2 * QEMU MC146818 RTC emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 #include "qemu-timer.h"
27 #include "mc146818rtc.h"
34 //#define DEBUG_COALESCED
37 # define CMOS_DPRINTF(format, ...) printf(format, ## __VA_ARGS__)
39 # define CMOS_DPRINTF(format, ...) do { } while (0)
42 #ifdef DEBUG_COALESCED
43 # define DPRINTF_C(format, ...) printf(format, ## __VA_ARGS__)
45 # define DPRINTF_C(format, ...) do { } while (0)
48 #define RTC_REINJECT_ON_ACK_COUNT 20
50 typedef struct RTCState
{
53 uint8_t cmos_data
[128];
61 QEMUTimer
*periodic_timer
;
62 int64_t next_periodic_time
;
64 int64_t next_second_time
;
65 uint16_t irq_reinject_on_ack_count
;
66 uint32_t irq_coalesced
;
68 QEMUTimer
*coalesced_timer
;
69 QEMUTimer
*second_timer
;
70 QEMUTimer
*second_timer2
;
71 Notifier clock_reset_notifier
;
72 LostTickPolicy lost_tick_policy
;
73 Notifier suspend_notifier
;
76 static void rtc_set_time(RTCState
*s
);
77 static void rtc_copy_date(RTCState
*s
);
80 static void rtc_coalesced_timer_update(RTCState
*s
)
82 if (s
->irq_coalesced
== 0) {
83 qemu_del_timer(s
->coalesced_timer
);
85 /* divide each RTC interval to 2 - 8 smaller intervals */
86 int c
= MIN(s
->irq_coalesced
, 7) + 1;
87 int64_t next_clock
= qemu_get_clock_ns(rtc_clock
) +
88 muldiv64(s
->period
/ c
, get_ticks_per_sec(), 32768);
89 qemu_mod_timer(s
->coalesced_timer
, next_clock
);
93 static void rtc_coalesced_timer(void *opaque
)
97 if (s
->irq_coalesced
!= 0) {
98 apic_reset_irq_delivered();
99 s
->cmos_data
[RTC_REG_C
] |= 0xc0;
100 DPRINTF_C("cmos: injecting from timer\n");
101 qemu_irq_raise(s
->irq
);
102 if (apic_get_irq_delivered()) {
104 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
109 rtc_coalesced_timer_update(s
);
113 static void rtc_timer_update(RTCState
*s
, int64_t current_time
)
115 int period_code
, period
;
116 int64_t cur_clock
, next_irq_clock
;
118 period_code
= s
->cmos_data
[RTC_REG_A
] & 0x0f;
120 && ((s
->cmos_data
[RTC_REG_B
] & REG_B_PIE
)
121 || ((s
->cmos_data
[RTC_REG_B
] & REG_B_SQWE
) && s
->sqw_irq
))) {
122 if (period_code
<= 2)
124 /* period in 32 Khz cycles */
125 period
= 1 << (period_code
- 1);
127 if (period
!= s
->period
) {
128 s
->irq_coalesced
= (s
->irq_coalesced
* s
->period
) / period
;
129 DPRINTF_C("cmos: coalesced irqs scaled to %d\n", s
->irq_coalesced
);
133 /* compute 32 khz clock */
134 cur_clock
= muldiv64(current_time
, 32768, get_ticks_per_sec());
135 next_irq_clock
= (cur_clock
& ~(period
- 1)) + period
;
136 s
->next_periodic_time
=
137 muldiv64(next_irq_clock
, get_ticks_per_sec(), 32768) + 1;
138 qemu_mod_timer(s
->periodic_timer
, s
->next_periodic_time
);
141 s
->irq_coalesced
= 0;
143 qemu_del_timer(s
->periodic_timer
);
147 static void rtc_periodic_timer(void *opaque
)
149 RTCState
*s
= opaque
;
151 rtc_timer_update(s
, s
->next_periodic_time
);
152 s
->cmos_data
[RTC_REG_C
] |= REG_C_PF
;
153 if (s
->cmos_data
[RTC_REG_B
] & REG_B_PIE
) {
154 s
->cmos_data
[RTC_REG_C
] |= REG_C_IRQF
;
156 if (s
->lost_tick_policy
== LOST_TICK_SLEW
) {
157 if (s
->irq_reinject_on_ack_count
>= RTC_REINJECT_ON_ACK_COUNT
)
158 s
->irq_reinject_on_ack_count
= 0;
159 apic_reset_irq_delivered();
160 qemu_irq_raise(s
->irq
);
161 if (!apic_get_irq_delivered()) {
163 rtc_coalesced_timer_update(s
);
164 DPRINTF_C("cmos: coalesced irqs increased to %d\n",
169 qemu_irq_raise(s
->irq
);
171 if (s
->cmos_data
[RTC_REG_B
] & REG_B_SQWE
) {
172 /* Not square wave at all but we don't want 2048Hz interrupts!
