kvm: Add kvm_has_pit_state2 helper
[qemu/ar7.git] / kvm-all.c
blob278085fc2ddf0f532d7af946d55b140c005ba30a
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
25 #include "sysemu.h"
26 #include "hw/hw.h"
27 #include "gdbstub.h"
28 #include "kvm.h"
29 #include "bswap.h"
30 #include "memory.h"
31 #include "exec-memory.h"
33 /* This check must be after config-host.h is included */
34 #ifdef CONFIG_EVENTFD
35 #include <sys/eventfd.h>
36 #endif
38 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
39 #define PAGE_SIZE TARGET_PAGE_SIZE
41 //#define DEBUG_KVM
43 #ifdef DEBUG_KVM
44 #define DPRINTF(fmt, ...) \
45 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
46 #else
47 #define DPRINTF(fmt, ...) \
48 do { } while (0)
49 #endif
51 typedef struct KVMSlot
53 target_phys_addr_t start_addr;
54 ram_addr_t memory_size;
55 void *ram;
56 int slot;
57 int flags;
58 } KVMSlot;
60 typedef struct kvm_dirty_log KVMDirtyLog;
62 struct KVMState
64 KVMSlot slots[32];
65 int fd;
66 int vmfd;
67 int coalesced_mmio;
68 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
69 bool coalesced_flush_in_progress;
70 int broken_set_mem_region;
71 int migration_log;
72 int vcpu_events;
73 int robust_singlestep;
74 int debugregs;
75 #ifdef KVM_CAP_SET_GUEST_DEBUG
76 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
77 #endif
78 int pit_in_kernel;
79 int pit_state2;
80 int xsave, xcrs;
81 int many_ioeventfds;
82 int irqchip_inject_ioctl;
83 #ifdef KVM_CAP_IRQ_ROUTING
84 struct kvm_irq_routing *irq_routes;
85 int nr_allocated_irq_routes;
86 uint32_t *used_gsi_bitmap;
87 unsigned int max_gsi;
88 #endif
91 KVMState *kvm_state;
92 bool kvm_kernel_irqchip;
94 static const KVMCapabilityInfo kvm_required_capabilites[] = {
95 KVM_CAP_INFO(USER_MEMORY),
96 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
97 KVM_CAP_LAST_INFO
100 static KVMSlot *kvm_alloc_slot(KVMState *s)
102 int i;
104 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
105 if (s->slots[i].memory_size == 0) {
106 return &s->slots[i];
110 fprintf(stderr, "%s: no free slot available\n", __func__);
111 abort();
114 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
115 target_phys_addr_t start_addr,
116 target_phys_addr_t end_addr)
118 int i;
120 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
121 KVMSlot *mem = &s->slots[i];
123 if (start_addr == mem->start_addr &&
124 end_addr == mem->start_addr + mem->memory_size) {
125 return mem;
129 return NULL;
133 * Find overlapping slot with lowest start address
135 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
136 target_phys_addr_t start_addr,
137 target_phys_addr_t end_addr)
139 KVMSlot *found = NULL;
140 int i;
142 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
143 KVMSlot *mem = &s->slots[i];
145 if (mem->memory_size == 0 ||
146 (found && found->start_addr < mem->start_addr)) {
147 continue;
150 if (end_addr > mem->start_addr &&
151 start_addr < mem->start_addr + mem->memory_size) {
152 found = mem;
156 return found;
159 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
160 target_phys_addr_t *phys_addr)
162 int i;
164 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
165 KVMSlot *mem = &s->slots[i];
167 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
168 *phys_addr = mem->start_addr + (ram - mem->ram);
169 return 1;
173 return 0;
176 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
178 struct kvm_userspace_memory_region mem;
180 mem.slot = slot->slot;
181 mem.guest_phys_addr = slot->start_addr;
182 mem.memory_size = slot->memory_size;
183 mem.userspace_addr = (unsigned long)slot->ram;
184 mem.flags = slot->flags;
185 if (s->migration_log) {
186 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
188 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
191 static void kvm_reset_vcpu(void *opaque)
193 CPUState *env = opaque;
195 kvm_arch_reset_vcpu(env);
198 int kvm_pit_in_kernel(void)
200 return kvm_state->pit_in_kernel;
203 int kvm_init_vcpu(CPUState *env)
205 KVMState *s = kvm_state;
206 long mmap_size;
207 int ret;
209 DPRINTF("kvm_init_vcpu\n");
211 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
212 if (ret < 0) {
213 DPRINTF("kvm_create_vcpu failed\n");
214 goto err;
217 env->kvm_fd = ret;
218 env->kvm_state = s;
219 env->kvm_vcpu_dirty = 1;
221 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
222 if (mmap_size < 0) {
223 ret = mmap_size;
224 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
225 goto err;
228 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
229 env->kvm_fd, 0);
230 if (env->kvm_run == MAP_FAILED) {
231 ret = -errno;
232 DPRINTF("mmap'ing vcpu state failed\n");
