target/arm: Makefile cleanup (Aarch64)
[qemu/ar7.git] / tcg / tcg-op-gvec.c
blob17679b6e2fc5a0b2e8a36c1cf9d9983d586d54bd
1 /*
2 * Generic vector operation expansion
4 * Copyright (c) 2018 Linaro
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "tcg.h"
22 #include "tcg-op.h"
23 #include "tcg-op-gvec.h"
24 #include "tcg-gvec-desc.h"
26 #define MAX_UNROLL 4
28 #ifdef CONFIG_DEBUG_TCG
29 static const TCGOpcode vecop_list_empty[1] = { 0 };
30 #else
31 #define vecop_list_empty NULL
32 #endif
35 /* Verify vector size and alignment rules. OFS should be the OR of all
36 of the operand offsets so that we can check them all at once. */
37 static void check_size_align(uint32_t oprsz, uint32_t maxsz, uint32_t ofs)
39 uint32_t opr_align = oprsz >= 16 ? 15 : 7;
40 uint32_t max_align = maxsz >= 16 || oprsz >= 16 ? 15 : 7;
41 tcg_debug_assert(oprsz > 0);
42 tcg_debug_assert(oprsz <= maxsz);
43 tcg_debug_assert((oprsz & opr_align) == 0);
44 tcg_debug_assert((maxsz & max_align) == 0);
45 tcg_debug_assert((ofs & max_align) == 0);
48 /* Verify vector overlap rules for two operands. */
49 static void check_overlap_2(uint32_t d, uint32_t a, uint32_t s)
51 tcg_debug_assert(d == a || d + s <= a || a + s <= d);
54 /* Verify vector overlap rules for three operands. */
55 static void check_overlap_3(uint32_t d, uint32_t a, uint32_t b, uint32_t s)
57 check_overlap_2(d, a, s);
58 check_overlap_2(d, b, s);
59 check_overlap_2(a, b, s);
62 /* Verify vector overlap rules for four operands. */
63 static void check_overlap_4(uint32_t d, uint32_t a, uint32_t b,
64 uint32_t c, uint32_t s)
66 check_overlap_2(d, a, s);
67 check_overlap_2(d, b, s);
68 check_overlap_2(d, c, s);
69 check_overlap_2(a, b, s);
70 check_overlap_2(a, c, s);
71 check_overlap_2(b, c, s);
74 /* Create a descriptor from components. */
75 uint32_t simd_desc(uint32_t oprsz, uint32_t maxsz, int32_t data)
77 uint32_t desc = 0;
79 assert(oprsz % 8 == 0 && oprsz <= (8 << SIMD_OPRSZ_BITS));
80 assert(maxsz % 8 == 0 && maxsz <= (8 << SIMD_MAXSZ_BITS));
81 assert(data == sextract32(data, 0, SIMD_DATA_BITS));
83 oprsz = (oprsz / 8) - 1;
84 maxsz = (maxsz / 8) - 1;
85 desc = deposit32(desc, SIMD_OPRSZ_SHIFT, SIMD_OPRSZ_BITS, oprsz);
86 desc = deposit32(desc, SIMD_MAXSZ_SHIFT, SIMD_MAXSZ_BITS, maxsz);
87 desc = deposit32(desc, SIMD_DATA_SHIFT, SIMD_DATA_BITS, data);
89 return desc;
92 /* Generate a call to a gvec-style helper with two vector operands. */
93 void tcg_gen_gvec_2_ool(uint32_t dofs, uint32_t aofs,
94 uint32_t oprsz, uint32_t maxsz, int32_t data,
95 gen_helper_gvec_2 *fn)
97 TCGv_ptr a0, a1;
98 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
100 a0 = tcg_temp_new_ptr();
101 a1 = tcg_temp_new_ptr();
103 tcg_gen_addi_ptr(a0, cpu_env, dofs);
104 tcg_gen_addi_ptr(a1, cpu_env, aofs);
106 fn(a0, a1, desc);
108 tcg_temp_free_ptr(a0);
109 tcg_temp_free_ptr(a1);
110 tcg_temp_free_i32(desc);
113 /* Generate a call to a gvec-style helper with two vector operands
114 and one scalar operand. */
115 void tcg_gen_gvec_2i_ool(uint32_t dofs, uint32_t aofs, TCGv_i64 c,
116 uint32_t oprsz, uint32_t maxsz, int32_t data,
117 gen_helper_gvec_2i *fn)
119 TCGv_ptr a0, a1;
120 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
122 a0 = tcg_temp_new_ptr();
123 a1 = tcg_temp_new_ptr();
125 tcg_gen_addi_ptr(a0, cpu_env, dofs);
126 tcg_gen_addi_ptr(a1, cpu_env, aofs);
128 fn(a0, a1, c, desc);
130 tcg_temp_free_ptr(a0);
131 tcg_temp_free_ptr(a1);
132 tcg_temp_free_i32(desc);
135 /* Generate a call to a gvec-style helper with three vector operands. */
136 void tcg_gen_gvec_3_ool(uint32_t dofs, uint32_t aofs, uint32_t bofs,
137 uint32_t oprsz, uint32_t maxsz, int32_t data,
138 gen_helper_gvec_3 *fn)
140 TCGv_ptr a0, a1, a2;
141 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
143 a0 = tcg_temp_new_ptr();
144 a1 = tcg_temp_new_ptr();
145 a2 = tcg_temp_new_ptr();
147 tcg_gen_addi_ptr(a0, cpu_env, dofs);
148 tcg_gen_addi_ptr(a1, cpu_env, aofs);
149 tcg_gen_addi_ptr(a2, cpu_env, bofs);
151 fn(a0, a1, a2, desc);
153 tcg_temp_free_ptr(a0);
154 tcg_temp_free_ptr(a1);
155 tcg_temp_free_ptr(a2);
156 tcg_temp_free_i32(desc);
159 /* Generate a call to a gvec-style helper with four vector operands. */
160 void tcg_gen_gvec_4_ool(uint32_t dofs, uint32_t aofs, uint32_t bofs,
161 uint32_t cofs, uint32_t oprsz, uint32_t maxsz,
162 int32_t data, gen_helper_gvec_4 *fn)
164 TCGv_ptr a0, a1, a2, a3;
165 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
167 a0 = tcg_temp_new_ptr();
168 a1 = tcg_temp_new_ptr();
169 a2 = tcg_temp_new_ptr();
170 a3 = tcg_temp_new_ptr();
172 tcg_gen_addi_ptr(a0, cpu_env, dofs);
173 tcg_gen_addi_ptr(a1, cpu_env, aofs);
174 tcg_gen_addi_ptr(a2, cpu_env, bofs);
175 tcg_gen_addi_ptr(a3, cpu_env, cofs);
177 fn(a0, a1, a2, a3, desc);
179 tcg_temp_free_ptr(a0);
180 tcg_temp_free_ptr(a1);
181 tcg_temp_free_ptr(a2);
182 tcg_temp_free_ptr(a3);
183 tcg_temp_free_i32(desc);
186 /* Generate a call to a gvec-style helper with five vector operands. */
187 void tcg_gen_gvec_5_ool(uint32_t dofs, uint32_t aofs, uint32_t bofs,
188 uint32_t cofs, uint32_t xofs, uint32_t oprsz,
189 uint32_t maxsz, int32_t data, gen_helper_gvec_5 *fn)
191 TCGv_ptr a0, a1, a2, a3, a4;
192 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
194 a0 = tcg_temp_new_ptr();
195 a1 = tcg_temp_new_ptr();
196 a2 = tcg_temp_new_ptr();
197 a3 = tcg_temp_new_ptr();
198 a4 = tcg_temp_new_ptr();
200 tcg_gen_addi_ptr(a0, cpu_env, dofs);
201 tcg_gen_addi_ptr(a1, cpu_env, aofs);
202 tcg_gen_addi_ptr(a2, cpu_env, bofs);
203 tcg_gen_addi_ptr(a3, cpu_env, cofs);
204 tcg_gen_addi_ptr(a4, cpu_env, xofs);
206 fn(a0, a1, a2, a3, a4, desc);
208 tcg_temp_free_ptr(a0);
209 tcg_temp_free_ptr(a1);
210 tcg_temp_free_ptr(a2);
211 tcg_temp_free_ptr(a3);
212 tcg_temp_free_ptr(a4);
213 tcg_temp_free_i32(desc);
216 /* Generate a call to a gvec-style helper with three vector operands
217 and an extra pointer operand. */
218 void tcg_gen_gvec_2_ptr(uint32_t dofs, uint32_t aofs,
219 TCGv_ptr ptr, uint32_t oprsz, uint32_t maxsz,
220 int32_t data, gen_helper_gvec_2_ptr *fn)
222 TCGv_ptr a0, a1;
223 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
225 a0 = tcg_temp_new_ptr();
226 a1 = tcg_temp_new_ptr();
228 tcg_gen_addi_ptr(a0, cpu_env, dofs);
229 tcg_gen_addi_ptr(a1, cpu_env, aofs);
231 fn(a0, a1, ptr, desc);
233 tcg_temp_free_ptr(a0);
234 tcg_temp_free_ptr(a1);
235 tcg_temp_free_i32(desc);
238 /* Generate a call to a gvec-style helper with three vector operands
239 and an extra pointer operand. */
240 void tcg_gen_gvec_3_ptr(uint32_t dofs, uint32_t aofs, uint32_t bofs,
241 TCGv_ptr ptr, uint32_t oprsz, uint32_t maxsz,
242 int32_t data, gen_helper_gvec_3_ptr *fn)
244 TCGv_ptr a0, a1, a2;
245 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
247 a0 = tcg_temp_new_ptr();
248 a1 = tcg_temp_new_ptr();
249 a2 = tcg_temp_new_ptr();
251 tcg_gen_addi_ptr(a0, cpu_env, dofs);
252 tcg_gen_addi_ptr(a1, cpu_env, aofs);
253 tcg_gen_addi_ptr(a2, cpu_env, bofs);
255 fn(a0, a1, a2, ptr, desc);
257 tcg_temp_free_ptr(a0);
258 tcg_temp_free_ptr(a1);
259 tcg_temp_free_ptr(a2);
260 tcg_temp_free_i32(desc);
263 /* Generate a call to a gvec-style helper with four vector operands
264 and an extra pointer operand. */
265 void tcg_gen_gvec_4_ptr(uint32_t dofs, uint32_t aofs, uint32_t bofs,
266 uint32_t cofs, TCGv_ptr ptr, uint32_t oprsz,
267 uint32_t maxsz, int32_t data,
268 gen_helper_gvec_4_ptr *fn)
270 TCGv_ptr a0, a1, a2, a3;
271 TCGv_i32 desc = tcg_const_i32(simd_desc(oprsz, maxsz, data));
273 a0 = tcg_temp_new_ptr();
274 a1 = tcg_temp_new_ptr();
275 a2 = tcg_temp_new_ptr();
276 a3 = tcg_temp_new_ptr();
278 tcg_gen_addi_ptr(a0, cpu_env, dofs);
279 tcg_gen_addi_ptr(a1, cpu_env, aofs);
280 tcg_gen_addi_ptr(a2, cpu_env, bofs);
281 tcg_gen_addi_ptr(a3, cpu_env, cofs);
283 fn(a0, a1, a2, a3, ptr, desc);
285 tcg_temp_free_ptr(a0);
286 tcg_temp_free_ptr(a1);
287 tcg_temp_free_ptr(a2);
288 tcg_temp_free_ptr(a3);
289 tcg_temp_free_i32(desc);
292 /* Return true if we want to implement something of OPRSZ bytes
293 in units of LNSZ. This limits the expansion of inline code. */
294 static inline bool check_size_impl(uint32_t oprsz, uint32_t lnsz)
296 if (oprsz % lnsz == 0) {
297 uint32_t lnct = oprsz / lnsz;
298 return lnct >= 1 && lnct <= MAX_UNROLL;
300 return false;
303 static void expand_clr(uint32_t dofs, uint32_t maxsz);
305 /* Duplicate C as per VECE. */
306 uint64_t (dup_const)(unsigned vece, uint64_t c)
308 switch (vece) {
309 case MO_8:
310 return 0x0101010101010101ull * (uint8_t)c;
311 case MO_16:
312 return 0x0001000100010001ull * (uint16_t)c;
313 case MO_32:
314 return 0x0000000100000001ull * (uint32_t)c;
315 case MO_64:
316 return c;
317 default:
318 g_assert_not_reached();
322 /* Duplicate IN into OUT as per VECE. */
323 static void gen_dup_i32(unsigned vece, TCGv_i32 out, TCGv_i32 in)
325 switch (vece) {
326 case MO_8:
327 tcg_gen_ext8u_i32(out, in);
328 tcg_gen_muli_i32(out, out, 0x01010101);
329 break;
330 case MO_16:
331 tcg_gen_deposit_i32(out, in, in, 16, 16);
332 break;
333 case MO_32:
334 tcg_gen_mov_i32(out, in);
335 break;
336 default:
337 g_assert_not_reached();
341 static void gen_dup_i64(unsigned vece, TCGv_i64 out, TCGv_i64 in)
343 switch (vece) {
344 case MO_8:
345 tcg_gen_ext8u_i64(out, in);
346 tcg_gen_muli_i64(out, out, 0x0101010101010101ull);
347 break;
348 case MO_16:
349 tcg_gen_ext16u_i64(out, in);
350 tcg_gen_muli_i64(out, out, 0x0001000100010001ull);
351 break;
352 case MO_32:
353 tcg_gen_deposit_i64(out, in, in, 32, 32);
354 break;
355 case MO_64:
356 tcg_gen_mov_i64(out, in);
357 break;
358 default:
359 g_assert_not_reached();
363 /* Select a supported vector type for implementing an operation on SIZE
364 * bytes. If OP is 0, assume that the real operation to be performed is
365 * required by all backends. Otherwise, make sure than OP can be performed
366 * on elements of size VECE in the selected type. Do not select V64 if
367 * PREFER_I64 is true. Return 0 if no vector type is selected.
