audio: replace the resampling loop in audio_pcm_sw_write()
[qemu/ar7.git] / hw / intc / spapr_xive.c
blobdc641cc604bfbd8e6fdc0d2f2b75de0d52b126fa
1 /*
2 * QEMU PowerPC sPAPR XIVE interrupt controller model
4 * Copyright (c) 2017-2018, IBM Corporation.
6 * This code is licensed under the GPL version 2 or later. See the
7 * COPYING file in the top-level directory.
8 */
10 #include "qemu/osdep.h"
11 #include "qemu/log.h"
12 #include "qemu/module.h"
13 #include "qapi/error.h"
14 #include "qemu/error-report.h"
15 #include "target/ppc/cpu.h"
16 #include "sysemu/cpus.h"
17 #include "sysemu/reset.h"
18 #include "migration/vmstate.h"
19 #include "monitor/monitor.h"
20 #include "hw/ppc/fdt.h"
21 #include "hw/ppc/spapr.h"
22 #include "hw/ppc/spapr_cpu_core.h"
23 #include "hw/ppc/spapr_xive.h"
24 #include "hw/ppc/xive.h"
25 #include "hw/ppc/xive_regs.h"
26 #include "hw/qdev-properties.h"
27 #include "trace.h"
30 * XIVE Virtualization Controller BAR and Thread Managment BAR that we
31 * use for the ESB pages and the TIMA pages
33 #define SPAPR_XIVE_VC_BASE 0x0006010000000000ull
34 #define SPAPR_XIVE_TM_BASE 0x0006030203180000ull
37 * The allocation of VP blocks is a complex operation in OPAL and the
38 * VP identifiers have a relation with the number of HW chips, the
39 * size of the VP blocks, VP grouping, etc. The QEMU sPAPR XIVE
40 * controller model does not have the same constraints and can use a
41 * simple mapping scheme of the CPU vcpu_id
43 * These identifiers are never returned to the OS.
46 #define SPAPR_XIVE_NVT_BASE 0x400
49 * sPAPR NVT and END indexing helpers
51 static uint32_t spapr_xive_nvt_to_target(uint8_t nvt_blk, uint32_t nvt_idx)
53 return nvt_idx - SPAPR_XIVE_NVT_BASE;
56 static void spapr_xive_cpu_to_nvt(PowerPCCPU *cpu,
57 uint8_t *out_nvt_blk, uint32_t *out_nvt_idx)
59 assert(cpu);
61 if (out_nvt_blk) {
62 *out_nvt_blk = SPAPR_XIVE_BLOCK_ID;
65 if (out_nvt_blk) {
66 *out_nvt_idx = SPAPR_XIVE_NVT_BASE + cpu->vcpu_id;
70 static int spapr_xive_target_to_nvt(uint32_t target,
71 uint8_t *out_nvt_blk, uint32_t *out_nvt_idx)
73 PowerPCCPU *cpu = spapr_find_cpu(target);
75 if (!cpu) {
76 return -1;
79 spapr_xive_cpu_to_nvt(cpu, out_nvt_blk, out_nvt_idx);
80 return 0;
84 * sPAPR END indexing uses a simple mapping of the CPU vcpu_id, 8
85 * priorities per CPU
87 int spapr_xive_end_to_target(uint8_t end_blk, uint32_t end_idx,
88 uint32_t *out_server, uint8_t *out_prio)
91 assert(end_blk == SPAPR_XIVE_BLOCK_ID);
93 if (out_server) {
94 *out_server = end_idx >> 3;
97 if (out_prio) {
98 *out_prio = end_idx & 0x7;
100 return 0;
103 static void spapr_xive_cpu_to_end(PowerPCCPU *cpu, uint8_t prio,
104 uint8_t *out_end_blk, uint32_t *out_end_idx)
106 assert(cpu);
108 if (out_end_blk) {
109 *out_end_blk = SPAPR_XIVE_BLOCK_ID;
112 if (out_end_idx) {
113 *out_end_idx = (cpu->vcpu_id << 3) + prio;
117 static int spapr_xive_target_to_end(uint32_t target, uint8_t prio,
118 uint8_t *out_end_blk, uint32_t *out_end_idx)
120 PowerPCCPU *cpu = spapr_find_cpu(target);
122 if (!cpu) {
123 return -1;
126 spapr_xive_cpu_to_end(cpu, prio, out_end_blk, out_end_idx);
127 return 0;
131 * On sPAPR machines, use a simplified output for the XIVE END
132 * structure dumping only the information related to the OS EQ.
134 static void spapr_xive_end_pic_print_info(SpaprXive *xive, XiveEND *end,
135 Monitor *mon)
137 uint64_t qaddr_base = xive_end_qaddr(end);
138 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
139 uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
140 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
141 uint32_t qentries = 1 << (qsize + 10);
142 uint32_t nvt = xive_get_field32(END_W6_NVT_INDEX, end->w6);
143 uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
145 monitor_printf(mon, "%3d/%d % 6d/%5d @%"PRIx64" ^%d",
146 spapr_xive_nvt_to_target(0, nvt),
147 priority, qindex, qentries, qaddr_base, qgen);
149 xive_end_queue_pic_print_info(end, 6, mon);
153 * kvm_irqchip_in_kernel() will cause the compiler to turn this
154 * info a nop if CONFIG_KVM isn't defined.
156 #define spapr_xive_in_kernel(xive) \
157 (kvm_irqchip_in_kernel() && (xive)->fd != -1)
159 static void spapr_xive_pic_print_info(SpaprXive *xive, Monitor *mon)
161 XiveSource *xsrc = &xive->source;
162 int i;
164 if (spapr_xive_in_kernel(xive)) {
165 Error *local_err = NULL;
167 kvmppc_xive_synchronize_state(xive, &local_err);
168 if (local_err) {
169 error_report_err(local_err);
170 return;
174 monitor_printf(mon, " LISN PQ EISN CPU/PRIO EQ\n");
176 for (i = 0; i < xive->nr_irqs; i++) {
177 uint8_t pq = xive_source_esb_get(xsrc, i);
178 XiveEAS *eas = &xive->eat[i];
180 if (!xive_eas_is_valid(eas)) {
181 continue;
184 monitor_printf(mon, " %08x %s %c%c%c %s %08x ", i,
185 xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI",
186 pq & XIVE_ESB_VAL_P ? 'P' : '-',
187 pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
188 xive_source_is_asserted(xsrc, i) ? 'A' : ' ',
189 xive_eas_is_masked(eas) ? "M" : " ",
190 (int) xive_get_field64(EAS_END_DATA, eas->w));
192 if (!xive_eas_is_masked(eas)) {
193 uint32_t end_idx = xive_get_field64(EAS_END_INDEX, eas->w);
194 XiveEND *end;
196 assert(end_idx < xive->nr_ends);
197 end = &xive->endt[end_idx];
199 if (xive_end_is_valid(end)) {
200 spapr_xive_end_pic_print_info(xive, end, mon);
203 monitor_printf(mon, "\n");
207 void spapr_xive_mmio_set_enabled(SpaprXive *xive, bool enable)
209 memory_region_set_enabled(&xive->source.esb_mmio, enable);
210 memory_region_set_enabled(&xive->tm_mmio, enable);
212 /* Disable the END ESBs until a guest OS makes use of them */
213 memory_region_set_enabled(&xive->end_source.esb_mmio, false);
216 static void spapr_xive_tm_write(void *opaque, hwaddr offset,
217 uint64_t value, unsigned size)
219 XiveTCTX *tctx = spapr_cpu_state(POWERPC_CPU(current_cpu))->tctx;
221 xive_tctx_tm_write(XIVE_PRESENTER(opaque), tctx, offset, value, size);
224 static uint64_t spapr_xive_tm_read(void *opaque, hwaddr offset, unsigned size)
