_DESC) {
164 mcf_fec_read_bd(&bd, addr);
165 DPRINTF("tx_bd %x flags %04x len %d data %08x\n",
166 addr, bd.flags, bd.length, bd.data);
167 if ((bd.flags & FEC_BD_R) == 0) {
168 /* Run out of descriptors to transmit. */
169 break;
171 len = bd.length;
172 if (frame_size + len > FEC_MAX_FRAME_SIZE) {
173 len = FEC_MAX_FRAME_SIZE - frame_size;
174 s->eir |= FEC_INT_BABT;
176 cpu_physical_memory_read(bd.data, ptr, len);
177 ptr += len;
178 frame_size += len;
179 if (bd.flags & FEC_BD_L) {
180 /* Last buffer in frame. */
181 DPRINTF("Sending packet\n");
182 qemu_send_packet(qemu_get_queue(s->nic), frame, frame_size);
183 ptr = frame;
184 frame_size = 0;
185 s->eir |= FEC_INT_TXF;
187 s->eir |= FEC_INT_TXB;
188 bd.flags &= ~FEC_BD_R;
189 /* Write back the modified descriptor. */
190 mcf_fec_write_bd(&bd, addr);
191 /* Advance to the next descriptor. */
192 if ((bd.flags & FEC_BD_W) != 0) {
193 addr = s->etdsr;
194 } else {
195 addr += 8;
198 s->tx_descriptor = addr;
201 static void mcf_fec_enable_rx(mcf_fec_state *s)
203 NetClientState *nc = qemu_get_queue(s->nic);
204 mcf_fec_bd bd;
206 mcf_fec_read_bd(&bd, s->rx_descriptor);
207 s->rx_enabled = ((bd.flags & FEC_BD_E) != 0);
208 if (s->rx_enabled) {
209 qemu_flush_queued_packets(nc);
213 static void mcf_fec_reset(DeviceState *dev)
215 mcf_fec_state *s = MCF_FEC_NET(dev);
217 s->eir = 0;
218 s->eimr = 0;
219 s->rx_enabled = 0;
220 s->ecr = 0;
221 s->mscr = 0;
222 s->rcr = 0x05ee0001;
223 s->tcr = 0;
224 s->tfwr = 0;
225 s->rfsr = 0x500;
228 #define MMFR_WRITE_OP (1 << 28)
229 #define MMFR_READ_OP (2 << 28)
230 #define MMFR_PHYADDR(v) (((v) >> 23) & 0x1f)
231 #define MMFR_REGNUM(v) (((v) >> 18) & 0x1f)
233 static uint64_t mcf_fec_read_mdio(mcf_fec_state *s)
235 uint64_t v;
237 if (s->mmfr & MMFR_WRITE_OP)
238 return s->mmfr;
239 if (MMFR_PHYADDR(s->mmfr) != 1)
240 return s->mmfr |= 0xffff;
242 switch (MMFR_REGNUM(s->mmfr)) {
243 case MII_BMCR:
244 v = MII_BMCR_SPEED | MII_BMCR_AUTOEN | MII_BMCR_FD;
245 break;
246 case MII_BMSR:
247 v = MII_BMSR_100TX_FD | MII_BMSR_100TX_HD | MII_BMSR_10T_FD |
248 MII_BMSR_10T_HD | MII_BMSR_MFPS | MII_BMSR_AN_COMP |
249 MII_BMSR_AUTONEG | MII_BMSR_LINK_ST;
250 break;
251 case MII_PHYID1:
252 v = DP83848_PHYID1;
253 break;
254 case MII_PHYID2:
255 v = DP83848_PHYID2;
256 break;
257 case MII_ANAR:
258 v = MII_ANAR_TXFD | MII_ANAR_TX | MII_ANAR_10FD |
259 MII_ANAR_10 | MII_ANAR_CSMACD;
260 break;
261 case MII_ANLPAR:
262 v = MII_ANLPAR_ACK | MII_ANLPAR_TXFD | MII_ANLPAR_TX |
263 MII_ANLPAR_10FD | MII_ANLPAR_10 | MII_ANLPAR_CSMACD;
264 break;
265 default:
266 v = 0xffff;
267 break;
269 s->mmfr = (s->mmfr & ~0xffff) | v;
270 return s->mmfr;
273 static uint64_t mcf_fec_read(void *opaque, hwaddr addr,
274 unsigned size)
276 mcf_fec_state *s = (mcf_fec_state *)opaque;
277 switch (addr & 0x3ff) {
278 case 0x004: return s->eir;
279 case 0x008: return s->eimr;
280 case 0x010: return s->rx_enabled ? (1 << 24) : 0; /* RDAR */
281 case 0x014: return 0; /* TDAR */
282 case 0x024: return s->ecr;
283 case 0x040: return mcf_fec_read_mdio(s);
284 case 0x044: return s->mscr;
285 case 0x064: return 0; /* MIBC */
286 case 0x084: return s->rcr;
287 case 0x0c4: return s->tcr;
288 case 0x0e4: /* PALR */
289 return (s->conf.macaddr.a[0] << 24) | (s->conf.macaddr.a[1] << 16)
290 | (s->conf.macaddr.a[2] << 8) | s->conf.macaddr.a[3];
291 break;
292 case 0x0e8: /* PAUR */
