virtio-9p: break device if buffers are misconfigured
[qemu/ar7.git] / block / io.c
blob9bba730a7e7605e1ca95e0af8f7e5c0c085d4da8
1 /*
2 * Block layer I/O functions
4 * Copyright (c) 2003 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/blockjob.h"
29 #include "block/blockjob_int.h"
30 #include "block/block_int.h"
31 #include "qemu/cutils.h"
32 #include "qapi/error.h"
33 #include "qemu/error-report.h"
35 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
37 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
38 int64_t offset, int bytes, BdrvRequestFlags flags);
40 void bdrv_parent_drained_begin(BlockDriverState *bs)
42 BdrvChild *c;
44 QLIST_FOREACH(c, &bs->parents, next_parent) {
45 if (c->role->drained_begin) {
46 c->role->drained_begin(c);
51 void bdrv_parent_drained_end(BlockDriverState *bs)
53 BdrvChild *c;
55 QLIST_FOREACH(c, &bs->parents, next_parent) {
56 if (c->role->drained_end) {
57 c->role->drained_end(c);
62 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
64 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
65 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
66 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
67 src->opt_mem_alignment);
68 dst->min_mem_alignment = MAX(dst->min_mem_alignment,
69 src->min_mem_alignment);
70 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
73 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp)
75 BlockDriver *drv = bs->drv;
76 Error *local_err = NULL;
78 memset(&bs->bl, 0, sizeof(bs->bl));
80 if (!drv) {
81 return;
84 /* Default alignment based on whether driver has byte interface */
85 bs->bl.request_alignment = drv->bdrv_co_preadv ? 1 : 512;
87 /* Take some limits from the children as a default */
88 if (bs->file) {
89 bdrv_refresh_limits(bs->file->bs, &local_err);
90 if (local_err) {
91 error_propagate(errp, local_err);
92 return;
94 bdrv_merge_limits(&bs->bl, &bs->file->bs->bl);
95 } else {
96 bs->bl.min_mem_alignment = 512;
97 bs->bl.opt_mem_alignment = getpagesize();
99 /* Safe default since most protocols use readv()/writev()/etc */
100 bs->bl.max_iov = IOV_MAX;
103 if (bs->backing) {
104 bdrv_refresh_limits(bs->backing->bs, &local_err);
105 if (local_err) {
106 error_propagate(errp, local_err);
107 return;
109 bdrv_merge_limits(&bs->bl, &bs->backing->bs->bl);
112 /* Then let the driver override it */
113 if (drv->bdrv_refresh_limits) {
114 drv->bdrv_refresh_limits(bs, errp);
119 * The copy-on-read flag is actually a reference count so multiple users may
120 * use the feature without worrying about clobbering its previous state.
121 * Copy-on-read stays enabled until all users have called to disable it.
123 void bdrv_enable_copy_on_read(BlockDriverState *bs)
125 atomic_inc(&bs->copy_on_read);
128 void bdrv_disable_copy_on_read(BlockDriverState *bs)
130 int old = atomic_fetch_dec(&bs->copy_on_read);
131 assert(old >= 1);
134 /* Check if any requests are in-flight (including throttled requests) */
135 bool bdrv_requests_pending(BlockDriverState *bs)
137 BdrvChild *child;
139 if (atomic_read(&bs->in_flight)) {
140 return true;
143 QLIST_FOREACH(child, &bs->children, next) {
144 if (bdrv_requests_pending(child->bs)) {
145 return true;
149 return false;
152 static bool bdrv_drain_recurse(BlockDriverState *bs)
154 BdrvChild *child, *tmp;
155 bool waited;
157 waited = BDRV_POLL_WHILE(bs, atomic_read(&bs->in_flight) > 0);
159 if (bs->drv && bs->drv->bdrv_drain) {
160 bs->drv->bdrv_drain(bs);
163 QLIST_FOREACH_SAFE(child, &bs->children, next, tmp) {
164 BlockDriverState *bs = child->bs;
165 bool in_main_loop =
166 qemu_get_current_aio_context() == qemu_get_aio_context();
167 assert(bs->refcnt > 0);
168 if (in_main_loop) {
169 /* In case the recursive bdrv_drain_recurse processes a
170 * block_job_defer_to_main_loop BH and modifies the graph,
171 * let's hold a reference to bs until we are done.
173 * IOThread doesn't have such a BH, and it is not safe to call
174 * bdrv_unref without BQL, so skip doing it there.
176 bdrv_ref(bs);
178 waited |= bdrv_drain_recurse(bs);
179 if (in_main_loop) {
180 bdrv_unref(bs);
184 return waited;
187 typedef struct {
188 Coroutine *co;
189 BlockDriverState *bs;
190 bool done;
191 } BdrvCoDrainData;
193 static void bdrv_co_drain_bh_cb(void *opaque)
195 BdrvCoDrainData *data = opaque;
196 Coroutine *co = data->co;
197 BlockDriverState *bs = data->bs;
199 bdrv_dec_in_flight(bs);
200 bdrv_drained_begin(bs);
201 data->done = true;
202 aio_co_wake(co);
205 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs)
207 BdrvCoDrainData data;
209 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
210 * other coroutines run if they were queued from
211 * qemu_co_queue_run_restart(). */
213 assert(qemu_in_coroutine());
214 data = (BdrvCoDrainData) {
215 .co = qemu_coroutine_self(),
216 .bs = bs,
217 .done = false,
219 bdrv_inc_in_flight(bs);
220 aio_bh_schedule_oneshot(bdrv_get_aio_context(bs),
221 bdrv_co_drain_bh_cb, &data);
223 qemu_coroutine_yield();
224 /* If we are resumed from some other event (such as an aio completion or a
225 * timer callback), it is a bug in the caller that should be fixed. */
226 assert(data.done);
229 void bdrv_drained_begin(BlockDriverState *bs)
231 if (qemu_in_coroutine()) {
232 bdrv_co_yield_to_drain(bs);
233 return;
236 if (atomic_fetch_inc(&bs->quiesce_counter) == 0) {
237 aio_disable_external(bdrv_get_aio_context(bs));
238 bdrv_parent_drained_begin(bs);
241 bdrv_drain_recurse(bs);
244 void bdrv_drained_end(BlockDriverState *bs)
246 assert(bs->quiesce_counter > 0);
247 if (atomic_fetch_dec(&bs->quiesce_counter) > 1) {
248 return;
251 bdrv_parent_drained_end(bs);
252 aio_enable_external(bdrv_get_aio_context(bs));
256 * Wait for pending requests to complete on a single BlockDriverState subtree,
257 * and suspend block driver's internal I/O until next request arrives.
259 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
260 * AioContext.
262 * Only this BlockDriverState's AioContext is run, so in-flight requests must
263 * not depend on events in other AioContexts. In that case, use
264 * bdrv_drain_all() instead.
266 void coroutine_fn bdrv_co_drain(BlockDriverState *bs)
268 assert(qemu_in_coroutine());
269 bdrv_drained_begin(bs);
270 bdrv_drained_end(bs);
273 void bdrv_drain(BlockDriverState *bs)
275 bdrv_drained_begin(bs);
276 bdrv_drained_end(bs);
280 * Wait for pending requests to complete across all BlockDriverStates
282 * This function does not flush data to disk, use bdrv_flush_all() for that
283 * after calling this function.
285 * This pauses all block jobs and disables external clients. It must
286 * be paired with bdrv_drain_all_end().
288 * NOTE: no new block jobs or BlockDriverStates can be created between
289 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
291 void bdrv_drain_all_begin(void)
293 /* Always run first iteration so any pending completion BHs run */
294 bool waited = true;
295 BlockDriverState *bs;
296 BdrvNextIterator it;
297 GSList *aio_ctxs = NULL, *ctx;
299 block_job_pause_all();
301 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
302 AioContext *aio_context = bdrv_get_aio_context(bs);
304 aio_context_acquire(aio_context);
305 bdrv_parent_drained_begin(bs);
306 aio_disable_external(aio_context);
307 aio_context_release(aio_context);
309 if (!g_slist_find(aio_ctxs, aio_context)) {
310 aio_ctxs = g_slist_prepend(aio_ctxs, aio_context);
314 /* Note that completion of an asynchronous I/O operation can trigger any
315 * number of other I/O operations on other devices---for example a
316 * coroutine can submit an I/O request to another device in response to
317 * request completion. Therefore we must keep looping until there was no
318 * more activity rather than simply draining each device independently.