233 goto err;
236 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
237 s->coalesced_mmio_ring =
238 (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE;
241 ret = kvm_arch_init_vcpu(env);
242 if (ret == 0) {
243 qemu_register_reset(kvm_reset_vcpu, env);
244 kvm_arch_reset_vcpu(env);
246 err:
247 return ret;
251 * dirty pages logging control
254 static int kvm_mem_flags(KVMState *s, bool log_dirty)
256 return log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
259 static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
261 KVMState *s = kvm_state;
262 int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
263 int old_flags;
265 old_flags = mem->flags;
267 flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty);
268 mem->flags = flags;
270 /* If nothing changed effectively, no need to issue ioctl */
271 if (s->migration_log) {
272 flags |= KVM_MEM_LOG_DIRTY_PAGES;
275 if (flags == old_flags) {
276 return 0;
279 return kvm_set_user_memory_region(s, mem);
282 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
283 ram_addr_t size, bool log_dirty)
285 KVMState *s = kvm_state;
286 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
288 if (mem == NULL) {
289 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
290 TARGET_FMT_plx "\n", __func__, phys_addr,
291 (target_phys_addr_t)(phys_addr + size - 1));
292 return -EINVAL;
294 return kvm_slot_dirty_pages_log_change(mem, log_dirty);
297 static void kvm_log_start(MemoryListener *listener,
298 MemoryRegionSection *section)
300 int r;
302 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
303 section->size, true);
304 if (r < 0) {
305 abort();
309 static void kvm_log_stop(MemoryListener *listener,
310 MemoryRegionSection *section)
312 int r;
314 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
315 section->size, false);
316 if (r < 0) {
317 abort();
321 static int kvm_set_migration_log(int enable)
323 KVMState *s = kvm_state;
324 KVMSlot *mem;
325 int i, err;
327 s->migration_log = enable;
329 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
330 mem = &s->slots[i];
332 if (!mem->memory_size) {
333 continue;
335 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
336 continue;
338 err = kvm_set_user_memory_region(s, mem);
339 if (err) {
340 return err;
343 return 0;
346 /* get kvm's dirty pages bitmap and update qemu's */
347 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
348 unsigned long *bitmap)
350 unsigned int i, j;
351 unsigned long page_number, c;
352 target_phys_addr_t addr, addr1;
353 unsigned int len = ((section->size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
356 * bitmap-traveling is faster than memory-traveling (for addr...)
357 * especially when most of the memory is not dirty.
359 for (i = 0; i < len; i++) {
360 if (bitmap[i] != 0) {
361 c = leul_to_cpu(bitmap[i]);
362 do {
363 j = ffsl(c) - 1;
364 c &= ~(1ul << j);
365 page_number = i * HOST_LONG_BITS + j;
366 addr1 = page_number * TARGET_PAGE_SIZE;
367 addr = section->offset_within_region + addr1;
368 memory_region_set_dirty(section->mr, addr, TARGET_PAGE_SIZE);
369 } while (c != 0);
372 return 0;
375 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
378 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
379 * This function updates qemu's dirty bitmap using
380 * memory_region_set_dirty(). This means all bits are set
381 * to dirty.
383 * @start_add: start of logged region.
384 * @end_addr: end of logged region.
386 static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
388 KVMState *s = kvm_state;
389 unsigned long size, allocated_size = 0;
390 KVMDirtyLog d;
391 KVMSlot *mem;
392 int ret = 0;
393 target_phys_addr_t start_addr = section->offset_within_address_space;
394 target_phys_addr_t end_addr = start_addr + section->size;
396 d.dirty_bitmap = NULL;
397 while (start_addr < end_addr) {
398 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
399 if (mem == NULL) {
400 break;
403 /* XXX bad kernel interface alert
404 * For dirty bitmap, kernel allocates array of size aligned to
405 * bits-per-long. But for case when the kernel is 64bits and
406 * the userspace is 32bits, userspace can't align to the same
407 * bits-per-long, since sizeof(long) is different between kernel
408 * and user space. This way, userspace will provide buffer which
409 * may be 4 bytes less than the kernel will use, resulting in
410 * userspace memory corruption (which is not detectable by valgrind
411 * too, in most cases).
412 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
413 * a hope that sizeof(long) wont become >8 any time soon.