293 return (s->conf.macaddr.a[4] << 24) | (s->conf.macaddr.a[5] << 16) | 0x8808;
294 case 0x0ec: return 0x10000; /* OPD */
295 case 0x118: return 0;
296 case 0x11c: return 0;
297 case 0x120: return 0;
298 case 0x124: return 0;
299 case 0x144: return s->tfwr;
300 case 0x14c: return 0x600;
301 case 0x150: return s->rfsr;
302 case 0x180: return s->erdsr;
303 case 0x184: return s->etdsr;
304 case 0x188: return s->emrbr;
305 default:
306 hw_error("mcf_fec_read: Bad address 0x%x\n", (int)addr);
307 return 0;
311 static void mcf_fec_write(void *opaque, hwaddr addr,
312 uint64_t value, unsigned size)
314 mcf_fec_state *s = (mcf_fec_state *)opaque;
315 switch (addr & 0x3ff) {
316 case 0x004:
317 s->eir &= ~value;
318 break;
319 case 0x008:
320 s->eimr = value;
321 break;
322 case 0x010: /* RDAR */
323 if ((s->ecr & FEC_EN) && !s->rx_enabled) {
324 DPRINTF("RX enable\n");
325 mcf_fec_enable_rx(s);
327 break;
328 case 0x014: /* TDAR */
329 if (s->ecr & FEC_EN) {
330 mcf_fec_do_tx(s);
332 break;
333 case 0x024:
334 s->ecr = value;
335 if (value & FEC_RESET) {
336 DPRINTF("Reset\n");
337 mcf_fec_reset(opaque);
339 if ((s->ecr & FEC_EN) == 0) {
340 s->rx_enabled = 0;
342 break;
343 case 0x040:
344 s->mmfr = value;
345 s->eir |= FEC_INT_MII;
346 break;
347 case 0x044:
348 s->mscr = value & 0xfe;
349 break;
350 case 0x064:
351 /* TODO: Implement MIB. */
352 break;
353 case 0x084:
354 s->rcr = value & 0x07ff003f;
355 /* TODO: Implement LOOP mode. */
356 break;
357 case 0x0c4: /* TCR */
358 /* We transmit immediately, so raise GRA immediately. */
359 s->tcr = value;
360 if (value & 1)
361 s->eir |= FEC_INT_GRA;
362 break;
363 case 0x0e4: /* PALR */
364 s->conf.macaddr.a[0] = value >> 24;
365 s->conf.macaddr.a[1] = value >> 16;
366 s->conf.macaddr.a[2] = value >> 8;
367 s->conf.macaddr.a[3] = value;
368 break;
369 case 0x0e8: /* PAUR */
370 s->conf.macaddr.a[4] = value >> 24;
371 s->conf.macaddr.a[5] = value >> 16;
372 break;
373 case 0x0ec:
374 /* OPD */
375 break;
376 case 0x118:
377 case 0x11c:
378 case 0x120:
379 case 0x124:
380 /* TODO: implement MAC hash filtering. */
381 break;
382 case 0x144:
383 s->tfwr = value & 3;
384 break;
385 case 0x14c:
386 /* FRBR writes ignored. */
387 break;
388 case 0x150:
389 s->rfsr = (value & 0x3fc) | 0x400;
390 break;
391 case 0x180:
392 s->erdsr = value & ~3;
393 s->rx_descriptor = s->erdsr;
394 break;
395 case 0x184:
396 s->etdsr = value & ~3;
397 s->tx_descriptor = s->etdsr;
398 break;
399 case 0x188:
400 s->emrbr = value > 0 ? value & 0x7F0 : 0x7F0;
401 break;
402 default:
403 hw_error("mcf_fec_write Bad address 0x%x\n", (int)addr);
405 mcf_fec_update(s);
408 static int mcf_fec_have_receive_space(mcf_fec_state *s, size_t want)
410 mcf_fec_bd bd;
411 uint32_t addr;
413 /* Walk descriptor list to determine if we have enough buffer */
414 addr = s->rx_descriptor;
415 while (want > 0) {
416 mcf_fec_read_bd(&bd, addr);
417 if ((bd.flags & FEC_BD_E) == 0) {
418 return 0;
420 if (want < s->emrbr) {
421 return 1;
423 want -= s->emrbr;
424 /* Advance to the next descriptor. */
425 if ((bd.flags & FEC_BD_W) != 0) {
426 addr = s->erdsr;
427 } else {
428 addr += 8;
431 return 0;
434 static ssize_t mcf_fec_receive(NetClientState *nc, const uint8_t *buf, size_t size)
436 mcf_fec_state *s = qemu_get_nic_opaque(nc);
437 mcf_fec_bd bd;
438 uint32_t flags = 0;
439 uint32_t addr;
440 uint32_t crc;
441 uint32_t buf_addr;
442 uint8_t *crc_ptr;
