4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qapi/error.h"
24 #include "qemu/cutils.h"
26 #include "exec/exec-all.h"
28 #include "hw/qdev-core.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/boards.h"
31 #include "hw/xen/xen.h"
33 #include "sysemu/kvm.h"
34 #include "sysemu/sysemu.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "qemu/error-report.h"
38 #if defined(CONFIG_USER_ONLY)
40 #else /* !CONFIG_USER_ONLY */
42 #include "exec/memory.h"
43 #include "exec/ioport.h"
44 #include "sysemu/dma.h"
45 #include "sysemu/numa.h"
46 #include "sysemu/hw_accel.h"
47 #include "exec/address-spaces.h"
48 #include "sysemu/xen-mapcache.h"
49 #include "trace-root.h"
51 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
53 #include <linux/falloc.h>
57 #include "exec/cpu-all.h"
58 #include "qemu/rcu_queue.h"
59 #include "qemu/main-loop.h"
60 #include "translate-all.h"
61 #include "sysemu/replay.h"
63 #include "exec/memory-internal.h"
64 #include "exec/ram_addr.h"
67 #include "migration/vmstate.h"
69 #include "qemu/range.h"
71 #include "qemu/mmap-alloc.h"
74 //#define DEBUG_SUBPAGE
76 #if !defined(CONFIG_USER_ONLY)
77 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
78 * are protected by the ramlist lock.
80 RAMList ram_list
= { .blocks
= QLIST_HEAD_INITIALIZER(ram_list
.blocks
) };
82 static MemoryRegion
*system_memory
;
83 static MemoryRegion
*system_io
;
85 AddressSpace address_space_io
;
86 AddressSpace address_space_memory
;
88 MemoryRegion io_mem_rom
, io_mem_notdirty
;
89 static MemoryRegion io_mem_unassigned
;
91 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
92 #define RAM_PREALLOC (1 << 0)
94 /* RAM is mmap-ed with MAP_SHARED */
95 #define RAM_SHARED (1 << 1)
97 /* Only a portion of RAM (used_length) is actually used, and migrated.
98 * This used_length size can change across reboots.
100 #define RAM_RESIZEABLE (1 << 2)
104 #ifdef TARGET_PAGE_BITS_VARY
105 int target_page_bits
;
106 bool target_page_bits_decided
;
109 struct CPUTailQ cpus
= QTAILQ_HEAD_INITIALIZER(cpus
);
110 /* current CPU in the current thread. It is only valid inside
112 __thread CPUState
*current_cpu
;
113 /* 0 = Do not count executed instructions.
114 1 = Precise instruction counting.
115 2 = Adaptive rate instruction counting. */
118 bool set_preferred_target_page_bits(int bits
)
120 /* The target page size is the lowest common denominator for all
121 * the CPUs in the system, so we can only make it smaller, never
122 * larger. And we can't make it smaller once we've committed to
125 #ifdef TARGET_PAGE_BITS_VARY
126 assert(bits
>= TARGET_PAGE_BITS_MIN
);
127 if (target_page_bits
== 0 || target_page_bits
> bits
) {
128 if (target_page_bits_decided
) {
131 target_page_bits
= bits
;
137 #if !defined(CONFIG_USER_ONLY)
139 static void finalize_target_page_bits(void)
141 #ifdef TARGET_PAGE_BITS_VARY
142 if (target_page_bits
== 0) {
143 target_page_bits
= TARGET_PAGE_BITS_MIN
;
145 target_page_bits_decided
= true;
149 typedef struct PhysPageEntry PhysPageEntry
;
151 struct PhysPageEntry
{
152 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
154 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
158 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
160 /* Size of the L2 (and L3, etc) page tables. */
161 #define ADDR_SPACE_BITS 64
164 #define P_L2_SIZE (1 << P_L2_BITS)
166 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
168 typedef PhysPageEntry Node
[P_L2_SIZE
];
170 typedef struct PhysPageMap
{
173 unsigned sections_nb
;
174 unsigned sections_nb_alloc
;
176 unsigned nodes_nb_alloc
;
178 MemoryRegionSection
*sections
;
181 struct AddressSpaceDispatch
{
184 MemoryRegionSection
*mru_section
;
185 /* This is a multi-level map on the physical address space.
186 * The bottom level has pointers to MemoryRegionSections.
188 PhysPageEntry phys_map
;
193 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
194 typedef struct subpage_t
{
198 uint16_t sub_section
[];
201 #define PHYS_SECTION_UNASSIGNED 0
202 #define PHYS_SECTION_NOTDIRTY 1
203 #define PHYS_SECTION_ROM 2
204 #define PHYS_SECTION_WATCH 3
206 static void io_mem_init(void);
207 static void memory_map_init(void);
208 static void tcg_commit(MemoryListener
*listener
);
210 static MemoryRegion io_mem_watch
;
213 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
214 * @cpu: the CPU whose AddressSpace this is
215 * @as: the AddressSpace itself
216 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
217 * @tcg_as_listener: listener for tracking changes to the AddressSpace
219 struct CPUAddressSpace
{
222 struct AddressSpaceDispatch
*memory_dispatch
;
223 MemoryListener tcg_as_listener
;
226 struct DirtyBitmapSnapshot
{
229 unsigned long dirty
[];
234 #if !defined(CONFIG_USER_ONLY)
236 static void phys_map_node_reserve(PhysPageMap
*map
, unsigned nodes
)
238 static unsigned alloc_hint
= 16;
239 if (map
->nodes_nb
+ nodes
> map
->nodes_nb_alloc
) {
240 map
->nodes_nb_alloc
= MAX(map
->nodes_nb_alloc
, alloc_hint
);
241 map
->nodes_nb_alloc
= MAX(map
->nodes_nb_alloc
, map
->nodes_nb
+ nodes
);
242 map
->nodes
= g_renew(Node
, map
->nodes
, map
->nodes_nb_alloc
);
243 alloc_hint
= map
->nodes_nb_alloc
;
247 static uint32_t phys_map_node_alloc(PhysPageMap
*map
, bool leaf
)
254 ret
= map
->nodes_nb
++;
256 assert(ret
!= PHYS_MAP_NODE_NIL
);
257 assert(ret
!= map
->nodes_nb_alloc
);
259 e
.skip
= leaf
? 0 : 1;
260 e
.ptr
= leaf
? PHYS_SECTION_UNASSIGNED
: PHYS_MAP_NODE_NIL
;
261 for (i
= 0; i
< P_L2_SIZE
; ++i
) {
262 memcpy(&p
[i
], &e
, sizeof(e
));
267 static void phys_page_set_level(PhysPageMap
*map
, PhysPageEntry
*lp
,
268 hwaddr
*index
, hwaddr
*nb
, uint16_t leaf
,
272 hwaddr step
= (hwaddr
)1 << (level
* P_L2_BITS
);
274 if (lp
->skip
&& lp
->ptr
== PHYS_MAP_NODE_NIL
) {
275 lp
->ptr
= phys_map_node_alloc(map
, level
== 0);
277 p
= map
->nodes
[lp
->ptr
];
278 lp
= &p
[(*index
>> (level
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
280 while (*nb
&& lp
< &p
[P_L2_SIZE
]) {
281 if ((*index
& (step
- 1)) == 0 && *nb
>= step
) {
287 phys_page_set_level(map
, lp
, index
, nb
, leaf
, level
- 1);
293 static void phys_page_set(AddressSpaceDispatch
*d
,
294 hwaddr index
, hwaddr nb
,
297 /* Wildly overreserve - it doesn't matter much. */
298 phys_map_node_reserve(&d
->map
, 3 * P_L2_LEVELS
);
300 phys_page_set_level(&d
->map
, &d
->phys_map
, &index
, &nb
, leaf
, P_L2_LEVELS
- 1);
303 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
304 * and update our entry so we can skip it and go directly to the destination.
306 static void phys_page_compact(PhysPageEntry
*lp
, Node
*nodes
)
308 unsigned valid_ptr
= P_L2_SIZE
;
313 if (lp
->ptr
== PHYS_MAP_NODE_NIL
) {
318 for (i
= 0; i
< P_L2_SIZE
; i
++) {
319 if (p
[i
].ptr
== PHYS_MAP_NODE_NIL
) {
326 phys_page_compact(&p
[i
], nodes
);
330 /* We can only compress if there's only one child. */
335 assert(valid_ptr
< P_L2_SIZE
);
337 /* Don't compress if it won't fit in the # of bits we have. */
338 if (lp
->skip
+ p
[valid_ptr
].skip
>= (1 << 3)) {
342 lp
->ptr
= p
[valid_ptr
].ptr
;
343 if (!p
[valid_ptr
].skip
) {
344 /* If our only child is a leaf, make this a leaf. */
345 /* By design, we should have made this node a leaf to begin with so we
346 * should never reach here.
347 * But since it's so simple to handle this, let's do it just in case we
352 lp
->skip
+= p
[valid_ptr
].skip
;
356 static void phys_page_compact_all(AddressSpaceDispatch
*d
, int nodes_nb
)
358 if (d
->phys_map
.skip
) {
359 phys_page_compact(&d
->phys_map
, d
->map
.nodes
);
363 static inline bool section_covers_addr(const MemoryRegionSection
*section
,
366 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
367 * the section must cover the entire address space.
369 return int128_gethi(section
->size
) ||
370 range_covers_byte(section
->offset_within_address_space
,
371 int128_getlo(section
->size
), addr
);
374 static MemoryRegionSection
*phys_page_find(PhysPageEntry lp
, hwaddr addr
,
375 Node
*nodes
, MemoryRegionSection
*sections
)
378 hwaddr index
= addr
>> TARGET_PAGE_BITS
;
381 for (i
= P_L2_LEVELS
; lp
.skip
&& (i
-= lp
.skip
) >= 0;) {
382 if (lp
.ptr
== PHYS_MAP_NODE_NIL
) {
383 return §ions
[PHYS_SECTION_UNASSIGNED
];
386 lp
= p
[(index
>> (i
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
389 if (section_covers_addr(§ions
[lp
.ptr
], addr
)) {
390 return §ions
[lp
.ptr
];
392 return §ions
[PHYS_SECTION_UNASSIGNED
];
396 bool memory_region_is_unassigned(MemoryRegion
*mr
)
398 return mr
!= &io_mem_rom
&& mr
!= &io_mem_notdirty
&& !mr
->rom_device
399 && mr
!= &io_mem_watch
;
402 /* Called from RCU critical section */
403 static MemoryRegionSection
*address_space_lookup_region(AddressSpaceDispatch
*d
,
405 bool resolve_subpage
)
407 MemoryRegionSection
*section
= atomic_read(&d
->mru_section
);
411 if (section
&& section
!= &d
->map
.sections
[PHYS_SECTION_UNASSIGNED
] &&
412 section_covers_addr(section
, addr
)) {
415 section
= phys_page_find(d
->phys_map
, addr
, d
->map
.nodes
,
419 if (resolve_subpage
&& section
->mr
->subpage
) {
420 subpage
= container_of(section
->mr
, subpage_t
, iomem
);
421 section
= &d
->map
.sections
[subpage
->sub_section
[SUBPAGE_IDX(addr
)]];
424 atomic_set(&d
->mru_section
, section
);
429 /* Called from RCU critical section */
430 static MemoryRegionSection
*
431 address_space_translate_internal(AddressSpaceDispatch
*d
, hwaddr addr
, hwaddr
*xlat
,
432 hwaddr
*plen
, bool resolve_subpage
)
434 MemoryRegionSection
*section
;
438 section
= address_space_lookup_region(d
, addr
, resolve_subpage
);
439 /* Compute offset within MemoryRegionSection */
440 addr
-= section
->offset_within_address_space
;
442 /* Compute offset within MemoryRegion */
443 *xlat
= addr
+ section
->offset_within_region
;
447 /* MMIO registers can be expected to perform full-width accesses based only
448 * on their address, without considering adjacent registers that could
449 * decode to completely different MemoryRegions. When such registers
450 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
451 * regions overlap wildly. For this reason we cannot clamp the accesses
454 * If the length is small (as is the case for address_space_ldl/stl),
455 * everything works fine. If the incoming length is large, however,
456 * the caller really has to do the clamping through memory_access_size.
