audio: replace the resampling loop in audio_pcm_sw_write()
[qemu/ar7.git] / hw / core / loader.c
blob173f8f67f6e3e79c714dd4b8c7254fd2d2e48b37
1 /*
2 * QEMU Executable loader
4 * Copyright (c) 2006 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 * Gunzip functionality in this file is derived from u-boot:
26 * (C) Copyright 2008 Semihalf
28 * (C) Copyright 2000-2005
29 * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
31 * This program is free software; you can redistribute it and/or
32 * modify it under the terms of the GNU General Public License as
33 * published by the Free Software Foundation; either version 2 of
34 * the License, or (at your option) any later version.
36 * This program is distributed in the hope that it will be useful,
37 * but WITHOUT ANY WARRANTY; without even the implied warranty of
38 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
39 * GNU General Public License for more details.
41 * You should have received a copy of the GNU General Public License along
42 * with this program; if not, see <http://www.gnu.org/licenses/>.
45 #include "qemu/osdep.h"
46 #include "qemu/datadir.h"
47 #include "qapi/error.h"
48 #include "qapi/qapi-commands-machine.h"
49 #include "qapi/type-helpers.h"
50 #include "trace.h"
51 #include "hw/hw.h"
52 #include "disas/disas.h"
53 #include "migration/vmstate.h"
54 #include "monitor/monitor.h"
55 #include "sysemu/reset.h"
56 #include "sysemu/sysemu.h"
57 #include "uboot_image.h"
58 #include "hw/loader.h"
59 #include "hw/nvram/fw_cfg.h"
60 #include "exec/memory.h"
61 #include "hw/boards.h"
62 #include "qemu/cutils.h"
63 #include "sysemu/runstate.h"
64 #include "accel/tcg/debuginfo.h"
66 #include <zlib.h>
68 static int roms_loaded;
70 /* return the size or -1 if error */
71 int64_t get_image_size(const char *filename)
73 int fd;
74 int64_t size;
75 fd = open(filename, O_RDONLY | O_BINARY);
76 if (fd < 0)
77 return -1;
78 size = lseek(fd, 0, SEEK_END);
79 close(fd);
80 return size;
83 /* return the size or -1 if error */
84 ssize_t load_image_size(const char *filename, void *addr, size_t size)
86 int fd;
87 ssize_t actsize, l = 0;
89 fd = open(filename, O_RDONLY | O_BINARY);
90 if (fd < 0) {
91 return -1;
94 while ((actsize = read(fd, addr + l, size - l)) > 0) {
95 l += actsize;
98 close(fd);
100 return actsize < 0 ? -1 : l;
103 /* read()-like version */
104 ssize_t read_targphys(const char *name,
105 int fd, hwaddr dst_addr, size_t nbytes)
107 uint8_t *buf;
108 ssize_t did;
110 buf = g_malloc(nbytes);
111 did = read(fd, buf, nbytes);
112 if (did > 0)
113 rom_add_blob_fixed("read", buf, did, dst_addr);
114 g_free(buf);
115 return did;
118 ssize_t load_image_targphys(const char *filename,
119 hwaddr addr, uint64_t max_sz)
121 return load_image_targphys_as(filename, addr, max_sz, NULL);
124 /* return the size or -1 if error */
125 ssize_t load_image_targphys_as(const char *filename,
126 hwaddr addr, uint64_t max_sz, AddressSpace *as)
128 ssize_t size;
130 size = get_image_size(filename);
131 if (size < 0 || size > max_sz) {
132 return -1;
134 if (size > 0) {
135 if (rom_add_file_fixed_as(filename, addr, -1, as) < 0) {
136 return -1;
139 return size;
142 ssize_t load_image_mr(const char *filename, MemoryRegion *mr)
144 ssize_t size;
146 if (!memory_access_is_direct(mr, false)) {
147 /* Can only load an image into RAM or ROM */
148 return -1;
151 size = get_image_size(filename);
153 if (size < 0 || size > memory_region_size(mr)) {
154 return -1;
156 if (size > 0) {
157 if (rom_add_file_mr(filename, mr, -1) < 0) {
158 return -1;
161 return size;
164 void pstrcpy_targphys(const char *name, hwaddr dest, int buf_size,
165 const char *source)
167 const char *nulp;
168 char *ptr;
170 if (buf_size <= 0) return;
171 nulp = memchr(source, 0, buf_size);
172 if (nulp) {
173 rom_add_blob_fixed(name, source, (nulp - source) + 1, dest);
174 } else {
175 rom_add_blob_fixed(name, source, buf_size, dest);
176 ptr = rom_ptr(dest + buf_size - 1, sizeof(*ptr));
177 *ptr = 0;
181 /* A.OUT loader */
183 struct exec
185 uint32_t a_info; /* Use macros N_MAGIC, etc for access */
186 uint32_t a_text; /* length of text, in bytes */
187 uint32_t a_data; /* length of data, in bytes */
188 uint32_t a_bss; /* length of uninitialized data area, in bytes */
189 uint32_t a_syms; /* length of symbol table data in file, in bytes */
190 uint32_t a_entry; /* start address */
191 uint32_t a_trsize; /* length of relocation info for text, in bytes */
192 uint32_t a_drsize; /* length of relocation info for data, in bytes */
195 static void bswap_ahdr(struct exec *e)
197 bswap32s(&e->a_info);
198 bswap32s(&e->a_text);
199 bswap32s(&e->a_data);
200 bswap32s(&e->a_bss);
201 bswap32s(&e->a_syms);
202 bswap32s(&e->a_entry);
203 bswap32s(&e->a_trsize);
204 bswap32s(&e->a_drsize);
207 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
208 #define OMAGIC 0407
209 #define NMAGIC 0410
210 #define ZMAGIC 0413
211 #define QMAGIC 0314
212 #define _N_HDROFF(x) (1024 - sizeof (struct exec))
213 #define N_TXTOFF(x) \
214 (N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) : \
215 (N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec)))
216 #define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0)
217 #define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1))
219 #define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text)
221 #define N_DATADDR(x, target_page_size) \
222 (N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \
223 : (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size)))
226 ssize_t load_aout(const char *filename, hwaddr addr, int max_sz,
227 int bswap_needed, hwaddr target_page_size)
229 int fd;
230 ssize_t size, ret;
231 struct exec e;
232 uint32_t magic;
234 fd = open(filename, O_RDONLY | O_BINARY);
