target/s390x: Fix typo
[qemu/ar7.git] / hw / intc / arm_gicv3_cpuif.c
blobf775aba507cbcd3813ff477d484dfd769a166a53
1 /*
2 * ARM Generic Interrupt Controller v3
4 * Copyright (c) 2016 Linaro Limited
5 * Written by Peter Maydell
7 * This code is licensed under the GPL, version 2 or (at your option)
8 * any later version.
9 */
11 /* This file contains the code for the system register interface
12 * portions of the GICv3.
15 #include "qemu/osdep.h"
16 #include "qemu/bitops.h"
17 #include "qemu/main-loop.h"
18 #include "trace.h"
19 #include "gicv3_internal.h"
20 #include "cpu.h"
22 static GICv3CPUState *icc_cs_from_env(CPUARMState *env)
24 /* Given the CPU, find the right GICv3CPUState struct.
25 * Since we registered the CPU interface with the EL change hook as
26 * the opaque pointer, we can just directly get from the CPU to it.
28 return arm_get_el_change_hook_opaque(arm_env_get_cpu(env));
31 static bool gicv3_use_ns_bank(CPUARMState *env)
33 /* Return true if we should use the NonSecure bank for a banked GIC
34 * CPU interface register. Note that this differs from the
35 * access_secure_reg() function because GICv3 banked registers are
36 * banked even for AArch64, unlike the other CPU system registers.
38 return !arm_is_secure_below_el3(env);
41 /* The minimum BPR for the virtual interface is a configurable property */
42 static inline int icv_min_vbpr(GICv3CPUState *cs)
44 return 7 - cs->vprebits;
47 /* Simple accessor functions for LR fields */
48 static uint32_t ich_lr_vintid(uint64_t lr)
50 return extract64(lr, ICH_LR_EL2_VINTID_SHIFT, ICH_LR_EL2_VINTID_LENGTH);
53 static uint32_t ich_lr_pintid(uint64_t lr)
55 return extract64(lr, ICH_LR_EL2_PINTID_SHIFT, ICH_LR_EL2_PINTID_LENGTH);
58 static uint32_t ich_lr_prio(uint64_t lr)
60 return extract64(lr, ICH_LR_EL2_PRIORITY_SHIFT, ICH_LR_EL2_PRIORITY_LENGTH);
63 static int ich_lr_state(uint64_t lr)
65 return extract64(lr, ICH_LR_EL2_STATE_SHIFT, ICH_LR_EL2_STATE_LENGTH);
68 static bool icv_access(CPUARMState *env, int hcr_flags)
70 /* Return true if this ICC_ register access should really be
71 * directed to an ICV_ access. hcr_flags is a mask of
72 * HCR_EL2 bits to check: we treat this as an ICV_ access
73 * if we are in NS EL1 and at least one of the specified
74 * HCR_EL2 bits is set.
76 * ICV registers fall into four categories:
77 * * access if NS EL1 and HCR_EL2.FMO == 1:
78 * all ICV regs with '0' in their name
79 * * access if NS EL1 and HCR_EL2.IMO == 1:
80 * all ICV regs with '1' in their name
81 * * access if NS EL1 and either IMO or FMO == 1:
82 * CTLR, DIR, PMR, RPR
84 return (env->cp15.hcr_el2 & hcr_flags) && arm_current_el(env) == 1
85 && !arm_is_secure_below_el3(env);
88 static int read_vbpr(GICv3CPUState *cs, int grp)
90 /* Read VBPR value out of the VMCR field (caller must handle
91 * VCBPR effects if required)
93 if (grp == GICV3_G0) {
94 return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT,
95 ICH_VMCR_EL2_VBPR0_LENGTH);
96 } else {
97 return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT,
98 ICH_VMCR_EL2_VBPR1_LENGTH);
102 static void write_vbpr(GICv3CPUState *cs, int grp, int value)
104 /* Write new VBPR1 value, handling the "writing a value less than
105 * the minimum sets it to the minimum" semantics.
107 int min = icv_min_vbpr(cs);
109 if (grp != GICV3_G0) {
110 min++;
113 value = MAX(value, min);
115 if (grp == GICV3_G0) {
116 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT,
117 ICH_VMCR_EL2_VBPR0_LENGTH, value);
118 } else {
119 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT,
120 ICH_VMCR_EL2_VBPR1_LENGTH, value);
124 static uint32_t icv_fullprio_mask(GICv3CPUState *cs)
126 /* Return a mask word which clears the unimplemented priority bits
127 * from a priority value for a virtual interrupt. (Not to be confused
128 * with the group priority, whose mask depends on the value of VBPR
129 * for the interrupt group.)
131 return ~0U << (8 - cs->vpribits);
134 static int ich_highest_active_virt_prio(GICv3CPUState *cs)
136 /* Calculate the current running priority based on the set bits
137 * in the ICH Active Priority Registers.
139 int i;
140 int aprmax = 1 << (cs->vprebits - 5);
142 assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0]));
144 for (i = 0; i < aprmax; i++) {
145 uint32_t apr = cs->ich_apr[GICV3_G0][i] |
146 cs->ich_apr[GICV3_G1NS][i];
148 if (!apr) {
149 continue;
151 return (i * 32 + ctz32(apr)) << (icv_min_vbpr(cs) + 1);
153 /* No current active interrupts: return idle priority */
154 return 0xff;
157 static int hppvi_index(GICv3CPUState *cs)
159 /* Return the list register index of the highest priority pending
160 * virtual interrupt, as per the HighestPriorityVirtualInterrupt
161 * pseudocode. If no pending virtual interrupts, return -1.
163 int idx = -1;
164 int i;
165 /* Note that a list register entry with a priority of 0xff will
166 * never be reported by this function; this is the architecturally
167 * correct behaviour.
169 int prio = 0xff;
171 if (!(cs->ich_vmcr_el2 & (ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1))) {
172 /* Both groups disabled, definitely nothing to do */
173 return idx;
176 for (i = 0; i < cs->num_list_regs; i++) {
177 uint64_t lr = cs->ich_lr_el2[i];
178 int thisprio;
180 if (ich_lr_state(lr) != ICH_LR_EL2_STATE_PENDING) {
181 /* Not Pending */
182 continue;
185 /* Ignore interrupts if relevant group enable not set */
186 if (lr & ICH_LR_EL2_GROUP) {
187 if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
188 continue;
190 } else {
191 if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) {
192 continue;
196 thisprio = ich_lr_prio(lr);
198 if (thisprio < prio) {
199 prio = thisprio;
200 idx = i;
204 return idx;
207 static uint32_t icv_gprio_mask(GICv3CPUState *cs, int group)
209 /* Return a mask word which clears the subpriority bits from
210 * a priority value for a virtual interrupt in the specified group.
211 * This depends on the VBPR value:
212 * a BPR of 0 means the group priority bits are [7:1];
213 * a BPR of 1 means they are [7:2], and so on down to
214 * a BPR of 7 meaning no group priority bits at all.
215 * Which BPR to use depends on the group of the interrupt and
216 * the current ICH_VMCR_EL2.VCBPR settings.
218 if (group == GICV3_G1NS && cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) {
219 group = GICV3_G0;
222 return ~0U << (read_vbpr(cs, group) + 1);
225 static bool icv_hppi_can_preempt(GICv3CPUState *cs, uint64_t lr)
227 /* Return true if we can signal this virtual interrupt defined by
228 * the given list register value; see the pseudocode functions
229 * CanSignalVirtualInterrupt and CanSignalVirtualInt.
230 * Compare also icc_hppi_can_preempt() which is the non-virtual
231 * equivalent of these checks.
233 int grp;
234 uint32_t mask, prio, rprio, vpmr;
236 if (!(cs->ich_hcr_el2 & ICH_HCR_EL2_EN)) {
237 /* Virtual interface disabled */
238 return false;
241 /* We don't need to check that this LR is in Pending state because
242 * that has already been done in hppvi_index().
245 prio = ich_lr_prio(lr);
246 vpmr = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
247 ICH_VMCR_EL2_VPMR_LENGTH);
249 if (prio >= vpmr) {
250 /* Priority mask masks this interrupt */
251 return false;
254 rprio = ich_highest_active_virt_prio(cs);
255 if (rprio == 0xff) {
256 /* No running interrupt so we can preempt */
257 return true;
260 grp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
262 mask = icv_gprio_mask(cs, grp);
264 /* We only preempt a running interrupt if the pending interrupt's
265 * group priority is sufficient (the subpriorities are not considered).
267 if ((prio & mask) < (rprio & mask)) {
268 return true;
271 return false;
274 static uint32_t eoi_maintenance_interrupt_state(GICv3CPUState *cs,
275 uint32_t *misr)
277 /* Return a set of bits indicating the EOI maintenance interrupt status
278 * for each list register. The EOI maintenance interrupt status is
279 * 1 if LR.State == 0 && LR.HW == 0 && LR.EOI == 1
280 * (see the GICv3 spec for the ICH_EISR_EL2 register).
281 * If misr is not NULL then we should also collect the information
282 * about the MISR.EOI, MISR.NP and MISR.U bits.
284 uint32_t value = 0;
285 int validcount = 0;
286 bool seenpending = false;
287 int i;
289 for (i = 0; i < cs->num_list_regs; i++) {
290 uint64_t lr = cs->ich_lr_el2[i];
292 if ((lr & (ICH_LR_EL2_STATE_MASK | ICH_LR_EL2_HW | ICH_LR_EL2_EOI))
293 == ICH_LR_EL2_EOI) {
294 value |= (1 << i);
296 if ((lr & ICH_LR_EL2_STATE_MASK)) {
297 validcount++;
299 if (ich_lr_state(lr) == ICH_LR_EL2_STATE_PENDING) {
300 seenpending = true;
304 if (misr) {
305 if (validcount < 2 && (cs->ich_hcr_el2 & ICH_HCR_EL2_UIE)) {
306 *misr |= ICH_MISR_EL2_U;
308 if (!seenpending && (cs->ich_hcr_el2 & ICH_HCR_EL2_NPIE)) {
309 *misr |= ICH_MISR_EL2_NP;
311 if (value) {
312 *misr |= ICH_MISR_EL2_EOI;
315 return value;
318 static uint32_t maintenance_interrupt_state(GICv3CPUState *cs)
320 /* Return a set of bits indicating the maintenance interrupt status
321 * (as seen in the ICH_MISR_EL2 register).
323 uint32_t value = 0;
325 /* Scan list registers and fill in the U, NP and EOI bits */
326 eoi_maintenance_interrupt_state(cs, &value);
328 if (cs->ich_hcr_el2 & (ICH_HCR_EL2_LRENPIE | ICH_HCR_EL2_EOICOUNT_MASK)) {
329 value |= ICH_MISR_EL2_LRENP;
332 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0EIE) &&
333 (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) {
334 value |= ICH_MISR_EL2_VGRP0E;
337 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0DIE) &&
338 !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
339 value |= ICH_MISR_EL2_VGRP0D;
341 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1EIE) &&
342 (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
343 value |= ICH_MISR_EL2_VGRP1E;
346 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1DIE) &&
347 !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
348 value |= ICH_MISR_EL2_VGRP1D;
351 return value;
354 static void gicv3_cpuif_virt_update(GICv3CPUState *cs)
356 /* Tell the CPU about any pending virtual interrupts or
357 * maintenance interrupts, following a change to the state
358 * of the CPU interface relevant to virtual interrupts.