458 if (memory_region_is_ram(mr
)) {
459 diff
= int128_sub(section
->size
, int128_make64(addr
));
460 *plen
= int128_get64(int128_min(diff
, int128_make64(*plen
)));
465 /* Called from RCU critical section */
466 IOMMUTLBEntry
address_space_get_iotlb_entry(AddressSpace
*as
, hwaddr addr
,
469 IOMMUTLBEntry iotlb
= {0};
470 MemoryRegionSection
*section
;
474 AddressSpaceDispatch
*d
= atomic_rcu_read(&as
->dispatch
);
475 section
= address_space_lookup_region(d
, addr
, false);
476 addr
= addr
- section
->offset_within_address_space
477 + section
->offset_within_region
;
480 if (!mr
->iommu_ops
) {
484 iotlb
= mr
->iommu_ops
->translate(mr
, addr
, is_write
);
485 if (!(iotlb
.perm
& (1 << is_write
))) {
486 iotlb
.target_as
= NULL
;
490 addr
= ((iotlb
.translated_addr
& ~iotlb
.addr_mask
)
491 | (addr
& iotlb
.addr_mask
));
492 as
= iotlb
.target_as
;
498 /* Called from RCU critical section */
499 MemoryRegion
*address_space_translate(AddressSpace
*as
, hwaddr addr
,
500 hwaddr
*xlat
, hwaddr
*plen
,
504 MemoryRegionSection
*section
;
508 AddressSpaceDispatch
*d
= atomic_rcu_read(&as
->dispatch
);
509 section
= address_space_translate_internal(d
, addr
, &addr
, plen
, true);
512 if (!mr
->iommu_ops
) {
516 iotlb
= mr
->iommu_ops
->translate(mr
, addr
, is_write
);
517 addr
= ((iotlb
.translated_addr
& ~iotlb
.addr_mask
)
518 | (addr
& iotlb
.addr_mask
));
519 *plen
= MIN(*plen
, (addr
| iotlb
.addr_mask
) - addr
+ 1);
520 if (!(iotlb
.perm
& (1 << is_write
))) {
521 mr
= &io_mem_unassigned
;
525 as
= iotlb
.target_as
;
528 if (xen_enabled() && memory_access_is_direct(mr
, is_write
)) {
529 hwaddr page
= ((addr
& TARGET_PAGE_MASK
) + TARGET_PAGE_SIZE
) - addr
;
530 *plen
= MIN(page
, *plen
);
537 /* Called from RCU critical section */
538 MemoryRegionSection
*
539 address_space_translate_for_iotlb(CPUState
*cpu
, int asidx
, hwaddr addr
,
540 hwaddr
*xlat
, hwaddr
*plen
)
542 MemoryRegionSection
*section
;
543 AddressSpaceDispatch
*d
= atomic_rcu_read(&cpu
->cpu_ases
[asidx
].memory_dispatch
);
545 section
= address_space_translate_internal(d
, addr
, xlat
, plen
, false);
547 assert(!section
->mr
->iommu_ops
);
552 #if !defined(CONFIG_USER_ONLY)
554 static int cpu_common_post_load(void *opaque
, int version_id
)
556 CPUState
*cpu
= opaque
;
558 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
559 version_id is increased. */
560 cpu
->interrupt_request
&= ~0x01;
566 static int cpu_common_pre_load(void *opaque
)
568 CPUState
*cpu
= opaque
;
570 cpu
->exception_index
= -1;
575 static bool cpu_common_exception_index_needed(void *opaque
)
577 CPUState
*cpu
= opaque
;
579 return tcg_enabled() && cpu
->exception_index
!= -1;
582 static const VMStateDescription vmstate_cpu_common_exception_index
= {
583 .name
= "cpu_common/exception_index",
585 .minimum_version_id
= 1,
586 .needed
= cpu_common_exception_index_needed
,
587 .fields
= (VMStateField
[]) {
588 VMSTATE_INT32(exception_index
, CPUState
),
589 VMSTATE_END_OF_LIST()
593 static bool cpu_common_crash_occurred_needed(void *opaque
)
595 CPUState
*cpu
= opaque
;
597 return cpu
->crash_occurred
;
600 static const VMStateDescription vmstate_cpu_common_crash_occurred
= {
601 .name
= "cpu_common/crash_occurred",
603 .minimum_version_id
= 1,
604 .needed
= cpu_common_crash_occurred_needed
,
605 .fields
= (VMStateField
[]) {
606 VMSTATE_BOOL(crash_occurred
, CPUState
),
607 VMSTATE_END_OF_LIST()
611 const VMStateDescription vmstate_cpu_common
= {
612 .name
= "cpu_common",
614 .minimum_version_id
= 1,
615 .pre_load
= cpu_common_pre_load
,
616 .post_load
= cpu_common_post_load
,
617 .fields
= (VMStateField
[]) {
618 VMSTATE_UINT32(halted
, CPUState
),
619 VMSTATE_UINT32(interrupt_request
, CPUState
),
620 VMSTATE_END_OF_LIST()
622 .subsections
= (const VMStateDescription
*[]) {
623 &vmstate_cpu_common_exception_index
,
624 &vmstate_cpu_common_crash_occurred
,
631 CPUState
*qemu_get_cpu(int index
)
636 if (cpu
->cpu_index
== index
) {
644 #if !defined(CONFIG_USER_ONLY)
645 void cpu_address_space_init(CPUState
*cpu
, AddressSpace
*as
, int asidx
)
647 CPUAddressSpace
*newas
;
649 /* Target code should have set num_ases before calling us */
650 assert(asidx
< cpu
->num_ases
);
653 /* address space 0 gets the convenience alias */
657 /* KVM cannot currently support multiple address spaces. */
658 assert(asidx
== 0 || !kvm_enabled());
660 if (!cpu
->cpu_ases
) {
661 cpu
->cpu_ases
= g_new0(CPUAddressSpace
, cpu
->num_ases
);
664 newas
= &cpu
->cpu_ases
[asidx
];
668 newas
->tcg_as_listener
.commit
= tcg_commit
;
669 memory_listener_register(&newas
->tcg_as_listener
, as
);
673 AddressSpace
*cpu_get_address_space(CPUState
*cpu
, int asidx
)
675 /* Return the AddressSpace corresponding to the specified index */
676 return cpu
->cpu_ases
[asidx
].as
;
680 void cpu_exec_unrealizefn(CPUState
*cpu
)
682 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
684 cpu_list_remove(cpu
);
686 if (cc
->vmsd
!= NULL
) {
687 vmstate_unregister(NULL
, cc
->vmsd
, cpu
);
689 if (qdev_get_vmsd(DEVICE(cpu
)) == NULL
) {
690 vmstate_unregister(NULL
, &vmstate_cpu_common
, cpu
);
694 void cpu_exec_initfn(CPUState
*cpu
)
699 #ifndef CONFIG_USER_ONLY
700 cpu
->thread_id
= qemu_get_thread_id();
702 /* This is a softmmu CPU object, so create a property for it
703 * so users can wire up its memory. (This can't go in qom/cpu.c
704 * because that file is compiled only once for both user-mode
705 * and system builds.) The default if no link is set up is to use
706 * the system address space.
708 object_property_add_link(OBJECT(cpu
), "memory", TYPE_MEMORY_REGION
,
709 (Object
**)&cpu
->memory
,
710 qdev_prop_allow_set_link_before_realize
,
711 OBJ_PROP_LINK_UNREF_ON_RELEASE
,
713 cpu
->memory
= system_memory
;
714 object_ref(OBJECT(cpu
->memory
));
718 void cpu_exec_realizefn(CPUState
*cpu
, Error
**errp
)
720 CPUClass
*cc ATTRIBUTE_UNUSED
= CPU_GET_CLASS(cpu
);
724 #ifndef CONFIG_USER_ONLY
725 if (qdev_get_vmsd(DEVICE(cpu
)) == NULL
) {
726 vmstate_register(NULL
, cpu
->cpu_index
, &vmstate_cpu_common
, cpu
);
728 if (cc
->vmsd
!= NULL
) {
729 vmstate_register(NULL
, cpu
->cpu_index
, cc
->vmsd
, cpu
);
734 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
736 /* Flush the whole TB as this will not have race conditions
737 * even if we don't have proper locking yet.
738 * Ideally we would just invalidate the TBs for the
744 #if defined(CONFIG_USER_ONLY)
745 void cpu_watchpoint_remove_all(CPUState
*cpu
, int mask
)
750 int cpu_watchpoint_remove(CPUState
*cpu
, vaddr addr
, vaddr len
,
756 void cpu_watchpoint_remove_by_ref(CPUState
*cpu
, CPUWatchpoint
*watchpoint
)
760 int cpu_watchpoint_insert(CPUState
*cpu
, vaddr addr
, vaddr len
,
761 int flags
, CPUWatchpoint
**watchpoint
)
766 /* Add a watchpoint. */
767 int cpu_watchpoint_insert(CPUState
*cpu
, vaddr addr
, vaddr len
,
768 int flags
, CPUWatchpoint
**watchpoint
)
772 /* forbid ranges which are empty or run off the end of the address space */
773 if (len
== 0 || (addr
+ len
- 1) < addr
) {
774 error_report("tried to set invalid watchpoint at %"
775 VADDR_PRIx
", len=%" VADDR_PRIu
, addr
, len
);
778 wp
= g_malloc(sizeof(*wp
));
784 /* keep all GDB-injected watchpoints in front */
785 if (flags
& BP_GDB
) {
786 QTAILQ_INSERT_HEAD(&cpu
->watchpoints
, wp
, entry
);
788 QTAILQ_INSERT_TAIL(&cpu
->watchpoints
, wp
, entry
);
791 tlb_flush_page(cpu
, addr
);
798 /* Remove a specific watchpoint. */
799 int cpu_watchpoint_remove(CPUState
*cpu
, vaddr addr
, vaddr len
,
804 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
805 if (addr
== wp
->vaddr
&& len
== wp
->len
806 && flags
== (wp
->flags
& ~BP_WATCHPOINT_HIT
)) {
807 cpu_watchpoint_remove_by_ref(cpu
, wp
);
814 /* Remove a specific watchpoint by reference. */
815 void cpu_watchpoint_remove_by_ref(CPUState
*cpu
, CPUWatchpoint
*watchpoint
)
817 QTAILQ_REMOVE(&cpu
->watchpoints
, watchpoint
, entry
);
819 tlb_flush_page(cpu
, watchpoint
->vaddr
);
824 /* Remove all matching watchpoints. */
825 void cpu_watchpoint_remove_all(CPUState
*cpu
, int mask
)
827 CPUWatchpoint
*wp
, *next
;
829 QTAILQ_FOREACH_SAFE(wp
, &cpu
->watchpoints
, entry
, next
) {
830 if (wp
->flags
& mask
) {
831 cpu_watchpoint_remove_by_ref(cpu
, wp
);
836 /* Return true if this watchpoint address matches the specified
837 * access (ie the address range covered by the watchpoint overlaps
838 * partially or completely with the address range covered by the
841 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint
*wp
,
845 /* We know the lengths are non-zero, but a little caution is
846 * required to avoid errors in the case where the range ends
847 * exactly at the top of the address space and so addr + len
848 * wraps round to zero.