369 static TCGType choose_vector_type(const TCGOpcode *list, unsigned vece,
370 uint32_t size, bool prefer_i64)
372 if (TCG_TARGET_HAS_v256 && check_size_impl(size, 32)) {
374 * Recall that ARM SVE allows vector sizes that are not a
375 * power of 2, but always a multiple of 16. The intent is
376 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
377 * It is hard to imagine a case in which v256 is supported
378 * but v128 is not, but check anyway.
380 if (tcg_can_emit_vecop_list(list, TCG_TYPE_V256, vece)
381 && (size % 32 == 0
382 || tcg_can_emit_vecop_list(list, TCG_TYPE_V128, vece))) {
383 return TCG_TYPE_V256;
386 if (TCG_TARGET_HAS_v128 && check_size_impl(size, 16)
387 && tcg_can_emit_vecop_list(list, TCG_TYPE_V128, vece)) {
388 return TCG_TYPE_V128;
390 if (TCG_TARGET_HAS_v64 && !prefer_i64 && check_size_impl(size, 8)
391 && tcg_can_emit_vecop_list(list, TCG_TYPE_V64, vece)) {
392 return TCG_TYPE_V64;
394 return 0;
397 static void do_dup_store(TCGType type, uint32_t dofs, uint32_t oprsz,
398 uint32_t maxsz, TCGv_vec t_vec)
400 uint32_t i = 0;
402 switch (type) {
403 case TCG_TYPE_V256:
405 * Recall that ARM SVE allows vector sizes that are not a
406 * power of 2, but always a multiple of 16. The intent is
407 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
409 for (; i + 32 <= oprsz; i += 32) {
410 tcg_gen_stl_vec(t_vec, cpu_env, dofs + i, TCG_TYPE_V256);
412 /* fallthru */
413 case TCG_TYPE_V128:
414 for (; i + 16 <= oprsz; i += 16) {
415 tcg_gen_stl_vec(t_vec, cpu_env, dofs + i, TCG_TYPE_V128);
417 break;
418 case TCG_TYPE_V64:
419 for (; i < oprsz; i += 8) {
420 tcg_gen_stl_vec(t_vec, cpu_env, dofs + i, TCG_TYPE_V64);
422 break;
423 default:
424 g_assert_not_reached();
427 if (oprsz < maxsz) {
428 expand_clr(dofs + oprsz, maxsz - oprsz);
432 /* Set OPRSZ bytes at DOFS to replications of IN_32, IN_64 or IN_C.
433 * Only one of IN_32 or IN_64 may be set;
434 * IN_C is used if IN_32 and IN_64 are unset.
436 static void do_dup(unsigned vece, uint32_t dofs, uint32_t oprsz,
437 uint32_t maxsz, TCGv_i32 in_32, TCGv_i64 in_64,
438 uint64_t in_c)
440 TCGType type;
441 TCGv_i64 t_64;
442 TCGv_i32 t_32, t_desc;
443 TCGv_ptr t_ptr;
444 uint32_t i;
446 assert(vece <= (in_32 ? MO_32 : MO_64));
447 assert(in_32 == NULL || in_64 == NULL);
449 /* If we're storing 0, expand oprsz to maxsz. */
450 if (in_32 == NULL && in_64 == NULL) {
451 in_c = dup_const(vece, in_c);
452 if (in_c == 0) {
453 oprsz = maxsz;
457 /* Implement inline with a vector type, if possible.
458 * Prefer integer when 64-bit host and no variable dup.
460 type = choose_vector_type(NULL, vece, oprsz,
461 (TCG_TARGET_REG_BITS == 64 && in_32 == NULL
462 && (in_64 == NULL || vece == MO_64)));
463 if (type != 0) {
464 TCGv_vec t_vec = tcg_temp_new_vec(type);
466 if (in_32) {
467 tcg_gen_dup_i32_vec(vece, t_vec, in_32);
468 } else if (in_64) {
469 tcg_gen_dup_i64_vec(vece, t_vec, in_64);
470 } else {
471 tcg_gen_dupi_vec(vece, t_vec, in_c);
473 do_dup_store(type, dofs, oprsz, maxsz, t_vec);
474 tcg_temp_free_vec(t_vec);
475 return;
478 /* Otherwise, inline with an integer type, unless "large". */
479 if (check_size_impl(oprsz, TCG_TARGET_REG_BITS / 8)) {
480 t_64 = NULL;
481 t_32 = NULL;
483 if (in_32) {
484 /* We are given a 32-bit variable input. For a 64-bit host,
485 use a 64-bit operation unless the 32-bit operation would
486 be simple enough. */
487 if (TCG_TARGET_REG_BITS == 64
488 && (vece != MO_32 || !check_size_impl(oprsz, 4))) {
489 t_64 = tcg_temp_new_i64();
490 tcg_gen_extu_i32_i64(t_64, in_32);
491 gen_dup_i64(vece, t_64, t_64);
492 } else {
493 t_32 = tcg_temp_new_i32();
494 gen_dup_i32(vece, t_32, in_32);
496 } else if (in_64) {
497 /* We are given a 64-bit variable input. */
498 t_64 = tcg_temp_new_i64();
499 gen_dup_i64(vece, t_64, in_64);
500 } else {
501 /* We are given a constant input. */
502 /* For 64-bit hosts, use 64-bit constants for "simple" constants
503 or when we'd need too many 32-bit stores, or when a 64-bit
504 constant is really required. */
505 if (vece == MO_64
506 || (TCG_TARGET_REG_BITS == 64
507 && (in_c == 0 || in_c == -1
508 || !check_size_impl(oprsz, 4)))) {
509 t_64 = tcg_const_i64(in_c);
510 } else {
511 t_32 = tcg_const_i32(in_c);
515 /* Implement inline if we picked an implementation size above. */
516 if (t_32) {
517 for (i = 0; i < oprsz; i += 4) {
518 tcg_gen_st_i32(t_32, cpu_env, dofs + i);
520 tcg_temp_free_i32(t_32);
521 goto done;
523 if (t_64) {
524 for (i = 0; i < oprsz; i += 8) {
525 tcg_gen_st_i64(t_64, cpu_env, dofs + i);
527 tcg_temp_free_i64(t_64);
528 goto done;
532 /* Otherwise implement out of line. */
533 t_ptr = tcg_temp_new_ptr();
534 tcg_gen_addi_ptr(t_ptr, cpu_env, dofs);
535 t_desc = tcg_const_i32(simd_desc(oprsz, maxsz, 0));
537 if (vece == MO_64) {
538 if (in_64) {
539 gen_helper_gvec_dup64(t_ptr, t_desc, in_64);
540 } else {
541 t_64 = tcg_const_i64(in_c);
542 gen_helper_gvec_dup64(t_ptr, t_desc, t_64);
543 tcg_temp_free_i64(t_64);
545 } else {
546 typedef void dup_fn(TCGv_ptr, TCGv_i32, TCGv_i32);
547 static dup_fn * const fns[3] = {
548 gen_helper_gvec_dup8,
549 gen_helper_gvec_dup16,
550 gen_helper_gvec_dup32
553 if (in_32) {
554 fns[vece](t_ptr, t_desc, in_32);
555 } else {
556 t_32 = tcg_temp_new_i32();
557 if (in_64) {
558 tcg_gen_extrl_i64_i32(t_32, in_64);
559 } else if (vece == MO_8) {
560 tcg_gen_movi_i32(t_32, in_c & 0xff);
561 } else if (vece == MO_16) {
562 tcg_gen_movi_i32(t_32, in_c & 0xffff);
563 } else {
564 tcg_gen_movi_i32(t_32, in_c);
566 fns[vece](t_ptr, t_desc, t_32);
567 tcg_temp_free_i32(t_32);
571 tcg_temp_free_ptr(t_ptr);
572 tcg_temp_free_i32(t_desc);
573 return;
575 done:
576 if (oprsz < maxsz) {
577 expand_clr(dofs + oprsz, maxsz - oprsz);
581 /* Likewise, but with zero. */
582 static void expand_clr(uint32_t dofs, uint32_t maxsz)
584 do_dup(MO_8, dofs, maxsz, maxsz, NULL, NULL, 0);
587 /* Expand OPSZ bytes worth of two-operand operations using i32 elements. */
588 static void expand_2_i32(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
589 void (*fni)(TCGv_i32, TCGv_i32))
591 TCGv_i32 t0 = tcg_temp_new_i32();
592 uint32_t i;
594 for (i = 0; i < oprsz; i += 4) {
595 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
596 fni(t0, t0);
597 tcg_gen_st_i32(t0, cpu_env, dofs + i);
599 tcg_temp_free_i32(t0);
602 static void expand_2i_i32(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
603 int32_t c, bool load_dest,
604 void (*fni)(TCGv_i32, TCGv_i32, int32_t))
606 TCGv_i32 t0 = tcg_temp_new_i32();
607 TCGv_i32 t1 = tcg_temp_new_i32();
608 uint32_t i;
610 for (i = 0; i < oprsz; i += 4) {
611 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
612 if (load_dest) {
613 tcg_gen_ld_i32(t1, cpu_env, dofs + i);
615 fni(t1, t0, c);
616 tcg_gen_st_i32(t1, cpu_env, dofs + i);
618 tcg_temp_free_i32(t0);
619 tcg_temp_free_i32(t1);
622 static void expand_2s_i32(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
623 TCGv_i32 c, bool scalar_first,
624 void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32))
626 TCGv_i32 t0 = tcg_temp_new_i32();
627 TCGv_i32 t1 = tcg_temp_new_i32();
628 uint32_t i;
630 for (i = 0; i < oprsz; i += 4) {
631 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
632 if (scalar_first) {
633 fni(t1, c, t0);
634 } else {
635 fni(t1, t0, c);
637 tcg_gen_st_i32(t1, cpu_env, dofs + i);
639 tcg_temp_free_i32(t0);
640 tcg_temp_free_i32(t1);
643 /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
644 static void expand_3_i32(uint32_t dofs, uint32_t aofs,
645 uint32_t bofs, uint32_t oprsz, bool load_dest,
646 void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32))
648 TCGv_i32 t0 = tcg_temp_new_i32();
649 TCGv_i32 t1 = tcg_temp_new_i32();
650 TCGv_i32 t2 = tcg_temp_new_i32();
651 uint32_t i;
653 for (i = 0; i < oprsz; i += 4) {
654 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
655 tcg_gen_ld_i32(t1, cpu_env, bofs + i);
656 if (load_dest) {
657 tcg_gen_ld_i32(t2, cpu_env, dofs + i);
659 fni(t2, t0, t1);
660 tcg_gen_st_i32(t2, cpu_env, dofs + i);
662 tcg_temp_free_i32(t2);
663 tcg_temp_free_i32(t1);
664 tcg_temp_free_i32(t0);
667 static void expand_3i_i32(uint32_t dofs, uint32_t aofs, uint32_t bofs,
668 uint32_t oprsz, int32_t c, bool load_dest,
669 void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32, int32_t))
671 TCGv_i32 t0 = tcg_temp_new_i32();
672 TCGv_i32 t1 = tcg_temp_new_i32();
673 TCGv_i32 t2 = tcg_temp_new_i32();
674 uint32_t i;
676 for (i = 0; i < oprsz; i += 4) {
677 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
678 tcg_gen_ld_i32(t1, cpu_env, bofs + i);
679 if (load_dest) {
680 tcg_gen_ld_i32(t2, cpu_env, dofs + i);
682 fni(t2, t0, t1, c);
683 tcg_gen_st_i32(t2, cpu_env, dofs + i);
685 tcg_temp_free_i32(t0);
686 tcg_temp_free_i32(t1);
687 tcg_temp_free_i32(t2);
690 /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
691 static void expand_4_i32(uint32_t dofs, uint32_t aofs, uint32_t bofs,
692 uint32_t cofs, uint32_t oprsz, bool write_aofs,
693 void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_i32))
695 TCGv_i32 t0 = tcg_temp_new_i32();
696 TCGv_i32 t1 = tcg_temp_new_i32();
697 TCGv_i32 t2 = tcg_temp_new_i32();
698 TCGv_i32 t3 = tcg_temp_new_i32();
699 uint32_t i;
701 for (i = 0; i < oprsz; i += 4) {
702 tcg_gen_ld_i32(t1, cpu_env, aofs + i);
703 tcg_gen_ld_i32(t2, cpu_env, bofs + i);
704 tcg_gen_ld_i32(t3, cpu_env, cofs + i);
705 fni(t0, t1, t2, t3);
706 tcg_gen_st_i32(t0, cpu_env, dofs + i);
707 if (write_aofs) {
708 tcg_gen_st_i32(t1, cpu_env, aofs + i);
711 tcg_temp_free_i32(t3);
712 tcg_temp_free_i32(t2);
713 tcg_temp_free_i32(t1);
714 tcg_temp_free_i32(t0);
717 /* Expand OPSZ bytes worth of two-operand operations using i64 elements. */
718 static void expand_2_i64(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
719 void (*fni)(TCGv_i64, TCGv_i64))
721 TCGv_i64 t0 = tcg_temp_new_i64();
722 uint32_t i;
724 for (i = 0; i < oprsz; i += 8) {
725 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
726 fni(t0, t0);
727 tcg_gen_st_i64(t0, cpu_env, dofs + i);
729 tcg_temp_free_i64(t0);
732 static void expand_2i_i64(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
733 int64_t c, bool load_dest,
734 void (*fni)(TCGv_i64, TCGv_i64, int64_t))
736 TCGv_i64 t0 = tcg_temp_new_i64();
737 TCGv_i64 t1 = tcg_temp_new_i64();
738 uint32_t i;
740 for (i = 0; i < oprsz; i += 8) {
741 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
742 if (load_dest) {
743 tcg_gen_ld_i64(t1, cpu_env, dofs + i);
745 fni(t1, t0, c);
746 tcg_gen_st_i64(t1, cpu_env, dofs + i);
748 tcg_temp_free_i64(t0);
749 tcg_temp_free_i64(t1);
752 static void expand_2s_i64(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