226 XiveTCTX *tctx = spapr_cpu_state(POWERPC_CPU(current_cpu))->tctx;
228 return xive_tctx_tm_read(XIVE_PRESENTER(opaque), tctx, offset, size);
231 const MemoryRegionOps spapr_xive_tm_ops = {
232 .read = spapr_xive_tm_read,
233 .write = spapr_xive_tm_write,
234 .endianness = DEVICE_BIG_ENDIAN,
235 .valid = {
236 .min_access_size = 1,
237 .max_access_size = 8,
239 .impl = {
240 .min_access_size = 1,
241 .max_access_size = 8,
245 static void spapr_xive_end_reset(XiveEND *end)
247 memset(end, 0, sizeof(*end));
249 /* switch off the escalation and notification ESBs */
250 end->w1 = cpu_to_be32(END_W1_ESe_Q | END_W1_ESn_Q);
253 static void spapr_xive_reset(void *dev)
255 SpaprXive *xive = SPAPR_XIVE(dev);
256 int i;
259 * The XiveSource has its own reset handler, which mask off all
260 * IRQs (!P|Q)
263 /* Mask all valid EASs in the IRQ number space. */
264 for (i = 0; i < xive->nr_irqs; i++) {
265 XiveEAS *eas = &xive->eat[i];
266 if (xive_eas_is_valid(eas)) {
267 eas->w = cpu_to_be64(EAS_VALID | EAS_MASKED);
268 } else {
269 eas->w = 0;
273 /* Clear all ENDs */
274 for (i = 0; i < xive->nr_ends; i++) {
275 spapr_xive_end_reset(&xive->endt[i]);
279 static void spapr_xive_instance_init(Object *obj)
281 SpaprXive *xive = SPAPR_XIVE(obj);
283 object_initialize_child(obj, "source", &xive->source, TYPE_XIVE_SOURCE);
285 object_initialize_child(obj, "end_source", &xive->end_source,
286 TYPE_XIVE_END_SOURCE);
288 /* Not connected to the KVM XIVE device */
289 xive->fd = -1;
292 static void spapr_xive_realize(DeviceState *dev, Error **errp)
294 SpaprXive *xive = SPAPR_XIVE(dev);
295 SpaprXiveClass *sxc = SPAPR_XIVE_GET_CLASS(xive);
296 XiveSource *xsrc = &xive->source;
297 XiveENDSource *end_xsrc = &xive->end_source;
298 Error *local_err = NULL;
300 /* Set by spapr_irq_init() */
301 g_assert(xive->nr_irqs);
302 g_assert(xive->nr_ends);
304 sxc->parent_realize(dev, &local_err);
305 if (local_err) {
306 error_propagate(errp, local_err);
307 return;
311 * Initialize the internal sources, for IPIs and virtual devices.
313 object_property_set_int(OBJECT(xsrc), "nr-irqs", xive->nr_irqs,
314 &error_fatal);
315 object_property_set_link(OBJECT(xsrc), "xive", OBJECT(xive), &error_abort);
316 if (!qdev_realize(DEVICE(xsrc), NULL, errp)) {
317 return;
319 sysbus_init_mmio(SYS_BUS_DEVICE(xive), &xsrc->esb_mmio);
322 * Initialize the END ESB source
324 object_property_set_int(OBJECT(end_xsrc), "nr-ends", xive->nr_irqs,
325 &error_fatal);
326 object_property_set_link(OBJECT(end_xsrc), "xive", OBJECT(xive),
327 &error_abort);
328 if (!qdev_realize(DEVICE(end_xsrc), NULL, errp)) {
329 return;
331 sysbus_init_mmio(SYS_BUS_DEVICE(xive), &end_xsrc->esb_mmio);
333 /* Set the mapping address of the END ESB pages after the source ESBs */
334 xive->end_base = xive->vc_base + xive_source_esb_len(xsrc);
337 * Allocate the routing tables
339 xive->eat = g_new0(XiveEAS, xive->nr_irqs);
340 xive->endt = g_new0(XiveEND, xive->nr_ends);
342 xive->nodename = g_strdup_printf("interrupt-controller@%" PRIx64,
343 xive->tm_base + XIVE_TM_USER_PAGE * (1 << TM_SHIFT));
345 qemu_register_reset(spapr_xive_reset, dev);
347 /* TIMA initialization */
348 memory_region_init_io(&xive->tm_mmio, OBJECT(xive), &spapr_xive_tm_ops,
349 xive, "xive.tima", 4ull << TM_SHIFT);
350 sysbus_init_mmio(SYS_BUS_DEVICE(xive), &xive->tm_mmio);
353 * Map all regions. These will be enabled or disabled at reset and
354 * can also be overridden by KVM memory regions if active
356 sysbus_mmio_map(SYS_BUS_DEVICE(xive), 0, xive->vc_base);
357 sysbus_mmio_map(SYS_BUS_DEVICE(xive), 1, xive->end_base);
358 sysbus_mmio_map(SYS_BUS_DEVICE(xive), 2, xive->tm_base);
361 static int spapr_xive_get_eas(XiveRouter *xrtr, uint8_t eas_blk,
362 uint32_t eas_idx, XiveEAS *eas)
364 SpaprXive *xive = SPAPR_XIVE(xrtr);
366 if (eas_idx >= xive->nr_irqs) {
367 return -1;
370 *eas = xive->eat[eas_idx];
371 return 0;
374 static int spapr_xive_get_end(XiveRouter *xrtr,
375 uint8_t end_blk, uint32_t end_idx, XiveEND *end)
377 SpaprXive *xive = SPAPR_XIVE(xrtr);
379 if (end_idx >= xive->nr_ends) {
380 return -1;
383 memcpy(end, &xive->endt[end_idx], sizeof(XiveEND));
384 return 0;
387 static int spapr_xive_write_end(XiveRouter *xrtr, uint8_t end_blk,
388 uint32_t end_idx, XiveEND *end,
389 uint8_t word_number)
391 SpaprXive *xive = SPAPR_XIVE(xrtr);
393 if (end_idx >= xive->nr_ends) {
394 return -1;
397 memcpy(&xive->endt[end_idx], end, sizeof(XiveEND));
398 return 0;
401 static int spapr_xive_get_nvt(XiveRouter *xrtr,
402 uint8_t nvt_blk, uint32_t nvt_idx, XiveNVT *nvt)
404 uint32_t vcpu_id = spapr_xive_nvt_to_target(nvt_blk, nvt_idx);
405 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
407 if (!cpu) {
408 /* TODO: should we assert() if we can find a NVT ? */
409 return -1;
413 * sPAPR does not maintain a NVT table. Return that the NVT is
414 * valid if we have found a matching CPU
416 nvt->w0 = cpu_to_be32(NVT_W0_VALID);
417 return 0;
420 static int spapr_xive_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk,
421 uint32_t nvt_idx, XiveNVT *nvt,
422 uint8_t word_number)
425 * We don't need to write back to the NVTs because the sPAPR
426 * machine should never hit a non-scheduled NVT. It should never
427 * get called.
429 g_assert_not_reached();
432 static int spapr_xive_match_nvt(XivePresenter *xptr, uint8_t format,
433 uint8_t nvt_blk, uint32_t nvt_idx,
434 bool cam_ignore, uint8_t priority,
435 uint32_t logic_serv, XiveTCTXMatch *match)
437 CPUState *cs;
438 int count = 0;
440 CPU_FOREACH(cs) {
441 PowerPCCPU *cpu = POWERPC_CPU(cs);
442 XiveTCTX *tctx = spapr_cpu_state(cpu)->tctx;
443 int ring;
446 * Skip partially initialized vCPUs. This can happen when
447 * vCPUs are hotplugged.
449 if (!tctx) {
450 continue;
454 * Check the thread context CAM lines and record matches.
456 ring = xive_presenter_tctx_match(xptr, tctx, format, nvt_blk, nvt_idx,
457 cam_ignore, logic_serv);
459 * Save the matching thread interrupt context and follow on to
460 * check for duplicates which are invalid.
