block/iscsi: cancel libiscsi task when ABORT TASK TMF completes
[qemu/ar7.git] / hw / nvram / fw_cfg.c
blob53e8e010a8b758ce78adcb66e73f9f8c80a2458b
1 /*
2 * QEMU Firmware configuration device emulation
4 * Copyright (c) 2008 Gleb Natapov
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "hw/hw.h"
27 #include "sysemu/sysemu.h"
28 #include "sysemu/dma.h"
29 #include "hw/boards.h"
30 #include "hw/nvram/fw_cfg.h"
31 #include "hw/sysbus.h"
32 #include "trace.h"
33 #include "qemu/error-report.h"
34 #include "qemu/option.h"
35 #include "qemu/config-file.h"
36 #include "qemu/cutils.h"
37 #include "qapi/error.h"
39 #define FW_CFG_FILE_SLOTS_DFLT 0x20
41 /* FW_CFG_VERSION bits */
42 #define FW_CFG_VERSION 0x01
43 #define FW_CFG_VERSION_DMA 0x02
45 /* FW_CFG_DMA_CONTROL bits */
46 #define FW_CFG_DMA_CTL_ERROR 0x01
47 #define FW_CFG_DMA_CTL_READ 0x02
48 #define FW_CFG_DMA_CTL_SKIP 0x04
49 #define FW_CFG_DMA_CTL_SELECT 0x08
50 #define FW_CFG_DMA_CTL_WRITE 0x10
52 #define FW_CFG_DMA_SIGNATURE 0x51454d5520434647ULL /* "QEMU CFG" */
54 struct FWCfgEntry {
55 uint32_t len;
56 bool allow_write;
57 uint8_t *data;
58 void *callback_opaque;
59 FWCfgCallback select_cb;
60 FWCfgWriteCallback write_cb;
63 #define JPG_FILE 0
64 #define BMP_FILE 1
66 static char *read_splashfile(char *filename, gsize *file_sizep,
67 int *file_typep)
69 GError *err = NULL;
70 gchar *content;
71 int file_type;
72 unsigned int filehead;
73 int bmp_bpp;
75 if (!g_file_get_contents(filename, &content, file_sizep, &err)) {
76 error_report("failed to read splash file '%s': %s",
77 filename, err->message);
78 g_error_free(err);
79 return NULL;
82 /* check file size */
83 if (*file_sizep < 30) {
84 goto error;
87 /* check magic ID */
88 filehead = ((content[0] & 0xff) + (content[1] << 8)) & 0xffff;
89 if (filehead == 0xd8ff) {
90 file_type = JPG_FILE;
91 } else if (filehead == 0x4d42) {
92 file_type = BMP_FILE;
93 } else {
94 goto error;
97 /* check BMP bpp */
98 if (file_type == BMP_FILE) {
99 bmp_bpp = (content[28] + (content[29] << 8)) & 0xffff;
100 if (bmp_bpp != 24) {
101 goto error;
105 /* return values */
106 *file_typep = file_type;
108 return content;
110 error:
111 error_report("splash file '%s' format not recognized; must be JPEG "
112 "or 24 bit BMP", filename);
113 g_free(content);
114 return NULL;
117 static void fw_cfg_bootsplash(FWCfgState *s)
119 const char *boot_splash_filename = NULL;
120 const char *boot_splash_time = NULL;
121 uint8_t qemu_extra_params_fw[2];
122 char *filename, *file_data;
123 gsize file_size;
124 int file_type;
126 /* get user configuration */
127 QemuOptsList *plist = qemu_find_opts("boot-opts");
128 QemuOpts *opts = QTAILQ_FIRST(&plist->head);
129 boot_splash_filename = qemu_opt_get(opts, "splash");
130 boot_splash_time = qemu_opt_get(opts, "splash-time");
132 /* insert splash time if user configurated */
133 if (boot_splash_time) {
134 int64_t bst_val = qemu_opt_get_number(opts, "splash-time", -1);
135 /* validate the input */
136 if (bst_val < 0 || bst_val > 0xffff) {
137 error_report("splash-time is invalid,"
138 "it should be a value between 0 and 65535");
139 exit(1);
141 /* use little endian format */
142 qemu_extra_params_fw[0] = (uint8_t)(bst_val & 0xff);
143 qemu_extra_params_fw[1] = (uint8_t)((bst_val >> 8) & 0xff);
144 fw_cfg_add_file(s, "etc/boot-menu-wait", qemu_extra_params_fw, 2);
147 /* insert splash file if user configurated */
148 if (boot_splash_filename) {
149 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, boot_splash_filename);
150 if (filename == NULL) {
151 error_report("failed to find file '%s'", boot_splash_filename);
152 return;
155 /* loading file data */
156 file_data = read_splashfile(filename, &file_size, &file_type);
157 if (file_data == NULL) {
158 g_free(filename);
159 return;
161 g_free(boot_splash_filedata);
162 boot_splash_filedata = (uint8_t *)file_data;
163 boot_splash_filedata_size = file_size;
165 /* insert data */
166 if (file_type == JPG_FILE) {
167 fw_cfg_add_file(s, "bootsplash.jpg",
168 boot_splash_filedata, boot_splash_filedata_size);
169 } else {
170 fw_cfg_add_file(s, "bootsplash.bmp",
171 boot_splash_filedata, boot_splash_filedata_size);
173 g_free(filename);
177 static void fw_cfg_reboot(FWCfgState *s)
179 const char *reboot_timeout = NULL;
