linux-user: Fix warnings caused by missing 'static' attribute
[qemu/ar7.git] / translate-all.c
blob8eb4512625f0c0b233df72ff4272e8d26471ae60
1 /*
2 * Host code generation
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #ifdef _WIN32
20 #include <windows.h>
21 #else
22 #include <sys/types.h>
23 #include <sys/mman.h>
24 #endif
25 #include <stdarg.h>
26 #include <stdlib.h>
27 #include <stdio.h>
28 #include <string.h>
29 #include <inttypes.h>
31 #include "config.h"
33 #include "qemu-common.h"
34 #define NO_CPU_IO_DEFS
35 #include "cpu.h"
36 #include "trace.h"
37 #include "disas/disas.h"
38 #include "tcg.h"
39 #if defined(CONFIG_USER_ONLY)
40 #include "qemu.h"
41 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
42 #include <sys/param.h>
43 #if __FreeBSD_version >= 700104
44 #define HAVE_KINFO_GETVMMAP
45 #define sigqueue sigqueue_freebsd /* avoid redefinition */
46 #include <sys/time.h>
47 #include <sys/proc.h>
48 #include <machine/profile.h>
49 #define _KERNEL
50 #include <sys/user.h>
51 #undef _KERNEL
52 #undef sigqueue
53 #include <libutil.h>
54 #endif
55 #endif
56 #else
57 #include "exec/address-spaces.h"
58 #endif
60 #include "exec/cputlb.h"
61 #include "exec/tb-hash.h"
62 #include "translate-all.h"
63 #include "qemu/bitmap.h"
64 #include "qemu/timer.h"
66 //#define DEBUG_TB_INVALIDATE
67 //#define DEBUG_FLUSH
68 /* make various TB consistency checks */
69 //#define DEBUG_TB_CHECK
71 #if !defined(CONFIG_USER_ONLY)
72 /* TB consistency checks only implemented for usermode emulation. */
73 #undef DEBUG_TB_CHECK
74 #endif
76 #define SMC_BITMAP_USE_THRESHOLD 10
78 typedef struct PageDesc {
79 /* list of TBs intersecting this ram page */
80 TranslationBlock *first_tb;
81 /* in order to optimize self modifying code, we count the number
82 of lookups we do to a given page to use a bitmap */
83 unsigned int code_write_count;
84 unsigned long *code_bitmap;
85 #if defined(CONFIG_USER_ONLY)
86 unsigned long flags;
87 #endif
88 } PageDesc;
90 /* In system mode we want L1_MAP to be based on ram offsets,
91 while in user mode we want it to be based on virtual addresses. */
92 #if !defined(CONFIG_USER_ONLY)
93 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
94 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
95 #else
96 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
97 #endif
98 #else
99 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
100 #endif
102 /* Size of the L2 (and L3, etc) page tables. */
103 #define V_L2_BITS 10
104 #define V_L2_SIZE (1 << V_L2_BITS)
106 /* The bits remaining after N lower levels of page tables. */
107 #define V_L1_BITS_REM \
108 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS)
110 #if V_L1_BITS_REM < 4
111 #define V_L1_BITS (V_L1_BITS_REM + V_L2_BITS)
112 #else
113 #define V_L1_BITS V_L1_BITS_REM
114 #endif
116 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
118 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
120 uintptr_t qemu_real_host_page_size;
121 uintptr_t qemu_real_host_page_mask;
122 uintptr_t qemu_host_page_size;
123 uintptr_t qemu_host_page_mask;
125 /* This is a multi-level map on the virtual address space.
126 The bottom level has pointers to PageDesc. */
127 static void *l1_map[V_L1_SIZE];
129 /* code generation context */
130 TCGContext tcg_ctx;
132 static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
133 tb_page_addr_t phys_page2);
134 static TranslationBlock *tb_find_pc(uintptr_t tc_ptr);
136 void cpu_gen_init(void)
138 tcg_context_init(&tcg_ctx);
141 /* return non zero if the very first instruction is invalid so that
142 the virtual CPU can trigger an exception.
144 '*gen_code_size_ptr' contains the size of the generated code (host
145 code).
147 int cpu_gen_code(CPUArchState *env, TranslationBlock *tb, int *gen_code_size_ptr)
149 TCGContext *s = &tcg_ctx;
150 tcg_insn_unit *gen_code_buf;
151 int gen_code_size;
152 #ifdef CONFIG_PROFILER
153 int64_t ti;
154 #endif
156 #ifdef CONFIG_PROFILER
157 s->tb_count1++; /* includes aborted translations because of
158 exceptions */
159 ti = profile_getclock();
160 #endif
161 tcg_func_start(s);
163 gen_intermediate_code(env, tb);
165 trace_translate_block(tb, tb->pc, tb->tc_ptr);
167 /* generate machine code */
168 gen_code_buf = tb->tc_ptr;
169 tb->tb_next_offset[0] = 0xffff;
170 tb->tb_next_offset[1] = 0xffff;
171 s->tb_next_offset = tb->tb_next_offset;
172 #ifdef USE_DIRECT_JUMP
173 s->tb_jmp_offset = tb->tb_jmp_offset;
174 s->tb_next = NULL;
175 #else
176 s->tb_jmp_offset = NULL;
177 s->tb_next = tb->tb_next;
178 #endif
180 #ifdef CONFIG_PROFILER
181 s->tb_count++;
182 s->interm_time += profile_getclock() - ti;
183 s->code_time -= profile_getclock();
184 #endif
185 gen_code_size = tcg_gen_code(s, gen_code_buf);
186 *gen_code_size_ptr = gen_code_size;
187 #ifdef CONFIG_PROFILER
188 s->code_time += profile_getclock();
189 s->code_in_len += tb->size;
190 s->code_out_len += gen_code_size;
191 #endif
193 #ifdef DEBUG_DISAS
194 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM)) {
195 qemu_log("OUT: [size=%d]\n", gen_code_size);
196 log_disas(tb->tc_ptr, gen_code_size);
197 qemu_log("\n");
198 qemu_log_flush();
200 #endif
201 return 0;
204 /* The cpu state corresponding to 'searched_pc' is restored.