235 if (fd < 0)
236 return -1;
238 size = read(fd, &e, sizeof(e));
239 if (size < 0)
240 goto fail;
242 if (bswap_needed) {
243 bswap_ahdr(&e);
246 magic = N_MAGIC(e);
247 switch (magic) {
248 case ZMAGIC:
249 case QMAGIC:
250 case OMAGIC:
251 if (e.a_text + e.a_data > max_sz)
252 goto fail;
253 lseek(fd, N_TXTOFF(e), SEEK_SET);
254 size = read_targphys(filename, fd, addr, e.a_text + e.a_data);
255 if (size < 0)
256 goto fail;
257 break;
258 case NMAGIC:
259 if (N_DATADDR(e, target_page_size) + e.a_data > max_sz)
260 goto fail;
261 lseek(fd, N_TXTOFF(e), SEEK_SET);
262 size = read_targphys(filename, fd, addr, e.a_text);
263 if (size < 0)
264 goto fail;
265 ret = read_targphys(filename, fd, addr + N_DATADDR(e, target_page_size),
266 e.a_data);
267 if (ret < 0)
268 goto fail;
269 size += ret;
270 break;
271 default:
272 goto fail;
274 close(fd);
275 return size;
276 fail:
277 close(fd);
278 return -1;
281 /* ELF loader */
283 static void *load_at(int fd, off_t offset, size_t size)
285 void *ptr;
286 if (lseek(fd, offset, SEEK_SET) < 0)
287 return NULL;
288 ptr = g_malloc(size);
289 if (read(fd, ptr, size) != size) {
290 g_free(ptr);
291 return NULL;
293 return ptr;
296 #ifdef ELF_CLASS
297 #undef ELF_CLASS
298 #endif
300 #define ELF_CLASS ELFCLASS32
301 #include "elf.h"
303 #define SZ 32
304 #define elf_word uint32_t
305 #define elf_sword int32_t
306 #define bswapSZs bswap32s
307 #include "hw/elf_ops.h"
309 #undef elfhdr
310 #undef elf_phdr
311 #undef elf_shdr
312 #undef elf_sym
313 #undef elf_rela
314 #undef elf_note
315 #undef elf_word
316 #undef elf_sword
317 #undef bswapSZs
318 #undef SZ
319 #define elfhdr elf64_hdr
320 #define elf_phdr elf64_phdr
321 #define elf_note elf64_note
322 #define elf_shdr elf64_shdr
323 #define elf_sym elf64_sym
324 #define elf_rela elf64_rela
325 #define elf_word uint64_t
326 #define elf_sword int64_t
327 #define bswapSZs bswap64s
328 #define SZ 64
329 #include "hw/elf_ops.h"
331 const char *load_elf_strerror(ssize_t error)
333 switch (error) {
334 case 0:
335 return "No error";
336 case ELF_LOAD_FAILED:
337 return "Failed to load ELF";
338 case ELF_LOAD_NOT_ELF:
339 return "The image is not ELF";
340 case ELF_LOAD_WRONG_ARCH:
341 return "The image is from incompatible architecture";
342 case ELF_LOAD_WRONG_ENDIAN:
343 return "The image has incorrect endianness";
344 case ELF_LOAD_TOO_BIG:
345 return "The image segments are too big to load";
346 default:
347 return "Unknown error";
351 void load_elf_hdr(const char *filename, void *hdr, bool *is64, Error **errp)
353 int fd;
354 uint8_t e_ident_local[EI_NIDENT];
355 uint8_t *e_ident;
356 size_t hdr_size, off;
357 bool is64l;
359 if (!hdr) {
360 hdr = e_ident_local;
362 e_ident = hdr;
364 fd = open(filename, O_RDONLY | O_BINARY);
365 if (fd < 0) {
366 error_setg_errno(errp, errno, "Failed to open file: %s", filename);
367 return;
369 if (read(fd, hdr, EI_NIDENT) != EI_NIDENT) {
370 error_setg_errno(errp, errno, "Failed to read file: %s", filename);
371 goto fail;
373 if (e_ident[0] != ELFMAG0 ||
374 e_ident[1] != ELFMAG1 ||
375 e_ident[2] != ELFMAG2 ||
376 e_ident[3] != ELFMAG3) {
377 error_setg(errp, "Bad ELF magic");
378 goto fail;
381 is64l = e_ident[EI_CLASS] == ELFCLASS64;
382 hdr_size = is64l ? sizeof(Elf64_Ehdr) : sizeof(Elf32_Ehdr);
383 if (is64) {
384 *is64 = is64l;
387 off = EI_NIDENT;
388 while (hdr != e_ident_local && off < hdr_size) {
389 size_t br = read(fd, hdr + off, hdr_size - off);
390 switch (br) {
391 case 0:
392 error_setg(errp, "File too short: %s", filename);
393 goto fail;
394 case -1:
395 error_setg_errno(errp, errno, "Failed to read file: %s",
396 filename);
397 goto fail;
399 off += br;
402 fail:
403 close(fd);
406 /* return < 0 if error, otherwise the number of bytes loaded in memory */
407 ssize_t load_elf(const char *filename,
408 uint64_t (*elf_note_fn)(void *, void *, bool),
409 uint64_t (*translate_fn)(void *, uint64_t),
410 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
411 uint64_t *highaddr, uint32_t *pflags, int big_endian,
412 int elf_machine, int clear_lsb, int data_swab)
414 return load_elf_as(filename, elf_note_fn, translate_fn, translate_opaque,
415 pentry, lowaddr, highaddr, pflags, big_endian,
416 elf_machine, clear_lsb, data_swab, NULL);
419 /* return < 0 if error, otherwise the number of bytes loaded in memory */
420 ssize_t load_elf_as(const char *filename,
421 uint64_t (*elf_note_fn)(void *, void *, bool),
422 uint64_t (*translate_fn)(void *, uint64_t),
423 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
424 uint64_t *highaddr, uint32_t *pflags, int big_endian,
425 int elf_machine, int clear_lsb, int data_swab,
426 AddressSpace *as)
428 return load_elf_ram(filename, elf_note_fn, translate_fn, translate_opaque,
429 pentry, lowaddr, highaddr, pflags, big_endian,
430 elf_machine, clear_lsb, data_swab, as, true);
433 /* return < 0 if error, otherwise the number of bytes loaded in memory */
434 ssize_t load_elf_ram(const char *filename,
435 uint64_t (*elf_note_fn)(void *, void *, bool),
436 uint64_t (*translate_fn)(void *, uint64_t),
437 void *translate_opaque, uint64_t *pentry,
438 uint64_t *lowaddr, uint64_t *highaddr, uint32_t *pflags,
439 int big_endian, int elf_machine, int clear_lsb,
440 int data_swab, AddressSpace *as, bool load_rom)
442 return load_elf_ram_sym(filename, elf_note_fn,
443 translate_fn, translate_opaque,
444 pentry, lowaddr, highaddr, pflags, big_endian,
445 elf_machine, clear_lsb, data_swab, as,
446 load_rom, NULL);
449 /* return < 0 if error, otherwise the number of bytes loaded in memory */
450 ssize_t load_elf_ram_sym(const char *filename,
451 uint64_t (*elf_note_fn)(void *, void *, bool),
452 uint64_t (*translate_fn)(void *, uint64_t),
453 void *translate_opaque, uint64_t *pentry,