180 int64_t rt_val = -1;
182 /* get user configuration */
183 QemuOptsList *plist = qemu_find_opts("boot-opts");
184 QemuOpts *opts = QTAILQ_FIRST(&plist->head);
185 reboot_timeout = qemu_opt_get(opts, "reboot-timeout");
187 if (reboot_timeout) {
188 rt_val = qemu_opt_get_number(opts, "reboot-timeout", -1);
189 /* validate the input */
190 if (rt_val < 0 || rt_val > 0xffff) {
191 error_report("reboot timeout is invalid,"
192 "it should be a value between 0 and 65535");
193 exit(1);
197 fw_cfg_add_file(s, "etc/boot-fail-wait", g_memdup(&rt_val, 4), 4);
200 static void fw_cfg_write(FWCfgState *s, uint8_t value)
202 /* nothing, write support removed in QEMU v2.4+ */
205 static inline uint16_t fw_cfg_file_slots(const FWCfgState *s)
207 return s->file_slots;
210 /* Note: this function returns an exclusive limit. */
211 static inline uint32_t fw_cfg_max_entry(const FWCfgState *s)
213 return FW_CFG_FILE_FIRST + fw_cfg_file_slots(s);
216 static int fw_cfg_select(FWCfgState *s, uint16_t key)
218 int arch, ret;
219 FWCfgEntry *e;
221 s->cur_offset = 0;
222 if ((key & FW_CFG_ENTRY_MASK) >= fw_cfg_max_entry(s)) {
223 s->cur_entry = FW_CFG_INVALID;
224 ret = 0;
225 } else {
226 s->cur_entry = key;
227 ret = 1;
228 /* entry successfully selected, now run callback if present */
229 arch = !!(key & FW_CFG_ARCH_LOCAL);
230 e = &s->entries[arch][key & FW_CFG_ENTRY_MASK];
231 if (e->select_cb) {
232 e->select_cb(e->callback_opaque);
236 trace_fw_cfg_select(s, key, ret);
237 return ret;
240 static uint64_t fw_cfg_data_read(void *opaque, hwaddr addr, unsigned size)
242 FWCfgState *s = opaque;
243 int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
244 FWCfgEntry *e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
245 &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
246 uint64_t value = 0;
248 assert(size > 0 && size <= sizeof(value));
249 if (s->cur_entry != FW_CFG_INVALID && e->data && s->cur_offset < e->len) {
250 /* The least significant 'size' bytes of the return value are
251 * expected to contain a string preserving portion of the item
252 * data, padded with zeros on the right in case we run out early.
253 * In technical terms, we're composing the host-endian representation
254 * of the big endian interpretation of the fw_cfg string.
256 do {
257 value = (value << 8) | e->data[s->cur_offset++];
258 } while (--size && s->cur_offset < e->len);
259 /* If size is still not zero, we *did* run out early, so continue
260 * left-shifting, to add the appropriate number of padding zeros
261 * on the right.
263 value <<= 8 * size;
266 trace_fw_cfg_read(s, value);
267 return value;
270 static void fw_cfg_data_mem_write(void *opaque, hwaddr addr,
271 uint64_t value, unsigned size)
273 FWCfgState *s = opaque;
274 unsigned i = size;
276 do {
277 fw_cfg_write(s, value >> (8 * --i));
278 } while (i);
281 static void fw_cfg_dma_transfer(FWCfgState *s)
283 dma_addr_t len;
284 FWCfgDmaAccess dma;
285 int arch;
286 FWCfgEntry *e;
287 int read = 0, write = 0;
288 dma_addr_t dma_addr;
290 /* Reset the address before the next access */
291 dma_addr = s->dma_addr;
292 s->dma_addr = 0;
294 if (dma_memory_read(s->dma_as, dma_addr, &dma, sizeof(dma))) {
295 stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
296 FW_CFG_DMA_CTL_ERROR);
297 return;
300 dma.address = be64_to_cpu(dma.address);
301 dma.length = be32_to_cpu(dma.length);
302 dma.control = be32_to_cpu(dma.control);
304 if (dma.control & FW_CFG_DMA_CTL_SELECT) {
305 fw_cfg_select(s, dma.control >> 16);
308 arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
309 e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
310 &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
312 if (dma.control & FW_CFG_DMA_CTL_READ) {
313 read = 1;
314 write = 0;
315 } else if (dma.control & FW_CFG_DMA_CTL_WRITE) {
316 read = 0;
317 write = 1;
318 } else if (dma.control & FW_CFG_DMA_CTL_SKIP) {
319 read = 0;
320 write = 0;
321 } else {
322 dma.length = 0;
325 dma.control = 0;
327 while (dma.length > 0 && !(dma.control & FW_CFG_DMA_CTL_ERROR)) {
328 if (s->cur_entry == FW_CFG_INVALID || !e->data ||
329 s->cur_offset >= e->len) {
330 len = dma.length;
332 /* If the access is not a read access, it will be a skip access,
333 * tested before.