415 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
416 /*HOST_LONG_BITS*/ 64) / 8;
417 if (!d.dirty_bitmap) {
418 d.dirty_bitmap = g_malloc(size);
419 } else if (size > allocated_size) {
420 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
422 allocated_size = size;
423 memset(d.dirty_bitmap, 0, allocated_size);
425 d.slot = mem->slot;
427 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
428 DPRINTF("ioctl failed %d\n", errno);
429 ret = -1;
430 break;
433 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
434 start_addr = mem->start_addr + mem->memory_size;
436 g_free(d.dirty_bitmap);
438 return ret;
441 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
443 int ret = -ENOSYS;
444 KVMState *s = kvm_state;
446 if (s->coalesced_mmio) {
447 struct kvm_coalesced_mmio_zone zone;
449 zone.addr = start;
450 zone.size = size;
452 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
455 return ret;
458 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
460 int ret = -ENOSYS;
461 KVMState *s = kvm_state;
463 if (s->coalesced_mmio) {
464 struct kvm_coalesced_mmio_zone zone;
466 zone.addr = start;
467 zone.size = size;
469 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
472 return ret;
475 int kvm_check_extension(KVMState *s, unsigned int extension)
477 int ret;
479 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
480 if (ret < 0) {
481 ret = 0;
484 return ret;
487 static int kvm_check_many_ioeventfds(void)
489 /* Userspace can use ioeventfd for io notification. This requires a host
490 * that supports eventfd(2) and an I/O thread; since eventfd does not
491 * support SIGIO it cannot interrupt the vcpu.
493 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
494 * can avoid creating too many ioeventfds.
496 #if defined(CONFIG_EVENTFD)
497 int ioeventfds[7];
498 int i, ret = 0;
499 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
500 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
501 if (ioeventfds[i] < 0) {
502 break;
504 ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
505 if (ret < 0) {
506 close(ioeventfds[i]);
507 break;
511 /* Decide whether many devices are supported or not */
512 ret = i == ARRAY_SIZE(ioeventfds);
514 while (i-- > 0) {
515 kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
516 close(ioeventfds[i]);
518 return ret;
519 #else
520 return 0;
521 #endif
524 static const KVMCapabilityInfo *
525 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
527 while (list->name) {
528 if (!kvm_check_extension(s, list->value)) {
529 return list;
531 list++;
533 return NULL;
536 static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
538 KVMState *s = kvm_state;
539 KVMSlot *mem, old;
540 int err;
541 MemoryRegion *mr = section->mr;
542 bool log_dirty = memory_region_is_logging(mr);
543 target_phys_addr_t start_addr = section->offset_within_address_space;
544 ram_addr_t size = section->size;
545 void *ram = NULL;
546 unsigned delta;
548 /* kvm works in page size chunks, but the function may be called
549 with sub-page size and unaligned start address. */
550 delta = TARGET_PAGE_ALIGN(size) - size;
551 if (delta > size) {
552 return;
554 start_addr += delta;
555 size -= delta;
556 size &= TARGET_PAGE_MASK;
557 if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
558 return;
561 if (!memory_region_is_ram(mr)) {
562 return;
565 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
567 while (1) {
568 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
569 if (!mem) {
570 break;
573 if (add && start_addr >= mem->start_addr &&
574 (start_addr + size <= mem->start_addr + mem->memory_size) &&
575 (ram - start_addr == mem->ram - mem->start_addr)) {
576 /* The new slot fits into the existing one and comes with
577 * identical parameters - update flags and done. */
578 kvm_slot_dirty_pages_log_change(mem, log_dirty);
579 return;
582 old = *mem;
584 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
585 kvm_physical_sync_dirty_bitmap(section);
588 /* unregister the overlapping slot */
589 mem->memory_size = 0;
590 err = kvm_set_user_memory_region(s, mem);
591 if (err) {
592 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
593 __func__, strerror(-err));
594 abort();
597 /* Workaround for older KVM versions: we can't join slots, even not by
598 * unregistering the previous ones and then registering the larger
599 * slot. We have to maintain the existing fragmentation. Sigh.