320 while (waited) {
321 waited = false;
323 for (ctx = aio_ctxs; ctx != NULL; ctx = ctx->next) {
324 AioContext *aio_context = ctx->data;
326 aio_context_acquire(aio_context);
327 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
328 if (aio_context == bdrv_get_aio_context(bs)) {
329 waited |= bdrv_drain_recurse(bs);
332 aio_context_release(aio_context);
336 g_slist_free(aio_ctxs);
339 void bdrv_drain_all_end(void)
341 BlockDriverState *bs;
342 BdrvNextIterator it;
344 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
345 AioContext *aio_context = bdrv_get_aio_context(bs);
347 aio_context_acquire(aio_context);
348 aio_enable_external(aio_context);
349 bdrv_parent_drained_end(bs);
350 aio_context_release(aio_context);
353 block_job_resume_all();
356 void bdrv_drain_all(void)
358 bdrv_drain_all_begin();
359 bdrv_drain_all_end();
363 * Remove an active request from the tracked requests list
365 * This function should be called when a tracked request is completing.
367 static void tracked_request_end(BdrvTrackedRequest *req)
369 if (req->serialising) {
370 atomic_dec(&req->bs->serialising_in_flight);
373 qemu_co_mutex_lock(&req->bs->reqs_lock);
374 QLIST_REMOVE(req, list);
375 qemu_co_queue_restart_all(&req->wait_queue);
376 qemu_co_mutex_unlock(&req->bs->reqs_lock);
380 * Add an active request to the tracked requests list
382 static void tracked_request_begin(BdrvTrackedRequest *req,
383 BlockDriverState *bs,
384 int64_t offset,
385 unsigned int bytes,
386 enum BdrvTrackedRequestType type)
388 *req = (BdrvTrackedRequest){
389 .bs = bs,
390 .offset = offset,
391 .bytes = bytes,
392 .type = type,
393 .co = qemu_coroutine_self(),
394 .serialising = false,
395 .overlap_offset = offset,
396 .overlap_bytes = bytes,
399 qemu_co_queue_init(&req->wait_queue);
401 qemu_co_mutex_lock(&bs->reqs_lock);
402 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
403 qemu_co_mutex_unlock(&bs->reqs_lock);
406 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align)
408 int64_t overlap_offset = req->offset & ~(align - 1);
409 unsigned int overlap_bytes = ROUND_UP(req->offset + req->bytes, align)
410 - overlap_offset;
412 if (!req->serialising) {
413 atomic_inc(&req->bs->serialising_in_flight);
414 req->serialising = true;
417 req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
418 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
422 * Round a region to cluster boundaries (sector-based)
424 void bdrv_round_sectors_to_clusters(BlockDriverState *bs,
425 int64_t sector_num, int nb_sectors,
426 int64_t *cluster_sector_num,
427 int *cluster_nb_sectors)
429 BlockDriverInfo bdi;
431 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
432 *cluster_sector_num = sector_num;
433 *cluster_nb_sectors = nb_sectors;
434 } else {
435 int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE;
436 *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c);
437 *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num +
438 nb_sectors, c);
443 * Round a region to cluster boundaries
445 void bdrv_round_to_clusters(BlockDriverState *bs,
446 int64_t offset, unsigned int bytes,
447 int64_t *cluster_offset,
448 unsigned int *cluster_bytes)
450 BlockDriverInfo bdi;
452 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
453 *cluster_offset = offset;
454 *cluster_bytes = bytes;
455 } else {
456 int64_t c = bdi.cluster_size;
457 *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
458 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
462 static int bdrv_get_cluster_size(BlockDriverState *bs)
464 BlockDriverInfo bdi;
465 int ret;
467 ret = bdrv_get_info(bs, &bdi);
468 if (ret < 0 || bdi.cluster_size == 0) {
469 return bs->bl.request_alignment;
470 } else {
471 return bdi.cluster_size;
475 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
476 int64_t offset, unsigned int bytes)
478 /* aaaa bbbb */
479 if (offset >= req->overlap_offset + req->overlap_bytes) {
480 return false;
482 /* bbbb aaaa */
483 if (req->overlap_offset >= offset + bytes) {
484 return false;
486 return true;
489 void bdrv_inc_in_flight(BlockDriverState *bs)
491 atomic_inc(&bs->in_flight);
494 static void dummy_bh_cb(void *opaque)
498 void bdrv_wakeup(BlockDriverState *bs)
500 /* The barrier (or an atomic op) is in the caller. */
501 if (atomic_read(&bs->wakeup)) {
502 aio_bh_schedule_oneshot(qemu_get_aio_context(), dummy_bh_cb, NULL);
506 void bdrv_dec_in_flight(BlockDriverState *bs)
508 atomic_dec(&bs->in_flight);
509 bdrv_wakeup(bs);
512 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self)
514 BlockDriverState *bs = self->bs;
515 BdrvTrackedRequest *req;
516 bool retry;
517 bool waited = false;
519 if (!atomic_read(&bs->serialising_in_flight)) {
520 return false;
523 do {
524 retry = false;
525 qemu_co_mutex_lock(&bs->reqs_lock);
526 QLIST_FOREACH(req, &bs->tracked_requests, list) {
527 if (req == self || (!req->serialising && !self->serialising)) {
528 continue;
530 if (tracked_request_overlaps(req, self->overlap_offset,
531 self->overlap_bytes))
533 /* Hitting this means there was a reentrant request, for
534 * example, a block driver issuing nested requests. This must
535 * never happen since it means deadlock.
537 assert(qemu_coroutine_self() != req->co);
539 /* If the request is already (indirectly) waiting for us, or
540 * will wait for us as soon as it wakes up, then just go on
541 * (instead of producing a deadlock in the former case). */
542 if (!req->waiting_for) {
543 self->waiting_for = req;
544 qemu_co_queue_wait(&req->wait_queue, &bs->reqs_lock);
545 self->waiting_for = NULL;
546 retry = true;
547 waited = true;
548 break;
552 qemu_co_mutex_unlock(&bs->reqs_lock);
553 } while (retry);
555 return waited;
558 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
559 size_t size)
561 if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) {
562 return -EIO;
565 if (!bdrv_is_inserted(bs)) {
566 return -ENOMEDIUM;
569 if (offset < 0) {
570 return -EIO;
573 return 0;
576 typedef struct RwCo {
577 BdrvChild *child;
578 int64_t offset;
579 QEMUIOVector *qiov;
580 bool is_write;
581 int ret;
582 BdrvRequestFlags flags;
583 } RwCo;
585 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
587 RwCo *rwco = opaque;
589 if (!rwco->is_write) {
590 rwco->ret = bdrv_co_preadv(rwco->child, rwco->offset,
591 rwco->qiov->size, rwco->qiov,
592 rwco->flags);
593 } else {
594 rwco->ret = bdrv_co_pwritev(rwco->child, rwco->offset,
595 rwco->qiov->size, rwco->qiov,
596 rwco->flags);
601 * Process a vectored synchronous request using coroutines
603 static int bdrv_prwv_co(BdrvChild *child, int64_t offset,
604 QEMUIOVector *qiov, bool is_write,
605 BdrvRequestFlags flags)
607 Coroutine *co;
608 RwCo rwco = {
609 .child = child,
610 .offset = offset,
611 .qiov = qiov,
612 .is_write = is_write,
613 .ret = NOT_DONE,
614 .flags = flags,
617 if (qemu_in_coroutine()) {
618 /* Fast-path if already in coroutine context */
619 bdrv_rw_co_entry(&rwco);
620 } else {
621 co = qemu_coroutine_create(bdrv_rw_co_entry, &rwco);
622 bdrv_coroutine_enter(child->bs, co);
623 BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE);
625 return rwco.ret;
629 * Process a synchronous request using coroutines
631 static int bdrv_rw_co(BdrvChild *child, int64_t sector_num, uint8_t *buf,
632 int nb_sectors, bool is_write, BdrvRequestFlags flags)
634 QEMUIOVector qiov;
635 struct iovec iov = {
636 .iov_base = (void *)buf,
637 .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
640 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
641 return -EINVAL;
644 qemu_iovec_init_external(&qiov, &iov, 1);
645 return bdrv_prwv_co(child, sector_num << BDRV_SECTOR_BITS,
646 &qiov, is_write, flags);
649 /* return < 0 if error. See bdrv_write() for the return codes */
650 int bdrv_read(BdrvChild *child, int64_t sector_num,
651 uint8_t *buf, int nb_sectors)
653 return bdrv_rw_co(child, sector_num, buf, nb_sectors, false, 0);
656 /* Return < 0 if error. Important errors are:
657 -EIO generic I/O error (may happen for all errors)
658 -ENOMEDIUM No media inserted.
659 -EINVAL Invalid sector number or nb_sectors
660 -EACCES Trying to write a read-only device
662 int bdrv_write(BdrvChild *child, int64_t sector_num,
663 const uint8_t *buf, int nb_sectors)
665 return bdrv_rw_co(child, sector_num, (uint8_t *)buf, nb_sectors, true, 0);
668 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset,
669 int bytes, BdrvRequestFlags flags)
671 QEMUIOVector qiov;
672 struct iovec iov = {
673 .iov_base = NULL,
674 .iov_len = bytes,
677 qemu_iovec_init_external(&qiov, &iov, 1);
678 return bdrv_prwv_co(child, offset, &qiov, true,
679 BDRV_REQ_ZERO_WRITE | flags);
683 * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
684 * The operation is sped up by checking the block status and only writing
685 * zeroes to the device if they currently do not return zeroes. Optional
686 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
687 * BDRV_REQ_FUA).
