migration/vmstate: document VMStateFlags
[qemu/ar7.git] / hw / audio / fmopl.c
blob731110fe86ab1a167115d175332fb8eedddcd6fd
1 /*
2 **
3 ** File: fmopl.c -- software implementation of FM sound generator
4 **
5 ** Copyright (C) 1999,2000 Tatsuyuki Satoh , MultiArcadeMachineEmurator development
6 **
7 ** Version 0.37a
8 **
9 */
12 preliminary :
13 Problem :
14 note:
17 /* This version of fmopl.c is a fork of the MAME one, relicensed under the LGPL.
19 * This library is free software; you can redistribute it and/or
20 * modify it under the terms of the GNU Lesser General Public
21 * License as published by the Free Software Foundation; either
22 * version 2.1 of the License, or (at your option) any later version.
24 * This library is distributed in the hope that it will be useful,
25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
27 * Lesser General Public License for more details.
29 * You should have received a copy of the GNU Lesser General Public
30 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
33 #define HAS_YM3812 1
35 #include "qemu/osdep.h"
36 #include <math.h>
37 //#include "driver.h" /* use M.A.M.E. */
38 #include "fmopl.h"
40 #ifndef PI
41 #define PI 3.14159265358979323846
42 #endif
44 #ifndef ARRAY_SIZE
45 #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
46 #endif
48 /* -------------------- for debug --------------------- */
49 /* #define OPL_OUTPUT_LOG */
50 #ifdef OPL_OUTPUT_LOG
51 static FILE *opl_dbg_fp = NULL;
52 static FM_OPL *opl_dbg_opl[16];
53 static int opl_dbg_maxchip,opl_dbg_chip;
54 #endif
56 /* -------------------- preliminary define section --------------------- */
57 /* attack/decay rate time rate */
58 #define OPL_ARRATE 141280 /* RATE 4 = 2826.24ms @ 3.6MHz */
59 #define OPL_DRRATE 1956000 /* RATE 4 = 39280.64ms @ 3.6MHz */
61 #define DELTAT_MIXING_LEVEL (1) /* DELTA-T ADPCM MIXING LEVEL */
63 #define FREQ_BITS 24 /* frequency turn */
65 /* counter bits = 20 , octerve 7 */
66 #define FREQ_RATE (1<<(FREQ_BITS-20))
67 #define TL_BITS (FREQ_BITS+2)
69 /* final output shift , limit minimum and maximum */
70 #define OPL_OUTSB (TL_BITS+3-16) /* OPL output final shift 16bit */
71 #define OPL_MAXOUT (0x7fff<<OPL_OUTSB)
72 #define OPL_MINOUT (-0x8000<<OPL_OUTSB)
74 /* -------------------- quality selection --------------------- */
76 /* sinwave entries */
77 /* used static memory = SIN_ENT * 4 (byte) */
78 #define SIN_ENT 2048
80 /* output level entries (envelope,sinwave) */
81 /* envelope counter lower bits */
82 #define ENV_BITS 16
83 /* envelope output entries */
84 #define EG_ENT 4096
85 /* used dynamic memory = EG_ENT*4*4(byte)or EG_ENT*6*4(byte) */
86 /* used static memory = EG_ENT*4 (byte) */
88 #define EG_OFF ((2*EG_ENT)<<ENV_BITS) /* OFF */
89 #define EG_DED EG_OFF
90 #define EG_DST (EG_ENT<<ENV_BITS) /* DECAY START */
91 #define EG_AED EG_DST
92 #define EG_AST 0 /* ATTACK START */
94 #define EG_STEP (96.0/EG_ENT) /* OPL is 0.1875 dB step */
96 /* LFO table entries */
97 #define VIB_ENT 512
98 #define VIB_SHIFT (32-9)
99 #define AMS_ENT 512
100 #define AMS_SHIFT (32-9)
102 #define VIB_RATE 256
104 /* -------------------- local defines , macros --------------------- */
106 /* register number to channel number , slot offset */
107 #define SLOT1 0
108 #define SLOT2 1
110 /* envelope phase */
111 #define ENV_MOD_RR 0x00
112 #define ENV_MOD_DR 0x01
113 #define ENV_MOD_AR 0x02
115 /* -------------------- tables --------------------- */
116 static const int slot_array[32]=
118 0, 2, 4, 1, 3, 5,-1,-1,
119 6, 8,10, 7, 9,11,-1,-1,
120 12,14,16,13,15,17,-1,-1,
121 -1,-1,-1,-1,-1,-1,-1,-1
124 /* key scale level */
125 /* table is 3dB/OCT , DV converts this in TL step at 6dB/OCT */
126 #define DV (EG_STEP/2)
127 static const UINT32 KSL_TABLE[8*16]=
129 /* OCT 0 */
130 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
131 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
132 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
133 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
134 /* OCT 1 */
135 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
136 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
137 0.000/DV, 0.750/DV, 1.125/DV, 1.500/DV,
138 1.875/DV, 2.250/DV, 2.625/DV, 3.000/DV,
139 /* OCT 2 */
140 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
141 0.000/DV, 1.125/DV, 1.875/DV, 2.625/DV,
142 3.000/DV, 3.750/DV, 4.125/DV, 4.500/DV,
143 4.875/DV, 5.250/DV, 5.625/DV, 6.000/DV,
144 /* OCT 3 */
145 0.000/DV, 0.000/DV, 0.000/DV, 1.875/DV,
146 3.000/DV, 4.125/DV, 4.875/DV, 5.625/DV,
147 6.000/DV, 6.750/DV, 7.125/DV, 7.500/DV,
148 7.875/DV, 8.250/DV, 8.625/DV, 9.000/DV,
149 /* OCT 4 */
150 0.000/DV, 0.000/DV, 3.000/DV, 4.875/DV,
151 6.000/DV, 7.125/DV, 7.875/DV, 8.625/DV,