335 if (read) {
336 if (dma_memory_set(s->dma_as, dma.address, 0, len)) {
337 dma.control |= FW_CFG_DMA_CTL_ERROR;
340 if (write) {
341 dma.control |= FW_CFG_DMA_CTL_ERROR;
343 } else {
344 if (dma.length <= (e->len - s->cur_offset)) {
345 len = dma.length;
346 } else {
347 len = (e->len - s->cur_offset);
350 /* If the access is not a read access, it will be a skip access,
351 * tested before.
353 if (read) {
354 if (dma_memory_write(s->dma_as, dma.address,
355 &e->data[s->cur_offset], len)) {
356 dma.control |= FW_CFG_DMA_CTL_ERROR;
359 if (write) {
360 if (!e->allow_write ||
361 len != dma.length ||
362 dma_memory_read(s->dma_as, dma.address,
363 &e->data[s->cur_offset], len)) {
364 dma.control |= FW_CFG_DMA_CTL_ERROR;
365 } else if (e->write_cb) {
366 e->write_cb(e->callback_opaque, s->cur_offset, len);
370 s->cur_offset += len;
373 dma.address += len;
374 dma.length -= len;
378 stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
379 dma.control);
381 trace_fw_cfg_read(s, 0);
384 static uint64_t fw_cfg_dma_mem_read(void *opaque, hwaddr addr,
385 unsigned size)
387 /* Return a signature value (and handle various read sizes) */
388 return extract64(FW_CFG_DMA_SIGNATURE, (8 - addr - size) * 8, size * 8);
391 static void fw_cfg_dma_mem_write(void *opaque, hwaddr addr,
392 uint64_t value, unsigned size)
394 FWCfgState *s = opaque;
396 if (size == 4) {
397 if (addr == 0) {
398 /* FWCfgDmaAccess high address */
399 s->dma_addr = value << 32;
400 } else if (addr == 4) {
401 /* FWCfgDmaAccess low address */
402 s->dma_addr |= value;
403 fw_cfg_dma_transfer(s);
405 } else if (size == 8 && addr == 0) {
406 s->dma_addr = value;
407 fw_cfg_dma_transfer(s);
411 static bool fw_cfg_dma_mem_valid(void *opaque, hwaddr addr,
412 unsigned size, bool is_write,
413 MemTxAttrs attrs)
415 return !is_write || ((size == 4 && (addr == 0 || addr == 4)) ||
416 (size == 8 && addr == 0));
419 static bool fw_cfg_data_mem_valid(void *opaque, hwaddr addr,
420 unsigned size, bool is_write,
421 MemTxAttrs attrs)
423 return addr == 0;
426 static uint64_t fw_cfg_ctl_mem_read(void *opaque, hwaddr addr, unsigned size)
428 return 0;
431 static void fw_cfg_ctl_mem_write(void *opaque, hwaddr addr,
432 uint64_t value, unsigned size)
434 fw_cfg_select(opaque, (uint16_t)value);
437 static bool fw_cfg_ctl_mem_valid(void *opaque, hwaddr addr,
438 unsigned size, bool is_write,
439 MemTxAttrs attrs)
441 return is_write && size == 2;
444 static void fw_cfg_comb_write(void *opaque, hwaddr addr,
445 uint64_t value, unsigned size)
447 switch (size) {
448 case 1:
449 fw_cfg_write(opaque, (uint8_t)value);
450 break;
451 case 2:
452 fw_cfg_select(opaque, (uint16_t)value);
453 break;
457 static bool fw_cfg_comb_valid(void *opaque, hwaddr addr,
458 unsigned size, bool is_write,
459 MemTxAttrs attrs)
461 return (size == 1) || (is_write && size == 2);
464 static const MemoryRegionOps fw_cfg_ctl_mem_ops = {
465 .read = fw_cfg_ctl_mem_read,
466 .write = fw_cfg_ctl_mem_write,
467 .endianness = DEVICE_BIG_ENDIAN,
468 .valid.accepts = fw_cfg_ctl_mem_valid,
471 static const MemoryRegionOps fw_cfg_data_mem_ops = {
472 .read = fw_cfg_data_read,
473 .write = fw_cfg_data_mem_write,
474 .endianness = DEVICE_BIG_ENDIAN,
475 .valid = {
476 .min_access_size = 1,
477 .max_access_size = 1,
478 .accepts = fw_cfg_data_mem_valid,
482 static const MemoryRegionOps fw_cfg_comb_mem_ops = {
483 .read = fw_cfg_data_read,
484 .write = fw_cfg_comb_write,
485 .endianness = DEVICE_LITTLE_ENDIAN,
486 .valid.accepts = fw_cfg_comb_valid,
489 static const MemoryRegionOps fw_cfg_dma_mem_ops = {
490 .read = fw_cfg_dma_mem_read,
491 .write = fw_cfg_dma_mem_write,
492 .endianness = DEVICE_BIG_ENDIAN,
493 .valid.accepts = fw_cfg_dma_mem_valid,
494 .valid.max_access_size = 8,
495 .impl.max_access_size = 8,
498 static void fw_cfg_reset(DeviceState *d)
500 FWCfgState *s = FW_CFG(d);
502 /* we never register a read callback for FW_CFG_SIGNATURE */
503 fw_cfg_select(s, FW_CFG_SIGNATURE);
