ati-vga: Add limited support for big endian frame buffer aperture
[qemu/ar7.git] / linux-user / elfload.c
blob3365e192eb3f17c1cbc07d093a1efe30c73e47c6
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
5 #include <sys/resource.h>
6 #include <sys/shm.h>
8 #include "qemu.h"
9 #include "disas/disas.h"
10 #include "qemu/path.h"
11 #include "qemu/queue.h"
12 #include "qemu/guest-random.h"
14 #ifdef _ARCH_PPC64
15 #undef ARCH_DLINFO
16 #undef ELF_PLATFORM
17 #undef ELF_HWCAP
18 #undef ELF_HWCAP2
19 #undef ELF_CLASS
20 #undef ELF_DATA
21 #undef ELF_ARCH
22 #endif
24 #define ELF_OSABI ELFOSABI_SYSV
26 /* from personality.h */
29 * Flags for bug emulation.
31 * These occupy the top three bytes.
33 enum {
34 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
35 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
36 descriptors (signal handling) */
37 MMAP_PAGE_ZERO = 0x0100000,
38 ADDR_COMPAT_LAYOUT = 0x0200000,
39 READ_IMPLIES_EXEC = 0x0400000,
40 ADDR_LIMIT_32BIT = 0x0800000,
41 SHORT_INODE = 0x1000000,
42 WHOLE_SECONDS = 0x2000000,
43 STICKY_TIMEOUTS = 0x4000000,
44 ADDR_LIMIT_3GB = 0x8000000,
48 * Personality types.
50 * These go in the low byte. Avoid using the top bit, it will
51 * conflict with error returns.
53 enum {
54 PER_LINUX = 0x0000,
55 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
56 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
57 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
58 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
59 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
60 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
61 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
62 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
63 PER_BSD = 0x0006,
64 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
65 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
66 PER_LINUX32 = 0x0008,
67 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
68 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
69 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
70 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
71 PER_RISCOS = 0x000c,
72 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
73 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
74 PER_OSF4 = 0x000f, /* OSF/1 v4 */
75 PER_HPUX = 0x0010,
76 PER_MASK = 0x00ff,
80 * Return the base personality without flags.
82 #define personality(pers) (pers & PER_MASK)
84 int info_is_fdpic(struct image_info *info)
86 return info->personality == PER_LINUX_FDPIC;
89 /* this flag is uneffective under linux too, should be deleted */
90 #ifndef MAP_DENYWRITE
91 #define MAP_DENYWRITE 0
92 #endif
94 /* should probably go in elf.h */
95 #ifndef ELIBBAD
96 #define ELIBBAD 80
97 #endif
99 #ifdef TARGET_WORDS_BIGENDIAN
100 #define ELF_DATA ELFDATA2MSB
101 #else
102 #define ELF_DATA ELFDATA2LSB
103 #endif
105 #ifdef TARGET_ABI_MIPSN32
106 typedef abi_ullong target_elf_greg_t;
107 #define tswapreg(ptr) tswap64(ptr)
108 #else
109 typedef abi_ulong target_elf_greg_t;
110 #define tswapreg(ptr) tswapal(ptr)
111 #endif
113 #ifdef USE_UID16
114 typedef abi_ushort target_uid_t;
115 typedef abi_ushort target_gid_t;
116 #else
117 typedef abi_uint target_uid_t;
118 typedef abi_uint target_gid_t;
119 #endif
120 typedef abi_int target_pid_t;
122 #ifdef TARGET_I386
124 #define ELF_PLATFORM get_elf_platform()
126 static const char *get_elf_platform(void)
128 static char elf_platform[] = "i386";
129 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
130 if (family > 6)
131 family = 6;
132 if (family >= 3)
133 elf_platform[1] = '0' + family;
134 return elf_platform;
137 #define ELF_HWCAP get_elf_hwcap()
139 static uint32_t get_elf_hwcap(void)
141 X86CPU *cpu = X86_CPU(thread_cpu);
143 return cpu->env.features[FEAT_1_EDX];
146 #ifdef TARGET_X86_64
147 #define ELF_START_MMAP 0x2aaaaab000ULL
149 #define ELF_CLASS ELFCLASS64
150 #define ELF_ARCH EM_X86_64
152 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
154 regs->rax = 0;
155 regs->rsp = infop->start_stack;
156 regs->rip = infop->entry;
159 #define ELF_NREG 27
160 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
163 * Note that ELF_NREG should be 29 as there should be place for
164 * TRAPNO and ERR "registers" as well but linux doesn't dump
165 * those.
167 * See linux kernel: arch/x86/include/asm/elf.h
169 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
171 (*regs)[0] = env->regs[15];
172 (*regs)[1] = env->regs[14];
173 (*regs)[2] = env->regs[13];
174 (*regs)[3] = env->regs[12];
175 (*regs)[4] = env->regs[R_EBP];
176 (*regs)[5] = env->regs[R_EBX];
177 (*regs)[6] = env->regs[11];
178 (*regs)[7] = env->regs[10];
179 (*regs)[8] = env->regs[9];
180 (*regs)[9] = env->regs[8];
181 (*regs)[10] = env->regs[R_EAX];
182 (*regs)[11] = env->regs[R_ECX];
183 (*regs)[12] = env->regs[R_EDX];
184 (*regs)[13] = env->regs[R_ESI];
185 (*regs)[14] = env->regs[R_EDI];
186 (*regs)[15] = env->regs[R_EAX]; /* XXX */
187 (*regs)[16] = env->eip;
188 (*regs)[17] = env->segs[R_CS].selector & 0xffff;
189 (*regs)[18] = env->eflags;
190 (*regs)[19] = env->regs[R_ESP];
191 (*regs)[20] = env->segs[R_SS].selector & 0xffff;
192 (*regs)[21] = env->segs[R_FS].selector & 0xffff;
193 (*regs)[22] = env->segs[R_GS].selector & 0xffff;
194 (*regs)[23] = env->segs[R_DS].selector & 0xffff;
195 (*regs)[24] = env->segs[R_ES].selector & 0xffff;
196 (*regs)[25] = env->segs[R_FS].selector & 0xffff;
197 (*regs)[26] = env->segs[R_GS].selector & 0xffff;
200 #else
202 #define ELF_START_MMAP 0x80000000
205 * This is used to ensure we don't load something for the wrong architecture.
207 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
210 * These are used to set parameters in the core dumps.
212 #define ELF_CLASS ELFCLASS32
213 #define ELF_ARCH EM_386
215 static inline void init_thread(struct target_pt_regs *regs,
216 struct image_info *infop)
218 regs->esp = infop->start_stack;
219 regs->eip = infop->entry;
221 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
222 starts %edx contains a pointer to a function which might be
223 registered using `atexit'. This provides a mean for the
224 dynamic linker to call DT_FINI functions for shared libraries
225 that have been loaded before the code runs.
227 A value of 0 tells we have no such handler. */
228 regs->edx = 0;
231 #define ELF_NREG 17
232 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
235 * Note that ELF_NREG should be 19 as there should be place for
236 * TRAPNO and ERR "registers" as well but linux doesn't dump
237 * those.
239 * See linux kernel: arch/x86/include/asm/elf.h
241 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
243 (*regs)[0] = env->regs[R_EBX];
244 (*regs)[1] = env->regs[R_ECX];
245 (*regs)[2] = env->regs[R_EDX];
246 (*regs)[3] = env->regs[R_ESI];
247 (*regs)[4] = env->regs[R_EDI];
248 (*regs)[5] = env->regs[R_EBP];
249 (*regs)[6] = env->regs[R_EAX];
250 (*regs)[7] = env->segs[R_DS].selector & 0xffff;
251 (*regs)[8] = env->segs[R_ES].selector & 0xffff;
252 (*regs)[9] = env->segs[R_FS].selector & 0xffff;
253 (*regs)[10] = env->segs[R_GS].selector & 0xffff;
254 (*regs)[11] = env->regs[R_EAX]; /* XXX */
255 (*regs)[12] = env->eip;
256 (*regs)[13] = env->segs[R_CS].selector & 0xffff;
257 (*regs)[14] = env->eflags;
258 (*regs)[15] = env->regs[R_ESP];
259 (*regs)[16] = env->segs[R_SS].selector & 0xffff;
261 #endif
263 #define USE_ELF_CORE_DUMP
264 #define ELF_EXEC_PAGESIZE 4096
266 #endif
268 #ifdef TARGET_ARM
270 #ifndef TARGET_AARCH64
271 /* 32 bit ARM definitions */
273 #define ELF_START_MMAP 0x80000000
275 #define ELF_ARCH EM_ARM
276 #define ELF_CLASS ELFCLASS32
278 static inline void init_thread(struct target_pt_regs *regs,
279 struct image_info *infop)
281 abi_long stack = infop->start_stack;
282 memset(regs, 0, sizeof(*regs));
284 regs->uregs[16] = ARM_CPU_MODE_USR;
285 if (infop->entry & 1) {
286 regs->uregs[16] |= CPSR_T;
288 regs->uregs[15] = infop->entry & 0xfffffffe;
289 regs->uregs[13] = infop->start_stack;
290 /* FIXME - what to for failure of get_user()? */
291 get_user_ual(regs->uregs[2], stack + 8); /* envp */
292 get_user_ual(regs->uregs[1], stack + 4); /* envp */
293 /* XXX: it seems that r0 is zeroed after ! */
294 regs->uregs[0] = 0;
295 /* For uClinux PIC binaries. */
296 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
297 regs->uregs[10] = infop->start_data;
299 /* Support ARM FDPIC. */
300 if (info_is_fdpic(infop)) {
301 /* As described in the ABI document, r7 points to the loadmap info
302 * prepared by the kernel. If an interpreter is needed, r8 points
303 * to the interpreter loadmap and r9 points to the interpreter
304 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
305 * r9 points to the main program PT_DYNAMIC info.
307 regs->uregs[7] = infop->loadmap_addr;
308 if (infop->interpreter_loadmap_addr) {
309 /* Executable is dynamically loaded. */
310 regs->uregs[8] = infop->interpreter_loadmap_addr;
311 regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
312 } else {
313 regs->uregs[8] = 0;
314 regs->uregs[9] = infop->pt_dynamic_addr;
319 #define ELF_NREG 18
320 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
322 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
324 (*regs)[0] = tswapreg(env->regs[0]);
325 (*regs)[1] = tswapreg(env->regs[1]);
326 (*regs)[2] = tswapreg(env->regs[2]);
327 (*regs)[3] = tswapreg(env->regs[3]);
328 (*regs)[4] = tswapreg(env->regs[4]);
329 (*regs)[5] = tswapreg(env->regs[5]);
330 (*regs)[6] = tswapreg(env->regs[6]);
331 (*regs)[7] = tswapreg(env->regs[7]);
332 (*regs)[8] = tswapreg(env->regs[8]);
333 (*regs)[9] = tswapreg(env->regs[9]);
334 (*regs)[10] = tswapreg(env->regs[10]);
335 (*regs)[11] = tswapreg(env->regs[11]);
336 (*regs)[12] = tswapreg(env->regs[12]);
337 (*regs)[13] = tswapreg(env->regs[13]);
338 (*regs)[14] = tswapreg(env->regs[14]);
339 (*regs)[15] = tswapreg(env->regs[15]);
341 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
342 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
345 #define USE_ELF_CORE_DUMP
346 #define ELF_EXEC_PAGESIZE 4096
348 enum
350 ARM_HWCAP_ARM_SWP = 1 << 0,
351 ARM_HWCAP_ARM_HALF = 1 << 1,
352 ARM_HWCAP_ARM_THUMB = 1 << 2,
353 ARM_HWCAP_ARM_26BIT = 1 << 3,
354 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
355 ARM_HWCAP_ARM_FPA = 1 << 5,
356 ARM_HWCAP_ARM_VFP = 1 << 6,
357 ARM_HWCAP_ARM_EDSP = 1 << 7,
358 ARM_HWCAP_ARM_JAVA = 1 << 8,
359 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
360 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
361 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
362 ARM_HWCAP_ARM_NEON = 1 << 12,
363 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
364 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
365 ARM_HWCAP_ARM_TLS = 1 << 15,
366 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
367 ARM_HWCAP_ARM_IDIVA = 1 << 17,
368 ARM_HWCAP_ARM_IDIVT = 1 << 18,
369 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
370 ARM_HWCAP_ARM_LPAE = 1 << 20,
371 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
374 enum {
375 ARM_HWCAP2_ARM_AES = 1 << 0,
376 ARM_HWCAP2_ARM_PMULL = 1 << 1,
377 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
378 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
379 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
382 /* The commpage only exists for 32 bit kernels */
384 /* Return 1 if the proposed guest space is suitable for the guest.
385 * Return 0 if the proposed guest space isn't suitable, but another
386 * address space should be tried.
387 * Return -1 if there is no way the proposed guest space can be
388 * valid regardless of the base.
389 * The guest code may leave a page mapped and populate it if the
390 * address is suitable.
392 static int init_guest_commpage(unsigned long guest_base,
393 unsigned long guest_size)
395 unsigned long real_start, test_page_addr;
397 /* We need to check that we can force a fault on access to the
398 * commpage at 0xffff0fxx
400 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
402 /* If the commpage lies within the already allocated guest space,
403 * then there is no way we can allocate it.
405 * You may be thinking that that this check is redundant because
406 * we already validated the guest size against MAX_RESERVED_VA;
407 * but if qemu_host_page_mask is unusually large, then
408 * test_page_addr may be lower.