753 TCGv_i64 c, bool scalar_first,
754 void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64))
756 TCGv_i64 t0 = tcg_temp_new_i64();
757 TCGv_i64 t1 = tcg_temp_new_i64();
758 uint32_t i;
760 for (i = 0; i < oprsz; i += 8) {
761 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
762 if (scalar_first) {
763 fni(t1, c, t0);
764 } else {
765 fni(t1, t0, c);
767 tcg_gen_st_i64(t1, cpu_env, dofs + i);
769 tcg_temp_free_i64(t0);
770 tcg_temp_free_i64(t1);
773 /* Expand OPSZ bytes worth of three-operand operations using i64 elements. */
774 static void expand_3_i64(uint32_t dofs, uint32_t aofs,
775 uint32_t bofs, uint32_t oprsz, bool load_dest,
776 void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64))
778 TCGv_i64 t0 = tcg_temp_new_i64();
779 TCGv_i64 t1 = tcg_temp_new_i64();
780 TCGv_i64 t2 = tcg_temp_new_i64();
781 uint32_t i;
783 for (i = 0; i < oprsz; i += 8) {
784 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
785 tcg_gen_ld_i64(t1, cpu_env, bofs + i);
786 if (load_dest) {
787 tcg_gen_ld_i64(t2, cpu_env, dofs + i);
789 fni(t2, t0, t1);
790 tcg_gen_st_i64(t2, cpu_env, dofs + i);
792 tcg_temp_free_i64(t2);
793 tcg_temp_free_i64(t1);
794 tcg_temp_free_i64(t0);
797 static void expand_3i_i64(uint32_t dofs, uint32_t aofs, uint32_t bofs,
798 uint32_t oprsz, int64_t c, bool load_dest,
799 void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64, int64_t))
801 TCGv_i64 t0 = tcg_temp_new_i64();
802 TCGv_i64 t1 = tcg_temp_new_i64();
803 TCGv_i64 t2 = tcg_temp_new_i64();
804 uint32_t i;
806 for (i = 0; i < oprsz; i += 8) {
807 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
808 tcg_gen_ld_i64(t1, cpu_env, bofs + i);
809 if (load_dest) {
810 tcg_gen_ld_i64(t2, cpu_env, dofs + i);
812 fni(t2, t0, t1, c);
813 tcg_gen_st_i64(t2, cpu_env, dofs + i);
815 tcg_temp_free_i64(t0);
816 tcg_temp_free_i64(t1);
817 tcg_temp_free_i64(t2);
820 /* Expand OPSZ bytes worth of three-operand operations using i64 elements. */
821 static void expand_4_i64(uint32_t dofs, uint32_t aofs, uint32_t bofs,
822 uint32_t cofs, uint32_t oprsz, bool write_aofs,
823 void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64))
825 TCGv_i64 t0 = tcg_temp_new_i64();
826 TCGv_i64 t1 = tcg_temp_new_i64();
827 TCGv_i64 t2 = tcg_temp_new_i64();
828 TCGv_i64 t3 = tcg_temp_new_i64();
829 uint32_t i;
831 for (i = 0; i < oprsz; i += 8) {
832 tcg_gen_ld_i64(t1, cpu_env, aofs + i);
833 tcg_gen_ld_i64(t2, cpu_env, bofs + i);
834 tcg_gen_ld_i64(t3, cpu_env, cofs + i);
835 fni(t0, t1, t2, t3);
836 tcg_gen_st_i64(t0, cpu_env, dofs + i);
837 if (write_aofs) {
838 tcg_gen_st_i64(t1, cpu_env, aofs + i);
841 tcg_temp_free_i64(t3);
842 tcg_temp_free_i64(t2);
843 tcg_temp_free_i64(t1);
844 tcg_temp_free_i64(t0);
847 /* Expand OPSZ bytes worth of two-operand operations using host vectors. */
848 static void expand_2_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
849 uint32_t oprsz, uint32_t tysz, TCGType type,
850 void (*fni)(unsigned, TCGv_vec, TCGv_vec))
852 TCGv_vec t0 = tcg_temp_new_vec(type);
853 uint32_t i;
855 for (i = 0; i < oprsz; i += tysz) {
856 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
857 fni(vece, t0, t0);
858 tcg_gen_st_vec(t0, cpu_env, dofs + i);
860 tcg_temp_free_vec(t0);
863 /* Expand OPSZ bytes worth of two-vector operands and an immediate operand
864 using host vectors. */
865 static void expand_2i_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
866 uint32_t oprsz, uint32_t tysz, TCGType type,
867 int64_t c, bool load_dest,
868 void (*fni)(unsigned, TCGv_vec, TCGv_vec, int64_t))
870 TCGv_vec t0 = tcg_temp_new_vec(type);
871 TCGv_vec t1 = tcg_temp_new_vec(type);
872 uint32_t i;
874 for (i = 0; i < oprsz; i += tysz) {
875 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
876 if (load_dest) {
877 tcg_gen_ld_vec(t1, cpu_env, dofs + i);
879 fni(vece, t1, t0, c);
880 tcg_gen_st_vec(t1, cpu_env, dofs + i);
882 tcg_temp_free_vec(t0);
883 tcg_temp_free_vec(t1);
886 static void expand_2s_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
887 uint32_t oprsz, uint32_t tysz, TCGType type,
888 TCGv_vec c, bool scalar_first,
889 void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec))
891 TCGv_vec t0 = tcg_temp_new_vec(type);
892 TCGv_vec t1 = tcg_temp_new_vec(type);
893 uint32_t i;
895 for (i = 0; i < oprsz; i += tysz) {
896 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
897 if (scalar_first) {
898 fni(vece, t1, c, t0);
899 } else {
900 fni(vece, t1, t0, c);
902 tcg_gen_st_vec(t1, cpu_env, dofs + i);
904 tcg_temp_free_vec(t0);
905 tcg_temp_free_vec(t1);
908 /* Expand OPSZ bytes worth of three-operand operations using host vectors. */
909 static void expand_3_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
910 uint32_t bofs, uint32_t oprsz,
911 uint32_t tysz, TCGType type, bool load_dest,
912 void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec))
914 TCGv_vec t0 = tcg_temp_new_vec(type);
915 TCGv_vec t1 = tcg_temp_new_vec(type);
916 TCGv_vec t2 = tcg_temp_new_vec(type);
917 uint32_t i;
919 for (i = 0; i < oprsz; i += tysz) {
920 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
921 tcg_gen_ld_vec(t1, cpu_env, bofs + i);
922 if (load_dest) {
923 tcg_gen_ld_vec(t2, cpu_env, dofs + i);
925 fni(vece, t2, t0, t1);
926 tcg_gen_st_vec(t2, cpu_env, dofs + i);
928 tcg_temp_free_vec(t2);
929 tcg_temp_free_vec(t1);
930 tcg_temp_free_vec(t0);
934 * Expand OPSZ bytes worth of three-vector operands and an immediate operand
935 * using host vectors.
937 static void expand_3i_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
938 uint32_t bofs, uint32_t oprsz, uint32_t tysz,
939 TCGType type, int64_t c, bool load_dest,
940 void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec,
941 int64_t))
943 TCGv_vec t0 = tcg_temp_new_vec(type);
944 TCGv_vec t1 = tcg_temp_new_vec(type);
945 TCGv_vec t2 = tcg_temp_new_vec(type);
946 uint32_t i;
948 for (i = 0; i < oprsz; i += tysz) {
949 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
950 tcg_gen_ld_vec(t1, cpu_env, bofs + i);
951 if (load_dest) {
952 tcg_gen_ld_vec(t2, cpu_env, dofs + i);
954 fni(vece, t2, t0, t1, c);
955 tcg_gen_st_vec(t2, cpu_env, dofs + i);
957 tcg_temp_free_vec(t0);
958 tcg_temp_free_vec(t1);
959 tcg_temp_free_vec(t2);
962 /* Expand OPSZ bytes worth of four-operand operations using host vectors. */
963 static void expand_4_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
964 uint32_t bofs, uint32_t cofs, uint32_t oprsz,
965 uint32_t tysz, TCGType type, bool write_aofs,
966 void (*fni)(unsigned, TCGv_vec, TCGv_vec,
967 TCGv_vec, TCGv_vec))
969 TCGv_vec t0 = tcg_temp_new_vec(type);
970 TCGv_vec t1 = tcg_temp_new_vec(type);
971 TCGv_vec t2 = tcg_temp_new_vec(type);
972 TCGv_vec t3 = tcg_temp_new_vec(type);
973 uint32_t i;
975 for (i = 0; i < oprsz; i += tysz) {
976 tcg_gen_ld_vec(t1, cpu_env, aofs + i);
977 tcg_gen_ld_vec(t2, cpu_env, bofs + i);
978 tcg_gen_ld_vec(t3, cpu_env, cofs + i);
979 fni(vece, t0, t1, t2, t3);
980 tcg_gen_st_vec(t0, cpu_env, dofs + i);
981 if (write_aofs) {
982 tcg_gen_st_vec(t1, cpu_env, aofs + i);
985 tcg_temp_free_vec(t3);
986 tcg_temp_free_vec(t2);
987 tcg_temp_free_vec(t1);
988 tcg_temp_free_vec(t0);
991 /* Expand a vector two-operand operation. */
992 void tcg_gen_gvec_2(uint32_t dofs, uint32_t aofs,
993 uint32_t oprsz, uint32_t maxsz, const GVecGen2 *g)
995 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
996 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
997 TCGType type;
998 uint32_t some;
1000 check_size_align(oprsz, maxsz, dofs | aofs);
1001 check_overlap_2(dofs, aofs, maxsz);
1003 type = 0;
1004 if (g->fniv) {
1005 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1007 switch (type) {
1008 case TCG_TYPE_V256:
1009 /* Recall that ARM SVE allows vector sizes that are not a
1010 * power of 2, but always a multiple of 16. The intent is
1011 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1013 some = QEMU_ALIGN_DOWN(oprsz, 32);
1014 expand_2_vec(g->vece, dofs, aofs, some, 32, TCG_TYPE_V256, g->fniv);
1015 if (some == oprsz) {
1016 break;
1018 dofs += some;
1019 aofs += some;
1020 oprsz -= some;
1021 maxsz -= some;
1022 /* fallthru */
1023 case TCG_TYPE_V128:
1024 expand_2_vec(g->vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128, g->fniv);
1025 break;
1026 case TCG_TYPE_V64:
1027 expand_2_vec(g->vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64, g->fniv);
1028 break;
1030 case 0:
1031 if (g->fni8 && check_size_impl(oprsz, 8)) {
1032 expand_2_i64(dofs, aofs, oprsz, g->fni8);
1033 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1034 expand_2_i32(dofs, aofs, oprsz, g->fni4);
1035 } else {
1036 assert(g->fno != NULL);
1037 tcg_gen_gvec_2_ool(dofs, aofs, oprsz, maxsz, g->data, g->fno);
1038 oprsz = maxsz;
1040 break;
1042 default:
1043 g_assert_not_reached();
1045 tcg_swap_vecop_list(hold_list);
1047 if (oprsz < maxsz) {
1048 expand_clr(dofs + oprsz, maxsz - oprsz);
1052 /* Expand a vector operation with two vectors and an immediate. */
1053 void tcg_gen_gvec_2i(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
1054 uint32_t maxsz, int64_t c, const GVecGen2i *g)
1056 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1057 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1058 TCGType type;
1059 uint32_t some;
1061 check_size_align(oprsz, maxsz, dofs | aofs);
1062 check_overlap_2(dofs, aofs, maxsz);
1064 type = 0;
1065 if (g->fniv) {
1066 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1068 switch (type) {
1069 case TCG_TYPE_V256:
1070 /* Recall that ARM SVE allows vector sizes that are not a
1071 * power of 2, but always a multiple of 16. The intent is
1072 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1074 some = QEMU_ALIGN_DOWN(oprsz, 32);
1075 expand_2i_vec(g->vece, dofs, aofs, some, 32, TCG_TYPE_V256,
1076 c, g->load_dest, g->fniv);
1077 if (some == oprsz) {
1078 break;
1080 dofs += some;
1081 aofs += some;
1082 oprsz -= some;
1083 maxsz -= some;
1084 /* fallthru */
1085 case TCG_TYPE_V128:
1086 expand_2i_vec(g->vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128,
1087 c, g->load_dest, g->fniv);
1088 break;
1089 case TCG_TYPE_V64:
1090 expand_2i_vec(g->vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64,
1091 c, g->load_dest, g->fniv);
1092 break;
1094 case 0:
1095 if (g->fni8 && check_size_impl(oprsz, 8)) {
1096 expand_2i_i64(dofs, aofs, oprsz, c, g->load_dest, g->fni8);
1097 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1098 expand_2i_i32(dofs, aofs, oprsz, c, g->load_dest, g->fni4);
1099 } else {
1100 if (g->fno) {
1101 tcg_gen_gvec_2_ool(dofs, aofs, oprsz, maxsz, c, g->fno);
1102 } else {