850 vaddr wpend
= wp
->vaddr
+ wp
->len
- 1;
851 vaddr addrend
= addr
+ len
- 1;
853 return !(addr
> wpend
|| wp
->vaddr
> addrend
);
858 /* Add a breakpoint. */
859 int cpu_breakpoint_insert(CPUState
*cpu
, vaddr pc
, int flags
,
860 CPUBreakpoint
**breakpoint
)
864 bp
= g_malloc(sizeof(*bp
));
869 /* keep all GDB-injected breakpoints in front */
870 if (flags
& BP_GDB
) {
871 QTAILQ_INSERT_HEAD(&cpu
->breakpoints
, bp
, entry
);
873 QTAILQ_INSERT_TAIL(&cpu
->breakpoints
, bp
, entry
);
876 breakpoint_invalidate(cpu
, pc
);
884 /* Remove a specific breakpoint. */
885 int cpu_breakpoint_remove(CPUState
*cpu
, vaddr pc
, int flags
)
889 QTAILQ_FOREACH(bp
, &cpu
->breakpoints
, entry
) {
890 if (bp
->pc
== pc
&& bp
->flags
== flags
) {
891 cpu_breakpoint_remove_by_ref(cpu
, bp
);
898 /* Remove a specific breakpoint by reference. */
899 void cpu_breakpoint_remove_by_ref(CPUState
*cpu
, CPUBreakpoint
*breakpoint
)
901 QTAILQ_REMOVE(&cpu
->breakpoints
, breakpoint
, entry
);
903 breakpoint_invalidate(cpu
, breakpoint
->pc
);
908 /* Remove all matching breakpoints. */
909 void cpu_breakpoint_remove_all(CPUState
*cpu
, int mask
)
911 CPUBreakpoint
*bp
, *next
;
913 QTAILQ_FOREACH_SAFE(bp
, &cpu
->breakpoints
, entry
, next
) {
914 if (bp
->flags
& mask
) {
915 cpu_breakpoint_remove_by_ref(cpu
, bp
);
920 /* enable or disable single step mode. EXCP_DEBUG is returned by the
921 CPU loop after each instruction */
922 void cpu_single_step(CPUState
*cpu
, int enabled
)
924 if (cpu
->singlestep_enabled
!= enabled
) {
925 cpu
->singlestep_enabled
= enabled
;
927 kvm_update_guest_debug(cpu
, 0);
929 /* must flush all the translated code to avoid inconsistencies */
930 /* XXX: only flush what is necessary */
936 void cpu_abort(CPUState
*cpu
, const char *fmt
, ...)
943 fprintf(stderr
, "qemu: fatal: ");
944 vfprintf(stderr
, fmt
, ap
);
945 fprintf(stderr
, "\n");
946 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
947 if (qemu_log_separate()) {
949 qemu_log("qemu: fatal: ");
950 qemu_log_vprintf(fmt
, ap2
);
952 log_cpu_state(cpu
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
960 #if defined(CONFIG_USER_ONLY)
962 struct sigaction act
;
963 sigfillset(&act
.sa_mask
);
964 act
.sa_handler
= SIG_DFL
;
965 sigaction(SIGABRT
, &act
, NULL
);
971 #if !defined(CONFIG_USER_ONLY)
972 /* Called from RCU critical section */
973 static RAMBlock
*qemu_get_ram_block(ram_addr_t addr
)
977 block
= atomic_rcu_read(&ram_list
.mru_block
);
978 if (block
&& addr
- block
->offset
< block
->max_length
) {
981 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
982 if (addr
- block
->offset
< block
->max_length
) {
987 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
991 /* It is safe to write mru_block outside the iothread lock. This
996 * xxx removed from list
1000 * call_rcu(reclaim_ramblock, xxx);
1003 * atomic_rcu_set is not needed here. The block was already published
1004 * when it was placed into the list. Here we're just making an extra
1005 * copy of the pointer.
1007 ram_list
.mru_block
= block
;
1011 static void tlb_reset_dirty_range_all(ram_addr_t start
, ram_addr_t length
)
1018 end
= TARGET_PAGE_ALIGN(start
+ length
);
1019 start
&= TARGET_PAGE_MASK
;
1022 block
= qemu_get_ram_block(start
);
1023 assert(block
== qemu_get_ram_block(end
- 1));
1024 start1
= (uintptr_t)ramblock_ptr(block
, start
- block
->offset
);
1026 tlb_reset_dirty(cpu
, start1
, length
);
1031 /* Note: start and end must be within the same ram block. */
1032 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start
,
1036 DirtyMemoryBlocks
*blocks
;
1037 unsigned long end
, page
;
1044 end
= TARGET_PAGE_ALIGN(start
+ length
) >> TARGET_PAGE_BITS
;
1045 page
= start
>> TARGET_PAGE_BITS
;
1049 blocks
= atomic_rcu_read(&ram_list
.dirty_memory
[client
]);
1051 while (page
< end
) {
1052 unsigned long idx
= page
/ DIRTY_MEMORY_BLOCK_SIZE
;
1053 unsigned long offset
= page
% DIRTY_MEMORY_BLOCK_SIZE
;
1054 unsigned long num
= MIN(end
- page
, DIRTY_MEMORY_BLOCK_SIZE
- offset
);
1056 dirty
|= bitmap_test_and_clear_atomic(blocks
->blocks
[idx
],
1063 if (dirty
&& tcg_enabled()) {
1064 tlb_reset_dirty_range_all(start
, length
);
1070 DirtyBitmapSnapshot
*cpu_physical_memory_snapshot_and_clear_dirty
1071 (ram_addr_t start
, ram_addr_t length
, unsigned client
)
1073 DirtyMemoryBlocks
*blocks
;
1074 unsigned long align
= 1UL << (TARGET_PAGE_BITS
+ BITS_PER_LEVEL
);
1075 ram_addr_t first
= QEMU_ALIGN_DOWN(start
, align
);
1076 ram_addr_t last
= QEMU_ALIGN_UP(start
+ length
, align
);
1077 DirtyBitmapSnapshot
*snap
;
1078 unsigned long page
, end
, dest
;
1080 snap
= g_malloc0(sizeof(*snap
) +
1081 ((last
- first
) >> (TARGET_PAGE_BITS
+ 3)));
1082 snap
->start
= first
;
1085 page
= first
>> TARGET_PAGE_BITS
;
1086 end
= last
>> TARGET_PAGE_BITS
;
1091 blocks
= atomic_rcu_read(&ram_list
.dirty_memory
[client
]);
1093 while (page
< end
) {
1094 unsigned long idx
= page
/ DIRTY_MEMORY_BLOCK_SIZE
;
1095 unsigned long offset
= page
% DIRTY_MEMORY_BLOCK_SIZE
;
1096 unsigned long num
= MIN(end
- page
, DIRTY_MEMORY_BLOCK_SIZE
- offset
);
1098 assert(QEMU_IS_ALIGNED(offset
, (1 << BITS_PER_LEVEL
)));
1099 assert(QEMU_IS_ALIGNED(num
, (1 << BITS_PER_LEVEL
)));
1100 offset
>>= BITS_PER_LEVEL
;
1102 bitmap_copy_and_clear_atomic(snap
->dirty
+ dest
,
1103 blocks
->blocks
[idx
] + offset
,
1106 dest
+= num
>> BITS_PER_LEVEL
;
1111 if (tcg_enabled()) {
1112 tlb_reset_dirty_range_all(start
, length
);
1118 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot
*snap
,
1122 unsigned long page
, end
;
1124 assert(start
>= snap
->start
);
1125 assert(start
+ length
<= snap
->end
);
1127 end
= TARGET_PAGE_ALIGN(start
+ length
- snap
->start
) >> TARGET_PAGE_BITS
;
1128 page
= (start
- snap
->start
) >> TARGET_PAGE_BITS
;
1130 while (page
< end
) {
1131 if (test_bit(page
, snap
->dirty
)) {
1139 /* Called from RCU critical section */
1140 hwaddr
memory_region_section_get_iotlb(CPUState
*cpu
,
1141 MemoryRegionSection
*section
,
1143 hwaddr paddr
, hwaddr xlat
,
1145 target_ulong
*address
)
1150 if (memory_region_is_ram(section
->mr
)) {
1152 iotlb
= memory_region_get_ram_addr(section
->mr
) + xlat
;
1153 if (!section
->readonly
) {
1154 iotlb
|= PHYS_SECTION_NOTDIRTY
;
1156 iotlb
|= PHYS_SECTION_ROM
;
1159 AddressSpaceDispatch
*d
;
1161 d
= atomic_rcu_read(§ion
->address_space
->dispatch
);
1162 iotlb
= section
- d
->map
.sections
;
1166 /* Make accesses to pages with watchpoints go via the
1167 watchpoint trap routines. */
1168 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
1169 if (cpu_watchpoint_address_matches(wp
, vaddr
, TARGET_PAGE_SIZE
)) {
1170 /* Avoid trapping reads of pages with a write breakpoint. */
1171 if ((prot
& PAGE_WRITE
) || (wp
->flags
& BP_MEM_READ
)) {
1172 iotlb
= PHYS_SECTION_WATCH
+ paddr
;
1173 *address
|= TLB_MMIO
;
1181 #endif /* defined(CONFIG_USER_ONLY) */
1183 #if !defined(CONFIG_USER_ONLY)
1185 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
1187 static subpage_t
*subpage_init(AddressSpace
*as
, hwaddr base
);
1189 static void *(*phys_mem_alloc
)(size_t size
, uint64_t *align
) =
1190 qemu_anon_ram_alloc
;
1193 * Set a custom physical guest memory alloator.
1194 * Accelerators with unusual needs may need this. Hopefully, we can
1195 * get rid of it eventually.
1197 void phys_mem_set_alloc(void *(*alloc
)(size_t, uint64_t *align
))
1199 phys_mem_alloc
= alloc
;
1202 static uint16_t phys_section_add(PhysPageMap
*map
,
1203 MemoryRegionSection
*section
)
1205 /* The physical section number is ORed with a page-aligned
1206 * pointer to produce the iotlb entries. Thus it should
1207 * never overflow into the page-aligned value.