454 uint64_t *lowaddr, uint64_t *highaddr,
455 uint32_t *pflags, int big_endian, int elf_machine,
456 int clear_lsb, int data_swab,
457 AddressSpace *as, bool load_rom, symbol_fn_t sym_cb)
459 int fd, data_order, target_data_order, must_swab;
460 ssize_t ret = ELF_LOAD_FAILED;
461 uint8_t e_ident[EI_NIDENT];
463 fd = open(filename, O_RDONLY | O_BINARY);
464 if (fd < 0) {
465 perror(filename);
466 return -1;
468 if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident))
469 goto fail;
470 if (e_ident[0] != ELFMAG0 ||
471 e_ident[1] != ELFMAG1 ||
472 e_ident[2] != ELFMAG2 ||
473 e_ident[3] != ELFMAG3) {
474 ret = ELF_LOAD_NOT_ELF;
475 goto fail;
477 #if HOST_BIG_ENDIAN
478 data_order = ELFDATA2MSB;
479 #else
480 data_order = ELFDATA2LSB;
481 #endif
482 must_swab = data_order != e_ident[EI_DATA];
483 if (big_endian) {
484 target_data_order = ELFDATA2MSB;
485 } else {
486 target_data_order = ELFDATA2LSB;
489 if (target_data_order != e_ident[EI_DATA]) {
490 ret = ELF_LOAD_WRONG_ENDIAN;
491 goto fail;
494 lseek(fd, 0, SEEK_SET);
495 if (e_ident[EI_CLASS] == ELFCLASS64) {
496 ret = load_elf64(filename, fd, elf_note_fn,
497 translate_fn, translate_opaque, must_swab,
498 pentry, lowaddr, highaddr, pflags, elf_machine,
499 clear_lsb, data_swab, as, load_rom, sym_cb);
500 } else {
501 ret = load_elf32(filename, fd, elf_note_fn,
502 translate_fn, translate_opaque, must_swab,
503 pentry, lowaddr, highaddr, pflags, elf_machine,
504 clear_lsb, data_swab, as, load_rom, sym_cb);
507 if (ret != ELF_LOAD_FAILED) {
508 debuginfo_report_elf(filename, fd, 0);
511 fail:
512 close(fd);
513 return ret;
516 static void bswap_uboot_header(uboot_image_header_t *hdr)
518 #if !HOST_BIG_ENDIAN
519 bswap32s(&hdr->ih_magic);
520 bswap32s(&hdr->ih_hcrc);
521 bswap32s(&hdr->ih_time);
522 bswap32s(&hdr->ih_size);
523 bswap32s(&hdr->ih_load);
524 bswap32s(&hdr->ih_ep);
525 bswap32s(&hdr->ih_dcrc);
526 #endif
530 #define ZALLOC_ALIGNMENT 16
532 static void *zalloc(void *x, unsigned items, unsigned size)
534 void *p;
536 size *= items;
537 size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1);
539 p = g_malloc(size);
541 return (p);
544 static void zfree(void *x, void *addr)
546 g_free(addr);
550 #define HEAD_CRC 2
551 #define EXTRA_FIELD 4
552 #define ORIG_NAME 8
553 #define COMMENT 0x10
554 #define RESERVED 0xe0
556 #define DEFLATED 8
558 ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, size_t srclen)
560 z_stream s;
561 ssize_t dstbytes;
562 int r, i, flags;
564 /* skip header */
565 i = 10;
566 if (srclen < 4) {
567 goto toosmall;
569 flags = src[3];
570 if (src[2] != DEFLATED || (flags & RESERVED) != 0) {
571 puts ("Error: Bad gzipped data\n");
572 return -1;
574 if ((flags & EXTRA_FIELD) != 0) {
575 if (srclen < 12) {
576 goto toosmall;
578 i = 12 + src[10] + (src[11] << 8);
580 if ((flags & ORIG_NAME) != 0) {
581 while (i < srclen && src[i++] != 0) {
582 /* do nothing */
585 if ((flags & COMMENT) != 0) {
586 while (i < srclen && src[i++] != 0) {
587 /* do nothing */
590 if ((flags & HEAD_CRC) != 0) {
591 i += 2;
593 if (i >= srclen) {
594 goto toosmall;
597 s.zalloc = zalloc;
598 s.zfree = zfree;
600 r = inflateInit2(&s, -MAX_WBITS);
601 if (r != Z_OK) {
602 printf ("Error: inflateInit2() returned %d\n", r);
603 return (-1);
605 s.next_in = src + i;
606 s.avail_in = srclen - i;
607 s.next_out = dst;
608 s.avail_out = dstlen;
609 r = inflate(&s, Z_FINISH);
610 if (r != Z_OK && r != Z_STREAM_END) {
611 printf ("Error: inflate() returned %d\n", r);
612 return -1;
614 dstbytes = s.next_out - (unsigned char *) dst;
615 inflateEnd(&s);
617 return dstbytes;
619 toosmall:
620 puts("Error: gunzip out of data in header\n");
621 return -1;
624 /* Load a U-Boot image. */
625 static ssize_t load_uboot_image(const char *filename, hwaddr *ep,
626 hwaddr *loadaddr, int *is_linux,
627 uint8_t image_type,
628 uint64_t (*translate_fn)(void *, uint64_t),
629 void *translate_opaque, AddressSpace *as)
631 int fd;
632 ssize_t size;
633 hwaddr address;
634 uboot_image_header_t h;
635 uboot_image_header_t *hdr = &h;
636 uint8_t *data = NULL;
637 int ret = -1;
638 int do_uncompress = 0;
640 fd = open(filename, O_RDONLY | O_BINARY);
641 if (fd < 0)
642 return -1;
644 size = read(fd, hdr, sizeof(uboot_image_header_t));
645 if (size < sizeof(uboot_image_header_t)) {
646 goto out;
649 bswap_uboot_header(hdr);
651 if (hdr->ih_magic != IH_MAGIC)
652 goto out;
654 if (hdr->ih_type != image_type) {
655 if (!(image_type == IH_TYPE_KERNEL &&
656 hdr->ih_type == IH_TYPE_KERNEL_NOLOAD)) {
657 fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type,
658 image_type);
659 goto out;
663 /* TODO: Implement other image types. */
664 switch (hdr->ih_type) {
665 case IH_TYPE_KERNEL_NOLOAD:
666 if (!loadaddr || *loadaddr == LOAD_UIMAGE_LOADADDR_INVALID) {
667 fprintf(stderr, "this image format (kernel_noload) cannot be "
668 "loaded on this machine type");
669 goto out;
672 hdr->ih_load = *loadaddr + sizeof(*hdr);
673 hdr->ih_ep += hdr->ih_load;
674 /* fall through */
675 case IH_TYPE_KERNEL:
676 address = hdr->ih_load;
677 if (translate_fn) {
678 address = translate_fn(translate_opaque, address);
680 if (loadaddr) {
681 *loadaddr = hdr->ih_load;
684 switch (hdr->ih_comp) {
685 case IH_COMP_NONE:
686 break;
687 case IH_COMP_GZIP:
688 do_uncompress = 1;
689 break;
690 default:
691 fprintf(stderr,
692 "Unable to load u-boot images with compression type %d\n",
693 hdr->ih_comp);
694 goto out;
697 if (ep) {
698 *ep = hdr->ih_ep;
701 /* TODO: Check CPU type. */
702 if (is_linux) {
703 if (hdr->ih_os == IH_OS_LINUX) {
704 *is_linux = 1;
705 } else if (hdr->ih_os == IH_OS_VXWORKS) {
707 * VxWorks 7 uses the same boot interface as the Linux kernel
708 * on Arm (64-bit only), PowerPC and RISC-V architectures.
