s390x/ccw: create s390 phb for compat reasons as well
[qemu/ar7.git] / hw / intc / armv7m_nvic.c
blobd3e20561c7910f8493c66549d24190af031ae325
1 /*
2 * ARM Nested Vectored Interrupt Controller
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licensed under the GPL.
9 * The ARMv7M System controller is fairly tightly tied in with the
10 * NVIC. Much of that is also implemented here.
13 #include "qemu/osdep.h"
14 #include "qapi/error.h"
15 #include "qemu-common.h"
16 #include "cpu.h"
17 #include "hw/sysbus.h"
18 #include "qemu/timer.h"
19 #include "hw/arm/arm.h"
20 #include "hw/intc/armv7m_nvic.h"
21 #include "target/arm/cpu.h"
22 #include "exec/exec-all.h"
23 #include "qemu/log.h"
24 #include "trace.h"
26 /* IRQ number counting:
28 * the num-irq property counts the number of external IRQ lines
30 * NVICState::num_irq counts the total number of exceptions
31 * (external IRQs, the 15 internal exceptions including reset,
32 * and one for the unused exception number 0).
34 * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines.
36 * NVIC_MAX_VECTORS is the highest permitted number of exceptions.
38 * Iterating through all exceptions should typically be done with
39 * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0.
41 * The external qemu_irq lines are the NVIC's external IRQ lines,
42 * so line 0 is exception 16.
44 * In the terminology of the architecture manual, "interrupts" are
45 * a subcategory of exception referring to the external interrupts
46 * (which are exception numbers NVIC_FIRST_IRQ and upward).
47 * For historical reasons QEMU tends to use "interrupt" and
48 * "exception" more or less interchangeably.
50 #define NVIC_FIRST_IRQ 16
51 #define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ)
53 /* Effective running priority of the CPU when no exception is active
54 * (higher than the highest possible priority value)
56 #define NVIC_NOEXC_PRIO 0x100
58 static const uint8_t nvic_id[] = {
59 0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1
62 static int nvic_pending_prio(NVICState *s)
64 /* return the priority of the current pending interrupt,
65 * or NVIC_NOEXC_PRIO if no interrupt is pending
67 return s->vectpending ? s->vectors[s->vectpending].prio : NVIC_NOEXC_PRIO;
70 /* Return the value of the ISCR RETTOBASE bit:
71 * 1 if there is exactly one active exception
72 * 0 if there is more than one active exception
73 * UNKNOWN if there are no active exceptions (we choose 1,
74 * which matches the choice Cortex-M3 is documented as making).
76 * NB: some versions of the documentation talk about this
77 * counting "active exceptions other than the one shown by IPSR";
78 * this is only different in the obscure corner case where guest
79 * code has manually deactivated an exception and is about
80 * to fail an exception-return integrity check. The definition
81 * above is the one from the v8M ARM ARM and is also in line
82 * with the behaviour documented for the Cortex-M3.
84 static bool nvic_rettobase(NVICState *s)
86 int irq, nhand = 0;
88 for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) {
89 if (s->vectors[irq].active) {
90 nhand++;
91 if (nhand == 2) {
92 return 0;
97 return 1;
100 /* Return the value of the ISCR ISRPENDING bit:
101 * 1 if an external interrupt is pending
102 * 0 if no external interrupt is pending
104 static bool nvic_isrpending(NVICState *s)
106 int irq;
108 /* We can shortcut if the highest priority pending interrupt
109 * happens to be external or if there is nothing pending.
111 if (s->vectpending > NVIC_FIRST_IRQ) {
112 return true;
114 if (s->vectpending == 0) {
115 return false;
118 for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) {
119 if (s->vectors[irq].pending) {
120 return true;
123 return false;
126 /* Return a mask word which clears the subpriority bits from
127 * a priority value for an M-profile exception, leaving only
128 * the group priority.
130 static inline uint32_t nvic_gprio_mask(NVICState *s)
132 return ~0U << (s->prigroup + 1);
135 /* Recompute vectpending and exception_prio */
136 static void nvic_recompute_state(NVICState *s)
138 int i;
139 int pend_prio = NVIC_NOEXC_PRIO;
140 int active_prio = NVIC_NOEXC_PRIO;
141 int pend_irq = 0;
143 for (i = 1; i < s->num_irq; i++) {
144 VecInfo *vec = &s->vectors[i];
146 if (vec->enabled && vec->pending && vec->prio < pend_prio) {
147 pend_prio = vec->prio;
148 pend_irq = i;
150 if (vec->active && vec->prio < active_prio) {
151 active_prio = vec->prio;
155 if (active_prio > 0) {
156 active_prio &= nvic_gprio_mask(s);
159 s->vectpending = pend_irq;
160 s->exception_prio = active_prio;
162 trace_nvic_recompute_state(s->vectpending, s->exception_prio);
165 /* Return the current execution priority of the CPU
166 * (equivalent to the pseudocode ExecutionPriority function).
167 * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO.