152 9.000/DV, 9.750/DV,10.125/DV,10.500/DV,
153 10.875/DV,11.250/DV,11.625/DV,12.000/DV,
154 /* OCT 5 */
155 0.000/DV, 3.000/DV, 6.000/DV, 7.875/DV,
156 9.000/DV,10.125/DV,10.875/DV,11.625/DV,
157 12.000/DV,12.750/DV,13.125/DV,13.500/DV,
158 13.875/DV,14.250/DV,14.625/DV,15.000/DV,
159 /* OCT 6 */
160 0.000/DV, 6.000/DV, 9.000/DV,10.875/DV,
161 12.000/DV,13.125/DV,13.875/DV,14.625/DV,
162 15.000/DV,15.750/DV,16.125/DV,16.500/DV,
163 16.875/DV,17.250/DV,17.625/DV,18.000/DV,
164 /* OCT 7 */
165 0.000/DV, 9.000/DV,12.000/DV,13.875/DV,
166 15.000/DV,16.125/DV,16.875/DV,17.625/DV,
167 18.000/DV,18.750/DV,19.125/DV,19.500/DV,
168 19.875/DV,20.250/DV,20.625/DV,21.000/DV
170 #undef DV
172 /* sustain lebel table (3db per step) */
173 /* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/
174 #define SC(db) (db*((3/EG_STEP)*(1<<ENV_BITS)))+EG_DST
175 static const INT32 SL_TABLE[16]={
176 SC( 0),SC( 1),SC( 2),SC(3 ),SC(4 ),SC(5 ),SC(6 ),SC( 7),
177 SC( 8),SC( 9),SC(10),SC(11),SC(12),SC(13),SC(14),SC(31)
179 #undef SC
181 #define TL_MAX (EG_ENT*2) /* limit(tl + ksr + envelope) + sinwave */
182 /* TotalLevel : 48 24 12 6 3 1.5 0.75 (dB) */
183 /* TL_TABLE[ 0 to TL_MAX ] : plus section */
184 /* TL_TABLE[ TL_MAX to TL_MAX+TL_MAX-1 ] : minus section */
185 static INT32 *TL_TABLE;
187 /* pointers to TL_TABLE with sinwave output offset */
188 static INT32 **SIN_TABLE;
190 /* LFO table */
191 static INT32 *AMS_TABLE;
192 static INT32 *VIB_TABLE;
194 /* envelope output curve table */
195 /* attack + decay + OFF */
196 static INT32 ENV_CURVE[2*EG_ENT+1];
198 /* multiple table */
199 #define ML 2
200 static const UINT32 MUL_TABLE[16]= {
201 /* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15 */
202 0.50*ML, 1.00*ML, 2.00*ML, 3.00*ML, 4.00*ML, 5.00*ML, 6.00*ML, 7.00*ML,
203 8.00*ML, 9.00*ML,10.00*ML,10.00*ML,12.00*ML,12.00*ML,15.00*ML,15.00*ML
205 #undef ML
207 /* dummy attack / decay rate ( when rate == 0 ) */
208 static INT32 RATE_0[16]=
209 {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
211 /* -------------------- static state --------------------- */
213 /* lock level of common table */
214 static int num_lock = 0;
216 /* work table */
217 static void *cur_chip = NULL; /* current chip point */
218 /* currenct chip state */
219 /* static OPLSAMPLE *bufL,*bufR; */
220 static OPL_CH *S_CH;
221 static OPL_CH *E_CH;
222 static OPL_SLOT *SLOT7_1, *SLOT7_2, *SLOT8_1, *SLOT8_2;
224 static INT32 outd[1];
225 static INT32 ams;
226 static INT32 vib;
227 static INT32 *ams_table;
228 static INT32 *vib_table;
229 static INT32 amsIncr;
230 static INT32 vibIncr;
231 static INT32 feedback2; /* connect for SLOT 2 */
233 /* log output level */
234 #define LOG_ERR 3 /* ERROR */
235 #define LOG_WAR 2 /* WARNING */
236 #define LOG_INF 1 /* INFORMATION */
238 //#define LOG_LEVEL LOG_INF
239 #define LOG_LEVEL LOG_ERR
241 //#define LOG(n,x) if( (n)>=LOG_LEVEL ) logerror x
242 #define LOG(n,x)
244 /* --------------------- subroutines --------------------- */
246 static inline int Limit( int val, int max, int min ) {
247 if ( val > max )
248 val = max;
249 else if ( val < min )
250 val = min;
252 return val;
255 /* status set and IRQ handling */
256 static inline void OPL_STATUS_SET(FM_OPL *OPL,int flag)
258 /* set status flag */
259 OPL->status |= flag;
260 if(!(OPL->status & 0x80))
262 if(OPL->status & OPL->statusmask)
263 { /* IRQ on */
264 OPL->status |= 0x80;
265 /* callback user interrupt handler (IRQ is OFF to ON) */
266 if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,1);
271 /* status reset and IRQ handling */
272 static inline void OPL_STATUS_RESET(FM_OPL *OPL,int flag)
274 /* reset status flag */
275 OPL->status &=~flag;
276 if((OPL->status & 0x80))
278 if (!(OPL->status & OPL->statusmask) )
280 OPL->status &= 0x7f;
281 /* callback user interrupt handler (IRQ is ON to OFF) */
282 if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,0);
287 /* IRQ mask set */
288 static inline void OPL_STATUSMASK_SET(FM_OPL *OPL,int flag)
290 OPL->statusmask = flag;
291 /* IRQ handling check */
292 OPL_STATUS_SET(OPL,0);
293 OPL_STATUS_RESET(OPL,0);
296 /* ----- key on ----- */
297 static inline void OPL_KEYON(OPL_SLOT *SLOT)
299 /* sin wave restart */
300 SLOT->Cnt = 0;
301 /* set attack */
302 SLOT->evm = ENV_MOD_AR;
303 SLOT->evs = SLOT->evsa;
304 SLOT->evc = EG_AST;
305 SLOT->eve = EG_AED;
307 /* ----- key off ----- */
308 static inline void OPL_KEYOFF(OPL_SLOT *SLOT)
310 if( SLOT->evm > ENV_MOD_RR)
312 /* set envelope counter from envleope output */
313 SLOT->evm = ENV_MOD_RR;
314 if( !(SLOT->evc&EG_DST) )
315 //SLOT->evc = (ENV_CURVE[SLOT->evc>>ENV_BITS]<<ENV_BITS) + EG_DST;
316 SLOT->evc = EG_DST;
317 SLOT->eve = EG_DED;
318 SLOT->evs = SLOT->evsr;