410 if (test_page_addr >= guest_base
411 && test_page_addr < (guest_base + guest_size)) {
412 return -1;
415 /* Note it needs to be writeable to let us initialise it */
416 real_start = (unsigned long)
417 mmap((void *)test_page_addr, qemu_host_page_size,
418 PROT_READ | PROT_WRITE,
419 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
421 /* If we can't map it then try another address */
422 if (real_start == -1ul) {
423 return 0;
426 if (real_start != test_page_addr) {
427 /* OS didn't put the page where we asked - unmap and reject */
428 munmap((void *)real_start, qemu_host_page_size);
429 return 0;
432 /* Leave the page mapped
433 * Populate it (mmap should have left it all 0'd)
436 /* Kernel helper versions */
437 __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
439 /* Now it's populated make it RO */
440 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
441 perror("Protecting guest commpage");
442 exit(-1);
445 return 1; /* All good */
448 #define ELF_HWCAP get_elf_hwcap()
449 #define ELF_HWCAP2 get_elf_hwcap2()
451 static uint32_t get_elf_hwcap(void)
453 ARMCPU *cpu = ARM_CPU(thread_cpu);
454 uint32_t hwcaps = 0;
456 hwcaps |= ARM_HWCAP_ARM_SWP;
457 hwcaps |= ARM_HWCAP_ARM_HALF;
458 hwcaps |= ARM_HWCAP_ARM_THUMB;
459 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
461 /* probe for the extra features */
462 #define GET_FEATURE(feat, hwcap) \
463 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
465 #define GET_FEATURE_ID(feat, hwcap) \
466 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
468 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
469 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
470 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
471 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
472 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
473 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
474 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
475 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
476 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
477 GET_FEATURE_ID(arm_div, ARM_HWCAP_ARM_IDIVA);
478 GET_FEATURE_ID(thumb_div, ARM_HWCAP_ARM_IDIVT);
479 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
480 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
481 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
482 * to our VFP_FP16 feature bit.
484 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
485 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
487 return hwcaps;
490 static uint32_t get_elf_hwcap2(void)
492 ARMCPU *cpu = ARM_CPU(thread_cpu);
493 uint32_t hwcaps = 0;
495 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
496 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
497 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
498 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
499 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
500 return hwcaps;
503 #undef GET_FEATURE
504 #undef GET_FEATURE_ID
506 #define ELF_PLATFORM get_elf_platform()
508 static const char *get_elf_platform(void)
510 CPUARMState *env = thread_cpu->env_ptr;
512 #ifdef TARGET_WORDS_BIGENDIAN
513 # define END "b"
514 #else
515 # define END "l"
516 #endif
518 if (arm_feature(env, ARM_FEATURE_V8)) {
519 return "v8" END;
520 } else if (arm_feature(env, ARM_FEATURE_V7)) {
521 if (arm_feature(env, ARM_FEATURE_M)) {
522 return "v7m" END;
523 } else {
524 return "v7" END;
526 } else if (arm_feature(env, ARM_FEATURE_V6)) {
527 return "v6" END;
528 } else if (arm_feature(env, ARM_FEATURE_V5)) {
529 return "v5" END;
530 } else {
531 return "v4" END;
534 #undef END
537 #else
538 /* 64 bit ARM definitions */
539 #define ELF_START_MMAP 0x80000000
541 #define ELF_ARCH EM_AARCH64
542 #define ELF_CLASS ELFCLASS64
543 #ifdef TARGET_WORDS_BIGENDIAN
544 # define ELF_PLATFORM "aarch64_be"
545 #else
546 # define ELF_PLATFORM "aarch64"
547 #endif
549 static inline void init_thread(struct target_pt_regs *regs,
550 struct image_info *infop)
552 abi_long stack = infop->start_stack;
553 memset(regs, 0, sizeof(*regs));
555 regs->pc = infop->entry & ~0x3ULL;
556 regs->sp = stack;
559 #define ELF_NREG 34
560 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
562 static void elf_core_copy_regs(target_elf_gregset_t *regs,
563 const CPUARMState *env)
565 int i;
567 for (i = 0; i < 32; i++) {
568 (*regs)[i] = tswapreg(env->xregs[i]);
570 (*regs)[32] = tswapreg(env->pc);
571 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
574 #define USE_ELF_CORE_DUMP
575 #define ELF_EXEC_PAGESIZE 4096
577 enum {
578 ARM_HWCAP_A64_FP = 1 << 0,
579 ARM_HWCAP_A64_ASIMD = 1 << 1,
580 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
581 ARM_HWCAP_A64_AES = 1 << 3,
582 ARM_HWCAP_A64_PMULL = 1 << 4,
583 ARM_HWCAP_A64_SHA1 = 1 << 5,
584 ARM_HWCAP_A64_SHA2 = 1 << 6,
585 ARM_HWCAP_A64_CRC32 = 1 << 7,
586 ARM_HWCAP_A64_ATOMICS = 1 << 8,
587 ARM_HWCAP_A64_FPHP = 1 << 9,
588 ARM_HWCAP_A64_ASIMDHP = 1 << 10,
589 ARM_HWCAP_A64_CPUID = 1 << 11,
590 ARM_HWCAP_A64_ASIMDRDM = 1 << 12,
591 ARM_HWCAP_A64_JSCVT = 1 << 13,
592 ARM_HWCAP_A64_FCMA = 1 << 14,
593 ARM_HWCAP_A64_LRCPC = 1 << 15,
594 ARM_HWCAP_A64_DCPOP = 1 << 16,
595 ARM_HWCAP_A64_SHA3 = 1 << 17,
596 ARM_HWCAP_A64_SM3 = 1 << 18,
597 ARM_HWCAP_A64_SM4 = 1 << 19,
598 ARM_HWCAP_A64_ASIMDDP = 1 << 20,
599 ARM_HWCAP_A64_SHA512 = 1 << 21,
600 ARM_HWCAP_A64_SVE = 1 << 22,
601 ARM_HWCAP_A64_ASIMDFHM = 1 << 23,
602 ARM_HWCAP_A64_DIT = 1 << 24,
603 ARM_HWCAP_A64_USCAT = 1 << 25,
604 ARM_HWCAP_A64_ILRCPC = 1 << 26,
605 ARM_HWCAP_A64_FLAGM = 1 << 27,
606 ARM_HWCAP_A64_SSBS = 1 << 28,
607 ARM_HWCAP_A64_SB = 1 << 29,
608 ARM_HWCAP_A64_PACA = 1 << 30,
609 ARM_HWCAP_A64_PACG = 1UL << 31,
612 #define ELF_HWCAP get_elf_hwcap()
614 static uint32_t get_elf_hwcap(void)
616 ARMCPU *cpu = ARM_CPU(thread_cpu);
617 uint32_t hwcaps = 0;
619 hwcaps |= ARM_HWCAP_A64_FP;
620 hwcaps |= ARM_HWCAP_A64_ASIMD;
621 hwcaps |= ARM_HWCAP_A64_CPUID;
623 /* probe for the extra features */
624 #define GET_FEATURE_ID(feat, hwcap) \
625 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
627 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
628 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
629 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
630 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
631 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
632 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
633 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
634 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
635 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
636 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
637 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
638 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
639 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
640 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
641 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
642 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
643 GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
644 GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
645 GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
646 GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
648 #undef GET_FEATURE_ID
650 return hwcaps;
653 #endif /* not TARGET_AARCH64 */
654 #endif /* TARGET_ARM */
656 #ifdef TARGET_SPARC
657 #ifdef TARGET_SPARC64
659 #define ELF_START_MMAP 0x80000000
660 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
661 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
662 #ifndef TARGET_ABI32
663 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
664 #else
665 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
666 #endif
668 #define ELF_CLASS ELFCLASS64
669 #define ELF_ARCH EM_SPARCV9
671 #define STACK_BIAS 2047
673 static inline void init_thread(struct target_pt_regs *regs,
674 struct image_info *infop)
676 #ifndef TARGET_ABI32
677 regs->tstate = 0;
678 #endif
679 regs->pc = infop->entry;
680 regs->npc = regs->pc + 4;
681 regs->y = 0;
682 #ifdef TARGET_ABI32
683 regs->u_regs[14] = infop->start_stack - 16 * 4;
684 #else
685 if (personality(infop->personality) == PER_LINUX32)
686 regs->u_regs[14] = infop->start_stack - 16 * 4;
687 else
688 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
689 #endif
692 #else
693 #define ELF_START_MMAP 0x80000000
694 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
695 | HWCAP_SPARC_MULDIV)
697 #define ELF_CLASS ELFCLASS32
698 #define ELF_ARCH EM_SPARC
700 static inline void init_thread(struct target_pt_regs *regs,
701 struct image_info *infop)
703 regs->psr = 0;
704 regs->pc = infop->entry;
705 regs->npc = regs->pc + 4;
706 regs->y = 0;
707 regs->u_regs[14] = infop->start_stack - 16 * 4;
710 #endif
711 #endif
713 #ifdef TARGET_PPC
715 #define ELF_MACHINE PPC_ELF_MACHINE
716 #define ELF_START_MMAP 0x80000000
718 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
720 #define elf_check_arch(x) ( (x) == EM_PPC64 )
722 #define ELF_CLASS ELFCLASS64
724 #else
726 #define ELF_CLASS ELFCLASS32
728 #endif
730 #define ELF_ARCH EM_PPC
732 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
733 See arch/powerpc/include/asm/cputable.h. */
734 enum {
735 QEMU_PPC_FEATURE_32 = 0x80000000,
736 QEMU_PPC_FEATURE_64 = 0x40000000,
737 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
738 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
739 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
740 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
741 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
742 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
743 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
744 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
745 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
746 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
747 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
748 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
749 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
750 QEMU_PPC_FEATURE_CELL = 0x00010000,
751 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
752 QEMU_PPC_FEATURE_SMT = 0x00004000,
753 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
754 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
755 QEMU_PPC_FEATURE_PA6T = 0x00000800,
756 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
757 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
758 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
759 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
760 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
762 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
763 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
765 /* Feature definitions in AT_HWCAP2. */
766 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
767 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
768 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
769 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
770 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
771 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
772 QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
773 QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
774 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
775 QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
776 QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
777 QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
778 QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
781 #define ELF_HWCAP get_elf_hwcap()
783 static uint32_t get_elf_hwcap(void)
785 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
786 uint32_t features = 0;
788 /* We don't have to be terribly complete here; the high points are
789 Altivec/FP/SPE support. Anything else is just a bonus. */
790 #define GET_FEATURE(flag, feature) \
791 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
792 #define GET_FEATURE2(flags, feature) \
793 do { \
794 if ((cpu->env.insns_flags2 & flags) == flags) { \
795 features |= feature; \
797 } while (0)
798 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
799 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
800 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
801 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
802 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
803 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
804 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
805 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
806 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
807 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
808 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
809 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
810 QEMU_PPC_FEATURE_ARCH_2_06);
811 #undef GET_FEATURE
812 #undef GET_FEATURE2
814 return features;
817 #define ELF_HWCAP2 get_elf_hwcap2()
819 static uint32_t get_elf_hwcap2(void)
821 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
822 uint32_t features = 0;
824 #define GET_FEATURE(flag, feature) \
825 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
826 #define GET_FEATURE2(flag, feature) \
827 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
829 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
830 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
831 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
832 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
833 QEMU_PPC_FEATURE2_VEC_CRYPTO);
834 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
835 QEMU_PPC_FEATURE2_DARN);
837 #undef GET_FEATURE
838 #undef GET_FEATURE2
840 return features;
844 * The requirements here are:
845 * - keep the final alignment of sp (sp & 0xf)
846 * - make sure the 32-bit value at the first 16 byte aligned position of
847 * AUXV is greater than 16 for glibc compatibility.
848 * AT_IGNOREPPC is used for that.