601 * This workaround assumes that the new slot starts at the same
602 * address as the first existing one. If not or if some overlapping
603 * slot comes around later, we will fail (not seen in practice so far)
604 * - and actually require a recent KVM version. */
605 if (s->broken_set_mem_region &&
606 old.start_addr == start_addr && old.memory_size < size && add) {
607 mem = kvm_alloc_slot(s);
608 mem->memory_size = old.memory_size;
609 mem->start_addr = old.start_addr;
610 mem->ram = old.ram;
611 mem->flags = kvm_mem_flags(s, log_dirty);
613 err = kvm_set_user_memory_region(s, mem);
614 if (err) {
615 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
616 strerror(-err));
617 abort();
620 start_addr += old.memory_size;
621 ram += old.memory_size;
622 size -= old.memory_size;
623 continue;
626 /* register prefix slot */
627 if (old.start_addr < start_addr) {
628 mem = kvm_alloc_slot(s);
629 mem->memory_size = start_addr - old.start_addr;
630 mem->start_addr = old.start_addr;
631 mem->ram = old.ram;
632 mem->flags = kvm_mem_flags(s, log_dirty);
634 err = kvm_set_user_memory_region(s, mem);
635 if (err) {
636 fprintf(stderr, "%s: error registering prefix slot: %s\n",
637 __func__, strerror(-err));
638 #ifdef TARGET_PPC
639 fprintf(stderr, "%s: This is probably because your kernel's " \
640 "PAGE_SIZE is too big. Please try to use 4k " \
641 "PAGE_SIZE!\n", __func__);
642 #endif
643 abort();
647 /* register suffix slot */
648 if (old.start_addr + old.memory_size > start_addr + size) {
649 ram_addr_t size_delta;
651 mem = kvm_alloc_slot(s);
652 mem->start_addr = start_addr + size;
653 size_delta = mem->start_addr - old.start_addr;
654 mem->memory_size = old.memory_size - size_delta;
655 mem->ram = old.ram + size_delta;
656 mem->flags = kvm_mem_flags(s, log_dirty);
658 err = kvm_set_user_memory_region(s, mem);
659 if (err) {
660 fprintf(stderr, "%s: error registering suffix slot: %s\n",
661 __func__, strerror(-err));
662 abort();
667 /* in case the KVM bug workaround already "consumed" the new slot */
668 if (!size) {
669 return;
671 if (!add) {
672 return;
674 mem = kvm_alloc_slot(s);
675 mem->memory_size = size;
676 mem->start_addr = start_addr;
677 mem->ram = ram;
678 mem->flags = kvm_mem_flags(s, log_dirty);
680 err = kvm_set_user_memory_region(s, mem);
681 if (err) {
682 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
683 strerror(-err));
684 abort();
688 static void kvm_begin(MemoryListener *listener)
692 static void kvm_commit(MemoryListener *listener)
696 static void kvm_region_add(MemoryListener *listener,
697 MemoryRegionSection *section)
699 kvm_set_phys_mem(section, true);
702 static void kvm_region_del(MemoryListener *listener,
703 MemoryRegionSection *section)
705 kvm_set_phys_mem(section, false);
708 static void kvm_region_nop(MemoryListener *listener,
709 MemoryRegionSection *section)
713 static void kvm_log_sync(MemoryListener *listener,
714 MemoryRegionSection *section)
716 int r;
718 r = kvm_physical_sync_dirty_bitmap(section);
719 if (r < 0) {
720 abort();
724 static void kvm_log_global_start(struct MemoryListener *listener)
726 int r;
728 r = kvm_set_migration_log(1);
729 assert(r >= 0);
732 static void kvm_log_global_stop(struct MemoryListener *listener)
734 int r;
736 r = kvm_set_migration_log(0);
737 assert(r >= 0);
740 static void kvm_mem_ioeventfd_add(MemoryRegionSection *section,
741 bool match_data, uint64_t data, int fd)
743 int r;
745 assert(match_data && section->size == 4);
747 r = kvm_set_ioeventfd_mmio_long(fd, section->offset_within_address_space,
748 data, true);
749 if (r < 0) {
750 abort();
754 static void kvm_mem_ioeventfd_del(MemoryRegionSection *section,
755 bool match_data, uint64_t data, int fd)
757 int r;
759 r = kvm_set_ioeventfd_mmio_long(fd, section->offset_within_address_space,
760 data, false);
761 if (r < 0) {
762 abort();
766 static void kvm_io_ioeventfd_add(MemoryRegionSection *section,
767 bool match_data, uint64_t data, int fd)
769 int r;
771 assert(match_data && section->size == 2);
773 r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
774 data, true);
775 if (r < 0) {
776 abort();
780 static void kvm_io_ioeventfd_del(MemoryRegionSection *section,
781 bool match_data, uint64_t data, int fd)
784 int r;
786 r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
787 data, false);
788 if (r < 0) {
789 abort();
793 static void kvm_eventfd_add(MemoryListener *listener,
794 MemoryRegionSection *section,
795 bool match_data, uint64_t data, int fd)
797 if (section->address_space == get_system_memory()) {
798 kvm_mem_ioeventfd_add(section, match_data, data, fd);
799 } else {
800 kvm_io_ioeventfd_add(section, match_data, data, fd);
804 static void kvm_eventfd_del(MemoryListener *listener,
805 MemoryRegionSection *section,
806 bool match_data, uint64_t data, int fd)
808 if (section->address_space == get_system_memory()) {
809 kvm_mem_ioeventfd_del(section, match_data, data, fd);