206 static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
207 uintptr_t searched_pc)
209 CPUArchState *env = cpu->env_ptr;
210 TCGContext *s = &tcg_ctx;
211 int j;
212 uintptr_t tc_ptr;
213 #ifdef CONFIG_PROFILER
214 int64_t ti;
215 #endif
217 #ifdef CONFIG_PROFILER
218 ti = profile_getclock();
219 #endif
220 tcg_func_start(s);
222 gen_intermediate_code_pc(env, tb);
224 if (tb->cflags & CF_USE_ICOUNT) {
225 assert(use_icount);
226 /* Reset the cycle counter to the start of the block. */
227 cpu->icount_decr.u16.low += tb->icount;
228 /* Clear the IO flag. */
229 cpu->can_do_io = 0;
232 /* find opc index corresponding to search_pc */
233 tc_ptr = (uintptr_t)tb->tc_ptr;
234 if (searched_pc < tc_ptr)
235 return -1;
237 s->tb_next_offset = tb->tb_next_offset;
238 #ifdef USE_DIRECT_JUMP
239 s->tb_jmp_offset = tb->tb_jmp_offset;
240 s->tb_next = NULL;
241 #else
242 s->tb_jmp_offset = NULL;
243 s->tb_next = tb->tb_next;
244 #endif
245 j = tcg_gen_code_search_pc(s, (tcg_insn_unit *)tc_ptr,
246 searched_pc - tc_ptr);
247 if (j < 0)
248 return -1;
249 /* now find start of instruction before */
250 while (s->gen_opc_instr_start[j] == 0) {
251 j--;
253 cpu->icount_decr.u16.low -= s->gen_opc_icount[j];
255 restore_state_to_opc(env, tb, j);
257 #ifdef CONFIG_PROFILER
258 s->restore_time += profile_getclock() - ti;
259 s->restore_count++;
260 #endif
261 return 0;
264 bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr)
266 TranslationBlock *tb;
268 tb = tb_find_pc(retaddr);
269 if (tb) {
270 cpu_restore_state_from_tb(cpu, tb, retaddr);
271 if (tb->cflags & CF_NOCACHE) {
272 /* one-shot translation, invalidate it immediately */
273 cpu->current_tb = NULL;
274 tb_phys_invalidate(tb, -1);
275 tb_free(tb);
277 return true;
279 return false;
282 #ifdef _WIN32
283 static __attribute__((unused)) void map_exec(void *addr, long size)
285 DWORD old_protect;
286 VirtualProtect(addr, size,
287 PAGE_EXECUTE_READWRITE, &old_protect);
289 #else
290 static __attribute__((unused)) void map_exec(void *addr, long size)
292 unsigned long start, end, page_size;
294 page_size = getpagesize();
295 start = (unsigned long)addr;
296 start &= ~(page_size - 1);
298 end = (unsigned long)addr + size;
299 end += page_size - 1;
300 end &= ~(page_size - 1);
302 mprotect((void *)start, end - start,
303 PROT_READ | PROT_WRITE | PROT_EXEC);
305 #endif
307 void page_size_init(void)
309 /* NOTE: we can always suppose that qemu_host_page_size >=
310 TARGET_PAGE_SIZE */
311 qemu_real_host_page_size = getpagesize();
312 qemu_real_host_page_mask = ~(qemu_real_host_page_size - 1);
313 if (qemu_host_page_size == 0) {
314 qemu_host_page_size = qemu_real_host_page_size;
316 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
317 qemu_host_page_size = TARGET_PAGE_SIZE;
319 qemu_host_page_mask = ~(qemu_host_page_size - 1);
322 static void page_init(void)
324 page_size_init();
325 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
327 #ifdef HAVE_KINFO_GETVMMAP
328 struct kinfo_vmentry *freep;
329 int i, cnt;
331 freep = kinfo_getvmmap(getpid(), &cnt);
332 if (freep) {
333 mmap_lock();
334 for (i = 0; i < cnt; i++) {
335 unsigned long startaddr, endaddr;
337 startaddr = freep[i].kve_start;
338 endaddr = freep[i].kve_end;
339 if (h2g_valid(startaddr)) {
340 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
342 if (h2g_valid(endaddr)) {
343 endaddr = h2g(endaddr);
344 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
345 } else {
346 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
347 endaddr = ~0ul;
348 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
349 #endif
353 free(freep);
354 mmap_unlock();
356 #else
357 FILE *f;
359 last_brk = (unsigned long)sbrk(0);
361 f = fopen("/compat/linux/proc/self/maps", "r");
362 if (f) {
363 mmap_lock();
365 do {
366 unsigned long startaddr, endaddr;
367 int n;
369 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
371 if (n == 2 && h2g_valid(startaddr)) {
372 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
374 if (h2g_valid(endaddr)) {
375 endaddr = h2g(endaddr);
376 } else {
377 endaddr = ~0ul;
379 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
381 } while (!feof(f));
383 fclose(f);
384 mmap_unlock();
386 #endif
388 #endif
391 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
393 PageDesc *pd;
394 void **lp;
395 int i;
397 /* Level 1. Always allocated. */
398 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
400 /* Level 2..N-1. */
401 for (i = V_L1_SHIFT / V_L2_BITS - 1; i > 0; i--) {
402 void **p = *lp;
404 if (p == NULL) {
405 if (!alloc) {
406 return NULL;
408 p = g_new0(void *, V_L2_SIZE);
409 *lp = p;
412 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
415 pd = *lp;
416 if (pd == NULL) {
417 if (!alloc) {
418 return NULL;
420 pd = g_new0(PageDesc, V_L2_SIZE);
421 *lp = pd;
424 return pd + (index & (V_L2_SIZE - 1));
427 static inline PageDesc *page_find(tb_page_addr_t index)
429 return page_find_alloc(index, 0);
432 #if !defined(CONFIG_USER_ONLY)
433 #define mmap_lock() do { } while (0)
434 #define mmap_unlock() do { } while (0)
435 #endif
437 #if defined(CONFIG_USER_ONLY)
438 /* Currently it is not recommended to allocate big chunks of data in
439 user mode. It will change when a dedicated libc will be used. */
440 /* ??? 64-bit hosts ought to have no problem mmaping data outside the
441 region in which the guest needs to run. Revisit this. */
442 #define USE_STATIC_CODE_GEN_BUFFER
443 #endif
445 /* ??? Should configure for this, not list operating systems here. */
446 #if (defined(__linux__) \
447 || defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
448 || defined(__DragonFly__) || defined(__OpenBSD__) \
449 || defined(__NetBSD__))
450 # define USE_MMAP
451 #endif
453 /* Minimum size of the code gen buffer. This number is randomly chosen,
454 but not so small that we can't have a fair number of TB's live. */
455 #define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024)
457 /* Maximum size of the code gen buffer we'd like to use. Unless otherwise
458 indicated, this is constrained by the range of direct branches on the
459 host cpu, as used by the TCG implementation of goto_tb. */
460 #if defined(__x86_64__)
461 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
462 #elif defined(__sparc__)
463 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
464 #elif defined(__aarch64__)
465 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
466 #elif defined(__arm__)
467 # define MAX_CODE_GEN_BUFFER_SIZE (16u * 1024 * 1024)
468 #elif defined(__s390x__)
469 /* We have a +- 4GB range on the branches; leave some slop. */
470 # define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024)
471 #elif defined(__mips__)
472 /* We have a 256MB branch region, but leave room to make sure the
473 main executable is also within that region. */
474 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
475 #else
476 # define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1)
477 #endif
479 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
481 #define DEFAULT_CODE_GEN_BUFFER_SIZE \
482 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
483 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
485 static inline size_t size_code_gen_buffer(size_t tb_size)
487 /* Size the buffer. */
488 if (tb_size == 0) {
489 #ifdef USE_STATIC_CODE_GEN_BUFFER
490 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
491 #else
492 /* ??? Needs adjustments. */
493 /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
494 static buffer, we could size this on RESERVED_VA, on the text
495 segment size of the executable, or continue to use the default. */
496 tb_size = (unsigned long)(ram_size / 4);
497 #endif
499 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
500 tb_size = MIN_CODE_GEN_BUFFER_SIZE;
502 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
503 tb_size = MAX_CODE_GEN_BUFFER_SIZE;
505 tcg_ctx.code_gen_buffer_size = tb_size;
506 return tb_size;
509 #ifdef __mips__
510 /* In order to use J and JAL within the code_gen_buffer, we require
511 that the buffer not cross a 256MB boundary. */
512 static inline bool cross_256mb(void *addr, size_t size)
514 return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & 0xf0000000;
517 /* We weren't able to allocate a buffer without crossing that boundary,
518 so make do with the larger portion of the buffer that doesn't cross.