173 Must be seen as a pulse. */
174 qemu_irq_raise(s
->sqw_irq
);
178 static void cmos_ioport_write(void *opaque
, uint32_t addr
, uint32_t data
)
180 RTCState
*s
= opaque
;
182 if ((addr
& 1) == 0) {
183 s
->cmos_index
= data
& 0x7f;
185 CMOS_DPRINTF("cmos: write index=0x%02x val=0x%02x\n",
186 s
->cmos_index
, data
);
187 switch(s
->cmos_index
) {
188 case RTC_SECONDS_ALARM
:
189 case RTC_MINUTES_ALARM
:
190 case RTC_HOURS_ALARM
:
191 s
->cmos_data
[s
->cmos_index
] = data
;
196 case RTC_DAY_OF_WEEK
:
197 case RTC_DAY_OF_MONTH
:
200 s
->cmos_data
[s
->cmos_index
] = data
;
201 /* if in set mode, do not update the time */
202 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_SET
)) {
207 /* UIP bit is read only */
208 s
->cmos_data
[RTC_REG_A
] = (data
& ~REG_A_UIP
) |
209 (s
->cmos_data
[RTC_REG_A
] & REG_A_UIP
);
210 rtc_timer_update(s
, qemu_get_clock_ns(rtc_clock
));
213 if (data
& REG_B_SET
) {
214 /* set mode: reset UIP mode */
215 s
->cmos_data
[RTC_REG_A
] &= ~REG_A_UIP
;
218 /* if disabling set mode, update the time */
219 if (s
->cmos_data
[RTC_REG_B
] & REG_B_SET
) {
223 if (((s
->cmos_data
[RTC_REG_B
] ^ data
) & (REG_B_DM
| REG_B_24H
)) &&
224 !(data
& REG_B_SET
)) {
225 /* If the time format has changed and not in set mode,
226 update the registers immediately. */
227 s
->cmos_data
[RTC_REG_B
] = data
;
230 s
->cmos_data
[RTC_REG_B
] = data
;
232 rtc_timer_update(s
, qemu_get_clock_ns(rtc_clock
));
236 /* cannot write to them */
239 s
->cmos_data
[s
->cmos_index
] = data
;
245 static inline int rtc_to_bcd(RTCState
*s
, int a
)
247 if (s
->cmos_data
[RTC_REG_B
] & REG_B_DM
) {
250 return ((a
/ 10) << 4) | (a
% 10);
254 static inline int rtc_from_bcd(RTCState
*s
, int a
)
256 if (s
->cmos_data
[RTC_REG_B
] & REG_B_DM
) {
259 return ((a
>> 4) * 10) + (a
& 0x0f);
263 static void rtc_set_time(RTCState
*s
)
265 struct tm
*tm
= &s
->current_tm
;
267 tm
->tm_sec
= rtc_from_bcd(s
, s
->cmos_data
[RTC_SECONDS
]);
268 tm
->tm_min
= rtc_from_bcd(s
, s
->cmos_data
[RTC_MINUTES
]);
269 tm
->tm_hour
= rtc_from_bcd(s
, s
->cmos_data
[RTC_HOURS
] & 0x7f);
270 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_24H
)) {
272 if (s
->cmos_data
[RTC_HOURS
] & 0x80) {
276 tm
->tm_wday
= rtc_from_bcd(s
, s
->cmos_data
[RTC_DAY_OF_WEEK
]) - 1;
277 tm
->tm_mday
= rtc_from_bcd(s
, s
->cmos_data
[RTC_DAY_OF_MONTH
]);
278 tm
->tm_mon
= rtc_from_bcd(s
, s
->cmos_data
[RTC_MONTH
]) - 1;
279 tm
->tm_year
= rtc_from_bcd(s
, s
->cmos_data
[RTC_YEAR
]) + s
->base_year
- 1900;
281 rtc_change_mon_event(tm
);
284 static void rtc_copy_date(RTCState
*s
)
286 const struct tm
*tm
= &s
->current_tm
;
289 s
->cmos_data
[RTC_SECONDS
] = rtc_to_bcd(s
, tm
->tm_sec
);
290 s
->cmos_data