810 } else {
811 kvm_io_ioeventfd_del(section, match_data, data, fd);
815 static MemoryListener kvm_memory_listener = {
816 .begin = kvm_begin,
817 .commit = kvm_commit,
818 .region_add = kvm_region_add,
819 .region_del = kvm_region_del,
820 .region_nop = kvm_region_nop,
821 .log_start = kvm_log_start,
822 .log_stop = kvm_log_stop,
823 .log_sync = kvm_log_sync,
824 .log_global_start = kvm_log_global_start,
825 .log_global_stop = kvm_log_global_stop,
826 .eventfd_add = kvm_eventfd_add,
827 .eventfd_del = kvm_eventfd_del,
828 .priority = 10,
831 static void kvm_handle_interrupt(CPUState *env, int mask)
833 env->interrupt_request |= mask;
835 if (!qemu_cpu_is_self(env)) {
836 qemu_cpu_kick(env);
840 int kvm_irqchip_set_irq(KVMState *s, int irq, int level)
842 struct kvm_irq_level event;
843 int ret;
845 assert(kvm_irqchip_in_kernel());
847 event.level = level;
848 event.irq = irq;
849 ret = kvm_vm_ioctl(s, s->irqchip_inject_ioctl, &event);
850 if (ret < 0) {
851 perror("kvm_set_irqchip_line");
852 abort();
855 return (s->irqchip_inject_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
858 #ifdef KVM_CAP_IRQ_ROUTING
859 static void set_gsi(KVMState *s, unsigned int gsi)
861 assert(gsi < s->max_gsi);
863 s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
866 static void kvm_init_irq_routing(KVMState *s)
868 int gsi_count;
870 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING);
871 if (gsi_count > 0) {
872 unsigned int gsi_bits, i;
874 /* Round up so we can search ints using ffs */
875 gsi_bits = (gsi_count + 31) / 32;
876 s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
877 s->max_gsi = gsi_bits;
879 /* Mark any over-allocated bits as already in use */
880 for (i = gsi_count; i < gsi_bits; i++) {
881 set_gsi(s, i);
885 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
886 s->nr_allocated_irq_routes = 0;
888 kvm_arch_init_irq_routing(s);
891 static void kvm_add_routing_entry(KVMState *s,
892 struct kvm_irq_routing_entry *entry)
894 struct kvm_irq_routing_entry *new;
895 int n, size;
897 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
898 n = s->nr_allocated_irq_routes * 2;
899 if (n < 64) {
900 n = 64;
902 size = sizeof(struct kvm_irq_routing);
903 size += n * sizeof(*new);
904 s->irq_routes = g_realloc(s->irq_routes, size);
905 s->nr_allocated_irq_routes = n;
907 n = s->irq_routes->nr++;
908 new = &s->irq_routes->entries[n];
909 memset(new, 0, sizeof(*new));
910 new->gsi = entry->gsi;
911 new->type = entry->type;
912 new->flags = entry->flags;
913 new->u = entry->u;
915 set_gsi(s, entry->gsi);
918 void kvm_irqchip_add_route(KVMState *s, int irq, int irqchip, int pin)
920 struct kvm_irq_routing_entry e;
922 e.gsi = irq;
923 e.type = KVM_IRQ_ROUTING_IRQCHIP;
924 e.flags = 0;
925 e.u.irqchip.irqchip = irqchip;
926 e.u.irqchip.pin = pin;
927 kvm_add_routing_entry(s, &e);
930 int kvm_irqchip_commit_routes(KVMState *s)
932 s->irq_routes->flags = 0;
933 return kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
936 #else /* !KVM_CAP_IRQ_ROUTING */
938 static void kvm_init_irq_routing(KVMState *s)
941 #endif /* !KVM_CAP_IRQ_ROUTING */
943 static int kvm_irqchip_create(KVMState *s)
945 QemuOptsList *list = qemu_find_opts("machine");
946 int ret;
948 if (QTAILQ_EMPTY(&list->head) ||
949 !qemu_opt_get_bool(QTAILQ_FIRST(&list->head),
950 "kernel_irqchip", false) ||
951 !kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
952 return 0;
955 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
956 if (ret < 0) {
957 fprintf(stderr, "Create kernel irqchip failed\n");
958 return ret;
961 s->irqchip_inject_ioctl = KVM_IRQ_LINE;
962 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
963 s->irqchip_inject_ioctl = KVM_IRQ_LINE_STATUS;
965 kvm_kernel_irqchip = true;
967 kvm_init_irq_routing(s);
969 return 0;
972 int kvm_init(void)
974 static const char upgrade_note[] =
975 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
976 "(see http://sourceforge.net/projects/kvm).\n";
977 KVMState *s;
978 const KVMCapabilityInfo *missing_cap;
979 int ret;
980 int i;
982 s = g_malloc0(sizeof(KVMState));
984 #ifdef KVM_CAP_SET_GUEST_DEBUG
985 QTAILQ_INIT(&s->kvm_sw_breakpoints);
986 #endif
987 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
988 s->slots[i].slot = i;
990 s->vmfd = -1;
991 s->fd = qemu_open("/dev/kvm", O_RDWR);
992 if (s->fd == -1) {
993 fprintf(stderr, "Could not access KVM kernel module: %m\n");
994 ret = -errno;
995 goto err;
998 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
999 if (ret < KVM_API_VERSION) {
1000 if (ret > 0) {
1001 ret = -EINVAL;
1003 fprintf(stderr, "kvm version too old\n");
1004 goto err;
1007 if (ret > KVM_API_VERSION) {
1008 ret = -EINVAL;
1009 fprintf(stderr, "kvm version not supported\n");
1010 goto err;
1013 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
1014 if (s->vmfd < 0) {
1015 #ifdef TARGET_S390X
1016 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