519 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */
520 static inline void *split_cross_256mb(void *buf1, size_t size1)
522 void *buf2 = (void *)(((uintptr_t)buf1 + size1) & 0xf0000000);
523 size_t size2 = buf1 + size1 - buf2;
525 size1 = buf2 - buf1;
526 if (size1 < size2) {
527 size1 = size2;
528 buf1 = buf2;
531 tcg_ctx.code_gen_buffer_size = size1;
532 return buf1;
534 #endif
536 #ifdef USE_STATIC_CODE_GEN_BUFFER
537 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
538 __attribute__((aligned(CODE_GEN_ALIGN)));
540 static inline void *alloc_code_gen_buffer(void)
542 void *buf = static_code_gen_buffer;
543 #ifdef __mips__
544 if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) {
545 buf = split_cross_256mb(buf, tcg_ctx.code_gen_buffer_size);
547 #endif
548 map_exec(buf, tcg_ctx.code_gen_buffer_size);
549 return buf;
551 #elif defined(USE_MMAP)
552 static inline void *alloc_code_gen_buffer(void)
554 int flags = MAP_PRIVATE | MAP_ANONYMOUS;
555 uintptr_t start = 0;
556 void *buf;
558 /* Constrain the position of the buffer based on the host cpu.
559 Note that these addresses are chosen in concert with the
560 addresses assigned in the relevant linker script file. */
561 # if defined(__PIE__) || defined(__PIC__)
562 /* Don't bother setting a preferred location if we're building
563 a position-independent executable. We're more likely to get
564 an address near the main executable if we let the kernel
565 choose the address. */
566 # elif defined(__x86_64__) && defined(MAP_32BIT)
567 /* Force the memory down into low memory with the executable.
568 Leave the choice of exact location with the kernel. */
569 flags |= MAP_32BIT;
570 /* Cannot expect to map more than 800MB in low memory. */
571 if (tcg_ctx.code_gen_buffer_size > 800u * 1024 * 1024) {
572 tcg_ctx.code_gen_buffer_size = 800u * 1024 * 1024;
574 # elif defined(__sparc__)
575 start = 0x40000000ul;
576 # elif defined(__s390x__)
577 start = 0x90000000ul;
578 # elif defined(__mips__)
579 /* ??? We ought to more explicitly manage layout for softmmu too. */
580 # ifdef CONFIG_USER_ONLY
581 start = 0x68000000ul;
582 # elif _MIPS_SIM == _ABI64
583 start = 0x128000000ul;
584 # else
585 start = 0x08000000ul;
586 # endif
587 # endif
589 buf = mmap((void *)start, tcg_ctx.code_gen_buffer_size,
590 PROT_WRITE | PROT_READ | PROT_EXEC, flags, -1, 0);
591 if (buf == MAP_FAILED) {
592 return NULL;
595 #ifdef __mips__
596 if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) {
597 /* Try again, with the original still mapped, to avoid re-acquiring
598 that 256mb crossing. This time don't specify an address. */
599 size_t size2, size1 = tcg_ctx.code_gen_buffer_size;
600 void *buf2 = mmap(NULL, size1, PROT_WRITE | PROT_READ | PROT_EXEC,
601 flags, -1, 0);
602 if (buf2 != MAP_FAILED) {
603 if (!cross_256mb(buf2, size1)) {
604 /* Success! Use the new buffer. */
605 munmap(buf, size1);
606 return buf2;
608 /* Failure. Work with what we had. */
609 munmap(buf2, size1);
612 /* Split the original buffer. Free the smaller half. */
613 buf2 = split_cross_256mb(buf, size1);
614 size2 = tcg_ctx.code_gen_buffer_size;
615 munmap(buf + (buf == buf2 ? size2 : 0), size1 - size2);
616 return buf2;
618 #endif
620 return buf;
622 #else
623 static inline void *alloc_code_gen_buffer(void)
625 void *buf = g_try_malloc(tcg_ctx.code_gen_buffer_size);
627 if (buf == NULL) {
628 return NULL;
631 #ifdef __mips__
632 if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) {
633 void *buf2 = g_malloc(tcg_ctx.code_gen_buffer_size);
634 if (buf2 != NULL && !cross_256mb(buf2, size1)) {
635 /* Success! Use the new buffer. */
636 free(buf);
637 buf = buf2;
638 } else {
639 /* Failure. Work with what we had. Since this is malloc
640 and not mmap, we can't free the other half. */
641 free(buf2);
642 buf = split_cross_256mb(buf, tcg_ctx.code_gen_buffer_size);
645 #endif
647 map_exec(buf, tcg_ctx.code_gen_buffer_size);
648 return buf;
650 #endif /* USE_STATIC_CODE_GEN_BUFFER, USE_MMAP */
652 static inline void code_gen_alloc(size_t tb_size)
654 tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size);
655 tcg_ctx.code_gen_buffer = alloc_code_gen_buffer();
656 if (tcg_ctx.code_gen_buffer == NULL) {
657 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
658 exit(1);
661 qemu_madvise(tcg_ctx.code_gen_buffer, tcg_ctx.code_gen_buffer_size,
662 QEMU_MADV_HUGEPAGE);
664 /* Steal room for the prologue at the end of the buffer. This ensures
665 (via the MAX_CODE_GEN_BUFFER_SIZE limits above) that direct branches
666 from TB's to the prologue are going to be in range. It also means
667 that we don't need to mark (additional) portions of the data segment
668 as executable. */
669 tcg_ctx.code_gen_prologue = tcg_ctx.code_gen_buffer +
670 tcg_ctx.code_gen_buffer_size - 1024;
671 tcg_ctx.code_gen_buffer_size -= 1024;
673 tcg_ctx.code_gen_buffer_max_size = tcg_ctx.code_gen_buffer_size -
674 (TCG_MAX_OP_SIZE * OPC_BUF_SIZE);
675 tcg_ctx.code_gen_max_blocks = tcg_ctx.code_gen_buffer_size /
676 CODE_GEN_AVG_BLOCK_SIZE;
677 tcg_ctx.tb_ctx.tbs =
678 g_malloc(tcg_ctx.code_gen_max_blocks * sizeof(TranslationBlock));
681 /* Must be called before using the QEMU cpus. 'tb_size' is the size
682 (in bytes) allocated to the translation buffer. Zero means default
683 size. */
684 void tcg_exec_init(unsigned long tb_size)
686 cpu_gen_init();
687 code_gen_alloc(tb_size);
688 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
689 tcg_register_jit(tcg_ctx.code_gen_buffer, tcg_ctx.code_gen_buffer_size);
690 page_init();
691 #if defined(CONFIG_SOFTMMU)
692 /* There's no guest base to take into account, so go ahead and
693 initialize the prologue now. */
694 tcg_prologue_init(&tcg_ctx);
695 #endif
698 bool tcg_enabled(void)
700 return tcg_ctx.code_gen_buffer != NULL;
703 /* Allocate a new translation block. Flush the translation buffer if
704 too many translation blocks or too much generated code. */
705 static TranslationBlock *tb_alloc(target_ulong pc)
707 TranslationBlock *tb;
709 if (tcg_ctx.tb_ctx.nb_tbs >= tcg_ctx.code_gen_max_blocks ||
710 (tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer) >=
711 tcg_ctx.code_gen_buffer_max_size) {
712 return NULL;
714 tb = &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs++];
715 tb->pc = pc;
716 tb->cflags = 0;
717 return tb;
720 void tb_free(TranslationBlock *tb)
722 /* In practice this is mostly used for single use temporary TB
723 Ignore the hard cases and just back up if this TB happens to
724 be the last one generated. */
725 if (tcg_ctx.tb_ctx.nb_tbs > 0 &&
726 tb == &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) {
727 tcg_ctx.code_gen_ptr = tb->tc_ptr;
728 tcg_ctx.tb_ctx.nb_tbs--;
732 static inline void invalidate_page_bitmap(PageDesc *p)
734 g_free(p->code_bitmap);
735 p->code_bitmap = NULL;
736 p->code_write_count = 0;
739 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
740 static void page_flush_tb_1(int level, void **lp)
742 int i;
744 if (*lp == NULL) {
745 return;
747 if (level == 0) {
748 PageDesc *pd = *lp;
750 for (i = 0; i < V_L2_SIZE; ++i) {
751 pd[i].first_tb = NULL;
752 invalidate_page_bitmap(pd + i);
754 } else {
755 void **pp = *lp;
757 for (i = 0; i < V_L2_SIZE; ++i) {
758 page_flush_tb_1(level - 1, pp + i);
763 static void page_flush_tb(void)
765 int i;
767 for (i = 0; i < V_L1_SIZE; i++) {
768 page_flush_tb_1(V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
772 /* flush all the translation blocks */
773 /* XXX: tb_flush is currently not thread safe */
774 void tb_flush(CPUState *cpu)
776 #if defined(DEBUG_FLUSH)
777 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
778 (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer),
779 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ?