710 switch (hdr->ih_arch) {
711 case IH_ARCH_ARM64:
712 case IH_ARCH_PPC:
713 case IH_ARCH_RISCV:
714 *is_linux = 1;
715 break;
716 default:
717 *is_linux = 0;
718 break;
720 } else {
721 *is_linux = 0;
725 break;
726 case IH_TYPE_RAMDISK:
727 address = *loadaddr;
728 break;
729 default:
730 fprintf(stderr, "Unsupported u-boot image type %d\n", hdr->ih_type);
731 goto out;
734 data = g_malloc(hdr->ih_size);
736 if (read(fd, data, hdr->ih_size) != hdr->ih_size) {
737 fprintf(stderr, "Error reading file\n");
738 goto out;
741 if (do_uncompress) {
742 uint8_t *compressed_data;
743 size_t max_bytes;
744 ssize_t bytes;
746 compressed_data = data;
747 max_bytes = UBOOT_MAX_GUNZIP_BYTES;
748 data = g_malloc(max_bytes);
750 bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size);
751 g_free(compressed_data);
752 if (bytes < 0) {
753 fprintf(stderr, "Unable to decompress gzipped image!\n");
754 goto out;
756 hdr->ih_size = bytes;
759 rom_add_blob_fixed_as(filename, data, hdr->ih_size, address, as);
761 ret = hdr->ih_size;
763 out:
764 g_free(data);
765 close(fd);
766 return ret;
769 ssize_t load_uimage(const char *filename, hwaddr *ep, hwaddr *loadaddr,
770 int *is_linux,
771 uint64_t (*translate_fn)(void *, uint64_t),
772 void *translate_opaque)
774 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL,
775 translate_fn, translate_opaque, NULL);
778 ssize_t load_uimage_as(const char *filename, hwaddr *ep, hwaddr *loadaddr,
779 int *is_linux,
780 uint64_t (*translate_fn)(void *, uint64_t),
781 void *translate_opaque, AddressSpace *as)
783 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL,
784 translate_fn, translate_opaque, as);
787 /* Load a ramdisk. */
788 ssize_t load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz)
790 return load_ramdisk_as(filename, addr, max_sz, NULL);
793 ssize_t load_ramdisk_as(const char *filename, hwaddr addr, uint64_t max_sz,
794 AddressSpace *as)
796 return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK,
797 NULL, NULL, as);
800 /* Load a gzip-compressed kernel to a dynamically allocated buffer. */
801 ssize_t load_image_gzipped_buffer(const char *filename, uint64_t max_sz,
802 uint8_t **buffer)
804 uint8_t *compressed_data = NULL;
805 uint8_t *data = NULL;
806 gsize len;
807 ssize_t bytes;
808 int ret = -1;
810 if (!g_file_get_contents(filename, (char **) &compressed_data, &len,
811 NULL)) {
812 goto out;
815 /* Is it a gzip-compressed file? */
816 if (len < 2 ||
817 compressed_data[0] != 0x1f ||
818 compressed_data[1] != 0x8b) {
819 goto out;
822 if (max_sz > LOAD_IMAGE_MAX_GUNZIP_BYTES) {
823 max_sz = LOAD_IMAGE_MAX_GUNZIP_BYTES;
826 data = g_malloc(max_sz);
827 bytes = gunzip(data, max_sz, compressed_data, len);
828 if (bytes < 0) {
829 fprintf(stderr, "%s: unable to decompress gzipped kernel file\n",
830 filename);
831 goto out;
834 /* trim to actual size and return to caller */
835 *buffer = g_realloc(data, bytes);
836 ret = bytes;
837 /* ownership has been transferred to caller */
838 data = NULL;
840 out:
841 g_free(compressed_data);
842 g_free(data);
843 return ret;
846 /* Load a gzip-compressed kernel. */
847 ssize_t load_image_gzipped(const char *filename, hwaddr addr, uint64_t max_sz)
849 ssize_t bytes;
850 uint8_t *data;
852 bytes = load_image_gzipped_buffer(filename, max_sz, &data);
853 if (bytes != -1) {
854 rom_add_blob_fixed(filename, data, bytes, addr);
855 g_free(data);
857 return bytes;
861 * Functions for reboot-persistent memory regions.
862 * - used for vga bios and option roms.
863 * - also linux kernel (-kernel / -initrd).
866 typedef struct Rom Rom;
868 struct Rom {
869 char *name;
870 char *path;
872 /* datasize is the amount of memory allocated in "data". If datasize is less
873 * than romsize, it means that the area from datasize to romsize is filled
874 * with zeros.
876 size_t romsize;
877 size_t datasize;
879 uint8_t *data;
880 MemoryRegion *mr;
881 AddressSpace *as;
882 int isrom;
883 char *fw_dir;
884 char *fw_file;
885 GMappedFile *mapped_file;
887 bool committed;
889 hwaddr addr;
890 QTAILQ_ENTRY(Rom) next;
893 static FWCfgState *fw_cfg;
894 static QTAILQ_HEAD(, Rom) roms = QTAILQ_HEAD_INITIALIZER(roms);
897 * rom->data can be heap-allocated or memory-mapped (e.g. when added with
898 * rom_add_elf_program())
900 static void rom_free_data(Rom *rom)
902 if (rom->mapped_file) {
903 g_mapped_file_unref(rom->mapped_file);
904 rom->mapped_file = NULL;
905 } else {
906 g_free(rom->data);
909 rom->data = NULL;
912 static void rom_free(Rom *rom)
914 rom_free_data(rom);
915 g_free(rom->path);
916 g_free(rom->name);
917 g_free(rom->fw_dir);
918 g_free(rom->fw_file);
919 g_free(rom);
922 static inline bool rom_order_compare(Rom *rom, Rom *item)
924 return ((uintptr_t)(void *)rom->as > (uintptr_t)(void *)item->as) ||
925 (rom->as == item->as && rom->addr >= item->addr);
928 static void rom_insert(Rom *rom)
930 Rom *item;
932 if (roms_loaded) {
933 hw_error ("ROM images must be loaded at startup\n");
936 /* The user didn't specify an address space, this is the default */
937 if (!rom->as) {
938 rom->as = &address_space_memory;
941 rom->committed = false;
943 /* List is ordered by load address in the same address space */
944 QTAILQ_FOREACH(item, &roms, next) {
945 if (rom_order_compare(rom, item)) {
946 continue;
948 QTAILQ_INSERT_BEFORE(item, rom, next);
949 return;
951 QTAILQ_INSERT_TAIL(&roms, rom, next);
954 static void fw_cfg_resized(const char *id, uint64_t length, void *host)
956 if (fw_cfg) {
957 fw_cfg_modify_file(fw_cfg, id + strlen("/rom@"), host, length);
961 static void *rom_set_mr(Rom *rom, Object *owner, const char *name, bool ro)
963 void *data;
965 rom->mr = g_malloc(sizeof(*rom->mr));
966 memory_region_init_resizeable_ram(rom->mr, owner, name,
967 rom->datasize, rom->romsize,
968 fw_cfg_resized,
969 &error_fatal);
970 memory_region_set_readonly(rom->mr, ro);
971 vmstate_register_ram_global(rom->mr);
973 data = memory_region_get_ram_ptr(rom->mr);
974 memcpy(data, rom->data, rom->datasize);
976 return data;
979 ssize_t rom_add_file(const char *file, const char *fw_dir,
980 hwaddr addr, int32_t bootindex,
981 bool option_rom, MemoryRegion *mr,
982 AddressSpace *as)