849 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
850 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
852 #define DLINFO_ARCH_ITEMS 5
853 #define ARCH_DLINFO \
854 do { \
855 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
856 /* \
857 * Handle glibc compatibility: these magic entries must \
858 * be at the lowest addresses in the final auxv. \
859 */ \
860 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
861 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
862 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
863 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
864 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
865 } while (0)
867 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
869 _regs->gpr[1] = infop->start_stack;
870 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
871 if (get_ppc64_abi(infop) < 2) {
872 uint64_t val;
873 get_user_u64(val, infop->entry + 8);
874 _regs->gpr[2] = val + infop->load_bias;
875 get_user_u64(val, infop->entry);
876 infop->entry = val + infop->load_bias;
877 } else {
878 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
880 #endif
881 _regs->nip = infop->entry;
884 /* See linux kernel: arch/powerpc/include/asm/elf.h. */
885 #define ELF_NREG 48
886 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
888 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
890 int i;
891 target_ulong ccr = 0;
893 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
894 (*regs)[i] = tswapreg(env->gpr[i]);
897 (*regs)[32] = tswapreg(env->nip);
898 (*regs)[33] = tswapreg(env->msr);
899 (*regs)[35] = tswapreg(env->ctr);
900 (*regs)[36] = tswapreg(env->lr);
901 (*regs)[37] = tswapreg(env->xer);
903 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
904 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
906 (*regs)[38] = tswapreg(ccr);
909 #define USE_ELF_CORE_DUMP
910 #define ELF_EXEC_PAGESIZE 4096
912 #endif
914 #ifdef TARGET_MIPS
916 #define ELF_START_MMAP 0x80000000
918 #ifdef TARGET_MIPS64
919 #define ELF_CLASS ELFCLASS64
920 #else
921 #define ELF_CLASS ELFCLASS32
922 #endif
923 #define ELF_ARCH EM_MIPS
925 #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS)
927 static inline void init_thread(struct target_pt_regs *regs,
928 struct image_info *infop)
930 regs->cp0_status = 2 << CP0St_KSU;
931 regs->cp0_epc = infop->entry;
932 regs->regs[29] = infop->start_stack;
935 /* See linux kernel: arch/mips/include/asm/elf.h. */
936 #define ELF_NREG 45
937 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
939 /* See linux kernel: arch/mips/include/asm/reg.h. */
940 enum {
941 #ifdef TARGET_MIPS64
942 TARGET_EF_R0 = 0,
943 #else
944 TARGET_EF_R0 = 6,
945 #endif
946 TARGET_EF_R26 = TARGET_EF_R0 + 26,
947 TARGET_EF_R27 = TARGET_EF_R0 + 27,
948 TARGET_EF_LO = TARGET_EF_R0 + 32,
949 TARGET_EF_HI = TARGET_EF_R0 + 33,
950 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
951 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
952 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
953 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
956 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
957 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
959 int i;
961 for (i = 0; i < TARGET_EF_R0; i++) {
962 (*regs)[i] = 0;
964 (*regs)[TARGET_EF_R0] = 0;
966 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
967 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
970 (*regs)[TARGET_EF_R26] = 0;
971 (*regs)[TARGET_EF_R27] = 0;
972 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
973 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
974 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
975 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
976 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
977 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
980 #define USE_ELF_CORE_DUMP
981 #define ELF_EXEC_PAGESIZE 4096
983 /* See arch/mips/include/uapi/asm/hwcap.h. */
984 enum {
985 HWCAP_MIPS_R6 = (1 << 0),
986 HWCAP_MIPS_MSA = (1 << 1),
989 #define ELF_HWCAP get_elf_hwcap()
991 static uint32_t get_elf_hwcap(void)
993 MIPSCPU *cpu = MIPS_CPU(thread_cpu);
994 uint32_t hwcaps = 0;
996 #define GET_FEATURE(flag, hwcap) \
997 do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0)
999 GET_FEATURE(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6);
1000 GET_FEATURE(ASE_MSA, HWCAP_MIPS_MSA);
1002 #undef GET_FEATURE
1004 return hwcaps;
1007 #endif /* TARGET_MIPS */
1009 #ifdef TARGET_MICROBLAZE
1011 #define ELF_START_MMAP 0x80000000
1013 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1015 #define ELF_CLASS ELFCLASS32
1016 #define ELF_ARCH EM_MICROBLAZE
1018 static inline void init_thread(struct target_pt_regs *regs,
1019 struct image_info *infop)
1021 regs->pc = infop->entry;
1022 regs->r1 = infop->start_stack;
1026 #define ELF_EXEC_PAGESIZE 4096
1028 #define USE_ELF_CORE_DUMP
1029 #define ELF_NREG 38
1030 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1032 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1033 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
1035 int i, pos = 0;
1037 for (i = 0; i < 32; i++) {
1038 (*regs)[pos++] = tswapreg(env->regs[i]);
1041 for (i = 0; i < 6; i++) {
1042 (*regs)[pos++] = tswapreg(env->sregs[i]);
1046 #endif /* TARGET_MICROBLAZE */
1048 #ifdef TARGET_NIOS2
1050 #define ELF_START_MMAP 0x80000000
1052 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1054 #define ELF_CLASS ELFCLASS32
1055 #define ELF_ARCH EM_ALTERA_NIOS2
1057 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1059 regs->ea = infop->entry;
1060 regs->sp = infop->start_stack;
1061 regs->estatus = 0x3;
1064 #define ELF_EXEC_PAGESIZE 4096
1066 #define USE_ELF_CORE_DUMP
1067 #define ELF_NREG 49
1068 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1070 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1071 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1072 const CPUNios2State *env)
1074 int i;
1076 (*regs)[0] = -1;
1077 for (i = 1; i < 8; i++) /* r0-r7 */
1078 (*regs)[i] = tswapreg(env->regs[i + 7]);
1080 for (i = 8; i < 16; i++) /* r8-r15 */
1081 (*regs)[i] = tswapreg(env->regs[i - 8]);
1083 for (i = 16; i < 24; i++) /* r16-r23 */
1084 (*regs)[i] = tswapreg(env->regs[i + 7]);
1085 (*regs)[24] = -1; /* R_ET */
1086 (*regs)[25] = -1; /* R_BT */
1087 (*regs)[26] = tswapreg(env->regs[R_GP]);
1088 (*regs)[27] = tswapreg(env->regs[R_SP]);
1089 (*regs)[28] = tswapreg(env->regs[R_FP]);
1090 (*regs)[29] = tswapreg(env->regs[R_EA]);
1091 (*regs)[30] = -1; /* R_SSTATUS */
1092 (*regs)[31] = tswapreg(env->regs[R_RA]);
1094 (*regs)[32] = tswapreg(env->regs[R_PC]);
1096 (*regs)[33] = -1; /* R_STATUS */
1097 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1099 for (i = 35; i < 49; i++) /* ... */
1100 (*regs)[i] = -1;
1103 #endif /* TARGET_NIOS2 */
1105 #ifdef TARGET_OPENRISC
1107 #define ELF_START_MMAP 0x08000000
1109 #define ELF_ARCH EM_OPENRISC
1110 #define ELF_CLASS ELFCLASS32
1111 #define ELF_DATA ELFDATA2MSB
1113 static inline void init_thread(struct target_pt_regs *regs,
1114 struct image_info *infop)
1116 regs->pc = infop->entry;
1117 regs->gpr[1] = infop->start_stack;
1120 #define USE_ELF_CORE_DUMP
1121 #define ELF_EXEC_PAGESIZE 8192
1123 /* See linux kernel arch/openrisc/include/asm/elf.h. */
1124 #define ELF_NREG 34 /* gprs and pc, sr */
1125 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1127 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1128 const CPUOpenRISCState *env)
1130 int i;
1132 for (i = 0; i < 32; i++) {
1133 (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1135 (*regs)[32] = tswapreg(env->pc);
1136 (*regs)[33] = tswapreg(cpu_get_sr(env));
1138 #define ELF_HWCAP 0
1139 #define ELF_PLATFORM NULL
1141 #endif /* TARGET_OPENRISC */
1143 #ifdef TARGET_SH4
1145 #define ELF_START_MMAP 0x80000000
1147 #define ELF_CLASS ELFCLASS32
1148 #define ELF_ARCH EM_SH
1150 static inline void init_thread(struct target_pt_regs *regs,
1151 struct image_info *infop)
1153 /* Check other registers XXXXX */
1154 regs->pc = infop->entry;
1155 regs->regs[15] = infop->start_stack;
1158 /* See linux kernel: arch/sh/include/asm/elf.h. */
1159 #define ELF_NREG 23
1160 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1162 /* See linux kernel: arch/sh/include/asm/ptrace.h. */
1163 enum {
1164 TARGET_REG_PC = 16,
1165 TARGET_REG_PR = 17,
1166 TARGET_REG_SR = 18,
1167 TARGET_REG_GBR = 19,
1168 TARGET_REG_MACH = 20,
1169 TARGET_REG_MACL = 21,
1170 TARGET_REG_SYSCALL = 22
1173 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1174 const CPUSH4State *env)
1176 int i;
1178 for (i = 0; i < 16; i++) {
1179 (*regs)[i] = tswapreg(env->gregs[i]);
1182 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1183 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1184 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1185 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1186 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1187 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1188 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1191 #define USE_ELF_CORE_DUMP
1192 #define ELF_EXEC_PAGESIZE 4096
1194 enum {
1195 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
1196 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
1197 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1198 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
1199 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
1200 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
1201 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
1202 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
1203 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
1204 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
1207 #define ELF_HWCAP get_elf_hwcap()
1209 static uint32_t get_elf_hwcap(void)
1211 SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1212 uint32_t hwcap = 0;
1214 hwcap |= SH_CPU_HAS_FPU;
1216 if (cpu->env.features & SH_FEATURE_SH4A) {
1217 hwcap |= SH_CPU_HAS_LLSC;
1220 return hwcap;
1223 #endif
1225 #ifdef TARGET_CRIS
1227 #define ELF_START_MMAP 0x80000000
1229 #define ELF_CLASS ELFCLASS32
1230 #define ELF_ARCH EM_CRIS
1232 static inline void init_thread(struct target_pt_regs *regs,
1233 struct image_info *infop)
1235 regs->erp = infop->entry;
1238 #define ELF_EXEC_PAGESIZE 8192
1240 #endif
1242 #ifdef TARGET_M68K
1244 #define ELF_START_MMAP 0x80000000
1246 #define ELF_CLASS ELFCLASS32
1247 #define ELF_ARCH EM_68K
1249 /* ??? Does this need to do anything?
1250 #define ELF_PLAT_INIT(_r) */
1252 static inline void init_thread(struct target_pt_regs *regs,
1253 struct image_info *infop)
1255 regs->usp = infop->start_stack;
1256 regs->sr = 0;
1257 regs->pc = infop->entry;
1260 /* See linux kernel: arch/m68k/include/asm/elf.h. */
1261 #define ELF_NREG 20
1262 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1264 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1266 (*regs)[0] = tswapreg(env->dregs[1]);
1267 (*regs)[1] = tswapreg(env->dregs[2]);
1268 (*regs)[2] = tswapreg(env->dregs[3]);
1269 (*regs)[3] = tswapreg(env->dregs[4]);
1270 (*regs)[4] = tswapreg(env->dregs[5]);
1271 (*regs)[5] = tswapreg(env->dregs[6]);
1272 (*regs)[6] = tswapreg(env->dregs[7]);
1273 (*regs)[7] = tswapreg(env->aregs[0]);
1274 (*regs)[8] = tswapreg(env->aregs[1]);
1275 (*regs)[9] = tswapreg(env->aregs[2]);
1276 (*regs)[10] = tswapreg(env->aregs[3]);
1277 (*regs)[11] = tswapreg(env->aregs[4]);
1278 (*regs)[12] = tswapreg(env->aregs[5]);
1279 (*regs)[13] = tswapreg(env->aregs[6]);
1280 (*regs)[14] = tswapreg(env->dregs[0]);
1281 (*regs)[15] = tswapreg(env->aregs[7]);
1282 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1283 (*regs)[17] = tswapreg(env->sr);
1284 (*regs)[18] = tswapreg(env->pc);
1285 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1288 #define USE_ELF_CORE_DUMP
1289 #define ELF_EXEC_PAGESIZE 8192
1291 #endif
1293 #ifdef TARGET_ALPHA
1295 #define ELF_START_MMAP (0x30000000000ULL)
1297 #define ELF_CLASS ELFCLASS64
1298 #define ELF_ARCH EM_ALPHA
1300 static inline void init_thread(struct target_pt_regs *regs,
1301 struct image_info *infop)
1303 regs->pc = infop->entry;
1304 regs->ps = 8;
1305 regs->usp = infop->start_stack;
1308 #define ELF_EXEC_PAGESIZE 8192
1310 #endif /* TARGET_ALPHA */
1312 #ifdef TARGET_S390X
1314 #define ELF_START_MMAP (0x20000000000ULL)
1316 #define ELF_CLASS ELFCLASS64
1317 #define ELF_DATA ELFDATA2MSB
1318 #define ELF_ARCH EM_S390
1320 #include "elf.h"
1322 #define ELF_HWCAP get_elf_hwcap()
1324 #define GET_FEATURE(_feat, _hwcap) \
1325 do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1327 static uint32_t get_elf_hwcap(void)
1330 * Let's assume we always have esan3 and zarch.
1331 * 31-bit processes can use 64-bit registers (high gprs).