169 static inline int nvic_exec_prio(NVICState *s)
171 CPUARMState *env = &s->cpu->env;
172 int running;
174 if (env->v7m.faultmask[env->v7m.secure]) {
175 running = -1;
176 } else if (env->v7m.primask[env->v7m.secure]) {
177 running = 0;
178 } else if (env->v7m.basepri[env->v7m.secure] > 0) {
179 running = env->v7m.basepri[env->v7m.secure] & nvic_gprio_mask(s);
180 } else {
181 running = NVIC_NOEXC_PRIO; /* lower than any possible priority */
183 /* consider priority of active handler */
184 return MIN(running, s->exception_prio);
187 bool armv7m_nvic_can_take_pending_exception(void *opaque)
189 NVICState *s = opaque;
191 return nvic_exec_prio(s) > nvic_pending_prio(s);
194 int armv7m_nvic_raw_execution_priority(void *opaque)
196 NVICState *s = opaque;
198 return s->exception_prio;
201 /* caller must call nvic_irq_update() after this */
202 static void set_prio(NVICState *s, unsigned irq, uint8_t prio)
204 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
205 assert(irq < s->num_irq);
207 s->vectors[irq].prio = prio;
209 trace_nvic_set_prio(irq, prio);
212 /* Recompute state and assert irq line accordingly.
213 * Must be called after changes to:
214 * vec->active, vec->enabled, vec->pending or vec->prio for any vector
215 * prigroup
217 static void nvic_irq_update(NVICState *s)
219 int lvl;
220 int pend_prio;
222 nvic_recompute_state(s);
223 pend_prio = nvic_pending_prio(s);
225 /* Raise NVIC output if this IRQ would be taken, except that we
226 * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which
227 * will be checked for in arm_v7m_cpu_exec_interrupt()); changes
228 * to those CPU registers don't cause us to recalculate the NVIC
229 * pending info.
231 lvl = (pend_prio < s->exception_prio);
232 trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl);
233 qemu_set_irq(s->excpout, lvl);
236 static void armv7m_nvic_clear_pending(void *opaque, int irq)
238 NVICState *s = (NVICState *)opaque;
239 VecInfo *vec;
241 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
243 vec = &s->vectors[irq];
244 trace_nvic_clear_pending(irq, vec->enabled, vec->prio);
245 if (vec->pending) {
246 vec->pending = 0;
247 nvic_irq_update(s);
251 void armv7m_nvic_set_pending(void *opaque, int irq)
253 NVICState *s = (NVICState *)opaque;
254 VecInfo *vec;
256 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
258 vec = &s->vectors[irq];
259 trace_nvic_set_pending(irq, vec->enabled, vec->prio);
262 if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) {
263 /* If a synchronous exception is pending then it may be
264 * escalated to HardFault if:
265 * * it is equal or lower priority to current execution
266 * * it is disabled
267 * (ie we need to take it immediately but we can't do so).
268 * Asynchronous exceptions (and interrupts) simply remain pending.
270 * For QEMU, we don't have any imprecise (asynchronous) faults,
271 * so we can assume that PREFETCH_ABORT and DATA_ABORT are always
272 * synchronous.
273 * Debug exceptions are awkward because only Debug exceptions
274 * resulting from the BKPT instruction should be escalated,
275 * but we don't currently implement any Debug exceptions other
276 * than those that result from BKPT, so we treat all debug exceptions
277 * as needing escalation.
279 * This all means we can identify whether to escalate based only on
280 * the exception number and don't (yet) need the caller to explicitly
281 * tell us whether this exception is synchronous or not.
283 int running = nvic_exec_prio(s);
284 bool escalate = false;
286 if (vec->prio >= running) {
287 trace_nvic_escalate_prio(irq, vec->prio, running);
288 escalate = true;
289 } else if (!vec->enabled) {
290 trace_nvic_escalate_disabled(irq);
291 escalate = true;
294 if (escalate) {
295 if (running < 0) {
296 /* We want to escalate to HardFault but we can't take a
297 * synchronous HardFault at this point either. This is a
298 * Lockup condition due to a guest bug. We don't model
299 * Lockup, so report via cpu_abort() instead.
301 cpu_abort(&s->cpu->parent_obj,
302 "Lockup: can't escalate %d to HardFault "
303 "(current priority %d)\n", irq, running);
306 /* We can do the escalation, so we take HardFault instead */
307 irq = ARMV7M_EXCP_HARD;
308 vec = &s->vectors[irq];
309 s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
313 if (!vec->pending) {
314 vec->pending = 1;
315 nvic_irq_update(s);
319 /* Make pending IRQ active. */
320 void armv7m_nvic_acknowledge_irq(void *opaque)
322 NVICState *s = (NVICState *)opaque;
323 CPUARMState *env = &s->cpu->env;
324 const int pending = s->vectpending;
325 const int running = nvic_exec_prio(s);
326 int pendgroupprio;
327 VecInfo *vec;
329 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
331 vec = &s->vectors[pending];
333 assert(vec->enabled);
334 assert(vec->pending);
336 pendgroupprio = vec->prio;
337 if (pendgroupprio > 0) {
338 pendgroupprio &= nvic_gprio_mask(s);
340 assert(pendgroupprio < running);
342 trace_nvic_acknowledge_irq(pending, vec->prio);
344 vec->active = 1;
345 vec->pending = 0;
347 env->v7m.exception = s->vectpending;
349 nvic_irq_update(s);
352 int armv7m_nvic_complete_irq(void *opaque, int irq)
354 NVICState *s = (NVICState *)opaque;
355 VecInfo *vec;
356 int ret;
358 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
360 vec = &s->vectors[irq];
362 trace_nvic_complete_irq(irq);
364 if (!vec->active) {
365 /* Tell the caller this was an illegal exception return */
366 return -1;
369 ret = nvic_rettobase(s);
371 vec->active = 0;
372 if (vec->level) {
373 /* Re-pend the exception if it's still held high; only
374 * happens for extenal IRQs
376 assert(irq >= NVIC_FIRST_IRQ);
377 vec->pending = 1;
380 nvic_irq_update(s);
382 return ret;
385 /* callback when external interrupt line is changed */
386 static void set_irq_level(void *opaque, int n, int level)
388 NVICState *s = opaque;
389 VecInfo *vec;
391 n += NVIC_FIRST_IRQ;
393 assert(n >= NVIC_FIRST_IRQ && n < s->num_irq);
395 trace_nvic_set_irq_level(n, level);
397 /* The pending status of an external interrupt is
398 * latched on rising edge and exception handler return.