360 * CAUTION: this function will call qemu_set_irq() on the
361 * CPU maintenance IRQ line, which is typically wired up
362 * to the GIC as a per-CPU interrupt. This means that it
363 * will recursively call back into the GIC code via
364 * gicv3_redist_set_irq() and thus into the CPU interface code's
365 * gicv3_cpuif_update(). It is therefore important that this
366 * function is only called as the final action of a CPU interface
367 * register write implementation, after all the GIC state
368 * fields have been updated. gicv3_cpuif_update() also must
369 * not cause this function to be called, but that happens
370 * naturally as a result of there being no architectural
371 * linkage between the physical and virtual GIC logic.
373 int idx;
374 int irqlevel = 0;
375 int fiqlevel = 0;
376 int maintlevel = 0;
378 idx = hppvi_index(cs);
379 trace_gicv3_cpuif_virt_update(gicv3_redist_affid(cs), idx);
380 if (idx >= 0) {
381 uint64_t lr = cs->ich_lr_el2[idx];
383 if (icv_hppi_can_preempt(cs, lr)) {
384 /* Virtual interrupts are simple: G0 are always FIQ, and G1 IRQ */
385 if (lr & ICH_LR_EL2_GROUP) {
386 irqlevel = 1;
387 } else {
388 fiqlevel = 1;
393 if (cs->ich_hcr_el2 & ICH_HCR_EL2_EN) {
394 maintlevel = maintenance_interrupt_state(cs);
397 trace_gicv3_cpuif_virt_set_irqs(gicv3_redist_affid(cs), fiqlevel,
398 irqlevel, maintlevel);
400 qemu_set_irq(cs->parent_vfiq, fiqlevel);
401 qemu_set_irq(cs->parent_virq, irqlevel);
402 qemu_set_irq(cs->maintenance_irq, maintlevel);
405 static uint64_t icv_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
407 GICv3CPUState *cs = icc_cs_from_env(env);
408 int regno = ri->opc2 & 3;
409 int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1NS;
410 uint64_t value = cs->ich_apr[grp][regno];
412 trace_gicv3_icv_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
413 return value;
416 static void icv_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
417 uint64_t value)
419 GICv3CPUState *cs = icc_cs_from_env(env);
420 int regno = ri->opc2 & 3;
421 int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1NS;
423 trace_gicv3_icv_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
425 cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU;
427 gicv3_cpuif_virt_update(cs);
428 return;
431 static uint64_t icv_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
433 GICv3CPUState *cs = icc_cs_from_env(env);
434 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS;
435 uint64_t bpr;
436 bool satinc = false;
438 if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) {
439 /* reads return bpr0 + 1 saturated to 7, writes ignored */
440 grp = GICV3_G0;
441 satinc = true;
444 bpr = read_vbpr(cs, grp);
446 if (satinc) {
447 bpr++;
448 bpr = MIN(bpr, 7);
451 trace_gicv3_icv_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr);
453 return bpr;
456 static void icv_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri,
457 uint64_t value)
459 GICv3CPUState *cs = icc_cs_from_env(env);
460 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS;
462 trace_gicv3_icv_bpr_write(ri->crm == 8 ? 0 : 1,
463 gicv3_redist_affid(cs), value);
465 if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) {
466 /* reads return bpr0 + 1 saturated to 7, writes ignored */
467 return;
470 write_vbpr(cs, grp, value);
472 gicv3_cpuif_virt_update(cs);
475 static uint64_t icv_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri)
477 GICv3CPUState *cs = icc_cs_from_env(env);
478 uint64_t value;
480 value = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
481 ICH_VMCR_EL2_VPMR_LENGTH);
483 trace_gicv3_icv_pmr_read(gicv3_redist_affid(cs), value);
484 return value;
487 static void icv_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri,
488 uint64_t value)
490 GICv3CPUState *cs = icc_cs_from_env(env);
492 trace_gicv3_icv_pmr_write(gicv3_redist_affid(cs), value);
494 value &= icv_fullprio_mask(cs);
496 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
497 ICH_VMCR_EL2_VPMR_LENGTH, value);
499 gicv3_cpuif_virt_update(cs);
502 static uint64_t icv_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri)
504 GICv3CPUState *cs = icc_cs_from_env(env);
505 int enbit;
506 uint64_t value;
508 enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT;
509 value = extract64(cs->ich_vmcr_el2, enbit, 1);
511 trace_gicv3_icv_igrpen_read(ri->opc2 & 1 ? 1 : 0,
512 gicv3_redist_affid(cs), value);
513 return value;
516 static void icv_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri,
517 uint64_t value)
519 GICv3CPUState *cs = icc_cs_from_env(env);
520 int enbit;
522 trace_gicv3_icv_igrpen_write(ri->opc2 & 1 ? 1 : 0,
523 gicv3_redist_affid(cs), value);
525 enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT;
527 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, enbit, 1, value);
528 gicv3_cpuif_virt_update(cs);
531 static uint64_t icv_ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
533 GICv3CPUState *cs = icc_cs_from_env(env);
534 uint64_t value;
536 /* Note that the fixed fields here (A3V, SEIS, IDbits, PRIbits)
537 * should match the ones reported in ich_vtr_read().
539 value = ICC_CTLR_EL1_A3V | (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
540 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT);
542 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM) {
543 value |= ICC_CTLR_EL1_EOIMODE;
546 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) {
547 value |= ICC_CTLR_EL1_CBPR;
550 trace_gicv3_icv_ctlr_read(gicv3_redist_affid(cs), value);
551 return value;
554 static void icv_ctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
555 uint64_t value)
557 GICv3CPUState *cs = icc_cs_from_env(env);
559 trace_gicv3_icv_ctlr_write(gicv3_redist_affid(cs), value);
561 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VCBPR_SHIFT,
562 1, value & ICC_CTLR_EL1_CBPR ? 1 : 0);
563 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VEOIM_SHIFT,
564 1, value & ICC_CTLR_EL1_EOIMODE ? 1 : 0);
566 gicv3_cpuif_virt_update(cs);
569 static uint64_t icv_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
571 GICv3CPUState *cs = icc_cs_from_env(env);
572 int prio = ich_highest_active_virt_prio(cs);
574 trace_gicv3_icv_rpr_read(gicv3_redist_affid(cs), prio);
575 return prio;
578 static uint64_t icv_hppir_read(CPUARMState *env, const ARMCPRegInfo *ri)
580 GICv3CPUState *cs = icc_cs_from_env(env);
581 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
582 int idx = hppvi_index(cs);
583 uint64_t value = INTID_SPURIOUS;
585 if (idx >= 0) {
586 uint64_t lr = cs->ich_lr_el2[idx];
587 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
589 if (grp == thisgrp) {
590 value = ich_lr_vintid(lr);
594 trace_gicv3_icv_hppir_read(grp, gicv3_redist_affid(cs), value);
595 return value;
598 static void icv_activate_irq(GICv3CPUState *cs, int idx, int grp)
600 /* Activate the interrupt in the specified list register
601 * by moving it from Pending to Active state, and update the
602 * Active Priority Registers.
604 uint32_t mask = icv_gprio_mask(cs, grp);
605 int prio = ich_lr_prio(cs->ich_lr_el2[idx]) & mask;
606 int aprbit = prio >> (8 - cs->vprebits);
607 int regno = aprbit / 32;
608 int regbit = aprbit % 32;
610 cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT;
611 cs->ich_lr_el2[idx] |= ICH_LR_EL2_STATE_ACTIVE_BIT;
612 cs->ich_apr[grp][regno] |= (1 << regbit);
615 static uint64_t icv_iar_read(CPUARMState *env, const ARMCPRegInfo *ri)
617 GICv3CPUState *cs = icc_cs_from_env(env);
618 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
619 int idx = hppvi_index(cs);
620 uint64_t intid = INTID_SPURIOUS;
622 if (idx >= 0) {
623 uint64_t lr = cs->ich_lr_el2[idx];
624 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
626 if (thisgrp == grp && icv_hppi_can_preempt(cs, lr)) {
627 intid = ich_lr_vintid(lr);
628 if (intid < INTID_SECURE) {
629 icv_activate_irq(cs, idx, grp);
630 } else {
631 /* Interrupt goes from Pending to Invalid */
632 cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT;
633 /* We will now return the (bogus) ID from the list register,
634 * as per the pseudocode.
640 trace_gicv3_icv_iar_read(ri->crm == 8 ? 0 : 1,
641 gicv3_redist_affid(cs), intid);
642 return intid;
645 static int icc_highest_active_prio(GICv3CPUState *cs)
647 /* Calculate the current running priority based on the set bits
648 * in the Active Priority Registers.
650 int i;
652 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) {
653 uint32_t apr = cs->icc_apr[GICV3_G0][i] |
654 cs->icc_apr[GICV3_G1][i] | cs->icc_apr[GICV3_G1NS][i];
656 if (!apr) {
657 continue;
659 return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
661 /* No current active interrupts: return idle priority */
662 return 0xff;
665 static uint32_t icc_gprio_mask(GICv3CPUState *cs, int group)
667 /* Return a mask word which clears the subpriority bits from
668 * a priority value for an interrupt in the specified group.
669 * This depends on the BPR value:
670 * a BPR of 0 means the group priority bits are [7:1];
671 * a BPR of 1 means they are [7:2], and so on down to
672 * a BPR of 7 meaning no group priority bits at all.
673 * Which BPR to use depends on the group of the interrupt and
674 * the current ICC_CTLR.CBPR settings.
676 if ((group == GICV3_G1 && cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR) ||
677 (group == GICV3_G1NS &&
678 cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
679 group = GICV3_G0;
682 return ~0U << ((cs->icc_bpr[group] & 7) + 1);
685 static bool icc_no_enabled_hppi(GICv3CPUState *cs)
687 /* Return true if there is no pending interrupt, or the
688 * highest priority pending interrupt is in a group which has been
689 * disabled at the CPU interface by the ICC_IGRPEN* register enable bits.
691 return cs->hppi.prio == 0xff || (cs->icc_igrpen[cs->hppi.grp] == 0);
694 static bool icc_hppi_can_preempt(GICv3CPUState *cs)
696 /* Return true if we have a pending interrupt of sufficient
697 * priority to preempt.