1333 uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1335 GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1336 GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1337 GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1338 GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1339 if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1340 s390_has_feat(S390_FEAT_ETF3_ENH)) {
1341 hwcap |= HWCAP_S390_ETF3EH;
1343 GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1345 return hwcap;
1348 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1350 regs->psw.addr = infop->entry;
1351 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1352 regs->gprs[15] = infop->start_stack;
1355 #endif /* TARGET_S390X */
1357 #ifdef TARGET_TILEGX
1359 /* 42 bits real used address, a half for user mode */
1360 #define ELF_START_MMAP (0x00000020000000000ULL)
1362 #define elf_check_arch(x) ((x) == EM_TILEGX)
1364 #define ELF_CLASS ELFCLASS64
1365 #define ELF_DATA ELFDATA2LSB
1366 #define ELF_ARCH EM_TILEGX
1368 static inline void init_thread(struct target_pt_regs *regs,
1369 struct image_info *infop)
1371 regs->pc = infop->entry;
1372 regs->sp = infop->start_stack;
1376 #define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */
1378 #endif /* TARGET_TILEGX */
1380 #ifdef TARGET_RISCV
1382 #define ELF_START_MMAP 0x80000000
1383 #define ELF_ARCH EM_RISCV
1385 #ifdef TARGET_RISCV32
1386 #define ELF_CLASS ELFCLASS32
1387 #else
1388 #define ELF_CLASS ELFCLASS64
1389 #endif
1391 static inline void init_thread(struct target_pt_regs *regs,
1392 struct image_info *infop)
1394 regs->sepc = infop->entry;
1395 regs->sp = infop->start_stack;
1398 #define ELF_EXEC_PAGESIZE 4096
1400 #endif /* TARGET_RISCV */
1402 #ifdef TARGET_HPPA
1404 #define ELF_START_MMAP 0x80000000
1405 #define ELF_CLASS ELFCLASS32
1406 #define ELF_ARCH EM_PARISC
1407 #define ELF_PLATFORM "PARISC"
1408 #define STACK_GROWS_DOWN 0
1409 #define STACK_ALIGNMENT 64
1411 static inline void init_thread(struct target_pt_regs *regs,
1412 struct image_info *infop)
1414 regs->iaoq[0] = infop->entry;
1415 regs->iaoq[1] = infop->entry + 4;
1416 regs->gr[23] = 0;
1417 regs->gr[24] = infop->arg_start;
1418 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1419 /* The top-of-stack contains a linkage buffer. */
1420 regs->gr[30] = infop->start_stack + 64;
1421 regs->gr[31] = infop->entry;
1424 #endif /* TARGET_HPPA */
1426 #ifdef TARGET_XTENSA
1428 #define ELF_START_MMAP 0x20000000
1430 #define ELF_CLASS ELFCLASS32
1431 #define ELF_ARCH EM_XTENSA
1433 static inline void init_thread(struct target_pt_regs *regs,
1434 struct image_info *infop)
1436 regs->windowbase = 0;
1437 regs->windowstart = 1;
1438 regs->areg[1] = infop->start_stack;
1439 regs->pc = infop->entry;
1442 /* See linux kernel: arch/xtensa/include/asm/elf.h. */
1443 #define ELF_NREG 128
1444 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1446 enum {
1447 TARGET_REG_PC,
1448 TARGET_REG_PS,
1449 TARGET_REG_LBEG,
1450 TARGET_REG_LEND,
1451 TARGET_REG_LCOUNT,
1452 TARGET_REG_SAR,
1453 TARGET_REG_WINDOWSTART,
1454 TARGET_REG_WINDOWBASE,
1455 TARGET_REG_THREADPTR,
1456 TARGET_REG_AR0 = 64,
1459 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1460 const CPUXtensaState *env)
1462 unsigned i;
1464 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1465 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1466 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1467 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1468 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1469 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1470 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1471 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1472 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1473 xtensa_sync_phys_from_window((CPUXtensaState *)env);
1474 for (i = 0; i < env->config->nareg; ++i) {
1475 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1479 #define USE_ELF_CORE_DUMP
1480 #define ELF_EXEC_PAGESIZE 4096
1482 #endif /* TARGET_XTENSA */
1484 #ifndef ELF_PLATFORM
1485 #define ELF_PLATFORM (NULL)
1486 #endif
1488 #ifndef ELF_MACHINE
1489 #define ELF_MACHINE ELF_ARCH
1490 #endif
1492 #ifndef elf_check_arch
1493 #define elf_check_arch(x) ((x) == ELF_ARCH)
1494 #endif
1496 #ifndef ELF_HWCAP
1497 #define ELF_HWCAP 0
1498 #endif
1500 #ifndef STACK_GROWS_DOWN
1501 #define STACK_GROWS_DOWN 1
1502 #endif
1504 #ifndef STACK_ALIGNMENT
1505 #define STACK_ALIGNMENT 16
1506 #endif
1508 #ifdef TARGET_ABI32
1509 #undef ELF_CLASS
1510 #define ELF_CLASS ELFCLASS32
1511 #undef bswaptls
1512 #define bswaptls(ptr) bswap32s(ptr)
1513 #endif
1515 #include "elf.h"
1517 struct exec
1519 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
1520 unsigned int a_text; /* length of text, in bytes */
1521 unsigned int a_data; /* length of data, in bytes */
1522 unsigned int a_bss; /* length of uninitialized data area, in bytes */
1523 unsigned int a_syms; /* length of symbol table data in file, in bytes */
1524 unsigned int a_entry; /* start address */
1525 unsigned int a_trsize; /* length of relocation info for text, in bytes */
1526 unsigned int a_drsize; /* length of relocation info for data, in bytes */
1530 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1531 #define OMAGIC 0407
1532 #define NMAGIC 0410
1533 #define ZMAGIC 0413
1534 #define QMAGIC 0314
1536 /* Necessary parameters */
1537 #define TARGET_ELF_EXEC_PAGESIZE \
1538 (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1539 TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1540 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
1541 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1542 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1543 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1545 #define DLINFO_ITEMS 15
1547 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1549 memcpy(to, from, n);
1552 #ifdef BSWAP_NEEDED
1553 static void bswap_ehdr(struct elfhdr *ehdr)
1555 bswap16s(&ehdr->e_type); /* Object file type */
1556 bswap16s(&ehdr->e_machine); /* Architecture */
1557 bswap32s(&ehdr->e_version); /* Object file version */
1558 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1559 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1560 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1561 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1562 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1563 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1564 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1565 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1566 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1567 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
1570 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1572 int i;
1573 for (i = 0; i < phnum; ++i, ++phdr) {
1574 bswap32s(&phdr->p_type); /* Segment type */
1575 bswap32s(&phdr->p_flags); /* Segment flags */
1576 bswaptls(&phdr->p_offset); /* Segment file offset */
1577 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
1578 bswaptls(&phdr->p_paddr); /* Segment physical address */
1579 bswaptls(&phdr->p_filesz); /* Segment size in file */
1580 bswaptls(&phdr->p_memsz); /* Segment size in memory */
1581 bswaptls(&phdr->p_align); /* Segment alignment */
1585 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1587 int i;
1588 for (i = 0; i < shnum; ++i, ++shdr) {
1589 bswap32s(&shdr->sh_name);
1590 bswap32s(&shdr->sh_type);
1591 bswaptls(&shdr->sh_flags);
1592 bswaptls(&shdr->sh_addr);
1593 bswaptls(&shdr->sh_offset);
1594 bswaptls(&shdr->sh_size);
1595 bswap32s(&shdr->sh_link);
1596 bswap32s(&shdr->sh_info);
1597 bswaptls(&shdr->sh_addralign);
1598 bswaptls(&shdr->sh_entsize);
1602 static void bswap_sym(struct elf_sym *sym)
1604 bswap32s(&sym->st_name);
1605 bswaptls(&sym->st_value);
1606 bswaptls(&sym->st_size);
1607 bswap16s(&sym->st_shndx);
1610 #ifdef TARGET_MIPS
1611 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
1613 bswap16s(&abiflags->version);
1614 bswap32s(&abiflags->ases);
1615 bswap32s(&abiflags->isa_ext);
1616 bswap32s(&abiflags->flags1);
1617 bswap32s(&abiflags->flags2);
1619 #endif
1620 #else
1621 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1622 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1623 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1624 static inline void bswap_sym(struct elf_sym *sym) { }
1625 #ifdef TARGET_MIPS
1626 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
1627 #endif
1628 #endif
1630 #ifdef USE_ELF_CORE_DUMP
1631 static int elf_core_dump(int, const CPUArchState *);
1632 #endif /* USE_ELF_CORE_DUMP */
1633 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1635 /* Verify the portions of EHDR within E_IDENT for the target.
1636 This can be performed before bswapping the entire header. */
1637 static bool elf_check_ident(struct elfhdr *ehdr)
1639 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1640 && ehdr->e_ident[EI_MAG1] == ELFMAG1
1641 && ehdr->e_ident[EI_MAG2] == ELFMAG2
1642 && ehdr->e_ident[EI_MAG3] == ELFMAG3
1643 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1644 && ehdr->e_ident[EI_DATA] == ELF_DATA
1645 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1648 /* Verify the portions of EHDR outside of E_IDENT for the target.
1649 This has to wait until after bswapping the header. */
1650 static bool elf_check_ehdr(struct elfhdr *ehdr)
1652 return (elf_check_arch(ehdr->e_machine)
1653 && ehdr->e_ehsize == sizeof(struct elfhdr)
1654 && ehdr->e_phentsize == sizeof(struct elf_phdr)
1655 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1659 * 'copy_elf_strings()' copies argument/envelope strings from user
1660 * memory to free pages in kernel mem. These are in a format ready
1661 * to be put directly into the top of new user memory.
1664 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1665 abi_ulong p, abi_ulong stack_limit)
1667 char *tmp;
1668 int len, i;
1669 abi_ulong top = p;
1671 if (!p) {
1672 return 0; /* bullet-proofing */
1675 if (STACK_GROWS_DOWN) {
1676 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1677 for (i = argc - 1; i >= 0; --i) {
1678 tmp = argv[i];
1679 if (!tmp) {
1680 fprintf(stderr, "VFS: argc is wrong");
1681 exit(-1);
1683 len = strlen(tmp) + 1;
1684 tmp += len;
1686 if (len > (p - stack_limit)) {
1687 return 0;
1689 while (len) {
1690 int bytes_to_copy = (len > offset) ? offset : len;
1691 tmp -= bytes_to_copy;
1692 p -= bytes_to_copy;
1693 offset -= bytes_to_copy;
1694 len -= bytes_to_copy;
1696 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1698 if (offset == 0) {
1699 memcpy_to_target(p, scratch, top - p);
1700 top = p;
1701 offset = TARGET_PAGE_SIZE;
1705 if (p != top) {
1706 memcpy_to_target(p, scratch + offset, top - p);
1708 } else {
1709 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1710 for (i = 0; i < argc; ++i) {
1711 tmp = argv[i];
1712 if (!tmp) {
1713 fprintf(stderr, "VFS: argc is wrong");
1714 exit(-1);
1716 len = strlen(tmp) + 1;
1717 if (len > (stack_limit - p)) {
1718 return 0;
1720 while (len) {
1721 int bytes_to_copy = (len > remaining) ? remaining : len;
1723 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1725 tmp += bytes_to_copy;
1726 remaining -= bytes_to_copy;
1727 p += bytes_to_copy;
1728 len -= bytes_to_copy;
1730 if (remaining == 0) {
1731 memcpy_to_target(top, scratch, p - top);
1732 top = p;
1733 remaining = TARGET_PAGE_SIZE;
1737 if (p != top) {
1738 memcpy_to_target(top, scratch, p - top);
1742 return p;
1745 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1746 * argument/environment space. Newer kernels (>2.6.33) allow more,
1747 * dependent on stack size, but guarantee at least 32 pages for
1748 * backwards compatibility.
1750 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1752 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1753 struct image_info *info)
1755 abi_ulong size, error, guard;
1757 size = guest_stack_size;
1758 if (size < STACK_LOWER_LIMIT) {
1759 size = STACK_LOWER_LIMIT;
1761 guard = TARGET_PAGE_SIZE;
1762 if (guard < qemu_real_host_page_size) {
1763 guard = qemu_real_host_page_size;
1766 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1767 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1768 if (error == -1) {
1769 perror("mmap stack");
1770 exit(-1);
1773 /* We reserve one extra page at the top of the stack as guard. */
1774 if (STACK_GROWS_DOWN) {
1775 target_mprotect(error, guard, PROT_NONE);
1776 info->stack_limit = error + guard;
1777 return info->stack_limit + size - sizeof(void *);
1778 } else {
1779 target_mprotect(error + size, guard, PROT_NONE);
1780 info->stack_limit = error + size;
1781 return error;
1785 /* Map and zero the bss. We need to explicitly zero any fractional pages
1786 after the data section (i.e. bss). */
1787 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1789 uintptr_t host_start, host_map_start, host_end;
1791 last_bss = TARGET_PAGE_ALIGN(last_bss);
1793 /* ??? There is confusion between qemu_real_host_page_size and
1794 qemu_host_page_size here and elsewhere in target_mmap, which
1795 may lead to the end of the data section mapping from the file
1796 not being mapped. At least there was an explicit test and
1797 comment for that here, suggesting that "the file size must
1798 be known". The comment probably pre-dates the introduction
1799 of the fstat system call in target_mmap which does in fact
1800 find out the size. What isn't clear is if the workaround
1801 here is still actually needed. For now, continue with it,
1802 but merge it with the "normal" mmap that would allocate the bss. */
1804 host_start = (uintptr_t) g2h(elf_bss);
1805 host_end = (uintptr_t) g2h(last_bss);
1806 host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1808 if (host_map_start < host_end) {
1809 void *p = mmap((void *)host_map_start, host_end - host_map_start,
1810 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1811 if (p == MAP_FAILED) {
1812 perror("cannot mmap brk");
1813 exit(-1);
1817 /* Ensure that the bss page(s) are valid */
1818 if ((page_get_flags(last_bss-1) & prot) != prot) {
1819 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1822 if (host_start < host_map_start) {
1823 memset((void *)host_start, 0, host_map_start - host_start);
1827 #ifdef TARGET_ARM
1828 static int elf_is_fdpic(struct elfhdr *exec)
1830 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1832 #else
1833 /* Default implementation, always false. */
1834 static int elf_is_fdpic(struct elfhdr *exec)
1836 return 0;
1838 #endif
1840 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1842 uint16_t n;
1843 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1845 /* elf32_fdpic_loadseg */
1846 n = info->nsegs;
1847 while (n--) {
1848 sp -= 12;
1849 put_user_u32(loadsegs[n].addr, sp+0);
1850 put_user_u32(loadsegs[n].p_vaddr, sp+4);
1851 put_user_u32(loadsegs[n].p_memsz, sp+8);
1854 /* elf32_fdpic_loadmap */
1855 sp -= 4;
1856 put_user_u16(0, sp+0); /* version */
1857 put_user_u16(info->nsegs, sp+2); /* nsegs */
1859 info->personality = PER_LINUX_FDPIC;
1860 info->loadmap_addr = sp;
1862 return sp;
1865 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1866 struct elfhdr *exec,
1867 struct image_info *info,
1868 struct image_info *interp_info)
1870 abi_ulong sp;
1871 abi_ulong u_argc, u_argv, u_envp, u_auxv;
1872 int size;
1873 int i;
1874 abi_ulong u_rand_bytes;
1875 uint8_t k_rand_bytes[16];
1876 abi_ulong u_platform;
1877 const char *k_platform;
1878 const int n = sizeof(elf_addr_t);
1880 sp = p;
1882 /* Needs to be before we load the env/argc/... */
1883 if (elf_is_fdpic(exec)) {
1884 /* Need 4 byte alignment for these structs */
1885 sp &= ~3;
1886 sp = loader_build_fdpic_loadmap(info, sp);
1887 info->other_info = interp_info;
1888 if (interp_info) {
1889 interp_info->other_info = info;
1890 sp = loader_build_fdpic_loadmap(interp_info, sp);
1891 info->interpreter_loadmap_addr = interp_info->loadmap_addr;
1892 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
1893 } else {
1894 info->interpreter_loadmap_addr = 0;
1895 info->interpreter_pt_dynamic_addr = 0;
1899 u_platform = 0;
1900 k_platform = ELF_PLATFORM;
1901 if (k_platform) {
1902 size_t len = strlen(k_platform) + 1;
1903 if (STACK_GROWS_DOWN) {
1904 sp -= (len + n - 1) & ~(n - 1);
1905 u_platform = sp;
1906 /* FIXME - check return value of memcpy_to_target() for failure */
1907 memcpy_to_target(sp, k_platform, len);
1908 } else {
1909 memcpy_to_target(sp, k_platform, len);
1910 u_platform = sp;
1911 sp += len + 1;
1915 /* Provide 16 byte alignment for the PRNG, and basic alignment for
1916 * the argv and envp pointers.