506 /* Save restore 32 bit int as uint16_t
507 This is a Big hack, but it is how the old state did it.
508 Or we broke compatibility in the state, or we can't use struct tm
511 static int get_uint32_as_uint16(QEMUFile *f, void *pv, size_t size,
512 const VMStateField *field)
514 uint32_t *v = pv;
515 *v = qemu_get_be16(f);
516 return 0;
519 static int put_unused(QEMUFile *f, void *pv, size_t size,
520 const VMStateField *field, QJSON *vmdesc)
522 fprintf(stderr, "uint32_as_uint16 is only used for backward compatibility.\n");
523 fprintf(stderr, "This functions shouldn't be called.\n");
525 return 0;
528 static const VMStateInfo vmstate_hack_uint32_as_uint16 = {
529 .name = "int32_as_uint16",
530 .get = get_uint32_as_uint16,
531 .put = put_unused,
534 #define VMSTATE_UINT16_HACK(_f, _s, _t) \
535 VMSTATE_SINGLE_TEST(_f, _s, _t, 0, vmstate_hack_uint32_as_uint16, uint32_t)
538 static bool is_version_1(void *opaque, int version_id)
540 return version_id == 1;
543 bool fw_cfg_dma_enabled(void *opaque)
545 FWCfgState *s = opaque;
547 return s->dma_enabled;
550 static const VMStateDescription vmstate_fw_cfg_dma = {
551 .name = "fw_cfg/dma",
552 .needed = fw_cfg_dma_enabled,
553 .fields = (VMStateField[]) {
554 VMSTATE_UINT64(dma_addr, FWCfgState),
555 VMSTATE_END_OF_LIST()
559 static const VMStateDescription vmstate_fw_cfg = {
560 .name = "fw_cfg",
561 .version_id = 2,
562 .minimum_version_id = 1,
563 .fields = (VMStateField[]) {
564 VMSTATE_UINT16(cur_entry, FWCfgState),
565 VMSTATE_UINT16_HACK(cur_offset, FWCfgState, is_version_1),
566 VMSTATE_UINT32_V(cur_offset, FWCfgState, 2),
567 VMSTATE_END_OF_LIST()
569 .subsections = (const VMStateDescription*[]) {
570 &vmstate_fw_cfg_dma,
571 NULL,
575 static void fw_cfg_add_bytes_callback(FWCfgState *s, uint16_t key,
576 FWCfgCallback select_cb,
577 FWCfgWriteCallback write_cb,
578 void *callback_opaque,
579 void *data, size_t len,
580 bool read_only)
582 int arch = !!(key & FW_CFG_ARCH_LOCAL);
584 key &= FW_CFG_ENTRY_MASK;
586 assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX);
587 assert(s->entries[arch][key].data == NULL); /* avoid key conflict */
589 s->entries[arch][key].data = data;
590 s->entries[arch][key].len = (uint32_t)len;
591 s->entries[arch][key].select_cb = select_cb;
592 s->entries[arch][key].write_cb = write_cb;
593 s->entries[arch][key].callback_opaque = callback_opaque;
594 s->entries[arch][key].allow_write = !read_only;
597 static void *fw_cfg_modify_bytes_read(FWCfgState *s, uint16_t key,
598 void *data, size_t len)
600 void *ptr;
601 int arch = !!(key & FW_CFG_ARCH_LOCAL);
603 key &= FW_CFG_ENTRY_MASK;
605 assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX);
607 /* return the old data to the function caller, avoid memory leak */
608 ptr = s->entries[arch][key].data;
609 s->entries[arch][key].data = data;
610 s->entries[arch][key].len = len;
611 s->entries[arch][key].callback_opaque = NULL;
612 s->entries[arch][key].allow_write = false;
614 return ptr;
617 void fw_cfg_add_bytes(FWCfgState *s, uint16_t key, void *data, size_t len)
619 fw_cfg_add_bytes_callback(s, key, NULL, NULL, NULL, data, len, true);
622 void fw_cfg_add_string(FWCfgState *s, uint16_t key, const char *value)
624 size_t sz = strlen(value) + 1;
626 fw_cfg_add_bytes(s, key, g_memdup(value, sz), sz);
629 void fw_cfg_add_i16(FWCfgState *s, uint16_t key, uint16_t value)
631 uint16_t *copy;
633 copy = g_malloc(sizeof(value));
634 *copy = cpu_to_le16(value);
635 fw_cfg_add_bytes(s, key, copy, sizeof(value));
638 void fw_cfg_modify_i16(FWCfgState *s, uint16_t key, uint16_t value)
640 uint16_t *copy, *old;