689 * Returns < 0 on error, 0 on success. For error codes see bdrv_write().
691 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
693 int64_t target_sectors, ret, nb_sectors, sector_num = 0;
694 BlockDriverState *bs = child->bs;
695 BlockDriverState *file;
696 int n;
698 target_sectors = bdrv_nb_sectors(bs);
699 if (target_sectors < 0) {
700 return target_sectors;
703 for (;;) {
704 nb_sectors = MIN(target_sectors - sector_num, BDRV_REQUEST_MAX_SECTORS);
705 if (nb_sectors <= 0) {
706 return 0;
708 ret = bdrv_get_block_status(bs, sector_num, nb_sectors, &n, &file);
709 if (ret < 0) {
710 error_report("error getting block status at sector %" PRId64 ": %s",
711 sector_num, strerror(-ret));
712 return ret;
714 if (ret & BDRV_BLOCK_ZERO) {
715 sector_num += n;
716 continue;
718 ret = bdrv_pwrite_zeroes(child, sector_num << BDRV_SECTOR_BITS,
719 n << BDRV_SECTOR_BITS, flags);
720 if (ret < 0) {
721 error_report("error writing zeroes at sector %" PRId64 ": %s",
722 sector_num, strerror(-ret));
723 return ret;
725 sector_num += n;
729 int bdrv_preadv(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
731 int ret;
733 ret = bdrv_prwv_co(child, offset, qiov, false, 0);
734 if (ret < 0) {
735 return ret;
738 return qiov->size;
741 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes)
743 QEMUIOVector qiov;
744 struct iovec iov = {
745 .iov_base = (void *)buf,
746 .iov_len = bytes,
749 if (bytes < 0) {
750 return -EINVAL;
753 qemu_iovec_init_external(&qiov, &iov, 1);
754 return bdrv_preadv(child, offset, &qiov);
757 int bdrv_pwritev(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
759 int ret;
761 ret = bdrv_prwv_co(child, offset, qiov, true, 0);
762 if (ret < 0) {
763 return ret;
766 return qiov->size;
769 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes)
771 QEMUIOVector qiov;
772 struct iovec iov = {
773 .iov_base = (void *) buf,
774 .iov_len = bytes,
777 if (bytes < 0) {
778 return -EINVAL;
781 qemu_iovec_init_external(&qiov, &iov, 1);
782 return bdrv_pwritev(child, offset, &qiov);
786 * Writes to the file and ensures that no writes are reordered across this
787 * request (acts as a barrier)
789 * Returns 0 on success, -errno in error cases.
791 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset,
792 const void *buf, int count)
794 int ret;
796 ret = bdrv_pwrite(child, offset, buf, count);
797 if (ret < 0) {
798 return ret;
801 ret = bdrv_flush(child->bs);
802 if (ret < 0) {
803 return ret;
806 return 0;
809 typedef struct CoroutineIOCompletion {
810 Coroutine *coroutine;
811 int ret;
812 } CoroutineIOCompletion;
814 static void bdrv_co_io_em_complete(void *opaque, int ret)
816 CoroutineIOCompletion *co = opaque;
818 co->ret = ret;
819 aio_co_wake(co->coroutine);
822 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
823 uint64_t offset, uint64_t bytes,
824 QEMUIOVector *qiov, int flags)
826 BlockDriver *drv = bs->drv;
827 int64_t sector_num;
828 unsigned int nb_sectors;
830 assert(!(flags & ~BDRV_REQ_MASK));
832 if (drv->bdrv_co_preadv) {
833 return drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
836 sector_num = offset >> BDRV_SECTOR_BITS;
837 nb_sectors = bytes >> BDRV_SECTOR_BITS;
839 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
840 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
841 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
843 if (drv->bdrv_co_readv) {
844 return drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
845 } else {
846 BlockAIOCB *acb;
847 CoroutineIOCompletion co = {
848 .coroutine = qemu_coroutine_self(),
851 acb = bs->drv->bdrv_aio_readv(bs, sector_num, qiov, nb_sectors,
852 bdrv_co_io_em_complete, &co);
853 if (acb == NULL) {
854 return -EIO;
855 } else {
856 qemu_coroutine_yield();
857 return co.ret;
862 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs,
863 uint64_t offset, uint64_t bytes,
864 QEMUIOVector *qiov, int flags)
866 BlockDriver *drv = bs->drv;
867 int64_t sector_num;
868 unsigned int nb_sectors;
869 int ret;
871 assert(!(flags & ~BDRV_REQ_MASK));
873 if (drv->bdrv_co_pwritev) {
874 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov,
875 flags & bs->supported_write_flags);
876 flags &= ~bs->supported_write_flags;
877 goto emulate_flags;
880 sector_num = offset >> BDRV_SECTOR_BITS;
881 nb_sectors = bytes >> BDRV_SECTOR_BITS;
883 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
884 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
885 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
887 if (drv->bdrv_co_writev_flags) {
888 ret = drv->bdrv_co_writev_flags(bs, sector_num, nb_sectors, qiov,
889 flags & bs->supported_write_flags);
890 flags &= ~bs->supported_write_flags;
891 } else if (drv->bdrv_co_writev) {
892 assert(!bs->supported_write_flags);
893 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
894 } else {
895 BlockAIOCB *acb;
896 CoroutineIOCompletion co = {
897 .coroutine = qemu_coroutine_self(),
900 acb = bs->drv->bdrv_aio_writev(bs, sector_num, qiov, nb_sectors,
901 bdrv_co_io_em_complete, &co);
902 if (acb == NULL) {
903 ret = -EIO;
904 } else {
905 qemu_coroutine_yield();
906 ret = co.ret;
910 emulate_flags:
911 if (ret == 0 && (flags & BDRV_REQ_FUA)) {
912 ret = bdrv_co_flush(bs);
915 return ret;
918 static int coroutine_fn
919 bdrv_driver_pwritev_compressed(BlockDriverState *bs, uint64_t offset,
920 uint64_t bytes, QEMUIOVector *qiov)
922 BlockDriver *drv = bs->drv;
924 if (!drv->bdrv_co_pwritev_compressed) {
925 return -ENOTSUP;
928 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
931 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child,
932 int64_t offset, unsigned int bytes, QEMUIOVector *qiov)
934 BlockDriverState *bs = child->bs;
936 /* Perform I/O through a temporary buffer so that users who scribble over
937 * their read buffer while the operation is in progress do not end up
938 * modifying the image file. This is critical for zero-copy guest I/O
939 * where anything might happen inside guest memory.
941 void *bounce_buffer;
943 BlockDriver *drv = bs->drv;
944 struct iovec iov;
945 QEMUIOVector bounce_qiov;
946 int64_t cluster_offset;
947 unsigned int cluster_bytes;
948 size_t skip_bytes;
949 int ret;
951 /* FIXME We cannot require callers to have write permissions when all they
952 * are doing is a read request. If we did things right, write permissions
953 * would be obtained anyway, but internally by the copy-on-read code. As
954 * long as it is implemented here rather than in a separat filter driver,
955 * the copy-on-read code doesn't have its own BdrvChild, however, for which
956 * it could request permissions. Therefore we have to bypass the permission
957 * system for the moment. */
958 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
960 /* Cover entire cluster so no additional backing file I/O is required when
961 * allocating cluster in the image file.
963 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
965 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
966 cluster_offset, cluster_bytes);
968 iov.iov_len = cluster_bytes;
969 iov.iov_base = bounce_buffer = qemu_try_blockalign(bs, iov.iov_len);
970 if (bounce_buffer == NULL) {
971 ret = -ENOMEM;
972 goto err;
975 qemu_iovec_init_external(&bounce_qiov, &iov, 1);
977 ret = bdrv_driver_preadv(bs, cluster_offset, cluster_bytes,
978 &bounce_qiov, 0);
979 if (ret < 0) {
980 goto err;
983 if (drv->bdrv_co_pwrite_zeroes &&
984 buffer_is_zero(bounce_buffer, iov.iov_len)) {
985 /* FIXME: Should we (perhaps conditionally) be setting
986 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
987 * that still correctly reads as zero? */
988 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, cluster_bytes, 0);
989 } else {
990 /* This does not change the data on the disk, it is not necessary
991 * to flush even in cache=writethrough mode.
993 ret = bdrv_driver_pwritev(bs, cluster_offset, cluster_bytes,
994 &bounce_qiov, 0);
997 if (ret < 0) {
998 /* It might be okay to ignore write errors for guest requests. If this
999 * is a deliberate copy-on-read then we don't want to ignore the error.