984 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
985 Rom *rom;
986 ssize_t rc;
987 int fd = -1;
988 char devpath[100];
990 if (as && mr) {
991 fprintf(stderr, "Specifying an Address Space and Memory Region is " \
992 "not valid when loading a rom\n");
993 /* We haven't allocated anything so we don't need any cleanup */
994 return -1;
997 rom = g_malloc0(sizeof(*rom));
998 rom->name = g_strdup(file);
999 rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name);
1000 rom->as = as;
1001 if (rom->path == NULL) {
1002 rom->path = g_strdup(file);
1005 fd = open(rom->path, O_RDONLY | O_BINARY);
1006 if (fd == -1) {
1007 fprintf(stderr, "Could not open option rom '%s': %s\n",
1008 rom->path, strerror(errno));
1009 goto err;
1012 if (fw_dir) {
1013 rom->fw_dir = g_strdup(fw_dir);
1014 rom->fw_file = g_strdup(file);
1016 rom->addr = addr;
1017 rom->romsize = lseek(fd, 0, SEEK_END);
1018 if (rom->romsize == -1) {
1019 fprintf(stderr, "rom: file %-20s: get size error: %s\n",
1020 rom->name, strerror(errno));
1021 goto err;
1024 rom->datasize = rom->romsize;
1025 rom->data = g_malloc0(rom->datasize);
1026 lseek(fd, 0, SEEK_SET);
1027 rc = read(fd, rom->data, rom->datasize);
1028 if (rc != rom->datasize) {
1029 fprintf(stderr, "rom: file %-20s: read error: rc=%zd (expected %zd)\n",
1030 rom->name, rc, rom->datasize);
1031 goto err;
1033 close(fd);
1034 rom_insert(rom);
1035 if (rom->fw_file && fw_cfg) {
1036 const char *basename;
1037 char fw_file_name[FW_CFG_MAX_FILE_PATH];
1038 void *data;
1040 basename = strrchr(rom->fw_file, '/');
1041 if (basename) {
1042 basename++;
1043 } else {
1044 basename = rom->fw_file;
1046 snprintf(fw_file_name, sizeof(fw_file_name), "%s/%s", rom->fw_dir,
1047 basename);
1048 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name);
1050 if ((!option_rom || mc->option_rom_has_mr) && mc->rom_file_has_mr) {
1051 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, true);
1052 } else {
1053 data = rom->data;
1056 fw_cfg_add_file(fw_cfg, fw_file_name, data, rom->romsize);
1057 } else {
1058 if (mr) {
1059 rom->mr = mr;
1060 snprintf(devpath, sizeof(devpath), "/rom@%s", file);
1061 } else {
1062 snprintf(devpath, sizeof(devpath), "/rom@" HWADDR_FMT_plx, addr);
1066 add_boot_device_path(bootindex, NULL, devpath);
1067 return 0;
1069 err:
1070 if (fd != -1)
1071 close(fd);
1073 rom_free(rom);
1074 return -1;
1077 MemoryRegion *rom_add_blob(const char *name, const void *blob, size_t len,
1078 size_t max_len, hwaddr addr, const char *fw_file_name,
1079 FWCfgCallback fw_callback, void *callback_opaque,
1080 AddressSpace *as, bool read_only)
1082 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
1083 Rom *rom;
1084 MemoryRegion *mr = NULL;
1086 rom = g_malloc0(sizeof(*rom));
1087 rom->name = g_strdup(name);
1088 rom->as = as;
1089 rom->addr = addr;
1090 rom->romsize = max_len ? max_len : len;
1091 rom->datasize = len;
1092 g_assert(rom->romsize >= rom->datasize);
1093 rom->data = g_malloc0(rom->datasize);
1094 memcpy(rom->data, blob, len);
1095 rom_insert(rom);
1096 if (fw_file_name && fw_cfg) {
1097 char devpath[100];
1098 void *data;
1100 if (read_only) {
1101 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name);
1102 } else {
1103 snprintf(devpath, sizeof(devpath), "/ram@%s", fw_file_name);
1106 if (mc->rom_file_has_mr) {
1107 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, read_only);
1108 mr = rom->mr;
1109 } else {
1110 data = rom->data;
1113 fw_cfg_add_file_callback(fw_cfg, fw_file_name,
1114 fw_callback, NULL, callback_opaque,
1115 data, rom->datasize, read_only);
1117 return mr;
1120 /* This function is specific for elf program because we don't need to allocate
1121 * all the rom. We just allocate the first part and the rest is just zeros. This
1122 * is why romsize and datasize are different. Also, this function takes its own
1123 * reference to "mapped_file", so we don't have to allocate and copy the buffer.
1125 int rom_add_elf_program(const char *name, GMappedFile *mapped_file, void *data,
1126 size_t datasize, size_t romsize, hwaddr addr,
1127 AddressSpace *as)
1129 Rom *rom;
1131 rom = g_malloc0(sizeof(*rom));
1132 rom->name = g_strdup(name);
1133 rom->addr = addr;
1134 rom->datasize = datasize;
1135 rom->romsize = romsize;
1136 rom->data = data;
1137 rom->as = as;
1139 if (mapped_file && data) {
1140 g_mapped_file_ref(mapped_file);
1141 rom->mapped_file = mapped_file;
1144 rom_insert(rom);
1145 return 0;
1148 ssize_t rom_add_vga(const char *file)
1150 return rom_add_file(file, "vgaroms", 0, -1, true, NULL, NULL);
1153 ssize_t rom_add_option(const char *file, int32_t bootindex)
1155 return rom_add_file(file, "genroms", 0, bootindex, true, NULL, NULL);
1158 static void rom_reset(void *unused)
1160 Rom *rom;
1162 QTAILQ_FOREACH(rom, &roms, next) {
1163 if (rom->fw_file) {
1164 continue;
1167 * We don't need to fill in the RAM with ROM data because we'll fill
1168 * the data in during the next incoming migration in all cases. Note
1169 * that some of those RAMs can actually be modified by the guest.
1171 if (runstate_check(RUN_STATE_INMIGRATE)) {
1172 if (rom->data && rom->isrom) {
1174 * Free it so that a rom_reset after migration doesn't
1175 * overwrite a potentially modified 'rom'.
1177 rom_free_data(rom);
1179 continue;
1182 if (rom->data == NULL) {
1183 continue;
1185 if (rom->mr) {
1186 void *host = memory_region_get_ram_ptr(rom->mr);
1187 memcpy(host, rom->data, rom->datasize);
1188 memset(host + rom->datasize, 0, rom->romsize - rom->datasize);
1189 } else {
1190 address_space_write_rom(rom->as, rom->addr, MEMTXATTRS_UNSPECIFIED,
1191 rom->data, rom->datasize);
1192 address_space_set(rom->as, rom->addr + rom->datasize, 0,
1193 rom->romsize - rom->datasize,
1194 MEMTXATTRS_UNSPECIFIED);
1196 if (rom->isrom) {
1197 /* rom needs to be written only once */
1198 rom_free_data(rom);
1201 * The rom loader is really on the same level as firmware in the guest
1202 * shadowing a ROM into RAM. Such a shadowing mechanism needs to ensure
1203 * that the instruction cache for that new region is clear, so that the
1204 * CPU definitely fetches its instructions from the just written data.