462 if (ring != -1) {
463 if (match->tctx) {
464 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: already found a thread "
465 "context NVT %x/%x\n", nvt_blk, nvt_idx);
466 return -1;
469 match->ring = ring;
470 match->tctx = tctx;
471 count++;
475 return count;
478 static uint8_t spapr_xive_get_block_id(XiveRouter *xrtr)
480 return SPAPR_XIVE_BLOCK_ID;
483 static int spapr_xive_get_pq(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
484 uint8_t *pq)
486 SpaprXive *xive = SPAPR_XIVE(xrtr);
488 assert(SPAPR_XIVE_BLOCK_ID == blk);
490 *pq = xive_source_esb_get(&xive->source, idx);
491 return 0;
494 static int spapr_xive_set_pq(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
495 uint8_t *pq)
497 SpaprXive *xive = SPAPR_XIVE(xrtr);
499 assert(SPAPR_XIVE_BLOCK_ID == blk);
501 *pq = xive_source_esb_set(&xive->source, idx, *pq);
502 return 0;
506 static const VMStateDescription vmstate_spapr_xive_end = {
507 .name = TYPE_SPAPR_XIVE "/end",
508 .version_id = 1,
509 .minimum_version_id = 1,
510 .fields = (VMStateField []) {
511 VMSTATE_UINT32(w0, XiveEND),
512 VMSTATE_UINT32(w1, XiveEND),
513 VMSTATE_UINT32(w2, XiveEND),
514 VMSTATE_UINT32(w3, XiveEND),
515 VMSTATE_UINT32(w4, XiveEND),
516 VMSTATE_UINT32(w5, XiveEND),
517 VMSTATE_UINT32(w6, XiveEND),
518 VMSTATE_UINT32(w7, XiveEND),
519 VMSTATE_END_OF_LIST()
523 static const VMStateDescription vmstate_spapr_xive_eas = {
524 .name = TYPE_SPAPR_XIVE "/eas",
525 .version_id = 1,
526 .minimum_version_id = 1,
527 .fields = (VMStateField []) {
528 VMSTATE_UINT64(w, XiveEAS),
529 VMSTATE_END_OF_LIST()
533 static int vmstate_spapr_xive_pre_save(void *opaque)
535 SpaprXive *xive = SPAPR_XIVE(opaque);
537 if (spapr_xive_in_kernel(xive)) {
538 return kvmppc_xive_pre_save(xive);
541 return 0;
545 * Called by the sPAPR IRQ backend 'post_load' method at the machine
546 * level.
548 static int spapr_xive_post_load(SpaprInterruptController *intc, int version_id)
550 SpaprXive *xive = SPAPR_XIVE(intc);
552 if (spapr_xive_in_kernel(xive)) {
553 return kvmppc_xive_post_load(xive, version_id);
556 return 0;
559 static const VMStateDescription vmstate_spapr_xive = {
560 .name = TYPE_SPAPR_XIVE,
561 .version_id = 1,
562 .minimum_version_id = 1,
563 .pre_save = vmstate_spapr_xive_pre_save,
564 .post_load = NULL, /* handled at the machine level */
565 .fields = (VMStateField[]) {
566 VMSTATE_UINT32_EQUAL(nr_irqs, SpaprXive, NULL),
567 VMSTATE_STRUCT_VARRAY_POINTER_UINT32(eat, SpaprXive, nr_irqs,
568 vmstate_spapr_xive_eas, XiveEAS),
569 VMSTATE_STRUCT_VARRAY_POINTER_UINT32(endt, SpaprXive, nr_ends,
570 vmstate_spapr_xive_end, XiveEND),
571 VMSTATE_END_OF_LIST()
575 static int spapr_xive_claim_irq(SpaprInterruptController *intc, int lisn,
576 bool lsi, Error **errp)
578 SpaprXive *xive = SPAPR_XIVE(intc);
579 XiveSource *xsrc = &xive->source;
581 assert(lisn < xive->nr_irqs);
583 trace_spapr_xive_claim_irq(lisn, lsi);
585 if (xive_eas_is_valid(&xive->eat[lisn])) {
586 error_setg(errp, "IRQ %d is not free", lisn);
587 return -EBUSY;
591 * Set default values when allocating an IRQ number
593 xive->eat[lisn].w |= cpu_to_be64(EAS_VALID | EAS_MASKED);
594 if (lsi) {
595 xive_source_irq_set_lsi(xsrc, lisn);
598 if (spapr_xive_in_kernel(xive)) {
599 return kvmppc_xive_source_reset_one(xsrc, lisn, errp);
602 return 0;
605 static void spapr_xive_free_irq(SpaprInterruptController *intc, int lisn)
607 SpaprXive *xive = SPAPR_XIVE(intc);
608 assert(lisn < xive->nr_irqs);
610 trace_spapr_xive_free_irq(lisn);
612 xive->eat[lisn].w &= cpu_to_be64(~EAS_VALID);
615 static Property spapr_xive_properties[] = {
616 DEFINE_PROP_UINT32("nr-irqs", SpaprXive, nr_irqs, 0),
617 DEFINE_PROP_UINT32("nr-ends", SpaprXive, nr_ends, 0),
618 DEFINE_PROP_UINT64("vc-base", SpaprXive, vc_base, SPAPR_XIVE_VC_BASE),
619 DEFINE_PROP_UINT64("tm-base", SpaprXive, tm_base, SPAPR_XIVE_TM_BASE),
620 DEFINE_PROP_UINT8("hv-prio", SpaprXive, hv_prio, 7),
621 DEFINE_PROP_END_OF_LIST(),
624 static int spapr_xive_cpu_intc_create(SpaprInterruptController *intc,
625 PowerPCCPU *cpu, Error **errp)
627 SpaprXive *xive = SPAPR_XIVE(intc);
628 Object *obj;
629 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
631 obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(xive), errp);
632 if (!obj) {
633 return -1;
636 spapr_cpu->tctx = XIVE_TCTX(obj);
637 return 0;
640 static void xive_tctx_set_os_cam(XiveTCTX *tctx, uint32_t os_cam)
642 uint32_t qw1w2 = cpu_to_be32(TM_QW1W2_VO | os_cam);
643 memcpy(&tctx->regs[TM_QW1_OS + TM_WORD2], &qw1w2, 4);
646 static void spapr_xive_cpu_intc_reset(SpaprInterruptController *intc,
647 PowerPCCPU *cpu)
649 XiveTCTX *tctx = spapr_cpu_state(cpu)->tctx;
650 uint8_t nvt_blk;
651 uint32_t nvt_idx;
653 xive_tctx_reset(tctx);
656 * When a Virtual Processor is scheduled to run on a HW thread,
657 * the hypervisor pushes its identifier in the OS CAM line.
658 * Emulate the same behavior under QEMU.
660 spapr_xive_cpu_to_nvt(cpu, &nvt_blk, &nvt_idx);
662 xive_tctx_set_os_cam(tctx, xive_nvt_cam_line(nvt_blk, nvt_idx));
665 static void spapr_xive_cpu_intc_destroy(SpaprInterruptController *intc,
666 PowerPCCPU *cpu)
668 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
670 xive_tctx_destroy(spapr_cpu->tctx);
671 spapr_cpu->tctx = NULL;
674 static void spapr_xive_set_irq(SpaprInterruptController *intc, int irq, int val)
676 SpaprXive *xive = SPAPR_XIVE(intc);
678 trace_spapr_xive_set_irq(irq, val);
680 if (spapr_xive_in_kernel(xive)) {
681 kvmppc_xive_source_set_irq(&xive->source, irq, val);
682 } else {
683 xive_source_set_irq(&xive->source, irq, val);
687 static void spapr_xive_print_info(SpaprInterruptController *intc, Monitor *mon)
689 SpaprXive *xive = SPAPR_XIVE(intc);
690 CPUState *cs;
692 CPU_FOREACH(cs) {
693 PowerPCCPU *cpu = POWERPC_CPU(cs);
695 xive_tctx_pic_print_info(spapr_cpu_state(cpu)->tctx, mon);
698 spapr_xive_pic_print_info(xive, mon);
701 static void spapr_xive_dt(SpaprInterruptController *intc, uint32_t nr_servers,
702 void *fdt, uint32_t phandle)
704 SpaprXive *xive = SPAPR_XIVE(intc);
705 int node;
706 uint64_t timas[2 * 2];
707 /* Interrupt number ranges for the IPIs */
708 uint32_t lisn_ranges[] = {
709 cpu_to_be32(SPAPR_IRQ_IPI),
710 cpu_to_be32(SPAPR_IRQ_IPI + nr_servers),
713 * EQ size - the sizes of pages supported by the system 4K, 64K,
714 * 2M, 16M. We only advertise 64K for the moment.