1000 * Simply report it in all cases.
1002 goto err;
1005 skip_bytes = offset - cluster_offset;
1006 qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes, bytes);
1008 err:
1009 qemu_vfree(bounce_buffer);
1010 return ret;
1014 * Forwards an already correctly aligned request to the BlockDriver. This
1015 * handles copy on read, zeroing after EOF, and fragmentation of large
1016 * reads; any other features must be implemented by the caller.
1018 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child,
1019 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1020 int64_t align, QEMUIOVector *qiov, int flags)
1022 BlockDriverState *bs = child->bs;
1023 int64_t total_bytes, max_bytes;
1024 int ret = 0;
1025 uint64_t bytes_remaining = bytes;
1026 int max_transfer;
1028 assert(is_power_of_2(align));
1029 assert((offset & (align - 1)) == 0);
1030 assert((bytes & (align - 1)) == 0);
1031 assert(!qiov || bytes == qiov->size);
1032 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1033 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1034 align);
1036 /* TODO: We would need a per-BDS .supported_read_flags and
1037 * potential fallback support, if we ever implement any read flags
1038 * to pass through to drivers. For now, there aren't any
1039 * passthrough flags. */
1040 assert(!(flags & ~(BDRV_REQ_NO_SERIALISING | BDRV_REQ_COPY_ON_READ)));
1042 /* Handle Copy on Read and associated serialisation */
1043 if (flags & BDRV_REQ_COPY_ON_READ) {
1044 /* If we touch the same cluster it counts as an overlap. This
1045 * guarantees that allocating writes will be serialized and not race
1046 * with each other for the same cluster. For example, in copy-on-read
1047 * it ensures that the CoR read and write operations are atomic and
1048 * guest writes cannot interleave between them. */
1049 mark_request_serialising(req, bdrv_get_cluster_size(bs));
1052 if (!(flags & BDRV_REQ_NO_SERIALISING)) {
1053 wait_serialising_requests(req);
1056 if (flags & BDRV_REQ_COPY_ON_READ) {
1057 int64_t start_sector = offset >> BDRV_SECTOR_BITS;
1058 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1059 unsigned int nb_sectors = end_sector - start_sector;
1060 int pnum;
1062 ret = bdrv_is_allocated(bs, start_sector, nb_sectors, &pnum);
1063 if (ret < 0) {
1064 goto out;
1067 if (!ret || pnum != nb_sectors) {
1068 ret = bdrv_co_do_copy_on_readv(child, offset, bytes, qiov);
1069 goto out;
1073 /* Forward the request to the BlockDriver, possibly fragmenting it */
1074 total_bytes = bdrv_getlength(bs);
1075 if (total_bytes < 0) {
1076 ret = total_bytes;
1077 goto out;
1080 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1081 if (bytes <= max_bytes && bytes <= max_transfer) {
1082 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, 0);
1083 goto out;
1086 while (bytes_remaining) {
1087 int num;
1089 if (max_bytes) {
1090 QEMUIOVector local_qiov;
1092 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1093 assert(num);
1094 qemu_iovec_init(&local_qiov, qiov->niov);
1095 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1097 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1098 num, &local_qiov, 0);
1099 max_bytes -= num;
1100 qemu_iovec_destroy(&local_qiov);
1101 } else {
1102 num = bytes_remaining;
1103 ret = qemu_iovec_memset(qiov, bytes - bytes_remaining, 0,
1104 bytes_remaining);
1106 if (ret < 0) {
1107 goto out;
1109 bytes_remaining -= num;
1112 out:
1113 return ret < 0 ? ret : 0;
1117 * Handle a read request in coroutine context
1119 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1120 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1121 BdrvRequestFlags flags)
1123 BlockDriverState *bs = child->bs;
1124 BlockDriver *drv = bs->drv;
1125 BdrvTrackedRequest req;
1127 uint64_t align = bs->bl.request_alignment;
1128 uint8_t *head_buf = NULL;
1129 uint8_t *tail_buf = NULL;
1130 QEMUIOVector local_qiov;
1131 bool use_local_qiov = false;
1132 int ret;
1134 if (!drv) {
1135 return -ENOMEDIUM;
1138 ret = bdrv_check_byte_request(bs, offset, bytes);
1139 if (ret < 0) {
1140 return ret;
1143 bdrv_inc_in_flight(bs);
1145 /* Don't do copy-on-read if we read data before write operation */
1146 if (atomic_read(&bs->copy_on_read) && !(flags & BDRV_REQ_NO_SERIALISING)) {
1147 flags |= BDRV_REQ_COPY_ON_READ;
1150 /* Align read if necessary by padding qiov */
1151 if (offset & (align - 1)) {
1152 head_buf = qemu_blockalign(bs, align);
1153 qemu_iovec_init(&local_qiov, qiov->niov + 2);
1154 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1155 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1156 use_local_qiov = true;
1158 bytes += offset & (align - 1);
1159 offset = offset & ~(align - 1);
1162 if ((offset + bytes) & (align - 1)) {
1163 if (!use_local_qiov) {
1164 qemu_iovec_init(&local_qiov, qiov->niov + 1);
1165 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1166 use_local_qiov = true;
1168 tail_buf = qemu_blockalign(bs, align);
1169 qemu_iovec_add(&local_qiov, tail_buf,
1170 align - ((offset + bytes) & (align - 1)));
1172 bytes = ROUND_UP(bytes, align);
1175 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1176 ret = bdrv_aligned_preadv(child, &req, offset, bytes, align,
1177 use_local_qiov ? &local_qiov : qiov,
1178 flags);
1179 tracked_request_end(&req);
1180 bdrv_dec_in_flight(bs);
1182 if (use_local_qiov) {
1183 qemu_iovec_destroy(&local_qiov);
1184 qemu_vfree(head_buf);
1185 qemu_vfree(tail_buf);
1188 return ret;
1191 static int coroutine_fn bdrv_co_do_readv(BdrvChild *child,
1192 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1193 BdrvRequestFlags flags)
1195 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1196 return -EINVAL;
1199 return bdrv_co_preadv(child, sector_num << BDRV_SECTOR_BITS,
1200 nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1203 int coroutine_fn bdrv_co_readv(BdrvChild *child, int64_t sector_num,
1204 int nb_sectors, QEMUIOVector *qiov)
1206 trace_bdrv_co_readv(child->bs, sector_num, nb_sectors);
1208 return bdrv_co_do_readv(child, sector_num, nb_sectors, qiov, 0);
1211 /* Maximum buffer for write zeroes fallback, in bytes */
1212 #define MAX_WRITE_ZEROES_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
1214 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
1215 int64_t offset, int bytes, BdrvRequestFlags flags)
1217 BlockDriver *drv = bs->drv;
1218 QEMUIOVector qiov;
1219 struct iovec iov = {0};
1220 int ret = 0;
1221 bool need_flush = false;
1222 int head = 0;
1223 int tail = 0;
1225 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX);
1226 int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1227 bs->bl.request_alignment);
1228 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1229 MAX_WRITE_ZEROES_BOUNCE_BUFFER);
1231 assert(alignment % bs->bl.request_alignment == 0);
1232 head = offset % alignment;
1233 tail = (offset + bytes) % alignment;
1234 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1235 assert(max_write_zeroes >= bs->bl.request_alignment);
1237 while (bytes > 0 && !ret) {
1238 int num = bytes;
1240 /* Align request. Block drivers can expect the "bulk" of the request
1241 * to be aligned, and that unaligned requests do not cross cluster
1242 * boundaries.
1244 if (head) {
1245 /* Make a small request up to the first aligned sector. For
1246 * convenience, limit this request to max_transfer even if
1247 * we don't need to fall back to writes. */
1248 num = MIN(MIN(bytes, max_transfer), alignment - head);
1249 head = (head + num) % alignment;
1250 assert(num < max_write_zeroes);
1251 } else if (tail && num > alignment) {
1252 /* Shorten the request to the last aligned sector. */
1253 num -= tail;
1256 /* limit request size */
1257 if (num > max_write_zeroes) {
1258 num = max_write_zeroes;
1261 ret = -ENOTSUP;
1262 /* First try the efficient write zeroes operation */
1263 if (drv->bdrv_co_pwrite_zeroes) {
1264 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1265 flags & bs->supported_zero_flags);
1266 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1267 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1268 need_flush = true;
1270 } else {
1271 assert(!bs->supported_zero_flags);
1274 if (ret == -ENOTSUP) {
1275 /* Fall back to bounce buffer if write zeroes is unsupported */
1276 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1278 if ((flags & BDRV_REQ_FUA) &&
1279 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1280 /* No need for bdrv_driver_pwrite() to do a fallback
1281 * flush on each chunk; use just one at the end */
1282 write_flags &= ~BDRV_REQ_FUA;
1283 need_flush = true;
1285 num = MIN(num, max_transfer);
1286 iov.iov_len = num;
1287 if (iov.iov_base == NULL) {
1288 iov.iov_base = qemu_try_blockalign(bs, num);
1289 if (iov.iov_base == NULL) {
1290 ret = -ENOMEM;
1291 goto fail;
1293 memset(iov.iov_base, 0, num);
1295 qemu_iovec_init_external(&qiov, &iov, 1);
1297 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, write_flags);
1299 /* Keep bounce buffer around if it is big enough for all
1300 * all future requests.