1206 cpu_flush_icache_range(rom->addr, rom->datasize);
1208 trace_loader_write_rom(rom->name, rom->addr, rom->datasize, rom->isrom);
1212 /* Return true if two consecutive ROMs in the ROM list overlap */
1213 static bool roms_overlap(Rom *last_rom, Rom *this_rom)
1215 if (!last_rom) {
1216 return false;
1218 return last_rom->as == this_rom->as &&
1219 last_rom->addr + last_rom->romsize > this_rom->addr;
1222 static const char *rom_as_name(Rom *rom)
1224 const char *name = rom->as ? rom->as->name : NULL;
1225 return name ?: "anonymous";
1228 static void rom_print_overlap_error_header(void)
1230 error_report("Some ROM regions are overlapping");
1231 error_printf(
1232 "These ROM regions might have been loaded by "
1233 "direct user request or by default.\n"
1234 "They could be BIOS/firmware images, a guest kernel, "
1235 "initrd or some other file loaded into guest memory.\n"
1236 "Check whether you intended to load all this guest code, and "
1237 "whether it has been built to load to the correct addresses.\n");
1240 static void rom_print_one_overlap_error(Rom *last_rom, Rom *rom)
1242 error_printf(
1243 "\nThe following two regions overlap (in the %s address space):\n",
1244 rom_as_name(rom));
1245 error_printf(
1246 " %s (addresses 0x" HWADDR_FMT_plx " - 0x" HWADDR_FMT_plx ")\n",
1247 last_rom->name, last_rom->addr, last_rom->addr + last_rom->romsize);
1248 error_printf(
1249 " %s (addresses 0x" HWADDR_FMT_plx " - 0x" HWADDR_FMT_plx ")\n",
1250 rom->name, rom->addr, rom->addr + rom->romsize);
1253 int rom_check_and_register_reset(void)
1255 MemoryRegionSection section;
1256 Rom *rom, *last_rom = NULL;
1257 bool found_overlap = false;
1259 QTAILQ_FOREACH(rom, &roms, next) {
1260 if (rom->fw_file) {
1261 continue;
1263 if (!rom->mr) {
1264 if (roms_overlap(last_rom, rom)) {
1265 if (!found_overlap) {
1266 found_overlap = true;
1267 rom_print_overlap_error_header();
1269 rom_print_one_overlap_error(last_rom, rom);
1270 /* Keep going through the list so we report all overlaps */
1272 last_rom = rom;
1274 section = memory_region_find(rom->mr ? rom->mr : get_system_memory(),
1275 rom->addr, 1);
1276 rom->isrom = int128_nz(section.size) && memory_region_is_rom(section.mr);
1277 memory_region_unref(section.mr);
1279 if (found_overlap) {
1280 return -1;
1283 qemu_register_reset(rom_reset, NULL);
1284 roms_loaded = 1;
1285 return 0;
1288 void rom_set_fw(FWCfgState *f)
1290 fw_cfg = f;
1293 void rom_set_order_override(int order)
1295 if (!fw_cfg)
1296 return;
1297 fw_cfg_set_order_override(fw_cfg, order);
1300 void rom_reset_order_override(void)
1302 if (!fw_cfg)
1303 return;
1304 fw_cfg_reset_order_override(fw_cfg);
1307 void rom_transaction_begin(void)
1309 Rom *rom;
1311 /* Ignore ROMs added without the transaction API */
1312 QTAILQ_FOREACH(rom, &roms, next) {
1313 rom->committed = true;
1317 void rom_transaction_end(bool commit)
1319 Rom *rom;
1320 Rom *tmp;
1322 QTAILQ_FOREACH_SAFE(rom, &roms, next, tmp) {
1323 if (rom->committed) {
1324 continue;
1326 if (commit) {
1327 rom->committed = true;
1328 } else {
1329 QTAILQ_REMOVE(&roms, rom, next);
1330 rom_free(rom);
1335 static Rom *find_rom(hwaddr addr, size_t size)
1337 Rom *rom;
1339 QTAILQ_FOREACH(rom, &roms, next) {
1340 if (rom->fw_file) {
1341 continue;
1343 if (rom->mr) {
1344 continue;
1346 if (rom->addr > addr) {
1347 continue;
1349 if (rom->addr + rom->romsize < addr + size) {
1350 continue;
1352 return rom;
1354 return NULL;
1357 typedef struct RomSec {
1358 hwaddr base;
1359 int se; /* start/end flag */
1360 } RomSec;
1364 * Sort into address order. We break ties between rom-startpoints
1365 * and rom-endpoints in favour of the startpoint, by sorting the 0->1
1366 * transition before the 1->0 transition. Either way round would
1367 * work, but this way saves a little work later by avoiding
1368 * dealing with "gaps" of 0 length.
1370 static gint sort_secs(gconstpointer a, gconstpointer b)
1372 RomSec *ra = (RomSec *) a;
1373 RomSec *rb = (RomSec *) b;
1375 if (ra->base == rb->base) {
1376 return ra->se - rb->se;
1378 return ra->base > rb->base ? 1 : -1;
1381 static GList *add_romsec_to_list(GList *secs, hwaddr base, int se)
1383 RomSec *cand = g_new(RomSec, 1);
1384 cand->base = base;
1385 cand->se = se;
1386 return g_list_prepend(secs, cand);
1389 RomGap rom_find_largest_gap_between(hwaddr base, size_t size)
1391 Rom *rom;
1392 RomSec *cand;
1393 RomGap res = {0, 0};
1394 hwaddr gapstart = base;
1395 GList *it, *secs = NULL;
1396 int count = 0;
1398 QTAILQ_FOREACH(rom, &roms, next) {
1399 /* Ignore blobs being loaded to special places */
1400 if (rom->mr || rom->fw_file) {
1401 continue;
1403 /* ignore anything finishing bellow base */
1404 if (rom->addr + rom->romsize <= base) {
1405 continue;
1407 /* ignore anything starting above the region */
1408 if (rom->addr >= base + size) {
1409 continue;
1412 /* Save the start and end of each relevant ROM */
1413 secs = add_romsec_to_list(secs, rom->addr, 1);
1415 if (rom->addr + rom->romsize < base + size) {
1416 secs = add_romsec_to_list(secs, rom->addr + rom->romsize, -1);
1420 /* sentinel */
1421 secs = add_romsec_to_list(secs, base + size, 1);
1423 secs = g_list_sort(secs, sort_secs);
1425 for (it = g_list_first(secs); it; it = g_list_next(it)) {
1426 cand = (RomSec *) it->data;
1427 if (count == 0 && count + cand->se == 1) {
1428 size_t gap = cand->base - gapstart;
1429 if (gap > res.size) {
1430 res.base = gapstart;
1431 res.size = gap;
1433 } else if (count == 1 && count + cand->se == 0) {
1434 gapstart = cand->base;
1436 count += cand->se;
1439 g_list_free_full(secs, g_free);
1440 return res;
1444 * Copies memory from registered ROMs to dest. Any memory that is contained in
1445 * a ROM between addr and addr + size is copied. Note that this can involve
1446 * multiple ROMs, which need not start at addr and need not end at addr + size.