699 int rprio;
700 uint32_t mask;
702 if (icc_no_enabled_hppi(cs)) {
703 return false;
706 if (cs->hppi.prio >= cs->icc_pmr_el1) {
707 /* Priority mask masks this interrupt */
708 return false;
711 rprio = icc_highest_active_prio(cs);
712 if (rprio == 0xff) {
713 /* No currently running interrupt so we can preempt */
714 return true;
717 mask = icc_gprio_mask(cs, cs->hppi.grp);
719 /* We only preempt a running interrupt if the pending interrupt's
720 * group priority is sufficient (the subpriorities are not considered).
722 if ((cs->hppi.prio & mask) < (rprio & mask)) {
723 return true;
726 return false;
729 void gicv3_cpuif_update(GICv3CPUState *cs)
731 /* Tell the CPU about its highest priority pending interrupt */
732 int irqlevel = 0;
733 int fiqlevel = 0;
734 ARMCPU *cpu = ARM_CPU(cs->cpu);
735 CPUARMState *env = &cpu->env;
737 g_assert(qemu_mutex_iothread_locked());
739 trace_gicv3_cpuif_update(gicv3_redist_affid(cs), cs->hppi.irq,
740 cs->hppi.grp, cs->hppi.prio);
742 if (cs->hppi.grp == GICV3_G1 && !arm_feature(env, ARM_FEATURE_EL3)) {
743 /* If a Security-enabled GIC sends a G1S interrupt to a
744 * Security-disabled CPU, we must treat it as if it were G0.
746 cs->hppi.grp = GICV3_G0;
749 if (icc_hppi_can_preempt(cs)) {
750 /* We have an interrupt: should we signal it as IRQ or FIQ?
751 * This is described in the GICv3 spec section 4.6.2.
753 bool isfiq;
755 switch (cs->hppi.grp) {
756 case GICV3_G0:
757 isfiq = true;
758 break;
759 case GICV3_G1:
760 isfiq = (!arm_is_secure(env) ||
761 (arm_current_el(env) == 3 && arm_el_is_aa64(env, 3)));
762 break;
763 case GICV3_G1NS:
764 isfiq = arm_is_secure(env);
765 break;
766 default:
767 g_assert_not_reached();
770 if (isfiq) {
771 fiqlevel = 1;
772 } else {
773 irqlevel = 1;
777 trace_gicv3_cpuif_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel);
779 qemu_set_irq(cs->parent_fiq, fiqlevel);
780 qemu_set_irq(cs->parent_irq, irqlevel);
783 static uint64_t icc_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri)
785 GICv3CPUState *cs = icc_cs_from_env(env);
786 uint32_t value = cs->icc_pmr_el1;
788 if (icv_access(env, HCR_FMO | HCR_IMO)) {
789 return icv_pmr_read(env, ri);
792 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) &&
793 (env->cp15.scr_el3 & SCR_FIQ)) {
794 /* NS access and Group 0 is inaccessible to NS: return the
795 * NS view of the current priority
797 if (value & 0x80) {
798 /* Secure priorities not visible to NS */
799 value = 0;
800 } else if (value != 0xff) {
801 value = (value << 1) & 0xff;
805 trace_gicv3_icc_pmr_read(gicv3_redist_affid(cs), value);
807 return value;
810 static void icc_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri,
811 uint64_t value)
813 GICv3CPUState *cs = icc_cs_from_env(env);
815 if (icv_access(env, HCR_FMO | HCR_IMO)) {
816 return icv_pmr_write(env, ri, value);
819 trace_gicv3_icc_pmr_write(gicv3_redist_affid(cs), value);
821 value &= 0xff;
823 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) &&
824 (env->cp15.scr_el3 & SCR_FIQ)) {
825 /* NS access and Group 0 is inaccessible to NS: return the
826 * NS view of the current priority
828 if (!(cs->icc_pmr_el1 & 0x80)) {
829 /* Current PMR in the secure range, don't allow NS to change it */
830 return;
832 value = (value >> 1) & 0x80;
834 cs->icc_pmr_el1 = value;
835 gicv3_cpuif_update(cs);
838 static void icc_activate_irq(GICv3CPUState *cs, int irq)
840 /* Move the interrupt from the Pending state to Active, and update
841 * the Active Priority Registers
843 uint32_t mask = icc_gprio_mask(cs, cs->hppi.grp);
844 int prio = cs->hppi.prio & mask;
845 int aprbit = prio >> 1;
846 int regno = aprbit / 32;
847 int regbit = aprbit % 32;
849 cs->icc_apr[cs->hppi.grp][regno] |= (1 << regbit);
851 if (irq < GIC_INTERNAL) {
852 cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 1);
853 cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 0);
854 gicv3_redist_update(cs);
855 } else {
856 gicv3_gicd_active_set(cs->gic, irq);
857 gicv3_gicd_pending_clear(cs->gic, irq);
858 gicv3_update(cs->gic, irq, 1);
862 static uint64_t icc_hppir0_value(GICv3CPUState *cs, CPUARMState *env)
864 /* Return the highest priority pending interrupt register value
865 * for group 0.
867 bool irq_is_secure;
869 if (cs->hppi.prio == 0xff) {
870 return INTID_SPURIOUS;
873 /* Check whether we can return the interrupt or if we should return
874 * a special identifier, as per the CheckGroup0ForSpecialIdentifiers
875 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
876 * is always zero.)
878 irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) &&
879 (cs->hppi.grp != GICV3_G1NS));
881 if (cs->hppi.grp != GICV3_G0 && !arm_is_el3_or_mon(env)) {
882 return INTID_SPURIOUS;
884 if (irq_is_secure && !arm_is_secure(env)) {
885 /* Secure interrupts not visible to Nonsecure */
886 return INTID_SPURIOUS;
889 if (cs->hppi.grp != GICV3_G0) {
890 /* Indicate to EL3 that there's a Group 1 interrupt for the other
891 * state pending.
893 return irq_is_secure ? INTID_SECURE : INTID_NONSECURE;
896 return cs->hppi.irq;
899 static uint64_t icc_hppir1_value(GICv3CPUState *cs, CPUARMState *env)
901 /* Return the highest priority pending interrupt register value
902 * for group 1.
904 bool irq_is_secure;
906 if (cs->hppi.prio == 0xff) {
907 return INTID_SPURIOUS;
910 /* Check whether we can return the interrupt or if we should return
911 * a special identifier, as per the CheckGroup1ForSpecialIdentifiers
912 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
913 * is always zero.)
915 irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) &&
916 (cs->hppi.grp != GICV3_G1NS));
918 if (cs->hppi.grp == GICV3_G0) {
919 /* Group 0 interrupts not visible via HPPIR1 */
920 return INTID_SPURIOUS;
922 if (irq_is_secure) {
923 if (!arm_is_secure(env)) {
924 /* Secure interrupts not visible in Non-secure */
925 return INTID_SPURIOUS;
927 } else if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) {
928 /* Group 1 non-secure interrupts not visible in Secure EL1 */
929 return INTID_SPURIOUS;
932 return cs->hppi.irq;
935 static uint64_t icc_iar0_read(CPUARMState *env, const ARMCPRegInfo *ri)
937 GICv3CPUState *cs = icc_cs_from_env(env);
938 uint64_t intid;
940 if (icv_access(env, HCR_FMO)) {
941 return icv_iar_read(env, ri);
944 if (!icc_hppi_can_preempt(cs)) {
945 intid = INTID_SPURIOUS;
946 } else {
947 intid = icc_hppir0_value(cs, env);
950 if (!(intid >= INTID_SECURE && intid <= INTID_SPURIOUS)) {
951 icc_activate_irq(cs, intid);
954 trace_gicv3_icc_iar0_read(gicv3_redist_affid(cs), intid);
955 return intid;
958 static uint64_t icc_iar1_read(CPUARMState *env, const ARMCPRegInfo *ri)
960 GICv3CPUState *cs = icc_cs_from_env(env);
961 uint64_t intid;
963 if (icv_access(env, HCR_IMO)) {
964 return icv_iar_read(env, ri);
967 if (!icc_hppi_can_preempt(cs)) {
968 intid = INTID_SPURIOUS;
969 } else {
970 intid = icc_hppir1_value(cs, env);
973 if (!(intid >= INTID_SECURE && intid <= INTID_SPURIOUS)) {
974 icc_activate_irq(cs, intid);
977 trace_gicv3_icc_iar1_read(gicv3_redist_affid(cs), intid);
978 return intid;
981 static void icc_drop_prio(GICv3CPUState *cs, int grp)
983 /* Drop the priority of the currently active interrupt in
984 * the specified group.
986 * Note that we can guarantee (because of the requirement to nest
987 * ICC_IAR reads [which activate an interrupt and raise priority]
988 * with ICC_EOIR writes [which drop the priority for the interrupt])
989 * that the interrupt we're being called for is the highest priority
990 * active interrupt, meaning that it has the lowest set bit in the
991 * APR registers.
993 * If the guest does not honour the ordering constraints then the
994 * behaviour of the GIC is UNPREDICTABLE, which for us means that
995 * the values of the APR registers might become incorrect and the
996 * running priority will be wrong, so interrupts that should preempt
997 * might not do so, and interrupts that should not preempt might do so.
999 int i;
1001 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[grp]); i++) {
1002 uint64_t *papr = &cs->icc_apr[grp][i];
1004 if (!*papr) {
1005 continue;
1007 /* Clear the lowest set bit */
1008 *papr &= *papr - 1;
1009 break;
1012 /* running priority change means we need an update for this cpu i/f */
1013 gicv3_cpuif_update(cs);
1016 static bool icc_eoi_split(CPUARMState *env, GICv3CPUState *cs)
1018 /* Return true if we should split priority drop and interrupt
1019 * deactivation, ie whether the relevant EOIMode bit is set.
1021 if (arm_is_el3_or_mon(env)) {
1022 return cs->icc_ctlr_el3 & ICC_CTLR_EL3_EOIMODE_EL3;
1024 if (arm_is_secure_below_el3(env)) {
1025 return cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_EOIMODE;
1026 } else {
1027 return cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE;
1031 static int icc_highest_active_group(GICv3CPUState *cs)
1033 /* Return the group with the highest priority active interrupt.
1034 * We can do this by just comparing the APRs to see which one
1035 * has the lowest set bit.
1036 * (If more than one group is active at the same priority then
1037 * we're in UNPREDICTABLE territory.)
1039 int i;
1041 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) {
1042 int g0ctz = ctz32(cs->icc_apr[GICV3_G0][i]);
1043 int g1ctz = ctz32(cs->icc_apr[GICV3_G1][i]);
1044 int g1nsctz = ctz32(cs->icc_apr[GICV3_G1NS][i]);
1046 if (g1nsctz < g0ctz && g1nsctz < g1ctz) {
1047 return GICV3_G1NS;
1049 if (g1ctz < g0ctz) {
1050 return GICV3_G1;
1052 if (g0ctz < 32) {
1053 return GICV3_G0;
1056 /* No set active bits? UNPREDICTABLE; return -1 so the caller
1057 * ignores the spurious EOI attempt.