400 * Pulsing the IRQ will always run the handler
401 * once, and the handler will re-run until the
402 * level is low when the handler completes.
404 vec = &s->vectors[n];
405 if (level != vec->level) {
406 vec->level = level;
407 if (level) {
408 armv7m_nvic_set_pending(s, n);
413 static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs)
415 ARMCPU *cpu = s->cpu;
416 uint32_t val;
418 switch (offset) {
419 case 4: /* Interrupt Control Type. */
420 return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1;
421 case 0xd00: /* CPUID Base. */
422 return cpu->midr;
423 case 0xd04: /* Interrupt Control State. */
424 /* VECTACTIVE */
425 val = cpu->env.v7m.exception;
426 /* VECTPENDING */
427 val |= (s->vectpending & 0xff) << 12;
428 /* ISRPENDING - set if any external IRQ is pending */
429 if (nvic_isrpending(s)) {
430 val |= (1 << 22);
432 /* RETTOBASE - set if only one handler is active */
433 if (nvic_rettobase(s)) {
434 val |= (1 << 11);
436 /* PENDSTSET */
437 if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) {
438 val |= (1 << 26);
440 /* PENDSVSET */
441 if (s->vectors[ARMV7M_EXCP_PENDSV].pending) {
442 val |= (1 << 28);
444 /* NMIPENDSET */
445 if (s->vectors[ARMV7M_EXCP_NMI].pending) {
446 val |= (1 << 31);
448 /* ISRPREEMPT not implemented */
449 return val;
450 case 0xd08: /* Vector Table Offset. */
451 return cpu->env.v7m.vecbase[attrs.secure];
452 case 0xd0c: /* Application Interrupt/Reset Control. */
453 return 0xfa050000 | (s->prigroup << 8);
454 case 0xd10: /* System Control. */
455 /* TODO: Implement SLEEPONEXIT. */
456 return 0;
457 case 0xd14: /* Configuration Control. */
458 /* The BFHFNMIGN bit is the only non-banked bit; we
459 * keep it in the non-secure copy of the register.
461 val = cpu->env.v7m.ccr[attrs.secure];
462 val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK;
463 return val;
464 case 0xd24: /* System Handler Status. */
465 val = 0;
466 if (s->vectors[ARMV7M_EXCP_MEM].active) {
467 val |= (1 << 0);
469 if (s->vectors[ARMV7M_EXCP_BUS].active) {
470 val |= (1 << 1);
472 if (s->vectors[ARMV7M_EXCP_USAGE].active) {
473 val |= (1 << 3);
475 if (s->vectors[ARMV7M_EXCP_SVC].active) {
476 val |= (1 << 7);
478 if (s->vectors[ARMV7M_EXCP_DEBUG].active) {
479 val |= (1 << 8);
481 if (s->vectors[ARMV7M_EXCP_PENDSV].active) {
482 val |= (1 << 10);
484 if (s->vectors[ARMV7M_EXCP_SYSTICK].active) {
485 val |= (1 << 11);
487 if (s->vectors[ARMV7M_EXCP_USAGE].pending) {
488 val |= (1 << 12);
490 if (s->vectors[ARMV7M_EXCP_MEM].pending) {
491 val |= (1 << 13);
493 if (s->vectors[ARMV7M_EXCP_BUS].pending) {
494 val |= (1 << 14);
496 if (s->vectors[ARMV7M_EXCP_SVC].pending) {
497 val |= (1 << 15);
499 if (s->vectors[ARMV7M_EXCP_MEM].enabled) {
500 val |= (1 << 16);
502 if (s->vectors[ARMV7M_EXCP_BUS].enabled) {
503 val |= (1 << 17);
505 if (s->vectors[ARMV7M_EXCP_USAGE].enabled) {
506 val |= (1 << 18);
508 return val;
509 case 0xd28: /* Configurable Fault Status. */
510 /* The BFSR bits [15:8] are shared between security states
511 * and we store them in the NS copy
513 val = cpu->env.v7m.cfsr[attrs.secure];
514 val |= cpu->env.v7m.cfsr[M_REG_NS] & R_V7M_CFSR_BFSR_MASK;
515 return val;
516 case 0xd2c: /* Hard Fault Status. */
517 return cpu->env.v7m.hfsr;
518 case 0xd30: /* Debug Fault Status. */
519 return cpu->env.v7m.dfsr;
520 case 0xd34: /* MMFAR MemManage Fault Address */
521 return cpu->env.v7m.mmfar[attrs.secure];
522 case 0xd38: /* Bus Fault Address. */
523 return cpu->env.v7m.bfar;
524 case 0xd3c: /* Aux Fault Status. */
525 /* TODO: Implement fault status registers. */
526 qemu_log_mask(LOG_UNIMP,
527 "Aux Fault status registers unimplemented\n");
528 return 0;
529 case 0xd40: /* PFR0. */
530 return 0x00000030;
531 case 0xd44: /* PRF1. */
532 return 0x00000200;
533 case 0xd48: /* DFR0. */
534 return 0x00100000;
535 case 0xd4c: /* AFR0. */
536 return 0x00000000;
537 case 0xd50: /* MMFR0. */
538 return 0x00000030;
539 case 0xd54: /* MMFR1. */
540 return 0x00000000;
541 case 0xd58: /* MMFR2. */
542 return 0x00000000;
543 case 0xd5c: /* MMFR3. */
544 return 0x00000000;
545 case 0xd60: /* ISAR0. */
546 return 0x01141110;
547 case 0xd64: /* ISAR1. */
548 return 0x02111000;
549 case 0xd68: /* ISAR2. */
550 return 0x21112231;
551 case 0xd6c: /* ISAR3. */
552 return 0x01111110;
553 case 0xd70: /* ISAR4. */
554 return 0x01310102;
555 /* TODO: Implement debug registers. */
556 case 0xd90: /* MPU_TYPE */
557 /* Unified MPU; if the MPU is not present this value is zero */
558 return cpu->pmsav7_dregion << 8;
559 break;
560 case 0xd94: /* MPU_CTRL */
561 return cpu->env.v7m.mpu_ctrl[attrs.secure];
562 case 0xd98: /* MPU_RNR */
563 return cpu->env.pmsav7.rnr[attrs.secure];
564 case 0xd9c: /* MPU_RBAR */
565 case 0xda4: /* MPU_RBAR_A1 */
566 case 0xdac: /* MPU_RBAR_A2 */
567 case 0xdb4: /* MPU_RBAR_A3 */
569 int region = cpu->env.pmsav7.rnr[attrs.secure];
571 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
572 /* PMSAv8M handling of the aliases is different from v7M:
573 * aliases A1, A2, A3 override the low two bits of the region
574 * number in MPU_RNR, and there is no 'region' field in the