1448 int rom_copy(uint8_t *dest, hwaddr addr, size_t size)
1450 hwaddr end = addr + size;
1451 uint8_t *s, *d = dest;
1452 size_t l = 0;
1453 Rom *rom;
1455 QTAILQ_FOREACH(rom, &roms, next) {
1456 if (rom->fw_file) {
1457 continue;
1459 if (rom->mr) {
1460 continue;
1462 if (rom->addr + rom->romsize < addr) {
1463 continue;
1465 if (rom->addr > end || rom->addr < addr) {
1466 break;
1469 d = dest + (rom->addr - addr);
1470 s = rom->data;
1471 l = rom->datasize;
1473 if ((d + l) > (dest + size)) {
1474 l = dest - d;
1477 if (l > 0) {
1478 memcpy(d, s, l);
1481 if (rom->romsize > rom->datasize) {
1482 /* If datasize is less than romsize, it means that we didn't
1483 * allocate all the ROM because the trailing data are only zeros.
1486 d += l;
1487 l = rom->romsize - rom->datasize;
1489 if ((d + l) > (dest + size)) {
1490 /* Rom size doesn't fit in the destination area. Adjust to avoid
1491 * overflow.
1493 l = dest - d;
1496 if (l > 0) {
1497 memset(d, 0x0, l);
1502 return (d + l) - dest;
1505 void *rom_ptr(hwaddr addr, size_t size)
1507 Rom *rom;
1509 rom = find_rom(addr, size);
1510 if (!rom || !rom->data)
1511 return NULL;
1512 return rom->data + (addr - rom->addr);
1515 typedef struct FindRomCBData {
1516 size_t size; /* Amount of data we want from ROM, in bytes */
1517 MemoryRegion *mr; /* MR at the unaliased guest addr */
1518 hwaddr xlat; /* Offset of addr within mr */
1519 void *rom; /* Output: rom data pointer, if found */
1520 } FindRomCBData;
1522 static bool find_rom_cb(Int128 start, Int128 len, const MemoryRegion *mr,
1523 hwaddr offset_in_region, void *opaque)
1525 FindRomCBData *cbdata = opaque;
1526 hwaddr alias_addr;
1528 if (mr != cbdata->mr) {
1529 return false;
1532 alias_addr = int128_get64(start) + cbdata->xlat - offset_in_region;
1533 cbdata->rom = rom_ptr(alias_addr, cbdata->size);
1534 if (!cbdata->rom) {
1535 return false;
1537 /* Found a match, stop iterating */
1538 return true;
1541 void *rom_ptr_for_as(AddressSpace *as, hwaddr addr, size_t size)
1544 * Find any ROM data for the given guest address range. If there
1545 * is a ROM blob then return a pointer to the host memory
1546 * corresponding to 'addr'; otherwise return NULL.
1548 * We look not only for ROM blobs that were loaded directly to
1549 * addr, but also for ROM blobs that were loaded to aliases of
1550 * that memory at other addresses within the AddressSpace.
1552 * Note that we do not check @as against the 'as' member in the
1553 * 'struct Rom' returned by rom_ptr(). The Rom::as is the
1554 * AddressSpace which the rom blob should be written to, whereas
1555 * our @as argument is the AddressSpace which we are (effectively)
1556 * reading from, and the same underlying RAM will often be visible
1557 * in multiple AddressSpaces. (A common example is a ROM blob
1558 * written to the 'system' address space but then read back via a
1559 * CPU's cpu->as pointer.) This does mean we might potentially
1560 * return a false-positive match if a ROM blob was loaded into an
1561 * AS which is entirely separate and distinct from the one we're
1562 * querying, but this issue exists also for rom_ptr() and hasn't
1563 * caused any problems in practice.
1565 FlatView *fv;
1566 void *rom;
1567 hwaddr len_unused;
1568 FindRomCBData cbdata = {};
1570 /* Easy case: there's data at the actual address */
1571 rom = rom_ptr(addr, size);
1572 if (rom) {
1573 return rom;
1576 RCU_READ_LOCK_GUARD();
1578 fv = address_space_to_flatview(as);
1579 cbdata.mr = flatview_translate(fv, addr, &cbdata.xlat, &len_unused,
1580 false, MEMTXATTRS_UNSPECIFIED);
1581 if (!cbdata.mr) {
1582 /* Nothing at this address, so there can't be any aliasing */
1583 return NULL;
1585 cbdata.size = size;
1586 flatview_for_each_range(fv, find_rom_cb, &cbdata);
1587 return cbdata.rom;
1590 HumanReadableText *qmp_x_query_roms(Error **errp)
1592 Rom *rom;
1593 g_autoptr(GString) buf = g_string_new("");
1595 QTAILQ_FOREACH(rom, &roms, next) {
1596 if (rom->mr) {
1597 g_string_append_printf(buf, "%s"
1598 " size=0x%06zx name=\"%s\"\n",
1599 memory_region_name(rom->mr),
1600 rom->romsize,
1601 rom->name);
1602 } else if (!rom->fw_file) {
1603 g_string_append_printf(buf, "addr=" HWADDR_FMT_plx
1604 " size=0x%06zx mem=%s name=\"%s\"\n",
1605 rom->addr, rom->romsize,
1606 rom->isrom ? "rom" : "ram",
1607 rom->name);
1608 } else {
1609 g_string_append_printf(buf, "fw=%s/%s"
1610 " size=0x%06zx name=\"%s\"\n",
1611 rom->fw_dir,
1612 rom->fw_file,
1613 rom->romsize,
1614 rom->name);
1618 return human_readable_text_from_str(buf);
1621 typedef enum HexRecord HexRecord;
1622 enum HexRecord {
1623 DATA_RECORD = 0,
1624 EOF_RECORD,
1625 EXT_SEG_ADDR_RECORD,
1626 START_SEG_ADDR_RECORD,
1627 EXT_LINEAR_ADDR_RECORD,
1628 START_LINEAR_ADDR_RECORD,
1631 /* Each record contains a 16-bit address which is combined with the upper 16
1632 * bits of the implicit "next address" to form a 32-bit address.