322 /* ---------- calcrate Envelope Generator & Phase Generator ---------- */
323 /* return : envelope output */
324 static inline UINT32 OPL_CALC_SLOT( OPL_SLOT *SLOT )
326 /* calcrate envelope generator */
327 if( (SLOT->evc+=SLOT->evs) >= SLOT->eve )
329 switch( SLOT->evm ){
330 case ENV_MOD_AR: /* ATTACK -> DECAY1 */
331 /* next DR */
332 SLOT->evm = ENV_MOD_DR;
333 SLOT->evc = EG_DST;
334 SLOT->eve = SLOT->SL;
335 SLOT->evs = SLOT->evsd;
336 break;
337 case ENV_MOD_DR: /* DECAY -> SL or RR */
338 SLOT->evc = SLOT->SL;
339 SLOT->eve = EG_DED;
340 if(SLOT->eg_typ)
342 SLOT->evs = 0;
344 else
346 SLOT->evm = ENV_MOD_RR;
347 SLOT->evs = SLOT->evsr;
349 break;
350 case ENV_MOD_RR: /* RR -> OFF */
351 SLOT->evc = EG_OFF;
352 SLOT->eve = EG_OFF+1;
353 SLOT->evs = 0;
354 break;
357 /* calcrate envelope */
358 return SLOT->TLL+ENV_CURVE[SLOT->evc>>ENV_BITS]+(SLOT->ams ? ams : 0);
361 /* set algorithm connection */
362 static void set_algorithm( OPL_CH *CH)
364 INT32 *carrier = &outd[0];
365 CH->connect1 = CH->CON ? carrier : &feedback2;
366 CH->connect2 = carrier;
369 /* ---------- frequency counter for operater update ---------- */
370 static inline void CALC_FCSLOT(OPL_CH *CH,OPL_SLOT *SLOT)
372 int ksr;
374 /* frequency step counter */
375 SLOT->Incr = CH->fc * SLOT->mul;
376 ksr = CH->kcode >> SLOT->KSR;
378 if( SLOT->ksr != ksr )
380 SLOT->ksr = ksr;
381 /* attack , decay rate recalcration */
382 SLOT->evsa = SLOT->AR[ksr];
383 SLOT->evsd = SLOT->DR[ksr];
384 SLOT->evsr = SLOT->RR[ksr];
386 SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
389 /* set multi,am,vib,EG-TYP,KSR,mul */
390 static inline void set_mul(FM_OPL *OPL,int slot,int v)
392 OPL_CH *CH = &OPL->P_CH[slot/2];
393 OPL_SLOT *SLOT = &CH->SLOT[slot&1];
395 SLOT->mul = MUL_TABLE[v&0x0f];
396 SLOT->KSR = (v&0x10) ? 0 : 2;
397 SLOT->eg_typ = (v&0x20)>>5;
398 SLOT->vib = (v&0x40);
399 SLOT->ams = (v&0x80);
400 CALC_FCSLOT(CH,SLOT);
403 /* set ksl & tl */
404 static inline void set_ksl_tl(FM_OPL *OPL,int slot,int v)
406 OPL_CH *CH = &OPL->P_CH[slot/2];
407 OPL_SLOT *SLOT = &CH->SLOT[slot&1];
408 int ksl = v>>6; /* 0 / 1.5 / 3 / 6 db/OCT */
410 SLOT->ksl = ksl ? 3-ksl : 31;
411 SLOT->TL = (v&0x3f)*(0.75/EG_STEP); /* 0.75db step */
413 if( !(OPL->mode&0x80) )
414 { /* not CSM latch total level */
415 SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
419 /* set attack rate & decay rate */
420 static inline void set_ar_dr(FM_OPL *OPL,int slot,int v)
422 OPL_CH *CH = &OPL->P_CH[slot/2];
423 OPL_SLOT *SLOT = &CH->SLOT[slot&1];
424 int ar = v>>4;
425 int dr = v&0x0f;
427 SLOT->AR = ar ? &OPL->AR_TABLE[ar<<2] : RATE_0;
428 SLOT->evsa = SLOT->AR[SLOT->ksr];
429 if( SLOT->evm == ENV_MOD_AR ) SLOT->evs = SLOT->evsa;
431 SLOT->DR = dr ? &OPL->DR_TABLE[dr<<2] : RATE_0;
432 SLOT->evsd = SLOT->DR[SLOT->ksr];
433 if( SLOT->evm == ENV_MOD_DR ) SLOT->evs = SLOT->evsd;
436 /* set sustain level & release rate */
437 static inline void set_sl_rr(FM_OPL *OPL,int slot,int v)
439 OPL_CH *CH = &OPL->P_CH[slot/2];
440 OPL_SLOT *SLOT = &CH->SLOT[slot&1];
441 int sl = v>>4;
442 int rr = v & 0x0f;
444 SLOT->SL = SL_TABLE[sl];
445 if( SLOT->evm == ENV_MOD_DR ) SLOT->eve = SLOT->SL;
446 SLOT->RR = &OPL->DR_TABLE[rr<<2];
447 SLOT->evsr = SLOT->RR[SLOT->ksr];
448 if( SLOT->evm == ENV_MOD_RR ) SLOT->evs = SLOT->evsr;
451 /* operator output calcrator */
452 #define OP_OUT(slot,env,con) slot->wavetable[((slot->Cnt+con)/(0x1000000/SIN_ENT))&(SIN_ENT-1)][env]
453 /* ---------- calcrate one of channel ---------- */
454 static inline void OPL_CALC_CH( OPL_CH *CH )
456 UINT32 env_out;
457 OPL_SLOT *SLOT;
459 feedback2 = 0;
460 /* SLOT 1 */
461 SLOT = &CH->SLOT[SLOT1];
462 env_out=OPL_CALC_SLOT(SLOT);
463 if( env_out < EG_ENT-1 )
465 /* PG */
466 if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
467 else SLOT->Cnt += SLOT->Incr;
468 /* connectoion */
469 if(CH->FB)
471 int feedback1 = (CH->op1_out[0]+CH->op1_out[1])>>CH->FB;
472 CH->op1_out[1] = CH->op1_out[0];
473 *CH->connect1 += CH->op1_out[0] = OP_OUT(SLOT,env_out,feedback1);
475 else
477 *CH->connect1 += OP_OUT(SLOT,env_out,0);
479 }else
481 CH->op1_out[1] = CH->op1_out[0];
482 CH->op1_out[0] = 0;
484 /* SLOT 2 */
485 SLOT = &CH->SLOT[SLOT2];
486 env_out=OPL_CALC_SLOT(SLOT);
487 if( env_out < EG_ENT-1 )
489 /* PG */
490 if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
491 else SLOT->Cnt += SLOT->Incr;
492 /* connectoion */
493 outd[0] += OP_OUT(SLOT,env_out, feedback2);
497 /* ---------- calcrate rhythm block ---------- */
498 #define WHITE_NOISE_db 6.0
499 static inline void OPL_CALC_RH( OPL_CH *CH )
501 UINT32 env_tam,env_sd,env_top,env_hh;
502 int whitenoise = (rand()&1)*(WHITE_NOISE_db/EG_STEP);
503 INT32 tone8;