575 * RBAR register.
577 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
578 if (aliasno) {
579 region = deposit32(region, 0, 2, aliasno);
581 if (region >= cpu->pmsav7_dregion) {
582 return 0;
584 return cpu->env.pmsav8.rbar[attrs.secure][region];
587 if (region >= cpu->pmsav7_dregion) {
588 return 0;
590 return (cpu->env.pmsav7.drbar[region] & 0x1f) | (region & 0xf);
592 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
593 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
594 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
595 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
597 int region = cpu->env.pmsav7.rnr[attrs.secure];
599 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
600 /* PMSAv8M handling of the aliases is different from v7M:
601 * aliases A1, A2, A3 override the low two bits of the region
602 * number in MPU_RNR.
604 int aliasno = (offset - 0xda0) / 8; /* 0..3 */
605 if (aliasno) {
606 region = deposit32(region, 0, 2, aliasno);
608 if (region >= cpu->pmsav7_dregion) {
609 return 0;
611 return cpu->env.pmsav8.rlar[attrs.secure][region];
614 if (region >= cpu->pmsav7_dregion) {
615 return 0;
617 return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) |
618 (cpu->env.pmsav7.drsr[region] & 0xffff);
620 case 0xdc0: /* MPU_MAIR0 */
621 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
622 goto bad_offset;
624 return cpu->env.pmsav8.mair0[attrs.secure];
625 case 0xdc4: /* MPU_MAIR1 */
626 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
627 goto bad_offset;
629 return cpu->env.pmsav8.mair1[attrs.secure];
630 default:
631 bad_offset:
632 qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset);
633 return 0;
637 static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value,
638 MemTxAttrs attrs)
640 ARMCPU *cpu = s->cpu;
642 switch (offset) {
643 case 0xd04: /* Interrupt Control State. */
644 if (value & (1 << 31)) {
645 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI);
647 if (value & (1 << 28)) {
648 armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV);
649 } else if (value & (1 << 27)) {
650 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV);
652 if (value & (1 << 26)) {
653 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK);
654 } else if (value & (1 << 25)) {
655 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK);
657 break;
658 case 0xd08: /* Vector Table Offset. */
659 cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80;
660 break;
661 case 0xd0c: /* Application Interrupt/Reset Control. */
662 if ((value >> 16) == 0x05fa) {
663 if (value & 4) {
664 qemu_irq_pulse(s->sysresetreq);
666 if (value & 2) {
667 qemu_log_mask(LOG_GUEST_ERROR,
668 "Setting VECTCLRACTIVE when not in DEBUG mode "
669 "is UNPREDICTABLE\n");
671 if (value & 1) {
672 qemu_log_mask(LOG_GUEST_ERROR,
673 "Setting VECTRESET when not in DEBUG mode "
674 "is UNPREDICTABLE\n");
676 s->prigroup = extract32(value, 8, 3);
677 nvic_irq_update(s);
679 break;
680 case 0xd10: /* System Control. */
681 /* TODO: Implement control registers. */
682 qemu_log_mask(LOG_UNIMP, "NVIC: SCR unimplemented\n");
683 break;
684 case 0xd14: /* Configuration Control. */
685 /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */
686 value &= (R_V7M_CCR_STKALIGN_MASK |
687 R_V7M_CCR_BFHFNMIGN_MASK |
688 R_V7M_CCR_DIV_0_TRP_MASK |
689 R_V7M_CCR_UNALIGN_TRP_MASK |
690 R_V7M_CCR_USERSETMPEND_MASK |
691 R_V7M_CCR_NONBASETHRDENA_MASK);
693 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
694 /* v8M makes NONBASETHRDENA and STKALIGN be RES1 */
695 value |= R_V7M_CCR_NONBASETHRDENA_MASK
696 | R_V7M_CCR_STKALIGN_MASK;
698 if (attrs.secure) {
699 /* the BFHFNMIGN bit is not banked; keep that in the NS copy */
700 cpu->env.v7m.ccr[M_REG_NS] =
701 (cpu->env.v7m.ccr[M_REG_NS] & ~R_V7M_CCR_BFHFNMIGN_MASK)
702 | (value & R_V7M_CCR_BFHFNMIGN_MASK);
703 value &= ~R_V7M_CCR_BFHFNMIGN_MASK;
706 cpu->env.v7m.ccr[attrs.secure] = value;
707 break;
708 case 0xd24: /* System Handler Control. */
709 s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
710 s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0;
711 s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
712 s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
713 s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0;
714 s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0;
715 s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0;
716 s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0;
717 s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
718 s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0;
719 s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
720 s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
721 s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
722 s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0;
723 nvic_irq_update(s);
724 break;
725 case 0xd28: /* Configurable Fault Status. */
726 cpu->env.v7m.cfsr[attrs.secure] &= ~value; /* W1C */
727 if (attrs.secure) {
728 /* The BFSR bits [15:8] are shared between security states
729 * and we store them in the NS copy.