1918 if (STACK_GROWS_DOWN) {
1919 sp = QEMU_ALIGN_DOWN(sp, 16);
1920 } else {
1921 sp = QEMU_ALIGN_UP(sp, 16);
1925 * Generate 16 random bytes for userspace PRNG seeding.
1927 qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
1928 if (STACK_GROWS_DOWN) {
1929 sp -= 16;
1930 u_rand_bytes = sp;
1931 /* FIXME - check return value of memcpy_to_target() for failure */
1932 memcpy_to_target(sp, k_rand_bytes, 16);
1933 } else {
1934 memcpy_to_target(sp, k_rand_bytes, 16);
1935 u_rand_bytes = sp;
1936 sp += 16;
1939 size = (DLINFO_ITEMS + 1) * 2;
1940 if (k_platform)
1941 size += 2;
1942 #ifdef DLINFO_ARCH_ITEMS
1943 size += DLINFO_ARCH_ITEMS * 2;
1944 #endif
1945 #ifdef ELF_HWCAP2
1946 size += 2;
1947 #endif
1948 info->auxv_len = size * n;
1950 size += envc + argc + 2;
1951 size += 1; /* argc itself */
1952 size *= n;
1954 /* Allocate space and finalize stack alignment for entry now. */
1955 if (STACK_GROWS_DOWN) {
1956 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
1957 sp = u_argc;
1958 } else {
1959 u_argc = sp;
1960 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
1963 u_argv = u_argc + n;
1964 u_envp = u_argv + (argc + 1) * n;
1965 u_auxv = u_envp + (envc + 1) * n;
1966 info->saved_auxv = u_auxv;
1967 info->arg_start = u_argv;
1968 info->arg_end = u_argv + argc * n;
1970 /* This is correct because Linux defines
1971 * elf_addr_t as Elf32_Off / Elf64_Off
1973 #define NEW_AUX_ENT(id, val) do { \
1974 put_user_ual(id, u_auxv); u_auxv += n; \
1975 put_user_ual(val, u_auxv); u_auxv += n; \
1976 } while(0)
1978 #ifdef ARCH_DLINFO
1980 * ARCH_DLINFO must come first so platform specific code can enforce
1981 * special alignment requirements on the AUXV if necessary (eg. PPC).
1983 ARCH_DLINFO;
1984 #endif
1985 /* There must be exactly DLINFO_ITEMS entries here, or the assert
1986 * on info->auxv_len will trigger.
1988 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
1989 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1990 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1991 if ((info->alignment & ~qemu_host_page_mask) != 0) {
1992 /* Target doesn't support host page size alignment */
1993 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
1994 } else {
1995 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
1996 qemu_host_page_size)));
1998 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
1999 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
2000 NEW_AUX_ENT(AT_ENTRY, info->entry);
2001 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2002 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2003 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2004 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2005 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2006 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
2007 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
2008 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
2010 #ifdef ELF_HWCAP2
2011 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2012 #endif
2014 if (u_platform) {
2015 NEW_AUX_ENT(AT_PLATFORM, u_platform);
2017 NEW_AUX_ENT (AT_NULL, 0);
2018 #undef NEW_AUX_ENT
2020 /* Check that our initial calculation of the auxv length matches how much
2021 * we actually put into it.
2023 assert(info->auxv_len == u_auxv - info->saved_auxv);
2025 put_user_ual(argc, u_argc);
2027 p = info->arg_strings;
2028 for (i = 0; i < argc; ++i) {
2029 put_user_ual(p, u_argv);
2030 u_argv += n;
2031 p += target_strlen(p) + 1;
2033 put_user_ual(0, u_argv);
2035 p = info->env_strings;
2036 for (i = 0; i < envc; ++i) {
2037 put_user_ual(p, u_envp);
2038 u_envp += n;
2039 p += target_strlen(p) + 1;
2041 put_user_ual(0, u_envp);
2043 return sp;
2046 unsigned long init_guest_space(unsigned long host_start,
2047 unsigned long host_size,
2048 unsigned long guest_start,
2049 bool fixed)
2051 /* In order to use host shmat, we must be able to honor SHMLBA. */
2052 unsigned long align = MAX(SHMLBA, qemu_host_page_size);
2053 unsigned long current_start, aligned_start;
2054 int flags;
2056 assert(host_start || host_size);
2058 /* If just a starting address is given, then just verify that
2059 * address. */
2060 if (host_start && !host_size) {
2061 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
2062 if (init_guest_commpage(host_start, host_size) != 1) {
2063 return (unsigned long)-1;
2065 #endif
2066 return host_start;
2069 /* Setup the initial flags and start address. */
2070 current_start = host_start & -align;
2071 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2072 if (fixed) {
2073 flags |= MAP_FIXED;
2076 /* Otherwise, a non-zero size region of memory needs to be mapped
2077 * and validated. */
2079 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
2080 /* On 32-bit ARM, we need to map not just the usable memory, but
2081 * also the commpage. Try to find a suitable place by allocating
2082 * a big chunk for all of it. If host_start, then the naive
2083 * strategy probably does good enough.
2085 if (!host_start) {
2086 unsigned long guest_full_size, host_full_size, real_start;
2088 guest_full_size =
2089 (0xffff0f00 & qemu_host_page_mask) + qemu_host_page_size;
2090 host_full_size = guest_full_size - guest_start;
2091 real_start = (unsigned long)
2092 mmap(NULL, host_full_size, PROT_NONE, flags, -1, 0);
2093 if (real_start == (unsigned long)-1) {
2094 if (host_size < host_full_size - qemu_host_page_size) {
2095 /* We failed to map a continous segment, but we're
2096 * allowed to have a gap between the usable memory and
2097 * the commpage where other things can be mapped.
2098 * This sparseness gives us more flexibility to find
2099 * an address range.
2101 goto naive;
2103 return (unsigned long)-1;
2105 munmap((void *)real_start, host_full_size);
2106 if (real_start & (align - 1)) {
2107 /* The same thing again, but with extra
2108 * so that we can shift around alignment.
2110 unsigned long real_size = host_full_size + qemu_host_page_size;
2111 real_start = (unsigned long)
2112 mmap(NULL, real_size, PROT_NONE, flags, -1, 0);
2113 if (real_start == (unsigned long)-1) {
2114 if (host_size < host_full_size - qemu_host_page_size) {
2115 goto naive;
2117 return (unsigned long)-1;
2119 munmap((void *)real_start, real_size);
2120 real_start = ROUND_UP(real_start, align);
2122 current_start = real_start;
2124 naive:
2125 #endif
2127 while (1) {
2128 unsigned long real_start, real_size, aligned_size;
2129 aligned_size = real_size = host_size;
2131 /* Do not use mmap_find_vma here because that is limited to the
2132 * guest address space. We are going to make the
2133 * guest address space fit whatever we're given.
2135 real_start = (unsigned long)
2136 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
2137 if (real_start == (unsigned long)-1) {
2138 return (unsigned long)-1;
2141 /* Check to see if the address is valid. */
2142 if (host_start && real_start != current_start) {
2143 goto try_again;
2146 /* Ensure the address is properly aligned. */
2147 if (real_start & (align - 1)) {
2148 /* Ideally, we adjust like
2150 * pages: [ ][ ][ ][ ][ ]
2151 * old: [ real ]
2152 * [ aligned ]
2153 * new: [ real ]
2154 * [ aligned ]
2156 * But if there is something else mapped right after it,
2157 * then obviously it won't have room to grow, and the
2158 * kernel will put the new larger real someplace else with
2159 * unknown alignment (if we made it to here, then
2160 * fixed=false). Which is why we grow real by a full page
2161 * size, instead of by part of one; so that even if we get
2162 * moved, we can still guarantee alignment. But this does
2163 * mean that there is a padding of < 1 page both before
2164 * and after the aligned range; the "after" could could
2165 * cause problems for ARM emulation where it could butt in
2166 * to where we need to put the commpage.
2168 munmap((void *)real_start, host_size);
2169 real_size = aligned_size + qemu_host_page_size;
2170 real_start = (unsigned long)
2171 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
2172 if (real_start == (unsigned long)-1) {
2173 return (unsigned long)-1;
2175 aligned_start = ROUND_UP(real_start, align);
2176 } else {
2177 aligned_start = real_start;
2180 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
2181 /* On 32-bit ARM, we need to also be able to map the commpage. */
2182 int valid = init_guest_commpage(aligned_start - guest_start,
2183 aligned_size + guest_start);
2184 if (valid == -1) {
2185 munmap((void *)real_start, real_size);
2186 return (unsigned long)-1;
2187 } else if (valid == 0) {
2188 goto try_again;
2190 #endif
2192 /* If nothing has said `return -1` or `goto try_again` yet,
2193 * then the address we have is good.
2195 break;
2197 try_again:
2198 /* That address didn't work. Unmap and try a different one.
2199 * The address the host picked because is typically right at
2200 * the top of the host address space and leaves the guest with
2201 * no usable address space. Resort to a linear search. We
2202 * already compensated for mmap_min_addr, so this should not
2203 * happen often. Probably means we got unlucky and host
2204 * address space randomization put a shared library somewhere
2205 * inconvenient.
2207 * This is probably a good strategy if host_start, but is
2208 * probably a bad strategy if not, which means we got here
2209 * because of trouble with ARM commpage setup.
2211 munmap((void *)real_start, real_size);
2212 current_start += align;
2213 if (host_start == current_start) {
2214 /* Theoretically possible if host doesn't have any suitably
2215 * aligned areas. Normally the first mmap will fail.
2217 return (unsigned long)-1;
2221 qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size);
2223 return aligned_start;
2226 static void probe_guest_base(const char *image_name,
2227 abi_ulong loaddr, abi_ulong hiaddr)
2229 /* Probe for a suitable guest base address, if the user has not set
2230 * it explicitly, and set guest_base appropriately.
2231 * In case of error we will print a suitable message and exit.
2233 const char *errmsg;
2234 if (!have_guest_base && !reserved_va) {
2235 unsigned long host_start, real_start, host_size;
2237 /* Round addresses to page boundaries. */
2238 loaddr &= qemu_host_page_mask;
2239 hiaddr = HOST_PAGE_ALIGN(hiaddr);
2241 if (loaddr < mmap_min_addr) {
2242 host_start = HOST_PAGE_ALIGN(mmap_min_addr);
2243 } else {
2244 host_start = loaddr;
2245 if (host_start != loaddr) {
2246 errmsg = "Address overflow loading ELF binary";
2247 goto exit_errmsg;
2250 host_size = hiaddr - loaddr;
2252 /* Setup the initial guest memory space with ranges gleaned from
2253 * the ELF image that is being loaded.
2255 real_start = init_guest_space(host_start, host_size, loaddr, false);
2256 if (real_start == (unsigned long)-1) {
2257 errmsg = "Unable to find space for application";
2258 goto exit_errmsg;
2260 guest_base = real_start - loaddr;
2262 qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x"
2263 TARGET_ABI_FMT_lx " to 0x%lx\n",
2264 loaddr, real_start);
2266 return;
2268 exit_errmsg:
2269 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2270 exit(-1);
2274 /* Load an ELF image into the address space.
2276 IMAGE_NAME is the filename of the image, to use in error messages.
2277 IMAGE_FD is the open file descriptor for the image.
2279 BPRM_BUF is a copy of the beginning of the file; this of course
2280 contains the elf file header at offset 0. It is assumed that this
2281 buffer is sufficiently aligned to present no problems to the host
2282 in accessing data at aligned offsets within the buffer.