[RTC_MINUTES
] = rtc_to_bcd(s
, tm
->tm_min
);
291 if (s
->cmos_data
[RTC_REG_B
] & REG_B_24H
) {
293 s
->cmos_data
[RTC_HOURS
] = rtc_to_bcd(s
, tm
->tm_hour
);
296 int h
= (tm
->tm_hour
% 12) ? tm
->tm_hour
% 12 : 12;
297 s
->cmos_data
[RTC_HOURS
] = rtc_to_bcd(s
, h
);
298 if (tm
->tm_hour
>= 12)
299 s
->cmos_data
[RTC_HOURS
] |= 0x80;
301 s
->cmos_data
[RTC_DAY_OF_WEEK
] = rtc_to_bcd(s
, tm
->tm_wday
+ 1);
302 s
->cmos_data
[RTC_DAY_OF_MONTH
] = rtc_to_bcd(s
, tm
->tm_mday
);
303 s
->cmos_data
[RTC_MONTH
] = rtc_to_bcd(s
, tm
->tm_mon
+ 1);
304 year
= (tm
->tm_year
- s
->base_year
) % 100;
307 s
->cmos_data
[RTC_YEAR
] = rtc_to_bcd(s
, year
);
310 /* month is between 0 and 11. */
311 static int get_days_in_month(int month
, int year
)
313 static const int days_tab
[12] = {
314 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
317 if ((unsigned )month
>= 12)
321 if ((year
% 4) == 0 && ((year
% 100) != 0 || (year
% 400) == 0))
327 /* update 'tm' to the next second */
328 static void rtc_next_second(struct tm
*tm
)
333 if ((unsigned)tm
->tm_sec
>= 60) {
336 if ((unsigned)tm
->tm_min
>= 60) {
339 if ((unsigned)tm
->tm_hour
>= 24) {
343 if ((unsigned)tm
->tm_wday
>= 7)
345 days_in_month
= get_days_in_month(tm
->tm_mon
,
348 if (tm
->tm_mday
< 1) {
350 } else if (tm
->tm_mday
> days_in_month
) {
353 if (tm
->tm_mon
>= 12) {
364 static void rtc_update_second(void *opaque
)
366 RTCState
*s
= opaque
;
369 /* if the oscillator is not in normal operation, we do not update */
370 if ((s
->cmos_data
[RTC_REG_A
] & 0x70) != 0x20) {
371 s
->next_second_time
+= get_ticks_per_sec();
372 qemu_mod_timer(s
->second_timer
, s
->next_second_time
);
374 rtc_next_second(&s
->current_tm
);
376 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_SET
)) {
377 /* update in progress bit */
378 s
->cmos_data
[RTC_REG_A
] |= REG_A_UIP
;
380 /* should be 244 us = 8 / 32768 seconds, but currently the
381 timers do not have the necessary resolution. */
382 delay
= (get_ticks_per_sec() * 1) / 100;
385 qemu_mod_timer(s
->second_timer2
,
386 s
->next_second_time
+ delay
);
390 static void rtc_update_second2(void *opaque
)
392 RTCState
*s
= opaque
;
394 if (!(s
->cmos_data
[RTC_REG_B
] & REG_B_SET
)) {
399 if (((s
->cmos_data
[RTC_SECONDS_ALARM
] & 0xc0) == 0xc0 ||
400 rtc_from_bcd(s
, s
->cmos_data
[RTC_SECONDS_ALARM
]) == s
->current_tm
.tm_sec
) &&
401 ((s
->cmos_data
[RTC_MINUTES_ALARM
] & 0xc0) == 0xc0 ||
402 rtc_from_bcd(s
, s
->cmos_data
[RTC_MINUTES_ALARM
]) == s
->current_tm
.tm_min
) &&
403 ((s
->cmos_data
[RTC_HOURS_ALARM
] & 0xc0) == 0xc0 ||
404 rtc_from_bcd(s
, s
->cmos_data
[RTC_HOURS_ALARM
]) == s
->current_tm
.tm_hour
)) {
406 s
->cmos_data
[RTC_REG_C
] |= REG_C_AF
;
407 if (s