1634 #define NEXT_ADDR_MASK 0xffff0000
1636 #define DATA_FIELD_MAX_LEN 0xff
1637 #define LEN_EXCEPT_DATA 0x5
1638 /* 0x5 = sizeof(byte_count) + sizeof(address) + sizeof(record_type) +
1639 * sizeof(checksum) */
1640 typedef struct {
1641 uint8_t byte_count;
1642 uint16_t address;
1643 uint8_t record_type;
1644 uint8_t data[DATA_FIELD_MAX_LEN];
1645 uint8_t checksum;
1646 } HexLine;
1648 /* return 0 or -1 if error */
1649 static bool parse_record(HexLine *line, uint8_t *our_checksum, const uint8_t c,
1650 uint32_t *index, const bool in_process)
1652 /* +-------+---------------+-------+---------------------+--------+
1653 * | byte | |record | | |
1654 * | count | address | type | data |checksum|
1655 * +-------+---------------+-------+---------------------+--------+
1656 * ^ ^ ^ ^ ^ ^
1657 * |1 byte | 2 bytes |1 byte | 0-255 bytes | 1 byte |
1659 uint8_t value = 0;
1660 uint32_t idx = *index;
1661 /* ignore space */
1662 if (g_ascii_isspace(c)) {
1663 return true;
1665 if (!g_ascii_isxdigit(c) || !in_process) {
1666 return false;
1668 value = g_ascii_xdigit_value(c);
1669 value = (idx & 0x1) ? (value & 0xf) : (value << 4);
1670 if (idx < 2) {
1671 line->byte_count |= value;
1672 } else if (2 <= idx && idx < 6) {
1673 line->address <<= 4;
1674 line->address += g_ascii_xdigit_value(c);
1675 } else if (6 <= idx && idx < 8) {
1676 line->record_type |= value;
1677 } else if (8 <= idx && idx < 8 + 2 * line->byte_count) {
1678 line->data[(idx - 8) >> 1] |= value;
1679 } else if (8 + 2 * line->byte_count <= idx &&
1680 idx < 10 + 2 * line->byte_count) {
1681 line->checksum |= value;
1682 } else {
1683 return false;
1685 *our_checksum += value;
1686 ++(*index);
1687 return true;
1690 typedef struct {
1691 const char *filename;
1692 HexLine line;
1693 uint8_t *bin_buf;
1694 hwaddr *start_addr;
1695 int total_size;
1696 uint32_t next_address_to_write;
1697 uint32_t current_address;
1698 uint32_t current_rom_index;
1699 uint32_t rom_start_address;
1700 AddressSpace *as;
1701 bool complete;
1702 } HexParser;
1704 /* return size or -1 if error */
1705 static int handle_record_type(HexParser *parser)
1707 HexLine *line = &(parser->line);
1708 switch (line->record_type) {
1709 case DATA_RECORD:
1710 parser->current_address =
1711 (parser->next_address_to_write & NEXT_ADDR_MASK) | line->address;
1712 /* verify this is a contiguous block of memory */
1713 if (parser->current_address != parser->next_address_to_write) {
1714 if (parser->current_rom_index != 0) {
1715 rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1716 parser->current_rom_index,
1717 parser->rom_start_address, parser->as);
1719 parser->rom_start_address = parser->current_address;
1720 parser->current_rom_index = 0;
1723 /* copy from line buffer to output bin_buf */
1724 memcpy(parser->bin_buf + parser->current_rom_index, line->data,
1725 line->byte_count);
1726 parser->current_rom_index += line->byte_count;
1727 parser->total_size += line->byte_count;
1728 /* save next address to write */
1729 parser->next_address_to_write =
1730 parser->current_address + line->byte_count;
1731 break;
1733 case EOF_RECORD:
1734 if (parser->current_rom_index != 0) {
1735 rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1736 parser->current_rom_index,
1737 parser->rom_start_address, parser->as);
1739 parser->complete = true;
1740 return parser->total_size;
1741 case EXT_SEG_ADDR_RECORD:
1742 case EXT_LINEAR_ADDR_RECORD:
1743 if (line->byte_count != 2 && line->address != 0) {
1744 return -1;
1747 if (parser->current_rom_index != 0) {
1748 rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1749 parser->current_rom_index,
1750 parser->rom_start_address, parser->as);
1753 /* save next address to write,
1754 * in case of non-contiguous block of memory */
1755 parser->next_address_to_write = (line->data[0] << 12) |
1756 (line->data[1] << 4);
1757 if (line->record_type == EXT_LINEAR_ADDR_RECORD) {
1758 parser->next_address_to_write <<= 12;
1761 parser->rom_start_address = parser->next_address_to_write;
1762 parser->current_rom_index = 0;
1763 break;
1765 case START_SEG_ADDR_RECORD:
1766 if (line->byte_count != 4 && line->address != 0) {
1767 return -1;
1770 /* x86 16-bit CS:IP segmented addressing */
1771 *(parser->start_addr) = (((line->data[0] << 8) | line->data[1]) << 4) +
1772 ((line->data[2] << 8) | line->data[3]);
1773 break;
1775 case START_LINEAR_ADDR_RECORD:
1776 if (line->byte_count != 4 && line->address != 0) {
1777 return -1;
1780 *(parser->start_addr) = ldl_be_p(line->data);
1781 break;
1783 default:
1784 return -1;
1787 return parser->total_size;
1790 /* return size or -1 if error */
1791 static int parse_hex_blob(const char *filename, hwaddr *addr, uint8_t *hex_blob,
1792 size_t hex_blob_size, AddressSpace *as)
1794 bool in_process = false; /* avoid re-enter and
1795 * check whether record begin with ':' */
1796 uint8_t *end = hex_blob + hex_blob_size;
1797 uint8_t our_checksum = 0;
1798 uint32_t record_index = 0;
1799 HexParser parser = {
1800 .filename = filename,
1801 .bin_buf = g_malloc(hex_blob_size),
1802 .start_addr = addr,
1803 .as = as,
1804 .complete = false
1807 rom_transaction_begin();
1809 for (; hex_blob < end && !parser.complete; ++hex_blob) {
1810 switch (*hex_blob) {
1811 case '\r':
1812 case '\n':
1813 if (!in_process) {
1814 break;
1817 in_process = false;
1818 if ((LEN_EXCEPT_DATA + parser.line.byte_count) * 2 !=
1819 record_index ||
1820 our_checksum != 0) {
1821 parser.total_size = -1;
1822 goto out;
1825 if (handle_record_type(&parser) == -1) {
1826 parser.total_size = -1;
1827 goto out;
1829 break;
1831 /* start of a new record. */
1832 case ':':
1833 memset(&parser.line, 0, sizeof(HexLine));
1834 in_process = true;
1835 record_index = 0;
1836 break;
1838 /* decoding lines */
1839 default:
1840 if (!parse_record(&parser.line, &our_checksum, *hex_blob,
1841 &record_index, in_process)) {
1842 parser.total_size = -1;
1843 goto out;
1845 break;
1849 out:
1850 g_free(parser.bin_buf);
1851 rom_transaction_end(parser.total_size != -1);
1852 return parser.total_size;
1855 /* return size or -1 if error */
1856 ssize_t load_targphys_hex_as(const char *filename, hwaddr *entry,
1857 AddressSpace *as)
1859 gsize hex_blob_size;
1860 gchar *hex_blob;
1861 ssize_t total_size = 0;
1863 if (!g_file_get_contents(filename, &hex_blob, &hex_blob_size, NULL)) {
1864 return -1;
1867 total_size = parse_hex_blob(filename, entry, (uint8_t *)hex_blob,
1868 hex_blob_size, as);
1870 g_free(hex_blob);
1871 return total_size;