2284 On return: INFO values will be filled in, as necessary or available. */
2286 static void load_elf_image(const char *image_name, int image_fd,
2287 struct image_info *info, char **pinterp_name,
2288 char bprm_buf[BPRM_BUF_SIZE])
2290 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2291 struct elf_phdr *phdr;
2292 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2293 int i, retval;
2294 const char *errmsg;
2296 /* First of all, some simple consistency checks */
2297 errmsg = "Invalid ELF image for this architecture";
2298 if (!elf_check_ident(ehdr)) {
2299 goto exit_errmsg;
2301 bswap_ehdr(ehdr);
2302 if (!elf_check_ehdr(ehdr)) {
2303 goto exit_errmsg;
2306 i = ehdr->e_phnum * sizeof(struct elf_phdr);
2307 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2308 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2309 } else {
2310 phdr = (struct elf_phdr *) alloca(i);
2311 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2312 if (retval != i) {
2313 goto exit_read;
2316 bswap_phdr(phdr, ehdr->e_phnum);
2318 info->nsegs = 0;
2319 info->pt_dynamic_addr = 0;
2321 mmap_lock();
2323 /* Find the maximum size of the image and allocate an appropriate
2324 amount of memory to handle that. */
2325 loaddr = -1, hiaddr = 0;
2326 info->alignment = 0;
2327 for (i = 0; i < ehdr->e_phnum; ++i) {
2328 if (phdr[i].p_type == PT_LOAD) {
2329 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
2330 if (a < loaddr) {
2331 loaddr = a;
2333 a = phdr[i].p_vaddr + phdr[i].p_memsz;
2334 if (a > hiaddr) {
2335 hiaddr = a;
2337 ++info->nsegs;
2338 info->alignment |= phdr[i].p_align;
2342 load_addr = loaddr;
2343 if (ehdr->e_type == ET_DYN) {
2344 /* The image indicates that it can be loaded anywhere. Find a
2345 location that can hold the memory space required. If the
2346 image is pre-linked, LOADDR will be non-zero. Since we do
2347 not supply MAP_FIXED here we'll use that address if and
2348 only if it remains available. */
2349 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2350 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
2351 -1, 0);
2352 if (load_addr == -1) {
2353 goto exit_perror;
2355 } else if (pinterp_name != NULL) {
2356 /* This is the main executable. Make sure that the low
2357 address does not conflict with MMAP_MIN_ADDR or the
2358 QEMU application itself. */
2359 probe_guest_base(image_name, loaddr, hiaddr);
2361 load_bias = load_addr - loaddr;
2363 if (elf_is_fdpic(ehdr)) {
2364 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
2365 g_malloc(sizeof(*loadsegs) * info->nsegs);
2367 for (i = 0; i < ehdr->e_phnum; ++i) {
2368 switch (phdr[i].p_type) {
2369 case PT_DYNAMIC:
2370 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2371 break;
2372 case PT_LOAD:
2373 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2374 loadsegs->p_vaddr = phdr[i].p_vaddr;
2375 loadsegs->p_memsz = phdr[i].p_memsz;
2376 ++loadsegs;
2377 break;
2382 info->load_bias = load_bias;
2383 info->load_addr = load_addr;
2384 info->entry = ehdr->e_entry + load_bias;
2385 info->start_code = -1;
2386 info->end_code = 0;
2387 info->start_data = -1;
2388 info->end_data = 0;
2389 info->brk = 0;
2390 info->elf_flags = ehdr->e_flags;
2392 for (i = 0; i < ehdr->e_phnum; i++) {
2393 struct elf_phdr *eppnt = phdr + i;
2394 if (eppnt->p_type == PT_LOAD) {
2395 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
2396 int elf_prot = 0;
2398 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ;
2399 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
2400 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
2402 vaddr = load_bias + eppnt->p_vaddr;
2403 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2404 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2405 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
2408 * Some segments may be completely empty without any backing file
2409 * segment, in that case just let zero_bss allocate an empty buffer
2410 * for it.
2412 if (eppnt->p_filesz != 0) {
2413 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
2414 MAP_PRIVATE | MAP_FIXED,
2415 image_fd, eppnt->p_offset - vaddr_po);
2417 if (error == -1) {
2418 goto exit_perror;
2422 vaddr_ef = vaddr + eppnt->p_filesz;
2423 vaddr_em = vaddr + eppnt->p_memsz;
2425 /* If the load segment requests extra zeros (e.g. bss), map it. */
2426 if (vaddr_ef < vaddr_em) {
2427 zero_bss(vaddr_ef, vaddr_em, elf_prot);
2430 /* Find the full program boundaries. */
2431 if (elf_prot & PROT_EXEC) {
2432 if (vaddr < info->start_code) {
2433 info->start_code = vaddr;
2435 if (vaddr_ef > info->end_code) {
2436 info->end_code = vaddr_ef;
2439 if (elf_prot & PROT_WRITE) {
2440 if (vaddr < info->start_data) {
2441 info->start_data = vaddr;
2443 if (vaddr_ef > info->end_data) {
2444 info->end_data = vaddr_ef;
2446 if (vaddr_em > info->brk) {
2447 info->brk = vaddr_em;
2450 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2451 char *interp_name;
2453 if (*pinterp_name) {
2454 errmsg = "Multiple PT_INTERP entries";
2455 goto exit_errmsg;
2457 interp_name = malloc(eppnt->p_filesz);
2458 if (!interp_name) {
2459 goto exit_perror;
2462 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2463 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2464 eppnt->p_filesz);
2465 } else {
2466 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2467 eppnt->p_offset);
2468 if (retval != eppnt->p_filesz) {
2469 goto exit_perror;
2472 if (interp_name[eppnt->p_filesz - 1] != 0) {
2473 errmsg = "Invalid PT_INTERP entry";
2474 goto exit_errmsg;
2476 *pinterp_name = interp_name;
2477 #ifdef TARGET_MIPS
2478 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
2479 Mips_elf_abiflags_v0 abiflags;
2480 if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
2481 errmsg = "Invalid PT_MIPS_ABIFLAGS entry";
2482 goto exit_errmsg;
2484 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2485 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
2486 sizeof(Mips_elf_abiflags_v0));
2487 } else {
2488 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
2489 eppnt->p_offset);
2490 if (retval != sizeof(Mips_elf_abiflags_v0)) {
2491 goto exit_perror;
2494 bswap_mips_abiflags(&abiflags);
2495 info->fp_abi = abiflags.fp_abi;
2496 #endif
2500 if (info->end_data == 0) {
2501 info->start_data = info->end_code;
2502 info->end_data = info->end_code;
2503 info->brk = info->end_code;
2506 if (qemu_log_enabled()) {
2507 load_symbols(ehdr, image_fd, load_bias);
2510 mmap_unlock();
2512 close(image_fd);
2513 return;
2515 exit_read:
2516 if (retval >= 0) {
2517 errmsg = "Incomplete read of file header";
2518 goto exit_errmsg;
2520 exit_perror:
2521 errmsg = strerror(errno);
2522 exit_errmsg:
2523 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2524 exit(-1);
2527 static void load_elf_interp(const char *filename, struct image_info *info,
2528 char bprm_buf[BPRM_BUF_SIZE])
2530 int fd, retval;
2532 fd = open(path(filename), O_RDONLY);
2533 if (fd < 0) {
2534 goto exit_perror;
2537 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2538 if (retval < 0) {
2539 goto exit_perror;
2541 if (retval < BPRM_BUF_SIZE) {
2542 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2545 load_elf_image(filename, fd, info, NULL, bprm_buf);
2546 return;
2548 exit_perror:
2549 fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2550 exit(-1);
2553 static int symfind(const void *s0, const void *s1)
2555 target_ulong addr = *(target_ulong *)s0;
2556 struct elf_sym *sym = (struct elf_sym *)s1;
2557 int result = 0;
2558 if (addr < sym->st_value) {
2559 result = -1;
2560 } else if (addr >= sym->st_value + sym->st_size) {
2561 result = 1;
2563 return result;
2566 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2568 #if ELF_CLASS == ELFCLASS32
2569 struct elf_sym *syms = s->disas_symtab.elf32;
2570 #else
2571 struct elf_sym *syms = s->disas_symtab.elf64;
2572 #endif
2574 // binary search
2575 struct elf_sym *sym;
2577 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2578 if (sym != NULL) {
2579 return s->disas_strtab + sym->st_name;
2582 return "";
2585 /* FIXME: This should use elf_ops.h */
2586 static int symcmp(const void *s0, const void *s1)
2588 struct elf_sym *sym0 = (struct elf_sym *)s0;
2589 struct elf_sym *sym1 = (struct elf_sym *)s1;
2590 return (sym0->st_value < sym1->st_value)
2591 ? -1
2592 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2595 /* Best attempt to load symbols from this ELF object. */
2596 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
2598 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2599 uint64_t segsz;
2600 struct elf_shdr *shdr;
2601 char *strings = NULL;
2602 struct syminfo *s = NULL;
2603 struct elf_sym *new_syms, *syms = NULL;
2605 shnum = hdr->e_shnum;
2606 i = shnum * sizeof(struct elf_shdr);
2607 shdr = (struct elf_shdr *)alloca(i);
2608 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2609 return;
2612 bswap_shdr(shdr, shnum);
2613 for (i = 0; i < shnum; ++i) {
2614 if (shdr[i].sh_type == SHT_SYMTAB) {
2615 sym_idx = i;
2616 str_idx = shdr[i].sh_link;
2617 goto found;
2621 /* There will be no symbol table if the file was stripped. */
2622 return;
2624 found:
2625 /* Now know where the strtab and symtab are. Snarf them. */
2626 s = g_try_new(struct syminfo, 1);
2627 if (!s) {
2628 goto give_up;
2631 segsz = shdr[str_idx].sh_size;
2632 s->disas_strtab = strings = g_try_malloc(segsz);
2633 if (!strings ||
2634 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
2635 goto give_up;
2638 segsz = shdr[sym_idx].sh_size;
2639 syms = g_try_malloc(segsz);
2640 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
2641 goto give_up;
2644 if (segsz / sizeof(struct elf_sym) > INT_MAX) {
2645 /* Implausibly large symbol table: give up rather than ploughing
2646 * on with the number of symbols calculation overflowing
2648 goto give_up;
2650 nsyms = segsz / sizeof(struct elf_sym);
2651 for (i = 0; i < nsyms; ) {
2652 bswap_sym(syms + i);
2653 /* Throw away entries which we do not need. */
2654 if (syms[i].st_shndx == SHN_UNDEF
2655 || syms[i].st_shndx >= SHN_LORESERVE
2656 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2657 if (i < --nsyms) {
2658 syms[i] = syms[nsyms];
2660 } else {
2661 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
2662 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
2663 syms[i].st_value &= ~(target_ulong)1;
2664 #endif
2665 syms[i].st_value += load_bias;
2666 i++;
2670 /* No "useful" symbol. */
2671 if (nsyms == 0) {
2672 goto give_up;
2675 /* Attempt to free the storage associated with the local symbols
2676 that we threw away. Whether or not this has any effect on the
2677 memory allocation depends on the malloc implementation and how
2678 many symbols we managed to discard. */
2679 new_syms = g_try_renew(struct elf_sym, syms, nsyms);
2680 if (new_syms == NULL) {
2681 goto give_up;
2683 syms = new_syms;
2685 qsort(syms, nsyms, sizeof(*syms), symcmp);
2687 s->disas_num_syms = nsyms;
2688 #if ELF_CLASS == ELFCLASS32
2689 s->disas_symtab.elf32 = syms;
2690 #else
2691 s->disas_symtab.elf64 = syms;
2692 #endif
2693 s->lookup_symbol = lookup_symbolxx;
2694 s->next = syminfos;
2695 syminfos = s;
2697 return;
2699 give_up:
2700 g_free(s);
2701 g_free(strings);
2702 g_free(syms);
2705 uint32_t get_elf_eflags(int fd)
2707 struct elfhdr ehdr;
2708 off_t offset;
2709 int ret;
2711 /* Read ELF header */
2712 offset = lseek(fd, 0, SEEK_SET);
2713 if (offset == (off_t) -1) {
2714 return 0;
2716 ret = read(fd, &ehdr, sizeof(ehdr));
2717 if (ret < sizeof(ehdr)) {
2718 return 0;
2720 offset = lseek(fd, offset, SEEK_SET);
2721 if (offset == (off_t) -1) {
2722 return 0;
2725 /* Check ELF signature */
2726 if (!elf_check_ident(&ehdr)) {
2727 return 0;
2730 /* check header */
2731 bswap_ehdr(&ehdr);
2732 if (!elf_check_ehdr(&ehdr)) {
2733 return 0;
2736 /* return architecture id */
2737 return ehdr.e_flags;
2740 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
2742 struct image_info interp_info;
2743 struct elfhdr elf_ex;
2744 char *elf_interpreter = NULL;
2745 char *scratch;
2747 memset(&interp_info, 0, sizeof(interp_info));
2748 #ifdef TARGET_MIPS
2749 interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
2750 #endif
2752 info->start_mmap = (abi_ulong)ELF_START_MMAP;
2754 load_elf_image(bprm->filename, bprm->fd, info,
2755 &elf_interpreter, bprm->buf);
2757 /* ??? We need a copy of the elf header for passing to create_elf_tables.