->cmos_data
[RTC_REG_B
] & REG_B_AIE
) {
408 qemu_system_wakeup_request(QEMU_WAKEUP_REASON_RTC
);
409 qemu_irq_raise(s
->irq
);
410 s
->cmos_data
[RTC_REG_C
] |= REG_C_IRQF
;
414 /* update ended interrupt */
415 s
->cmos_data
[RTC_REG_C
] |= REG_C_UF
;
416 if (s
->cmos_data
[RTC_REG_B
] & REG_B_UIE
) {
417 s
->cmos_data
[RTC_REG_C
] |= REG_C_IRQF
;
418 qemu_irq_raise(s
->irq
);
421 /* clear update in progress bit */
422 s
->cmos_data
[RTC_REG_A
] &= ~REG_A_UIP
;
424 s
->next_second_time
+= get_ticks_per_sec();
425 qemu_mod_timer(s
->second_timer
, s
->next_second_time
);
428 static uint32_t cmos_ioport_read(void *opaque
, uint32_t addr
)
430 RTCState
*s
= opaque
;
432 if ((addr
& 1) == 0) {
435 switch(s
->cmos_index
) {
439 case RTC_DAY_OF_WEEK
:
440 case RTC_DAY_OF_MONTH
:
443 ret
= s
->cmos_data
[s
->cmos_index
];
446 ret
= s
->cmos_data
[s
->cmos_index
];
449 ret
= s
->cmos_data
[s
->cmos_index
];
450 qemu_irq_lower(s
->irq
);
451 s
->cmos_data
[RTC_REG_C
] = 0x00;
453 if(s
->irq_coalesced
&&
454 (s
->cmos_data
[RTC_REG_B
] & REG_B_PIE
) &&
455 s
->irq_reinject_on_ack_count
< RTC_REINJECT_ON_ACK_COUNT
) {
456 s
->irq_reinject_on_ack_count
++;
457 s
->cmos_data
[RTC_REG_C
] |= REG_C_IRQF
| REG_C_PF
;
458 apic_reset_irq_delivered();
459 DPRINTF_C("cmos: injecting on ack\n");
460 qemu_irq_raise(s
->irq
);
461 if (apic_get_irq_delivered()) {
463 DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
470 ret
= s
->cmos_data
[s
->cmos_index
];
473 CMOS_DPRINTF("cmos: read index=0x%02x val=0x%02x\n",
479 void rtc_set_memory(ISADevice
*dev
, int addr
, int val
)
481 RTCState
*s
= DO_UPCAST(RTCState
, dev
, dev
);
482 if (addr
>= 0 && addr
<= 127)
483 s
->cmos_data
[addr
] = val
;
486 void rtc_set_date(ISADevice
*dev
, const struct tm
*tm
)
488 RTCState
*s
= DO_UPCAST(RTCState
, dev
, dev
);
493 /* PC cmos mappings */
494 #define REG_IBM_CENTURY_BYTE 0x32
495 #define REG_IBM_PS2_CENTURY_BYTE 0x37
497 static void rtc_set_date_from_host(ISADevice
*dev
)
499 RTCState
*s
= DO_UPCAST(RTCState
, dev
, dev
);
503 /* set the CMOS date */
504 qemu_get_timedate(&tm
, 0);
505 rtc_set_date(dev
, &tm
);
507 val
= rtc_to_bcd(s
, (tm
.tm_year
/ 100) + 19);
508 rtc_set_memory(dev
, REG_IBM_CENTURY_BYTE
, val
);
509 rtc_set_memory(dev
, REG_IBM_PS2_CENTURY_BYTE
, val
);
512 static int rtc_post_load(void *opaque
, int version_id
)
515 RTCState
*s
= opaque
;
517 if (version_id
>= 2) {
518 if (s
->lost_tick_policy
== LOST_TICK_SLEW
) {
519 rtc_coalesced_timer_update(s
);
526 static const VMStateDescription vmstate_rtc
= {
527 .name
= "mc146818rtc",
529 .minimum_version_id
= 1,
530 .minimum_version_id_old
= 1,
531 .post_load
= rtc_post_load
,
532 .fields
= (VMStateField
[]) {