716 uint32_t eq_sizes[] = {
717 cpu_to_be32(16), /* 64K */
720 * QEMU/KVM only needs to define a single range to reserve the
721 * escalation priority. A priority bitmask would have been more
722 * appropriate.
724 uint32_t plat_res_int_priorities[] = {
725 cpu_to_be32(xive->hv_prio), /* start */
726 cpu_to_be32(0xff - xive->hv_prio), /* count */
729 /* Thread Interrupt Management Area : User (ring 3) and OS (ring 2) */
730 timas[0] = cpu_to_be64(xive->tm_base +
731 XIVE_TM_USER_PAGE * (1ull << TM_SHIFT));
732 timas[1] = cpu_to_be64(1ull << TM_SHIFT);
733 timas[2] = cpu_to_be64(xive->tm_base +
734 XIVE_TM_OS_PAGE * (1ull << TM_SHIFT));
735 timas[3] = cpu_to_be64(1ull << TM_SHIFT);
737 _FDT(node = fdt_add_subnode(fdt, 0, xive->nodename));
739 _FDT(fdt_setprop_string(fdt, node, "device_type", "power-ivpe"));
740 _FDT(fdt_setprop(fdt, node, "reg", timas, sizeof(timas)));
742 _FDT(fdt_setprop_string(fdt, node, "compatible", "ibm,power-ivpe"));
743 _FDT(fdt_setprop(fdt, node, "ibm,xive-eq-sizes", eq_sizes,
744 sizeof(eq_sizes)));
745 _FDT(fdt_setprop(fdt, node, "ibm,xive-lisn-ranges", lisn_ranges,
746 sizeof(lisn_ranges)));
748 /* For Linux to link the LSIs to the interrupt controller. */
749 _FDT(fdt_setprop(fdt, node, "interrupt-controller", NULL, 0));
750 _FDT(fdt_setprop_cell(fdt, node, "#interrupt-cells", 2));
752 /* For SLOF */
753 _FDT(fdt_setprop_cell(fdt, node, "linux,phandle", phandle));
754 _FDT(fdt_setprop_cell(fdt, node, "phandle", phandle));
757 * The "ibm,plat-res-int-priorities" property defines the priority
758 * ranges reserved by the hypervisor
760 _FDT(fdt_setprop(fdt, 0, "ibm,plat-res-int-priorities",
761 plat_res_int_priorities, sizeof(plat_res_int_priorities)));
764 static int spapr_xive_activate(SpaprInterruptController *intc,
765 uint32_t nr_servers, Error **errp)
767 SpaprXive *xive = SPAPR_XIVE(intc);
769 if (kvm_enabled()) {
770 int rc = spapr_irq_init_kvm(kvmppc_xive_connect, intc, nr_servers,
771 errp);
772 if (rc < 0) {
773 return rc;
777 /* Activate the XIVE MMIOs */
778 spapr_xive_mmio_set_enabled(xive, true);
780 return 0;
783 static void spapr_xive_deactivate(SpaprInterruptController *intc)
785 SpaprXive *xive = SPAPR_XIVE(intc);
787 spapr_xive_mmio_set_enabled(xive, false);
789 if (spapr_xive_in_kernel(xive)) {
790 kvmppc_xive_disconnect(intc);
794 static bool spapr_xive_in_kernel_xptr(const XivePresenter *xptr)
796 return spapr_xive_in_kernel(SPAPR_XIVE(xptr));
799 static void spapr_xive_class_init(ObjectClass *klass, void *data)
801 DeviceClass *dc = DEVICE_CLASS(klass);
802 XiveRouterClass *xrc = XIVE_ROUTER_CLASS(klass);
803 SpaprInterruptControllerClass *sicc = SPAPR_INTC_CLASS(klass);
804 XivePresenterClass *xpc = XIVE_PRESENTER_CLASS(klass);
805 SpaprXiveClass *sxc = SPAPR_XIVE_CLASS(klass);
807 dc->desc = "sPAPR XIVE Interrupt Controller";
808 device_class_set_props(dc, spapr_xive_properties);
809 device_class_set_parent_realize(dc, spapr_xive_realize,
810 &sxc->parent_realize);
811 dc->vmsd = &vmstate_spapr_xive;
813 xrc->get_eas = spapr_xive_get_eas;
814 xrc->get_pq = spapr_xive_get_pq;
815 xrc->set_pq = spapr_xive_set_pq;
816 xrc->get_end = spapr_xive_get_end;
817 xrc->write_end = spapr_xive_write_end;
818 xrc->get_nvt = spapr_xive_get_nvt;
819 xrc->write_nvt = spapr_xive_write_nvt;
820 xrc->get_block_id = spapr_xive_get_block_id;
822 sicc->activate = spapr_xive_activate;
823 sicc->deactivate = spapr_xive_deactivate;
824 sicc->cpu_intc_create = spapr_xive_cpu_intc_create;
825 sicc->cpu_intc_reset = spapr_xive_cpu_intc_reset;
826 sicc->cpu_intc_destroy = spapr_xive_cpu_intc_destroy;
827 sicc->claim_irq = spapr_xive_claim_irq;
828 sicc->free_irq = spapr_xive_free_irq;
829 sicc->set_irq = spapr_xive_set_irq;
830 sicc->print_info = spapr_xive_print_info;
831 sicc->dt = spapr_xive_dt;
832 sicc->post_load = spapr_xive_post_load;
834 xpc->match_nvt = spapr_xive_match_nvt;
835 xpc->in_kernel = spapr_xive_in_kernel_xptr;
838 static const TypeInfo spapr_xive_info = {
839 .name = TYPE_SPAPR_XIVE,
840 .parent = TYPE_XIVE_ROUTER,
841 .instance_init = spapr_xive_instance_init,
842 .instance_size = sizeof(SpaprXive),
843 .class_init = spapr_xive_class_init,
844 .class_size = sizeof(SpaprXiveClass),
845 .interfaces = (InterfaceInfo[]) {
846 { TYPE_SPAPR_INTC },
851 static void spapr_xive_register_types(void)
853 type_register_static(&spapr_xive_info);
856 type_init(spapr_xive_register_types)
859 * XIVE hcalls
861 * The terminology used by the XIVE hcalls is the following :
863 * TARGET vCPU number
864 * EQ Event Queue assigned by OS to receive event data
865 * ESB page for source interrupt management
866 * LISN Logical Interrupt Source Number identifying a source in the
867 * machine
868 * EISN Effective Interrupt Source Number used by guest OS to
869 * identify source in the guest
871 * The EAS, END, NVT structures are not exposed.
875 * On POWER9, the KVM XIVE device uses priority 7 for the escalation
876 * interrupts. So we only allow the guest to use priorities [0..6].
878 static bool spapr_xive_priority_is_reserved(SpaprXive *xive, uint8_t priority)
880 return priority >= xive->hv_prio;
884 * The H_INT_GET_SOURCE_INFO hcall() is used to obtain the logical
885 * real address of the MMIO page through which the Event State Buffer
886 * entry associated with the value of the "lisn" parameter is managed.