1103 TCGv_i64 tcg_c = tcg_const_i64(c);
1104 tcg_gen_gvec_2i_ool(dofs, aofs, tcg_c, oprsz,
1105 maxsz, c, g->fnoi);
1106 tcg_temp_free_i64(tcg_c);
1108 oprsz = maxsz;
1110 break;
1112 default:
1113 g_assert_not_reached();
1115 tcg_swap_vecop_list(hold_list);
1117 if (oprsz < maxsz) {
1118 expand_clr(dofs + oprsz, maxsz - oprsz);
1122 /* Expand a vector operation with two vectors and a scalar. */
1123 void tcg_gen_gvec_2s(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
1124 uint32_t maxsz, TCGv_i64 c, const GVecGen2s *g)
1126 TCGType type;
1128 check_size_align(oprsz, maxsz, dofs | aofs);
1129 check_overlap_2(dofs, aofs, maxsz);
1131 type = 0;
1132 if (g->fniv) {
1133 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1135 if (type != 0) {
1136 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1137 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1138 TCGv_vec t_vec = tcg_temp_new_vec(type);
1139 uint32_t some;
1141 tcg_gen_dup_i64_vec(g->vece, t_vec, c);
1143 switch (type) {
1144 case TCG_TYPE_V256:
1145 /* Recall that ARM SVE allows vector sizes that are not a
1146 * power of 2, but always a multiple of 16. The intent is
1147 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1149 some = QEMU_ALIGN_DOWN(oprsz, 32);
1150 expand_2s_vec(g->vece, dofs, aofs, some, 32, TCG_TYPE_V256,
1151 t_vec, g->scalar_first, g->fniv);
1152 if (some == oprsz) {
1153 break;
1155 dofs += some;
1156 aofs += some;
1157 oprsz -= some;
1158 maxsz -= some;
1159 /* fallthru */
1161 case TCG_TYPE_V128:
1162 expand_2s_vec(g->vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128,
1163 t_vec, g->scalar_first, g->fniv);
1164 break;
1166 case TCG_TYPE_V64:
1167 expand_2s_vec(g->vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64,
1168 t_vec, g->scalar_first, g->fniv);
1169 break;
1171 default:
1172 g_assert_not_reached();
1174 tcg_temp_free_vec(t_vec);
1175 tcg_swap_vecop_list(hold_list);
1176 } else if (g->fni8 && check_size_impl(oprsz, 8)) {
1177 TCGv_i64 t64 = tcg_temp_new_i64();
1179 gen_dup_i64(g->vece, t64, c);
1180 expand_2s_i64(dofs, aofs, oprsz, t64, g->scalar_first, g->fni8);
1181 tcg_temp_free_i64(t64);
1182 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1183 TCGv_i32 t32 = tcg_temp_new_i32();
1185 tcg_gen_extrl_i64_i32(t32, c);
1186 gen_dup_i32(g->vece, t32, t32);
1187 expand_2s_i32(dofs, aofs, oprsz, t32, g->scalar_first, g->fni4);
1188 tcg_temp_free_i32(t32);
1189 } else {
1190 tcg_gen_gvec_2i_ool(dofs, aofs, c, oprsz, maxsz, 0, g->fno);
1191 return;
1194 if (oprsz < maxsz) {
1195 expand_clr(dofs + oprsz, maxsz - oprsz);
1199 /* Expand a vector three-operand operation. */
1200 void tcg_gen_gvec_3(uint32_t dofs, uint32_t aofs, uint32_t bofs,
1201 uint32_t oprsz, uint32_t maxsz, const GVecGen3 *g)
1203 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1204 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1205 TCGType type;
1206 uint32_t some;
1208 check_size_align(oprsz, maxsz, dofs | aofs | bofs);
1209 check_overlap_3(dofs, aofs, bofs, maxsz);
1211 type = 0;
1212 if (g->fniv) {
1213 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1215 switch (type) {
1216 case TCG_TYPE_V256:
1217 /* Recall that ARM SVE allows vector sizes that are not a
1218 * power of 2, but always a multiple of 16. The intent is
1219 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1221 some = QEMU_ALIGN_DOWN(oprsz, 32);
1222 expand_3_vec(g->vece, dofs, aofs, bofs, some, 32, TCG_TYPE_V256,
1223 g->load_dest, g->fniv);
1224 if (some == oprsz) {
1225 break;
1227 dofs += some;
1228 aofs += some;
1229 bofs += some;
1230 oprsz -= some;
1231 maxsz -= some;
1232 /* fallthru */
1233 case TCG_TYPE_V128:
1234 expand_3_vec(g->vece, dofs, aofs, bofs, oprsz, 16, TCG_TYPE_V128,
1235 g->load_dest, g->fniv);
1236 break;
1237 case TCG_TYPE_V64:
1238 expand_3_vec(g->vece, dofs, aofs, bofs, oprsz, 8, TCG_TYPE_V64,
1239 g->load_dest, g->fniv);
1240 break;
1242 case 0:
1243 if (g->fni8 && check_size_impl(oprsz, 8)) {
1244 expand_3_i64(dofs, aofs, bofs, oprsz, g->load_dest, g->fni8);
1245 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1246 expand_3_i32(dofs, aofs, bofs, oprsz, g->load_dest, g->fni4);
1247 } else {
1248 assert(g->fno != NULL);
1249 tcg_gen_gvec_3_ool(dofs, aofs, bofs, oprsz,
1250 maxsz, g->data, g->fno);
1251 oprsz = maxsz;
1253 break;
1255 default:
1256 g_assert_not_reached();
1258 tcg_swap_vecop_list(hold_list);
1260 if (oprsz < maxsz) {
1261 expand_clr(dofs + oprsz, maxsz - oprsz);
1265 /* Expand a vector operation with three vectors and an immediate. */
1266 void tcg_gen_gvec_3i(uint32_t dofs, uint32_t aofs, uint32_t bofs,
1267 uint32_t oprsz, uint32_t maxsz, int64_t c,
1268 const GVecGen3i *g)
1270 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1271 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1272 TCGType type;
1273 uint32_t some;
1275 check_size_align(oprsz, maxsz, dofs | aofs | bofs);
1276 check_overlap_3(dofs, aofs, bofs, maxsz);
1278 type = 0;
1279 if (g->fniv) {
1280 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1282 switch (type) {
1283 case TCG_TYPE_V256:
1285 * Recall that ARM SVE allows vector sizes that are not a
1286 * power of 2, but always a multiple of 16. The intent is
1287 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1289 some = QEMU_ALIGN_DOWN(oprsz, 32);
1290 expand_3i_vec(g->vece, dofs, aofs, bofs, some, 32, TCG_TYPE_V256,
1291 c, g->load_dest, g->fniv);
1292 if (some == oprsz) {
1293 break;
1295 dofs += some;
1296 aofs += some;
1297 bofs += some;
1298 oprsz -= some;
1299 maxsz -= some;
1300 /* fallthru */
1301 case TCG_TYPE_V128:
1302 expand_3i_vec(g->vece, dofs, aofs, bofs, oprsz, 16, TCG_TYPE_V128,
1303 c, g->load_dest, g->fniv);
1304 break;
1305 case TCG_TYPE_V64:
1306 expand_3i_vec(g->vece, dofs, aofs, bofs, oprsz, 8, TCG_TYPE_V64,
1307 c, g->load_dest, g->fniv);
1308 break;
1310 case 0:
1311 if (g->fni8 && check_size_impl(oprsz, 8)) {
1312 expand_3i_i64(dofs, aofs, bofs, oprsz, c, g->load_dest, g->fni8);
1313 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1314 expand_3i_i32(dofs, aofs, bofs, oprsz, c, g->load_dest, g->fni4);
1315 } else {
1316 assert(g->fno != NULL);
1317 tcg_gen_gvec_3_ool(dofs, aofs, bofs, oprsz, maxsz, c, g->fno);
1318 oprsz = maxsz;
1320 break;
1322 default:
1323 g_assert_not_reached();
1325 tcg_swap_vecop_list(hold_list);
1327 if (oprsz < maxsz) {
1328 expand_clr(dofs + oprsz, maxsz - oprsz);
1332 /* Expand a vector four-operand operation. */
1333 void tcg_gen_gvec_4(uint32_t dofs, uint32_t aofs, uint32_t bofs, uint32_t cofs,
1334 uint32_t oprsz, uint32_t maxsz, const GVecGen4 *g)
1336 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1337 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1338 TCGType type;
1339 uint32_t some;
1341 check_size_align(oprsz, maxsz, dofs | aofs | bofs | cofs);
1342 check_overlap_4(dofs, aofs, bofs, cofs, maxsz);
1344 type = 0;
1345 if (g->fniv) {
1346 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1348 switch (type) {
1349 case TCG_TYPE_V256:
1350 /* Recall that ARM SVE allows vector sizes that are not a
1351 * power of 2, but always a multiple of 16. The intent is
1352 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1354 some = QEMU_ALIGN_DOWN(oprsz, 32);
1355 expand_4_vec(g->vece, dofs, aofs, bofs, cofs, some,
1356 32, TCG_TYPE_V256, g->write_aofs, g->fniv);
1357 if (some == oprsz) {
1358 break;
1360 dofs += some;
1361 aofs += some;
1362 bofs += some;
1363 cofs += some;
1364 oprsz -= some;
1365 maxsz -= some;
1366 /* fallthru */
1367 case TCG_TYPE_V128:
1368 expand_4_vec(g->vece, dofs, aofs, bofs, cofs, oprsz,
1369 16, TCG_TYPE_V128, g->write_aofs, g->fniv);
1370 break;
1371 case TCG_TYPE_V64:
1372 expand_4_vec(g->vece, dofs, aofs, bofs, cofs, oprsz,
1373 8, TCG_TYPE_V64, g->write_aofs, g->fniv);
1374 break;
1376 case 0:
1377 if (g->fni8 && check_size_impl(oprsz, 8)) {
1378 expand_4_i64(dofs, aofs, bofs, cofs, oprsz,
1379 g->write_aofs, g->fni8);
1380 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1381 expand_4_i32(dofs, aofs, bofs, cofs, oprsz,
1382 g->write_aofs, g->fni4);
1383 } else {
1384 assert(g->fno != NULL);
1385 tcg_gen_gvec_4_ool(dofs, aofs, bofs, cofs,
1386 oprsz, maxsz, g->data, g->fno);
1387 oprsz = maxsz;
1389 break;
1391 default:
1392 g_assert_not_reached();
1394 tcg_swap_vecop_list(hold_list);
1396 if (oprsz < maxsz) {
1397 expand_clr(dofs + oprsz, maxsz - oprsz);
1402 * Expand specific vector operations.
1405 static void vec_mov2(unsigned vece, TCGv_vec a, TCGv_vec b)
1407 tcg_gen_mov_vec(a, b);
1410 void tcg_gen_gvec_mov(unsigned vece, uint32_t dofs, uint32_t aofs,
1411 uint32_t oprsz, uint32_t maxsz)
1413 static const GVecGen2 g = {
1414 .fni8 = tcg_gen_mov_i64,
1415 .fniv = vec_mov2,
1416 .fno = gen_helper_gvec_mov,
1417 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1419 if (dofs != aofs) {
1420 tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g);
1421 } else {
1422 check_size_align(oprsz, maxsz, dofs);
1423 if (oprsz < maxsz) {
1424 expand_clr(dofs + oprsz, maxsz - oprsz);
1429 void tcg_gen_gvec_dup_i32(unsigned vece, uint32_t dofs, uint32_t oprsz,
1430 uint32_t maxsz, TCGv_i32 in)
1432 check_size_align(oprsz, maxsz, dofs);
1433 tcg_debug_assert(vece <= MO_32);
1434 do_dup(vece, dofs, oprsz, maxsz, in, NULL, 0);
1437 void tcg_gen_gvec_dup_i64(unsigned vece, uint32_t dofs, uint32_t oprsz,
1438 uint32_t maxsz, TCGv_i64 in)
1440 check_size_align(oprsz, maxsz, dofs);
1441 tcg_debug_assert(vece <= MO_64);
1442 do_dup(vece, dofs, oprsz, maxsz, NULL, in, 0);
1445 void tcg_gen_gvec_dup_mem(unsigned vece, uint32_t dofs, uint32_t aofs,
1446 uint32_t oprsz, uint32_t maxsz)
1448 check_size_align(oprsz, maxsz, dofs);
1449 if (vece <= MO_64) {
1450 TCGType type = choose_vector_type(NULL, vece, oprsz, 0);
1451 if (type != 0) {
1452 TCGv_vec t_vec = tcg_temp_new_vec(type);
1453 tcg_gen_dup_mem_vec(vece, t_vec, cpu_env, aofs);
1454 do_dup_store(type, dofs, oprsz, maxsz, t_vec);
1455 tcg_temp_free_vec(t_vec);
1456 } else if (vece <= MO_32) {
1457 TCGv_i32 in = tcg_temp_new_i32();
1458 switch (vece) {
1459 case MO_8:
1460 tcg_gen_ld8u_i32(in, cpu_env, aofs);
1461 break;
1462 case MO_16:
1463 tcg_gen_ld16u_i32(in, cpu_env, aofs);
1464 break;
1465 default:
1466 tcg_gen_ld_i32(in, cpu_env, aofs);
1467 break;
1469 do_dup(vece, dofs, oprsz, maxsz, in, NULL, 0);
1470 tcg_temp_free_i32(in);
1471 } else {
1472 TCGv_i64 in = tcg_temp_new_i64();
1473 tcg_gen_ld_i64(in, cpu_env, aofs);
1474 do_dup(vece, dofs, oprsz, maxsz, NULL, in, 0);
1475 tcg_temp_free_i64(in);
1477 } else {
1478 /* 128-bit duplicate. */
1479 /* ??? Dup to 256-bit vector. */
1480 int i;
1482 tcg_debug_assert(vece == 4);