1302 if (num < max_transfer) {
1303 qemu_vfree(iov.iov_base);
1304 iov.iov_base = NULL;
1308 offset += num;
1309 bytes -= num;
1312 fail:
1313 if (ret == 0 && need_flush) {
1314 ret = bdrv_co_flush(bs);
1316 qemu_vfree(iov.iov_base);
1317 return ret;
1321 * Forwards an already correctly aligned write request to the BlockDriver,
1322 * after possibly fragmenting it.
1324 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child,
1325 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1326 int64_t align, QEMUIOVector *qiov, int flags)
1328 BlockDriverState *bs = child->bs;
1329 BlockDriver *drv = bs->drv;
1330 bool waited;
1331 int ret;
1333 int64_t start_sector = offset >> BDRV_SECTOR_BITS;
1334 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1335 uint64_t bytes_remaining = bytes;
1336 int max_transfer;
1338 assert(is_power_of_2(align));
1339 assert((offset & (align - 1)) == 0);
1340 assert((bytes & (align - 1)) == 0);
1341 assert(!qiov || bytes == qiov->size);
1342 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1343 assert(!(flags & ~BDRV_REQ_MASK));
1344 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1345 align);
1347 waited = wait_serialising_requests(req);
1348 assert(!waited || !req->serialising);
1349 assert(req->overlap_offset <= offset);
1350 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1351 assert(child->perm & BLK_PERM_WRITE);
1352 assert(end_sector <= bs->total_sectors || child->perm & BLK_PERM_RESIZE);
1354 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, req);
1356 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1357 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
1358 qemu_iovec_is_zero(qiov)) {
1359 flags |= BDRV_REQ_ZERO_WRITE;
1360 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1361 flags |= BDRV_REQ_MAY_UNMAP;
1365 if (ret < 0) {
1366 /* Do nothing, write notifier decided to fail this request */
1367 } else if (flags & BDRV_REQ_ZERO_WRITE) {
1368 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
1369 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
1370 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
1371 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, qiov);
1372 } else if (bytes <= max_transfer) {
1373 bdrv_debug_event(bs, BLKDBG_PWRITEV);
1374 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, flags);
1375 } else {
1376 bdrv_debug_event(bs, BLKDBG_PWRITEV);
1377 while (bytes_remaining) {
1378 int num = MIN(bytes_remaining, max_transfer);
1379 QEMUIOVector local_qiov;
1380 int local_flags = flags;
1382 assert(num);
1383 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
1384 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1385 /* If FUA is going to be emulated by flush, we only
1386 * need to flush on the last iteration */
1387 local_flags &= ~BDRV_REQ_FUA;
1389 qemu_iovec_init(&local_qiov, qiov->niov);
1390 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1392 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
1393 num, &local_qiov, local_flags);
1394 qemu_iovec_destroy(&local_qiov);
1395 if (ret < 0) {
1396 break;
1398 bytes_remaining -= num;
1401 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
1403 atomic_inc(&bs->write_gen);
1404 bdrv_set_dirty(bs, start_sector, end_sector - start_sector);
1406 stat64_max(&bs->wr_highest_offset, offset + bytes);
1408 if (ret >= 0) {
1409 bs->total_sectors = MAX(bs->total_sectors, end_sector);
1410 ret = 0;
1413 return ret;
1416 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child,
1417 int64_t offset,
1418 unsigned int bytes,
1419 BdrvRequestFlags flags,
1420 BdrvTrackedRequest *req)
1422 BlockDriverState *bs = child->bs;
1423 uint8_t *buf = NULL;
1424 QEMUIOVector local_qiov;
1425 struct iovec iov;
1426 uint64_t align = bs->bl.request_alignment;
1427 unsigned int head_padding_bytes, tail_padding_bytes;
1428 int ret = 0;
1430 head_padding_bytes = offset & (align - 1);
1431 tail_padding_bytes = (align - (offset + bytes)) & (align - 1);
1434 assert(flags & BDRV_REQ_ZERO_WRITE);
1435 if (head_padding_bytes || tail_padding_bytes) {
1436 buf = qemu_blockalign(bs, align);
1437 iov = (struct iovec) {
1438 .iov_base = buf,
1439 .iov_len = align,
1441 qemu_iovec_init_external(&local_qiov, &iov, 1);
1443 if (head_padding_bytes) {
1444 uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes);
1446 /* RMW the unaligned part before head. */
1447 mark_request_serialising(req, align);
1448 wait_serialising_requests(req);
1449 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1450 ret = bdrv_aligned_preadv(child, req, offset & ~(align - 1), align,
1451 align, &local_qiov, 0);
1452 if (ret < 0) {
1453 goto fail;
1455 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1457 memset(buf + head_padding_bytes, 0, zero_bytes);
1458 ret = bdrv_aligned_pwritev(child, req, offset & ~(align - 1), align,
1459 align, &local_qiov,
1460 flags & ~BDRV_REQ_ZERO_WRITE);
1461 if (ret < 0) {
1462 goto fail;
1464 offset += zero_bytes;
1465 bytes -= zero_bytes;
1468 assert(!bytes || (offset & (align - 1)) == 0);
1469 if (bytes >= align) {
1470 /* Write the aligned part in the middle. */
1471 uint64_t aligned_bytes = bytes & ~(align - 1);
1472 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
1473 NULL, flags);
1474 if (ret < 0) {
1475 goto fail;
1477 bytes -= aligned_bytes;
1478 offset += aligned_bytes;
1481 assert(!bytes || (offset & (align - 1)) == 0);
1482 if (bytes) {
1483 assert(align == tail_padding_bytes + bytes);
1484 /* RMW the unaligned part after tail. */
1485 mark_request_serialising(req, align);
1486 wait_serialising_requests(req);
1487 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1488 ret = bdrv_aligned_preadv(child, req, offset, align,
1489 align, &local_qiov, 0);
1490 if (ret < 0) {
1491 goto fail;
1493 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1495 memset(buf, 0, bytes);
1496 ret = bdrv_aligned_pwritev(child, req, offset, align, align,
1497 &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE);
1499 fail:
1500 qemu_vfree(buf);
1501 return ret;
1506 * Handle a write request in coroutine context
1508 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
1509 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1510 BdrvRequestFlags flags)
1512 BlockDriverState *bs = child->bs;
1513 BdrvTrackedRequest req;
1514 uint64_t align = bs->bl.request_alignment;
1515 uint8_t *head_buf = NULL;
1516 uint8_t *tail_buf = NULL;
1517 QEMUIOVector local_qiov;
1518 bool use_local_qiov = false;
1519 int ret;
1521 if (!bs->drv) {
1522 return -ENOMEDIUM;
1524 if (bs->read_only) {
1525 return -EPERM;
1527 assert(!(bs->open_flags & BDRV_O_INACTIVE));
1529 ret = bdrv_check_byte_request(bs, offset, bytes);
1530 if (ret < 0) {
1531 return ret;
1534 bdrv_inc_in_flight(bs);
1536 * Align write if necessary by performing a read-modify-write cycle.
1537 * Pad qiov with the read parts and be sure to have a tracked request not
1538 * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle.
1540 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
1542 if (!qiov) {
1543 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
1544 goto out;
1547 if (offset & (align - 1)) {
1548 QEMUIOVector head_qiov;
1549 struct iovec head_iov;
1551 mark_request_serialising(&req, align);
1552 wait_serialising_requests(&req);
1554 head_buf = qemu_blockalign(bs, align);
1555 head_iov = (struct iovec) {
1556 .iov_base = head_buf,
1557 .iov_len = align,
1559 qemu_iovec_init_external(&head_qiov, &head_iov, 1);
1561 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1562 ret = bdrv_aligned_preadv(child, &req, offset & ~(align - 1), align,
1563 align, &head_qiov, 0);
1564 if (ret < 0) {
1565 goto fail;
1567 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1569 qemu_iovec_init(&local_qiov, qiov->niov + 2);
1570 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1571 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1572 use_local_qiov = true;
1574 bytes += offset & (align - 1);
1575 offset = offset & ~(align - 1);
1577 /* We have read the tail already if the request is smaller
1578 * than one aligned block.