888 * Parameters:
889 * Input
890 * - R4: "flags"
891 * Bits 0-63 reserved
892 * - R5: "lisn" is per "interrupts", "interrupt-map", or
893 * "ibm,xive-lisn-ranges" properties, or as returned by the
894 * ibm,query-interrupt-source-number RTAS call, or as returned
895 * by the H_ALLOCATE_VAS_WINDOW hcall
897 * Output
898 * - R4: "flags"
899 * Bits 0-59: Reserved
900 * Bit 60: H_INT_ESB must be used for Event State Buffer
901 * management
902 * Bit 61: 1 == LSI 0 == MSI
903 * Bit 62: the full function page supports trigger
904 * Bit 63: Store EOI Supported
905 * - R5: Logical Real address of full function Event State Buffer
906 * management page, -1 if H_INT_ESB hcall flag is set to 1.
907 * - R6: Logical Real Address of trigger only Event State Buffer
908 * management page or -1.
909 * - R7: Power of 2 page size for the ESB management pages returned in
910 * R5 and R6.
913 #define SPAPR_XIVE_SRC_H_INT_ESB PPC_BIT(60) /* ESB manage with H_INT_ESB */
914 #define SPAPR_XIVE_SRC_LSI PPC_BIT(61) /* Virtual LSI type */
915 #define SPAPR_XIVE_SRC_TRIGGER PPC_BIT(62) /* Trigger and management
916 on same page */
917 #define SPAPR_XIVE_SRC_STORE_EOI PPC_BIT(63) /* Store EOI support */
919 static target_ulong h_int_get_source_info(PowerPCCPU *cpu,
920 SpaprMachineState *spapr,
921 target_ulong opcode,
922 target_ulong *args)
924 SpaprXive *xive = spapr->xive;
925 XiveSource *xsrc = &xive->source;
926 target_ulong flags = args[0];
927 target_ulong lisn = args[1];
929 trace_spapr_xive_get_source_info(flags, lisn);
931 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
932 return H_FUNCTION;
935 if (flags) {
936 return H_PARAMETER;
939 if (lisn >= xive->nr_irqs) {
940 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
941 lisn);
942 return H_P2;
945 if (!xive_eas_is_valid(&xive->eat[lisn])) {
946 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
947 lisn);
948 return H_P2;
952 * All sources are emulated under the main XIVE object and share
953 * the same characteristics.
955 args[0] = 0;
956 if (!xive_source_esb_has_2page(xsrc)) {
957 args[0] |= SPAPR_XIVE_SRC_TRIGGER;
959 if (xsrc->esb_flags & XIVE_SRC_STORE_EOI) {
960 args[0] |= SPAPR_XIVE_SRC_STORE_EOI;
964 * Force the use of the H_INT_ESB hcall in case of an LSI
965 * interrupt. This is necessary under KVM to re-trigger the
966 * interrupt if the level is still asserted
968 if (xive_source_irq_is_lsi(xsrc, lisn)) {
969 args[0] |= SPAPR_XIVE_SRC_H_INT_ESB | SPAPR_XIVE_SRC_LSI;
972 if (!(args[0] & SPAPR_XIVE_SRC_H_INT_ESB)) {
973 args[1] = xive->vc_base + xive_source_esb_mgmt(xsrc, lisn);
974 } else {
975 args[1] = -1;
978 if (xive_source_esb_has_2page(xsrc) &&
979 !(args[0] & SPAPR_XIVE_SRC_H_INT_ESB)) {
980 args[2] = xive->vc_base + xive_source_esb_page(xsrc, lisn);
981 } else {
982 args[2] = -1;
985 if (xive_source_esb_has_2page(xsrc)) {
986 args[3] = xsrc->esb_shift - 1;
987 } else {
988 args[3] = xsrc->esb_shift;
991 return H_SUCCESS;
995 * The H_INT_SET_SOURCE_CONFIG hcall() is used to assign a Logical
996 * Interrupt Source to a target. The Logical Interrupt Source is
997 * designated with the "lisn" parameter and the target is designated
998 * with the "target" and "priority" parameters. Upon return from the
999 * hcall(), no additional interrupts will be directed to the old EQ.
1001 * Parameters:
1002 * Input:
1003 * - R4: "flags"
1004 * Bits 0-61: Reserved
1005 * Bit 62: set the "eisn" in the EAS
1006 * Bit 63: masks the interrupt source in the hardware interrupt
1007 * control structure. An interrupt masked by this mechanism will
1008 * be dropped, but it's source state bits will still be
1009 * set. There is no race-free way of unmasking and restoring the
1010 * source. Thus this should only be used in interrupts that are
1011 * also masked at the source, and only in cases where the
1012 * interrupt is not meant to be used for a large amount of time
1013 * because no valid target exists for it for example
1014 * - R5: "lisn" is per "interrupts", "interrupt-map", or
1015 * "ibm,xive-lisn-ranges" properties, or as returned by the
1016 * ibm,query-interrupt-source-number RTAS call, or as returned by
1017 * the H_ALLOCATE_VAS_WINDOW hcall
1018 * - R6: "target" is per "ibm,ppc-interrupt-server#s" or
1019 * "ibm,ppc-interrupt-gserver#s"
1020 * - R7: "priority" is a valid priority not in
1021 * "ibm,plat-res-int-priorities"
1022 * - R8: "eisn" is the guest EISN associated with the "lisn"
1024 * Output:
1025 * - None
1028 #define SPAPR_XIVE_SRC_SET_EISN PPC_BIT(62)
1029 #define SPAPR_XIVE_SRC_MASK PPC_BIT(63)
1031 static target_ulong h_int_set_source_config(PowerPCCPU *cpu,
1032 SpaprMachineState *spapr,
1033 target_ulong opcode,
1034 target_ulong *args)
1036 SpaprXive *xive = spapr->xive;
1037 XiveEAS eas, new_eas;
1038 target_ulong flags = args[0];
1039 target_ulong lisn = args[1];
1040 target_ulong target = args[2];
1041 target_ulong priority = args[3];
1042 target_ulong eisn = args[4];
1043 uint8_t end_blk;
1044 uint32_t end_idx;
1046 trace_spapr_xive_set_source_config(flags, lisn, target, priority, eisn);
1048 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1049 return H_FUNCTION;
1052 if (flags & ~(SPAPR_XIVE_SRC_SET_EISN | SPAPR_XIVE_SRC_MASK)) {
1053 return H_PARAMETER;
1056 if (lisn >= xive->nr_irqs) {
1057 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1058 lisn);
1059 return H_P2;
1062 eas = xive->eat[lisn];
1063 if (!xive_eas_is_valid(&eas)) {
1064 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1065 lisn);
1066 return H_P2;
1069 /* priority 0xff is used to reset the EAS */
1070 if (priority == 0xff) {
1071 new_eas.w = cpu_to_be64(EAS_VALID | EAS_MASKED);
1072 goto out;
1075 if (flags & SPAPR_XIVE_SRC_MASK) {
1076 new_eas.w = eas.w | cpu_to_be64(EAS_MASKED);
1077 } else {
1078 new_eas.w = eas.w & cpu_to_be64(~EAS_MASKED);
1081 if (spapr_xive_priority_is_reserved(xive, priority)) {
1082 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1083 " is reserved\n", priority);
1084 return H_P4;
1088 * Validate that "target" is part of the list of threads allocated
1089 * to the partition. For that, find the END corresponding to the
1090 * target.
1092 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1093 return H_P3;
1096 new_eas.w = xive_set_field64(EAS_END_BLOCK, new_eas.w, end_blk);
1097 new_eas.w = xive_set_field64(EAS_END_INDEX, new_eas.w, end_idx);
1099 if (flags & SPAPR_XIVE_SRC_SET_EISN) {
1100 new_eas.w = xive_set_field64(EAS_END_DATA, new_eas.w, eisn);
1103 if (spapr_xive_in_kernel(xive)) {
1104 Error *local_err = NULL;
1106 kvmppc_xive_set_source_config(xive, lisn, &new_eas, &local_err);
1107 if (local_err) {
1108 error_report_err(local_err);
1109 return H_HARDWARE;
1113 out:
1114 xive->eat[lisn] = new_eas;
1115 return H_SUCCESS;
1119 * The H_INT_GET_SOURCE_CONFIG hcall() is used to determine to which
1120 * target/priority pair is assigned to the specified Logical Interrupt
1121 * Source.