505 OPL_SLOT *SLOT;
506 int env_out;
508 /* BD : same as FM serial mode and output level is large */
509 feedback2 = 0;
510 /* SLOT 1 */
511 SLOT = &CH[6].SLOT[SLOT1];
512 env_out=OPL_CALC_SLOT(SLOT);
513 if( env_out < EG_ENT-1 )
515 /* PG */
516 if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
517 else SLOT->Cnt += SLOT->Incr;
518 /* connectoion */
519 if(CH[6].FB)
521 int feedback1 = (CH[6].op1_out[0]+CH[6].op1_out[1])>>CH[6].FB;
522 CH[6].op1_out[1] = CH[6].op1_out[0];
523 feedback2 = CH[6].op1_out[0] = OP_OUT(SLOT,env_out,feedback1);
525 else
527 feedback2 = OP_OUT(SLOT,env_out,0);
529 }else
531 feedback2 = 0;
532 CH[6].op1_out[1] = CH[6].op1_out[0];
533 CH[6].op1_out[0] = 0;
535 /* SLOT 2 */
536 SLOT = &CH[6].SLOT[SLOT2];
537 env_out=OPL_CALC_SLOT(SLOT);
538 if( env_out < EG_ENT-1 )
540 /* PG */
541 if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
542 else SLOT->Cnt += SLOT->Incr;
543 /* connectoion */
544 outd[0] += OP_OUT(SLOT,env_out, feedback2)*2;
547 // SD (17) = mul14[fnum7] + white noise
548 // TAM (15) = mul15[fnum8]
549 // TOP (18) = fnum6(mul18[fnum8]+whitenoise)
550 // HH (14) = fnum7(mul18[fnum8]+whitenoise) + white noise
551 env_sd =OPL_CALC_SLOT(SLOT7_2) + whitenoise;
552 env_tam=OPL_CALC_SLOT(SLOT8_1);
553 env_top=OPL_CALC_SLOT(SLOT8_2);
554 env_hh =OPL_CALC_SLOT(SLOT7_1) + whitenoise;
556 /* PG */
557 if(SLOT7_1->vib) SLOT7_1->Cnt += (2*SLOT7_1->Incr*vib/VIB_RATE);
558 else SLOT7_1->Cnt += 2*SLOT7_1->Incr;
559 if(SLOT7_2->vib) SLOT7_2->Cnt += ((CH[7].fc*8)*vib/VIB_RATE);
560 else SLOT7_2->Cnt += (CH[7].fc*8);
561 if(SLOT8_1->vib) SLOT8_1->Cnt += (SLOT8_1->Incr*vib/VIB_RATE);
562 else SLOT8_1->Cnt += SLOT8_1->Incr;
563 if(SLOT8_2->vib) SLOT8_2->Cnt += ((CH[8].fc*48)*vib/VIB_RATE);
564 else SLOT8_2->Cnt += (CH[8].fc*48);
566 tone8 = OP_OUT(SLOT8_2,whitenoise,0 );
568 /* SD */
569 if( env_sd < EG_ENT-1 )
570 outd[0] += OP_OUT(SLOT7_1,env_sd, 0)*8;
571 /* TAM */
572 if( env_tam < EG_ENT-1 )
573 outd[0] += OP_OUT(SLOT8_1,env_tam, 0)*2;
574 /* TOP-CY */
575 if( env_top < EG_ENT-1 )
576 outd[0] += OP_OUT(SLOT7_2,env_top,tone8)*2;
577 /* HH */
578 if( env_hh < EG_ENT-1 )
579 outd[0] += OP_OUT(SLOT7_2,env_hh,tone8)*2;
582 /* ----------- initialize time tabls ----------- */
583 static void init_timetables( FM_OPL *OPL , int ARRATE , int DRRATE )
585 int i;
586 double rate;
588 /* make attack rate & decay rate tables */
589 for (i = 0;i < 4;i++) OPL->AR_TABLE[i] = OPL->DR_TABLE[i] = 0;
590 for (i = 4;i <= 60;i++){
591 rate = OPL->freqbase; /* frequency rate */
592 if( i < 60 ) rate *= 1.0+(i&3)*0.25; /* b0-1 : x1 , x1.25 , x1.5 , x1.75 */
593 rate *= 1<<((i>>2)-1); /* b2-5 : shift bit */
594 rate *= (double)(EG_ENT<<ENV_BITS);
595 OPL->AR_TABLE[i] = rate / ARRATE;
596 OPL->DR_TABLE[i] = rate / DRRATE;
598 for (i = 60; i < ARRAY_SIZE(OPL->AR_TABLE); i++)
600 OPL->AR_TABLE[i] = EG_AED-1;
601 OPL->DR_TABLE[i] = OPL->DR_TABLE[60];
603 #if 0
604 for (i = 0;i < 64 ;i++){ /* make for overflow area */
605 LOG(LOG_WAR, ("rate %2d , ar %f ms , dr %f ms\n", i,
606 ((double)(EG_ENT<<ENV_BITS) / OPL->AR_TABLE[i]) * (1000.0 / OPL->rate),
607 ((double)(EG_ENT<<ENV_BITS) / OPL->DR_TABLE[i]) * (1000.0 / OPL->rate) ));
609 #endif
612 /* ---------- generic table initialize ---------- */
613 static int OPLOpenTable( void )
615 int s,t;
616 double rate;
617 int i,j;
618 double pom;
620 /* allocate dynamic tables */
621 if( (TL_TABLE = malloc(TL_MAX*2*sizeof(INT32))) == NULL)
622 return 0;
623 if( (SIN_TABLE = malloc(SIN_ENT*4 *sizeof(INT32 *))) == NULL)
625 free(TL_TABLE);
626 return 0;
628 if( (AMS_TABLE = malloc(AMS_ENT*2 *sizeof(INT32))) == NULL)
630 free(TL_TABLE);
631 free(SIN_TABLE);
632 return 0;
634 if( (VIB_TABLE = malloc(VIB_ENT*2 *sizeof(INT32))) == NULL)
636 free(TL_TABLE);
637 free(SIN_TABLE);
638 free(AMS_TABLE);
639 return 0;
641 /* make total level table */
642 for (t = 0;t < EG_ENT-1 ;t++){
643 rate = ((1<<TL_BITS)-1)/pow(10,EG_STEP*t/20); /* dB -> voltage */
644 TL_TABLE[ t] = (int)rate;
645 TL_TABLE[TL_MAX+t] = -TL_TABLE[t];
646 /* LOG(LOG_INF,("TotalLevel(%3d) = %x\n",t,TL_TABLE[t]));*/
648 /* fill volume off area */
649 for ( t = EG_ENT-1; t < TL_MAX ;t++){
650 TL_TABLE[t] = TL_TABLE[TL_MAX+t] = 0;
653 /* make sinwave table (total level offet) */
654 /* degree 0 = degree 180 = off */
655 SIN_TABLE[0] = SIN_TABLE[SIN_ENT/2] = &TL_TABLE[EG_ENT-1];
656 for (s = 1;s <= SIN_ENT/4;s++){
657 pom = sin(2*PI*s/SIN_ENT); /* sin */
658 pom = 20*log10(1/pom); /* decibel */
659 j = pom / EG_STEP; /* TL_TABLE steps */
661 /* degree 0 - 90 , degree 180 - 90 : plus section */
662 SIN_TABLE[ s] = SIN_TABLE[SIN_ENT/2-s] = &TL_TABLE[j];
663 /* degree 180 - 270 , degree 360 - 270 : minus section */