1209 assert(map
->sections_nb
< TARGET_PAGE_SIZE
);
1211 if (map
->sections_nb
== map
->sections_nb_alloc
) {
1212 map
->sections_nb_alloc
= MAX(map
->sections_nb_alloc
* 2, 16);
1213 map
->sections
= g_renew(MemoryRegionSection
, map
->sections
,
1214 map
->sections_nb_alloc
);
1216 map
->sections
[map
->sections_nb
] = *section
;
1217 memory_region_ref(section
->mr
);
1218 return map
->sections_nb
++;
1221 static void phys_section_destroy(MemoryRegion
*mr
)
1223 bool have_sub_page
= mr
->subpage
;
1225 memory_region_unref(mr
);
1227 if (have_sub_page
) {
1228 subpage_t
*subpage
= container_of(mr
, subpage_t
, iomem
);
1229 object_unref(OBJECT(&subpage
->iomem
));
1234 static void phys_sections_free(PhysPageMap
*map
)
1236 while (map
->sections_nb
> 0) {
1237 MemoryRegionSection
*section
= &map
->sections
[--map
->sections_nb
];
1238 phys_section_destroy(section
->mr
);
1240 g_free(map
->sections
);
1244 static void register_subpage(AddressSpaceDispatch
*d
, MemoryRegionSection
*section
)
1247 hwaddr base
= section
->offset_within_address_space
1249 MemoryRegionSection
*existing
= phys_page_find(d
->phys_map
, base
,
1250 d
->map
.nodes
, d
->map
.sections
);
1251 MemoryRegionSection subsection
= {
1252 .offset_within_address_space
= base
,
1253 .size
= int128_make64(TARGET_PAGE_SIZE
),
1257 assert(existing
->mr
->subpage
|| existing
->mr
== &io_mem_unassigned
);
1259 if (!(existing
->mr
->subpage
)) {
1260 subpage
= subpage_init(d
->as
, base
);
1261 subsection
.address_space
= d
->as
;
1262 subsection
.mr
= &subpage
->iomem
;
1263 phys_page_set(d
, base
>> TARGET_PAGE_BITS
, 1,
1264 phys_section_add(&d
->map
, &subsection
));
1266 subpage
= container_of(existing
->mr
, subpage_t
, iomem
);
1268 start
= section
->offset_within_address_space
& ~TARGET_PAGE_MASK
;
1269 end
= start
+ int128_get64(section
->size
) - 1;
1270 subpage_register(subpage
, start
, end
,
1271 phys_section_add(&d
->map
, section
));
1275 static void register_multipage(AddressSpaceDispatch
*d
,
1276 MemoryRegionSection
*section
)
1278 hwaddr start_addr
= section
->offset_within_address_space
;
1279 uint16_t section_index
= phys_section_add(&d
->map
, section
);
1280 uint64_t num_pages
= int128_get64(int128_rshift(section
->size
,
1284 phys_page_set(d
, start_addr
>> TARGET_PAGE_BITS
, num_pages
, section_index
);
1287 static void mem_add(MemoryListener
*listener
, MemoryRegionSection
*section
)
1289 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
1290 AddressSpaceDispatch
*d
= as
->next_dispatch
;
1291 MemoryRegionSection now
= *section
, remain
= *section
;
1292 Int128 page_size
= int128_make64(TARGET_PAGE_SIZE
);
1294 if (now
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
1295 uint64_t left
= TARGET_PAGE_ALIGN(now
.offset_within_address_space
)
1296 - now
.offset_within_address_space
;
1298 now
.size
= int128_min(int128_make64(left
), now
.size
);
1299 register_subpage(d
, &now
);
1301 now
.size
= int128_zero();
1303 while (int128_ne(remain
.size
, now
.size
)) {
1304 remain
.size
= int128_sub(remain
.size
, now
.size
);
1305 remain
.offset_within_address_space
+= int128_get64(now
.size
);
1306 remain
.offset_within_region
+= int128_get64(now
.size
);
1308 if (int128_lt(remain
.size
, page_size
)) {
1309 register_subpage(d
, &now
);
1310 } else if (remain
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
1311 now
.size
= page_size
;
1312 register_subpage(d
, &now
);
1314 now
.size
= int128_and(now
.size
, int128_neg(page_size
));
1315 register_multipage(d
, &now
);
1320 void qemu_flush_coalesced_mmio_buffer(void)
1323 kvm_flush_coalesced_mmio_buffer();
1326 void qemu_mutex_lock_ramlist(void)
1328 qemu_mutex_lock(&ram_list
.mutex
);
1331 void qemu_mutex_unlock_ramlist(void)
1333 qemu_mutex_unlock(&ram_list
.mutex
);
1338 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1339 * may or may not name the same files / on the same filesystem now as
1340 * when we actually open and map them. Iterate over the file
1341 * descriptors instead, and use qemu_fd_getpagesize().
1343 static int find_max_supported_pagesize(Object
*obj
, void *opaque
)
1346 long *hpsize_min
= opaque
;
1348 if (object_dynamic_cast(obj
, TYPE_MEMORY_BACKEND
)) {
1349 mem_path
= object_property_get_str(obj
, "mem-path", NULL
);
1351 long hpsize
= qemu_mempath_getpagesize(mem_path
);
1352 if (hpsize
< *hpsize_min
) {
1353 *hpsize_min
= hpsize
;
1356 *hpsize_min
= getpagesize();
1363 long qemu_getrampagesize(void)
1365 long hpsize
= LONG_MAX
;
1366 long mainrampagesize
;
1367 Object
*memdev_root
;
1370 mainrampagesize
= qemu_mempath_getpagesize(mem_path
);
1372 mainrampagesize
= getpagesize();
1375 /* it's possible we have memory-backend objects with
1376 * hugepage-backed RAM. these may get mapped into system
1377 * address space via -numa parameters or memory hotplug
1378 * hooks. we want to take these into account, but we
1379 * also want to make sure these supported hugepage
1380 * sizes are applicable across the entire range of memory
1381 * we may boot from, so we take the min across all
1382 * backends, and assume normal pages in cases where a
1383 * backend isn't backed by hugepages.
1385 memdev_root
= object_resolve_path("/objects", NULL
);
1387 object_child_foreach(memdev_root
, find_max_supported_pagesize
, &hpsize
);
1389 if (hpsize
== LONG_MAX
) {
1390 /* No additional memory regions found ==> Report main RAM page size */
1391 return mainrampagesize
;
1394 /* If NUMA is disabled or the NUMA nodes are not backed with a
1395 * memory-backend, then there is at least one node using "normal" RAM,
1396 * so if its page size is smaller we have got to report that size instead.
1398 if (hpsize
> mainrampagesize
&&
1399 (nb_numa_nodes
== 0 || numa_info
[0].node_memdev
== NULL
)) {
1402 error_report("Huge page support disabled (n/a for main memory).");
1405 return mainrampagesize
;
1411 long qemu_getrampagesize(void)
1413 return getpagesize();
1418 static int64_t get_file_size(int fd
)
1420 int64_t size
= lseek(fd
, 0, SEEK_END
);
1427 static void *file_ram_alloc(RAMBlock
*block
,
1432 bool unlink_on_error
= false;
1434 char *sanitized_name
;
1436 void *area
= MAP_FAILED
;
1440 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1442 "host lacks kvm mmu notifiers, -mem-path unsupported");
1447 fd
= open(path
, O_RDWR
);
1449 /* @path names an existing file, use it */
1452 if (errno
== ENOENT
) {
1453 /* @path names a file that doesn't exist, create it */
1454 fd
= open(path
, O_RDWR
| O_CREAT
| O_EXCL
, 0644);
1456 unlink_on_error
= true;
1459 } else if (errno
== EISDIR
) {
1460 /* @path names a directory, create a file there */
1461 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1462 sanitized_name
= g_strdup(memory_region_name(block
->mr
));
1463 for (c
= sanitized_name
; *c
!= '\0'; c
++) {
1469 filename
= g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path
,
1471 g_free(sanitized_name
);
1473 fd
= mkstemp(filename
);
1481 if (errno
!= EEXIST
&& errno
!= EINTR
) {
1482 error_setg_errno(errp
, errno
,
1483 "can't open backing store %s for guest RAM",
1488 * Try again on EINTR and EEXIST. The latter happens when
1489 * something else creates the file between our two open().
1493 block
->page_size
= qemu_fd_getpagesize(fd
);
1494 block
->mr
->align
= block
->page_size
;
1495 #if defined(__s390x__)
1496 if (kvm_enabled()) {
1497 block
->mr
->align
= MAX(block
->mr
->align
, QEMU_VMALLOC_ALIGN
);
1501 file_size
= get_file_size(fd
);
1503 if (memory
< block
->page_size
) {
1504 error_setg(errp
, "memory size 0x" RAM_ADDR_FMT
" must be equal to "
1505 "or larger than page size 0x%zx",
1506 memory
, block
->page_size
);
1510 if (file_size
> 0 && file_size
< memory
) {
1511 error_setg(errp
, "backing store %s size 0x%" PRIx64
1512 " does not match 'size' option 0x" RAM_ADDR_FMT
,
1513 path
, file_size
, memory
);
1517 memory
= ROUND_UP(memory
, block
->page_size
);
1520 * ftruncate is not supported by hugetlbfs in older
1521 * hosts, so don't bother bailing out on errors.
1522 * If anything goes wrong with it under other filesystems,
1525 * Do not truncate the non-empty backend file to avoid corrupting
1526 * the existing data in the file. Disabling shrinking is not
1527 * enough. For example, the current vNVDIMM implementation stores
1528 * the guest NVDIMM labels at the end of the backend file. If the
1529 * backend file is later extended, QEMU will not be able to find
1530 * those labels. Therefore, extending the non-empty backend file
1531 * is disabled as well.
1533 if (!file_size
&& ftruncate(fd
, memory
)) {
1534 perror("ftruncate");
1537 area
= qemu_ram_mmap(fd
, memory
, block
->mr
->align
,
1538 block
->flags
& RAM_SHARED
);
1539 if (area
== MAP_FAILED
) {
1540 error_setg_errno(errp
, errno
,
1541 "unable to map backing store for guest RAM");
1546 os_mem_prealloc(fd
, area
, memory
, smp_cpus
, errp
);
1547 if (errp
&& *errp
) {
1556 if (area
!= MAP_FAILED
) {
1557 qemu_ram_munmap(area
, memory
);
1559 if (unlink_on_error
) {
1569 /* Called with the ramlist lock held. */
1570 static ram_addr_t
find_ram_offset(ram_addr_t size
)
1572 RAMBlock
*block
, *next_block
;
1573 ram_addr_t offset
= RAM_ADDR_MAX
, mingap
= RAM_ADDR_MAX
;
1575 assert(size
!= 0); /* it would hand out same offset multiple times */
1577 if (QLIST_EMPTY_RCU(&ram_list
.blocks
)) {
1581 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1582 ram_addr_t end
, next
= RAM_ADDR_MAX
;
1584 end
= block
->offset
+ block
->max_length
;
1586 QLIST_FOREACH_RCU(next_block
, &ram_list
.blocks
, next
) {
1587 if (next_block
->offset
>= end
) {
1588 next
= MIN(next
, next_block
->offset
);
1591 if (next
- end
>= size
&& next
- end
< mingap
) {
1593 mingap
= next
- end
;
1597 if (offset
== RAM_ADDR_MAX
) {
1598 fprintf(stderr
, "Failed to find gap of requested size: %" PRIu64
"\n",
1606 unsigned long last_ram_page(void)
1609 ram_addr_t last
= 0;
1612 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1613 last
= MAX(last
, block
->offset
+ block
->max_length
);
1616 return last
>> TARGET_PAGE_BITS
;
1619 static void qemu_ram_setup_dump(void *addr
, ram_addr_t size
)
1623 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1624 if (!machine_dump_guest_core(current_machine
)) {
1625 ret
= qemu_madvise(addr
, size
, QEMU_MADV_DONTDUMP
);
1627 perror("qemu_madvise");
1628 fprintf(stderr
, "madvise doesn't support MADV_DONTDUMP, "
1629 "but dump_guest_core=off specified\n");
1634 const char *qemu_ram_get_idstr(RAMBlock
*rb
)
1639 bool qemu_ram_is_shared(RAMBlock
*rb
)
1641 return rb
->flags
& RAM_SHARED
;
1644 /* Called with iothread lock held. */
1645 void qemu_ram_set_idstr(RAMBlock
*new_block
, const char *name
, DeviceState
*dev
)
1650 assert(!new_block
->idstr
[0]);
1653 char *id
= qdev_get_dev_path(dev
);
1655 snprintf(new_block
->idstr
, sizeof(new_block
->idstr
), "%s/", id
);
1659 pstrcat(new_block
->idstr
, sizeof(new_block
->idstr
), name
);
1662 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1663 if (block
!= new_block
&&
1664 !strcmp(block
->idstr
, new_block
->idstr
)) {
1665 fprintf(stderr
, "RAMBlock \"%s\" already registered, abort!\n",
1673 /* Called with iothread lock held. */
1674 void qemu_ram_unset_idstr(RAMBlock
*block
)
1676 /* FIXME: arch_init.c assumes that this is not called throughout
1677 * migration. Ignore the problem since hot-unplug during migration
1678 * does not work anyway.
1681 memset(block
->idstr
, 0, sizeof(block
->idstr
));
1685 size_t qemu_ram_pagesize(RAMBlock
*rb
)
1687 return rb
->page_size
;
1690 /* Returns the largest size of page in use */
1691 size_t qemu_ram_pagesize_largest(void)
1696 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1697 largest
= MAX(largest
, qemu_ram_pagesize(block
));
1703 static int memory_try_enable_merging(void *addr
, size_t len
)
1705 if (!machine_mem_merge(current_machine
)) {
1706 /* disabled by the user */
1710 return qemu_madvise(addr
, len
, QEMU_MADV_MERGEABLE
);
1713 /* Only legal before guest might have detected the memory size: e.g. on
1714 * incoming migration, or right after reset.