2758 If we do nothing, we'll have overwritten this when we re-use bprm->buf
2759 when we load the interpreter. */
2760 elf_ex = *(struct elfhdr *)bprm->buf;
2762 /* Do this so that we can load the interpreter, if need be. We will
2763 change some of these later */
2764 bprm->p = setup_arg_pages(bprm, info);
2766 scratch = g_new0(char, TARGET_PAGE_SIZE);
2767 if (STACK_GROWS_DOWN) {
2768 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2769 bprm->p, info->stack_limit);
2770 info->file_string = bprm->p;
2771 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2772 bprm->p, info->stack_limit);
2773 info->env_strings = bprm->p;
2774 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2775 bprm->p, info->stack_limit);
2776 info->arg_strings = bprm->p;
2777 } else {
2778 info->arg_strings = bprm->p;
2779 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2780 bprm->p, info->stack_limit);
2781 info->env_strings = bprm->p;
2782 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2783 bprm->p, info->stack_limit);
2784 info->file_string = bprm->p;
2785 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2786 bprm->p, info->stack_limit);
2789 g_free(scratch);
2791 if (!bprm->p) {
2792 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2793 exit(-1);
2796 if (elf_interpreter) {
2797 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
2799 /* If the program interpreter is one of these two, then assume
2800 an iBCS2 image. Otherwise assume a native linux image. */
2802 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2803 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2804 info->personality = PER_SVR4;
2806 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
2807 and some applications "depend" upon this behavior. Since
2808 we do not have the power to recompile these, we emulate
2809 the SVr4 behavior. Sigh. */
2810 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
2811 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2813 #ifdef TARGET_MIPS
2814 info->interp_fp_abi = interp_info.fp_abi;
2815 #endif
2818 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2819 info, (elf_interpreter ? &interp_info : NULL));
2820 info->start_stack = bprm->p;
2822 /* If we have an interpreter, set that as the program's entry point.
2823 Copy the load_bias as well, to help PPC64 interpret the entry
2824 point as a function descriptor. Do this after creating elf tables
2825 so that we copy the original program entry point into the AUXV. */
2826 if (elf_interpreter) {
2827 info->load_bias = interp_info.load_bias;
2828 info->entry = interp_info.entry;
2829 free(elf_interpreter);
2832 #ifdef USE_ELF_CORE_DUMP
2833 bprm->core_dump = &elf_core_dump;
2834 #endif
2836 return 0;
2839 #ifdef USE_ELF_CORE_DUMP
2841 * Definitions to generate Intel SVR4-like core files.
2842 * These mostly have the same names as the SVR4 types with "target_elf_"
2843 * tacked on the front to prevent clashes with linux definitions,
2844 * and the typedef forms have been avoided. This is mostly like
2845 * the SVR4 structure, but more Linuxy, with things that Linux does
2846 * not support and which gdb doesn't really use excluded.
2848 * Fields we don't dump (their contents is zero) in linux-user qemu
2849 * are marked with XXX.
2851 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2853 * Porting ELF coredump for target is (quite) simple process. First you
2854 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2855 * the target resides):
2857 * #define USE_ELF_CORE_DUMP
2859 * Next you define type of register set used for dumping. ELF specification
2860 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2862 * typedef <target_regtype> target_elf_greg_t;
2863 * #define ELF_NREG <number of registers>
2864 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2866 * Last step is to implement target specific function that copies registers
2867 * from given cpu into just specified register set. Prototype is:
2869 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2870 * const CPUArchState *env);
2872 * Parameters:
2873 * regs - copy register values into here (allocated and zeroed by caller)
2874 * env - copy registers from here
2876 * Example for ARM target is provided in this file.
2879 /* An ELF note in memory */
2880 struct memelfnote {
2881 const char *name;
2882 size_t namesz;
2883 size_t namesz_rounded;
2884 int type;
2885 size_t datasz;
2886 size_t datasz_rounded;
2887 void *data;
2888 size_t notesz;
2891 struct target_elf_siginfo {
2892 abi_int si_signo; /* signal number */
2893 abi_int si_code; /* extra code */
2894 abi_int si_errno; /* errno */
2897 struct target_elf_prstatus {
2898 struct target_elf_siginfo pr_info; /* Info associated with signal */
2899 abi_short pr_cursig; /* Current signal */
2900 abi_ulong pr_sigpend; /* XXX */
2901 abi_ulong pr_sighold; /* XXX */
2902 target_pid_t pr_pid;
2903 target_pid_t pr_ppid;
2904 target_pid_t pr_pgrp;
2905 target_pid_t pr_sid;
2906 struct target_timeval pr_utime; /* XXX User time */
2907 struct target_timeval pr_stime; /* XXX System time */
2908 struct target_timeval pr_cutime; /* XXX Cumulative user time */
2909 struct target_timeval pr_cstime; /* XXX Cumulative system time */
2910 target_elf_gregset_t pr_reg; /* GP registers */
2911 abi_int pr_fpvalid; /* XXX */
2914 #define ELF_PRARGSZ (80) /* Number of chars for args */
2916 struct target_elf_prpsinfo {
2917 char pr_state; /* numeric process state */
2918 char pr_sname; /* char for pr_state */
2919 char pr_zomb; /* zombie */
2920 char pr_nice; /* nice val */
2921 abi_ulong pr_flag; /* flags */
2922 target_uid_t pr_uid;
2923 target_gid_t pr_gid;
2924 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
2925 /* Lots missing */
2926 char pr_fname[16] QEMU_NONSTRING; /* filename of executable */
2927 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2930 /* Here is the structure in which status of each thread is captured. */
2931 struct elf_thread_status {
2932 QTAILQ_ENTRY(elf_thread_status) ets_link;
2933 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
2934 #if 0
2935 elf_fpregset_t fpu; /* NT_PRFPREG */
2936 struct task_struct *thread;
2937 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
2938 #endif
2939 struct memelfnote notes[1];
2940 int num_notes;
2943 struct elf_note_info {
2944 struct memelfnote *notes;
2945 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
2946 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
2948 QTAILQ_HEAD(, elf_thread_status) thread_list;
2949 #if 0
2951 * Current version of ELF coredump doesn't support
2952 * dumping fp regs etc.
2954 elf_fpregset_t *fpu;
2955 elf_fpxregset_t *xfpu;
2956 int thread_status_size;
2957 #endif
2958 int notes_size;
2959 int numnote;
2962 struct vm_area_struct {
2963 target_ulong vma_start; /* start vaddr of memory region */
2964 target_ulong vma_end; /* end vaddr of memory region */
2965 abi_ulong vma_flags; /* protection etc. flags for the region */
2966 QTAILQ_ENTRY(vm_area_struct) vma_link;
2969 struct mm_struct {
2970 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
2971 int mm_count; /* number of mappings */
2974 static struct mm_struct *vma_init(void);
2975 static void vma_delete(struct mm_struct *);
2976 static int vma_add_mapping(struct mm_struct *, target_ulong,
2977 target_ulong, abi_ulong);
2978 static int vma_get_mapping_count(const struct mm_struct *);
2979 static struct vm_area_struct *vma_first(const struct mm_struct *);
2980 static struct vm_area_struct *vma_next(struct vm_area_struct *);
2981 static abi_ulong vma_dump_size(const struct vm_area_struct *);
2982 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2983 unsigned long flags);
2985 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2986 static void fill_note(struct memelfnote *, const char *, int,
2987 unsigned int, void *);
2988 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2989 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
2990 static void fill_auxv_note(struct memelfnote *, const TaskState *);
2991 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2992 static size_t note_size(const struct memelfnote *);
2993 static void free_note_info(struct elf_note_info *);
2994 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2995 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
2996 static int core_dump_filename(const TaskState *, char *, size_t);
2998 static int dump_write(int, const void *, size_t);
2999 static int write_note(struct memelfnote *, int);
3000 static int write_note_info(struct elf_note_info *, int);
3002 #ifdef BSWAP_NEEDED
3003 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
3005 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
3006 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
3007 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
3008 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
3009 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
3010 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
3011 prstatus->pr_pid = tswap32(prstatus->pr_pid);
3012 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
3013 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
3014 prstatus->pr_sid = tswap32(prstatus->pr_sid);
3015 /* cpu times are not filled, so we skip them */
3016 /* regs should be in correct format already */
3017 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
3020 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
3022 psinfo->pr_flag = tswapal(psinfo->pr_flag);
3023 psinfo->pr_uid = tswap16(psinfo->pr_uid);
3024 psinfo->pr_gid = tswap16(psinfo->pr_gid);
3025 psinfo->pr_pid = tswap32(psinfo->pr_pid);
3026 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
3027 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
3028 psinfo->pr_sid = tswap32(psinfo->pr_sid);
3031 static void bswap_note(struct elf_note *en)
3033 bswap32s(&en->n_namesz);
3034 bswap32s(&en->n_descsz);
3035 bswap32s(&en->n_type);
3037 #else
3038 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
3039 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
3040 static inline void bswap_note(struct elf_note *en) { }
3041 #endif /* BSWAP_NEEDED */
3044 * Minimal support for linux memory regions. These are needed
3045 * when we are finding out what memory exactly belongs to
3046 * emulated process. No locks needed here, as long as
3047 * thread that received the signal is stopped.
3050 static struct mm_struct *vma_init(void)
3052 struct mm_struct *mm;
3054 if ((mm = g_malloc(sizeof (*mm))) == NULL)
3055 return (NULL);
3057 mm->mm_count = 0;
3058 QTAILQ_INIT(&mm->mm_mmap);
3060 return (mm);
3063 static void vma_delete(struct mm_struct *mm)
3065 struct vm_area_struct *vma;
3067 while ((vma = vma_first(mm)) != NULL) {
3068 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
3069 g_free(vma);
3071 g_free(mm);
3074 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
3075 target_ulong end, abi_ulong flags)
3077 struct vm_area_struct *vma;
3079 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
3080 return (-1);
3082 vma->vma_start = start;
3083 vma->vma_end = end;
3084 vma->vma_flags = flags;
3086 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
3087 mm->mm_count++;
3089 return (0);
3092 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3094 return (QTAILQ_FIRST(&mm->mm_mmap));
3097 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3099 return (QTAILQ_NEXT(vma, vma_link));
3102 static int vma_get_mapping_count(const struct mm_struct *mm)
3104 return (mm->mm_count);
3108 * Calculate file (dump) size of given memory region.
3110 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3112 /* if we cannot even read the first page, skip it */
3113 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
3114 return (0);
3117 * Usually we don't dump executable pages as they contain
3118 * non-writable code that debugger can read directly from
3119 * target library etc. However, thread stacks are marked
3120 * also executable so we read in first page of given region
3121 * and check whether it contains elf header. If there is
3122 * no elf header, we dump it.
3124 if (vma->vma_flags & PROT_EXEC) {
3125 char page[TARGET_PAGE_SIZE];
3127 copy_from_user(page, vma->vma_start, sizeof (page));
3128 if ((page[EI_MAG0] == ELFMAG0) &&
3129 (page[EI_MAG1] == ELFMAG1) &&
3130 (page[EI_MAG2] == ELFMAG2) &&
3131 (page[EI_MAG3] == ELFMAG3)) {
3133 * Mappings are possibly from ELF binary. Don't dump
3134 * them.
3136 return (0);
3140 return (vma->vma_end - vma->vma_start);
3143 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3144 unsigned long flags)
3146 struct mm_struct *mm = (struct mm_struct *)priv;
3148 vma_add_mapping(mm, start, end, flags);
3149 return (0);
3152 static void fill_note(struct memelfnote *note, const char *name, int type,
3153 unsigned int sz, void *data)
3155 unsigned int namesz;
3157 namesz = strlen(name) + 1;
3158 note->name = name;
3159 note->namesz = namesz;
3160 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3161 note->type = type;
3162 note->datasz = sz;
3163 note->datasz_rounded = roundup(sz, sizeof (int32_t));
3165 note->data = data;
3168 * We calculate rounded up note size here as specified by
3169 * ELF document.
3171 note->notesz = sizeof (struct elf_note) +
3172 note->namesz_rounded + note->datasz_rounded;
3175 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
3176 uint32_t flags)
3178 (void) memset(elf, 0, sizeof(*elf));
3180 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3181 elf->e_ident[EI_CLASS] = ELF_CLASS;
3182 elf->e_ident[EI_DATA] = ELF_DATA;
3183 elf->e_ident[EI_VERSION] = EV_CURRENT;
3184 elf->e_ident[EI_OSABI] = ELF_OSABI;
3186 elf->e_type = ET_CORE;
3187 elf->e_machine = machine;
3188 elf->e_version = EV_CURRENT;
3189 elf->e_phoff = sizeof(struct elfhdr);
3190 elf->e_flags = flags;
3191 elf->e_ehsize = sizeof(struct elfhdr);
3192 elf->e_phentsize = sizeof(struct elf_phdr);
3193 elf->e_phnum = segs;
3195 bswap_ehdr(elf);
3198 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3200 phdr->p_type = PT_NOTE;
3201 phdr->p_offset = offset;
3202 phdr->p_vaddr = 0;
3203 phdr->p_paddr = 0;
3204 phdr->p_filesz = sz;
3205 phdr->p_memsz = 0;
3206 phdr->p_flags = 0;
3207 phdr->p_align = 0;
3209 bswap_phdr(phdr, 1);
3212 static size_t note_size(const struct memelfnote *note)
3214 return (note->notesz);
3217 static void fill_prstatus(struct target_elf_prstatus *prstatus,
3218 const TaskState *ts, int signr)
3220 (void) memset(prstatus, 0, sizeof (*prstatus));
3221 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3222 prstatus->pr_pid = ts->ts_tid;
3223 prstatus->pr_ppid = getppid();
3224 prstatus->pr_pgrp = getpgrp();
3225 prstatus->pr_sid = getsid(0);
3227 bswap_prstatus(prstatus);
3230 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
3232 char *base_filename;
3233 unsigned int i, len;
3235 (void) memset(psinfo, 0, sizeof (*psinfo));
3237 len = ts->info->arg_end - ts->info->arg_start;
3238 if (len >= ELF_PRARGSZ)
3239 len = ELF_PRARGSZ - 1;
3240 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
3241 return -EFAULT;
3242 for (i = 0; i < len; i++)
3243 if (psinfo->pr_psargs[i] == 0)
3244 psinfo->pr_psargs[i] = ' ';
3245 psinfo->pr_psargs[len] = 0;
3247 psinfo->pr_pid = getpid();
3248 psinfo->pr_ppid = getppid();
3249 psinfo->pr_pgrp = getpgrp();
3250 psinfo->pr_sid = getsid(0);
3251 psinfo->pr_uid = getuid();
3252 psinfo->pr_gid = getgid();
3254 base_filename = g_path_get_basename(ts->bprm->filename);
3256 * Using strncpy here is fine: at max-length,
3257 * this field is not NUL-terminated.