664 SIN_TABLE[SIN_ENT/2+s] = SIN_TABLE[SIN_ENT -s] = &TL_TABLE[TL_MAX+j];
665 /* LOG(LOG_INF,("sin(%3d) = %f:%f db\n",s,pom,(double)j * EG_STEP));*/
667 for (s = 0;s < SIN_ENT;s++)
669 SIN_TABLE[SIN_ENT*1+s] = s<(SIN_ENT/2) ? SIN_TABLE[s] : &TL_TABLE[EG_ENT];
670 SIN_TABLE[SIN_ENT*2+s] = SIN_TABLE[s % (SIN_ENT/2)];
671 SIN_TABLE[SIN_ENT*3+s] = (s/(SIN_ENT/4))&1 ? &TL_TABLE[EG_ENT] : SIN_TABLE[SIN_ENT*2+s];
674 /* envelope counter -> envelope output table */
675 for (i=0; i<EG_ENT; i++)
677 /* ATTACK curve */
678 pom = pow( ((double)(EG_ENT-1-i)/EG_ENT) , 8 ) * EG_ENT;
679 /* if( pom >= EG_ENT ) pom = EG_ENT-1; */
680 ENV_CURVE[i] = (int)pom;
681 /* DECAY ,RELEASE curve */
682 ENV_CURVE[(EG_DST>>ENV_BITS)+i]= i;
684 /* off */
685 ENV_CURVE[EG_OFF>>ENV_BITS]= EG_ENT-1;
686 /* make LFO ams table */
687 for (i=0; i<AMS_ENT; i++)
689 pom = (1.0+sin(2*PI*i/AMS_ENT))/2; /* sin */
690 AMS_TABLE[i] = (1.0/EG_STEP)*pom; /* 1dB */
691 AMS_TABLE[AMS_ENT+i] = (4.8/EG_STEP)*pom; /* 4.8dB */
693 /* make LFO vibrate table */
694 for (i=0; i<VIB_ENT; i++)
696 /* 100cent = 1seminote = 6% ?? */
697 pom = (double)VIB_RATE*0.06*sin(2*PI*i/VIB_ENT); /* +-100sect step */
698 VIB_TABLE[i] = VIB_RATE + (pom*0.07); /* +- 7cent */
699 VIB_TABLE[VIB_ENT+i] = VIB_RATE + (pom*0.14); /* +-14cent */
700 /* LOG(LOG_INF,("vib %d=%d\n",i,VIB_TABLE[VIB_ENT+i])); */
702 return 1;
706 static void OPLCloseTable( void )
708 free(TL_TABLE);
709 free(SIN_TABLE);
710 free(AMS_TABLE);
711 free(VIB_TABLE);
714 /* CSM Key Control */
715 static inline void CSMKeyControll(OPL_CH *CH)
717 OPL_SLOT *slot1 = &CH->SLOT[SLOT1];
718 OPL_SLOT *slot2 = &CH->SLOT[SLOT2];
719 /* all key off */
720 OPL_KEYOFF(slot1);
721 OPL_KEYOFF(slot2);
722 /* total level latch */
723 slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
724 slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
725 /* key on */
726 CH->op1_out[0] = CH->op1_out[1] = 0;
727 OPL_KEYON(slot1);
728 OPL_KEYON(slot2);
731 /* ---------- opl initialize ---------- */
732 static void OPL_initialize(FM_OPL *OPL)
734 int fn;
736 /* frequency base */
737 OPL->freqbase = (OPL->rate) ? ((double)OPL->clock / OPL->rate) / 72 : 0;
738 /* Timer base time */
739 OPL->TimerBase = 1.0/((double)OPL->clock / 72.0 );
740 /* make time tables */
741 init_timetables( OPL , OPL_ARRATE , OPL_DRRATE );
742 /* make fnumber -> increment counter table */
743 for( fn=0 ; fn < 1024 ; fn++ )
745 OPL->FN_TABLE[fn] = OPL->freqbase * fn * FREQ_RATE * (1<<7) / 2;
747 /* LFO freq.table */
748 OPL->amsIncr = OPL->rate ? (double)AMS_ENT*(1<<AMS_SHIFT) / OPL->rate * 3.7 * ((double)OPL->clock/3600000) : 0;
749 OPL->vibIncr = OPL->rate ? (double)VIB_ENT*(1<<VIB_SHIFT) / OPL->rate * 6.4 * ((double)OPL->clock/3600000) : 0;
752 /* ---------- write a OPL registers ---------- */
753 static void OPLWriteReg(FM_OPL *OPL, int r, int v)
755 OPL_CH *CH;
756 int slot;
757 int block_fnum;
759 switch(r&0xe0)
761 case 0x00: /* 00-1f:control */
762 switch(r&0x1f)
764 case 0x01:
765 /* wave selector enable */
766 if(OPL->type&OPL_TYPE_WAVESEL)
768 OPL->wavesel = v&0x20;
769 if(!OPL->wavesel)
771 /* preset compatible mode */
772 int c;
773 for(c=0;c<OPL->max_ch;c++)
775 OPL->P_CH[c].SLOT[SLOT1].wavetable = &SIN_TABLE[0];
776 OPL->P_CH[c].SLOT[SLOT2].wavetable = &SIN_TABLE[0];
780 return;
781 case 0x02: /* Timer 1 */
782 OPL->T[0] = (256-v)*4;
783 break;
784 case 0x03: /* Timer 2 */
785 OPL->T[1] = (256-v)*16;
786 return;
787 case 0x04: /* IRQ clear / mask and Timer enable */
788 if(v&0x80)
789 { /* IRQ flag clear */
790 OPL_STATUS_RESET(OPL,0x7f);
792 else
793 { /* set IRQ mask ,timer enable*/
794 UINT8 st1 = v&1;
795 UINT8 st2 = (v>>1)&1;
796 /* IRQRST,T1MSK,t2MSK,EOSMSK,BRMSK,x,ST2,ST1 */
797 OPL_STATUS_RESET(OPL,v&0x78);
798 OPL_STATUSMASK_SET(OPL,((~v)&0x78)|0x01);
799 /* timer 2 */
800 if(OPL->st[1] != st2)
802 double interval = st2 ? (double)OPL->T[1]*OPL->TimerBase : 0.0;
803 OPL->st[1] = st2;
804 if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+1,interval);
806 /* timer 1 */
807 if(OPL->st[0] != st1)
809 double interval = st1 ? (double)OPL->T[0]*OPL->TimerBase : 0.0;
810 OPL->st[0] = st1;
811 if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+0,interval);
814 return;
815 #if BUILD_Y8950
816 case 0x06: /* Key Board OUT */
817 if(OPL->type&OPL_TYPE_KEYBOARD)
819 if(OPL->keyboardhandler_w)
820 OPL->keyboardhandler_w(OPL->keyboard_param,v);
821 else
822 LOG(LOG_WAR,("OPL:write unmapped KEYBOARD port\n"));
824 return;
825 case 0x07: /* DELTA-T control : START,REC,MEMDATA,REPT,SPOFF,x,x,RST */
826 if(OPL->type&OPL_TYPE_ADPCM)
827 YM_DELTAT_ADPCM_Write(OPL->deltat,r-0x07,v);
828 return;
829 case 0x08: /* MODE,DELTA-T : CSM,NOTESEL,x,x,smpl,da/ad,64k,rom */
830 OPL->mode = v;