780 ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) /
781 tcg_ctx.tb_ctx.nb_tbs : 0);
782 #endif
783 if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)
784 > tcg_ctx.code_gen_buffer_size) {
785 cpu_abort(cpu, "Internal error: code buffer overflow\n");
787 tcg_ctx.tb_ctx.nb_tbs = 0;
789 CPU_FOREACH(cpu) {
790 memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache));
793 memset(tcg_ctx.tb_ctx.tb_phys_hash, 0, sizeof(tcg_ctx.tb_ctx.tb_phys_hash));
794 page_flush_tb();
796 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
797 /* XXX: flush processor icache at this point if cache flush is
798 expensive */
799 tcg_ctx.tb_ctx.tb_flush_count++;
802 #ifdef DEBUG_TB_CHECK
804 static void tb_invalidate_check(target_ulong address)
806 TranslationBlock *tb;
807 int i;
809 address &= TARGET_PAGE_MASK;
810 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
811 for (tb = tb_ctx.tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
812 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
813 address >= tb->pc + tb->size)) {
814 printf("ERROR invalidate: address=" TARGET_FMT_lx
815 " PC=%08lx size=%04x\n",
816 address, (long)tb->pc, tb->size);
822 /* verify that all the pages have correct rights for code */
823 static void tb_page_check(void)
825 TranslationBlock *tb;
826 int i, flags1, flags2;
828 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
829 for (tb = tcg_ctx.tb_ctx.tb_phys_hash[i]; tb != NULL;
830 tb = tb->phys_hash_next) {
831 flags1 = page_get_flags(tb->pc);
832 flags2 = page_get_flags(tb->pc + tb->size - 1);
833 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
834 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
835 (long)tb->pc, tb->size, flags1, flags2);
841 #endif
843 static inline void tb_hash_remove(TranslationBlock **ptb, TranslationBlock *tb)
845 TranslationBlock *tb1;
847 for (;;) {
848 tb1 = *ptb;
849 if (tb1 == tb) {
850 *ptb = tb1->phys_hash_next;
851 break;
853 ptb = &tb1->phys_hash_next;
857 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
859 TranslationBlock *tb1;
860 unsigned int n1;
862 for (;;) {
863 tb1 = *ptb;
864 n1 = (uintptr_t)tb1 & 3;
865 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
866 if (tb1 == tb) {
867 *ptb = tb1->page_next[n1];
868 break;
870 ptb = &tb1->page_next[n1];
874 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
876 TranslationBlock *tb1, **ptb;
877 unsigned int n1;
879 ptb = &tb->jmp_next[n];
880 tb1 = *ptb;
881 if (tb1) {
882 /* find tb(n) in circular list */
883 for (;;) {
884 tb1 = *ptb;
885 n1 = (uintptr_t)tb1 & 3;
886 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
887 if (n1 == n && tb1 == tb) {
888 break;
890 if (n1 == 2) {
891 ptb = &tb1->jmp_first;
892 } else {
893 ptb = &tb1->jmp_next[n1];
896 /* now we can suppress tb(n) from the list */
897 *ptb = tb->jmp_next[n];
899 tb->jmp_next[n] = NULL;
903 /* reset the jump entry 'n' of a TB so that it is not chained to
904 another TB */
905 static inline void tb_reset_jump(TranslationBlock *tb, int n)
907 tb_set_jmp_target(tb, n, (uintptr_t)(tb->tc_ptr + tb->tb_next_offset[n]));
910 /* invalidate one TB */
911 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
913 CPUState *cpu;
914 PageDesc *p;
915 unsigned int h, n1;
916 tb_page_addr_t phys_pc;
917 TranslationBlock *tb1, *tb2;
919 /* remove the TB from the hash list */
920 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
921 h = tb_phys_hash_func(phys_pc);
922 tb_hash_remove(&tcg_ctx.tb_ctx.tb_phys_hash[h], tb);
924 /* remove the TB from the page list */
925 if (tb->page_addr[0] != page_addr) {
926 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
927 tb_page_remove(&p->first_tb, tb);
928 invalidate_page_bitmap(p);
930 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
931 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
932 tb_page_remove(&p->first_tb, tb);
933 invalidate_page_bitmap(p);
936 tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
938 /* remove the TB from the hash list */
939 h = tb_jmp_cache_hash_func(tb->pc);
940 CPU_FOREACH(cpu) {
941 if (cpu->tb_jmp_cache[h] == tb) {
942 cpu->tb_jmp_cache[h] = NULL;
946 /* suppress this TB from the two jump lists */
947 tb_jmp_remove(tb, 0);
948 tb_jmp_remove(tb, 1);
950 /* suppress any remaining jumps to this TB */
951 tb1 = tb->jmp_first;
952 for (;;) {
953 n1 = (uintptr_t)tb1 & 3;
954 if (n1 == 2) {
955 break;
957 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
958 tb2 = tb1->jmp_next[n1];
959 tb_reset_jump(tb1, n1);
960 tb1->jmp_next[n1] = NULL;
961 tb1 = tb2;
963 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); /* fail safe */
965 tcg_ctx.tb_ctx.tb_phys_invalidate_count++;
968 static void build_page_bitmap(PageDesc *p)
970 int n, tb_start, tb_end;
971 TranslationBlock *tb;
973 p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
975 tb = p->first_tb;
976 while (tb != NULL) {
977 n = (uintptr_t)tb & 3;
978 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
979 /* NOTE: this is subtle as a TB may span two physical pages */
980 if (n == 0) {
981 /* NOTE: tb_end may be after the end of the page, but
982 it is not a problem */
983 tb_start = tb->pc & ~TARGET_PAGE_MASK;
984 tb_end = tb_start + tb->size;
985 if (tb_end > TARGET_PAGE_SIZE) {
986 tb_end = TARGET_PAGE_SIZE;
988 } else {
989 tb_start = 0;
990 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
992 bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
993 tb = tb->page_next[n];
997 TranslationBlock *tb_gen_code(CPUState *cpu,
998 target_ulong pc, target_ulong cs_base,
999 int flags, int cflags)
1001 CPUArchState *env = cpu->env_ptr;
1002 TranslationBlock *tb;
1003 tb_page_addr_t phys_pc, phys_page2;
1004 target_ulong virt_page2;
1005 int code_gen_size;
1007 phys_pc = get_page_addr_code(env, pc);
1008 if (use_icount) {
1009 cflags |= CF_USE_ICOUNT;
1011 tb = tb_alloc(pc);
1012 if (!tb) {
1013 /* flush must be done */
1014 tb_flush(cpu);
1015 /* cannot fail at this point */
1016 tb = tb_alloc(pc);
1017 /* Don't forget to invalidate previous TB info. */
1018 tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
1020 tb->tc_ptr = tcg_ctx.code_gen_ptr;
1021 tb->cs_base = cs_base;
1022 tb->flags = flags;
1023 tb->cflags = cflags;
1024 cpu_gen_code(env, tb, &code_gen_size);
1025 tcg_ctx.code_gen_ptr = (void *)(((uintptr_t)tcg_ctx.code_gen_ptr +