731 cpu->env.v7m.cfsr[M_REG_NS] &= ~(value & R_V7M_CFSR_BFSR_MASK);
733 break;
734 case 0xd2c: /* Hard Fault Status. */
735 cpu->env.v7m.hfsr &= ~value; /* W1C */
736 break;
737 case 0xd30: /* Debug Fault Status. */
738 cpu->env.v7m.dfsr &= ~value; /* W1C */
739 break;
740 case 0xd34: /* Mem Manage Address. */
741 cpu->env.v7m.mmfar[attrs.secure] = value;
742 return;
743 case 0xd38: /* Bus Fault Address. */
744 cpu->env.v7m.bfar = value;
745 return;
746 case 0xd3c: /* Aux Fault Status. */
747 qemu_log_mask(LOG_UNIMP,
748 "NVIC: Aux fault status registers unimplemented\n");
749 break;
750 case 0xd90: /* MPU_TYPE */
751 return; /* RO */
752 case 0xd94: /* MPU_CTRL */
753 if ((value &
754 (R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK))
755 == R_V7M_MPU_CTRL_HFNMIENA_MASK) {
756 qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is "
757 "UNPREDICTABLE\n");
759 cpu->env.v7m.mpu_ctrl[attrs.secure]
760 = value & (R_V7M_MPU_CTRL_ENABLE_MASK |
761 R_V7M_MPU_CTRL_HFNMIENA_MASK |
762 R_V7M_MPU_CTRL_PRIVDEFENA_MASK);
763 tlb_flush(CPU(cpu));
764 break;
765 case 0xd98: /* MPU_RNR */
766 if (value >= cpu->pmsav7_dregion) {
767 qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %"
768 PRIu32 "/%" PRIu32 "\n",
769 value, cpu->pmsav7_dregion);
770 } else {
771 cpu->env.pmsav7.rnr[attrs.secure] = value;
773 break;
774 case 0xd9c: /* MPU_RBAR */
775 case 0xda4: /* MPU_RBAR_A1 */
776 case 0xdac: /* MPU_RBAR_A2 */
777 case 0xdb4: /* MPU_RBAR_A3 */
779 int region;
781 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
782 /* PMSAv8M handling of the aliases is different from v7M:
783 * aliases A1, A2, A3 override the low two bits of the region
784 * number in MPU_RNR, and there is no 'region' field in the
785 * RBAR register.
787 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
789 region = cpu->env.pmsav7.rnr[attrs.secure];
790 if (aliasno) {
791 region = deposit32(region, 0, 2, aliasno);
793 if (region >= cpu->pmsav7_dregion) {
794 return;
796 cpu->env.pmsav8.rbar[attrs.secure][region] = value;
797 tlb_flush(CPU(cpu));
798 return;
801 if (value & (1 << 4)) {
802 /* VALID bit means use the region number specified in this
803 * value and also update MPU_RNR.REGION with that value.
805 region = extract32(value, 0, 4);
806 if (region >= cpu->pmsav7_dregion) {
807 qemu_log_mask(LOG_GUEST_ERROR,
808 "MPU region out of range %u/%" PRIu32 "\n",
809 region, cpu->pmsav7_dregion);
810 return;
812 cpu->env.pmsav7.rnr[attrs.secure] = region;
813 } else {
814 region = cpu->env.pmsav7.rnr[attrs.secure];
817 if (region >= cpu->pmsav7_dregion) {
818 return;
821 cpu->env.pmsav7.drbar[region] = value & ~0x1f;
822 tlb_flush(CPU(cpu));
823 break;
825 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
826 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
827 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
828 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
830 int region = cpu->env.pmsav7.rnr[attrs.secure];
832 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
833 /* PMSAv8M handling of the aliases is different from v7M:
834 * aliases A1, A2, A3 override the low two bits of the region
835 * number in MPU_RNR.
837 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
839 region = cpu->env.pmsav7.rnr[attrs.secure];
840 if (aliasno) {
841 region = deposit32(region, 0, 2, aliasno);
843 if (region >= cpu->pmsav7_dregion) {
844 return;
846 cpu->env.pmsav8.rlar[attrs.secure][region] = value;
847 tlb_flush(CPU(cpu));
848 return;
851 if (region >= cpu->pmsav7_dregion) {
852 return;
855 cpu->env.pmsav7.drsr[region] = value & 0xff3f;
856 cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f;
857 tlb_flush(CPU(cpu));
858 break;
860 case 0xdc0: /* MPU_MAIR0 */
861 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
862 goto bad_offset;
864 if (cpu->pmsav7_dregion) {
865 /* Register is RES0 if no MPU regions are implemented */
866 cpu->env.pmsav8.mair0[attrs.secure] = value;
868 /* We don't need to do anything else because memory attributes
869 * only affect cacheability, and we don't implement caching.