1059 return -1;
1062 static void icc_deactivate_irq(GICv3CPUState *cs, int irq)
1064 if (irq < GIC_INTERNAL) {
1065 cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 0);
1066 gicv3_redist_update(cs);
1067 } else {
1068 gicv3_gicd_active_clear(cs->gic, irq);
1069 gicv3_update(cs->gic, irq, 1);
1073 static bool icv_eoi_split(CPUARMState *env, GICv3CPUState *cs)
1075 /* Return true if we should split priority drop and interrupt
1076 * deactivation, ie whether the virtual EOIMode bit is set.
1078 return cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM;
1081 static int icv_find_active(GICv3CPUState *cs, int irq)
1083 /* Given an interrupt number for an active interrupt, return the index
1084 * of the corresponding list register, or -1 if there is no match.
1085 * Corresponds to FindActiveVirtualInterrupt pseudocode.
1087 int i;
1089 for (i = 0; i < cs->num_list_regs; i++) {
1090 uint64_t lr = cs->ich_lr_el2[i];
1092 if ((lr & ICH_LR_EL2_STATE_ACTIVE_BIT) && ich_lr_vintid(lr) == irq) {
1093 return i;
1097 return -1;
1100 static void icv_deactivate_irq(GICv3CPUState *cs, int idx)
1102 /* Deactivate the interrupt in the specified list register index */
1103 uint64_t lr = cs->ich_lr_el2[idx];
1105 if (lr & ICH_LR_EL2_HW) {
1106 /* Deactivate the associated physical interrupt */
1107 int pirq = ich_lr_pintid(lr);
1109 if (pirq < INTID_SECURE) {
1110 icc_deactivate_irq(cs, pirq);
1114 /* Clear the 'active' part of the state, so ActivePending->Pending
1115 * and Active->Invalid.
1117 lr &= ~ICH_LR_EL2_STATE_ACTIVE_BIT;
1118 cs->ich_lr_el2[idx] = lr;
1121 static void icv_increment_eoicount(GICv3CPUState *cs)
1123 /* Increment the EOICOUNT field in ICH_HCR_EL2 */
1124 int eoicount = extract64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT,
1125 ICH_HCR_EL2_EOICOUNT_LENGTH);
1127 cs->ich_hcr_el2 = deposit64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT,
1128 ICH_HCR_EL2_EOICOUNT_LENGTH, eoicount + 1);
1131 static int icv_drop_prio(GICv3CPUState *cs)
1133 /* Drop the priority of the currently active virtual interrupt
1134 * (favouring group 0 if there is a set active bit at
1135 * the same priority for both group 0 and group 1).
1136 * Return the priority value for the bit we just cleared,
1137 * or 0xff if no bits were set in the AP registers at all.
1138 * Note that though the ich_apr[] are uint64_t only the low
1139 * 32 bits are actually relevant.
1141 int i;
1142 int aprmax = 1 << (cs->vprebits - 5);
1144 assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0]));
1146 for (i = 0; i < aprmax; i++) {
1147 uint64_t *papr0 = &cs->ich_apr[GICV3_G0][i];
1148 uint64_t *papr1 = &cs->ich_apr[GICV3_G1NS][i];
1149 int apr0count, apr1count;
1151 if (!*papr0 && !*papr1) {
1152 continue;
1155 /* We can't just use the bit-twiddling hack icc_drop_prio() does
1156 * because we need to return the bit number we cleared so
1157 * it can be compared against the list register's priority field.
1159 apr0count = ctz32(*papr0);
1160 apr1count = ctz32(*papr1);
1162 if (apr0count <= apr1count) {
1163 *papr0 &= *papr0 - 1;
1164 return (apr0count + i * 32) << (icv_min_vbpr(cs) + 1);
1165 } else {
1166 *papr1 &= *papr1 - 1;
1167 return (apr1count + i * 32) << (icv_min_vbpr(cs) + 1);
1170 return 0xff;
1173 static void icv_dir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1174 uint64_t value)
1176 /* Deactivate interrupt */
1177 GICv3CPUState *cs = icc_cs_from_env(env);
1178 int idx;
1179 int irq = value & 0xffffff;
1181 trace_gicv3_icv_dir_write(gicv3_redist_affid(cs), value);
1183 if (irq >= cs->gic->num_irq) {
1184 /* Also catches special interrupt numbers and LPIs */
1185 return;
1188 if (!icv_eoi_split(env, cs)) {
1189 return;
1192 idx = icv_find_active(cs, irq);
1194 if (idx < 0) {
1195 /* No list register matching this, so increment the EOI count
1196 * (might trigger a maintenance interrupt)
1198 icv_increment_eoicount(cs);
1199 } else {
1200 icv_deactivate_irq(cs, idx);
1203 gicv3_cpuif_virt_update(cs);
1206 static void icv_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1207 uint64_t value)
1209 /* End of Interrupt */
1210 GICv3CPUState *cs = icc_cs_from_env(env);
1211 int irq = value & 0xffffff;
1212 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
1213 int idx, dropprio;
1215 trace_gicv3_icv_eoir_write(ri->crm == 8 ? 0 : 1,
1216 gicv3_redist_affid(cs), value);
1218 if (irq >= cs->gic->num_irq) {
1219 /* Also catches special interrupt numbers and LPIs */
1220 return;
1223 /* We implement the IMPDEF choice of "drop priority before doing
1224 * error checks" (because that lets us avoid scanning the AP
1225 * registers twice).
1227 dropprio = icv_drop_prio(cs);
1228 if (dropprio == 0xff) {
1229 /* No active interrupt. It is CONSTRAINED UNPREDICTABLE
1230 * whether the list registers are checked in this
1231 * situation; we choose not to.
1233 return;
1236 idx = icv_find_active(cs, irq);
1238 if (idx < 0) {
1239 /* No valid list register corresponding to EOI ID */
1240 icv_increment_eoicount(cs);
1241 } else {
1242 uint64_t lr = cs->ich_lr_el2[idx];
1243 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
1244 int lr_gprio = ich_lr_prio(lr) & icv_gprio_mask(cs, grp);
1246 if (thisgrp == grp && lr_gprio == dropprio) {
1247 if (!icv_eoi_split(env, cs)) {
1248 /* Priority drop and deactivate not split: deactivate irq now */
1249 icv_deactivate_irq(cs, idx);
1254 gicv3_cpuif_virt_update(cs);
1257 static void icc_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1258 uint64_t value)
1260 /* End of Interrupt */
1261 GICv3CPUState *cs = icc_cs_from_env(env);
1262 int irq = value & 0xffffff;
1263 int grp;
1265 if (icv_access(env, ri->crm == 8 ? HCR_FMO : HCR_IMO)) {
1266 icv_eoir_write(env, ri, value);
1267 return;
1270 trace_gicv3_icc_eoir_write(ri->crm == 8 ? 0 : 1,
1271 gicv3_redist_affid(cs), value);
1273 if (ri->crm == 8) {
1274 /* EOIR0 */
1275 grp = GICV3_G0;
1276 } else {
1277 /* EOIR1 */
1278 if (arm_is_secure(env)) {
1279 grp = GICV3_G1;
1280 } else {
1281 grp = GICV3_G1NS;
1285 if (irq >= cs->gic->num_irq) {
1286 /* This handles two cases:
1287 * 1. If software writes the ID of a spurious interrupt [ie 1020-1023]
1288 * to the GICC_EOIR, the GIC ignores that write.
1289 * 2. If software writes the number of a non-existent interrupt
1290 * this must be a subcase of "value written does not match the last
1291 * valid interrupt value read from the Interrupt Acknowledge
1292 * register" and so this is UNPREDICTABLE. We choose to ignore it.
1294 return;
1297 if (icc_highest_active_group(cs) != grp) {
1298 return;
1301 icc_drop_prio(cs, grp);
1303 if (!icc_eoi_split(env, cs)) {
1304 /* Priority drop and deactivate not split: deactivate irq now */
1305 icc_deactivate_irq(cs, irq);
1309 static uint64_t icc_hppir0_read(CPUARMState *env, const ARMCPRegInfo *ri)
1311 GICv3CPUState *cs = icc_cs_from_env(env);
1312 uint64_t value;
1314 if (icv_access(env, HCR_FMO)) {
1315 return icv_hppir_read(env, ri);
1318 value = icc_hppir0_value(cs, env);
1319 trace_gicv3_icc_hppir0_read(gicv3_redist_affid(cs), value);
1320 return value;
1323 static uint64_t icc_hppir1_read(CPUARMState *env, const ARMCPRegInfo *ri)
1325 GICv3CPUState *cs = icc_cs_from_env(env);
1326 uint64_t value;
1328 if (icv_access(env, HCR_IMO)) {
1329 return icv_hppir_read(env, ri);
1332 value = icc_hppir1_value(cs, env);
1333 trace_gicv3_icc_hppir1_read(gicv3_redist_affid(cs), value);
1334 return value;
1337 static uint64_t icc_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1339 GICv3CPUState *cs = icc_cs_from_env(env);
1340 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1;
1341 bool satinc = false;
1342 uint64_t bpr;
1344 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1345 return icv_bpr_read(env, ri);
1348 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1349 grp = GICV3_G1NS;
1352 if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) &&
1353 (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) {
1354 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
1355 * modify BPR0
1357 grp = GICV3_G0;
1360 if (grp == GICV3_G1NS && arm_current_el(env) < 3 &&
1361 (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
1362 /* reads return bpr0 + 1 sat to 7, writes ignored */
1363 grp = GICV3_G0;
1364 satinc = true;
1367 bpr = cs->icc_bpr[grp];
1368 if (satinc) {
1369 bpr++;
1370 bpr = MIN(bpr, 7);
1373 trace_gicv3_icc_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr);
1375 return bpr;
1378 static void icc_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1379 uint64_t value)
1381 GICv3CPUState *cs = icc_cs_from_env(env);
1382 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1;
1384 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1385 icv_bpr_write(env, ri, value);
1386 return;
1389 trace_gicv3_icc_bpr_write(ri->crm == 8 ? 0 : 1,
1390 gicv3_redist_affid(cs), value);
1392 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1393 grp = GICV3_G1NS;
1396 if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) &&
1397 (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) {
1398 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
1399 * modify BPR0
1401 grp = GICV3_G0;
1404 if (grp == GICV3_G1NS && arm_current_el(env) < 3 &&
1405 (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
1406 /* reads return bpr0 + 1 sat to 7, writes ignored */
1407 return;
1410 cs->icc_bpr[grp] = value & 7;
1411 gicv3_cpuif_update(cs);
1414 static uint64_t icc_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1416 GICv3CPUState *cs = icc_cs_from_env(env);
1417 uint64_t value;
1419 int regno = ri->opc2 & 3;
1420 int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1;
1422 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1423 return icv_ap_read(env, ri);
1426 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1427 grp = GICV3_G1NS;
1430 value = cs->icc_apr[grp][regno];
1432 trace_gicv3_icc_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
1433 return value;
1436 static void icc_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1437 uint64_t value)
1439 GICv3CPUState *cs = icc_cs_from_env(env);
1441 int regno = ri->opc2 & 3;
1442 int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1;
1444 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1445 icv_ap_write(env, ri, value);
1446 return;
1449 trace_gicv3_icc_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
1451 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1452 grp = GICV3_G1NS;
1455 /* It's not possible to claim that a Non-secure interrupt is active
1456 * at a priority outside the Non-secure range (128..255), since this
1457 * would otherwise allow malicious NS code to block delivery of S interrupts
1458 * by writing a bad value to these registers.