1123 * Parameters:
1124 * Input:
1125 * - R4: "flags"
1126 * Bits 0-63 Reserved
1127 * - R5: "lisn" is per "interrupts", "interrupt-map", or
1128 * "ibm,xive-lisn-ranges" properties, or as returned by the
1129 * ibm,query-interrupt-source-number RTAS call, or as
1130 * returned by the H_ALLOCATE_VAS_WINDOW hcall
1132 * Output:
1133 * - R4: Target to which the specified Logical Interrupt Source is
1134 * assigned
1135 * - R5: Priority to which the specified Logical Interrupt Source is
1136 * assigned
1137 * - R6: EISN for the specified Logical Interrupt Source (this will be
1138 * equivalent to the LISN if not changed by H_INT_SET_SOURCE_CONFIG)
1140 static target_ulong h_int_get_source_config(PowerPCCPU *cpu,
1141 SpaprMachineState *spapr,
1142 target_ulong opcode,
1143 target_ulong *args)
1145 SpaprXive *xive = spapr->xive;
1146 target_ulong flags = args[0];
1147 target_ulong lisn = args[1];
1148 XiveEAS eas;
1149 XiveEND *end;
1150 uint8_t nvt_blk;
1151 uint32_t end_idx, nvt_idx;
1153 trace_spapr_xive_get_source_config(flags, lisn);
1155 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1156 return H_FUNCTION;
1159 if (flags) {
1160 return H_PARAMETER;
1163 if (lisn >= xive->nr_irqs) {
1164 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1165 lisn);
1166 return H_P2;
1169 eas = xive->eat[lisn];
1170 if (!xive_eas_is_valid(&eas)) {
1171 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1172 lisn);
1173 return H_P2;
1176 /* EAS_END_BLOCK is unused on sPAPR */
1177 end_idx = xive_get_field64(EAS_END_INDEX, eas.w);
1179 assert(end_idx < xive->nr_ends);
1180 end = &xive->endt[end_idx];
1182 nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end->w6);
1183 nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end->w6);
1184 args[0] = spapr_xive_nvt_to_target(nvt_blk, nvt_idx);
1186 if (xive_eas_is_masked(&eas)) {
1187 args[1] = 0xff;
1188 } else {
1189 args[1] = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
1192 args[2] = xive_get_field64(EAS_END_DATA, eas.w);
1194 return H_SUCCESS;
1198 * The H_INT_GET_QUEUE_INFO hcall() is used to get the logical real
1199 * address of the notification management page associated with the
1200 * specified target and priority.
1202 * Parameters:
1203 * Input:
1204 * - R4: "flags"
1205 * Bits 0-63 Reserved
1206 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1207 * "ibm,ppc-interrupt-gserver#s"
1208 * - R6: "priority" is a valid priority not in
1209 * "ibm,plat-res-int-priorities"
1211 * Output:
1212 * - R4: Logical real address of notification page
1213 * - R5: Power of 2 page size of the notification page
1215 static target_ulong h_int_get_queue_info(PowerPCCPU *cpu,
1216 SpaprMachineState *spapr,
1217 target_ulong opcode,
1218 target_ulong *args)
1220 SpaprXive *xive = spapr->xive;
1221 XiveENDSource *end_xsrc = &xive->end_source;
1222 target_ulong flags = args[0];
1223 target_ulong target = args[1];
1224 target_ulong priority = args[2];
1225 XiveEND *end;
1226 uint8_t end_blk;
1227 uint32_t end_idx;
1229 trace_spapr_xive_get_queue_info(flags, target, priority);
1231 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1232 return H_FUNCTION;
1235 if (flags) {
1236 return H_PARAMETER;
1240 * H_STATE should be returned if a H_INT_RESET is in progress.
1241 * This is not needed when running the emulation under QEMU
1244 if (spapr_xive_priority_is_reserved(xive, priority)) {
1245 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1246 " is reserved\n", priority);
1247 return H_P3;
1251 * Validate that "target" is part of the list of threads allocated
1252 * to the partition. For that, find the END corresponding to the
1253 * target.
1255 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1256 return H_P2;
1259 assert(end_idx < xive->nr_ends);
1260 end = &xive->endt[end_idx];
1262 args[0] = xive->end_base + (1ull << (end_xsrc->esb_shift + 1)) * end_idx;
1263 if (xive_end_is_enqueue(end)) {
1264 args[1] = xive_get_field32(END_W0_QSIZE, end->w0) + 12;
1265 } else {
1266 args[1] = 0;
1269 return H_SUCCESS;
1273 * The H_INT_SET_QUEUE_CONFIG hcall() is used to set or reset a EQ for
1274 * a given "target" and "priority". It is also used to set the
1275 * notification config associated with the EQ. An EQ size of 0 is
1276 * used to reset the EQ config for a given target and priority. If
1277 * resetting the EQ config, the END associated with the given "target"
1278 * and "priority" will be changed to disable queueing.
1280 * Upon return from the hcall(), no additional interrupts will be
1281 * directed to the old EQ (if one was set). The old EQ (if one was
1282 * set) should be investigated for interrupts that occurred prior to
1283 * or during the hcall().
1285 * Parameters:
1286 * Input:
1287 * - R4: "flags"
1288 * Bits 0-62: Reserved
1289 * Bit 63: Unconditional Notify (n) per the XIVE spec
1290 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1291 * "ibm,ppc-interrupt-gserver#s"
1292 * - R6: "priority" is a valid priority not in
1293 * "ibm,plat-res-int-priorities"
1294 * - R7: "eventQueue": The logical real address of the start of the EQ
1295 * - R8: "eventQueueSize": The power of 2 EQ size per "ibm,xive-eq-sizes"
1297 * Output:
1298 * - None
1301 #define SPAPR_XIVE_END_ALWAYS_NOTIFY PPC_BIT(63)
1303 static target_ulong h_int_set_queue_config(PowerPCCPU *cpu,
1304 SpaprMachineState *spapr,
1305 target_ulong opcode,
1306 target_ulong *args)
1308 SpaprXive *xive = spapr->xive;
1309 target_ulong flags = args[0];
1310 target_ulong target = args[1];
1311 target_ulong priority = args[2];
1312 target_ulong qpage = args[3];
1313 target_ulong qsize = args[4];
1314 XiveEND end;
1315 uint8_t end_blk, nvt_blk;
1316 uint32_t end_idx, nvt_idx;
1318 trace_spapr_xive_set_queue_config(flags, target, priority, qpage, qsize);
1320 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1321 return H_FUNCTION;
1324 if (flags & ~SPAPR_XIVE_END_ALWAYS_NOTIFY) {
1325 return H_PARAMETER;
1329 * H_STATE should be returned if a H_INT_RESET is in progress.
1330 * This is not needed when running the emulation under QEMU
1333 if (spapr_xive_priority_is_reserved(xive, priority)) {
1334 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1335 " is reserved\n", priority);
1336 return H_P3;
1340 * Validate that "target" is part of the list of threads allocated
1341 * to the partition. For that, find the END corresponding to the
1342 * target.
1345 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1346 return H_P2;
1349 assert(end_idx < xive->nr_ends);
1350 memcpy(&end, &xive->endt[end_idx], sizeof(XiveEND));
1352 switch (qsize) {
1353 case 12:
1354 case 16:
1355 case 21:
1356 case 24:
1357 if (!QEMU_IS_ALIGNED(qpage, 1ul << qsize)) {
1358 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: EQ @0x%" HWADDR_PRIx
1359 " is not naturally aligned with %" HWADDR_PRIx "\n",
1360 qpage, (hwaddr)1 << qsize);
1361 return H_P4;
1363 end.w2 = cpu_to_be32((qpage >> 32) & 0x0fffffff);
1364 end.w3 = cpu_to_be32(qpage & 0xffffffff);
1365 end.w0 |= cpu_to_be32(END_W0_ENQUEUE);
1366 end.w0 = xive_set_field32(END_W0_QSIZE, end.w0, qsize - 12);
1367 break;
1368 case 0:
1369 /* reset queue and disable queueing */
1370 spapr_xive_end_reset(&end);
1371 goto out;
1373 default:
1374 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid EQ size %"PRIx64"\n",
1375 qsize);
1376 return H_P5;
1379 if (qsize) {
1380 hwaddr plen = 1 << qsize;
1381 void *eq;
1384 * Validate the guest EQ. We should also check that the queue
1385 * has been zeroed by the OS.