1716 * As memory core doesn't know how is memory accessed, it is up to
1717 * resize callback to update device state and/or add assertions to detect
1718 * misuse, if necessary.
1720 int qemu_ram_resize(RAMBlock
*block
, ram_addr_t newsize
, Error
**errp
)
1724 newsize
= HOST_PAGE_ALIGN(newsize
);
1726 if (block
->used_length
== newsize
) {
1730 if (!(block
->flags
& RAM_RESIZEABLE
)) {
1731 error_setg_errno(errp
, EINVAL
,
1732 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1733 " in != 0x" RAM_ADDR_FMT
, block
->idstr
,
1734 newsize
, block
->used_length
);
1738 if (block
->max_length
< newsize
) {
1739 error_setg_errno(errp
, EINVAL
,
1740 "Length too large: %s: 0x" RAM_ADDR_FMT
1741 " > 0x" RAM_ADDR_FMT
, block
->idstr
,
1742 newsize
, block
->max_length
);
1746 cpu_physical_memory_clear_dirty_range(block
->offset
, block
->used_length
);
1747 block
->used_length
= newsize
;
1748 cpu_physical_memory_set_dirty_range(block
->offset
, block
->used_length
,
1750 memory_region_set_size(block
->mr
, newsize
);
1751 if (block
->resized
) {
1752 block
->resized(block
->idstr
, newsize
, block
->host
);
1757 /* Called with ram_list.mutex held */
1758 static void dirty_memory_extend(ram_addr_t old_ram_size
,
1759 ram_addr_t new_ram_size
)
1761 ram_addr_t old_num_blocks
= DIV_ROUND_UP(old_ram_size
,
1762 DIRTY_MEMORY_BLOCK_SIZE
);
1763 ram_addr_t new_num_blocks
= DIV_ROUND_UP(new_ram_size
,
1764 DIRTY_MEMORY_BLOCK_SIZE
);
1767 /* Only need to extend if block count increased */
1768 if (new_num_blocks
<= old_num_blocks
) {
1772 for (i
= 0; i
< DIRTY_MEMORY_NUM
; i
++) {
1773 DirtyMemoryBlocks
*old_blocks
;
1774 DirtyMemoryBlocks
*new_blocks
;
1777 old_blocks
= atomic_rcu_read(&ram_list
.dirty_memory
[i
]);
1778 new_blocks
= g_malloc(sizeof(*new_blocks
) +
1779 sizeof(new_blocks
->blocks
[0]) * new_num_blocks
);
1781 if (old_num_blocks
) {
1782 memcpy(new_blocks
->blocks
, old_blocks
->blocks
,
1783 old_num_blocks
* sizeof(old_blocks
->blocks
[0]));
1786 for (j
= old_num_blocks
; j
< new_num_blocks
; j
++) {
1787 new_blocks
->blocks
[j
] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE
);
1790 atomic_rcu_set(&ram_list
.dirty_memory
[i
], new_blocks
);
1793 g_free_rcu(old_blocks
, rcu
);
1798 static void ram_block_add(RAMBlock
*new_block
, Error
**errp
)
1801 RAMBlock
*last_block
= NULL
;
1802 ram_addr_t old_ram_size
, new_ram_size
;
1805 old_ram_size
= last_ram_page();
1807 qemu_mutex_lock_ramlist();
1808 new_block
->offset
= find_ram_offset(new_block
->max_length
);
1810 if (!new_block
->host
) {
1811 if (xen_enabled()) {
1812 xen_ram_alloc(new_block
->offset
, new_block
->max_length
,
1813 new_block
->mr
, &err
);
1815 error_propagate(errp
, err
);
1816 qemu_mutex_unlock_ramlist();
1820 new_block
->host
= phys_mem_alloc(new_block
->max_length
,
1821 &new_block
->mr
->align
);
1822 if (!new_block
->host
) {
1823 error_setg_errno(errp
, errno
,
1824 "cannot set up guest memory '%s'",
1825 memory_region_name(new_block
->mr
));
1826 qemu_mutex_unlock_ramlist();
1829 memory_try_enable_merging(new_block
->host
, new_block
->max_length
);
1833 new_ram_size
= MAX(old_ram_size
,
1834 (new_block
->offset
+ new_block
->max_length
) >> TARGET_PAGE_BITS
);
1835 if (new_ram_size
> old_ram_size
) {
1836 dirty_memory_extend(old_ram_size
, new_ram_size
);
1838 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1839 * QLIST (which has an RCU-friendly variant) does not have insertion at
1840 * tail, so save the last element in last_block.
1842 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1844 if (block
->max_length
< new_block
->max_length
) {
1849 QLIST_INSERT_BEFORE_RCU(block
, new_block
, next
);
1850 } else if (last_block
) {
1851 QLIST_INSERT_AFTER_RCU(last_block
, new_block
, next
);
1852 } else { /* list is empty */
1853 QLIST_INSERT_HEAD_RCU(&ram_list
.blocks
, new_block
, next
);
1855 ram_list
.mru_block
= NULL
;
1857 /* Write list before version */
1860 qemu_mutex_unlock_ramlist();
1862 cpu_physical_memory_set_dirty_range(new_block
->offset
,
1863 new_block
->used_length
,
1866 if (new_block
->host
) {
1867 qemu_ram_setup_dump(new_block
->host
, new_block
->max_length
);
1868 qemu_madvise(new_block
->host
, new_block
->max_length
, QEMU_MADV_HUGEPAGE
);
1869 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
1870 qemu_madvise(new_block
->host
, new_block
->max_length
, QEMU_MADV_DONTFORK
);
1871 ram_block_notify_add(new_block
->host
, new_block
->max_length
);
1876 RAMBlock
*qemu_ram_alloc_from_file(ram_addr_t size
, MemoryRegion
*mr
,
1877 bool share
, const char *mem_path
,
1880 RAMBlock
*new_block
;
1881 Error
*local_err
= NULL
;
1883 if (xen_enabled()) {
1884 error_setg(errp
, "-mem-path not supported with Xen");
1888 if (phys_mem_alloc
!= qemu_anon_ram_alloc
) {
1890 * file_ram_alloc() needs to allocate just like
1891 * phys_mem_alloc, but we haven't bothered to provide
1895 "-mem-path not supported with this accelerator");
1899 size
= HOST_PAGE_ALIGN(size
);
1900 new_block
= g_malloc0(sizeof(*new_block
));
1902 new_block
->used_length
= size
;
1903 new_block
->max_length
= size
;
1904 new_block
->flags
= share
? RAM_SHARED
: 0;
1905 new_block
->host
= file_ram_alloc(new_block
, size
,
1907 if (!new_block
->host
) {
1912 ram_block_add(new_block
, &local_err
);
1915 error_propagate(errp
, local_err
);
1923 RAMBlock
*qemu_ram_alloc_internal(ram_addr_t size
, ram_addr_t max_size
,
1924 void (*resized
)(const char*,
1927 void *host
, bool resizeable
,
1928 MemoryRegion
*mr
, Error
**errp
)
1930 RAMBlock
*new_block
;
1931 Error
*local_err
= NULL
;
1933 size
= HOST_PAGE_ALIGN(size
);
1934 max_size
= HOST_PAGE_ALIGN(max_size
);
1935 new_block
= g_malloc0(sizeof(*new_block
));
1937 new_block
->resized
= resized
;
1938 new_block
->used_length
= size
;
1939 new_block
->max_length
= max_size
;
1940 assert(max_size
>= size
);
1942 new_block
->page_size
= getpagesize();
1943 new_block
->host
= host
;
1945 new_block
->flags
|= RAM_PREALLOC
;
1948 new_block
->flags
|= RAM_RESIZEABLE
;
1950 ram_block_add(new_block
, &local_err
);
1953 error_propagate(errp
, local_err
);
1959 RAMBlock
*qemu_ram_alloc_from_ptr(ram_addr_t size
, void *host
,
1960 MemoryRegion
*mr
, Error
**errp
)
1962 return qemu_ram_alloc_internal(size
, size
, NULL
, host
, false, mr
, errp
);
1965 RAMBlock
*qemu_ram_alloc(ram_addr_t size
, MemoryRegion
*mr
, Error
**errp
)
1967 return qemu_ram_alloc_internal(size
, size
, NULL
, NULL
, false, mr
, errp
);
1970 RAMBlock
*qemu_ram_alloc_resizeable(ram_addr_t size
, ram_addr_t maxsz
,
1971 void (*resized
)(const char*,
1974 MemoryRegion
*mr
, Error
**errp
)
1976 return qemu_ram_alloc_internal(size
, maxsz
, resized
, NULL
, true, mr
, errp
);
1979 static void reclaim_ramblock(RAMBlock
*block
)
1981 if (block
->flags
& RAM_PREALLOC
) {
1983 } else if (xen_enabled()) {
1984 xen_invalidate_map_cache_entry(block
->host
);
1986 } else if (block
->fd
>= 0) {
1987 qemu_ram_munmap(block
->host
, block
->max_length
);
1991 qemu_anon_ram_free(block
->host
, block
->max_length
);
1996 void qemu_ram_free(RAMBlock
*block
)
2003 ram_block_notify_remove(block
->host
, block
->max_length
);
2006 qemu_mutex_lock_ramlist();
2007 QLIST_REMOVE_RCU(block
, next
);
2008 ram_list
.mru_block
= NULL
;
2009 /* Write list before version */
2012 call_rcu(block
, reclaim_ramblock
, rcu
);
2013 qemu_mutex_unlock_ramlist();
2017 void qemu_ram_remap(ram_addr_t addr
, ram_addr_t length
)
2024 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
2025 offset
= addr
- block
->offset
;
2026 if (offset
< block
->max_length
) {
2027 vaddr
= ramblock_ptr(block
, offset
);
2028 if (block
->flags
& RAM_PREALLOC
) {
2030 } else if (xen_enabled()) {
2034 if (block
->fd
>= 0) {
2035 flags
|= (block
->flags
& RAM_SHARED
?
2036 MAP_SHARED
: MAP_PRIVATE
);
2037 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
2038 flags
, block
->fd
, offset
);
2041 * Remap needs to match alloc. Accelerators that
2042 * set phys_mem_alloc never remap. If they did,
2043 * we'd need a remap hook here.
2045 assert(phys_mem_alloc
== qemu_anon_ram_alloc
);
2047 flags
|= MAP_PRIVATE
| MAP_ANONYMOUS
;
2048 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
2051 if (area
!= vaddr
) {
2052 fprintf(stderr
, "Could not remap addr: "
2053 RAM_ADDR_FMT
"@" RAM_ADDR_FMT
"\n",
2057 memory_try_enable_merging(vaddr
, length
);
2058 qemu_ram_setup_dump(vaddr
, length
);
2063 #endif /* !_WIN32 */
2065 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2066 * This should not be used for general purpose DMA. Use address_space_map
2067 * or address_space_rw instead. For local memory (e.g. video ram) that the
2068 * device owns, use memory_region_get_ram_ptr.
2070 * Called within RCU critical section.
2072 void *qemu_map_ram_ptr(RAMBlock
*ram_block
, ram_addr_t addr
)
2074 RAMBlock
*block
= ram_block
;
2076 if (block
== NULL
) {
2077 block
= qemu_get_ram_block(addr
);
2078 addr
-= block
->offset
;
2081 if (xen_enabled() && block
->host
== NULL
) {
2082 /* We need to check if the requested address is in the RAM
2083 * because we don't want to map the entire memory in QEMU.
2084 * In that case just map until the end of the page.