533 VMSTATE_BUFFER(cmos_data
, RTCState
),
534 VMSTATE_UINT8(cmos_index
, RTCState
),
535 VMSTATE_INT32(current_tm
.tm_sec
, RTCState
),
536 VMSTATE_INT32(current_tm
.tm_min
, RTCState
),
537 VMSTATE_INT32(current_tm
.tm_hour
, RTCState
),
538 VMSTATE_INT32(current_tm
.tm_wday
, RTCState
),
539 VMSTATE_INT32(current_tm
.tm_mday
, RTCState
),
540 VMSTATE_INT32(current_tm
.tm_mon
, RTCState
),
541 VMSTATE_INT32(current_tm
.tm_year
, RTCState
),
542 VMSTATE_TIMER(periodic_timer
, RTCState
),
543 VMSTATE_INT64(next_periodic_time
, RTCState
),
544 VMSTATE_INT64(next_second_time
, RTCState
),
545 VMSTATE_TIMER(second_timer
, RTCState
),
546 VMSTATE_TIMER(second_timer2
, RTCState
),
547 VMSTATE_UINT32_V(irq_coalesced
, RTCState
, 2),
548 VMSTATE_UINT32_V(period
, RTCState
, 2),
549 VMSTATE_END_OF_LIST()
553 static void rtc_notify_clock_reset(Notifier
*notifier
, void *data
)
555 RTCState
*s
= container_of(notifier
, RTCState
, clock_reset_notifier
);
556 int64_t now
= *(int64_t *)data
;
558 rtc_set_date_from_host(&s
->dev
);
559 s
->next_second_time
= now
+ (get_ticks_per_sec() * 99) / 100;
560 qemu_mod_timer(s
->second_timer2
, s
->next_second_time
);
561 rtc_timer_update(s
, now
);
563 if (s
->lost_tick_policy
== LOST_TICK_SLEW
) {
564 rtc_coalesced_timer_update(s
);
569 /* set CMOS shutdown status register (index 0xF) as S3_resume(0xFE)
570 BIOS will read it and start S3 resume at POST Entry */
571 static void rtc_notify_suspend(Notifier
*notifier
, void *data
)
573 RTCState
*s
= container_of(notifier
, RTCState
, suspend_notifier
);
574 rtc_set_memory(&s
->dev
, 0xF, 0xFE);
577 static void rtc_reset(void *opaque
)
579 RTCState
*s
= opaque
;
581 s
->cmos_data
[RTC_REG_B
] &= ~(REG_B_PIE
| REG_B_AIE
| REG_B_SQWE
);
582 s
->cmos_data
[RTC_REG_C
] &= ~(REG_C_UF
| REG_C_IRQF
| REG_C_PF
| REG_C_AF
);
584 qemu_irq_lower(s
->irq
);
587 if (s
->lost_tick_policy
== LOST_TICK_SLEW
) {
588 s
->irq_coalesced
= 0;
593 static const MemoryRegionPortio cmos_portio
[] = {
594 {0, 2, 1, .read
= cmos_ioport_read
, .write
= cmos_ioport_write
},
595 PORTIO_END_OF_LIST(),
598 static const MemoryRegionOps cmos_ops
= {
599 .old_portio
= cmos_portio
602 static void rtc_get_date(Object
*obj
, Visitor
*v
, void *opaque
,
603 const char *name
, Error
**errp
)
605 ISADevice
*isa
= ISA_DEVICE(obj
);
606 RTCState
*s
= DO_UPCAST(RTCState
, dev
, isa
);
608 visit_start_struct(v
, NULL
, "struct tm", name
, 0, errp
);
609 visit_type_int32(v
, &s
->current_tm
.tm_year
, "tm_year", errp
);
610 visit_type_int32(v
, &s
->current_tm
.tm_mon
, "tm_mon", errp
);
611 visit_type_int32(v
, &s
->current_tm
.tm_mday
, "tm_mday", errp
);
612 visit_type_int32(v
, &s
->current_tm
.tm_hour
, "tm_hour", errp
);
613 visit_type_int32(v