3259 (void) strncpy(psinfo->pr_fname, base_filename,
3260 sizeof(psinfo->pr_fname));
3262 g_free(base_filename);
3263 bswap_psinfo(psinfo);
3264 return (0);
3267 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3269 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3270 elf_addr_t orig_auxv = auxv;
3271 void *ptr;
3272 int len = ts->info->auxv_len;
3275 * Auxiliary vector is stored in target process stack. It contains
3276 * {type, value} pairs that we need to dump into note. This is not
3277 * strictly necessary but we do it here for sake of completeness.
3280 /* read in whole auxv vector and copy it to memelfnote */
3281 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3282 if (ptr != NULL) {
3283 fill_note(note, "CORE", NT_AUXV, len, ptr);
3284 unlock_user(ptr, auxv, len);
3289 * Constructs name of coredump file. We have following convention
3290 * for the name:
3291 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3293 * Returns 0 in case of success, -1 otherwise (errno is set).
3295 static int core_dump_filename(const TaskState *ts, char *buf,
3296 size_t bufsize)
3298 char timestamp[64];
3299 char *base_filename = NULL;
3300 struct timeval tv;
3301 struct tm tm;
3303 assert(bufsize >= PATH_MAX);
3305 if (gettimeofday(&tv, NULL) < 0) {
3306 (void) fprintf(stderr, "unable to get current timestamp: %s",
3307 strerror(errno));
3308 return (-1);
3311 base_filename = g_path_get_basename(ts->bprm->filename);
3312 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
3313 localtime_r(&tv.tv_sec, &tm));
3314 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
3315 base_filename, timestamp, (int)getpid());
3316 g_free(base_filename);
3318 return (0);
3321 static int dump_write(int fd, const void *ptr, size_t size)
3323 const char *bufp = (const char *)ptr;
3324 ssize_t bytes_written, bytes_left;
3325 struct rlimit dumpsize;
3326 off_t pos;
3328 bytes_written = 0;
3329 getrlimit(RLIMIT_CORE, &dumpsize);
3330 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3331 if (errno == ESPIPE) { /* not a seekable stream */
3332 bytes_left = size;
3333 } else {
3334 return pos;
3336 } else {
3337 if (dumpsize.rlim_cur <= pos) {
3338 return -1;
3339 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3340 bytes_left = size;
3341 } else {
3342 size_t limit_left=dumpsize.rlim_cur - pos;
3343 bytes_left = limit_left >= size ? size : limit_left ;
3348 * In normal conditions, single write(2) should do but
3349 * in case of socket etc. this mechanism is more portable.
3351 do {
3352 bytes_written = write(fd, bufp, bytes_left);
3353 if (bytes_written < 0) {
3354 if (errno == EINTR)
3355 continue;
3356 return (-1);
3357 } else if (bytes_written == 0) { /* eof */
3358 return (-1);
3360 bufp += bytes_written;
3361 bytes_left -= bytes_written;
3362 } while (bytes_left > 0);
3364 return (0);
3367 static int write_note(struct memelfnote *men, int fd)
3369 struct elf_note en;
3371 en.n_namesz = men->namesz;
3372 en.n_type = men->type;
3373 en.n_descsz = men->datasz;
3375 bswap_note(&en);
3377 if (dump_write(fd, &en, sizeof(en)) != 0)
3378 return (-1);
3379 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3380 return (-1);
3381 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
3382 return (-1);
3384 return (0);
3387 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
3389 CPUState *cpu = env_cpu((CPUArchState *)env);
3390 TaskState *ts = (TaskState *)cpu->opaque;
3391 struct elf_thread_status *ets;
3393 ets = g_malloc0(sizeof (*ets));
3394 ets->num_notes = 1; /* only prstatus is dumped */
3395 fill_prstatus(&ets->prstatus, ts, 0);
3396 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3397 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
3398 &ets->prstatus);
3400 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
3402 info->notes_size += note_size(&ets->notes[0]);
3405 static void init_note_info(struct elf_note_info *info)
3407 /* Initialize the elf_note_info structure so that it is at
3408 * least safe to call free_note_info() on it. Must be
3409 * called before calling fill_note_info().
3411 memset(info, 0, sizeof (*info));
3412 QTAILQ_INIT(&info->thread_list);
3415 static int fill_note_info(struct elf_note_info *info,
3416 long signr, const CPUArchState *env)
3418 #define NUMNOTES 3
3419 CPUState *cpu = env_cpu((CPUArchState *)env);
3420 TaskState *ts = (TaskState *)cpu->opaque;
3421 int i;
3423 info->notes = g_new0(struct memelfnote, NUMNOTES);
3424 if (info->notes == NULL)
3425 return (-ENOMEM);
3426 info->prstatus = g_malloc0(sizeof (*info->prstatus));
3427 if (info->prstatus == NULL)
3428 return (-ENOMEM);
3429 info->psinfo = g_malloc0(sizeof (*info->psinfo));
3430 if (info->prstatus == NULL)
3431 return (-ENOMEM);
3434 * First fill in status (and registers) of current thread
3435 * including process info & aux vector.
3437 fill_prstatus(info->prstatus, ts, signr);
3438 elf_core_copy_regs(&info->prstatus->pr_reg, env);
3439 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
3440 sizeof (*info->prstatus), info->prstatus);
3441 fill_psinfo(info->psinfo, ts);
3442 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
3443 sizeof (*info->psinfo), info->psinfo);
3444 fill_auxv_note(&info->notes[2], ts);
3445 info->numnote = 3;
3447 info->notes_size = 0;
3448 for (i = 0; i < info->numnote; i++)
3449 info->notes_size += note_size(&info->notes[i]);
3451 /* read and fill status of all threads */
3452 cpu_list_lock();
3453 CPU_FOREACH(cpu) {
3454 if (cpu == thread_cpu) {
3455 continue;
3457 fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
3459 cpu_list_unlock();
3461 return (0);
3464 static void free_note_info(struct elf_note_info *info)
3466 struct elf_thread_status *ets;
3468 while (!QTAILQ_EMPTY(&info->thread_list)) {
3469 ets = QTAILQ_FIRST(&info->thread_list);
3470 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
3471 g_free(ets);
3474 g_free(info->prstatus);
3475 g_free(info->psinfo);
3476 g_free(info->notes);
3479 static int write_note_info(struct elf_note_info *info, int fd)
3481 struct elf_thread_status *ets;
3482 int i, error = 0;
3484 /* write prstatus, psinfo and auxv for current thread */
3485 for (i = 0; i < info->numnote; i++)
3486 if ((error = write_note(&info->notes[i], fd)) != 0)
3487 return (error);
3489 /* write prstatus for each thread */
3490 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
3491 if ((error = write_note(&ets->notes[0], fd)) != 0)
3492 return (error);
3495 return (0);
3499 * Write out ELF coredump.
3501 * See documentation of ELF object file format in:
3502 * http://www.caldera.com/developers/devspecs/gabi41.pdf
3504 * Coredump format in linux is following:
3506 * 0 +----------------------+ \
3507 * | ELF header | ET_CORE |
3508 * +----------------------+ |
3509 * | ELF program headers | |--- headers
3510 * | - NOTE section | |
3511 * | - PT_LOAD sections | |
3512 * +----------------------+ /
3513 * | NOTEs: |
3514 * | - NT_PRSTATUS |
3515 * | - NT_PRSINFO |
3516 * | - NT_AUXV |
3517 * +----------------------+ <-- aligned to target page
3518 * | Process memory dump |
3519 * : :
3520 * . .
3521 * : :
3522 * | |
3523 * +----------------------+
3525 * NT_PRSTATUS -> struct elf_prstatus (per thread)
3526 * NT_PRSINFO -> struct elf_prpsinfo
3527 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3529 * Format follows System V format as close as possible. Current
3530 * version limitations are as follows:
3531 * - no floating point registers are dumped
3533 * Function returns 0 in case of success, negative errno otherwise.
3535 * TODO: make this work also during runtime: it should be
3536 * possible to force coredump from running process and then
3537 * continue processing. For example qemu could set up SIGUSR2
3538 * handler (provided that target process haven't registered
3539 * handler for that) that does the dump when signal is received.
3541 static int elf_core_dump(int signr, const CPUArchState *env)
3543 const CPUState *cpu = env_cpu((CPUArchState *)env);
3544 const TaskState *ts = (const TaskState *)cpu->opaque;
3545 struct vm_area_struct *vma = NULL;
3546 char corefile[PATH_MAX];
3547 struct elf_note_info info;
3548 struct elfhdr elf;
3549 struct elf_phdr phdr;
3550 struct rlimit dumpsize;
3551 struct mm_struct *mm = NULL;
3552 off_t offset = 0, data_offset = 0;
3553 int segs = 0;
3554 int fd = -1;
3556 init_note_info(&info);
3558 errno = 0;
3559 getrlimit(RLIMIT_CORE, &dumpsize);
3560 if (dumpsize.rlim_cur == 0)
3561 return 0;
3563 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3564 return (-errno);
3566 if ((fd = open(corefile, O_WRONLY | O_CREAT,
3567 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
3568 return (-errno);
3571 * Walk through target process memory mappings and
3572 * set up structure containing this information. After
3573 * this point vma_xxx functions can be used.
3575 if ((mm = vma_init()) == NULL)
3576 goto out;
3578 walk_memory_regions(mm, vma_walker);
3579 segs = vma_get_mapping_count(mm);
3582 * Construct valid coredump ELF header. We also
3583 * add one more segment for notes.
3585 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3586 if (dump_write(fd, &elf, sizeof (elf)) != 0)
3587 goto out;
3589 /* fill in the in-memory version of notes */
3590 if (fill_note_info(&info, signr, env) < 0)
3591 goto out;
3593 offset += sizeof (elf); /* elf header */
3594 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
3596 /* write out notes program header */
3597 fill_elf_note_phdr(&phdr, info.notes_size, offset);
3599 offset += info.notes_size;
3600 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3601 goto out;
3604 * ELF specification wants data to start at page boundary so
3605 * we align it here.
3607 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
3610 * Write program headers for memory regions mapped in
3611 * the target process.
3613 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3614 (void) memset(&phdr, 0, sizeof (phdr));
3616 phdr.p_type = PT_LOAD;
3617 phdr.p_offset = offset;
3618 phdr.p_vaddr = vma->vma_start;
3619 phdr.p_paddr = 0;
3620 phdr.p_filesz = vma_dump_size(vma);
3621 offset += phdr.p_filesz;
3622 phdr.p_memsz = vma->vma_end - vma->vma_start;
3623 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3624 if (vma->vma_flags & PROT_WRITE)
3625 phdr.p_flags |= PF_W;
3626 if (vma->vma_flags & PROT_EXEC)
3627 phdr.p_flags |= PF_X;
3628 phdr.p_align = ELF_EXEC_PAGESIZE;
3630 bswap_phdr(&phdr, 1);
3631 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
3632 goto out;
3637 * Next we write notes just after program headers. No
3638 * alignment needed here.
3640 if (write_note_info(&info, fd) < 0)
3641 goto out;
3643 /* align data to page boundary */
3644 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3645 goto out;
3648 * Finally we can dump process memory into corefile as well.
3650 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3651 abi_ulong addr;
3652 abi_ulong end;
3654 end = vma->vma_start + vma_dump_size(vma);
3656 for (addr = vma->vma_start; addr < end;
3657 addr += TARGET_PAGE_SIZE) {
3658 char page[TARGET_PAGE_SIZE];
3659 int error;
3662 * Read in page from target process memory and
3663 * write it to coredump file.
3665 error = copy_from_user(page, addr, sizeof (page));
3666 if (error != 0) {
3667 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
3668 addr);
3669 errno = -error;
3670 goto out;
3672 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3673 goto out;
3677 out:
3678 free_note_info(&info);
3679 if (mm != NULL)
3680 vma_delete(mm);
3681 (void) close(fd);
3683 if (errno != 0)
3684 return (-errno);
3685 return (0);
3687 #endif /* USE_ELF_CORE_DUMP */
3689 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3691 init_thread(regs, infop);