642 copy = g_malloc(sizeof(value));
643 *copy = cpu_to_le16(value);
644 old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
645 g_free(old);
648 void fw_cfg_add_i32(FWCfgState *s, uint16_t key, uint32_t value)
650 uint32_t *copy;
652 copy = g_malloc(sizeof(value));
653 *copy = cpu_to_le32(value);
654 fw_cfg_add_bytes(s, key, copy, sizeof(value));
657 void fw_cfg_add_i64(FWCfgState *s, uint16_t key, uint64_t value)
659 uint64_t *copy;
661 copy = g_malloc(sizeof(value));
662 *copy = cpu_to_le64(value);
663 fw_cfg_add_bytes(s, key, copy, sizeof(value));
666 void fw_cfg_set_order_override(FWCfgState *s, int order)
668 assert(s->fw_cfg_order_override == 0);
669 s->fw_cfg_order_override = order;
672 void fw_cfg_reset_order_override(FWCfgState *s)
674 assert(s->fw_cfg_order_override != 0);
675 s->fw_cfg_order_override = 0;
679 * This is the legacy order list. For legacy systems, files are in
680 * the fw_cfg in the order defined below, by the "order" value. Note
681 * that some entries (VGA ROMs, NIC option ROMS, etc.) go into a
682 * specific area, but there may be more than one and they occur in the
683 * order that the user specifies them on the command line. Those are
684 * handled in a special manner, using the order override above.
686 * For non-legacy, the files are sorted by filename to avoid this kind
687 * of complexity in the future.
689 * This is only for x86, other arches don't implement versioning so
690 * they won't set legacy mode.
692 static struct {
693 const char *name;
694 int order;
695 } fw_cfg_order[] = {
696 { "etc/boot-menu-wait", 10 },
697 { "bootsplash.jpg", 11 },
698 { "bootsplash.bmp", 12 },
699 { "etc/boot-fail-wait", 15 },
700 { "etc/smbios/smbios-tables", 20 },
701 { "etc/smbios/smbios-anchor", 30 },
702 { "etc/e820", 40 },
703 { "etc/reserved-memory-end", 50 },
704 { "genroms/kvmvapic.bin", 55 },
705 { "genroms/linuxboot.bin", 60 },
706 { }, /* VGA ROMs from pc_vga_init come here, 70. */
707 { }, /* NIC option ROMs from pc_nic_init come here, 80. */
708 { "etc/system-states", 90 },
709 { }, /* User ROMs come here, 100. */
710 { }, /* Device FW comes here, 110. */
711 { "etc/extra-pci-roots", 120 },
712 { "etc/acpi/tables", 130 },
713 { "etc/table-loader", 140 },
714 { "etc/tpm/log", 150 },
715 { "etc/acpi/rsdp", 160 },
716 { "bootorder", 170 },
718 #define FW_CFG_ORDER_OVERRIDE_LAST 200
721 static int get_fw_cfg_order(FWCfgState *s, const char *name)
723 int i;
725 if (s->fw_cfg_order_override > 0) {
726 return s->fw_cfg_order_override;
729 for (i = 0; i < ARRAY_SIZE(fw_cfg_order); i++) {
730 if (fw_cfg_order[i].name == NULL) {
731 continue;
734 if (strcmp(name, fw_cfg_order[i].name) == 0) {
735 return fw_cfg_order[i].order;
739 /* Stick unknown stuff at the end. */
740 warn_report("Unknown firmware file in legacy mode: %s", name);
741 return FW_CFG_ORDER_OVERRIDE_LAST;
744 void fw_cfg_add_file_callback(FWCfgState *s, const char *filename,
745 FWCfgCallback select_cb,
746 FWCfgWriteCallback write_cb,
747 void *callback_opaque,
748 void *data, size_t len, bool read_only)
750 int i, index, count;
751 size_t dsize;
752 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
753 int order = 0;
755 if (!s->files) {
756 dsize = sizeof(uint32_t) + sizeof(FWCfgFile) * fw_cfg_file_slots(s);
757 s->files = g_malloc0(dsize);
758 fw_cfg_add_bytes(s, FW_CFG_FILE_DIR, s->files, dsize);
761 count = be32_to_cpu(s->files->count);
762 assert(count < fw_cfg_file_slots(s));
764 /* Find the insertion point. */
765 if (mc->legacy_fw_cfg_order) {
767 * Sort by order. For files with the same order, we keep them
768 * in the sequence in which they were added.