1017 "your host kernel command line\n");
1018 #endif
1019 ret = s->vmfd;
1020 goto err;
1023 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1024 if (!missing_cap) {
1025 missing_cap =
1026 kvm_check_extension_list(s, kvm_arch_required_capabilities);
1028 if (missing_cap) {
1029 ret = -EINVAL;
1030 fprintf(stderr, "kvm does not support %s\n%s",
1031 missing_cap->name, upgrade_note);
1032 goto err;
1035 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1037 s->broken_set_mem_region = 1;
1038 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
1039 if (ret > 0) {
1040 s->broken_set_mem_region = 0;
1043 #ifdef KVM_CAP_VCPU_EVENTS
1044 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1045 #endif
1047 s->robust_singlestep =
1048 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1050 #ifdef KVM_CAP_DEBUGREGS
1051 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1052 #endif
1054 #ifdef KVM_CAP_XSAVE
1055 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1056 #endif
1058 #ifdef KVM_CAP_XCRS
1059 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1060 #endif
1062 #ifdef KVM_CAP_PIT_STATE2
1063 s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1064 #endif
1066 ret = kvm_arch_init(s);
1067 if (ret < 0) {
1068 goto err;
1071 ret = kvm_irqchip_create(s);
1072 if (ret < 0) {
1073 goto err;
1076 kvm_state = s;
1077 memory_listener_register(&kvm_memory_listener, NULL);
1079 s->many_ioeventfds = kvm_check_many_ioeventfds();
1081 cpu_interrupt_handler = kvm_handle_interrupt;
1083 return 0;
1085 err:
1086 if (s) {
1087 if (s->vmfd >= 0) {
1088 close(s->vmfd);
1090 if (s->fd != -1) {
1091 close(s->fd);
1094 g_free(s);
1096 return ret;
1099 static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
1100 uint32_t count)
1102 int i;
1103 uint8_t *ptr = data;
1105 for (i = 0; i < count; i++) {
1106 if (direction == KVM_EXIT_IO_IN) {
1107 switch (size) {
1108 case 1:
1109 stb_p(ptr, cpu_inb(port));
1110 break;
1111 case 2:
1112 stw_p(ptr, cpu_inw(port));
1113 break;
1114 case 4:
1115 stl_p(ptr, cpu_inl(port));
1116 break;
1118 } else {
1119 switch (size) {
1120 case 1:
1121 cpu_outb(port, ldub_p(ptr));
1122 break;
1123 case 2:
1124 cpu_outw(port, lduw_p(ptr));
1125 break;
1126 case 4:
1127 cpu_outl(port, ldl_p(ptr));
1128 break;
1132 ptr += size;
1136 static int kvm_handle_internal_error(CPUState *env, struct kvm_run *run)
1138 fprintf(stderr, "KVM internal error.");
1139 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1140 int i;
1142 fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
1143 for (i = 0; i < run->internal.ndata; ++i) {
1144 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1145 i, (uint64_t)run->internal.data[i]);
1147 } else {
1148 fprintf(stderr, "\n");
1150 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1151 fprintf(stderr, "emulation failure\n");
1152 if (!kvm_arch_stop_on_emulation_error(env)) {
1153 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1154 return EXCP_INTERRUPT;
1157 /* FIXME: Should trigger a qmp message to let management know
1158 * something went wrong.
1160 return -1;
1163 void kvm_flush_coalesced_mmio_buffer(void)
1165 KVMState *s = kvm_state;
1167 if (s->coalesced_flush_in_progress) {
1168 return;
1171 s->coalesced_flush_in_progress = true;
1173 if (s->coalesced_mmio_ring) {
1174 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1175 while (ring->first != ring->last) {
1176 struct kvm_coalesced_mmio *ent;
1178 ent = &ring->coalesced_mmio[ring->first];
1180 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1181 smp_wmb();
1182 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1186 s->coalesced_flush_in_progress = false;
1189 static void do_kvm_cpu_synchronize_state(void *_env)
1191 CPUState *env = _env;
1193 if (!env->kvm_vcpu_dirty) {
1194 kvm_arch_get_registers(env);
1195 env->kvm_vcpu_dirty = 1;
1199 void kvm_cpu_synchronize_state(CPUState *env)
1201 if (!env->kvm_vcpu_dirty) {
1202 run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
1206 void kvm_cpu_synchronize_post_reset(CPUState *env)
1208 kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
1209 env->kvm_vcpu_dirty = 0;
1212 void kvm_cpu_synchronize_post_init(CPUState *env)
1214 kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
1215 env->kvm_vcpu_dirty = 0;
1218 int kvm_cpu_exec(CPUState *env)
1220 struct kvm_run *run = env->kvm_run;
1221 int ret, run_ret;
1223 DPRINTF("kvm_cpu_exec()\n");
1225 if (kvm_arch_process_async_events(env)) {
1226 env->exit_request = 0;
1227 return EXCP_HLT;
1230 do {
1231 if (env->kvm_vcpu_dirty) {
1232 kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
1233 env->kvm_vcpu_dirty = 0;
1236 kvm_arch_pre_run(env, run);
1237 if (env->exit_request) {
1238 DPRINTF("interrupt exit requested\n");
1240 * KVM requires us to reenter the kernel after IO exits to complete
1241 * instruction emulation. This self-signal will ensure that we
1242 * leave ASAP again.