1460 if (grp == GICV3_G1NS && regno < 2 && arm_feature(env, ARM_FEATURE_EL3)) {
1461 return;
1464 cs->icc_apr[grp][regno] = value & 0xFFFFFFFFU;
1465 gicv3_cpuif_update(cs);
1468 static void icc_dir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1469 uint64_t value)
1471 /* Deactivate interrupt */
1472 GICv3CPUState *cs = icc_cs_from_env(env);
1473 int irq = value & 0xffffff;
1474 bool irq_is_secure, single_sec_state, irq_is_grp0;
1475 bool route_fiq_to_el3, route_irq_to_el3, route_fiq_to_el2, route_irq_to_el2;
1477 if (icv_access(env, HCR_FMO | HCR_IMO)) {
1478 icv_dir_write(env, ri, value);
1479 return;
1482 trace_gicv3_icc_dir_write(gicv3_redist_affid(cs), value);
1484 if (irq >= cs->gic->num_irq) {
1485 /* Also catches special interrupt numbers and LPIs */
1486 return;
1489 if (!icc_eoi_split(env, cs)) {
1490 return;
1493 int grp = gicv3_irq_group(cs->gic, cs, irq);
1495 single_sec_state = cs->gic->gicd_ctlr & GICD_CTLR_DS;
1496 irq_is_secure = !single_sec_state && (grp != GICV3_G1NS);
1497 irq_is_grp0 = grp == GICV3_G0;
1499 /* Check whether we're allowed to deactivate this interrupt based
1500 * on its group and the current CPU state.
1501 * These checks are laid out to correspond to the spec's pseudocode.
1503 route_fiq_to_el3 = env->cp15.scr_el3 & SCR_FIQ;
1504 route_irq_to_el3 = env->cp15.scr_el3 & SCR_IRQ;
1505 /* No need to include !IsSecure in route_*_to_el2 as it's only
1506 * tested in cases where we know !IsSecure is true.
1508 route_fiq_to_el2 = env->cp15.hcr_el2 & HCR_FMO;
1509 route_irq_to_el2 = env->cp15.hcr_el2 & HCR_FMO;
1511 switch (arm_current_el(env)) {
1512 case 3:
1513 break;
1514 case 2:
1515 if (single_sec_state && irq_is_grp0 && !route_fiq_to_el3) {
1516 break;
1518 if (!irq_is_secure && !irq_is_grp0 && !route_irq_to_el3) {
1519 break;
1521 return;
1522 case 1:
1523 if (!arm_is_secure_below_el3(env)) {
1524 if (single_sec_state && irq_is_grp0 &&
1525 !route_fiq_to_el3 && !route_fiq_to_el2) {
1526 break;
1528 if (!irq_is_secure && !irq_is_grp0 &&
1529 !route_irq_to_el3 && !route_irq_to_el2) {
1530 break;
1532 } else {
1533 if (irq_is_grp0 && !route_fiq_to_el3) {
1534 break;
1536 if (!irq_is_grp0 &&
1537 (!irq_is_secure || !single_sec_state) &&
1538 !route_irq_to_el3) {
1539 break;
1542 return;
1543 default:
1544 g_assert_not_reached();
1547 icc_deactivate_irq(cs, irq);
1550 static uint64_t icc_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1552 GICv3CPUState *cs = icc_cs_from_env(env);
1553 int prio;
1555 if (icv_access(env, HCR_FMO | HCR_IMO)) {
1556 return icv_rpr_read(env, ri);
1559 prio = icc_highest_active_prio(cs);
1561 if (arm_feature(env, ARM_FEATURE_EL3) &&
1562 !arm_is_secure(env) && (env->cp15.scr_el3 & SCR_FIQ)) {
1563 /* NS GIC access and Group 0 is inaccessible to NS */
1564 if (prio & 0x80) {
1565 /* NS mustn't see priorities in the Secure half of the range */
1566 prio = 0;
1567 } else if (prio != 0xff) {
1568 /* Non-idle priority: show the Non-secure view of it */
1569 prio = (prio << 1) & 0xff;
1573 trace_gicv3_icc_rpr_read(gicv3_redist_affid(cs), prio);
1574 return prio;
1577 static void icc_generate_sgi(CPUARMState *env, GICv3CPUState *cs,
1578 uint64_t value, int grp, bool ns)
1580 GICv3State *s = cs->gic;
1582 /* Extract Aff3/Aff2/Aff1 and shift into the bottom 24 bits */
1583 uint64_t aff = extract64(value, 48, 8) << 16 |
1584 extract64(value, 32, 8) << 8 |
1585 extract64(value, 16, 8);
1586 uint32_t targetlist = extract64(value, 0, 16);
1587 uint32_t irq = extract64(value, 24, 4);
1588 bool irm = extract64(value, 40, 1);
1589 int i;
1591 if (grp == GICV3_G1 && s->gicd_ctlr & GICD_CTLR_DS) {
1592 /* If GICD_CTLR.DS == 1, the Distributor treats Secure Group 1
1593 * interrupts as Group 0 interrupts and must send Secure Group 0
1594 * interrupts to the target CPUs.
1596 grp = GICV3_G0;
1599 trace_gicv3_icc_generate_sgi(gicv3_redist_affid(cs), irq, irm,
1600 aff, targetlist);
1602 for (i = 0; i < s->num_cpu; i++) {
1603 GICv3CPUState *ocs = &s->cpu[i];
1605 if (irm) {
1606 /* IRM == 1 : route to all CPUs except self */
1607 if (cs == ocs) {
1608 continue;
1610 } else {
1611 /* IRM == 0 : route to Aff3.Aff2.Aff1.n for all n in [0..15]
1612 * where the corresponding bit is set in targetlist
1614 int aff0;
1616 if (ocs->gicr_typer >> 40 != aff) {
1617 continue;
1619 aff0 = extract64(ocs->gicr_typer, 32, 8);
1620 if (aff0 > 15 || extract32(targetlist, aff0, 1) == 0) {
1621 continue;
1625 /* The redistributor will check against its own GICR_NSACR as needed */
1626 gicv3_redist_send_sgi(ocs, grp, irq, ns);
1630 static void icc_sgi0r_write(CPUARMState *env, const ARMCPRegInfo *ri,
1631 uint64_t value)
1633 /* Generate Secure Group 0 SGI. */
1634 GICv3CPUState *cs = icc_cs_from_env(env);
1635 bool ns = !arm_is_secure(env);
1637 icc_generate_sgi(env, cs, value, GICV3_G0, ns);
1640 static void icc_sgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri,
1641 uint64_t value)
1643 /* Generate Group 1 SGI for the current Security state */
1644 GICv3CPUState *cs = icc_cs_from_env(env);
1645 int grp;
1646 bool ns = !arm_is_secure(env);
1648 grp = ns ? GICV3_G1NS : GICV3_G1;
1649 icc_generate_sgi(env, cs, value, grp, ns);
1652 static void icc_asgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri,
1653 uint64_t value)
1655 /* Generate Group 1 SGI for the Security state that is not
1656 * the current state
1658 GICv3CPUState *cs = icc_cs_from_env(env);
1659 int grp;
1660 bool ns = !arm_is_secure(env);
1662 grp = ns ? GICV3_G1 : GICV3_G1NS;
1663 icc_generate_sgi(env, cs, value, grp, ns);
1666 static uint64_t icc_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri)
1668 GICv3CPUState *cs = icc_cs_from_env(env);
1669 int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0;
1670 uint64_t value;
1672 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1673 return icv_igrpen_read(env, ri);
1676 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1677 grp = GICV3_G1NS;
1680 value = cs->icc_igrpen[grp];
1681 trace_gicv3_icc_igrpen_read(ri->opc2 & 1 ? 1 : 0,
1682 gicv3_redist_affid(cs), value);
1683 return value;
1686 static void icc_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri,
1687 uint64_t value)
1689 GICv3CPUState *cs = icc_cs_from_env(env);
1690 int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0;
1692 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1693 icv_igrpen_write(env, ri, value);
1694 return;
1697 trace_gicv3_icc_igrpen_write(ri->opc2 & 1 ? 1 : 0,
1698 gicv3_redist_affid(cs), value);
1700 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1701 grp = GICV3_G1NS;
1704 cs->icc_igrpen[grp] = value & ICC_IGRPEN_ENABLE;
1705 gicv3_cpuif_update(cs);
1708 static uint64_t icc_igrpen1_el3_read(CPUARMState *env, const ARMCPRegInfo *ri)
1710 GICv3CPUState *cs = icc_cs_from_env(env);
1711 uint64_t value;
1713 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
1714 value = cs->icc_igrpen[GICV3_G1NS] | (cs->icc_igrpen[GICV3_G1] << 1);
1715 trace_gicv3_icc_igrpen1_el3_read(gicv3_redist_affid(cs), value);
1716 return value;
1719 static void icc_igrpen1_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
1720 uint64_t value)
1722 GICv3CPUState *cs = icc_cs_from_env(env);
1724 trace_gicv3_icc_igrpen1_el3_write(gicv3_redist_affid(cs), value);
1726 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
1727 cs->icc_igrpen[GICV3_G1NS] = extract32(value, 0, 1);
1728 cs->icc_igrpen[GICV3_G1] = extract32(value, 1, 1);
1729 gicv3_cpuif_update(cs);
1732 static uint64_t icc_ctlr_el1_read(CPUARMState *env, const ARMCPRegInfo *ri)
1734 GICv3CPUState *cs = icc_cs_from_env(env);
1735 int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S;
1736 uint64_t value;
1738 if (icv_access(env, HCR_FMO | HCR_IMO)) {
1739 return icv_ctlr_read(env, ri);
1742 value = cs->icc_ctlr_el1[bank];
1743 trace_gicv3_icc_ctlr_read(gicv3_redist_affid(cs), value);
1744 return value;
1747 static void icc_ctlr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
1748 uint64_t value)
1750 GICv3CPUState *cs = icc_cs_from_env(env);
1751 int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S;
1752 uint64_t mask;
1754 if (icv_access(env, HCR_FMO | HCR_IMO)) {
1755 icv_ctlr_write(env, ri, value);
1756 return;
1759 trace_gicv3_icc_ctlr_write(gicv3_redist_affid(cs), value);
1761 /* Only CBPR and EOIMODE can be RW;
1762 * for us PMHE is RAZ/WI (we don't implement 1-of-N interrupts or
1763 * the asseciated priority-based routing of them);
1764 * if EL3 is implemented and GICD_CTLR.DS == 0, then PMHE and CBPR are RO.