1580 if (bytes < align) {
1581 qemu_iovec_add(&local_qiov, head_buf + bytes, align - bytes);
1582 bytes = align;
1586 if ((offset + bytes) & (align - 1)) {
1587 QEMUIOVector tail_qiov;
1588 struct iovec tail_iov;
1589 size_t tail_bytes;
1590 bool waited;
1592 mark_request_serialising(&req, align);
1593 waited = wait_serialising_requests(&req);
1594 assert(!waited || !use_local_qiov);
1596 tail_buf = qemu_blockalign(bs, align);
1597 tail_iov = (struct iovec) {
1598 .iov_base = tail_buf,
1599 .iov_len = align,
1601 qemu_iovec_init_external(&tail_qiov, &tail_iov, 1);
1603 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1604 ret = bdrv_aligned_preadv(child, &req, (offset + bytes) & ~(align - 1),
1605 align, align, &tail_qiov, 0);
1606 if (ret < 0) {
1607 goto fail;
1609 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1611 if (!use_local_qiov) {
1612 qemu_iovec_init(&local_qiov, qiov->niov + 1);
1613 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1614 use_local_qiov = true;
1617 tail_bytes = (offset + bytes) & (align - 1);
1618 qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes);
1620 bytes = ROUND_UP(bytes, align);
1623 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
1624 use_local_qiov ? &local_qiov : qiov,
1625 flags);
1627 fail:
1629 if (use_local_qiov) {
1630 qemu_iovec_destroy(&local_qiov);
1632 qemu_vfree(head_buf);
1633 qemu_vfree(tail_buf);
1634 out:
1635 tracked_request_end(&req);
1636 bdrv_dec_in_flight(bs);
1637 return ret;
1640 static int coroutine_fn bdrv_co_do_writev(BdrvChild *child,
1641 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1642 BdrvRequestFlags flags)
1644 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1645 return -EINVAL;
1648 return bdrv_co_pwritev(child, sector_num << BDRV_SECTOR_BITS,
1649 nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1652 int coroutine_fn bdrv_co_writev(BdrvChild *child, int64_t sector_num,
1653 int nb_sectors, QEMUIOVector *qiov)
1655 trace_bdrv_co_writev(child->bs, sector_num, nb_sectors);
1657 return bdrv_co_do_writev(child, sector_num, nb_sectors, qiov, 0);
1660 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
1661 int bytes, BdrvRequestFlags flags)
1663 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
1665 if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
1666 flags &= ~BDRV_REQ_MAY_UNMAP;
1669 return bdrv_co_pwritev(child, offset, bytes, NULL,
1670 BDRV_REQ_ZERO_WRITE | flags);
1674 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
1676 int bdrv_flush_all(void)
1678 BdrvNextIterator it;
1679 BlockDriverState *bs = NULL;
1680 int result = 0;
1682 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
1683 AioContext *aio_context = bdrv_get_aio_context(bs);
1684 int ret;
1686 aio_context_acquire(aio_context);
1687 ret = bdrv_flush(bs);
1688 if (ret < 0 && !result) {
1689 result = ret;
1691 aio_context_release(aio_context);
1694 return result;
1698 typedef struct BdrvCoGetBlockStatusData {
1699 BlockDriverState *bs;
1700 BlockDriverState *base;
1701 BlockDriverState **file;
1702 int64_t sector_num;
1703 int nb_sectors;
1704 int *pnum;
1705 int64_t ret;
1706 bool done;
1707 } BdrvCoGetBlockStatusData;
1710 * Returns the allocation status of the specified sectors.
1711 * Drivers not implementing the functionality are assumed to not support
1712 * backing files, hence all their sectors are reported as allocated.
1714 * If 'sector_num' is beyond the end of the disk image the return value is 0
1715 * and 'pnum' is set to 0.
1717 * 'pnum' is set to the number of sectors (including and immediately following
1718 * the specified sector) that are known to be in the same
1719 * allocated/unallocated state.
1721 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes
1722 * beyond the end of the disk image it will be clamped.
1724 * If returned value is positive and BDRV_BLOCK_OFFSET_VALID bit is set, 'file'
1725 * points to the BDS which the sector range is allocated in.
1727 static int64_t coroutine_fn bdrv_co_get_block_status(BlockDriverState *bs,
1728 int64_t sector_num,
1729 int nb_sectors, int *pnum,
1730 BlockDriverState **file)
1732 int64_t total_sectors;
1733 int64_t n;
1734 int64_t ret, ret2;
1736 total_sectors = bdrv_nb_sectors(bs);
1737 if (total_sectors < 0) {
1738 return total_sectors;
1741 if (sector_num >= total_sectors) {
1742 *pnum = 0;
1743 return 0;
1746 n = total_sectors - sector_num;
1747 if (n < nb_sectors) {
1748 nb_sectors = n;
1751 if (!bs->drv->bdrv_co_get_block_status) {
1752 *pnum = nb_sectors;
1753 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
1754 if (bs->drv->protocol_name) {
1755 ret |= BDRV_BLOCK_OFFSET_VALID | (sector_num * BDRV_SECTOR_SIZE);
1757 return ret;
1760 *file = NULL;
1761 bdrv_inc_in_flight(bs);
1762 ret = bs->drv->bdrv_co_get_block_status(bs, sector_num, nb_sectors, pnum,
1763 file);
1764 if (ret < 0) {
1765 *pnum = 0;
1766 goto out;
1769 if (ret & BDRV_BLOCK_RAW) {
1770 assert(ret & BDRV_BLOCK_OFFSET_VALID);
1771 ret = bdrv_co_get_block_status(*file, ret >> BDRV_SECTOR_BITS,
1772 *pnum, pnum, file);
1773 goto out;
1776 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
1777 ret |= BDRV_BLOCK_ALLOCATED;
1778 } else {
1779 if (bdrv_unallocated_blocks_are_zero(bs)) {
1780 ret |= BDRV_BLOCK_ZERO;
1781 } else if (bs->backing) {
1782 BlockDriverState *bs2 = bs->backing->bs;
1783 int64_t nb_sectors2 = bdrv_nb_sectors(bs2);
1784 if (nb_sectors2 >= 0 && sector_num >= nb_sectors2) {
1785 ret |= BDRV_BLOCK_ZERO;
1790 if (*file && *file != bs &&
1791 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
1792 (ret & BDRV_BLOCK_OFFSET_VALID)) {
1793 BlockDriverState *file2;
1794 int file_pnum;
1796 ret2 = bdrv_co_get_block_status(*file, ret >> BDRV_SECTOR_BITS,
1797 *pnum, &file_pnum, &file2);
1798 if (ret2 >= 0) {
1799 /* Ignore errors. This is just providing extra information, it
1800 * is useful but not necessary.
1802 if (!file_pnum) {
1803 /* !file_pnum indicates an offset at or beyond the EOF; it is
1804 * perfectly valid for the format block driver to point to such
1805 * offsets, so catch it and mark everything as zero */
1806 ret |= BDRV_BLOCK_ZERO;
1807 } else {
1808 /* Limit request to the range reported by the protocol driver */
1809 *pnum = file_pnum;
1810 ret |= (ret2 & BDRV_BLOCK_ZERO);
1815 out:
1816 bdrv_dec_in_flight(bs);
1817 return ret;
1820 static int64_t coroutine_fn bdrv_co_get_block_status_above(BlockDriverState *bs,
1821 BlockDriverState *base,
1822 int64_t sector_num,
1823 int nb_sectors,
1824 int *pnum,
1825 BlockDriverState **file)
1827 BlockDriverState *p;
1828 int64_t ret = 0;
1830 assert(bs != base);
1831 for (p = bs; p != base; p = backing_bs(p)) {
1832 ret = bdrv_co_get_block_status(p, sector_num, nb_sectors, pnum, file);
1833 if (ret < 0 || ret & BDRV_BLOCK_ALLOCATED) {
1834 break;
1836 /* [sector_num, pnum] unallocated on this layer, which could be only
1837 * the first part of [sector_num, nb_sectors]. */
1838 nb_sectors = MIN(nb_sectors, *pnum);
1840 return ret;
1843 /* Coroutine wrapper for bdrv_get_block_status_above() */
1844 static void coroutine_fn bdrv_get_block_status_above_co_entry(void *opaque)
1846 BdrvCoGetBlockStatusData *data = opaque;
1848 data->ret = bdrv_co_get_block_status_above(data->bs, data->base,
1849 data->sector_num,
1850 data->nb_sectors,
1851 data->pnum,
1852 data->file);
1853 data->done = true;
1857 * Synchronous wrapper around bdrv_co_get_block_status_above().
1859 * See bdrv_co_get_block_status_above() for details.