831 v&=0x1f; /* for DELTA-T unit */
832 case 0x09: /* START ADD */
833 case 0x0a:
834 case 0x0b: /* STOP ADD */
835 case 0x0c:
836 case 0x0d: /* PRESCALE */
837 case 0x0e:
838 case 0x0f: /* ADPCM data */
839 case 0x10: /* DELTA-N */
840 case 0x11: /* DELTA-N */
841 case 0x12: /* EG-CTRL */
842 if(OPL->type&OPL_TYPE_ADPCM)
843 YM_DELTAT_ADPCM_Write(OPL->deltat,r-0x07,v);
844 return;
845 #if 0
846 case 0x15: /* DAC data */
847 case 0x16:
848 case 0x17: /* SHIFT */
849 return;
850 case 0x18: /* I/O CTRL (Direction) */
851 if(OPL->type&OPL_TYPE_IO)
852 OPL->portDirection = v&0x0f;
853 return;
854 case 0x19: /* I/O DATA */
855 if(OPL->type&OPL_TYPE_IO)
857 OPL->portLatch = v;
858 if(OPL->porthandler_w)
859 OPL->porthandler_w(OPL->port_param,v&OPL->portDirection);
861 return;
862 case 0x1a: /* PCM data */
863 return;
864 #endif
865 #endif
867 break;
868 case 0x20: /* am,vib,ksr,eg type,mul */
869 slot = slot_array[r&0x1f];
870 if(slot == -1) return;
871 set_mul(OPL,slot,v);
872 return;
873 case 0x40:
874 slot = slot_array[r&0x1f];
875 if(slot == -1) return;
876 set_ksl_tl(OPL,slot,v);
877 return;
878 case 0x60:
879 slot = slot_array[r&0x1f];
880 if(slot == -1) return;
881 set_ar_dr(OPL,slot,v);
882 return;
883 case 0x80:
884 slot = slot_array[r&0x1f];
885 if(slot == -1) return;
886 set_sl_rr(OPL,slot,v);
887 return;
888 case 0xa0:
889 switch(r)
891 case 0xbd:
892 /* amsep,vibdep,r,bd,sd,tom,tc,hh */
894 UINT8 rkey = OPL->rhythm^v;
895 OPL->ams_table = &AMS_TABLE[v&0x80 ? AMS_ENT : 0];
896 OPL->vib_table = &VIB_TABLE[v&0x40 ? VIB_ENT : 0];
897 OPL->rhythm = v&0x3f;
898 if(OPL->rhythm&0x20)
900 #if 0
901 usrintf_showmessage("OPL Rhythm mode select");
902 #endif
903 /* BD key on/off */
904 if(rkey&0x10)
906 if(v&0x10)
908 OPL->P_CH[6].op1_out[0] = OPL->P_CH[6].op1_out[1] = 0;
909 OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT1]);
910 OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT2]);
912 else
914 OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT1]);
915 OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT2]);
918 /* SD key on/off */
919 if(rkey&0x08)
921 if(v&0x08) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT2]);
922 else OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT2]);
923 }/* TAM key on/off */
924 if(rkey&0x04)
926 if(v&0x04) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT1]);
927 else OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT1]);
929 /* TOP-CY key on/off */
930 if(rkey&0x02)
932 if(v&0x02) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT2]);
933 else OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT2]);
935 /* HH key on/off */
936 if(rkey&0x01)
938 if(v&0x01) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT1]);
939 else OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT1]);
943 return;
945 /* keyon,block,fnum */
946 if( (r&0x0f) > 8) return;
947 CH = &OPL->P_CH[r&0x0f];
948 if(!(r&0x10))
949 { /* a0-a8 */
950 block_fnum = (CH->block_fnum&0x1f00) | v;
952 else
953 { /* b0-b8 */
954 int keyon = (v>>5)&1;
955 block_fnum = ((v&0x1f)<<8) | (CH->block_fnum&0xff);
956 if(CH->keyon != keyon)
958 if( (CH->keyon=keyon) )
960 CH->op1_out[0] = CH->op1_out[1] = 0;
961 OPL_KEYON(&CH->SLOT[SLOT1]);
962 OPL_KEYON(&CH->SLOT[SLOT2]);
964 else
966 OPL_KEYOFF(&CH->SLOT[SLOT1]);
967 OPL_KEYOFF(&CH->SLOT[SLOT2]);
971 /* update */
972 if(CH->block_fnum != block_fnum)
974 int blockRv = 7-(block_fnum>>10);
975 int fnum = block_fnum&0x3ff;
976 CH->block_fnum = block_fnum;
978 CH->ksl_base = KSL_TABLE[block_fnum>>6];
979 CH->fc = OPL->FN_TABLE[fnum]>>blockRv;
980 CH->kcode = CH->block_fnum>>9;
981 if( (OPL->mode&0x40) && CH->block_fnum&0x100) CH->kcode |=1;
982 CALC_FCSLOT(CH,&CH->SLOT[SLOT1]);
983 CALC_FCSLOT(CH,&CH->SLOT[SLOT2]);
985 return;
986 case 0xc0:
987 /* FB,C */
988 if( (r&0x0f) > 8) return;
989 CH = &OPL->P_CH[r&0x0f];
991 int feedback = (v>>1)&7;
992 CH->FB = feedback ? (8+1) - feedback : 0;
993 CH->CON = v&1;
994 set_algorithm(CH);
996 return;
997 case 0xe0: /* wave type */
998 slot = slot_array[r&0x1f];
999 if(slot == -1) return;
1000 CH = &OPL->P_CH[slot/2];
1001 if(OPL->wavesel)
1003 /* LOG(LOG_INF,("OPL SLOT %d wave select %d\n",slot,v&3)); */
1004 CH->SLOT[slot&1].wavetable = &SIN_TABLE[(v&0x03)*SIN_ENT];
1006 return;
1010 /* lock/unlock for common table */
1011 static int OPL_LockTable(void)
1013 num_lock++;
1014 if(num_lock>1) return 0;
1015 /* first time */
1016 cur_chip = NULL;
1017 /* allocate total level table (128kb space) */
1018 if( !OPLOpenTable() )
1020 num_lock--;
1021 return -1;
1023 return 0;
1026 static void OPL_UnLockTable(void)
1028 if(num_lock) num_lock--;
1029 if(num_lock) return;
1030 /* last time */
1031 cur_chip = NULL;
1032 OPLCloseTable();