1766 if (arm_feature(env, ARM_FEATURE_EL3) &&
1767 ((cs->gic->gicd_ctlr & GICD_CTLR_DS) == 0)) {
1768 mask = ICC_CTLR_EL1_EOIMODE;
1769 } else {
1770 mask = ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE;
1773 cs->icc_ctlr_el1[bank] &= ~mask;
1774 cs->icc_ctlr_el1[bank] |= (value & mask);
1775 gicv3_cpuif_update(cs);
1779 static uint64_t icc_ctlr_el3_read(CPUARMState *env, const ARMCPRegInfo *ri)
1781 GICv3CPUState *cs = icc_cs_from_env(env);
1782 uint64_t value;
1784 value = cs->icc_ctlr_el3;
1785 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) {
1786 value |= ICC_CTLR_EL3_EOIMODE_EL1NS;
1788 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) {
1789 value |= ICC_CTLR_EL3_CBPR_EL1NS;
1791 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) {
1792 value |= ICC_CTLR_EL3_EOIMODE_EL1S;
1794 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) {
1795 value |= ICC_CTLR_EL3_CBPR_EL1S;
1798 trace_gicv3_icc_ctlr_el3_read(gicv3_redist_affid(cs), value);
1799 return value;
1802 static void icc_ctlr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
1803 uint64_t value)
1805 GICv3CPUState *cs = icc_cs_from_env(env);
1806 uint64_t mask;
1808 trace_gicv3_icc_ctlr_el3_write(gicv3_redist_affid(cs), value);
1810 /* *_EL1NS and *_EL1S bits are aliases into the ICC_CTLR_EL1 bits. */
1811 cs->icc_ctlr_el1[GICV3_NS] &= (ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE);
1812 if (value & ICC_CTLR_EL3_EOIMODE_EL1NS) {
1813 cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_EOIMODE;
1815 if (value & ICC_CTLR_EL3_CBPR_EL1NS) {
1816 cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_CBPR;
1819 cs->icc_ctlr_el1[GICV3_S] &= (ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE);
1820 if (value & ICC_CTLR_EL3_EOIMODE_EL1S) {
1821 cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_EOIMODE;
1823 if (value & ICC_CTLR_EL3_CBPR_EL1S) {
1824 cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_CBPR;
1827 /* The only bit stored in icc_ctlr_el3 which is writeable is EOIMODE_EL3: */
1828 mask = ICC_CTLR_EL3_EOIMODE_EL3;
1830 cs->icc_ctlr_el3 &= ~mask;
1831 cs->icc_ctlr_el3 |= (value & mask);
1832 gicv3_cpuif_update(cs);
1835 static CPAccessResult gicv3_irqfiq_access(CPUARMState *env,
1836 const ARMCPRegInfo *ri, bool isread)
1838 CPAccessResult r = CP_ACCESS_OK;
1839 GICv3CPUState *cs = icc_cs_from_env(env);
1840 int el = arm_current_el(env);
1842 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TC) &&
1843 el == 1 && !arm_is_secure_below_el3(env)) {
1844 /* Takes priority over a possible EL3 trap */
1845 return CP_ACCESS_TRAP_EL2;
1848 if ((env->cp15.scr_el3 & (SCR_FIQ | SCR_IRQ)) == (SCR_FIQ | SCR_IRQ)) {
1849 switch (el) {
1850 case 1:
1851 if (arm_is_secure_below_el3(env) ||
1852 ((env->cp15.hcr_el2 & (HCR_IMO | HCR_FMO)) == 0)) {
1853 r = CP_ACCESS_TRAP_EL3;
1855 break;
1856 case 2:
1857 r = CP_ACCESS_TRAP_EL3;
1858 break;
1859 case 3:
1860 if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
1861 r = CP_ACCESS_TRAP_EL3;
1863 break;
1864 default:
1865 g_assert_not_reached();
1869 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
1870 r = CP_ACCESS_TRAP;
1872 return r;
1875 static CPAccessResult gicv3_dir_access(CPUARMState *env,
1876 const ARMCPRegInfo *ri, bool isread)
1878 GICv3CPUState *cs = icc_cs_from_env(env);
1880 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TDIR) &&
1881 arm_current_el(env) == 1 && !arm_is_secure_below_el3(env)) {
1882 /* Takes priority over a possible EL3 trap */
1883 return CP_ACCESS_TRAP_EL2;
1886 return gicv3_irqfiq_access(env, ri, isread);
1889 static CPAccessResult gicv3_sgi_access(CPUARMState *env,
1890 const ARMCPRegInfo *ri, bool isread)
1892 if ((env->cp15.hcr_el2 & (HCR_IMO | HCR_FMO)) &&
1893 arm_current_el(env) == 1 && !arm_is_secure_below_el3(env)) {
1894 /* Takes priority over a possible EL3 trap */
1895 return CP_ACCESS_TRAP_EL2;
1898 return gicv3_irqfiq_access(env, ri, isread);
1901 static CPAccessResult gicv3_fiq_access(CPUARMState *env,
1902 const ARMCPRegInfo *ri, bool isread)
1904 CPAccessResult r = CP_ACCESS_OK;
1905 GICv3CPUState *cs = icc_cs_from_env(env);
1906 int el = arm_current_el(env);
1908 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL0) &&
1909 el == 1 && !arm_is_secure_below_el3(env)) {
1910 /* Takes priority over a possible EL3 trap */
1911 return CP_ACCESS_TRAP_EL2;
1914 if (env->cp15.scr_el3 & SCR_FIQ) {
1915 switch (el) {
1916 case 1:
1917 if (arm_is_secure_below_el3(env) ||
1918 ((env->cp15.hcr_el2 & HCR_FMO) == 0)) {
1919 r = CP_ACCESS_TRAP_EL3;
1921 break;
1922 case 2:
1923 r = CP_ACCESS_TRAP_EL3;
1924 break;
1925 case 3:
1926 if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
1927 r = CP_ACCESS_TRAP_EL3;
1929 break;
1930 default:
1931 g_assert_not_reached();
1935 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
1936 r = CP_ACCESS_TRAP;
1938 return r;
1941 static CPAccessResult gicv3_irq_access(CPUARMState *env,
1942 const ARMCPRegInfo *ri, bool isread)
1944 CPAccessResult r = CP_ACCESS_OK;
1945 GICv3CPUState *cs = icc_cs_from_env(env);
1946 int el = arm_current_el(env);
1948 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL1) &&
1949 el == 1 && !arm_is_secure_below_el3(env)) {
1950 /* Takes priority over a possible EL3 trap */
1951 return CP_ACCESS_TRAP_EL2;
1954 if (env->cp15.scr_el3 & SCR_IRQ) {
1955 switch (el) {
1956 case 1:
1957 if (arm_is_secure_below_el3(env) ||
1958 ((env->cp15.hcr_el2 & HCR_IMO) == 0)) {
1959 r = CP_ACCESS_TRAP_EL3;
1961 break;
1962 case 2:
1963 r = CP_ACCESS_TRAP_EL3;
1964 break;
1965 case 3:
1966 if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
1967 r = CP_ACCESS_TRAP_EL3;
1969 break;
1970 default:
1971 g_assert_not_reached();
1975 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
1976 r = CP_ACCESS_TRAP;
1978 return r;
1981 static void icc_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1983 GICv3CPUState *cs = icc_cs_from_env(env);
1985 cs->icc_ctlr_el1[GICV3_S] = ICC_CTLR_EL1_A3V |
1986 (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
1987 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT);
1988 cs->icc_ctlr_el1[GICV3_NS] = ICC_CTLR_EL1_A3V |
1989 (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
1990 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT);
1991 cs->icc_pmr_el1 = 0;
1992 cs->icc_bpr[GICV3_G0] = GIC_MIN_BPR;
1993 cs->icc_bpr[GICV3_G1] = GIC_MIN_BPR;
1994 if (arm_feature(env, ARM_FEATURE_EL3)) {
1995 cs->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR_NS;
1996 } else {
1997 cs->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR;
1999 memset(cs->icc_apr, 0, sizeof(cs->icc_apr));
2000 memset(cs->icc_igrpen, 0, sizeof(cs->icc_igrpen));
2001 cs->icc_ctlr_el3 = ICC_CTLR_EL3_NDS | ICC_CTLR_EL3_A3V |
2002 (1 << ICC_CTLR_EL3_IDBITS_SHIFT) |
2003 (7 << ICC_CTLR_EL3_PRIBITS_SHIFT);
2005 memset(cs->ich_apr, 0, sizeof(cs->ich_apr));
2006 cs->ich_hcr_el2 = 0;
2007 memset(cs->ich_lr_el2, 0, sizeof(cs->ich_lr_el2));
2008 cs->ich_vmcr_el2 = ICH_VMCR_EL2_VFIQEN |
2009 (icv_min_vbpr(cs) << ICH_VMCR_EL2_VBPR1_SHIFT) |
2010 (icv_min_vbpr(cs) << ICH_VMCR_EL2_VBPR0_SHIFT);
2013 static const ARMCPRegInfo gicv3_cpuif_reginfo[] = {
2014 { .name = "ICC_PMR_EL1", .state = ARM_CP_STATE_BOTH,
2015 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 6, .opc2 = 0,
2016 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2017 .access = PL1_RW, .accessfn = gicv3_irqfiq_access,
2018 .readfn = icc_pmr_read,
2019 .writefn = icc_pmr_write,
2020 /* We hang the whole cpu interface reset routine off here
2021 * rather than parcelling it out into one little function
2022 * per register
2024 .resetfn = icc_reset,
2026 { .name = "ICC_IAR0_EL1", .state = ARM_CP_STATE_BOTH,
2027 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 0,
2028 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2029 .access = PL1_R, .accessfn = gicv3_fiq_access,
2030 .readfn = icc_iar0_read,
2032 { .name = "ICC_EOIR0_EL1", .state = ARM_CP_STATE_BOTH,
2033 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 1,
2034 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2035 .access = PL1_W, .accessfn = gicv3_fiq_access,
2036 .writefn = icc_eoir_write,
2038 { .name = "ICC_HPPIR0_EL1", .state = ARM_CP_STATE_BOTH,
2039 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 2,
2040 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2041 .access = PL1_R, .accessfn = gicv3_fiq_access,
2042 .readfn = icc_hppir0_read,
2044 { .name = "ICC_BPR0_EL1", .state = ARM_CP_STATE_BOTH,
2045 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 3,
2046 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2047 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2048 .readfn = icc_bpr_read,
2049 .writefn = icc_bpr_write,
2051 { .name = "ICC_AP0R0_EL1", .state = ARM_CP_STATE_BOTH,
2052 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 4,
2053 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2054 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2055 .readfn = icc_ap_read,
2056 .writefn = icc_ap_write,
2058 { .name = "ICC_AP0R1_EL1", .state = ARM_CP_STATE_BOTH,
2059 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 5,
2060 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2061 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2062 .readfn = icc_ap_read,
2063 .writefn = icc_ap_write,
2065 { .name = "ICC_AP0R2_EL1", .state = ARM_CP_STATE_BOTH,
2066 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 6,
2067 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2068 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2069 .readfn = icc_ap_read,
2070 .writefn = icc_ap_write,
2072 { .name = "ICC_AP0R3_EL1", .state = ARM_CP_STATE_BOTH,