1026 code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
1028 /* check next page if needed */
1029 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1030 phys_page2 = -1;
1031 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1032 phys_page2 = get_page_addr_code(env, virt_page2);
1034 tb_link_page(tb, phys_pc, phys_page2);
1035 return tb;
1039 * Invalidate all TBs which intersect with the target physical address range
1040 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1041 * 'is_cpu_write_access' should be true if called from a real cpu write
1042 * access: the virtual CPU will exit the current TB if code is modified inside
1043 * this TB.
1045 void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
1047 while (start < end) {
1048 tb_invalidate_phys_page_range(start, end, 0);
1049 start &= TARGET_PAGE_MASK;
1050 start += TARGET_PAGE_SIZE;
1055 * Invalidate all TBs which intersect with the target physical address range
1056 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1057 * 'is_cpu_write_access' should be true if called from a real cpu write
1058 * access: the virtual CPU will exit the current TB if code is modified inside
1059 * this TB.
1061 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1062 int is_cpu_write_access)
1064 TranslationBlock *tb, *tb_next, *saved_tb;
1065 CPUState *cpu = current_cpu;
1066 #if defined(TARGET_HAS_PRECISE_SMC)
1067 CPUArchState *env = NULL;
1068 #endif
1069 tb_page_addr_t tb_start, tb_end;
1070 PageDesc *p;
1071 int n;
1072 #ifdef TARGET_HAS_PRECISE_SMC
1073 int current_tb_not_found = is_cpu_write_access;
1074 TranslationBlock *current_tb = NULL;
1075 int current_tb_modified = 0;
1076 target_ulong current_pc = 0;
1077 target_ulong current_cs_base = 0;
1078 int current_flags = 0;
1079 #endif /* TARGET_HAS_PRECISE_SMC */
1081 p = page_find(start >> TARGET_PAGE_BITS);
1082 if (!p) {
1083 return;
1085 #if defined(TARGET_HAS_PRECISE_SMC)
1086 if (cpu != NULL) {
1087 env = cpu->env_ptr;
1089 #endif
1091 /* we remove all the TBs in the range [start, end[ */
1092 /* XXX: see if in some cases it could be faster to invalidate all
1093 the code */
1094 tb = p->first_tb;
1095 while (tb != NULL) {
1096 n = (uintptr_t)tb & 3;
1097 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1098 tb_next = tb->page_next[n];
1099 /* NOTE: this is subtle as a TB may span two physical pages */
1100 if (n == 0) {
1101 /* NOTE: tb_end may be after the end of the page, but
1102 it is not a problem */
1103 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1104 tb_end = tb_start + tb->size;
1105 } else {
1106 tb_start = tb->page_addr[1];
1107 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1109 if (!(tb_end <= start || tb_start >= end)) {
1110 #ifdef TARGET_HAS_PRECISE_SMC
1111 if (current_tb_not_found) {
1112 current_tb_not_found = 0;
1113 current_tb = NULL;
1114 if (cpu->mem_io_pc) {
1115 /* now we have a real cpu fault */
1116 current_tb = tb_find_pc(cpu->mem_io_pc);
1119 if (current_tb == tb &&
1120 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1121 /* If we are modifying the current TB, we must stop
1122 its execution. We could be more precise by checking
1123 that the modification is after the current PC, but it
1124 would require a specialized function to partially
1125 restore the CPU state */
1127 current_tb_modified = 1;
1128 cpu_restore_state_from_tb(cpu, current_tb, cpu->mem_io_pc);
1129 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1130 &current_flags);
1132 #endif /* TARGET_HAS_PRECISE_SMC */
1133 /* we need to do that to handle the case where a signal
1134 occurs while doing tb_phys_invalidate() */
1135 saved_tb = NULL;
1136 if (cpu != NULL) {
1137 saved_tb = cpu->current_tb;
1138 cpu->current_tb = NULL;
1140 tb_phys_invalidate(tb, -1);
1141 if (cpu != NULL) {
1142 cpu->current_tb = saved_tb;
1143 if (cpu->interrupt_request && cpu->current_tb) {
1144 cpu_interrupt(cpu, cpu->interrupt_request);
1148 tb = tb_next;
1150 #if !defined(CONFIG_USER_ONLY)
1151 /* if no code remaining, no need to continue to use slow writes */
1152 if (!p->first_tb) {
1153 invalidate_page_bitmap(p);
1154 tlb_unprotect_code(start);
1156 #endif
1157 #ifdef TARGET_HAS_PRECISE_SMC
1158 if (current_tb_modified) {
1159 /* we generate a block containing just the instruction
1160 modifying the memory. It will ensure that it cannot modify
1161 itself */
1162 cpu->current_tb = NULL;
1163 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1164 cpu_resume_from_signal(cpu, NULL);
1166 #endif
1169 /* len must be <= 8 and start must be a multiple of len */
1170 void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1172 PageDesc *p;
1174 #if 0
1175 if (1) {
1176 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1177 cpu_single_env->mem_io_vaddr, len,
1178 cpu_single_env->eip,
1179 cpu_single_env->eip +
1180 (intptr_t)cpu_single_env->segs[R_CS].base);
1182 #endif
1183 p = page_find(start >> TARGET_PAGE_BITS);
1184 if (!p) {
1185 return;
1187 if (!p->code_bitmap &&
1188 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
1189 /* build code bitmap */
1190 build_page_bitmap(p);
1192 if (p->code_bitmap) {
1193 unsigned int nr;
1194 unsigned long b;
1196 nr = start & ~TARGET_PAGE_MASK;
1197 b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
1198 if (b & ((1 << len) - 1)) {
1199 goto do_invalidate;
1201 } else {
1202 do_invalidate:
1203 tb_invalidate_phys_page_range(start, start + len, 1);
1207 #if !defined(CONFIG_SOFTMMU)
1208 static void tb_invalidate_phys_page(tb_page_addr_t addr,
1209 uintptr_t pc, void *puc,
1210 bool locked)
1212 TranslationBlock *tb;
1213 PageDesc *p;
1214 int n;
1215 #ifdef TARGET_HAS_PRECISE_SMC
1216 TranslationBlock *current_tb = NULL;
1217 CPUState *cpu = current_cpu;
1218 CPUArchState *env = NULL;
1219 int current_tb_modified = 0;
1220 target_ulong current_pc = 0;
1221 target_ulong current_cs_base = 0;
1222 int current_flags = 0;
1223 #endif
1225 addr &= TARGET_PAGE_MASK;
1226 p = page_find(addr >> TARGET_PAGE_BITS);
1227 if (!p) {
1228 return;
1230 tb = p->first_tb;
1231 #ifdef TARGET_HAS_PRECISE_SMC
1232 if (tb && pc != 0) {
1233 current_tb = tb_find_pc(pc);
1235 if (cpu != NULL) {
1236 env = cpu->env_ptr;
1238 #endif
1239 while (tb != NULL) {
1240 n = (uintptr_t)tb & 3;