1035 #if (BUILD_YM3812 || BUILD_YM3526)
1036 /*******************************************************************************/
1037 /* YM3812 local section */
1038 /*******************************************************************************/
1040 /* ---------- update one of chip ----------- */
1041 void YM3812UpdateOne(FM_OPL *OPL, INT16 *buffer, int length)
1043 int i;
1044 int data;
1045 OPLSAMPLE *buf = buffer;
1046 UINT32 amsCnt = OPL->amsCnt;
1047 UINT32 vibCnt = OPL->vibCnt;
1048 UINT8 rhythm = OPL->rhythm&0x20;
1049 OPL_CH *CH,*R_CH;
1051 if( (void *)OPL != cur_chip ){
1052 cur_chip = (void *)OPL;
1053 /* channel pointers */
1054 S_CH = OPL->P_CH;
1055 E_CH = &S_CH[9];
1056 /* rhythm slot */
1057 SLOT7_1 = &S_CH[7].SLOT[SLOT1];
1058 SLOT7_2 = &S_CH[7].SLOT[SLOT2];
1059 SLOT8_1 = &S_CH[8].SLOT[SLOT1];
1060 SLOT8_2 = &S_CH[8].SLOT[SLOT2];
1061 /* LFO state */
1062 amsIncr = OPL->amsIncr;
1063 vibIncr = OPL->vibIncr;
1064 ams_table = OPL->ams_table;
1065 vib_table = OPL->vib_table;
1067 R_CH = rhythm ? &S_CH[6] : E_CH;
1068 for( i=0; i < length ; i++ )
1070 /* channel A channel B channel C */
1071 /* LFO */
1072 ams = ams_table[(amsCnt+=amsIncr)>>AMS_SHIFT];
1073 vib = vib_table[(vibCnt+=vibIncr)>>VIB_SHIFT];
1074 outd[0] = 0;
1075 /* FM part */
1076 for(CH=S_CH ; CH < R_CH ; CH++)
1077 OPL_CALC_CH(CH);
1078 /* Rythn part */
1079 if(rhythm)
1080 OPL_CALC_RH(S_CH);
1081 /* limit check */
1082 data = Limit( outd[0] , OPL_MAXOUT, OPL_MINOUT );
1083 /* store to sound buffer */
1084 buf[i] = data >> OPL_OUTSB;
1087 OPL->amsCnt = amsCnt;
1088 OPL->vibCnt = vibCnt;
1089 #ifdef OPL_OUTPUT_LOG
1090 if(opl_dbg_fp)
1092 for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++)
1093 if( opl_dbg_opl[opl_dbg_chip] == OPL) break;
1094 fprintf(opl_dbg_fp,"%c%c%c",0x20+opl_dbg_chip,length&0xff,length/256);
1096 #endif
1098 #endif /* (BUILD_YM3812 || BUILD_YM3526) */
1100 #if BUILD_Y8950
1102 void Y8950UpdateOne(FM_OPL *OPL, INT16 *buffer, int length)
1104 int i;
1105 int data;
1106 OPLSAMPLE *buf = buffer;
1107 UINT32 amsCnt = OPL->amsCnt;
1108 UINT32 vibCnt = OPL->vibCnt;
1109 UINT8 rhythm = OPL->rhythm&0x20;
1110 OPL_CH *CH,*R_CH;
1111 YM_DELTAT *DELTAT = OPL->deltat;
1113 /* setup DELTA-T unit */
1114 YM_DELTAT_DECODE_PRESET(DELTAT);
1116 if( (void *)OPL != cur_chip ){
1117 cur_chip = (void *)OPL;
1118 /* channel pointers */
1119 S_CH = OPL->P_CH;
1120 E_CH = &S_CH[9];
1121 /* rhythm slot */
1122 SLOT7_1 = &S_CH[7].SLOT[SLOT1];
1123 SLOT7_2 = &S_CH[7].SLOT[SLOT2];
1124 SLOT8_1 = &S_CH[8].SLOT[SLOT1];
1125 SLOT8_2 = &S_CH[8].SLOT[SLOT2];
1126 /* LFO state */
1127 amsIncr = OPL->amsIncr;
1128 vibIncr = OPL->vibIncr;
1129 ams_table = OPL->ams_table;
1130 vib_table = OPL->vib_table;
1132 R_CH = rhythm ? &S_CH[6] : E_CH;
1133 for( i=0; i < length ; i++ )
1135 /* channel A channel B channel C */
1136 /* LFO */
1137 ams = ams_table[(amsCnt+=amsIncr)>>AMS_SHIFT];
1138 vib = vib_table[(vibCnt+=vibIncr)>>VIB_SHIFT];
1139 outd[0] = 0;
1140 /* deltaT ADPCM */
1141 if( DELTAT->portstate )
1142 YM_DELTAT_ADPCM_CALC(DELTAT);
1143 /* FM part */
1144 for(CH=S_CH ; CH < R_CH ; CH++)
1145 OPL_CALC_CH(CH);
1146 /* Rythn part */
1147 if(rhythm)
1148 OPL_CALC_RH(S_CH);
1149 /* limit check */
1150 data = Limit( outd[0] , OPL_MAXOUT, OPL_MINOUT );
1151 /* store to sound buffer */
1152 buf[i] = data >> OPL_OUTSB;
1154 OPL->amsCnt = amsCnt;
1155 OPL->vibCnt = vibCnt;
1156 /* deltaT START flag */
1157 if( !DELTAT->portstate )
1158 OPL->status &= 0xfe;
1160 #endif
1162 /* ---------- reset one of chip ---------- */
1163 void OPLResetChip(FM_OPL *OPL)
1165 int c,s;
1166 int i;
1168 /* reset chip */
1169 OPL->mode = 0; /* normal mode */
1170 OPL_STATUS_RESET(OPL,0x7f);
1171 /* reset with register write */
1172 OPLWriteReg(OPL,0x01,0); /* wabesel disable */
1173 OPLWriteReg(OPL,0x02,0); /* Timer1 */
1174 OPLWriteReg(OPL,0x03,0); /* Timer2 */
1175 OPLWriteReg(OPL,0x04,0); /* IRQ mask clear */
1176 for(i = 0xff ; i >= 0x20 ; i-- ) OPLWriteReg(OPL,i,0);
1177 /* reset operator parameter */
1178 for( c = 0 ; c < OPL->max_ch ; c++ )
1180 OPL_CH *CH = &OPL->P_CH[c];
1181 /* OPL->P_CH[c].PAN = OPN_CENTER; */
1182 for(s = 0 ; s < 2 ; s++ )
1184 /* wave table */
1185 CH->SLOT[s].wavetable = &SIN_TABLE[0];
1186 /* CH->SLOT[s].evm = ENV_MOD_RR; */
1187 CH->SLOT[s].evc = EG_OFF;
1188 CH->SLOT[s].eve = EG_OFF+1;
1189 CH->SLOT[s].evs = 0;
1192 #if BUILD_Y8950
1193 if(OPL->type&OPL_TYPE_ADPCM)
1195 YM_DELTAT *DELTAT = OPL->deltat;
1197 DELTAT->freqbase = OPL->freqbase;
1198 DELTAT->output_pointer = outd;
1199 DELTAT->portshift = 5;
1200 DELTAT->output_range = DELTAT_MIXING_LEVEL<<TL_BITS;
1201 YM_DELTAT_ADPCM_Reset(DELTAT,0);
1203 #endif
1206 /* ---------- Create one of vietual YM3812 ---------- */