2073 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 7,
2074 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2075 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2076 .readfn = icc_ap_read,
2077 .writefn = icc_ap_write,
2079 /* All the ICC_AP1R*_EL1 registers are banked */
2080 { .name = "ICC_AP1R0_EL1", .state = ARM_CP_STATE_BOTH,
2081 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 0,
2082 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2083 .access = PL1_RW, .accessfn = gicv3_irq_access,
2084 .readfn = icc_ap_read,
2085 .writefn = icc_ap_write,
2087 { .name = "ICC_AP1R1_EL1", .state = ARM_CP_STATE_BOTH,
2088 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 1,
2089 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2090 .access = PL1_RW, .accessfn = gicv3_irq_access,
2091 .readfn = icc_ap_read,
2092 .writefn = icc_ap_write,
2094 { .name = "ICC_AP1R2_EL1", .state = ARM_CP_STATE_BOTH,
2095 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 2,
2096 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2097 .access = PL1_RW, .accessfn = gicv3_irq_access,
2098 .readfn = icc_ap_read,
2099 .writefn = icc_ap_write,
2101 { .name = "ICC_AP1R3_EL1", .state = ARM_CP_STATE_BOTH,
2102 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 3,
2103 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2104 .access = PL1_RW, .accessfn = gicv3_irq_access,
2105 .readfn = icc_ap_read,
2106 .writefn = icc_ap_write,
2108 { .name = "ICC_DIR_EL1", .state = ARM_CP_STATE_BOTH,
2109 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 1,
2110 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2111 .access = PL1_W, .accessfn = gicv3_dir_access,
2112 .writefn = icc_dir_write,
2114 { .name = "ICC_RPR_EL1", .state = ARM_CP_STATE_BOTH,
2115 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 3,
2116 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2117 .access = PL1_R, .accessfn = gicv3_irqfiq_access,
2118 .readfn = icc_rpr_read,
2120 { .name = "ICC_SGI1R_EL1", .state = ARM_CP_STATE_AA64,
2121 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 5,
2122 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2123 .access = PL1_W, .accessfn = gicv3_sgi_access,
2124 .writefn = icc_sgi1r_write,
2126 { .name = "ICC_SGI1R",
2127 .cp = 15, .opc1 = 0, .crm = 12,
2128 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
2129 .access = PL1_W, .accessfn = gicv3_sgi_access,
2130 .writefn = icc_sgi1r_write,
2132 { .name = "ICC_ASGI1R_EL1", .state = ARM_CP_STATE_AA64,
2133 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 6,
2134 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2135 .access = PL1_W, .accessfn = gicv3_sgi_access,
2136 .writefn = icc_asgi1r_write,
2138 { .name = "ICC_ASGI1R",
2139 .cp = 15, .opc1 = 1, .crm = 12,
2140 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
2141 .access = PL1_W, .accessfn = gicv3_sgi_access,
2142 .writefn = icc_asgi1r_write,
2144 { .name = "ICC_SGI0R_EL1", .state = ARM_CP_STATE_AA64,
2145 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 7,
2146 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2147 .access = PL1_W, .accessfn = gicv3_sgi_access,
2148 .writefn = icc_sgi0r_write,
2150 { .name = "ICC_SGI0R",
2151 .cp = 15, .opc1 = 2, .crm = 12,
2152 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
2153 .access = PL1_W, .accessfn = gicv3_sgi_access,
2154 .writefn = icc_sgi0r_write,
2156 { .name = "ICC_IAR1_EL1", .state = ARM_CP_STATE_BOTH,
2157 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 0,
2158 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2159 .access = PL1_R, .accessfn = gicv3_irq_access,
2160 .readfn = icc_iar1_read,
2162 { .name = "ICC_EOIR1_EL1", .state = ARM_CP_STATE_BOTH,
2163 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 1,
2164 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2165 .access = PL1_W, .accessfn = gicv3_irq_access,
2166 .writefn = icc_eoir_write,
2168 { .name = "ICC_HPPIR1_EL1", .state = ARM_CP_STATE_BOTH,
2169 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 2,
2170 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2171 .access = PL1_R, .accessfn = gicv3_irq_access,
2172 .readfn = icc_hppir1_read,
2174 /* This register is banked */
2175 { .name = "ICC_BPR1_EL1", .state = ARM_CP_STATE_BOTH,
2176 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 3,
2177 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2178 .access = PL1_RW, .accessfn = gicv3_irq_access,
2179 .readfn = icc_bpr_read,
2180 .writefn = icc_bpr_write,
2182 /* This register is banked */
2183 { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH,
2184 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4,
2185 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2186 .access = PL1_RW, .accessfn = gicv3_irqfiq_access,
2187 .readfn = icc_ctlr_el1_read,
2188 .writefn = icc_ctlr_el1_write,
2190 { .name = "ICC_SRE_EL1", .state = ARM_CP_STATE_BOTH,
2191 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 5,
2192 .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2193 .access = PL1_RW,
2194 /* We don't support IRQ/FIQ bypass and system registers are
2195 * always enabled, so all our bits are RAZ/WI or RAO/WI.
2196 * This register is banked but since it's constant we don't
2197 * need to do anything special.
2199 .resetvalue = 0x7,
2201 { .name = "ICC_IGRPEN0_EL1", .state = ARM_CP_STATE_BOTH,
2202 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 6,
2203 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2204 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2205 .readfn = icc_igrpen_read,
2206 .writefn = icc_igrpen_write,
2208 /* This register is banked */
2209 { .name = "ICC_IGRPEN1_EL1", .state = ARM_CP_STATE_BOTH,
2210 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 7,
2211 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2212 .access = PL1_RW, .accessfn = gicv3_irq_access,
2213 .readfn = icc_igrpen_read,
2214 .writefn = icc_igrpen_write,
2216 { .name = "ICC_SRE_EL2", .state = ARM_CP_STATE_BOTH,
2217 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 5,
2218 .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2219 .access = PL2_RW,
2220 /* We don't support IRQ/FIQ bypass and system registers are
2221 * always enabled, so all our bits are RAZ/WI or RAO/WI.
2223 .resetvalue = 0xf,
2225 { .name = "ICC_CTLR_EL3", .state = ARM_CP_STATE_BOTH,
2226 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 4,
2227 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2228 .access = PL3_RW,
2229 .readfn = icc_ctlr_el3_read,
2230 .writefn = icc_ctlr_el3_write,
2232 { .name = "ICC_SRE_EL3", .state = ARM_CP_STATE_BOTH,
2233 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 5,
2234 .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2235 .access = PL3_RW,
2236 /* We don't support IRQ/FIQ bypass and system registers are
2237 * always enabled, so all our bits are RAZ/WI or RAO/WI.
2239 .resetvalue = 0xf,
2241 { .name = "ICC_IGRPEN1_EL3", .state = ARM_CP_STATE_BOTH,
2242 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 7,
2243 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2244 .access = PL3_RW,
2245 .readfn = icc_igrpen1_el3_read,
2246 .writefn = icc_igrpen1_el3_write,
2248 REGINFO_SENTINEL
2251 static uint64_t ich_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2253 GICv3CPUState *cs = icc_cs_from_env(env);
2254 int regno = ri->opc2 & 3;
2255 int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1NS;
2256 uint64_t value;
2258 value = cs->ich_apr[grp][regno];
2259 trace_gicv3_ich_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
2260 return value;
2263 static void ich_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2264 uint64_t value)
2266 GICv3CPUState *cs = icc_cs_from_env(env);
2267 int regno = ri->opc2 & 3;
2268 int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1NS;
2270 trace_gicv3_ich_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
2272 cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU;
2273 gicv3_cpuif_virt_update(cs);
2276 static uint64_t ich_hcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2278 GICv3CPUState *cs = icc_cs_from_env(env);
2279 uint64_t value = cs->ich_hcr_el2;
2281 trace_gicv3_ich_hcr_read(gicv3_redist_affid(cs), value);
2282 return value;
2285 static void ich_hcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2286 uint64_t value)
2288 GICv3CPUState *cs = icc_cs_from_env(env);
2290 trace_gicv3_ich_hcr_write(gicv3_redist_affid(cs), value);
2292 value &= ICH_HCR_EL2_EN | ICH_HCR_EL2_UIE | ICH_HCR_EL2_LRENPIE |
2293 ICH_HCR_EL2_NPIE | ICH_HCR_EL2_VGRP0EIE | ICH_HCR_EL2_VGRP0DIE |
2294 ICH_HCR_EL2_VGRP1EIE | ICH_HCR_EL2_VGRP1DIE | ICH_HCR_EL2_TC |
2295 ICH_HCR_EL2_TALL0 | ICH_HCR_EL2_TALL1 | ICH_HCR_EL2_TSEI |
2296 ICH_HCR_EL2_TDIR | ICH_HCR_EL2_EOICOUNT_MASK;
2298 cs->ich_hcr_el2 = value;
2299 gicv3_cpuif_virt_update(cs);
2302 static uint64_t ich_vmcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2304 GICv3CPUState *cs = icc_cs_from_env(env);
2305 uint64_t value = cs->ich_vmcr_el2;
2307 trace_gicv3_ich_vmcr_read(gicv3_redist_affid(cs), value);
2308 return value;
2311 static void ich_vmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2312 uint64_t value)
2314 GICv3CPUState *cs = icc_cs_from_env(env);
2316 trace_gicv3_ich_vmcr_write(gicv3_redist_affid(cs), value);
2318 value &= ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1 | ICH_VMCR_EL2_VCBPR |
2319 ICH_VMCR_EL2_VEOIM | ICH_VMCR_EL2_VBPR1_MASK |
2320 ICH_VMCR_EL2_VBPR0_MASK | ICH_VMCR_EL2_VPMR_MASK;
2321 value |= ICH_VMCR_EL2_VFIQEN;
2323 cs->ich_vmcr_el2 = value;
2324 /* Enforce "writing BPRs to less than minimum sets them to the minimum"
2325 * by reading and writing back the fields.