1387 eq = address_space_map(CPU(cpu)->as, qpage, &plen, true,
1388 MEMTXATTRS_UNSPECIFIED);
1389 if (plen != 1 << qsize) {
1390 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to map EQ @0x%"
1391 HWADDR_PRIx "\n", qpage);
1392 return H_P4;
1394 address_space_unmap(CPU(cpu)->as, eq, plen, true, plen);
1397 /* "target" should have been validated above */
1398 if (spapr_xive_target_to_nvt(target, &nvt_blk, &nvt_idx)) {
1399 g_assert_not_reached();
1403 * Ensure the priority and target are correctly set (they will not
1404 * be right after allocation)
1406 end.w6 = xive_set_field32(END_W6_NVT_BLOCK, 0ul, nvt_blk) |
1407 xive_set_field32(END_W6_NVT_INDEX, 0ul, nvt_idx);
1408 end.w7 = xive_set_field32(END_W7_F0_PRIORITY, 0ul, priority);
1410 if (flags & SPAPR_XIVE_END_ALWAYS_NOTIFY) {
1411 end.w0 |= cpu_to_be32(END_W0_UCOND_NOTIFY);
1412 } else {
1413 end.w0 &= cpu_to_be32((uint32_t)~END_W0_UCOND_NOTIFY);
1417 * The generation bit for the END starts at 1 and The END page
1418 * offset counter starts at 0.
1420 end.w1 = cpu_to_be32(END_W1_GENERATION) |
1421 xive_set_field32(END_W1_PAGE_OFF, 0ul, 0ul);
1422 end.w0 |= cpu_to_be32(END_W0_VALID);
1425 * TODO: issue syncs required to ensure all in-flight interrupts
1426 * are complete on the old END
1429 out:
1430 if (spapr_xive_in_kernel(xive)) {
1431 Error *local_err = NULL;
1433 kvmppc_xive_set_queue_config(xive, end_blk, end_idx, &end, &local_err);
1434 if (local_err) {
1435 error_report_err(local_err);
1436 return H_HARDWARE;
1440 /* Update END */
1441 memcpy(&xive->endt[end_idx], &end, sizeof(XiveEND));
1442 return H_SUCCESS;
1446 * The H_INT_GET_QUEUE_CONFIG hcall() is used to get a EQ for a given
1447 * target and priority.
1449 * Parameters:
1450 * Input:
1451 * - R4: "flags"
1452 * Bits 0-62: Reserved
1453 * Bit 63: Debug: Return debug data
1454 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1455 * "ibm,ppc-interrupt-gserver#s"
1456 * - R6: "priority" is a valid priority not in
1457 * "ibm,plat-res-int-priorities"
1459 * Output:
1460 * - R4: "flags":
1461 * Bits 0-61: Reserved
1462 * Bit 62: The value of Event Queue Generation Number (g) per
1463 * the XIVE spec if "Debug" = 1
1464 * Bit 63: The value of Unconditional Notify (n) per the XIVE spec
1465 * - R5: The logical real address of the start of the EQ
1466 * - R6: The power of 2 EQ size per "ibm,xive-eq-sizes"
1467 * - R7: The value of Event Queue Offset Counter per XIVE spec
1468 * if "Debug" = 1, else 0
1472 #define SPAPR_XIVE_END_DEBUG PPC_BIT(63)
1474 static target_ulong h_int_get_queue_config(PowerPCCPU *cpu,
1475 SpaprMachineState *spapr,
1476 target_ulong opcode,
1477 target_ulong *args)
1479 SpaprXive *xive = spapr->xive;
1480 target_ulong flags = args[0];
1481 target_ulong target = args[1];
1482 target_ulong priority = args[2];
1483 XiveEND *end;
1484 uint8_t end_blk;
1485 uint32_t end_idx;
1487 trace_spapr_xive_get_queue_config(flags, target, priority);
1489 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1490 return H_FUNCTION;
1493 if (flags & ~SPAPR_XIVE_END_DEBUG) {
1494 return H_PARAMETER;
1498 * H_STATE should be returned if a H_INT_RESET is in progress.
1499 * This is not needed when running the emulation under QEMU
1502 if (spapr_xive_priority_is_reserved(xive, priority)) {
1503 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1504 " is reserved\n", priority);
1505 return H_P3;
1509 * Validate that "target" is part of the list of threads allocated
1510 * to the partition. For that, find the END corresponding to the
1511 * target.
1513 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1514 return H_P2;
1517 assert(end_idx < xive->nr_ends);
1518 end = &xive->endt[end_idx];
1520 args[0] = 0;
1521 if (xive_end_is_notify(end)) {
1522 args[0] |= SPAPR_XIVE_END_ALWAYS_NOTIFY;
1525 if (xive_end_is_enqueue(end)) {
1526 args[1] = xive_end_qaddr(end);
1527 args[2] = xive_get_field32(END_W0_QSIZE, end->w0) + 12;
1528 } else {
1529 args[1] = 0;
1530 args[2] = 0;
1533 if (spapr_xive_in_kernel(xive)) {
1534 Error *local_err = NULL;
1536 kvmppc_xive_get_queue_config(xive, end_blk, end_idx, end, &local_err);
1537 if (local_err) {
1538 error_report_err(local_err);
1539 return H_HARDWARE;
1543 /* TODO: do we need any locking on the END ? */
1544 if (flags & SPAPR_XIVE_END_DEBUG) {
1545 /* Load the event queue generation number into the return flags */
1546 args[0] |= (uint64_t)xive_get_field32(END_W1_GENERATION, end->w1) << 62;
1548 /* Load R7 with the event queue offset counter */
1549 args[3] = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1550 } else {
1551 args[3] = 0;
1554 return H_SUCCESS;
1558 * The H_INT_SET_OS_REPORTING_LINE hcall() is used to set the
1559 * reporting cache line pair for the calling thread. The reporting
1560 * cache lines will contain the OS interrupt context when the OS
1561 * issues a CI store byte to @TIMA+0xC10 to acknowledge the OS
1562 * interrupt. The reporting cache lines can be reset by inputting -1
1563 * in "reportingLine". Issuing the CI store byte without reporting
1564 * cache lines registered will result in the data not being accessible
1565 * to the OS.
1567 * Parameters:
1568 * Input:
1569 * - R4: "flags"
1570 * Bits 0-63: Reserved
1571 * - R5: "reportingLine": The logical real address of the reporting cache
1572 * line pair
1574 * Output:
1575 * - None
1577 static target_ulong h_int_set_os_reporting_line(PowerPCCPU *cpu,
1578 SpaprMachineState *spapr,
1579 target_ulong opcode,
1580 target_ulong *args)
1582 target_ulong flags = args[0];
1584 trace_spapr_xive_set_os_reporting_line(flags);
1586 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1587 return H_FUNCTION;
1591 * H_STATE should be returned if a H_INT_RESET is in progress.
1592 * This is not needed when running the emulation under QEMU
1595 /* TODO: H_INT_SET_OS_REPORTING_LINE */
1596 return H_FUNCTION;
1600 * The H_INT_GET_OS_REPORTING_LINE hcall() is used to get the logical
1601 * real address of the reporting cache line pair set for the input
1602 * "target". If no reporting cache line pair has been set, -1 is
1603 * returned.