871 break;
872 case 0xdc4: /* MPU_MAIR1 */
873 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
874 goto bad_offset;
876 if (cpu->pmsav7_dregion) {
877 /* Register is RES0 if no MPU regions are implemented */
878 cpu->env.pmsav8.mair1[attrs.secure] = value;
880 /* We don't need to do anything else because memory attributes
881 * only affect cacheability, and we don't implement caching.
883 break;
884 case 0xf00: /* Software Triggered Interrupt Register */
886 int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ;
887 if (excnum < s->num_irq) {
888 armv7m_nvic_set_pending(s, excnum);
890 break;
892 default:
893 bad_offset:
894 qemu_log_mask(LOG_GUEST_ERROR,
895 "NVIC: Bad write offset 0x%x\n", offset);
899 static bool nvic_user_access_ok(NVICState *s, hwaddr offset, MemTxAttrs attrs)
901 /* Return true if unprivileged access to this register is permitted. */
902 switch (offset) {
903 case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */
904 /* For access via STIR_NS it is the NS CCR.USERSETMPEND that
905 * controls access even though the CPU is in Secure state (I_QDKX).
907 return s->cpu->env.v7m.ccr[attrs.secure] & R_V7M_CCR_USERSETMPEND_MASK;
908 default:
909 /* All other user accesses cause a BusFault unconditionally */
910 return false;
914 static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr,
915 uint64_t *data, unsigned size,
916 MemTxAttrs attrs)
918 NVICState *s = (NVICState *)opaque;
919 uint32_t offset = addr;
920 unsigned i, startvec, end;
921 uint32_t val;
923 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
924 /* Generate BusFault for unprivileged accesses */
925 return MEMTX_ERROR;
928 switch (offset) {
929 /* reads of set and clear both return the status */
930 case 0x100 ... 0x13f: /* NVIC Set enable */
931 offset += 0x80;
932 /* fall through */
933 case 0x180 ... 0x1bf: /* NVIC Clear enable */
934 val = 0;
935 startvec = offset - 0x180 + NVIC_FIRST_IRQ; /* vector # */
937 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
938 if (s->vectors[startvec + i].enabled) {
939 val |= (1 << i);
942 break;
943 case 0x200 ... 0x23f: /* NVIC Set pend */
944 offset += 0x80;
945 /* fall through */
946 case 0x280 ... 0x2bf: /* NVIC Clear pend */
947 val = 0;
948 startvec = offset - 0x280 + NVIC_FIRST_IRQ; /* vector # */
949 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
950 if (s->vectors[startvec + i].pending) {
951 val |= (1 << i);
954 break;
955 case 0x300 ... 0x33f: /* NVIC Active */
956 val = 0;
957 startvec = offset - 0x300 + NVIC_FIRST_IRQ; /* vector # */
959 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
960 if (s->vectors[startvec + i].active) {
961 val |= (1 << i);
964 break;
965 case 0x400 ... 0x5ef: /* NVIC Priority */
966 val = 0;
967 startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */
969 for (i = 0; i < size && startvec + i < s->num_irq; i++) {
970 val |= s->vectors[startvec + i].prio << (8 * i);
972 break;
973 case 0xd18 ... 0xd23: /* System Handler Priority. */
974 val = 0;
975 for (i = 0; i < size; i++) {
976 val |= s->vectors[(offset - 0xd14) + i].prio << (i * 8);
978 break;
979 case 0xfe0 ... 0xfff: /* ID. */
980 if (offset & 3) {
981 val = 0;
982 } else {
983 val = nvic_id[(offset - 0xfe0) >> 2];
985 break;
986 default:
987 if (size == 4) {
988 val = nvic_readl(s, offset, attrs);
989 } else {
990 qemu_log_mask(LOG_GUEST_ERROR,
991 "NVIC: Bad read of size %d at offset 0x%x\n",
992 size, offset);
993 val = 0;
997 trace_nvic_sysreg_read(addr, val, size);
998 *data = val;
999 return MEMTX_OK;
1002 static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr,
1003 uint64_t value, unsigned size,
1004 MemTxAttrs attrs)
1006 NVICState *s = (NVICState *)opaque;
1007 uint32_t offset = addr;
1008 unsigned i, startvec, end;
1009 unsigned setval = 0;
1011 trace_nvic_sysreg_write(addr, value, size);
1013 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
1014 /* Generate BusFault for unprivileged accesses */
1015 return MEMTX_ERROR;
1018 switch (offset) {
1019 case 0x100 ... 0x13f: /* NVIC Set enable */
1020 offset += 0x80;
1021 setval = 1;
1022 /* fall through */
1023 case 0x180 ... 0x1bf: /* NVIC Clear enable */
1024 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ;
1026 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1027 if (value & (1 << i)) {
1028 s->vectors[startvec + i].enabled = setval;
1031 nvic_irq_update(s);
1032 return MEMTX_OK;
1033 case 0x200 ... 0x23f: /* NVIC Set pend */
1034 /* the special logic in armv7m_nvic_set_pending()
1035 * is not needed since IRQs are never escalated
1037 offset += 0x80;
1038 setval = 1;
1039 /* fall through */