770 order = get_fw_cfg_order(s, filename);
771 for (index = count;
772 index > 0 && order < s->entry_order[index - 1];
773 index--);
774 } else {
775 /* Sort by file name. */
776 for (index = count;
777 index > 0 && strcmp(filename, s->files->f[index - 1].name) < 0;
778 index--);
782 * Move all the entries from the index point and after down one
783 * to create a slot for the new entry. Because calculations are
784 * being done with the index, make it so that "i" is the current
785 * index and "i - 1" is the one being copied from, thus the
786 * unusual start and end in the for statement.
788 for (i = count; i > index; i--) {
789 s->files->f[i] = s->files->f[i - 1];
790 s->files->f[i].select = cpu_to_be16(FW_CFG_FILE_FIRST + i);
791 s->entries[0][FW_CFG_FILE_FIRST + i] =
792 s->entries[0][FW_CFG_FILE_FIRST + i - 1];
793 s->entry_order[i] = s->entry_order[i - 1];
796 memset(&s->files->f[index], 0, sizeof(FWCfgFile));
797 memset(&s->entries[0][FW_CFG_FILE_FIRST + index], 0, sizeof(FWCfgEntry));
799 pstrcpy(s->files->f[index].name, sizeof(s->files->f[index].name), filename);
800 for (i = 0; i <= count; i++) {
801 if (i != index &&
802 strcmp(s->files->f[index].name, s->files->f[i].name) == 0) {
803 error_report("duplicate fw_cfg file name: %s",
804 s->files->f[index].name);
805 exit(1);
809 fw_cfg_add_bytes_callback(s, FW_CFG_FILE_FIRST + index,
810 select_cb, write_cb,
811 callback_opaque, data, len,
812 read_only);
814 s->files->f[index].size = cpu_to_be32(len);
815 s->files->f[index].select = cpu_to_be16(FW_CFG_FILE_FIRST + index);
816 s->entry_order[index] = order;
817 trace_fw_cfg_add_file(s, index, s->files->f[index].name, len);
819 s->files->count = cpu_to_be32(count+1);
822 void fw_cfg_add_file(FWCfgState *s, const char *filename,
823 void *data, size_t len)
825 fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true);
828 void *fw_cfg_modify_file(FWCfgState *s, const char *filename,
829 void *data, size_t len)
831 int i, index;
832 void *ptr = NULL;
834 assert(s->files);
836 index = be32_to_cpu(s->files->count);
838 for (i = 0; i < index; i++) {
839 if (strcmp(filename, s->files->f[i].name) == 0) {
840 ptr = fw_cfg_modify_bytes_read(s, FW_CFG_FILE_FIRST + i,
841 data, len);
842 s->files->f[i].size = cpu_to_be32(len);
843 return ptr;
847 assert(index < fw_cfg_file_slots(s));
849 /* add new one */
850 fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true);
851 return NULL;
854 static void fw_cfg_machine_reset(void *opaque)
856 void *ptr;
857 size_t len;
858 FWCfgState *s = opaque;
859 char *bootindex = get_boot_devices_list(&len);
861 ptr = fw_cfg_modify_file(s, "bootorder", (uint8_t *)bootindex, len);
862 g_free(ptr);
865 static void fw_cfg_machine_ready(struct Notifier *n, void *data)
867 FWCfgState *s = container_of(n, FWCfgState, machine_ready);
868 qemu_register_reset(fw_cfg_machine_reset, s);
873 static void fw_cfg_common_realize(DeviceState *dev, Error **errp)
875 FWCfgState *s = FW_CFG(dev);
876 MachineState *machine = MACHINE(qdev_get_machine());
877 uint32_t version = FW_CFG_VERSION;
879 if (!fw_cfg_find()) {
880 error_setg(errp, "at most one %s device is permitted", TYPE_FW_CFG);
881 return;
884 fw_cfg_add_bytes(s, FW_CFG_SIGNATURE, (char *)"QEMU", 4);
885 fw_cfg_add_bytes(s, FW_CFG_UUID, &qemu_uuid, 16);
886 fw_cfg_add_i16(s, FW_CFG_NOGRAPHIC, (uint16_t)!machine->enable_graphics);
887 fw_cfg_add_i16(s, FW_CFG_BOOT_MENU, (uint16_t)boot_menu);
888 fw_cfg_bootsplash(s);
889 fw_cfg_reboot(s);
891 if (s->dma_enabled) {
892 version |= FW_CFG_VERSION_DMA;