1483 tcg_debug_assert(oprsz >= 16);
1484 if (TCG_TARGET_HAS_v128) {
1485 TCGv_vec in = tcg_temp_new_vec(TCG_TYPE_V128);
1487 tcg_gen_ld_vec(in, cpu_env, aofs);
1488 for (i = 0; i < oprsz; i += 16) {
1489 tcg_gen_st_vec(in, cpu_env, dofs + i);
1491 tcg_temp_free_vec(in);
1492 } else {
1493 TCGv_i64 in0 = tcg_temp_new_i64();
1494 TCGv_i64 in1 = tcg_temp_new_i64();
1496 tcg_gen_ld_i64(in0, cpu_env, aofs);
1497 tcg_gen_ld_i64(in1, cpu_env, aofs + 8);
1498 for (i = 0; i < oprsz; i += 16) {
1499 tcg_gen_st_i64(in0, cpu_env, dofs + i);
1500 tcg_gen_st_i64(in1, cpu_env, dofs + i + 8);
1502 tcg_temp_free_i64(in0);
1503 tcg_temp_free_i64(in1);
1505 if (oprsz < maxsz) {
1506 expand_clr(dofs + oprsz, maxsz - oprsz);
1511 void tcg_gen_gvec_dup64i(uint32_t dofs, uint32_t oprsz,
1512 uint32_t maxsz, uint64_t x)
1514 check_size_align(oprsz, maxsz, dofs);
1515 do_dup(MO_64, dofs, oprsz, maxsz, NULL, NULL, x);
1518 void tcg_gen_gvec_dup32i(uint32_t dofs, uint32_t oprsz,
1519 uint32_t maxsz, uint32_t x)
1521 check_size_align(oprsz, maxsz, dofs);
1522 do_dup(MO_32, dofs, oprsz, maxsz, NULL, NULL, x);
1525 void tcg_gen_gvec_dup16i(uint32_t dofs, uint32_t oprsz,
1526 uint32_t maxsz, uint16_t x)
1528 check_size_align(oprsz, maxsz, dofs);
1529 do_dup(MO_16, dofs, oprsz, maxsz, NULL, NULL, x);
1532 void tcg_gen_gvec_dup8i(uint32_t dofs, uint32_t oprsz,
1533 uint32_t maxsz, uint8_t x)
1535 check_size_align(oprsz, maxsz, dofs);
1536 do_dup(MO_8, dofs, oprsz, maxsz, NULL, NULL, x);
1539 void tcg_gen_gvec_not(unsigned vece, uint32_t dofs, uint32_t aofs,
1540 uint32_t oprsz, uint32_t maxsz)
1542 static const GVecGen2 g = {
1543 .fni8 = tcg_gen_not_i64,
1544 .fniv = tcg_gen_not_vec,
1545 .fno = gen_helper_gvec_not,
1546 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1548 tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g);
1551 /* Perform a vector addition using normal addition and a mask. The mask
1552 should be the sign bit of each lane. This 6-operation form is more
1553 efficient than separate additions when there are 4 or more lanes in
1554 the 64-bit operation. */
1555 static void gen_addv_mask(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b, TCGv_i64 m)
1557 TCGv_i64 t1 = tcg_temp_new_i64();
1558 TCGv_i64 t2 = tcg_temp_new_i64();
1559 TCGv_i64 t3 = tcg_temp_new_i64();
1561 tcg_gen_andc_i64(t1, a, m);
1562 tcg_gen_andc_i64(t2, b, m);
1563 tcg_gen_xor_i64(t3, a, b);
1564 tcg_gen_add_i64(d, t1, t2);
1565 tcg_gen_and_i64(t3, t3, m);
1566 tcg_gen_xor_i64(d, d, t3);
1568 tcg_temp_free_i64(t1);
1569 tcg_temp_free_i64(t2);
1570 tcg_temp_free_i64(t3);
1573 void tcg_gen_vec_add8_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1575 TCGv_i64 m = tcg_const_i64(dup_const(MO_8, 0x80));
1576 gen_addv_mask(d, a, b, m);
1577 tcg_temp_free_i64(m);
1580 void tcg_gen_vec_add16_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1582 TCGv_i64 m = tcg_const_i64(dup_const(MO_16, 0x8000));
1583 gen_addv_mask(d, a, b, m);
1584 tcg_temp_free_i64(m);
1587 void tcg_gen_vec_add32_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1589 TCGv_i64 t1 = tcg_temp_new_i64();
1590 TCGv_i64 t2 = tcg_temp_new_i64();
1592 tcg_gen_andi_i64(t1, a, ~0xffffffffull);
1593 tcg_gen_add_i64(t2, a, b);
1594 tcg_gen_add_i64(t1, t1, b);
1595 tcg_gen_deposit_i64(d, t1, t2, 0, 32);
1597 tcg_temp_free_i64(t1);
1598 tcg_temp_free_i64(t2);
1601 static const TCGOpcode vecop_list_add[] = { INDEX_op_add_vec, 0 };
1603 void tcg_gen_gvec_add(unsigned vece, uint32_t dofs, uint32_t aofs,
1604 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1606 static const GVecGen3 g[4] = {
1607 { .fni8 = tcg_gen_vec_add8_i64,
1608 .fniv = tcg_gen_add_vec,
1609 .fno = gen_helper_gvec_add8,
1610 .opt_opc = vecop_list_add,
1611 .vece = MO_8 },
1612 { .fni8 = tcg_gen_vec_add16_i64,
1613 .fniv = tcg_gen_add_vec,
1614 .fno = gen_helper_gvec_add16,
1615 .opt_opc = vecop_list_add,
1616 .vece = MO_16 },
1617 { .fni4 = tcg_gen_add_i32,
1618 .fniv = tcg_gen_add_vec,
1619 .fno = gen_helper_gvec_add32,
1620 .opt_opc = vecop_list_add,
1621 .vece = MO_32 },
1622 { .fni8 = tcg_gen_add_i64,
1623 .fniv = tcg_gen_add_vec,
1624 .fno = gen_helper_gvec_add64,
1625 .opt_opc = vecop_list_add,
1626 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1627 .vece = MO_64 },
1630 tcg_debug_assert(vece <= MO_64);
1631 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
1634 void tcg_gen_gvec_adds(unsigned vece, uint32_t dofs, uint32_t aofs,
1635 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
1637 static const GVecGen2s g[4] = {
1638 { .fni8 = tcg_gen_vec_add8_i64,
1639 .fniv = tcg_gen_add_vec,
1640 .fno = gen_helper_gvec_adds8,
1641 .opt_opc = vecop_list_add,
1642 .vece = MO_8 },
1643 { .fni8 = tcg_gen_vec_add16_i64,
1644 .fniv = tcg_gen_add_vec,
1645 .fno = gen_helper_gvec_adds16,
1646 .opt_opc = vecop_list_add,
1647 .vece = MO_16 },
1648 { .fni4 = tcg_gen_add_i32,
1649 .fniv = tcg_gen_add_vec,
1650 .fno = gen_helper_gvec_adds32,
1651 .opt_opc = vecop_list_add,
1652 .vece = MO_32 },
1653 { .fni8 = tcg_gen_add_i64,
1654 .fniv = tcg_gen_add_vec,
1655 .fno = gen_helper_gvec_adds64,
1656 .opt_opc = vecop_list_add,
1657 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1658 .vece = MO_64 },
1661 tcg_debug_assert(vece <= MO_64);
1662 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &g[vece]);
1665 void tcg_gen_gvec_addi(unsigned vece, uint32_t dofs, uint32_t aofs,
1666 int64_t c, uint32_t oprsz, uint32_t maxsz)
1668 TCGv_i64 tmp = tcg_const_i64(c);
1669 tcg_gen_gvec_adds(vece, dofs, aofs, tmp, oprsz, maxsz);
1670 tcg_temp_free_i64(tmp);
1673 static const TCGOpcode vecop_list_sub[] = { INDEX_op_sub_vec, 0 };
1675 void tcg_gen_gvec_subs(unsigned vece, uint32_t dofs, uint32_t aofs,
1676 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
1678 static const GVecGen2s g[4] = {
1679 { .fni8 = tcg_gen_vec_sub8_i64,
1680 .fniv = tcg_gen_sub_vec,
1681 .fno = gen_helper_gvec_subs8,
1682 .opt_opc = vecop_list_sub,
1683 .vece = MO_8 },
1684 { .fni8 = tcg_gen_vec_sub16_i64,
1685 .fniv = tcg_gen_sub_vec,
1686 .fno = gen_helper_gvec_subs16,
1687 .opt_opc = vecop_list_sub,
1688 .vece = MO_16 },
1689 { .fni4 = tcg_gen_sub_i32,
1690 .fniv = tcg_gen_sub_vec,
1691 .fno = gen_helper_gvec_subs32,
1692 .opt_opc = vecop_list_sub,
1693 .vece = MO_32 },
1694 { .fni8 = tcg_gen_sub_i64,
1695 .fniv = tcg_gen_sub_vec,
1696 .fno = gen_helper_gvec_subs64,
1697 .opt_opc = vecop_list_sub,
1698 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1699 .vece = MO_64 },
1702 tcg_debug_assert(vece <= MO_64);
1703 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &g[vece]);
1706 /* Perform a vector subtraction using normal subtraction and a mask.
1707 Compare gen_addv_mask above. */
1708 static void gen_subv_mask(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b, TCGv_i64 m)
1710 TCGv_i64 t1 = tcg_temp_new_i64();
1711 TCGv_i64 t2 = tcg_temp_new_i64();
1712 TCGv_i64 t3 = tcg_temp_new_i64();
1714 tcg_gen_or_i64(t1, a, m);
1715 tcg_gen_andc_i64(t2, b, m);
1716 tcg_gen_eqv_i64(t3, a, b);
1717 tcg_gen_sub_i64(d, t1, t2);
1718 tcg_gen_and_i64(t3, t3, m);
1719 tcg_gen_xor_i64(d, d, t3);
1721 tcg_temp_free_i64(t1);
1722 tcg_temp_free_i64(t2);
1723 tcg_temp_free_i64(t3);
1726 void tcg_gen_vec_sub8_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1728 TCGv_i64 m = tcg_const_i64(dup_const(MO_8, 0x80));
1729 gen_subv_mask(d, a, b, m);
1730 tcg_temp_free_i64(m);
1733 void tcg_gen_vec_sub16_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1735 TCGv_i64 m = tcg_const_i64(dup_const(MO_16, 0x8000));
1736 gen_subv_mask(d, a, b, m);
1737 tcg_temp_free_i64(m);
1740 void tcg_gen_vec_sub32_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1742 TCGv_i64 t1 = tcg_temp_new_i64();
1743 TCGv_i64 t2 = tcg_temp_new_i64();
1745 tcg_gen_andi_i64(t1, b, ~0xffffffffull);
1746 tcg_gen_sub_i64(t2, a, b);
1747 tcg_gen_sub_i64(t1, a, t1);
1748 tcg_gen_deposit_i64(d, t1, t2, 0, 32);
1750 tcg_temp_free_i64(t1);
1751 tcg_temp_free_i64(t2);
1754 void tcg_gen_gvec_sub(unsigned vece, uint32_t dofs, uint32_t aofs,
1755 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1757 static const GVecGen3 g[4] = {
1758 { .fni8 = tcg_gen_vec_sub8_i64,
1759 .fniv = tcg_gen_sub_vec,
1760 .fno = gen_helper_gvec_sub8,
1761 .opt_opc = vecop_list_sub,
1762 .vece = MO_8 },
1763 { .fni8 = tcg_gen_vec_sub16_i64,
1764 .fniv = tcg_gen_sub_vec,
1765 .fno = gen_helper_gvec_sub16,
1766 .opt_opc = vecop_list_sub,
1767 .vece = MO_16 },
1768 { .fni4 = tcg_gen_sub_i32,
1769 .fniv = tcg_gen_sub_vec,
1770 .fno = gen_helper_gvec_sub32,
1771 .opt_opc = vecop_list_sub,
1772 .vece = MO_32 },
1773 { .fni8 = tcg_gen_sub_i64,
1774 .fniv = tcg_gen_sub_vec,
1775 .fno = gen_helper_gvec_sub64,
1776 .opt_opc = vecop_list_sub,
1777 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1778 .vece = MO_64 },
1781 tcg_debug_assert(vece <= MO_64);
1782 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
1785 static const TCGOpcode vecop_list_mul[] = { INDEX_op_mul_vec, 0 };
1787 void tcg_gen_gvec_mul(unsigned vece, uint32_t dofs, uint32_t aofs,
1788 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1790 static const GVecGen3 g[4] = {
1791 { .fniv = tcg_gen_mul_vec,
1792 .fno = gen_helper_gvec_mul8,
1793 .opt_opc = vecop_list_mul,
1794 .vece = MO_8 },
1795 { .fniv = tcg_gen_mul_vec,
1796 .fno = gen_helper_gvec_mul16,
1797 .opt_opc = vecop_list_mul,
1798 .vece = MO_16 },
1799 { .fni4 = tcg_gen_mul_i32,
1800 .fniv = tcg_gen_mul_vec,
1801 .fno = gen_helper_gvec_mul32,
1802 .opt_opc = vecop_list_mul,
1803 .vece = MO_32 },
1804 { .fni8 = tcg_gen_mul_i64,
1805 .fniv = tcg_gen_mul_vec,
1806 .fno = gen_helper_gvec_mul64,
1807 .opt_opc = vecop_list_mul,
1808 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1809 .vece = MO_64 },
1812 tcg_debug_assert(vece <= MO_64);
1813 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
1816 void tcg_gen_gvec_muls(unsigned vece, uint32_t dofs, uint32_t aofs,
1817 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
1819 static const GVecGen2s g[4] = {
1820 { .fniv = tcg_gen_mul_vec,
1821 .fno = gen_helper_gvec_muls8,
1822 .opt_opc = vecop_list_mul,
1823 .vece = MO_8 },
1824 { .fniv = tcg_gen_mul_vec,
1825 .fno = gen_helper_gvec_muls16,
1826 .opt_opc = vecop_list_mul,
1827 .vece = MO_16 },
1828 { .fni4 = tcg_gen_mul_i32,
1829 .fniv = tcg_gen_mul_vec,
1830 .fno = gen_helper_gvec_muls32,
1831 .opt_opc = vecop_list_mul,
1832 .vece = MO_32 },
1833 { .fni8 = tcg_gen_mul_i64,
1834 .fniv = tcg_gen_mul_vec,
1835 .fno = gen_helper_gvec_muls64,
1836 .opt_opc = vecop_list_mul,
1837 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1838 .vece = MO_64 },
1841 tcg_debug_assert(vece <= MO_64);