2086 if (block
->offset
== 0) {
2087 return xen_map_cache(addr
, 0, 0, false);
2090 block
->host
= xen_map_cache(block
->offset
, block
->max_length
, 1, false);
2092 return ramblock_ptr(block
, addr
);
2095 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2096 * but takes a size argument.
2098 * Called within RCU critical section.
2100 static void *qemu_ram_ptr_length(RAMBlock
*ram_block
, ram_addr_t addr
,
2103 RAMBlock
*block
= ram_block
;
2108 if (block
== NULL
) {
2109 block
= qemu_get_ram_block(addr
);
2110 addr
-= block
->offset
;
2112 *size
= MIN(*size
, block
->max_length
- addr
);
2114 if (xen_enabled() && block
->host
== NULL
) {
2115 /* We need to check if the requested address is in the RAM
2116 * because we don't want to map the entire memory in QEMU.
2117 * In that case just map the requested area.
2119 if (block
->offset
== 0) {
2120 return xen_map_cache(addr
, *size
, 1, true);
2123 block
->host
= xen_map_cache(block
->offset
, block
->max_length
, 1, true);
2126 return ramblock_ptr(block
, addr
);
2130 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2133 * ptr: Host pointer to look up
2134 * round_offset: If true round the result offset down to a page boundary
2135 * *ram_addr: set to result ram_addr
2136 * *offset: set to result offset within the RAMBlock
2138 * Returns: RAMBlock (or NULL if not found)
2140 * By the time this function returns, the returned pointer is not protected
2141 * by RCU anymore. If the caller is not within an RCU critical section and
2142 * does not hold the iothread lock, it must have other means of protecting the
2143 * pointer, such as a reference to the region that includes the incoming
2146 RAMBlock
*qemu_ram_block_from_host(void *ptr
, bool round_offset
,
2150 uint8_t *host
= ptr
;
2152 if (xen_enabled()) {
2153 ram_addr_t ram_addr
;
2155 ram_addr
= xen_ram_addr_from_mapcache(ptr
);
2156 block
= qemu_get_ram_block(ram_addr
);
2158 *offset
= ram_addr
- block
->offset
;
2165 block
= atomic_rcu_read(&ram_list
.mru_block
);
2166 if (block
&& block
->host
&& host
- block
->host
< block
->max_length
) {
2170 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
2171 /* This case append when the block is not mapped. */
2172 if (block
->host
== NULL
) {
2175 if (host
- block
->host
< block
->max_length
) {
2184 *offset
= (host
- block
->host
);
2186 *offset
&= TARGET_PAGE_MASK
;
2193 * Finds the named RAMBlock
2195 * name: The name of RAMBlock to find
2197 * Returns: RAMBlock (or NULL if not found)
2199 RAMBlock
*qemu_ram_block_by_name(const char *name
)
2203 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
2204 if (!strcmp(name
, block
->idstr
)) {
2212 /* Some of the softmmu routines need to translate from a host pointer
2213 (typically a TLB entry) back to a ram offset. */
2214 ram_addr_t
qemu_ram_addr_from_host(void *ptr
)
2219 block
= qemu_ram_block_from_host(ptr
, false, &offset
);
2221 return RAM_ADDR_INVALID
;
2224 return block
->offset
+ offset
;
2227 /* Called within RCU critical section. */
2228 static void notdirty_mem_write(void *opaque
, hwaddr ram_addr
,
2229 uint64_t val
, unsigned size
)
2231 bool locked
= false;
2233 if (!cpu_physical_memory_get_dirty_flag(ram_addr
, DIRTY_MEMORY_CODE
)) {
2236 tb_invalidate_phys_page_fast(ram_addr
, size
);
2240 stb_p(qemu_map_ram_ptr(NULL
, ram_addr
), val
);
2243 stw_p(qemu_map_ram_ptr(NULL
, ram_addr
), val
);
2246 stl_p(qemu_map_ram_ptr(NULL
, ram_addr
), val
);
2256 /* Set both VGA and migration bits for simplicity and to remove
2257 * the notdirty callback faster.
2259 cpu_physical_memory_set_dirty_range(ram_addr
, size
,
2260 DIRTY_CLIENTS_NOCODE
);
2261 /* we remove the notdirty callback only if the code has been
2263 if (!cpu_physical_memory_is_clean(ram_addr
)) {
2264 tlb_set_dirty(current_cpu
, current_cpu
->mem_io_vaddr
);
2268 static bool notdirty_mem_accepts(void *opaque
, hwaddr addr
,
2269 unsigned size
, bool is_write
)
2274 static const MemoryRegionOps notdirty_mem_ops
= {
2275 .write
= notdirty_mem_write
,
2276 .valid
.accepts
= notdirty_mem_accepts
,
2277 .endianness
= DEVICE_NATIVE_ENDIAN
,
2280 /* Generate a debug exception if a watchpoint has been hit. */
2281 static void check_watchpoint(int offset
, int len
, MemTxAttrs attrs
, int flags
)
2283 CPUState
*cpu
= current_cpu
;
2284 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
2285 CPUArchState
*env
= cpu
->env_ptr
;
2286 target_ulong pc
, cs_base
;
2291 if (cpu
->watchpoint_hit
) {
2292 /* We re-entered the check after replacing the TB. Now raise
2293 * the debug interrupt so that is will trigger after the
2294 * current instruction. */
2295 cpu_interrupt(cpu
, CPU_INTERRUPT_DEBUG
);
2298 vaddr
= (cpu
->mem_io_vaddr
& TARGET_PAGE_MASK
) + offset
;
2299 vaddr
= cc
->adjust_watchpoint_address(cpu
, vaddr
, len
);
2300 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
2301 if (cpu_watchpoint_address_matches(wp
, vaddr
, len
)
2302 && (wp
->flags
& flags
)) {
2303 if (flags
== BP_MEM_READ
) {
2304 wp
->flags
|= BP_WATCHPOINT_HIT_READ
;
2306 wp
->flags
|= BP_WATCHPOINT_HIT_WRITE
;
2308 wp
->hitaddr
= vaddr
;
2309 wp
->hitattrs
= attrs
;
2310 if (!cpu
->watchpoint_hit
) {
2311 if (wp
->flags
& BP_CPU
&&
2312 !cc
->debug_check_watchpoint(cpu
, wp
)) {
2313 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
2316 cpu
->watchpoint_hit
= wp
;
2318 /* Both tb_lock and iothread_mutex will be reset when
2319 * cpu_loop_exit or cpu_loop_exit_noexc longjmp
2320 * back into the cpu_exec main loop.
2323 tb_check_watchpoint(cpu
);
2324 if (wp
->flags
& BP_STOP_BEFORE_ACCESS
) {
2325 cpu
->exception_index
= EXCP_DEBUG
;
2328 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &cpu_flags
);
2329 tb_gen_code(cpu
, pc
, cs_base
, cpu_flags
, 1);
2330 cpu_loop_exit_noexc(cpu
);
2334 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
2339 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2340 so these check for a hit then pass through to the normal out-of-line
2342 static MemTxResult
watch_mem_read(void *opaque
, hwaddr addr
, uint64_t *pdata
,
2343 unsigned size
, MemTxAttrs attrs
)
2347 int asidx
= cpu_asidx_from_attrs(current_cpu
, attrs
);
2348 AddressSpace
*as
= current_cpu
->cpu_ases
[asidx
].as
;
2350 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, size
, attrs
, BP_MEM_READ
);
2353 data
= address_space_ldub(as
, addr
, attrs
, &res
);
2356 data
= address_space_lduw(as
, addr
, attrs
, &res
);
2359 data
= address_space_ldl(as
, addr
, attrs
, &res
);
2367 static MemTxResult
watch_mem_write(void *opaque
, hwaddr addr
,
2368 uint64_t val
, unsigned size
,
2372 int asidx
= cpu_asidx_from_attrs(current_cpu
, attrs
);
2373 AddressSpace
*as
= current_cpu
->cpu_ases
[asidx
].as
;
2375 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, size
, attrs
, BP_MEM_WRITE
);
2378 address_space_stb(as
, addr
, val
, attrs
, &res
);
2381 address_space_stw(as
, addr
, val
, attrs
, &res
);
2384 address_space_stl(as
, addr
, val
, attrs
, &res
);
2391 static const MemoryRegionOps watch_mem_ops
= {
2392 .read_with_attrs
= watch_mem_read
,
2393 .write_with_attrs
= watch_mem_write
,
2394 .endianness
= DEVICE_NATIVE_ENDIAN
,
2397 static MemTxResult
subpage_read(void *opaque
, hwaddr addr
, uint64_t *data
,
2398 unsigned len
, MemTxAttrs attrs
)
2400 subpage_t
*subpage
= opaque
;
2404 #if defined(DEBUG_SUBPAGE)
2405 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
"\n", __func__
,
2406 subpage
, len
, addr
);
2408 res
= address_space_read(subpage
->as
, addr
+ subpage
->base
,
2415 *data
= ldub_p(buf
);
2418 *data
= lduw_p(buf
);
2431 static MemTxResult
subpage_write(void *opaque
, hwaddr addr
,
2432 uint64_t value
, unsigned len
, MemTxAttrs attrs
)
2434 subpage_t
*subpage
= opaque
;
2437 #if defined(DEBUG_SUBPAGE)
2438 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2439 " value %"PRIx64
"\n",
2440 __func__
, subpage
, len
, addr
, value
);
2458 return address_space_write(subpage
->as
, addr
+ subpage
->base
,
2462 static bool subpage_accepts(void *opaque
, hwaddr addr
,
2463 unsigned len
, bool is_write
)
2465 subpage_t
*subpage
= opaque
;
2466 #if defined(DEBUG_SUBPAGE)
2467 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx
"\n",
2468 __func__
, subpage
, is_write
? 'w' : 'r', len
, addr
);
2471 return address_space_access_valid(subpage
->as
, addr
+ subpage
->base
,
2475 static const MemoryRegionOps subpage_ops
= {
2476 .read_with_attrs
= subpage_read
,
2477 .write_with_attrs
= subpage_write
,
2478 .impl
.min_access_size
= 1,
2479 .impl
.max_access_size
= 8,
2480 .valid
.min_access_size
= 1,
2481 .valid
.max_access_size
= 8,
2482 .valid
.accepts
= subpage_accepts
,
2483 .endianness
= DEVICE_NATIVE_ENDIAN
,
2486 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
2491 if (start
>= TARGET_PAGE_SIZE
|| end
>= TARGET_PAGE_SIZE
)
2493 idx
= SUBPAGE_IDX(start
);
2494 eidx
= SUBPAGE_IDX(end
);
2495 #if defined(DEBUG_SUBPAGE)
2496 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2497 __func__
, mmio
, start
, end
, idx
, eidx
, section
);
2499 for (; idx
<= eidx
; idx
++) {
2500 mmio
->sub_section
[idx
] = section
;
2506 static subpage_t
*subpage_init(AddressSpace
*as
, hwaddr base
)
2510 mmio
= g_malloc0(sizeof(subpage_t
) + TARGET_PAGE_SIZE
* sizeof(uint16_t));
2513 memory_region_init_io(&mmio
->iomem
, NULL
, &subpage_ops
, mmio
,
2514 NULL
, TARGET_PAGE_SIZE
);
2515 mmio
->iomem
.subpage
= true;
2516 #if defined(DEBUG_SUBPAGE)
2517 printf("%s: %p base " TARGET_FMT_plx
" len %08x\n", __func__
,
2518 mmio
, base
, TARGET_PAGE_SIZE
);
2520 subpage_register(mmio
, 0, TARGET_PAGE_SIZE
-1, PHYS_SECTION_UNASSIGNED
);
2525 static uint16_t dummy_section(PhysPageMap
*map
, AddressSpace
*as
,
2529 MemoryRegionSection section
= {
2530 .address_space
= as
,
2532 .offset_within_address_space
= 0,
2533 .offset_within_region
= 0,
2534 .size
= int128_2_64(),
2537 return phys_section_add(map
, §ion
);
2540 MemoryRegion
*iotlb_to_region(CPUState
*cpu
, hwaddr index
, MemTxAttrs attrs
)
2542 int asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
2543 CPUAddressSpace
*cpuas
= &cpu
->cpu_ases
[asidx
];
2544 AddressSpaceDispatch
*d
= atomic_rcu_read(&cpuas
->memory_dispatch
);
2545 MemoryRegionSection
*sections
= d
->map
.sections
;
2547 return sections
[index
& ~TARGET_PAGE_MASK
].mr
;
2550 static void io_mem_init(void)
2552 memory_region_init_io(&io_mem_rom
, NULL
, &unassigned_mem_ops
, NULL
, NULL
, UINT64_MAX
);
2553 memory_region_init_io(&io_mem_unassigned
, NULL
, &unassigned_mem_ops
, NULL
,
2556 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
2557 * which can be called without the iothread mutex.