895 fw_cfg_add_i32(s, FW_CFG_ID, version);
897 s->machine_ready.notify = fw_cfg_machine_ready;
898 qemu_add_machine_init_done_notifier(&s->machine_ready);
901 FWCfgState *fw_cfg_init_io_dma(uint32_t iobase, uint32_t dma_iobase,
902 AddressSpace *dma_as)
904 DeviceState *dev;
905 SysBusDevice *sbd;
906 FWCfgIoState *ios;
907 FWCfgState *s;
908 bool dma_requested = dma_iobase && dma_as;
910 dev = qdev_create(NULL, TYPE_FW_CFG_IO);
911 if (!dma_requested) {
912 qdev_prop_set_bit(dev, "dma_enabled", false);
915 object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
916 OBJECT(dev), NULL);
917 qdev_init_nofail(dev);
919 sbd = SYS_BUS_DEVICE(dev);
920 ios = FW_CFG_IO(dev);
921 sysbus_add_io(sbd, iobase, &ios->comb_iomem);
923 s = FW_CFG(dev);
925 if (s->dma_enabled) {
926 /* 64 bits for the address field */
927 s->dma_as = dma_as;
928 s->dma_addr = 0;
929 sysbus_add_io(sbd, dma_iobase, &s->dma_iomem);
932 return s;
935 FWCfgState *fw_cfg_init_io(uint32_t iobase)
937 return fw_cfg_init_io_dma(iobase, 0, NULL);
940 FWCfgState *fw_cfg_init_mem_wide(hwaddr ctl_addr,
941 hwaddr data_addr, uint32_t data_width,
942 hwaddr dma_addr, AddressSpace *dma_as)
944 DeviceState *dev;
945 SysBusDevice *sbd;
946 FWCfgState *s;
947 bool dma_requested = dma_addr && dma_as;
949 dev = qdev_create(NULL, TYPE_FW_CFG_MEM);
950 qdev_prop_set_uint32(dev, "data_width", data_width);
951 if (!dma_requested) {
952 qdev_prop_set_bit(dev, "dma_enabled", false);
955 object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
956 OBJECT(dev), NULL);
957 qdev_init_nofail(dev);
959 sbd = SYS_BUS_DEVICE(dev);
960 sysbus_mmio_map(sbd, 0, ctl_addr);
961 sysbus_mmio_map(sbd, 1, data_addr);
963 s = FW_CFG(dev);
965 if (s->dma_enabled) {
966 s->dma_as = dma_as;
967 s->dma_addr = 0;
968 sysbus_mmio_map(sbd, 2, dma_addr);
971 return s;
974 FWCfgState *fw_cfg_init_mem(hwaddr ctl_addr, hwaddr data_addr)
976 return fw_cfg_init_mem_wide(ctl_addr, data_addr,
977 fw_cfg_data_mem_ops.valid.max_access_size,
978 0, NULL);
982 FWCfgState *fw_cfg_find(void)
984 /* Returns NULL unless there is exactly one fw_cfg device */
985 return FW_CFG(object_resolve_path_type("", TYPE_FW_CFG, NULL));
989 static void fw_cfg_class_init(ObjectClass *klass, void *data)
991 DeviceClass *dc = DEVICE_CLASS(klass);
993 dc->reset = fw_cfg_reset;
994 dc->vmsd = &vmstate_fw_cfg;
997 static const TypeInfo fw_cfg_info = {
998 .name = TYPE_FW_CFG,
999 .parent = TYPE_SYS_BUS_DEVICE,
1000 .abstract = true,
1001 .instance_size = sizeof(FWCfgState),
1002 .class_init = fw_cfg_class_init,
1005 static void fw_cfg_file_slots_allocate(FWCfgState *s, Error **errp)
1007 uint16_t file_slots_max;
1009 if (fw_cfg_file_slots(s) < FW_CFG_FILE_SLOTS_MIN) {
1010 error_setg(errp, "\"file_slots\" must be at least 0x%x",
1011 FW_CFG_FILE_SLOTS_MIN);
1012 return;
1015 /* (UINT16_MAX & FW_CFG_ENTRY_MASK) is the highest inclusive selector value
1016 * that we permit. The actual (exclusive) value coming from the
1017 * configuration is (FW_CFG_FILE_FIRST + fw_cfg_file_slots(s)). */
1018 file_slots_max = (UINT16_MAX & FW_CFG_ENTRY_MASK) - FW_CFG_FILE_FIRST + 1;
1019 if (fw_cfg_file_slots(s) > file_slots_max) {
1020 error_setg(errp, "\"file_slots\" must not exceed 0x%" PRIx16,
1021 file_slots_max);
1022 return;
1025 s->entries[0] = g_new0(FWCfgEntry, fw_cfg_max_entry(s));
1026 s->entries[1] = g_new0(FWCfgEntry, fw_cfg_max_entry(s));
1027 s->entry_order = g_new0(int, fw_cfg_max_entry(s));
1030 static Property fw_cfg_io_properties[] = {
1031 DEFINE_PROP_BOOL("dma_enabled", FWCfgIoState, parent_obj.dma_enabled,