443 unsigned int buf_len;
444 size_t retsize;
446 DPRINTF("do_rx len %d\n", size);
447 if (!s->rx_enabled) {
448 return -1;
450 /* 4 bytes for the CRC. */
451 size += 4;
452 crc = cpu_to_be32(crc32(~0, buf, size));
453 crc_ptr = (uint8_t *)&crc;
454 /* Huge frames are truncted. */
455 if (size > FEC_MAX_FRAME_SIZE) {
456 size = FEC_MAX_FRAME_SIZE;
457 flags |= FEC_BD_TR | FEC_BD_LG;
459 /* Frames larger than the user limit just set error flags. */
460 if (size > (s->rcr >> 16)) {
461 flags |= FEC_BD_LG;
463 /* Check if we have enough space in current descriptors */
464 if (!mcf_fec_have_receive_space(s, size)) {
465 return 0;
467 addr = s->rx_descriptor;
468 retsize = size;
469 while (size > 0) {
470 mcf_fec_read_bd(&bd, addr);
471 buf_len = (size <= s->emrbr) ? size: s->emrbr;
472 bd.length = buf_len;
473 size -= buf_len;
474 DPRINTF("rx_bd %x length %d\n", addr, bd.length);
475 /* The last 4 bytes are the CRC. */
476 if (size < 4)
477 buf_len += size - 4;
478 buf_addr = bd.data;
479 cpu_physical_memory_write(buf_addr, buf, buf_len);
480 buf += buf_len;
481 if (size < 4) {
482 cpu_physical_memory_write(buf_addr + buf_len, crc_ptr, 4 - size);
483 crc_ptr += 4 - size;
485 bd.flags &= ~FEC_BD_E;
486 if (size == 0) {
487 /* Last buffer in frame. */
488 bd.flags |= flags | FEC_BD_L;
489 DPRINTF("rx frame flags %04x\n", bd.flags);
490 s->eir |= FEC_INT_RXF;
491 } else {
492 s->eir |= FEC_INT_RXB;
494 mcf_fec_write_bd(&bd, addr);
495 /* Advance to the next descriptor. */
496 if ((bd.flags & FEC_BD_W) != 0) {
497 addr = s->erdsr;
498 } else {
499 addr += 8;
502 s->rx_descriptor = addr;
503 mcf_fec_enable_rx(s);
504 mcf_fec_update(s);
505 return retsize;
508 static const MemoryRegionOps mcf_fec_ops = {
509 .read = mcf_fec_read,
510 .write = mcf_fec_write,
511 .endianness = DEVICE_NATIVE_ENDIAN,
514 static NetClientInfo net_mcf_fec_info = {
515 .type = NET_CLIENT_DRIVER_NIC,
516 .size = sizeof(NICState),
517 .receive = mcf_fec_receive,
520 static void mcf_fec_realize(DeviceState *dev, Error **errp)
522 mcf_fec_state *s = MCF_FEC_NET(dev);
524 s->nic = qemu_new_nic(&net_mcf_fec_info, &s->conf,
525 object_get_typename(OBJECT(dev)), dev->id, s);
526 qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
529 static void mcf_fec_instance_init(Object *obj)
531 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
532 mcf_fec_state *s = MCF_FEC_NET(obj);
533 int i;
535 memory_region_init_io(&s->iomem, obj, &mcf_fec_ops, s, "fec", 0x400);
536 sysbus_init_mmio(sbd, &s->iomem);
537 for (i = 0; i < FEC_NUM_IRQ; i++) {
538 sysbus_init_irq(sbd, &s->irq[i]);
542 static Property mcf_fec_properties[] = {
543 DEFINE_NIC_PROPERTIES(mcf_fec_state, conf),
544 DEFINE_PROP_END_OF_LIST(),
547 static void mcf_fec_class_init(ObjectClass *oc, void *data)
549 DeviceClass *dc = DEVICE_CLASS(oc);
551 set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
552 dc->realize = mcf_fec_realize;
553 dc->desc = "MCF Fast Ethernet Controller network device";
554 dc->reset = mcf_fec_reset;
555 dc->props = mcf_fec_properties;
558 static const TypeInfo mcf_fec_info = {
559 .name = TYPE_MCF_FEC_NET,
560 .parent = TYPE_SYS_BUS_DEVICE,
561 .instance_size = sizeof(mcf_fec_state),
562 .instance_init = mcf_fec_instance_init,
563 .class_init = mcf_fec_class_init,
566 static void mcf_fec_register_types(void)
568 type_register_static(&mcf_fec_info);
571 type_init(mcf_fec_register_types)