1842 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &g[vece]);
1845 void tcg_gen_gvec_muli(unsigned vece, uint32_t dofs, uint32_t aofs,
1846 int64_t c, uint32_t oprsz, uint32_t maxsz)
1848 TCGv_i64 tmp = tcg_const_i64(c);
1849 tcg_gen_gvec_muls(vece, dofs, aofs, tmp, oprsz, maxsz);
1850 tcg_temp_free_i64(tmp);
1853 void tcg_gen_gvec_ssadd(unsigned vece, uint32_t dofs, uint32_t aofs,
1854 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1856 static const TCGOpcode vecop_list[] = { INDEX_op_ssadd_vec, 0 };
1857 static const GVecGen3 g[4] = {
1858 { .fniv = tcg_gen_ssadd_vec,
1859 .fno = gen_helper_gvec_ssadd8,
1860 .opt_opc = vecop_list,
1861 .vece = MO_8 },
1862 { .fniv = tcg_gen_ssadd_vec,
1863 .fno = gen_helper_gvec_ssadd16,
1864 .opt_opc = vecop_list,
1865 .vece = MO_16 },
1866 { .fniv = tcg_gen_ssadd_vec,
1867 .fno = gen_helper_gvec_ssadd32,
1868 .opt_opc = vecop_list,
1869 .vece = MO_32 },
1870 { .fniv = tcg_gen_ssadd_vec,
1871 .fno = gen_helper_gvec_ssadd64,
1872 .opt_opc = vecop_list,
1873 .vece = MO_64 },
1875 tcg_debug_assert(vece <= MO_64);
1876 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
1879 void tcg_gen_gvec_sssub(unsigned vece, uint32_t dofs, uint32_t aofs,
1880 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1882 static const TCGOpcode vecop_list[] = { INDEX_op_sssub_vec, 0 };
1883 static const GVecGen3 g[4] = {
1884 { .fniv = tcg_gen_sssub_vec,
1885 .fno = gen_helper_gvec_sssub8,
1886 .opt_opc = vecop_list,
1887 .vece = MO_8 },
1888 { .fniv = tcg_gen_sssub_vec,
1889 .fno = gen_helper_gvec_sssub16,
1890 .opt_opc = vecop_list,
1891 .vece = MO_16 },
1892 { .fniv = tcg_gen_sssub_vec,
1893 .fno = gen_helper_gvec_sssub32,
1894 .opt_opc = vecop_list,
1895 .vece = MO_32 },
1896 { .fniv = tcg_gen_sssub_vec,
1897 .fno = gen_helper_gvec_sssub64,
1898 .opt_opc = vecop_list,
1899 .vece = MO_64 },
1901 tcg_debug_assert(vece <= MO_64);
1902 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
1905 static void tcg_gen_usadd_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
1907 TCGv_i32 max = tcg_const_i32(-1);
1908 tcg_gen_add_i32(d, a, b);
1909 tcg_gen_movcond_i32(TCG_COND_LTU, d, d, a, max, d);
1910 tcg_temp_free_i32(max);
1913 static void tcg_gen_usadd_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1915 TCGv_i64 max = tcg_const_i64(-1);
1916 tcg_gen_add_i64(d, a, b);
1917 tcg_gen_movcond_i64(TCG_COND_LTU, d, d, a, max, d);
1918 tcg_temp_free_i64(max);
1921 void tcg_gen_gvec_usadd(unsigned vece, uint32_t dofs, uint32_t aofs,
1922 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1924 static const TCGOpcode vecop_list[] = { INDEX_op_usadd_vec, 0 };
1925 static const GVecGen3 g[4] = {
1926 { .fniv = tcg_gen_usadd_vec,
1927 .fno = gen_helper_gvec_usadd8,
1928 .opt_opc = vecop_list,
1929 .vece = MO_8 },
1930 { .fniv = tcg_gen_usadd_vec,
1931 .fno = gen_helper_gvec_usadd16,
1932 .opt_opc = vecop_list,
1933 .vece = MO_16 },
1934 { .fni4 = tcg_gen_usadd_i32,
1935 .fniv = tcg_gen_usadd_vec,
1936 .fno = gen_helper_gvec_usadd32,
1937 .opt_opc = vecop_list,
1938 .vece = MO_32 },
1939 { .fni8 = tcg_gen_usadd_i64,
1940 .fniv = tcg_gen_usadd_vec,
1941 .fno = gen_helper_gvec_usadd64,
1942 .opt_opc = vecop_list,
1943 .vece = MO_64 }
1945 tcg_debug_assert(vece <= MO_64);
1946 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
1949 static void tcg_gen_ussub_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
1951 TCGv_i32 min = tcg_const_i32(0);
1952 tcg_gen_sub_i32(d, a, b);
1953 tcg_gen_movcond_i32(TCG_COND_LTU, d, a, b, min, d);
1954 tcg_temp_free_i32(min);
1957 static void tcg_gen_ussub_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1959 TCGv_i64 min = tcg_const_i64(0);
1960 tcg_gen_sub_i64(d, a, b);
1961 tcg_gen_movcond_i64(TCG_COND_LTU, d, a, b, min, d);
1962 tcg_temp_free_i64(min);
1965 void tcg_gen_gvec_ussub(unsigned vece, uint32_t dofs, uint32_t aofs,
1966 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1968 static const TCGOpcode vecop_list[] = { INDEX_op_ussub_vec, 0 };
1969 static const GVecGen3 g[4] = {
1970 { .fniv = tcg_gen_ussub_vec,
1971 .fno = gen_helper_gvec_ussub8,
1972 .opt_opc = vecop_list,
1973 .vece = MO_8 },
1974 { .fniv = tcg_gen_ussub_vec,
1975 .fno = gen_helper_gvec_ussub16,
1976 .opt_opc = vecop_list,
1977 .vece = MO_16 },
1978 { .fni4 = tcg_gen_ussub_i32,
1979 .fniv = tcg_gen_ussub_vec,
1980 .fno = gen_helper_gvec_ussub32,
1981 .opt_opc = vecop_list,
1982 .vece = MO_32 },
1983 { .fni8 = tcg_gen_ussub_i64,
1984 .fniv = tcg_gen_ussub_vec,
1985 .fno = gen_helper_gvec_ussub64,
1986 .opt_opc = vecop_list,
1987 .vece = MO_64 }
1989 tcg_debug_assert(vece <= MO_64);
1990 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
1993 void tcg_gen_gvec_smin(unsigned vece, uint32_t dofs, uint32_t aofs,
1994 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1996 static const TCGOpcode vecop_list[] = { INDEX_op_smin_vec, 0 };
1997 static const GVecGen3 g[4] = {
1998 { .fniv = tcg_gen_smin_vec,
1999 .fno = gen_helper_gvec_smin8,
2000 .opt_opc = vecop_list,
2001 .vece = MO_8 },
2002 { .fniv = tcg_gen_smin_vec,
2003 .fno = gen_helper_gvec_smin16,
2004 .opt_opc = vecop_list,
2005 .vece = MO_16 },
2006 { .fni4 = tcg_gen_smin_i32,
2007 .fniv = tcg_gen_smin_vec,
2008 .fno = gen_helper_gvec_smin32,
2009 .opt_opc = vecop_list,
2010 .vece = MO_32 },
2011 { .fni8 = tcg_gen_smin_i64,
2012 .fniv = tcg_gen_smin_vec,
2013 .fno = gen_helper_gvec_smin64,
2014 .opt_opc = vecop_list,
2015 .vece = MO_64 }
2017 tcg_debug_assert(vece <= MO_64);
2018 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2021 void tcg_gen_gvec_umin(unsigned vece, uint32_t dofs, uint32_t aofs,
2022 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2024 static const TCGOpcode vecop_list[] = { INDEX_op_umin_vec, 0 };
2025 static const GVecGen3 g[4] = {
2026 { .fniv = tcg_gen_umin_vec,
2027 .fno = gen_helper_gvec_umin8,
2028 .opt_opc = vecop_list,
2029 .vece = MO_8 },
2030 { .fniv = tcg_gen_umin_vec,
2031 .fno = gen_helper_gvec_umin16,
2032 .opt_opc = vecop_list,
2033 .vece = MO_16 },
2034 { .fni4 = tcg_gen_umin_i32,
2035 .fniv = tcg_gen_umin_vec,
2036 .fno = gen_helper_gvec_umin32,
2037 .opt_opc = vecop_list,
2038 .vece = MO_32 },
2039 { .fni8 = tcg_gen_umin_i64,
2040 .fniv = tcg_gen_umin_vec,
2041 .fno = gen_helper_gvec_umin64,
2042 .opt_opc = vecop_list,
2043 .vece = MO_64 }
2045 tcg_debug_assert(vece <= MO_64);
2046 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2049 void tcg_gen_gvec_smax(unsigned vece, uint32_t dofs, uint32_t aofs,
2050 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2052 static const TCGOpcode vecop_list[] = { INDEX_op_smax_vec, 0 };
2053 static const GVecGen3 g[4] = {
2054 { .fniv = tcg_gen_smax_vec,
2055 .fno = gen_helper_gvec_smax8,
2056 .opt_opc = vecop_list,
2057 .vece = MO_8 },
2058 { .fniv = tcg_gen_smax_vec,
2059 .fno = gen_helper_gvec_smax16,
2060 .opt_opc = vecop_list,
2061 .vece = MO_16 },
2062 { .fni4 = tcg_gen_smax_i32,
2063 .fniv = tcg_gen_smax_vec,
2064 .fno = gen_helper_gvec_smax32,
2065 .opt_opc = vecop_list,
2066 .vece = MO_32 },
2067 { .fni8 = tcg_gen_smax_i64,
2068 .fniv = tcg_gen_smax_vec,
2069 .fno = gen_helper_gvec_smax64,
2070 .opt_opc = vecop_list,
2071 .vece = MO_64 }
2073 tcg_debug_assert(vece <= MO_64);
2074 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2077 void tcg_gen_gvec_umax(unsigned vece, uint32_t dofs, uint32_t aofs,
2078 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2080 static const TCGOpcode vecop_list[] = { INDEX_op_umax_vec, 0 };
2081 static const GVecGen3 g[4] = {
2082 { .fniv = tcg_gen_umax_vec,
2083 .fno = gen_helper_gvec_umax8,
2084 .opt_opc = vecop_list,
2085 .vece = MO_8 },
2086 { .fniv = tcg_gen_umax_vec,
2087 .fno = gen_helper_gvec_umax16,
2088 .opt_opc = vecop_list,
2089 .vece = MO_16 },
2090 { .fni4 = tcg_gen_umax_i32,
2091 .fniv = tcg_gen_umax_vec,
2092 .fno = gen_helper_gvec_umax32,
2093 .opt_opc = vecop_list,
2094 .vece = MO_32 },
2095 { .fni8 = tcg_gen_umax_i64,
2096 .fniv = tcg_gen_umax_vec,
2097 .fno = gen_helper_gvec_umax64,
2098 .opt_opc = vecop_list,
2099 .vece = MO_64 }
2101 tcg_debug_assert(vece <= MO_64);
2102 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2105 /* Perform a vector negation using normal negation and a mask.
2106 Compare gen_subv_mask above. */
2107 static void gen_negv_mask(TCGv_i64 d, TCGv_i64 b, TCGv_i64 m)
2109 TCGv_i64 t2 = tcg_temp_new_i64();
2110 TCGv_i64 t3 = tcg_temp_new_i64();
2112 tcg_gen_andc_i64(t3, m, b);
2113 tcg_gen_andc_i64(t2, b, m);
2114 tcg_gen_sub_i64(d, m, t2);
2115 tcg_gen_xor_i64(d, d, t3);
2117 tcg_temp_free_i64(t2);
2118 tcg_temp_free_i64(t3);
2121 void tcg_gen_vec_neg8_i64(TCGv_i64 d, TCGv_i64 b)
2123 TCGv_i64 m = tcg_const_i64(dup_const(MO_8, 0x80));
2124 gen_negv_mask(d, b, m);
2125 tcg_temp_free_i64(m);
2128 void tcg_gen_vec_neg16_i64(TCGv_i64 d, TCGv_i64 b)
2130 TCGv_i64 m = tcg_const_i64(dup_const(MO_16, 0x8000));
2131 gen_negv_mask(d, b, m);
2132 tcg_temp_free_i64(m);
2135 void tcg_gen_vec_neg32_i64(TCGv_i64 d, TCGv_i64 b)
2137 TCGv_i64 t1 = tcg_temp_new_i64();
2138 TCGv_i64 t2 = tcg_temp_new_i64();
2140 tcg_gen_andi_i64(t1, b, ~0xffffffffull);
2141 tcg_gen_neg_i64(t2, b);
2142 tcg_gen_neg_i64(t1, t1);
2143 tcg_gen_deposit_i64(d, t1, t2, 0, 32);
2145 tcg_temp_free_i64(t1);
2146 tcg_temp_free_i64(t2);
2149 void tcg_gen_gvec_neg(unsigned vece, uint32_t dofs, uint32_t aofs,
2150 uint32_t oprsz, uint32_t maxsz)
2152 static const TCGOpcode vecop_list[] = { INDEX_op_neg_vec, 0 };
2153 static const GVecGen2 g[4] = {
2154 { .fni8 = tcg_gen_vec_neg8_i64,
2155 .fniv = tcg_gen_neg_vec,
2156 .fno = gen_helper_gvec_neg8,
2157 .opt_opc = vecop_list,
2158 .vece = MO_8 },
2159 { .fni8 = tcg_gen_vec_neg16_i64,
2160 .fniv = tcg_gen_neg_vec,
2161 .fno = gen_helper_gvec_neg16,
2162 .opt_opc = vecop_list,
2163 .vece = MO_16 },
2164 { .fni4 = tcg_gen_neg_i32,
2165 .fniv = tcg_gen_neg_vec,
2166 .fno = gen_helper_gvec_neg32,
2167 .opt_opc = vecop_list,
2168 .vece = MO_32 },
2169 { .fni8 = tcg_gen_neg_i64,
2170 .fniv = tcg_gen_neg_vec,
2171 .fno = gen_helper_gvec_neg64,
2172 .opt_opc = vecop_list,
2173 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2174 .vece = MO_64 },
2177 tcg_debug_assert(vece <= MO_64);
2178 tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g[vece]);
2181 static void gen_absv_mask(TCGv_i64 d, TCGv_i64 b, unsigned vece)
2183 TCGv_i64 t = tcg_temp_new_i64();
2184 int nbit = 8 << vece;
2186 /* Create -1 for each negative element. */
2187 tcg_gen_shri_i64(t, b, nbit - 1);
2188 tcg_gen_andi_i64(t, t, dup_const(vece, 1));
2189 tcg_gen_muli_i64(t, t, (1 << nbit) - 1);
2192 * Invert (via xor -1) and add one (via sub -1).