1861 int64_t bdrv_get_block_status_above(BlockDriverState *bs,
1862 BlockDriverState *base,
1863 int64_t sector_num,
1864 int nb_sectors, int *pnum,
1865 BlockDriverState **file)
1867 Coroutine *co;
1868 BdrvCoGetBlockStatusData data = {
1869 .bs = bs,
1870 .base = base,
1871 .file = file,
1872 .sector_num = sector_num,
1873 .nb_sectors = nb_sectors,
1874 .pnum = pnum,
1875 .done = false,
1878 if (qemu_in_coroutine()) {
1879 /* Fast-path if already in coroutine context */
1880 bdrv_get_block_status_above_co_entry(&data);
1881 } else {
1882 co = qemu_coroutine_create(bdrv_get_block_status_above_co_entry,
1883 &data);
1884 bdrv_coroutine_enter(bs, co);
1885 BDRV_POLL_WHILE(bs, !data.done);
1887 return data.ret;
1890 int64_t bdrv_get_block_status(BlockDriverState *bs,
1891 int64_t sector_num,
1892 int nb_sectors, int *pnum,
1893 BlockDriverState **file)
1895 return bdrv_get_block_status_above(bs, backing_bs(bs),
1896 sector_num, nb_sectors, pnum, file);
1899 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num,
1900 int nb_sectors, int *pnum)
1902 BlockDriverState *file;
1903 int64_t ret = bdrv_get_block_status(bs, sector_num, nb_sectors, pnum,
1904 &file);
1905 if (ret < 0) {
1906 return ret;
1908 return !!(ret & BDRV_BLOCK_ALLOCATED);
1912 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
1914 * Return true if the given sector is allocated in any image between
1915 * BASE and TOP (inclusive). BASE can be NULL to check if the given
1916 * sector is allocated in any image of the chain. Return false otherwise.
1918 * 'pnum' is set to the number of sectors (including and immediately following
1919 * the specified sector) that are known to be in the same
1920 * allocated/unallocated state.
1923 int bdrv_is_allocated_above(BlockDriverState *top,
1924 BlockDriverState *base,
1925 int64_t sector_num,
1926 int nb_sectors, int *pnum)
1928 BlockDriverState *intermediate;
1929 int ret, n = nb_sectors;
1931 intermediate = top;
1932 while (intermediate && intermediate != base) {
1933 int pnum_inter;
1934 ret = bdrv_is_allocated(intermediate, sector_num, nb_sectors,
1935 &pnum_inter);
1936 if (ret < 0) {
1937 return ret;
1938 } else if (ret) {
1939 *pnum = pnum_inter;
1940 return 1;
1944 * [sector_num, nb_sectors] is unallocated on top but intermediate
1945 * might have
1947 * [sector_num+x, nr_sectors] allocated.
1949 if (n > pnum_inter &&
1950 (intermediate == top ||
1951 sector_num + pnum_inter < intermediate->total_sectors)) {
1952 n = pnum_inter;
1955 intermediate = backing_bs(intermediate);
1958 *pnum = n;
1959 return 0;
1962 typedef struct BdrvVmstateCo {
1963 BlockDriverState *bs;
1964 QEMUIOVector *qiov;
1965 int64_t pos;
1966 bool is_read;
1967 int ret;
1968 } BdrvVmstateCo;
1970 static int coroutine_fn
1971 bdrv_co_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
1972 bool is_read)
1974 BlockDriver *drv = bs->drv;
1975 int ret = -ENOTSUP;
1977 bdrv_inc_in_flight(bs);
1979 if (!drv) {
1980 ret = -ENOMEDIUM;
1981 } else if (drv->bdrv_load_vmstate) {
1982 if (is_read) {
1983 ret = drv->bdrv_load_vmstate(bs, qiov, pos);
1984 } else {
1985 ret = drv->bdrv_save_vmstate(bs, qiov, pos);
1987 } else if (bs->file) {
1988 ret = bdrv_co_rw_vmstate(bs->file->bs, qiov, pos, is_read);
1991 bdrv_dec_in_flight(bs);
1992 return ret;
1995 static void coroutine_fn bdrv_co_rw_vmstate_entry(void *opaque)
1997 BdrvVmstateCo *co = opaque;
1998 co->ret = bdrv_co_rw_vmstate(co->bs, co->qiov, co->pos, co->is_read);
2001 static inline int
2002 bdrv_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
2003 bool is_read)
2005 if (qemu_in_coroutine()) {
2006 return bdrv_co_rw_vmstate(bs, qiov, pos, is_read);
2007 } else {
2008 BdrvVmstateCo data = {
2009 .bs = bs,
2010 .qiov = qiov,
2011 .pos = pos,
2012 .is_read = is_read,
2013 .ret = -EINPROGRESS,
2015 Coroutine *co = qemu_coroutine_create(bdrv_co_rw_vmstate_entry, &data);
2017 bdrv_coroutine_enter(bs, co);
2018 BDRV_POLL_WHILE(bs, data.ret == -EINPROGRESS);
2019 return data.ret;
2023 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2024 int64_t pos, int size)
2026 QEMUIOVector qiov;
2027 struct iovec iov = {
2028 .iov_base = (void *) buf,
2029 .iov_len = size,
2031 int ret;
2033 qemu_iovec_init_external(&qiov, &iov, 1);
2035 ret = bdrv_writev_vmstate(bs, &qiov, pos);
2036 if (ret < 0) {
2037 return ret;
2040 return size;
2043 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2045 return bdrv_rw_vmstate(bs, qiov, pos, false);
2048 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2049 int64_t pos, int size)
2051 QEMUIOVector qiov;
2052 struct iovec iov = {
2053 .iov_base = buf,
2054 .iov_len = size,
2056 int ret;
2058 qemu_iovec_init_external(&qiov, &iov, 1);
2059 ret = bdrv_readv_vmstate(bs, &qiov, pos);
2060 if (ret < 0) {
2061 return ret;
2064 return size;
2067 int bdrv_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2069 return bdrv_rw_vmstate(bs, qiov, pos, true);
2072 /**************************************************************/
2073 /* async I/Os */
2075 void bdrv_aio_cancel(BlockAIOCB *acb)
2077 qemu_aio_ref(acb);
2078 bdrv_aio_cancel_async(acb);
2079 while (acb->refcnt > 1) {
2080 if (acb->aiocb_info->get_aio_context) {
2081 aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2082 } else if (acb->bs) {
2083 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
2084 * assert that we're not using an I/O thread. Thread-safe
2085 * code should use bdrv_aio_cancel_async exclusively.
2087 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
2088 aio_poll(bdrv_get_aio_context(acb->bs), true);
2089 } else {
2090 abort();
2093 qemu_aio_unref(acb);
2096 /* Async version of aio cancel. The caller is not blocked if the acb implements
2097 * cancel_async, otherwise we do nothing and let the request normally complete.
2098 * In either case the completion callback must be called. */
2099 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2101 if (acb->aiocb_info->cancel_async) {
2102 acb->aiocb_info->cancel_async(acb);
2106 /**************************************************************/
2107 /* Coroutine block device emulation */
2109 typedef struct FlushCo {
2110 BlockDriverState *bs;
2111 int ret;
2112 } FlushCo;
2115 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
2117 FlushCo *rwco = opaque;
2119 rwco->ret = bdrv_co_flush(rwco->bs);
2122 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2124 int current_gen;
2125 int ret = 0;
2127 bdrv_inc_in_flight(bs);
2129 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2130 bdrv_is_sg(bs)) {
2131 goto early_exit;
2134 qemu_co_mutex_lock(&bs->reqs_lock);
2135 current_gen = atomic_read(&bs->write_gen);
2137 /* Wait until any previous flushes are completed */
2138 while (bs->active_flush_req) {
2139 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
2142 /* Flushes reach this point in nondecreasing current_gen order. */
2143 bs->active_flush_req = true;
2144 qemu_co_mutex_unlock(&bs->reqs_lock);
2146 /* Write back all layers by calling one driver function */
2147 if (bs->drv->bdrv_co_flush) {
2148 ret = bs->drv->bdrv_co_flush(bs);
2149 goto out;
2152 /* Write back cached data to the OS even with cache=unsafe */
2153 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS);
2154 if (bs->drv->bdrv_co_flush_to_os) {
2155 ret = bs->drv->bdrv_co_flush_to_os(bs);
2156 if (ret < 0) {
2157 goto out;
2161 /* But don't actually force it to the disk with cache=unsafe */
2162 if (bs->open_flags & BDRV_O_NO_FLUSH) {
2163 goto flush_parent;
2166 /* Check if we really need to flush anything */
2167 if (bs->flushed_gen == current_gen) {
2168 goto flush_parent;
2171 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK);
2172 if (bs->drv->bdrv_co_flush_to_disk) {
2173 ret = bs->drv->bdrv_co_flush_to_disk(bs);
2174 } else if (bs->drv->bdrv_aio_flush) {
2175 BlockAIOCB *acb;
2176 CoroutineIOCompletion co = {
2177 .coroutine = qemu_coroutine_self(),
2180 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2181 if (acb == NULL) {
2182 ret = -EIO;
2183 } else {
2184 qemu_coroutine_yield();
2185 ret = co.ret;
2187 } else {
2189 * Some block drivers always operate in either writethrough or unsafe
2190 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2191 * know how the server works (because the behaviour is hardcoded or
2192 * depends on server-side configuration), so we can't ensure that
2193 * everything is safe on disk. Returning an error doesn't work because
2194 * that would break guests even if the server operates in writethrough
2195 * mode.