1244 qemu_cpu_kick_self();
1246 qemu_mutex_unlock_iothread();
1248 run_ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
1250 qemu_mutex_lock_iothread();
1251 kvm_arch_post_run(env, run);
1253 kvm_flush_coalesced_mmio_buffer();
1255 if (run_ret < 0) {
1256 if (run_ret == -EINTR || run_ret == -EAGAIN) {
1257 DPRINTF("io window exit\n");
1258 ret = EXCP_INTERRUPT;
1259 break;
1261 fprintf(stderr, "error: kvm run failed %s\n",
1262 strerror(-run_ret));
1263 abort();
1266 switch (run->exit_reason) {
1267 case KVM_EXIT_IO:
1268 DPRINTF("handle_io\n");
1269 kvm_handle_io(run->io.port,
1270 (uint8_t *)run + run->io.data_offset,
1271 run->io.direction,
1272 run->io.size,
1273 run->io.count);
1274 ret = 0;
1275 break;
1276 case KVM_EXIT_MMIO:
1277 DPRINTF("handle_mmio\n");
1278 cpu_physical_memory_rw(run->mmio.phys_addr,
1279 run->mmio.data,
1280 run->mmio.len,
1281 run->mmio.is_write);
1282 ret = 0;
1283 break;
1284 case KVM_EXIT_IRQ_WINDOW_OPEN:
1285 DPRINTF("irq_window_open\n");
1286 ret = EXCP_INTERRUPT;
1287 break;
1288 case KVM_EXIT_SHUTDOWN:
1289 DPRINTF("shutdown\n");
1290 qemu_system_reset_request();
1291 ret = EXCP_INTERRUPT;
1292 break;
1293 case KVM_EXIT_UNKNOWN:
1294 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1295 (uint64_t)run->hw.hardware_exit_reason);
1296 ret = -1;
1297 break;
1298 case KVM_EXIT_INTERNAL_ERROR:
1299 ret = kvm_handle_internal_error(env, run);
1300 break;
1301 default:
1302 DPRINTF("kvm_arch_handle_exit\n");
1303 ret = kvm_arch_handle_exit(env, run);
1304 break;
1306 } while (ret == 0);
1308 if (ret < 0) {
1309 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1310 vm_stop(RUN_STATE_INTERNAL_ERROR);
1313 env->exit_request = 0;
1314 return ret;
1317 int kvm_ioctl(KVMState *s, int type, ...)
1319 int ret;
1320 void *arg;
1321 va_list ap;
1323 va_start(ap, type);
1324 arg = va_arg(ap, void *);
1325 va_end(ap);
1327 ret = ioctl(s->fd, type, arg);
1328 if (ret == -1) {
1329 ret = -errno;
1331 return ret;
1334 int kvm_vm_ioctl(KVMState *s, int type, ...)
1336 int ret;
1337 void *arg;
1338 va_list ap;
1340 va_start(ap, type);
1341 arg = va_arg(ap, void *);
1342 va_end(ap);
1344 ret = ioctl(s->vmfd, type, arg);
1345 if (ret == -1) {
1346 ret = -errno;
1348 return ret;
1351 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
1353 int ret;
1354 void *arg;
1355 va_list ap;
1357 va_start(ap, type);
1358 arg = va_arg(ap, void *);
1359 va_end(ap);
1361 ret = ioctl(env->kvm_fd, type, arg);
1362 if (ret == -1) {
1363 ret = -errno;
1365 return ret;
1368 int kvm_has_sync_mmu(void)
1370 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1373 int kvm_has_vcpu_events(void)
1375 return kvm_state->vcpu_events;
1378 int kvm_has_robust_singlestep(void)
1380 return kvm_state->robust_singlestep;
1383 int kvm_has_debugregs(void)
1385 return kvm_state->debugregs;
1388 int kvm_has_xsave(void)
1390 return kvm_state->xsave;
1393 int kvm_has_xcrs(void)
1395 return kvm_state->xcrs;
1398 int kvm_has_pit_state2(void)
1400 return kvm_state->pit_state2;
1403 int kvm_has_many_ioeventfds(void)
1405 if (!kvm_enabled()) {
1406 return 0;
1408 return kvm_state->many_ioeventfds;
1411 int kvm_has_gsi_routing(void)
1413 #ifdef KVM_CAP_IRQ_ROUTING
1414 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
1415 #else
1416 return false;
1417 #endif
1420 int kvm_allows_irq0_override(void)
1422 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
1425 void kvm_setup_guest_memory(void *start, size_t size)
1427 if (!kvm_has_sync_mmu()) {
1428 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1430 if (ret) {
1431 perror("qemu_madvise");
1432 fprintf(stderr,
1433 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1434 exit(1);
1439 #ifdef KVM_CAP_SET_GUEST_DEBUG
1440 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
1441 target_ulong pc)
1443 struct kvm_sw_breakpoint *bp;
1445 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
1446 if (bp->pc == pc) {
1447 return bp;
1450 return NULL;
1453 int kvm_sw_breakpoints_active(CPUState *env)
1455 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
1458 struct kvm_set_guest_debug_data {
1459 struct kvm_guest_debug dbg;
1460 CPUState *env;
1461 int err;
1464 static void kvm_invoke_set_guest_debug(void *data)
1466 struct kvm_set_guest_debug_data *dbg_data = data;
1467 CPUState *env = dbg_data->env;
1469 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
1472 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1474 struct kvm_set_guest_debug_data data;
1476 data.dbg.control = reinject_trap;
1478 if (env->singlestep_enabled) {