, &s
->current_tm
.tm_min
, "tm_min", errp
);
614 visit_type_int32(v
, &s
->current_tm
.tm_sec
, "tm_sec", errp
);
615 visit_end_struct(v
, errp
);
618 static int rtc_initfn(ISADevice
*dev
)
620 RTCState
*s
= DO_UPCAST(RTCState
, dev
, dev
);
623 s
->cmos_data
[RTC_REG_A
] = 0x26;
624 s
->cmos_data
[RTC_REG_B
] = 0x02;
625 s
->cmos_data
[RTC_REG_C
] = 0x00;
626 s
->cmos_data
[RTC_REG_D
] = 0x80;
628 rtc_set_date_from_host(dev
);
631 switch (s
->lost_tick_policy
) {
634 qemu_new_timer_ns(rtc_clock
, rtc_coalesced_timer
, s
);
636 case LOST_TICK_DISCARD
:
643 s
->periodic_timer
= qemu_new_timer_ns(rtc_clock
, rtc_periodic_timer
, s
);
644 s
->second_timer
= qemu_new_timer_ns(rtc_clock
, rtc_update_second
, s
);
645 s
->second_timer2
= qemu_new_timer_ns(rtc_clock
, rtc_update_second2
, s
);
647 s
->clock_reset_notifier
.notify
= rtc_notify_clock_reset
;
648 qemu_register_clock_reset_notifier(rtc_clock
, &s
->clock_reset_notifier
);
650 s
->suspend_notifier
.notify
= rtc_notify_suspend
;
651 qemu_register_suspend_notifier(&s
->suspend_notifier
);
653 s
->next_second_time
=
654 qemu_get_clock_ns(rtc_clock
) + (get_ticks_per_sec() * 99) / 100;
655 qemu_mod_timer(s
->second_timer2
, s
->next_second_time
);
657 memory_region_init_io(&s
->io
, &cmos_ops
, s
, "rtc", 2);
658 isa_register_ioport(dev
, &s
->io
, base
);
660 qdev_set_legacy_instance_id(&dev
->qdev
, base
, 2);
661 qemu_register_reset(rtc_reset
, s
);
663 object_property_add(OBJECT(s
), "date", "struct tm",
664 rtc_get_date
, NULL
, NULL
, s
, NULL
);
669 ISADevice
*rtc_init(ISABus
*bus
, int base_year
, qemu_irq intercept_irq
)
674 dev
= isa_create(bus
, "mc146818rtc");
675 s
= DO_UPCAST(RTCState
, dev
, dev
);
676 qdev_prop_set_int32(&dev
->qdev
, "base_year", base_year
);
677 qdev_init_nofail(&dev
->qdev
);
679 s
->irq
= intercept_irq
;
681 isa_init_irq(dev
, &s
->irq
, RTC_ISA_IRQ
);
686 static Property mc146818rtc_properties
[] = {
687 DEFINE_PROP_INT32("base_year", RTCState
, base_year
, 1980),
688 DEFINE_PROP_LOSTTICKPOLICY("lost_tick_policy", RTCState
,
689 lost_tick_policy
, LOST_TICK_DISCARD
),
690 DEFINE_PROP_END_OF_LIST(),
693 static void rtc_class_initfn(ObjectClass
*klass
, void *data
)
695 DeviceClass
*dc
= DEVICE_CLASS(klass
);
696 ISADeviceClass
*ic
= ISA_DEVICE_CLASS(klass
);
697 ic
->init
= rtc_initfn
;
699 dc
->vmsd
= &vmstate_rtc
;
700 dc
->props
= mc146818rtc_properties
;
703 static TypeInfo mc146818rtc_info
= {
704 .name
= "mc146818rtc",
705 .parent
= TYPE_ISA_DEVICE
,
706 .instance_size
= sizeof(RTCState
),
707 .class_init
= rtc_class_initfn
,
710 static void mc146818rtc_register_types(void)
712 type_register_static(&mc146818rtc_info
);
715 type_init(mc146818rtc_register_types
)