1032 true),
1033 DEFINE_PROP_UINT16("x-file-slots", FWCfgIoState, parent_obj.file_slots,
1034 FW_CFG_FILE_SLOTS_DFLT),
1035 DEFINE_PROP_END_OF_LIST(),
1038 static void fw_cfg_io_realize(DeviceState *dev, Error **errp)
1040 FWCfgIoState *s = FW_CFG_IO(dev);
1041 Error *local_err = NULL;
1043 fw_cfg_file_slots_allocate(FW_CFG(s), &local_err);
1044 if (local_err) {
1045 error_propagate(errp, local_err);
1046 return;
1049 /* when using port i/o, the 8-bit data register ALWAYS overlaps
1050 * with half of the 16-bit control register. Hence, the total size
1051 * of the i/o region used is FW_CFG_CTL_SIZE */
1052 memory_region_init_io(&s->comb_iomem, OBJECT(s), &fw_cfg_comb_mem_ops,
1053 FW_CFG(s), "fwcfg", FW_CFG_CTL_SIZE);
1055 if (FW_CFG(s)->dma_enabled) {
1056 memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
1057 &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
1058 sizeof(dma_addr_t));
1061 fw_cfg_common_realize(dev, errp);
1064 static void fw_cfg_io_class_init(ObjectClass *klass, void *data)
1066 DeviceClass *dc = DEVICE_CLASS(klass);
1068 dc->realize = fw_cfg_io_realize;
1069 dc->props = fw_cfg_io_properties;
1072 static const TypeInfo fw_cfg_io_info = {
1073 .name = TYPE_FW_CFG_IO,
1074 .parent = TYPE_FW_CFG,
1075 .instance_size = sizeof(FWCfgIoState),
1076 .class_init = fw_cfg_io_class_init,
1080 static Property fw_cfg_mem_properties[] = {
1081 DEFINE_PROP_UINT32("data_width", FWCfgMemState, data_width, -1),
1082 DEFINE_PROP_BOOL("dma_enabled", FWCfgMemState, parent_obj.dma_enabled,
1083 true),
1084 DEFINE_PROP_UINT16("x-file-slots", FWCfgMemState, parent_obj.file_slots,
1085 FW_CFG_FILE_SLOTS_DFLT),
1086 DEFINE_PROP_END_OF_LIST(),
1089 static void fw_cfg_mem_realize(DeviceState *dev, Error **errp)
1091 FWCfgMemState *s = FW_CFG_MEM(dev);
1092 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1093 const MemoryRegionOps *data_ops = &fw_cfg_data_mem_ops;
1094 Error *local_err = NULL;
1096 fw_cfg_file_slots_allocate(FW_CFG(s), &local_err);
1097 if (local_err) {
1098 error_propagate(errp, local_err);
1099 return;
1102 memory_region_init_io(&s->ctl_iomem, OBJECT(s), &fw_cfg_ctl_mem_ops,
1103 FW_CFG(s), "fwcfg.ctl", FW_CFG_CTL_SIZE);
1104 sysbus_init_mmio(sbd, &s->ctl_iomem);
1106 if (s->data_width > data_ops->valid.max_access_size) {
1107 s->wide_data_ops = *data_ops;
1109 s->wide_data_ops.valid.max_access_size = s->data_width;
1110 s->wide_data_ops.impl.max_access_size = s->data_width;
1111 data_ops = &s->wide_data_ops;
1113 memory_region_init_io(&s->data_iomem, OBJECT(s), data_ops, FW_CFG(s),
1114 "fwcfg.data", data_ops->valid.max_access_size);
1115 sysbus_init_mmio(sbd, &s->data_iomem);
1117 if (FW_CFG(s)->dma_enabled) {
1118 memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
1119 &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
1120 sizeof(dma_addr_t));
1121 sysbus_init_mmio(sbd, &FW_CFG(s)->dma_iomem);
1124 fw_cfg_common_realize(dev, errp);
1127 static void fw_cfg_mem_class_init(ObjectClass *klass, void *data)
1129 DeviceClass *dc = DEVICE_CLASS(klass);
1131 dc->realize = fw_cfg_mem_realize;
1132 dc->props = fw_cfg_mem_properties;
1135 static const TypeInfo fw_cfg_mem_info = {
1136 .name = TYPE_FW_CFG_MEM,
1137 .parent = TYPE_FW_CFG,
1138 .instance_size = sizeof(FWCfgMemState),
1139 .class_init = fw_cfg_mem_class_init,
1143 static void fw_cfg_register_types(void)
1145 type_register_static(&fw_cfg_info);
1146 type_register_static(&fw_cfg_io_info);
1147 type_register_static(&fw_cfg_mem_info);
1150 type_init(fw_cfg_register_types)