2559 memory_region_init_io(&io_mem_notdirty
, NULL
, ¬dirty_mem_ops
, NULL
,
2561 memory_region_clear_global_locking(&io_mem_notdirty
);
2563 memory_region_init_io(&io_mem_watch
, NULL
, &watch_mem_ops
, NULL
,
2567 static void mem_begin(MemoryListener
*listener
)
2569 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
2570 AddressSpaceDispatch
*d
= g_new0(AddressSpaceDispatch
, 1);
2573 n
= dummy_section(&d
->map
, as
, &io_mem_unassigned
);
2574 assert(n
== PHYS_SECTION_UNASSIGNED
);
2575 n
= dummy_section(&d
->map
, as
, &io_mem_notdirty
);
2576 assert(n
== PHYS_SECTION_NOTDIRTY
);
2577 n
= dummy_section(&d
->map
, as
, &io_mem_rom
);
2578 assert(n
== PHYS_SECTION_ROM
);
2579 n
= dummy_section(&d
->map
, as
, &io_mem_watch
);
2580 assert(n
== PHYS_SECTION_WATCH
);
2582 d
->phys_map
= (PhysPageEntry
) { .ptr
= PHYS_MAP_NODE_NIL
, .skip
= 1 };
2584 as
->next_dispatch
= d
;
2587 static void address_space_dispatch_free(AddressSpaceDispatch
*d
)
2589 phys_sections_free(&d
->map
);
2593 static void mem_commit(MemoryListener
*listener
)
2595 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
2596 AddressSpaceDispatch
*cur
= as
->dispatch
;
2597 AddressSpaceDispatch
*next
= as
->next_dispatch
;
2599 phys_page_compact_all(next
, next
->map
.nodes_nb
);
2601 atomic_rcu_set(&as
->dispatch
, next
);
2603 call_rcu(cur
, address_space_dispatch_free
, rcu
);
2607 static void tcg_commit(MemoryListener
*listener
)
2609 CPUAddressSpace
*cpuas
;
2610 AddressSpaceDispatch
*d
;
2612 /* since each CPU stores ram addresses in its TLB cache, we must
2613 reset the modified entries */
2614 cpuas
= container_of(listener
, CPUAddressSpace
, tcg_as_listener
);
2615 cpu_reloading_memory_map();
2616 /* The CPU and TLB are protected by the iothread lock.
2617 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2618 * may have split the RCU critical section.
2620 d
= atomic_rcu_read(&cpuas
->as
->dispatch
);
2621 atomic_rcu_set(&cpuas
->memory_dispatch
, d
);
2622 tlb_flush(cpuas
->cpu
);
2625 void address_space_init_dispatch(AddressSpace
*as
)
2627 as
->dispatch
= NULL
;
2628 as
->dispatch_listener
= (MemoryListener
) {
2630 .commit
= mem_commit
,
2631 .region_add
= mem_add
,
2632 .region_nop
= mem_add
,
2635 memory_listener_register(&as
->dispatch_listener
, as
);
2638 void address_space_unregister(AddressSpace
*as
)
2640 memory_listener_unregister(&as
->dispatch_listener
);
2643 void address_space_destroy_dispatch(AddressSpace
*as
)
2645 AddressSpaceDispatch
*d
= as
->dispatch
;
2647 atomic_rcu_set(&as
->dispatch
, NULL
);
2649 call_rcu(d
, address_space_dispatch_free
, rcu
);
2653 static void memory_map_init(void)
2655 system_memory
= g_malloc(sizeof(*system_memory
));
2657 memory_region_init(system_memory
, NULL
, "system", UINT64_MAX
);
2658 address_space_init(&address_space_memory
, system_memory
, "memory");
2660 system_io
= g_malloc(sizeof(*system_io
));
2661 memory_region_init_io(system_io
, NULL
, &unassigned_io_ops
, NULL
, "io",
2663 address_space_init(&address_space_io
, system_io
, "I/O");
2666 MemoryRegion
*get_system_memory(void)
2668 return system_memory
;
2671 MemoryRegion
*get_system_io(void)
2676 #endif /* !defined(CONFIG_USER_ONLY) */
2678 /* physical memory access (slow version, mainly for debug) */
2679 #if defined(CONFIG_USER_ONLY)
2680 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
2681 uint8_t *buf
, int len
, int is_write
)
2688 page
= addr
& TARGET_PAGE_MASK
;
2689 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
2692 flags
= page_get_flags(page
);
2693 if (!(flags
& PAGE_VALID
))
2696 if (!(flags
& PAGE_WRITE
))
2698 /* XXX: this code should not depend on lock_user */
2699 if (!(p
= lock_user(VERIFY_WRITE
, addr
, l
, 0)))
2702 unlock_user(p
, addr
, l
);
2704 if (!(flags
& PAGE_READ
))
2706 /* XXX: this code should not depend on lock_user */
2707 if (!(p
= lock_user(VERIFY_READ
, addr
, l
, 1)))
2710 unlock_user(p
, addr
, 0);
2721 static void invalidate_and_set_dirty(MemoryRegion
*mr
, hwaddr addr
,
2724 uint8_t dirty_log_mask
= memory_region_get_dirty_log_mask(mr
);
2725 addr
+= memory_region_get_ram_addr(mr
);
2727 /* No early return if dirty_log_mask is or becomes 0, because
2728 * cpu_physical_memory_set_dirty_range will still call
2729 * xen_modified_memory.
2731 if (dirty_log_mask
) {
2733 cpu_physical_memory_range_includes_clean(addr
, length
, dirty_log_mask
);
2735 if (dirty_log_mask
& (1 << DIRTY_MEMORY_CODE
)) {
2737 tb_invalidate_phys_range(addr
, addr
+ length
);
2739 dirty_log_mask
&= ~(1 << DIRTY_MEMORY_CODE
);
2741 cpu_physical_memory_set_dirty_range(addr
, length
, dirty_log_mask
);
2744 static int memory_access_size(MemoryRegion
*mr
, unsigned l
, hwaddr addr
)
2746 unsigned access_size_max
= mr
->ops
->valid
.max_access_size
;
2748 /* Regions are assumed to support 1-4 byte accesses unless
2749 otherwise specified. */
2750 if (access_size_max
== 0) {
2751 access_size_max
= 4;
2754 /* Bound the maximum access by the alignment of the address. */
2755 if (!mr
->ops
->impl
.unaligned
) {
2756 unsigned align_size_max
= addr
& -addr
;
2757 if (align_size_max
!= 0 && align_size_max
< access_size_max
) {
2758 access_size_max
= align_size_max
;
2762 /* Don't attempt accesses larger than the maximum. */
2763 if (l
> access_size_max
) {
2764 l
= access_size_max
;
2771 static bool prepare_mmio_access(MemoryRegion
*mr
)
2773 bool unlocked
= !qemu_mutex_iothread_locked();
2774 bool release_lock
= false;
2776 if (unlocked
&& mr
->global_locking
) {
2777 qemu_mutex_lock_iothread();
2779 release_lock
= true;
2781 if (mr
->flush_coalesced_mmio
) {
2783 qemu_mutex_lock_iothread();
2785 qemu_flush_coalesced_mmio_buffer();
2787 qemu_mutex_unlock_iothread();
2791 return release_lock
;
2794 /* Called within RCU critical section. */
2795 static MemTxResult
address_space_write_continue(AddressSpace
*as
, hwaddr addr
,
2798 int len
, hwaddr addr1
,
2799 hwaddr l
, MemoryRegion
*mr
)
2803 MemTxResult result
= MEMTX_OK
;
2804 bool release_lock
= false;
2807 if (!memory_access_is_direct(mr
, true)) {
2808 release_lock
|= prepare_mmio_access(mr
);
2809 l
= memory_access_size(mr
, l
, addr1
);
2810 /* XXX: could force current_cpu to NULL to avoid
2814 /* 64 bit write access */
2816 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 8,
2820 /* 32 bit write access */
2821 val
= (uint32_t)ldl_p(buf
);
2822 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 4,
2826 /* 16 bit write access */
2828 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 2,
2832 /* 8 bit write access */
2834 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 1,
2842 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
2843 memcpy(ptr
, buf
, l
);
2844 invalidate_and_set_dirty(mr
, addr1
, l
);
2848 qemu_mutex_unlock_iothread();
2849 release_lock
= false;
2861 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
2867 MemTxResult
address_space_write(AddressSpace
*as
, hwaddr addr
, MemTxAttrs attrs
,
2868 const uint8_t *buf
, int len
)
2873 MemTxResult result
= MEMTX_OK
;
2878 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
2879 result
= address_space_write_continue(as
, addr
, attrs
, buf
, len
,
2887 /* Called within RCU critical section. */
2888 MemTxResult
address_space_read_continue(AddressSpace
*as
, hwaddr addr
,
2889 MemTxAttrs attrs
, uint8_t *buf
,
2890 int len
, hwaddr addr1
, hwaddr l
,
2895 MemTxResult result
= MEMTX_OK
;
2896 bool release_lock
= false;
2899 if (!memory_access_is_direct(mr
, false)) {
2901 release_lock
|= prepare_mmio_access(mr
);
2902 l
= memory_access_size(mr
, l
, addr1
);
2905 /* 64 bit read access */
2906 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 8,
2911 /* 32 bit read access */
2912 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 4,
2917 /* 16 bit read access */
2918 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 2,
2923 /* 8 bit read access */
2924 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 1,
2933 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
2934 memcpy(buf
, ptr
, l
);
2938 qemu_mutex_unlock_iothread();
2939 release_lock
= false;
2951 mr
= address_space_translate(as
, addr
, &addr1
, &l
, false);
2957 MemTxResult
address_space_read_full(AddressSpace
*as
, hwaddr addr
,
2958 MemTxAttrs attrs
, uint8_t *buf
, int len
)
2963 MemTxResult result
= MEMTX_OK
;
2968 mr
= address_space_translate(as
, addr
, &addr1
, &l
, false);
2969 result
= address_space_read_continue(as
, addr
, attrs
, buf
, len
,
2977 MemTxResult
address_space_rw(AddressSpace
*as
, hwaddr addr
, MemTxAttrs attrs
,
2978 uint8_t *buf
, int len
, bool is_write
)
2981 return address_space_write(as
, addr
, attrs
, (uint8_t *)buf
, len
);
2983 return address_space_read(as
, addr
, attrs
, (uint8_t *)buf
, len
);
2987 void cpu_physical_memory_rw(hwaddr addr
, uint8_t *buf
,
2988 int len
, int is_write
)
2990 address_space_rw(&address_space_memory
, addr
, MEMTXATTRS_UNSPECIFIED
,
2991 buf
, len
, is_write
);
2994 enum write_rom_type
{
2999 static inline void cpu_physical_memory_write_rom_internal(AddressSpace
*as
,
3000 hwaddr addr
, const uint8_t *buf
, int len
, enum write_rom_type type
)
3010 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
3012 if (!(memory_region_is_ram(mr
) ||
3013 memory_region_is_romd(mr
))) {
3014 l
= memory_access_size(mr
, l
, addr1
);
3017 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
3020 memcpy(ptr
, buf
, l
);
3021 invalidate_and_set_dirty(mr
, addr1
, l
);
3024 flush_icache_range((uintptr_t)ptr
, (uintptr_t)ptr
+ l
);
3035 /* used for ROM loading : can write in RAM and ROM */
3036 void cpu_physical_memory_write_rom(AddressSpace
*as
, hwaddr addr
,
3037 const uint8_t *buf
, int len
)
3039 cpu_physical_memory_write_rom_internal(as
, addr
, buf
, len
, WRITE_DATA
);
3042 void cpu_flush_icache_range(hwaddr start
, int len
)
3045 * This function should do the same thing as an icache flush that was
3046 * triggered from within the guest. For TCG we are always cache coherent,
3047 * so there is no need to flush anything. For KVM / Xen we need to flush
3048 * the host's instruction cache at least.