2193 * Because of the ordering the msb is cleared,
2194 * so we never have carry into the next element.
2196 tcg_gen_xor_i64(d, b, t);
2197 tcg_gen_sub_i64(d, d, t);
2199 tcg_temp_free_i64(t);
2202 static void tcg_gen_vec_abs8_i64(TCGv_i64 d, TCGv_i64 b)
2204 gen_absv_mask(d, b, MO_8);
2207 static void tcg_gen_vec_abs16_i64(TCGv_i64 d, TCGv_i64 b)
2209 gen_absv_mask(d, b, MO_16);
2212 void tcg_gen_gvec_abs(unsigned vece, uint32_t dofs, uint32_t aofs,
2213 uint32_t oprsz, uint32_t maxsz)
2215 static const TCGOpcode vecop_list[] = { INDEX_op_abs_vec, 0 };
2216 static const GVecGen2 g[4] = {
2217 { .fni8 = tcg_gen_vec_abs8_i64,
2218 .fniv = tcg_gen_abs_vec,
2219 .fno = gen_helper_gvec_abs8,
2220 .opt_opc = vecop_list,
2221 .vece = MO_8 },
2222 { .fni8 = tcg_gen_vec_abs16_i64,
2223 .fniv = tcg_gen_abs_vec,
2224 .fno = gen_helper_gvec_abs16,
2225 .opt_opc = vecop_list,
2226 .vece = MO_16 },
2227 { .fni4 = tcg_gen_abs_i32,
2228 .fniv = tcg_gen_abs_vec,
2229 .fno = gen_helper_gvec_abs32,
2230 .opt_opc = vecop_list,
2231 .vece = MO_32 },
2232 { .fni8 = tcg_gen_abs_i64,
2233 .fniv = tcg_gen_abs_vec,
2234 .fno = gen_helper_gvec_abs64,
2235 .opt_opc = vecop_list,
2236 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2237 .vece = MO_64 },
2240 tcg_debug_assert(vece <= MO_64);
2241 tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g[vece]);
2244 void tcg_gen_gvec_and(unsigned vece, uint32_t dofs, uint32_t aofs,
2245 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2247 static const GVecGen3 g = {
2248 .fni8 = tcg_gen_and_i64,
2249 .fniv = tcg_gen_and_vec,
2250 .fno = gen_helper_gvec_and,
2251 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2254 if (aofs == bofs) {
2255 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
2256 } else {
2257 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2261 void tcg_gen_gvec_or(unsigned vece, uint32_t dofs, uint32_t aofs,
2262 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2264 static const GVecGen3 g = {
2265 .fni8 = tcg_gen_or_i64,
2266 .fniv = tcg_gen_or_vec,
2267 .fno = gen_helper_gvec_or,
2268 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2271 if (aofs == bofs) {
2272 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
2273 } else {
2274 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2278 void tcg_gen_gvec_xor(unsigned vece, uint32_t dofs, uint32_t aofs,
2279 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2281 static const GVecGen3 g = {
2282 .fni8 = tcg_gen_xor_i64,
2283 .fniv = tcg_gen_xor_vec,
2284 .fno = gen_helper_gvec_xor,
2285 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2288 if (aofs == bofs) {
2289 tcg_gen_gvec_dup8i(dofs, oprsz, maxsz, 0);
2290 } else {
2291 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2295 void tcg_gen_gvec_andc(unsigned vece, uint32_t dofs, uint32_t aofs,
2296 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2298 static const GVecGen3 g = {
2299 .fni8 = tcg_gen_andc_i64,
2300 .fniv = tcg_gen_andc_vec,
2301 .fno = gen_helper_gvec_andc,
2302 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2305 if (aofs == bofs) {
2306 tcg_gen_gvec_dup8i(dofs, oprsz, maxsz, 0);
2307 } else {
2308 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2312 void tcg_gen_gvec_orc(unsigned vece, uint32_t dofs, uint32_t aofs,
2313 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2315 static const GVecGen3 g = {
2316 .fni8 = tcg_gen_orc_i64,
2317 .fniv = tcg_gen_orc_vec,
2318 .fno = gen_helper_gvec_orc,
2319 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2322 if (aofs == bofs) {
2323 tcg_gen_gvec_dup8i(dofs, oprsz, maxsz, -1);
2324 } else {
2325 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2329 void tcg_gen_gvec_nand(unsigned vece, uint32_t dofs, uint32_t aofs,
2330 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2332 static const GVecGen3 g = {
2333 .fni8 = tcg_gen_nand_i64,
2334 .fniv = tcg_gen_nand_vec,
2335 .fno = gen_helper_gvec_nand,
2336 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2339 if (aofs == bofs) {
2340 tcg_gen_gvec_not(vece, dofs, aofs, oprsz, maxsz);
2341 } else {
2342 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2346 void tcg_gen_gvec_nor(unsigned vece, uint32_t dofs, uint32_t aofs,
2347 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2349 static const GVecGen3 g = {
2350 .fni8 = tcg_gen_nor_i64,
2351 .fniv = tcg_gen_nor_vec,
2352 .fno = gen_helper_gvec_nor,
2353 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2356 if (aofs == bofs) {
2357 tcg_gen_gvec_not(vece, dofs, aofs, oprsz, maxsz);
2358 } else {
2359 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2363 void tcg_gen_gvec_eqv(unsigned vece, uint32_t dofs, uint32_t aofs,
2364 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2366 static const GVecGen3 g = {
2367 .fni8 = tcg_gen_eqv_i64,
2368 .fniv = tcg_gen_eqv_vec,
2369 .fno = gen_helper_gvec_eqv,
2370 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2373 if (aofs == bofs) {
2374 tcg_gen_gvec_dup8i(dofs, oprsz, maxsz, -1);
2375 } else {
2376 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2380 static const GVecGen2s gop_ands = {
2381 .fni8 = tcg_gen_and_i64,
2382 .fniv = tcg_gen_and_vec,
2383 .fno = gen_helper_gvec_ands,
2384 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2385 .vece = MO_64
2388 void tcg_gen_gvec_ands(unsigned vece, uint32_t dofs, uint32_t aofs,
2389 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
2391 TCGv_i64 tmp = tcg_temp_new_i64();
2392 gen_dup_i64(vece, tmp, c);
2393 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ands);
2394 tcg_temp_free_i64(tmp);
2397 void tcg_gen_gvec_andi(unsigned vece, uint32_t dofs, uint32_t aofs,
2398 int64_t c, uint32_t oprsz, uint32_t maxsz)
2400 TCGv_i64 tmp = tcg_const_i64(dup_const(vece, c));
2401 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ands);
2402 tcg_temp_free_i64(tmp);
2405 static const GVecGen2s gop_xors = {
2406 .fni8 = tcg_gen_xor_i64,
2407 .fniv = tcg_gen_xor_vec,
2408 .fno = gen_helper_gvec_xors,
2409 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2410 .vece = MO_64
2413 void tcg_gen_gvec_xors(unsigned vece, uint32_t dofs, uint32_t aofs,
2414 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
2416 TCGv_i64 tmp = tcg_temp_new_i64();
2417 gen_dup_i64(vece, tmp, c);
2418 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_xors);
2419 tcg_temp_free_i64(tmp);
2422 void tcg_gen_gvec_xori(unsigned vece, uint32_t dofs, uint32_t aofs,
2423 int64_t c, uint32_t oprsz, uint32_t maxsz)
2425 TCGv_i64 tmp = tcg_const_i64(dup_const(vece, c));
2426 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_xors);
2427 tcg_temp_free_i64(tmp);
2430 static const GVecGen2s gop_ors = {
2431 .fni8 = tcg_gen_or_i64,
2432 .fniv = tcg_gen_or_vec,
2433 .fno = gen_helper_gvec_ors,
2434 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2435 .vece = MO_64
2438 void tcg_gen_gvec_ors(unsigned vece, uint32_t dofs, uint32_t aofs,
2439 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
2441 TCGv_i64 tmp = tcg_temp_new_i64();
2442 gen_dup_i64(vece, tmp, c);
2443 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ors);
2444 tcg_temp_free_i64(tmp);
2447 void tcg_gen_gvec_ori(unsigned vece, uint32_t dofs, uint32_t aofs,
2448 int64_t c, uint32_t oprsz, uint32_t maxsz)
2450 TCGv_i64 tmp = tcg_const_i64(dup_const(vece, c));
2451 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ors);
2452 tcg_temp_free_i64(tmp);
2455 void tcg_gen_vec_shl8i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2457 uint64_t mask = dup_const(MO_8, 0xff << c);
2458 tcg_gen_shli_i64(d, a, c);
2459 tcg_gen_andi_i64(d, d, mask);
2462 void tcg_gen_vec_shl16i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2464 uint64_t mask = dup_const(MO_16, 0xffff << c);
2465 tcg_gen_shli_i64(d, a, c);
2466 tcg_gen_andi_i64(d, d, mask);
2469 void tcg_gen_gvec_shli(unsigned vece, uint32_t dofs, uint32_t aofs,
2470 int64_t shift, uint32_t oprsz, uint32_t maxsz)
2472 static const TCGOpcode vecop_list[] = { INDEX_op_shli_vec, 0 };
2473 static const GVecGen2i g[4] = {
2474 { .fni8 = tcg_gen_vec_shl8i_i64,
2475 .fniv = tcg_gen_shli_vec,
2476 .fno = gen_helper_gvec_shl8i,
2477 .opt_opc = vecop_list,
2478 .vece = MO_8 },
2479 { .fni8 = tcg_gen_vec_shl16i_i64,
2480 .fniv = tcg_gen_shli_vec,
2481 .fno = gen_helper_gvec_shl16i,
2482 .opt_opc = vecop_list,
2483 .vece = MO_16 },
2484 { .fni4 = tcg_gen_shli_i32,
2485 .fniv = tcg_gen_shli_vec,
2486 .fno = gen_helper_gvec_shl32i,
2487 .opt_opc = vecop_list,
2488 .vece = MO_32 },
2489 { .fni8 = tcg_gen_shli_i64,
2490 .fniv = tcg_gen_shli_vec,
2491 .fno = gen_helper_gvec_shl64i,
2492 .opt_opc = vecop_list,
2493 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2494 .vece = MO_64 },
2497 tcg_debug_assert(vece <= MO_64);
2498 tcg_debug_assert(shift >= 0 && shift < (8 << vece));
2499 if (shift == 0) {
2500 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
2501 } else {
2502 tcg_gen_gvec_2i(dofs, aofs, oprsz, maxsz, shift, &g[vece]);
2506 void tcg_gen_vec_shr8i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2508 uint64_t mask = dup_const(MO_8, 0xff >> c);
2509 tcg_gen_shri_i64(d, a, c);
2510 tcg_gen_andi_i64(d, d, mask);
2513 void tcg_gen_vec_shr16i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2515 uint64_t mask = dup_const(MO_16, 0xffff >> c);
2516 tcg_gen_shri_i64(d, a, c);
2517 tcg_gen_andi_i64(d, d, mask);
2520 void tcg_gen_gvec_shri(unsigned vece, uint32_t dofs, uint32_t aofs,
2521 int64_t shift, uint32_t oprsz, uint32_t maxsz)
2523 static const TCGOpcode vecop_list[] = { INDEX_op_shri_vec, 0 };
2524 static const GVecGen2i g[4] = {
2525 { .fni8 = tcg_gen_vec_shr8i_i64,
2526 .fniv = tcg_gen_shri_vec,
2527 .fno = gen_helper_gvec_shr8i,
2528 .opt_opc = vecop_list,
2529 .vece = MO_8 },
2530 { .fni8 = tcg_gen_vec_shr16i_i64,
2531 .fniv = tcg_gen_shri_vec,
2532 .fno = gen_helper_gvec_shr16i,
2533 .opt_opc = vecop_list,
2534 .vece = MO_16 },
2535 { .fni4 = tcg_gen_shri_i32,
2536 .fniv = tcg_gen_shri_vec,
2537 .fno = gen_helper_gvec_shr32i,
2538 .opt_opc = vecop_list,
2539 .vece = MO_32 },
2540 { .fni8 = tcg_gen_shri_i64,
2541 .fniv = tcg_gen_shri_vec,
2542 .fno = gen_helper_gvec_shr64i,
2543 .opt_opc = vecop_list,
2544 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2545 .vece = MO_64 },
2548 tcg_debug_assert(vece <= MO_64);
2549 tcg_debug_assert(shift >= 0 && shift < (8 << vece));
2550 if (shift == 0) {
2551 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
2552 } else {
2553 tcg_gen_gvec_2i(dofs, aofs, oprsz, maxsz, shift, &g[vece]);
2557 void tcg_gen_vec_sar8i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2559 uint64_t s_mask = dup_const(MO_8, 0x80 >> c);
2560 uint64_t c_mask = dup_const(MO_8, 0xff >> c);
2561 TCGv_i64 s = tcg_temp_new_i64();
2563 tcg_gen_shri_i64(d, a, c);
2564 tcg_gen_andi_i64(s, d, s_mask); /* isolate (shifted) sign bit */
2565 tcg_gen_muli_i64(s, s, (2 << c) - 2); /* replicate isolated signs */
2566 tcg_gen_andi_i64(d, d, c_mask); /* clear out bits above sign */
2567 tcg_gen_or_i64(d, d, s); /* include sign extension */
2568 tcg_temp_free_i64(s);
2571 void tcg_gen_vec_sar16i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2573 uint64_t s_mask = dup_const(MO_16, 0x8000 >> c);
2574 uint64_t c_mask = dup_const(MO_16, 0xffff >> c);
2575 TCGv_i64 s = tcg_temp_new_i64();
2577 tcg_gen_shri_i64(d, a, c);
2578 tcg_gen_andi_i64(s, d, s_mask); /* isolate (shifted) sign bit */
2579 tcg_gen_andi_i64(d, d, c_mask); /* clear out bits above sign */
2580 tcg_gen_muli_i64(s, s, (2 << c) - 2); /* replicate isolated signs */
2581 tcg_gen_or_i64(d, d, s); /* include sign extension */
2582 tcg_temp_free_i64(s);
2585 void tcg_gen_gvec_sari(unsigned vece, uint32_t dofs, uint32_t aofs,
2586 int64_t shift, uint32_t oprsz, uint32_t maxsz)
2588 static const TCGOpcode vecop_list[] = { INDEX_op_sari_vec, 0 };
2589 static const GVecGen2i g[4] = {
2590 { .fni8 = tcg_gen_vec_sar8i_i64,
2591 .fniv = tcg_gen_sari_vec,
2592 .fno = gen_helper_gvec_sar8i,
2593 .opt_opc = vecop_list,
2594 .vece = MO_8 },
2595 { .fni8 = tcg_gen_vec_sar16i_i64,
2596 .fniv = tcg_gen_sari_vec,
2597 .fno = gen_helper_gvec_sar16i,
2598 .opt_opc = vecop_list,
2599 .vece = MO_16 },
2600 { .fni4 = tcg_gen_sari_i32,
2601 .fniv = tcg_gen_sari_vec,
2602 .fno = gen_helper_gvec_sar32i,
2603 .opt_opc = vecop_list,
2604 .vece = MO_32 },
2605 { .fni8 = tcg_gen_sari_i64,
2606 .fniv = tcg_gen_sari_vec,
2607 .fno = gen_helper_gvec_sar64i,
2608 .opt_opc = vecop_list,
2609 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2610 .vece = MO_64 },
2613 tcg_debug_assert(vece <= MO_64);
2614 tcg_debug_assert(shift >= 0 && shift < (8 << vece));
2615 if (shift == 0) {
2616 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
2617 } else {
2618 tcg_gen_gvec_2i(dofs, aofs, oprsz, maxsz, shift, &g[vece]);
2623 * Specialized generation vector shifts by a non-constant scalar.