1241 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1242 #ifdef TARGET_HAS_PRECISE_SMC
1243 if (current_tb == tb &&
1244 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1245 /* If we are modifying the current TB, we must stop
1246 its execution. We could be more precise by checking
1247 that the modification is after the current PC, but it
1248 would require a specialized function to partially
1249 restore the CPU state */
1251 current_tb_modified = 1;
1252 cpu_restore_state_from_tb(cpu, current_tb, pc);
1253 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1254 &current_flags);
1256 #endif /* TARGET_HAS_PRECISE_SMC */
1257 tb_phys_invalidate(tb, addr);
1258 tb = tb->page_next[n];
1260 p->first_tb = NULL;
1261 #ifdef TARGET_HAS_PRECISE_SMC
1262 if (current_tb_modified) {
1263 /* we generate a block containing just the instruction
1264 modifying the memory. It will ensure that it cannot modify
1265 itself */
1266 cpu->current_tb = NULL;
1267 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1268 if (locked) {
1269 mmap_unlock();
1271 cpu_resume_from_signal(cpu, puc);
1273 #endif
1275 #endif
1277 /* add the tb in the target page and protect it if necessary */
1278 static inline void tb_alloc_page(TranslationBlock *tb,
1279 unsigned int n, tb_page_addr_t page_addr)
1281 PageDesc *p;
1282 #ifndef CONFIG_USER_ONLY
1283 bool page_already_protected;
1284 #endif
1286 tb->page_addr[n] = page_addr;
1287 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1288 tb->page_next[n] = p->first_tb;
1289 #ifndef CONFIG_USER_ONLY
1290 page_already_protected = p->first_tb != NULL;
1291 #endif
1292 p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
1293 invalidate_page_bitmap(p);
1295 #if defined(CONFIG_USER_ONLY)
1296 if (p->flags & PAGE_WRITE) {
1297 target_ulong addr;
1298 PageDesc *p2;
1299 int prot;
1301 /* force the host page as non writable (writes will have a
1302 page fault + mprotect overhead) */
1303 page_addr &= qemu_host_page_mask;
1304 prot = 0;
1305 for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1306 addr += TARGET_PAGE_SIZE) {
1308 p2 = page_find(addr >> TARGET_PAGE_BITS);
1309 if (!p2) {
1310 continue;
1312 prot |= p2->flags;
1313 p2->flags &= ~PAGE_WRITE;
1315 mprotect(g2h(page_addr), qemu_host_page_size,
1316 (prot & PAGE_BITS) & ~PAGE_WRITE);
1317 #ifdef DEBUG_TB_INVALIDATE
1318 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1319 page_addr);
1320 #endif
1322 #else
1323 /* if some code is already present, then the pages are already
1324 protected. So we handle the case where only the first TB is
1325 allocated in a physical page */
1326 if (!page_already_protected) {
1327 tlb_protect_code(page_addr);
1329 #endif
1332 /* add a new TB and link it to the physical page tables. phys_page2 is
1333 (-1) to indicate that only one page contains the TB. */
1334 static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1335 tb_page_addr_t phys_page2)
1337 unsigned int h;
1338 TranslationBlock **ptb;
1340 /* Grab the mmap lock to stop another thread invalidating this TB
1341 before we are done. */
1342 mmap_lock();
1343 /* add in the physical hash table */
1344 h = tb_phys_hash_func(phys_pc);
1345 ptb = &tcg_ctx.tb_ctx.tb_phys_hash[h];
1346 tb->phys_hash_next = *ptb;
1347 *ptb = tb;
1349 /* add in the page list */
1350 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1351 if (phys_page2 != -1) {
1352 tb_alloc_page(tb, 1, phys_page2);
1353 } else {
1354 tb->page_addr[1] = -1;
1357 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2);
1358 tb->jmp_next[0] = NULL;
1359 tb->jmp_next[1] = NULL;
1361 /* init original jump addresses */
1362 if (tb->tb_next_offset[0] != 0xffff) {
1363 tb_reset_jump(tb, 0);
1365 if (tb->tb_next_offset[1] != 0xffff) {
1366 tb_reset_jump(tb, 1);
1369 #ifdef DEBUG_TB_CHECK
1370 tb_page_check();
1371 #endif
1372 mmap_unlock();
1375 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1376 tb[1].tc_ptr. Return NULL if not found */
1377 static TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
1379 int m_min, m_max, m;
1380 uintptr_t v;
1381 TranslationBlock *tb;
1383 if (tcg_ctx.tb_ctx.nb_tbs <= 0) {
1384 return NULL;
1386 if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer ||
1387 tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) {
1388 return NULL;
1390 /* binary search (cf Knuth) */
1391 m_min = 0;
1392 m_max = tcg_ctx.tb_ctx.nb_tbs - 1;
1393 while (m_min <= m_max) {
1394 m = (m_min + m_max) >> 1;
1395 tb = &tcg_ctx.tb_ctx.tbs[m];
1396 v = (uintptr_t)tb->tc_ptr;
1397 if (v == tc_ptr) {
1398 return tb;
1399 } else if (tc_ptr < v) {
1400 m_max = m - 1;
1401 } else {
1402 m_min = m + 1;
1405 return &tcg_ctx.tb_ctx.tbs[m_max];
1408 #if !defined(CONFIG_USER_ONLY)
1409 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
1411 ram_addr_t ram_addr;
1412 MemoryRegion *mr;
1413 hwaddr l = 1;
1415 rcu_read_lock();
1416 mr = address_space_translate(as, addr, &addr, &l, false);
1417 if (!(memory_region_is_ram(mr)
1418 || memory_region_is_romd(mr))) {
1419 rcu_read_unlock();
1420 return;
1422 ram_addr = (memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK)
1423 + addr;
1424 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1425 rcu_read_unlock();
1427 #endif /* !defined(CONFIG_USER_ONLY) */
1429 void tb_check_watchpoint(CPUState *cpu)
1431 TranslationBlock *tb;
1433 tb = tb_find_pc(cpu->mem_io_pc);
1434 if (tb) {
1435 /* We can use retranslation to find the PC. */
1436 cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc);
1437 tb_phys_invalidate(tb, -1);
1438 } else {
1439 /* The exception probably happened in a helper. The CPU state should
1440 have been saved before calling it. Fetch the PC from there. */
1441 CPUArchState *env = cpu->env_ptr;
1442 target_ulong pc, cs_base;
1443 tb_page_addr_t addr;
1444 int flags;
1446 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
1447 addr = get_page_addr_code(env, pc);
1448 tb_invalidate_phys_range(addr, addr + 1);
1452 #ifndef CONFIG_USER_ONLY
1453 /* mask must never be zero, except for A20 change call */
1454 static void tcg_handle_interrupt(CPUState *cpu, int mask)
1456 int old_mask;
1458 old_mask = cpu->interrupt_request;
1459 cpu->interrupt_request |= mask;
1462 * If called from iothread context, wake the target cpu in
1463 * case its halted.