2197 * Let's hope the user knows what he's doing.
2199 ret = 0;
2202 if (ret < 0) {
2203 goto out;
2206 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
2207 * in the case of cache=unsafe, so there are no useless flushes.
2209 flush_parent:
2210 ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0;
2211 out:
2212 /* Notify any pending flushes that we have completed */
2213 if (ret == 0) {
2214 bs->flushed_gen = current_gen;
2217 qemu_co_mutex_lock(&bs->reqs_lock);
2218 bs->active_flush_req = false;
2219 /* Return value is ignored - it's ok if wait queue is empty */
2220 qemu_co_queue_next(&bs->flush_queue);
2221 qemu_co_mutex_unlock(&bs->reqs_lock);
2223 early_exit:
2224 bdrv_dec_in_flight(bs);
2225 return ret;
2228 int bdrv_flush(BlockDriverState *bs)
2230 Coroutine *co;
2231 FlushCo flush_co = {
2232 .bs = bs,
2233 .ret = NOT_DONE,
2236 if (qemu_in_coroutine()) {
2237 /* Fast-path if already in coroutine context */
2238 bdrv_flush_co_entry(&flush_co);
2239 } else {
2240 co = qemu_coroutine_create(bdrv_flush_co_entry, &flush_co);
2241 bdrv_coroutine_enter(bs, co);
2242 BDRV_POLL_WHILE(bs, flush_co.ret == NOT_DONE);
2245 return flush_co.ret;
2248 typedef struct DiscardCo {
2249 BlockDriverState *bs;
2250 int64_t offset;
2251 int bytes;
2252 int ret;
2253 } DiscardCo;
2254 static void coroutine_fn bdrv_pdiscard_co_entry(void *opaque)
2256 DiscardCo *rwco = opaque;
2258 rwco->ret = bdrv_co_pdiscard(rwco->bs, rwco->offset, rwco->bytes);
2261 int coroutine_fn bdrv_co_pdiscard(BlockDriverState *bs, int64_t offset,
2262 int bytes)
2264 BdrvTrackedRequest req;
2265 int max_pdiscard, ret;
2266 int head, tail, align;
2268 if (!bs->drv) {
2269 return -ENOMEDIUM;
2272 ret = bdrv_check_byte_request(bs, offset, bytes);
2273 if (ret < 0) {
2274 return ret;
2275 } else if (bs->read_only) {
2276 return -EPERM;
2278 assert(!(bs->open_flags & BDRV_O_INACTIVE));
2280 /* Do nothing if disabled. */
2281 if (!(bs->open_flags & BDRV_O_UNMAP)) {
2282 return 0;
2285 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
2286 return 0;
2289 /* Discard is advisory, but some devices track and coalesce
2290 * unaligned requests, so we must pass everything down rather than
2291 * round here. Still, most devices will just silently ignore
2292 * unaligned requests (by returning -ENOTSUP), so we must fragment
2293 * the request accordingly. */
2294 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
2295 assert(align % bs->bl.request_alignment == 0);
2296 head = offset % align;
2297 tail = (offset + bytes) % align;
2299 bdrv_inc_in_flight(bs);
2300 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
2302 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, &req);
2303 if (ret < 0) {
2304 goto out;
2307 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX),
2308 align);
2309 assert(max_pdiscard >= bs->bl.request_alignment);
2311 while (bytes > 0) {
2312 int ret;
2313 int num = bytes;
2315 if (head) {
2316 /* Make small requests to get to alignment boundaries. */
2317 num = MIN(bytes, align - head);
2318 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
2319 num %= bs->bl.request_alignment;
2321 head = (head + num) % align;
2322 assert(num < max_pdiscard);
2323 } else if (tail) {
2324 if (num > align) {
2325 /* Shorten the request to the last aligned cluster. */
2326 num -= tail;
2327 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
2328 tail > bs->bl.request_alignment) {
2329 tail %= bs->bl.request_alignment;
2330 num -= tail;
2333 /* limit request size */
2334 if (num > max_pdiscard) {
2335 num = max_pdiscard;
2338 if (bs->drv->bdrv_co_pdiscard) {
2339 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
2340 } else {
2341 BlockAIOCB *acb;
2342 CoroutineIOCompletion co = {
2343 .coroutine = qemu_coroutine_self(),
2346 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
2347 bdrv_co_io_em_complete, &co);
2348 if (acb == NULL) {
2349 ret = -EIO;
2350 goto out;
2351 } else {
2352 qemu_coroutine_yield();
2353 ret = co.ret;
2356 if (ret && ret != -ENOTSUP) {
2357 goto out;
2360 offset += num;
2361 bytes -= num;
2363 ret = 0;
2364 out:
2365 atomic_inc(&bs->write_gen);
2366 bdrv_set_dirty(bs, req.offset >> BDRV_SECTOR_BITS,
2367 req.bytes >> BDRV_SECTOR_BITS);
2368 tracked_request_end(&req);
2369 bdrv_dec_in_flight(bs);
2370 return ret;
2373 int bdrv_pdiscard(BlockDriverState *bs, int64_t offset, int bytes)
2375 Coroutine *co;
2376 DiscardCo rwco = {
2377 .bs = bs,
2378 .offset = offset,
2379 .bytes = bytes,
2380 .ret = NOT_DONE,
2383 if (qemu_in_coroutine()) {
2384 /* Fast-path if already in coroutine context */
2385 bdrv_pdiscard_co_entry(&rwco);
2386 } else {
2387 co = qemu_coroutine_create(bdrv_pdiscard_co_entry, &rwco);
2388 bdrv_coroutine_enter(bs, co);
2389 BDRV_POLL_WHILE(bs, rwco.ret == NOT_DONE);
2392 return rwco.ret;
2395 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
2397 BlockDriver *drv = bs->drv;
2398 CoroutineIOCompletion co = {
2399 .coroutine = qemu_coroutine_self(),
2401 BlockAIOCB *acb;
2403 bdrv_inc_in_flight(bs);
2404 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
2405 co.ret = -ENOTSUP;
2406 goto out;
2409 if (drv->bdrv_co_ioctl) {
2410 co.ret = drv->bdrv_co_ioctl(bs, req, buf);
2411 } else {
2412 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
2413 if (!acb) {
2414 co.ret = -ENOTSUP;
2415 goto out;
2417 qemu_coroutine_yield();
2419 out:
2420 bdrv_dec_in_flight(bs);
2421 return co.ret;
2424 void *qemu_blockalign(BlockDriverState *bs, size_t size)
2426 return qemu_memalign(bdrv_opt_mem_align(bs), size);
2429 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
2431 return memset(qemu_blockalign(bs, size), 0, size);
2434 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
2436 size_t align = bdrv_opt_mem_align(bs);
2438 /* Ensure that NULL is never returned on success */
2439 assert(align > 0);
2440 if (size == 0) {
2441 size = align;
2444 return qemu_try_memalign(align, size);
2447 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
2449 void *mem = qemu_try_blockalign(bs, size);
2451 if (mem) {
2452 memset(mem, 0, size);
2455 return mem;
2459 * Check if all memory in this vector is sector aligned.
2461 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
2463 int i;
2464 size_t alignment = bdrv_min_mem_align(bs);
2466 for (i = 0; i < qiov->niov; i++) {
2467 if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
2468 return false;
2470 if (qiov->iov[i].iov_len % alignment) {
2471 return false;
2475 return true;
2478 void bdrv_add_before_write_notifier(BlockDriverState *bs,
2479 NotifierWithReturn *notifier)
2481 notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
2484 void bdrv_io_plug(BlockDriverState *bs)
2486 BdrvChild *child;
2488 QLIST_FOREACH(child, &bs->children, next) {
2489 bdrv_io_plug(child->bs);
2492 if (atomic_fetch_inc(&bs->io_plugged) == 0) {
2493 BlockDriver *drv = bs->drv;
2494 if (drv && drv->bdrv_io_plug) {
2495 drv->bdrv_io_plug(bs);
2500 void bdrv_io_unplug(BlockDriverState *bs)
2502 BdrvChild *child;
2504 assert(bs->io_plugged);
2505 if (atomic_fetch_dec(&bs->io_plugged) == 1) {
2506 BlockDriver *drv = bs->drv;
2507 if (drv && drv->bdrv_io_unplug) {
2508 drv->bdrv_io_unplug(bs);
2512 QLIST_FOREACH(child, &bs->children, next) {
2513 bdrv_io_unplug(child->bs);