1479 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1481 kvm_arch_update_guest_debug(env, &data.dbg);
1482 data.env = env;
1484 run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
1485 return data.err;
1488 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1489 target_ulong len, int type)
1491 struct kvm_sw_breakpoint *bp;
1492 CPUState *env;
1493 int err;
1495 if (type == GDB_BREAKPOINT_SW) {
1496 bp = kvm_find_sw_breakpoint(current_env, addr);
1497 if (bp) {
1498 bp->use_count++;
1499 return 0;
1502 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
1503 if (!bp) {
1504 return -ENOMEM;
1507 bp->pc = addr;
1508 bp->use_count = 1;
1509 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1510 if (err) {
1511 g_free(bp);
1512 return err;
1515 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
1516 bp, entry);
1517 } else {
1518 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1519 if (err) {
1520 return err;
1524 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1525 err = kvm_update_guest_debug(env, 0);
1526 if (err) {
1527 return err;
1530 return 0;
1533 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1534 target_ulong len, int type)
1536 struct kvm_sw_breakpoint *bp;
1537 CPUState *env;
1538 int err;
1540 if (type == GDB_BREAKPOINT_SW) {
1541 bp = kvm_find_sw_breakpoint(current_env, addr);
1542 if (!bp) {
1543 return -ENOENT;
1546 if (bp->use_count > 1) {
1547 bp->use_count--;
1548 return 0;
1551 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1552 if (err) {
1553 return err;
1556 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1557 g_free(bp);
1558 } else {
1559 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1560 if (err) {
1561 return err;
1565 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1566 err = kvm_update_guest_debug(env, 0);
1567 if (err) {
1568 return err;
1571 return 0;
1574 void kvm_remove_all_breakpoints(CPUState *current_env)
1576 struct kvm_sw_breakpoint *bp, *next;
1577 KVMState *s = current_env->kvm_state;
1578 CPUState *env;
1580 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1581 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1582 /* Try harder to find a CPU that currently sees the breakpoint. */
1583 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1584 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) {
1585 break;
1590 kvm_arch_remove_all_hw_breakpoints();
1592 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1593 kvm_update_guest_debug(env, 0);
1597 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1599 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1601 return -EINVAL;
1604 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1605 target_ulong len, int type)
1607 return -EINVAL;
1610 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1611 target_ulong len, int type)
1613 return -EINVAL;
1616 void kvm_remove_all_breakpoints(CPUState *current_env)
1619 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1621 int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset)
1623 struct kvm_signal_mask *sigmask;
1624 int r;
1626 if (!sigset) {
1627 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1630 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
1632 sigmask->len = 8;
1633 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1634 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1635 g_free(sigmask);
1637 return r;
1640 int kvm_set_ioeventfd_mmio_long(int fd, uint32_t addr, uint32_t val, bool assign)
1642 int ret;
1643 struct kvm_ioeventfd iofd;
1645 iofd.datamatch = val;
1646 iofd.addr = addr;
1647 iofd.len = 4;
1648 iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
1649 iofd.fd = fd;
1651 if (!kvm_enabled()) {
1652 return -ENOSYS;
1655 if (!assign) {
1656 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1659 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1661 if (ret < 0) {
1662 return -errno;
1665 return 0;
1668 int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1670 struct kvm_ioeventfd kick = {
1671 .datamatch = val,
1672 .addr = addr,
1673 .len = 2,
1674 .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1675 .fd = fd,
1677 int r;
1678 if (!kvm_enabled()) {
1679 return -ENOSYS;
1681 if (!assign) {
1682 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1684 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1685 if (r < 0) {
1686 return r;
1688 return 0;
1691 int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1693 return kvm_arch_on_sigbus_vcpu(env, code, addr);
1696 int kvm_on_sigbus(int code, void *addr)
1698 return kvm_arch_on_sigbus(code, addr);