2327 write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G0));
2328 write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G1));
2330 gicv3_cpuif_virt_update(cs);
2333 static uint64_t ich_lr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2335 GICv3CPUState *cs = icc_cs_from_env(env);
2336 int regno = ri->opc2 | ((ri->crm & 1) << 3);
2337 uint64_t value;
2339 /* This read function handles all of:
2340 * 64-bit reads of the whole LR
2341 * 32-bit reads of the low half of the LR
2342 * 32-bit reads of the high half of the LR
2344 if (ri->state == ARM_CP_STATE_AA32) {
2345 if (ri->crm >= 14) {
2346 value = extract64(cs->ich_lr_el2[regno], 32, 32);
2347 trace_gicv3_ich_lrc_read(regno, gicv3_redist_affid(cs), value);
2348 } else {
2349 value = extract64(cs->ich_lr_el2[regno], 0, 32);
2350 trace_gicv3_ich_lr32_read(regno, gicv3_redist_affid(cs), value);
2352 } else {
2353 value = cs->ich_lr_el2[regno];
2354 trace_gicv3_ich_lr_read(regno, gicv3_redist_affid(cs), value);
2357 return value;
2360 static void ich_lr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2361 uint64_t value)
2363 GICv3CPUState *cs = icc_cs_from_env(env);
2364 int regno = ri->opc2 | ((ri->crm & 1) << 3);
2366 /* This write function handles all of:
2367 * 64-bit writes to the whole LR
2368 * 32-bit writes to the low half of the LR
2369 * 32-bit writes to the high half of the LR
2371 if (ri->state == ARM_CP_STATE_AA32) {
2372 if (ri->crm >= 14) {
2373 trace_gicv3_ich_lrc_write(regno, gicv3_redist_affid(cs), value);
2374 value = deposit64(cs->ich_lr_el2[regno], 32, 32, value);
2375 } else {
2376 trace_gicv3_ich_lr32_write(regno, gicv3_redist_affid(cs), value);
2377 value = deposit64(cs->ich_lr_el2[regno], 0, 32, value);
2379 } else {
2380 trace_gicv3_ich_lr_write(regno, gicv3_redist_affid(cs), value);
2383 /* Enforce RES0 bits in priority field */
2384 if (cs->vpribits < 8) {
2385 value = deposit64(value, ICH_LR_EL2_PRIORITY_SHIFT,
2386 8 - cs->vpribits, 0);
2389 cs->ich_lr_el2[regno] = value;
2390 gicv3_cpuif_virt_update(cs);
2393 static uint64_t ich_vtr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2395 GICv3CPUState *cs = icc_cs_from_env(env);
2396 uint64_t value;
2398 value = ((cs->num_list_regs - 1) << ICH_VTR_EL2_LISTREGS_SHIFT)
2399 | ICH_VTR_EL2_TDS | ICH_VTR_EL2_NV4 | ICH_VTR_EL2_A3V
2400 | (1 << ICH_VTR_EL2_IDBITS_SHIFT)
2401 | ((cs->vprebits - 1) << ICH_VTR_EL2_PREBITS_SHIFT)
2402 | ((cs->vpribits - 1) << ICH_VTR_EL2_PRIBITS_SHIFT);
2404 trace_gicv3_ich_vtr_read(gicv3_redist_affid(cs), value);
2405 return value;
2408 static uint64_t ich_misr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2410 GICv3CPUState *cs = icc_cs_from_env(env);
2411 uint64_t value = maintenance_interrupt_state(cs);
2413 trace_gicv3_ich_misr_read(gicv3_redist_affid(cs), value);
2414 return value;
2417 static uint64_t ich_eisr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2419 GICv3CPUState *cs = icc_cs_from_env(env);
2420 uint64_t value = eoi_maintenance_interrupt_state(cs, NULL);
2422 trace_gicv3_ich_eisr_read(gicv3_redist_affid(cs), value);
2423 return value;
2426 static uint64_t ich_elrsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2428 GICv3CPUState *cs = icc_cs_from_env(env);
2429 uint64_t value = 0;
2430 int i;
2432 for (i = 0; i < cs->num_list_regs; i++) {
2433 uint64_t lr = cs->ich_lr_el2[i];
2435 if ((lr & ICH_LR_EL2_STATE_MASK) == 0 &&
2436 ((lr & ICH_LR_EL2_HW) != 0 || (lr & ICH_LR_EL2_EOI) == 0)) {
2437 value |= (1 << i);
2441 trace_gicv3_ich_elrsr_read(gicv3_redist_affid(cs), value);
2442 return value;
2445 static const ARMCPRegInfo gicv3_cpuif_hcr_reginfo[] = {
2446 { .name = "ICH_AP0R0_EL2", .state = ARM_CP_STATE_BOTH,
2447 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 0,
2448 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2449 .access = PL2_RW,
2450 .readfn = ich_ap_read,
2451 .writefn = ich_ap_write,
2453 { .name = "ICH_AP1R0_EL2", .state = ARM_CP_STATE_BOTH,
2454 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 0,
2455 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2456 .access = PL2_RW,
2457 .readfn = ich_ap_read,
2458 .writefn = ich_ap_write,
2460 { .name = "ICH_HCR_EL2", .state = ARM_CP_STATE_BOTH,
2461 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 0,
2462 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2463 .access = PL2_RW,
2464 .readfn = ich_hcr_read,
2465 .writefn = ich_hcr_write,
2467 { .name = "ICH_VTR_EL2", .state = ARM_CP_STATE_BOTH,
2468 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 1,
2469 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2470 .access = PL2_R,
2471 .readfn = ich_vtr_read,
2473 { .name = "ICH_MISR_EL2", .state = ARM_CP_STATE_BOTH,
2474 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 2,
2475 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2476 .access = PL2_R,
2477 .readfn = ich_misr_read,
2479 { .name = "ICH_EISR_EL2", .state = ARM_CP_STATE_BOTH,
2480 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 3,
2481 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2482 .access = PL2_R,
2483 .readfn = ich_eisr_read,
2485 { .name = "ICH_ELRSR_EL2", .state = ARM_CP_STATE_BOTH,
2486 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 5,
2487 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2488 .access = PL2_R,
2489 .readfn = ich_elrsr_read,
2491 { .name = "ICH_VMCR_EL2", .state = ARM_CP_STATE_BOTH,
2492 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 7,
2493 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2494 .access = PL2_RW,
2495 .readfn = ich_vmcr_read,
2496 .writefn = ich_vmcr_write,
2498 REGINFO_SENTINEL
2501 static const ARMCPRegInfo gicv3_cpuif_ich_apxr1_reginfo[] = {
2502 { .name = "ICH_AP0R1_EL2", .state = ARM_CP_STATE_BOTH,
2503 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 1,
2504 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2505 .access = PL2_RW,
2506 .readfn = ich_ap_read,
2507 .writefn = ich_ap_write,
2509 { .name = "ICH_AP1R1_EL2", .state = ARM_CP_STATE_BOTH,
2510 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 1,
2511 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2512 .access = PL2_RW,
2513 .readfn = ich_ap_read,
2514 .writefn = ich_ap_write,
2516 REGINFO_SENTINEL
2519 static const ARMCPRegInfo gicv3_cpuif_ich_apxr23_reginfo[] = {
2520 { .name = "ICH_AP0R2_EL2", .state = ARM_CP_STATE_BOTH,
2521 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 2,
2522 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2523 .access = PL2_RW,
2524 .readfn = ich_ap_read,
2525 .writefn = ich_ap_write,
2527 { .name = "ICH_AP0R3_EL2", .state = ARM_CP_STATE_BOTH,
2528 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 3,
2529 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2530 .access = PL2_RW,
2531 .readfn = ich_ap_read,
2532 .writefn = ich_ap_write,
2534 { .name = "ICH_AP1R2_EL2", .state = ARM_CP_STATE_BOTH,
2535 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 2,
2536 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2537 .access = PL2_RW,
2538 .readfn = ich_ap_read,
2539 .writefn = ich_ap_write,
2541 { .name = "ICH_AP1R3_EL2", .state = ARM_CP_STATE_BOTH,
2542 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 3,
2543 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2544 .access = PL2_RW,
2545 .readfn = ich_ap_read,
2546 .writefn = ich_ap_write,
2548 REGINFO_SENTINEL
2551 static void gicv3_cpuif_el_change_hook(ARMCPU *cpu, void *opaque)
2553 GICv3CPUState *cs = opaque;
2555 gicv3_cpuif_update(cs);
2558 void gicv3_init_cpuif(GICv3State *s)
2560 /* Called from the GICv3 realize function; register our system
2561 * registers with the CPU
2563 int i;
2565 for (i = 0; i < s->num_cpu; i++) {
2566 ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i));
2567 GICv3CPUState *cs = &s->cpu[i];
2569 /* Note that we can't just use the GICv3CPUState as an opaque pointer
2570 * in define_arm_cp_regs_with_opaque(), because when we're called back
2571 * it might be with code translated by CPU 0 but run by CPU 1, in
2572 * which case we'd get the wrong value.
2573 * So instead we define the regs with no ri->opaque info, and
2574 * get back to the GICv3CPUState from the ARMCPU by reading back
2575 * the opaque pointer from the el_change_hook, which we're going
2576 * to need to register anyway.
2578 define_arm_cp_regs(cpu, gicv3_cpuif_reginfo);
2579 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)
2580 && cpu->gic_num_lrs) {
2581 int j;
2583 cs->maintenance_irq = cpu->gicv3_maintenance_interrupt;
2585 cs->num_list_regs = cpu->gic_num_lrs;
2586 cs->vpribits = cpu->gic_vpribits;
2587 cs->vprebits = cpu->gic_vprebits;
2589 /* Check against architectural constraints: getting these
2590 * wrong would be a bug in the CPU code defining these,
2591 * and the implementation relies on them holding.
2593 g_assert(cs->vprebits <= cs->vpribits);
2594 g_assert(cs->vprebits >= 5 && cs->vprebits <= 7);
2595 g_assert(cs->vpribits >= 5 && cs->vpribits <= 8);
2597 define_arm_cp_regs(cpu, gicv3_cpuif_hcr_reginfo);
2599 for (j = 0; j < cs->num_list_regs; j++) {
2600 /* Note that the AArch64 LRs are 64-bit; the AArch32 LRs
2601 * are split into two cp15 regs, LR (the low part, with the
2602 * same encoding as the AArch64 LR) and LRC (the high part).
2604 ARMCPRegInfo lr_regset[] = {
2605 { .name = "ICH_LRn_EL2", .state = ARM_CP_STATE_BOTH,
2606 .opc0 = 3, .opc1 = 4, .crn = 12,
2607 .crm = 12 + (j >> 3), .opc2 = j & 7,
2608 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2609 .access = PL2_RW,
2610 .readfn = ich_lr_read,
2611 .writefn = ich_lr_write,
2613 { .name = "ICH_LRCn_EL2", .state = ARM_CP_STATE_AA32,
2614 .cp = 15, .opc1 = 4, .crn = 12,
2615 .crm = 14 + (j >> 3), .opc2 = j & 7,
2616 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2617 .access = PL2_RW,
2618 .readfn = ich_lr_read,
2619 .writefn = ich_lr_write,
2621 REGINFO_SENTINEL
2623 define_arm_cp_regs(cpu, lr_regset);
2625 if (cs->vprebits >= 6) {
2626 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr1_reginfo);
2628 if (cs->vprebits == 7) {
2629 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr23_reginfo);
2632 arm_register_el_change_hook(cpu, gicv3_cpuif_el_change_hook, cs);