1605 * Parameters:
1606 * Input:
1607 * - R4: "flags"
1608 * Bits 0-63: Reserved
1609 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1610 * "ibm,ppc-interrupt-gserver#s"
1611 * - R6: "reportingLine": The logical real address of the reporting
1612 * cache line pair
1614 * Output:
1615 * - R4: The logical real address of the reporting line if set, else -1
1617 static target_ulong h_int_get_os_reporting_line(PowerPCCPU *cpu,
1618 SpaprMachineState *spapr,
1619 target_ulong opcode,
1620 target_ulong *args)
1622 target_ulong flags = args[0];
1624 trace_spapr_xive_get_os_reporting_line(flags);
1626 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1627 return H_FUNCTION;
1631 * H_STATE should be returned if a H_INT_RESET is in progress.
1632 * This is not needed when running the emulation under QEMU
1635 /* TODO: H_INT_GET_OS_REPORTING_LINE */
1636 return H_FUNCTION;
1640 * The H_INT_ESB hcall() is used to issue a load or store to the ESB
1641 * page for the input "lisn". This hcall is only supported for LISNs
1642 * that have the ESB hcall flag set to 1 when returned from hcall()
1643 * H_INT_GET_SOURCE_INFO.
1645 * Parameters:
1646 * Input:
1647 * - R4: "flags"
1648 * Bits 0-62: Reserved
1649 * bit 63: Store: Store=1, store operation, else load operation
1650 * - R5: "lisn" is per "interrupts", "interrupt-map", or
1651 * "ibm,xive-lisn-ranges" properties, or as returned by the
1652 * ibm,query-interrupt-source-number RTAS call, or as
1653 * returned by the H_ALLOCATE_VAS_WINDOW hcall
1654 * - R6: "esbOffset" is the offset into the ESB page for the load or
1655 * store operation
1656 * - R7: "storeData" is the data to write for a store operation
1658 * Output:
1659 * - R4: The value of the load if load operation, else -1
1662 #define SPAPR_XIVE_ESB_STORE PPC_BIT(63)
1664 static target_ulong h_int_esb(PowerPCCPU *cpu,
1665 SpaprMachineState *spapr,
1666 target_ulong opcode,
1667 target_ulong *args)
1669 SpaprXive *xive = spapr->xive;
1670 XiveEAS eas;
1671 target_ulong flags = args[0];
1672 target_ulong lisn = args[1];
1673 target_ulong offset = args[2];
1674 target_ulong data = args[3];
1675 hwaddr mmio_addr;
1676 XiveSource *xsrc = &xive->source;
1678 trace_spapr_xive_esb(flags, lisn, offset, data);
1680 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1681 return H_FUNCTION;
1684 if (flags & ~SPAPR_XIVE_ESB_STORE) {
1685 return H_PARAMETER;
1688 if (lisn >= xive->nr_irqs) {
1689 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1690 lisn);
1691 return H_P2;
1694 eas = xive->eat[lisn];
1695 if (!xive_eas_is_valid(&eas)) {
1696 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1697 lisn);
1698 return H_P2;
1701 if (offset > (1ull << xsrc->esb_shift)) {
1702 return H_P3;
1705 if (spapr_xive_in_kernel(xive)) {
1706 args[0] = kvmppc_xive_esb_rw(xsrc, lisn, offset, data,
1707 flags & SPAPR_XIVE_ESB_STORE);
1708 } else {
1709 mmio_addr = xive->vc_base + xive_source_esb_mgmt(xsrc, lisn) + offset;
1711 if (dma_memory_rw(&address_space_memory, mmio_addr, &data, 8,
1712 (flags & SPAPR_XIVE_ESB_STORE),
1713 MEMTXATTRS_UNSPECIFIED)) {
1714 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to access ESB @0x%"
1715 HWADDR_PRIx "\n", mmio_addr);
1716 return H_HARDWARE;
1718 args[0] = (flags & SPAPR_XIVE_ESB_STORE) ? -1 : data;
1720 return H_SUCCESS;
1724 * The H_INT_SYNC hcall() is used to issue hardware syncs that will
1725 * ensure any in flight events for the input lisn are in the event
1726 * queue.
1728 * Parameters:
1729 * Input:
1730 * - R4: "flags"
1731 * Bits 0-63: Reserved
1732 * - R5: "lisn" is per "interrupts", "interrupt-map", or
1733 * "ibm,xive-lisn-ranges" properties, or as returned by the
1734 * ibm,query-interrupt-source-number RTAS call, or as
1735 * returned by the H_ALLOCATE_VAS_WINDOW hcall
1737 * Output:
1738 * - None
1740 static target_ulong h_int_sync(PowerPCCPU *cpu,
1741 SpaprMachineState *spapr,
1742 target_ulong opcode,
1743 target_ulong *args)
1745 SpaprXive *xive = spapr->xive;
1746 XiveEAS eas;
1747 target_ulong flags = args[0];
1748 target_ulong lisn = args[1];
1750 trace_spapr_xive_sync(flags, lisn);
1752 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1753 return H_FUNCTION;
1756 if (flags) {
1757 return H_PARAMETER;
1760 if (lisn >= xive->nr_irqs) {
1761 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1762 lisn);
1763 return H_P2;
1766 eas = xive->eat[lisn];
1767 if (!xive_eas_is_valid(&eas)) {
1768 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1769 lisn);
1770 return H_P2;
1774 * H_STATE should be returned if a H_INT_RESET is in progress.
1775 * This is not needed when running the emulation under QEMU
1779 * This is not real hardware. Nothing to be done unless when
1780 * under KVM
1783 if (spapr_xive_in_kernel(xive)) {
1784 Error *local_err = NULL;
1786 kvmppc_xive_sync_source(xive, lisn, &local_err);
1787 if (local_err) {
1788 error_report_err(local_err);
1789 return H_HARDWARE;
1792 return H_SUCCESS;
1796 * The H_INT_RESET hcall() is used to reset all of the partition's
1797 * interrupt exploitation structures to their initial state. This
1798 * means losing all previously set interrupt state set via
1799 * H_INT_SET_SOURCE_CONFIG and H_INT_SET_QUEUE_CONFIG.
1801 * Parameters:
1802 * Input:
1803 * - R4: "flags"
1804 * Bits 0-63: Reserved
1806 * Output:
1807 * - None
1809 static target_ulong h_int_reset(PowerPCCPU *cpu,
1810 SpaprMachineState *spapr,
1811 target_ulong opcode,
1812 target_ulong *args)
1814 SpaprXive *xive = spapr->xive;
1815 target_ulong flags = args[0];
1817 trace_spapr_xive_reset(flags);
1819 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1820 return H_FUNCTION;
1823 if (flags) {
1824 return H_PARAMETER;
1827 device_cold_reset(DEVICE(xive));
1829 if (spapr_xive_in_kernel(xive)) {
1830 Error *local_err = NULL;
1832 kvmppc_xive_reset(xive, &local_err);
1833 if (local_err) {
1834 error_report_err(local_err);
1835 return H_HARDWARE;
1838 return H_SUCCESS;
1841 void spapr_xive_hcall_init(SpaprMachineState *spapr)
1843 spapr_register_hypercall(H_INT_GET_SOURCE_INFO, h_int_get_source_info);
1844 spapr_register_hypercall(H_INT_SET_SOURCE_CONFIG, h_int_set_source_config);
1845 spapr_register_hypercall(H_INT_GET_SOURCE_CONFIG, h_int_get_source_config);
1846 spapr_register_hypercall(H_INT_GET_QUEUE_INFO, h_int_get_queue_info);
1847 spapr_register_hypercall(H_INT_SET_QUEUE_CONFIG, h_int_set_queue_config);
1848 spapr_register_hypercall(H_INT_GET_QUEUE_CONFIG, h_int_get_queue_config);
1849 spapr_register_hypercall(H_INT_SET_OS_REPORTING_LINE,
1850 h_int_set_os_reporting_line);
1851 spapr_register_hypercall(H_INT_GET_OS_REPORTING_LINE,
1852 h_int_get_os_reporting_line);
1853 spapr_register_hypercall(H_INT_ESB, h_int_esb);
1854 spapr_register_hypercall(H_INT_SYNC, h_int_sync);
1855 spapr_register_hypercall(H_INT_RESET, h_int_reset);