1465 if (!qemu_cpu_is_self(cpu)) {
1466 qemu_cpu_kick(cpu);
1467 return;
1470 if (use_icount) {
1471 cpu->icount_decr.u16.high = 0xffff;
1472 if (!cpu->can_do_io
1473 && (mask & ~old_mask) != 0) {
1474 cpu_abort(cpu, "Raised interrupt while not in I/O function");
1476 } else {
1477 cpu->tcg_exit_req = 1;
1481 CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt;
1483 /* in deterministic execution mode, instructions doing device I/Os
1484 must be at the end of the TB */
1485 void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
1487 #if defined(TARGET_MIPS) || defined(TARGET_SH4)
1488 CPUArchState *env = cpu->env_ptr;
1489 #endif
1490 TranslationBlock *tb;
1491 uint32_t n, cflags;
1492 target_ulong pc, cs_base;
1493 uint64_t flags;
1495 tb = tb_find_pc(retaddr);
1496 if (!tb) {
1497 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
1498 (void *)retaddr);
1500 n = cpu->icount_decr.u16.low + tb->icount;
1501 cpu_restore_state_from_tb(cpu, tb, retaddr);
1502 /* Calculate how many instructions had been executed before the fault
1503 occurred. */
1504 n = n - cpu->icount_decr.u16.low;
1505 /* Generate a new TB ending on the I/O insn. */
1506 n++;
1507 /* On MIPS and SH, delay slot instructions can only be restarted if
1508 they were already the first instruction in the TB. If this is not
1509 the first instruction in a TB then re-execute the preceding
1510 branch. */
1511 #if defined(TARGET_MIPS)
1512 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
1513 env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
1514 cpu->icount_decr.u16.low++;
1515 env->hflags &= ~MIPS_HFLAG_BMASK;
1517 #elif defined(TARGET_SH4)
1518 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
1519 && n > 1) {
1520 env->pc -= 2;
1521 cpu->icount_decr.u16.low++;
1522 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
1524 #endif
1525 /* This should never happen. */
1526 if (n > CF_COUNT_MASK) {
1527 cpu_abort(cpu, "TB too big during recompile");
1530 cflags = n | CF_LAST_IO;
1531 pc = tb->pc;
1532 cs_base = tb->cs_base;
1533 flags = tb->flags;
1534 tb_phys_invalidate(tb, -1);
1535 if (tb->cflags & CF_NOCACHE) {
1536 if (tb->orig_tb) {
1537 /* Invalidate original TB if this TB was generated in
1538 * cpu_exec_nocache() */
1539 tb_phys_invalidate(tb->orig_tb, -1);
1541 tb_free(tb);
1543 /* FIXME: In theory this could raise an exception. In practice
1544 we have already translated the block once so it's probably ok. */
1545 tb_gen_code(cpu, pc, cs_base, flags, cflags);
1546 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
1547 the first in the TB) then we end up generating a whole new TB and
1548 repeating the fault, which is horribly inefficient.
1549 Better would be to execute just this insn uncached, or generate a
1550 second new TB. */
1551 cpu_resume_from_signal(cpu, NULL);
1554 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
1556 unsigned int i;
1558 /* Discard jump cache entries for any tb which might potentially
1559 overlap the flushed page. */
1560 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1561 memset(&cpu->tb_jmp_cache[i], 0,
1562 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1564 i = tb_jmp_cache_hash_page(addr);
1565 memset(&cpu->tb_jmp_cache[i], 0,
1566 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1569 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
1571 int i, target_code_size, max_target_code_size;
1572 int direct_jmp_count, direct_jmp2_count, cross_page;
1573 TranslationBlock *tb;
1575 target_code_size = 0;
1576 max_target_code_size = 0;
1577 cross_page = 0;
1578 direct_jmp_count = 0;
1579 direct_jmp2_count = 0;
1580 for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) {
1581 tb = &tcg_ctx.tb_ctx.tbs[i];
1582 target_code_size += tb->size;
1583 if (tb->size > max_target_code_size) {
1584 max_target_code_size = tb->size;
1586 if (tb->page_addr[1] != -1) {
1587 cross_page++;
1589 if (tb->tb_next_offset[0] != 0xffff) {
1590 direct_jmp_count++;
1591 if (tb->tb_next_offset[1] != 0xffff) {
1592 direct_jmp2_count++;
1596 /* XXX: avoid using doubles ? */
1597 cpu_fprintf(f, "Translation buffer state:\n");
1598 cpu_fprintf(f, "gen code size %td/%zd\n",
1599 tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer,
1600 tcg_ctx.code_gen_buffer_max_size);
1601 cpu_fprintf(f, "TB count %d/%d\n",
1602 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.code_gen_max_blocks);
1603 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
1604 tcg_ctx.tb_ctx.nb_tbs ? target_code_size /
1605 tcg_ctx.tb_ctx.nb_tbs : 0,
1606 max_target_code_size);
1607 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
1608 tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr -
1609 tcg_ctx.code_gen_buffer) /
1610 tcg_ctx.tb_ctx.nb_tbs : 0,
1611 target_code_size ? (double) (tcg_ctx.code_gen_ptr -
1612 tcg_ctx.code_gen_buffer) /
1613 target_code_size : 0);
1614 cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page,
1615 tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) /
1616 tcg_ctx.tb_ctx.nb_tbs : 0);
1617 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
1618 direct_jmp_count,
1619 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) /
1620 tcg_ctx.tb_ctx.nb_tbs : 0,
1621 direct_jmp2_count,
1622 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) /
1623 tcg_ctx.tb_ctx.nb_tbs : 0);
1624 cpu_fprintf(f, "\nStatistics:\n");
1625 cpu_fprintf(f, "TB flush count %d\n", tcg_ctx.tb_ctx.tb_flush_count);
1626 cpu_fprintf(f, "TB invalidate count %d\n",
1627 tcg_ctx.tb_ctx.tb_phys_invalidate_count);
1628 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
1629 tcg_dump_info(f, cpu_fprintf);
1632 void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf)
1634 tcg_dump_op_count(f, cpu_fprintf);
1637 #else /* CONFIG_USER_ONLY */
1639 void cpu_interrupt(CPUState *cpu, int mask)
1641 cpu->interrupt_request |= mask;
1642 cpu->tcg_exit_req = 1;
1646 * Walks guest process memory "regions" one by one
1647 * and calls callback function 'fn' for each region.