1207 /* 'rate' is sampling rate and 'bufsiz' is the size of the */
1208 FM_OPL *OPLCreate(int type, int clock, int rate)
1210 char *ptr;
1211 FM_OPL *OPL;
1212 int state_size;
1213 int max_ch = 9; /* normaly 9 channels */
1215 if( OPL_LockTable() ==-1) return NULL;
1216 /* allocate OPL state space */
1217 state_size = sizeof(FM_OPL);
1218 state_size += sizeof(OPL_CH)*max_ch;
1219 #if BUILD_Y8950
1220 if(type&OPL_TYPE_ADPCM) state_size+= sizeof(YM_DELTAT);
1221 #endif
1222 /* allocate memory block */
1223 ptr = malloc(state_size);
1224 if(ptr==NULL) return NULL;
1225 /* clear */
1226 memset(ptr,0,state_size);
1227 OPL = (FM_OPL *)ptr; ptr+=sizeof(FM_OPL);
1228 OPL->P_CH = (OPL_CH *)ptr; ptr+=sizeof(OPL_CH)*max_ch;
1229 #if BUILD_Y8950
1230 if(type&OPL_TYPE_ADPCM) OPL->deltat = (YM_DELTAT *)ptr; ptr+=sizeof(YM_DELTAT);
1231 #endif
1232 /* set channel state pointer */
1233 OPL->type = type;
1234 OPL->clock = clock;
1235 OPL->rate = rate;
1236 OPL->max_ch = max_ch;
1237 /* init grobal tables */
1238 OPL_initialize(OPL);
1239 /* reset chip */
1240 OPLResetChip(OPL);
1241 #ifdef OPL_OUTPUT_LOG
1242 if(!opl_dbg_fp)
1244 opl_dbg_fp = fopen("opllog.opl","wb");
1245 opl_dbg_maxchip = 0;
1247 if(opl_dbg_fp)
1249 opl_dbg_opl[opl_dbg_maxchip] = OPL;
1250 fprintf(opl_dbg_fp,"%c%c%c%c%c%c",0x00+opl_dbg_maxchip,
1251 type,
1252 clock&0xff,
1253 (clock/0x100)&0xff,
1254 (clock/0x10000)&0xff,
1255 (clock/0x1000000)&0xff);
1256 opl_dbg_maxchip++;
1258 #endif
1259 return OPL;
1262 /* ---------- Destroy one of vietual YM3812 ---------- */
1263 void OPLDestroy(FM_OPL *OPL)
1265 #ifdef OPL_OUTPUT_LOG
1266 if(opl_dbg_fp)
1268 fclose(opl_dbg_fp);
1269 opl_dbg_fp = NULL;
1271 #endif
1272 OPL_UnLockTable();
1273 free(OPL);
1276 /* ---------- Option handlers ---------- */
1278 void OPLSetTimerHandler(FM_OPL *OPL,OPL_TIMERHANDLER TimerHandler,int channelOffset)
1280 OPL->TimerHandler = TimerHandler;
1281 OPL->TimerParam = channelOffset;
1283 void OPLSetIRQHandler(FM_OPL *OPL,OPL_IRQHANDLER IRQHandler,int param)
1285 OPL->IRQHandler = IRQHandler;
1286 OPL->IRQParam = param;
1288 void OPLSetUpdateHandler(FM_OPL *OPL,OPL_UPDATEHANDLER UpdateHandler,int param)
1290 OPL->UpdateHandler = UpdateHandler;
1291 OPL->UpdateParam = param;
1293 #if BUILD_Y8950
1294 void OPLSetPortHandler(FM_OPL *OPL,OPL_PORTHANDLER_W PortHandler_w,OPL_PORTHANDLER_R PortHandler_r,int param)
1296 OPL->porthandler_w = PortHandler_w;
1297 OPL->porthandler_r = PortHandler_r;
1298 OPL->port_param = param;
1301 void OPLSetKeyboardHandler(FM_OPL *OPL,OPL_PORTHANDLER_W KeyboardHandler_w,OPL_PORTHANDLER_R KeyboardHandler_r,int param)
1303 OPL->keyboardhandler_w = KeyboardHandler_w;
1304 OPL->keyboardhandler_r = KeyboardHandler_r;
1305 OPL->keyboard_param = param;
1307 #endif
1308 /* ---------- YM3812 I/O interface ---------- */
1309 int OPLWrite(FM_OPL *OPL,int a,int v)
1311 if( !(a&1) )
1312 { /* address port */
1313 OPL->address = v & 0xff;
1315 else
1316 { /* data port */
1317 if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0);
1318 #ifdef OPL_OUTPUT_LOG
1319 if(opl_dbg_fp)
1321 for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++)
1322 if( opl_dbg_opl[opl_dbg_chip] == OPL) break;
1323 fprintf(opl_dbg_fp,"%c%c%c",0x10+opl_dbg_chip,OPL->address,v);
1325 #endif
1326 OPLWriteReg(OPL,OPL->address,v);
1328 return OPL->status>>7;
1331 unsigned char OPLRead(FM_OPL *OPL,int a)
1333 if( !(a&1) )
1334 { /* status port */
1335 return OPL->status & (OPL->statusmask|0x80);
1337 /* data port */
1338 switch(OPL->address)
1340 case 0x05: /* KeyBoard IN */
1341 if(OPL->type&OPL_TYPE_KEYBOARD)
1343 if(OPL->keyboardhandler_r)
1344 return OPL->keyboardhandler_r(OPL->keyboard_param);
1345 else {
1346 LOG(LOG_WAR,("OPL:read unmapped KEYBOARD port\n"));
1349 return 0;
1350 #if 0
1351 case 0x0f: /* ADPCM-DATA */
1352 return 0;
1353 #endif
1354 case 0x19: /* I/O DATA */
1355 if(OPL->type&OPL_TYPE_IO)
1357 if(OPL->porthandler_r)
1358 return OPL->porthandler_r(OPL->port_param);
1359 else {
1360 LOG(LOG_WAR,("OPL:read unmapped I/O port\n"));
1363 return 0;
1364 case 0x1a: /* PCM-DATA */
1365 return 0;
1367 return 0;
1370 int OPLTimerOver(FM_OPL *OPL,int c)
1372 if( c )
1373 { /* Timer B */
1374 OPL_STATUS_SET(OPL,0x20);
1376 else
1377 { /* Timer A */
1378 OPL_STATUS_SET(OPL,0x40);
1379 /* CSM mode key,TL control */
1380 if( OPL->mode & 0x80 )
1381 { /* CSM mode total level latch and auto key on */
1382 int ch;
1383 if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0);
1384 for(ch=0;ch<9;ch++)
1385 CSMKeyControll( &OPL->P_CH[ch] );
1388 /* reload timer */
1389 if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+c,(double)OPL->T[c]*OPL->TimerBase);
1390 return OPL->status>>7;