1040 case 0x280 ... 0x2bf: /* NVIC Clear pend */
1041 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
1043 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1044 if (value & (1 << i)) {
1045 s->vectors[startvec + i].pending = setval;
1048 nvic_irq_update(s);
1049 return MEMTX_OK;
1050 case 0x300 ... 0x33f: /* NVIC Active */
1051 return MEMTX_OK; /* R/O */
1052 case 0x400 ... 0x5ef: /* NVIC Priority */
1053 startvec = 8 * (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */
1055 for (i = 0; i < size && startvec + i < s->num_irq; i++) {
1056 set_prio(s, startvec + i, (value >> (i * 8)) & 0xff);
1058 nvic_irq_update(s);
1059 return MEMTX_OK;
1060 case 0xd18 ... 0xd23: /* System Handler Priority. */
1061 for (i = 0; i < size; i++) {
1062 unsigned hdlidx = (offset - 0xd14) + i;
1063 set_prio(s, hdlidx, (value >> (i * 8)) & 0xff);
1065 nvic_irq_update(s);
1066 return MEMTX_OK;
1068 if (size == 4) {
1069 nvic_writel(s, offset, value, attrs);
1070 return MEMTX_OK;
1072 qemu_log_mask(LOG_GUEST_ERROR,
1073 "NVIC: Bad write of size %d at offset 0x%x\n", size, offset);
1074 /* This is UNPREDICTABLE; treat as RAZ/WI */
1075 return MEMTX_OK;
1078 static const MemoryRegionOps nvic_sysreg_ops = {
1079 .read_with_attrs = nvic_sysreg_read,
1080 .write_with_attrs = nvic_sysreg_write,
1081 .endianness = DEVICE_NATIVE_ENDIAN,
1084 static MemTxResult nvic_sysreg_ns_write(void *opaque, hwaddr addr,
1085 uint64_t value, unsigned size,
1086 MemTxAttrs attrs)
1088 if (attrs.secure) {
1089 /* S accesses to the alias act like NS accesses to the real region */
1090 attrs.secure = 0;
1091 return nvic_sysreg_write(opaque, addr, value, size, attrs);
1092 } else {
1093 /* NS attrs are RAZ/WI for privileged, and BusFault for user */
1094 if (attrs.user) {
1095 return MEMTX_ERROR;
1097 return MEMTX_OK;
1101 static MemTxResult nvic_sysreg_ns_read(void *opaque, hwaddr addr,
1102 uint64_t *data, unsigned size,
1103 MemTxAttrs attrs)
1105 if (attrs.secure) {
1106 /* S accesses to the alias act like NS accesses to the real region */
1107 attrs.secure = 0;
1108 return nvic_sysreg_read(opaque, addr, data, size, attrs);
1109 } else {
1110 /* NS attrs are RAZ/WI for privileged, and BusFault for user */
1111 if (attrs.user) {
1112 return MEMTX_ERROR;
1114 *data = 0;
1115 return MEMTX_OK;
1119 static const MemoryRegionOps nvic_sysreg_ns_ops = {
1120 .read_with_attrs = nvic_sysreg_ns_read,
1121 .write_with_attrs = nvic_sysreg_ns_write,
1122 .endianness = DEVICE_NATIVE_ENDIAN,
1125 static int nvic_post_load(void *opaque, int version_id)
1127 NVICState *s = opaque;
1128 unsigned i;
1130 /* Check for out of range priority settings */
1131 if (s->vectors[ARMV7M_EXCP_RESET].prio != -3 ||
1132 s->vectors[ARMV7M_EXCP_NMI].prio != -2 ||
1133 s->vectors[ARMV7M_EXCP_HARD].prio != -1) {
1134 return 1;
1136 for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) {
1137 if (s->vectors[i].prio & ~0xff) {
1138 return 1;
1142 nvic_recompute_state(s);
1144 return 0;
1147 static const VMStateDescription vmstate_VecInfo = {
1148 .name = "armv7m_nvic_info",
1149 .version_id = 1,
1150 .minimum_version_id = 1,
1151 .fields = (VMStateField[]) {
1152 VMSTATE_INT16(prio, VecInfo),
1153 VMSTATE_UINT8(enabled, VecInfo),
1154 VMSTATE_UINT8(pending, VecInfo),
1155 VMSTATE_UINT8(active, VecInfo),
1156 VMSTATE_UINT8(level, VecInfo),
1157 VMSTATE_END_OF_LIST()
1161 static const VMStateDescription vmstate_nvic = {
1162 .name = "armv7m_nvic",
1163 .version_id = 4,
1164 .minimum_version_id = 4,
1165 .post_load = &nvic_post_load,
1166 .fields = (VMStateField[]) {
1167 VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1,
1168 vmstate_VecInfo, VecInfo),
1169 VMSTATE_UINT32(prigroup, NVICState),
1170 VMSTATE_END_OF_LIST()
1174 static Property props_nvic[] = {
1175 /* Number of external IRQ lines (so excluding the 16 internal exceptions) */
1176 DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64),
1177 DEFINE_PROP_END_OF_LIST()
1180 static void armv7m_nvic_reset(DeviceState *dev)
1182 NVICState *s = NVIC(dev);
1184 s->vectors[ARMV7M_EXCP_NMI].enabled = 1;
1185 s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
1186 /* MEM, BUS, and USAGE are enabled through
1187 * the System Handler Control register
1189 s->vectors[ARMV7M_EXCP_SVC].enabled = 1;
1190 s->vectors[ARMV7M_EXCP_DEBUG].enabled = 1;
1191 s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
1192 s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
1194 s->vectors[ARMV7M_EXCP_RESET].prio = -3;
1195 s->vectors[ARMV7M_EXCP_NMI].prio = -2;
1196 s->vectors[ARMV7M_EXCP_HARD].prio = -1;
1198 /* Strictly speaking the reset handler should be enabled.