1649 struct walk_memory_regions_data {
1650 walk_memory_regions_fn fn;
1651 void *priv;
1652 target_ulong start;
1653 int prot;
1656 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1657 target_ulong end, int new_prot)
1659 if (data->start != -1u) {
1660 int rc = data->fn(data->priv, data->start, end, data->prot);
1661 if (rc != 0) {
1662 return rc;
1666 data->start = (new_prot ? end : -1u);
1667 data->prot = new_prot;
1669 return 0;
1672 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1673 target_ulong base, int level, void **lp)
1675 target_ulong pa;
1676 int i, rc;
1678 if (*lp == NULL) {
1679 return walk_memory_regions_end(data, base, 0);
1682 if (level == 0) {
1683 PageDesc *pd = *lp;
1685 for (i = 0; i < V_L2_SIZE; ++i) {
1686 int prot = pd[i].flags;
1688 pa = base | (i << TARGET_PAGE_BITS);
1689 if (prot != data->prot) {
1690 rc = walk_memory_regions_end(data, pa, prot);
1691 if (rc != 0) {
1692 return rc;
1696 } else {
1697 void **pp = *lp;
1699 for (i = 0; i < V_L2_SIZE; ++i) {
1700 pa = base | ((target_ulong)i <<
1701 (TARGET_PAGE_BITS + V_L2_BITS * level));
1702 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
1703 if (rc != 0) {
1704 return rc;
1709 return 0;
1712 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
1714 struct walk_memory_regions_data data;
1715 uintptr_t i;
1717 data.fn = fn;
1718 data.priv = priv;
1719 data.start = -1u;
1720 data.prot = 0;
1722 for (i = 0; i < V_L1_SIZE; i++) {
1723 int rc = walk_memory_regions_1(&data, (target_ulong)i << (V_L1_SHIFT + TARGET_PAGE_BITS),
1724 V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
1725 if (rc != 0) {
1726 return rc;
1730 return walk_memory_regions_end(&data, 0, 0);
1733 static int dump_region(void *priv, target_ulong start,
1734 target_ulong end, unsigned long prot)
1736 FILE *f = (FILE *)priv;
1738 (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
1739 " "TARGET_FMT_lx" %c%c%c\n",
1740 start, end, end - start,
1741 ((prot & PAGE_READ) ? 'r' : '-'),
1742 ((prot & PAGE_WRITE) ? 'w' : '-'),
1743 ((prot & PAGE_EXEC) ? 'x' : '-'));
1745 return 0;
1748 /* dump memory mappings */
1749 void page_dump(FILE *f)
1751 const int length = sizeof(target_ulong) * 2;
1752 (void) fprintf(f, "%-*s %-*s %-*s %s\n",
1753 length, "start", length, "end", length, "size", "prot");
1754 walk_memory_regions(f, dump_region);
1757 int page_get_flags(target_ulong address)
1759 PageDesc *p;
1761 p = page_find(address >> TARGET_PAGE_BITS);
1762 if (!p) {
1763 return 0;
1765 return p->flags;
1768 /* Modify the flags of a page and invalidate the code if necessary.
1769 The flag PAGE_WRITE_ORG is positioned automatically depending
1770 on PAGE_WRITE. The mmap_lock should already be held. */
1771 void page_set_flags(target_ulong start, target_ulong end, int flags)
1773 target_ulong addr, len;
1775 /* This function should never be called with addresses outside the
1776 guest address space. If this assert fires, it probably indicates
1777 a missing call to h2g_valid. */
1778 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1779 assert(end < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
1780 #endif
1781 assert(start < end);
1783 start = start & TARGET_PAGE_MASK;
1784 end = TARGET_PAGE_ALIGN(end);
1786 if (flags & PAGE_WRITE) {
1787 flags |= PAGE_WRITE_ORG;
1790 for (addr = start, len = end - start;
1791 len != 0;
1792 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1793 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
1795 /* If the write protection bit is set, then we invalidate
1796 the code inside. */
1797 if (!(p->flags & PAGE_WRITE) &&
1798 (flags & PAGE_WRITE) &&
1799 p->first_tb) {
1800 tb_invalidate_phys_page(addr, 0, NULL, false);
1802 p->flags = flags;
1806 int page_check_range(target_ulong start, target_ulong len, int flags)
1808 PageDesc *p;
1809 target_ulong end;
1810 target_ulong addr;
1812 /* This function should never be called with addresses outside the
1813 guest address space. If this assert fires, it probably indicates
1814 a missing call to h2g_valid. */
1815 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1816 assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
1817 #endif
1819 if (len == 0) {
1820 return 0;
1822 if (start + len - 1 < start) {
1823 /* We've wrapped around. */
1824 return -1;
1827 /* must do before we loose bits in the next step */
1828 end = TARGET_PAGE_ALIGN(start + len);
1829 start = start & TARGET_PAGE_MASK;
1831 for (addr = start, len = end - start;
1832 len != 0;
1833 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1834 p = page_find(addr >> TARGET_PAGE_BITS);
1835 if (!p) {
1836 return -1;
1838 if (!(p->flags & PAGE_VALID)) {
1839 return -1;
1842 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
1843 return -1;
1845 if (flags & PAGE_WRITE) {
1846 if (!(p->flags & PAGE_WRITE_ORG)) {
1847 return -1;
1849 /* unprotect the page if it was put read-only because it
1850 contains translated code */
1851 if (!(p->flags & PAGE_WRITE)) {
1852 if (!page_unprotect(addr, 0, NULL)) {
1853 return -1;
1858 return 0;
1861 /* called from signal handler: invalidate the code and unprotect the
1862 page. Return TRUE if the fault was successfully handled. */
1863 int page_unprotect(target_ulong address, uintptr_t pc, void *puc)
1865 unsigned int prot;
1866 PageDesc *p;
1867 target_ulong host_start, host_end, addr;
1869 /* Technically this isn't safe inside a signal handler. However we
1870 know this only ever happens in a synchronous SEGV handler, so in
1871 practice it seems to be ok. */
1872 mmap_lock();
1874 p = page_find(address >> TARGET_PAGE_BITS);
1875 if (!p) {
1876 mmap_unlock();
1877 return 0;
1880 /* if the page was really writable, then we change its
1881 protection back to writable */
1882 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
1883 host_start = address & qemu_host_page_mask;
1884 host_end = host_start + qemu_host_page_size;
1886 prot = 0;
1887 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
1888 p = page_find(addr >> TARGET_PAGE_BITS);
1889 p->flags |= PAGE_WRITE;
1890 prot |= p->flags;
1892 /* and since the content will be modified, we must invalidate
1893 the corresponding translated code. */
1894 tb_invalidate_phys_page(addr, pc, puc, true);
1895 #ifdef DEBUG_TB_CHECK
1896 tb_invalidate_check(addr);
1897 #endif
1899 mprotect((void *)g2h(host_start), qemu_host_page_size,
1900 prot & PAGE_BITS);
1902 mmap_unlock();
1903 return 1;
1905 mmap_unlock();
1906 return 0;
1908 #endif /* CONFIG_USER_ONLY */