3050 if (tcg_enabled()) {
3054 cpu_physical_memory_write_rom_internal(&address_space_memory
,
3055 start
, NULL
, len
, FLUSH_CACHE
);
3066 static BounceBuffer bounce
;
3068 typedef struct MapClient
{
3070 QLIST_ENTRY(MapClient
) link
;
3073 QemuMutex map_client_list_lock
;
3074 static QLIST_HEAD(map_client_list
, MapClient
) map_client_list
3075 = QLIST_HEAD_INITIALIZER(map_client_list
);
3077 static void cpu_unregister_map_client_do(MapClient
*client
)
3079 QLIST_REMOVE(client
, link
);
3083 static void cpu_notify_map_clients_locked(void)
3087 while (!QLIST_EMPTY(&map_client_list
)) {
3088 client
= QLIST_FIRST(&map_client_list
);
3089 qemu_bh_schedule(client
->bh
);
3090 cpu_unregister_map_client_do(client
);
3094 void cpu_register_map_client(QEMUBH
*bh
)
3096 MapClient
*client
= g_malloc(sizeof(*client
));
3098 qemu_mutex_lock(&map_client_list_lock
);
3100 QLIST_INSERT_HEAD(&map_client_list
, client
, link
);
3101 if (!atomic_read(&bounce
.in_use
)) {
3102 cpu_notify_map_clients_locked();
3104 qemu_mutex_unlock(&map_client_list_lock
);
3107 void cpu_exec_init_all(void)
3109 qemu_mutex_init(&ram_list
.mutex
);
3110 /* The data structures we set up here depend on knowing the page size,
3111 * so no more changes can be made after this point.
3112 * In an ideal world, nothing we did before we had finished the
3113 * machine setup would care about the target page size, and we could
3114 * do this much later, rather than requiring board models to state
3115 * up front what their requirements are.
3117 finalize_target_page_bits();
3120 qemu_mutex_init(&map_client_list_lock
);
3123 void cpu_unregister_map_client(QEMUBH
*bh
)
3127 qemu_mutex_lock(&map_client_list_lock
);
3128 QLIST_FOREACH(client
, &map_client_list
, link
) {
3129 if (client
->bh
== bh
) {
3130 cpu_unregister_map_client_do(client
);
3134 qemu_mutex_unlock(&map_client_list_lock
);
3137 static void cpu_notify_map_clients(void)
3139 qemu_mutex_lock(&map_client_list_lock
);
3140 cpu_notify_map_clients_locked();
3141 qemu_mutex_unlock(&map_client_list_lock
);
3144 bool address_space_access_valid(AddressSpace
*as
, hwaddr addr
, int len
, bool is_write
)
3152 mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
3153 if (!memory_access_is_direct(mr
, is_write
)) {
3154 l
= memory_access_size(mr
, l
, addr
);
3155 if (!memory_region_access_valid(mr
, xlat
, l
, is_write
)) {
3169 address_space_extend_translation(AddressSpace
*as
, hwaddr addr
, hwaddr target_len
,
3170 MemoryRegion
*mr
, hwaddr base
, hwaddr len
,
3175 MemoryRegion
*this_mr
;
3181 if (target_len
== 0) {
3186 this_mr
= address_space_translate(as
, addr
, &xlat
, &len
, is_write
);
3187 if (this_mr
!= mr
|| xlat
!= base
+ done
) {
3193 /* Map a physical memory region into a host virtual address.
3194 * May map a subset of the requested range, given by and returned in *plen.
3195 * May return NULL if resources needed to perform the mapping are exhausted.
3196 * Use only for reads OR writes - not for read-modify-write operations.
3197 * Use cpu_register_map_client() to know when retrying the map operation is
3198 * likely to succeed.
3200 void *address_space_map(AddressSpace
*as
,
3216 mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
3218 if (!memory_access_is_direct(mr
, is_write
)) {
3219 if (atomic_xchg(&bounce
.in_use
, true)) {
3223 /* Avoid unbounded allocations */
3224 l
= MIN(l
, TARGET_PAGE_SIZE
);
3225 bounce
.buffer
= qemu_memalign(TARGET_PAGE_SIZE
, l
);
3229 memory_region_ref(mr
);
3232 address_space_read(as
, addr
, MEMTXATTRS_UNSPECIFIED
,
3238 return bounce
.buffer
;
3242 memory_region_ref(mr
);
3243 *plen
= address_space_extend_translation(as
, addr
, len
, mr
, xlat
, l
, is_write
);
3244 ptr
= qemu_ram_ptr_length(mr
->ram_block
, xlat
, plen
);
3250 /* Unmaps a memory region previously mapped by address_space_map().
3251 * Will also mark the memory as dirty if is_write == 1. access_len gives
3252 * the amount of memory that was actually read or written by the caller.
3254 void address_space_unmap(AddressSpace
*as
, void *buffer
, hwaddr len
,
3255 int is_write
, hwaddr access_len
)
3257 if (buffer
!= bounce
.buffer
) {
3261 mr
= memory_region_from_host(buffer
, &addr1
);
3264 invalidate_and_set_dirty(mr
, addr1
, access_len
);
3266 if (xen_enabled()) {
3267 xen_invalidate_map_cache_entry(buffer
);
3269 memory_region_unref(mr
);
3273 address_space_write(as
, bounce
.addr
, MEMTXATTRS_UNSPECIFIED
,
3274 bounce
.buffer
, access_len
);
3276 qemu_vfree(bounce
.buffer
);
3277 bounce
.buffer
= NULL
;
3278 memory_region_unref(bounce
.mr
);
3279 atomic_mb_set(&bounce
.in_use
, false);
3280 cpu_notify_map_clients();
3283 void *cpu_physical_memory_map(hwaddr addr
,
3287 return address_space_map(&address_space_memory
, addr
, plen
, is_write
);
3290 void cpu_physical_memory_unmap(void *buffer
, hwaddr len
,
3291 int is_write
, hwaddr access_len
)
3293 return address_space_unmap(&address_space_memory
, buffer
, len
, is_write
, access_len
);
3296 #define ARG1_DECL AddressSpace *as
3299 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3300 #define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write)
3301 #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3302 #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3303 #define RCU_READ_LOCK(...) rcu_read_lock()
3304 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3305 #include "memory_ldst.inc.c"
3307 int64_t address_space_cache_init(MemoryRegionCache
*cache
,
3319 void address_space_cache_invalidate(MemoryRegionCache
*cache
,
3325 void address_space_cache_destroy(MemoryRegionCache
*cache
)
3330 #define ARG1_DECL MemoryRegionCache *cache
3332 #define SUFFIX _cached
3333 #define TRANSLATE(addr, ...) \
3334 address_space_translate(cache->as, cache->xlat + (addr), __VA_ARGS__)
3335 #define IS_DIRECT(mr, is_write) true
3336 #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3337 #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3338 #define RCU_READ_LOCK() rcu_read_lock()
3339 #define RCU_READ_UNLOCK() rcu_read_unlock()
3340 #include "memory_ldst.inc.c"
3342 /* virtual memory access for debug (includes writing to ROM) */
3343 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
3344 uint8_t *buf
, int len
, int is_write
)
3350 cpu_synchronize_state(cpu
);
3355 page
= addr
& TARGET_PAGE_MASK
;
3356 phys_addr
= cpu_get_phys_page_attrs_debug(cpu
, page
, &attrs
);
3357 asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
3358 /* if no physical page mapped, return an error */
3359 if (phys_addr
== -1)
3361 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3364 phys_addr
+= (addr
& ~TARGET_PAGE_MASK
);
3366 cpu_physical_memory_write_rom(cpu
->cpu_ases
[asidx
].as
,
3369 address_space_rw(cpu
->cpu_ases
[asidx
].as
, phys_addr
,
3370 MEMTXATTRS_UNSPECIFIED
,
3381 * Allows code that needs to deal with migration bitmaps etc to still be built
3382 * target independent.
3384 size_t qemu_target_page_size(void)
3386 return TARGET_PAGE_SIZE
;
3392 * A helper function for the _utterly broken_ virtio device model to find out if
3393 * it's running on a big endian machine. Don't do this at home kids!
3395 bool target_words_bigendian(void);
3396 bool target_words_bigendian(void)
3398 #if defined(TARGET_WORDS_BIGENDIAN)
3405 #ifndef CONFIG_USER_ONLY
3406 bool cpu_physical_memory_is_io(hwaddr phys_addr
)
3413 mr
= address_space_translate(&address_space_memory
,
3414 phys_addr
, &phys_addr
, &l
, false);
3416 res
= !(memory_region_is_ram(mr
) || memory_region_is_romd(mr
));
3421 int qemu_ram_foreach_block(RAMBlockIterFunc func
, void *opaque
)
3427 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
3428 ret
= func(block
->idstr
, block
->host
, block
->offset
,
3429 block
->used_length
, opaque
);
3439 * Unmap pages of memory from start to start+length such that
3440 * they a) read as 0, b) Trigger whatever fault mechanism
3441 * the OS provides for postcopy.
3442 * The pages must be unmapped by the end of the function.
3443 * Returns: 0 on success, none-0 on failure
3446 int ram_block_discard_range(RAMBlock
*rb
, uint64_t start
, size_t length
)
3450 uint8_t *host_startaddr
= rb
->host
+ start
;
3452 if ((uintptr_t)host_startaddr
& (rb
->page_size
- 1)) {
3453 error_report("ram_block_discard_range: Unaligned start address: %p",
3458 if ((start
+ length
) <= rb
->used_length
) {
3459 uint8_t *host_endaddr
= host_startaddr
+ length
;
3460 if ((uintptr_t)host_endaddr
& (rb
->page_size
- 1)) {
3461 error_report("ram_block_discard_range: Unaligned end address: %p",
3466 errno
= ENOTSUP
; /* If we are missing MADVISE etc */
3468 if (rb
->page_size
== qemu_host_page_size
) {
3469 #if defined(CONFIG_MADVISE)
3470 /* Note: We need the madvise MADV_DONTNEED behaviour of definitely
3473 ret
= madvise(host_startaddr
, length
, MADV_DONTNEED
);
3476 /* Huge page case - unfortunately it can't do DONTNEED, but
3477 * it can do the equivalent by FALLOC_FL_PUNCH_HOLE in the
3480 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3481 ret
= fallocate(rb
->fd
, FALLOC_FL_PUNCH_HOLE
| FALLOC_FL_KEEP_SIZE
,
3487 error_report("ram_block_discard_range: Failed to discard range "
3488 "%s:%" PRIx64
" +%zx (%d)",
3489 rb
->idstr
, start
, length
, ret
);
3492 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3493 "/%zx/" RAM_ADDR_FMT
")",
3494 rb
->idstr
, start
, length
, rb
->used_length
);