1199 * However, we don't simulate soft resets through the NVIC,
1200 * and the reset vector should never be pended.
1201 * So we leave it disabled to catch logic errors.
1204 s->exception_prio = NVIC_NOEXC_PRIO;
1205 s->vectpending = 0;
1208 static void nvic_systick_trigger(void *opaque, int n, int level)
1210 NVICState *s = opaque;
1212 if (level) {
1213 /* SysTick just asked us to pend its exception.
1214 * (This is different from an external interrupt line's
1215 * behaviour.)
1217 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK);
1221 static void armv7m_nvic_realize(DeviceState *dev, Error **errp)
1223 NVICState *s = NVIC(dev);
1224 SysBusDevice *systick_sbd;
1225 Error *err = NULL;
1226 int regionlen;
1228 s->cpu = ARM_CPU(qemu_get_cpu(0));
1229 assert(s->cpu);
1231 if (s->num_irq > NVIC_MAX_IRQ) {
1232 error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq);
1233 return;
1236 qdev_init_gpio_in(dev, set_irq_level, s->num_irq);
1238 /* include space for internal exception vectors */
1239 s->num_irq += NVIC_FIRST_IRQ;
1241 object_property_set_bool(OBJECT(&s->systick), true, "realized", &err);
1242 if (err != NULL) {
1243 error_propagate(errp, err);
1244 return;
1246 systick_sbd = SYS_BUS_DEVICE(&s->systick);
1247 sysbus_connect_irq(systick_sbd, 0,
1248 qdev_get_gpio_in_named(dev, "systick-trigger", 0));
1250 /* The NVIC and System Control Space (SCS) starts at 0xe000e000
1251 * and looks like this:
1252 * 0x004 - ICTR
1253 * 0x010 - 0xff - systick
1254 * 0x100..0x7ec - NVIC
1255 * 0x7f0..0xcff - Reserved
1256 * 0xd00..0xd3c - SCS registers
1257 * 0xd40..0xeff - Reserved or Not implemented
1258 * 0xf00 - STIR
1260 * Some registers within this space are banked between security states.
1261 * In v8M there is a second range 0xe002e000..0xe002efff which is the
1262 * NonSecure alias SCS; secure accesses to this behave like NS accesses
1263 * to the main SCS range, and non-secure accesses (including when
1264 * the security extension is not implemented) are RAZ/WI.
1265 * Note that both the main SCS range and the alias range are defined
1266 * to be exempt from memory attribution (R_BLJT) and so the memory
1267 * transaction attribute always matches the current CPU security
1268 * state (attrs.secure == env->v7m.secure). In the nvic_sysreg_ns_ops
1269 * wrappers we change attrs.secure to indicate the NS access; so
1270 * generally code determining which banked register to use should
1271 * use attrs.secure; code determining actual behaviour of the system
1272 * should use env->v7m.secure.
1274 regionlen = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? 0x21000 : 0x1000;
1275 memory_region_init(&s->container, OBJECT(s), "nvic", regionlen);
1276 /* The system register region goes at the bottom of the priority
1277 * stack as it covers the whole page.
1279 memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s,
1280 "nvic_sysregs", 0x1000);
1281 memory_region_add_subregion(&s->container, 0, &s->sysregmem);
1282 memory_region_add_subregion_overlap(&s->container, 0x10,
1283 sysbus_mmio_get_region(systick_sbd, 0),
1286 if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
1287 memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s),
1288 &nvic_sysreg_ns_ops, s,
1289 "nvic_sysregs_ns", 0x1000);
1290 memory_region_add_subregion(&s->container, 0x20000, &s->sysreg_ns_mem);
1293 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->container);
1296 static void armv7m_nvic_instance_init(Object *obj)
1298 /* We have a different default value for the num-irq property
1299 * than our superclass. This function runs after qdev init
1300 * has set the defaults from the Property array and before
1301 * any user-specified property setting, so just modify the
1302 * value in the GICState struct.
1304 DeviceState *dev = DEVICE(obj);
1305 NVICState *nvic = NVIC(obj);
1306 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
1308 object_initialize(&nvic->systick, sizeof(nvic->systick), TYPE_SYSTICK);
1309 qdev_set_parent_bus(DEVICE(&nvic->systick), sysbus_get_default());
1311 sysbus_init_irq(sbd, &nvic->excpout);
1312 qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1);
1313 qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger", 1);
1316 static void armv7m_nvic_class_init(ObjectClass *klass, void *data)
1318 DeviceClass *dc = DEVICE_CLASS(klass);
1320 dc->vmsd = &vmstate_nvic;
1321 dc->props = props_nvic;
1322 dc->reset = armv7m_nvic_reset;
1323 dc->realize = armv7m_nvic_realize;
1326 static const TypeInfo armv7m_nvic_info = {
1327 .name = TYPE_NVIC,
1328 .parent = TYPE_SYS_BUS_DEVICE,
1329 .instance_init = armv7m_nvic_instance_init,
1330 .instance_size = sizeof(NVICState),
1331 .class_init = armv7m_nvic_class_init,
1332 .class_size = sizeof(SysBusDeviceClass),
1335 static void armv7m_nvic_register_types(void)
1337 type_register_static(&armv7m_nvic_info);
1340 type_init(armv7m_nvic_register_types)