2626 typedef struct {
2627 void (*fni4)(TCGv_i32, TCGv_i32, TCGv_i32);
2628 void (*fni8)(TCGv_i64, TCGv_i64, TCGv_i64);
2629 void (*fniv_s)(unsigned, TCGv_vec, TCGv_vec, TCGv_i32);
2630 void (*fniv_v)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec);
2631 gen_helper_gvec_2 *fno[4];
2632 TCGOpcode s_list[2];
2633 TCGOpcode v_list[2];
2634 } GVecGen2sh;
2636 static void expand_2sh_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
2637 uint32_t oprsz, uint32_t tysz, TCGType type,
2638 TCGv_i32 shift,
2639 void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_i32))
2641 TCGv_vec t0 = tcg_temp_new_vec(type);
2642 uint32_t i;
2644 for (i = 0; i < oprsz; i += tysz) {
2645 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
2646 fni(vece, t0, t0, shift);
2647 tcg_gen_st_vec(t0, cpu_env, dofs + i);
2649 tcg_temp_free_vec(t0);
2652 static void
2653 do_gvec_shifts(unsigned vece, uint32_t dofs, uint32_t aofs, TCGv_i32 shift,
2654 uint32_t oprsz, uint32_t maxsz, const GVecGen2sh *g)
2656 TCGType type;
2657 uint32_t some;
2659 check_size_align(oprsz, maxsz, dofs | aofs);
2660 check_overlap_2(dofs, aofs, maxsz);
2662 /* If the backend has a scalar expansion, great. */
2663 type = choose_vector_type(g->s_list, vece, oprsz, vece == MO_64);
2664 if (type) {
2665 const TCGOpcode *hold_list = tcg_swap_vecop_list(NULL);
2666 switch (type) {
2667 case TCG_TYPE_V256:
2668 some = QEMU_ALIGN_DOWN(oprsz, 32);
2669 expand_2sh_vec(vece, dofs, aofs, some, 32,
2670 TCG_TYPE_V256, shift, g->fniv_s);
2671 if (some == oprsz) {
2672 break;
2674 dofs += some;
2675 aofs += some;
2676 oprsz -= some;
2677 maxsz -= some;
2678 /* fallthru */
2679 case TCG_TYPE_V128:
2680 expand_2sh_vec(vece, dofs, aofs, oprsz, 16,
2681 TCG_TYPE_V128, shift, g->fniv_s);
2682 break;
2683 case TCG_TYPE_V64:
2684 expand_2sh_vec(vece, dofs, aofs, oprsz, 8,
2685 TCG_TYPE_V64, shift, g->fniv_s);
2686 break;
2687 default:
2688 g_assert_not_reached();
2690 tcg_swap_vecop_list(hold_list);
2691 goto clear_tail;
2694 /* If the backend supports variable vector shifts, also cool. */
2695 type = choose_vector_type(g->v_list, vece, oprsz, vece == MO_64);
2696 if (type) {
2697 const TCGOpcode *hold_list = tcg_swap_vecop_list(NULL);
2698 TCGv_vec v_shift = tcg_temp_new_vec(type);
2700 if (vece == MO_64) {
2701 TCGv_i64 sh64 = tcg_temp_new_i64();
2702 tcg_gen_extu_i32_i64(sh64, shift);
2703 tcg_gen_dup_i64_vec(MO_64, v_shift, sh64);
2704 tcg_temp_free_i64(sh64);
2705 } else {
2706 tcg_gen_dup_i32_vec(vece, v_shift, shift);
2709 switch (type) {
2710 case TCG_TYPE_V256:
2711 some = QEMU_ALIGN_DOWN(oprsz, 32);
2712 expand_2s_vec(vece, dofs, aofs, some, 32, TCG_TYPE_V256,
2713 v_shift, false, g->fniv_v);
2714 if (some == oprsz) {
2715 break;
2717 dofs += some;
2718 aofs += some;
2719 oprsz -= some;
2720 maxsz -= some;
2721 /* fallthru */
2722 case TCG_TYPE_V128:
2723 expand_2s_vec(vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128,
2724 v_shift, false, g->fniv_v);
2725 break;
2726 case TCG_TYPE_V64:
2727 expand_2s_vec(vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64,
2728 v_shift, false, g->fniv_v);
2729 break;
2730 default:
2731 g_assert_not_reached();
2733 tcg_temp_free_vec(v_shift);
2734 tcg_swap_vecop_list(hold_list);
2735 goto clear_tail;
2738 /* Otherwise fall back to integral... */
2739 if (vece == MO_32 && check_size_impl(oprsz, 4)) {
2740 expand_2s_i32(dofs, aofs, oprsz, shift, false, g->fni4);
2741 } else if (vece == MO_64 && check_size_impl(oprsz, 8)) {
2742 TCGv_i64 sh64 = tcg_temp_new_i64();
2743 tcg_gen_extu_i32_i64(sh64, shift);
2744 expand_2s_i64(dofs, aofs, oprsz, sh64, false, g->fni8);
2745 tcg_temp_free_i64(sh64);
2746 } else {
2747 TCGv_ptr a0 = tcg_temp_new_ptr();
2748 TCGv_ptr a1 = tcg_temp_new_ptr();
2749 TCGv_i32 desc = tcg_temp_new_i32();
2751 tcg_gen_shli_i32(desc, shift, SIMD_DATA_SHIFT);
2752 tcg_gen_ori_i32(desc, desc, simd_desc(oprsz, maxsz, 0));
2753 tcg_gen_addi_ptr(a0, cpu_env, dofs);
2754 tcg_gen_addi_ptr(a1, cpu_env, aofs);
2756 g->fno[vece](a0, a1, desc);
2758 tcg_temp_free_ptr(a0);
2759 tcg_temp_free_ptr(a1);
2760 tcg_temp_free_i32(desc);
2761 return;
2764 clear_tail:
2765 if (oprsz < maxsz) {
2766 expand_clr(dofs + oprsz, maxsz - oprsz);
2770 void tcg_gen_gvec_shls(unsigned vece, uint32_t dofs, uint32_t aofs,
2771 TCGv_i32 shift, uint32_t oprsz, uint32_t maxsz)
2773 static const GVecGen2sh g = {
2774 .fni4 = tcg_gen_shl_i32,
2775 .fni8 = tcg_gen_shl_i64,
2776 .fniv_s = tcg_gen_shls_vec,
2777 .fniv_v = tcg_gen_shlv_vec,
2778 .fno = {
2779 gen_helper_gvec_shl8i,
2780 gen_helper_gvec_shl16i,
2781 gen_helper_gvec_shl32i,
2782 gen_helper_gvec_shl64i,
2784 .s_list = { INDEX_op_shls_vec, 0 },
2785 .v_list = { INDEX_op_shlv_vec, 0 },
2788 tcg_debug_assert(vece <= MO_64);
2789 do_gvec_shifts(vece, dofs, aofs, shift, oprsz, maxsz, &g);
2792 void tcg_gen_gvec_shrs(unsigned vece, uint32_t dofs, uint32_t aofs,
2793 TCGv_i32 shift, uint32_t oprsz, uint32_t maxsz)
2795 static const GVecGen2sh g = {
2796 .fni4 = tcg_gen_shr_i32,
2797 .fni8 = tcg_gen_shr_i64,
2798 .fniv_s = tcg_gen_shrs_vec,
2799 .fniv_v = tcg_gen_shrv_vec,
2800 .fno = {
2801 gen_helper_gvec_shr8i,
2802 gen_helper_gvec_shr16i,
2803 gen_helper_gvec_shr32i,
2804 gen_helper_gvec_shr64i,
2806 .s_list = { INDEX_op_shrs_vec, 0 },
2807 .v_list = { INDEX_op_shrv_vec, 0 },
2810 tcg_debug_assert(vece <= MO_64);
2811 do_gvec_shifts(vece, dofs, aofs, shift, oprsz, maxsz, &g);
2814 void tcg_gen_gvec_sars(unsigned vece, uint32_t dofs, uint32_t aofs,
2815 TCGv_i32 shift, uint32_t oprsz, uint32_t maxsz)
2817 static const GVecGen2sh g = {
2818 .fni4 = tcg_gen_sar_i32,
2819 .fni8 = tcg_gen_sar_i64,
2820 .fniv_s = tcg_gen_sars_vec,
2821 .fniv_v = tcg_gen_sarv_vec,
2822 .fno = {
2823 gen_helper_gvec_sar8i,
2824 gen_helper_gvec_sar16i,
2825 gen_helper_gvec_sar32i,
2826 gen_helper_gvec_sar64i,
2828 .s_list = { INDEX_op_sars_vec, 0 },
2829 .v_list = { INDEX_op_sarv_vec, 0 },
2832 tcg_debug_assert(vece <= MO_64);
2833 do_gvec_shifts(vece, dofs, aofs, shift, oprsz, maxsz, &g);
2837 * Expand D = A << (B % element bits)
2839 * Unlike scalar shifts, where it is easy for the target front end
2840 * to include the modulo as part of the expansion. If the target
2841 * naturally includes the modulo as part of the operation, great!
2842 * If the target has some other behaviour from out-of-range shifts,
2843 * then it could not use this function anyway, and would need to
2844 * do it's own expansion with custom functions.
2846 static void tcg_gen_shlv_mod_vec(unsigned vece, TCGv_vec d,
2847 TCGv_vec a, TCGv_vec b)
2849 TCGv_vec t = tcg_temp_new_vec_matching(d);
2851 tcg_gen_dupi_vec(vece, t, (8 << vece) - 1);
2852 tcg_gen_and_vec(vece, t, t, b);
2853 tcg_gen_shlv_vec(vece, d, a, t);
2854 tcg_temp_free_vec(t);
2857 static void tcg_gen_shl_mod_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
2859 TCGv_i32 t = tcg_temp_new_i32();
2861 tcg_gen_andi_i32(t, b, 31);
2862 tcg_gen_shl_i32(d, a, t);
2863 tcg_temp_free_i32(t);
2866 static void tcg_gen_shl_mod_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
2868 TCGv_i64 t = tcg_temp_new_i64();
2870 tcg_gen_andi_i64(t, b, 63);
2871 tcg_gen_shl_i64(d, a, t);
2872 tcg_temp_free_i64(t);
2875 void tcg_gen_gvec_shlv(unsigned vece, uint32_t dofs, uint32_t aofs,
2876 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2878 static const TCGOpcode vecop_list[] = { INDEX_op_shlv_vec, 0 };
2879 static const GVecGen3 g[4] = {
2880 { .fniv = tcg_gen_shlv_mod_vec,
2881 .fno = gen_helper_gvec_shl8v,
2882 .opt_opc = vecop_list,
2883 .vece = MO_8 },
2884 { .fniv = tcg_gen_shlv_mod_vec,
2885 .fno = gen_helper_gvec_shl16v,
2886 .opt_opc = vecop_list,
2887 .vece = MO_16 },
2888 { .fni4 = tcg_gen_shl_mod_i32,
2889 .fniv = tcg_gen_shlv_mod_vec,
2890 .fno = gen_helper_gvec_shl32v,
2891 .opt_opc = vecop_list,
2892 .vece = MO_32 },
2893 { .fni8 = tcg_gen_shl_mod_i64,
2894 .fniv = tcg_gen_shlv_mod_vec,
2895 .fno = gen_helper_gvec_shl64v,
2896 .opt_opc = vecop_list,
2897 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2898 .vece = MO_64 },
2901 tcg_debug_assert(vece <= MO_64);
2902 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2906 * Similarly for logical right shifts.
2909 static void tcg_gen_shrv_mod_vec(unsigned vece, TCGv_vec d,
2910 TCGv_vec a, TCGv_vec b)
2912 TCGv_vec t = tcg_temp_new_vec_matching(d);
2914 tcg_gen_dupi_vec(vece, t, (8 << vece) - 1);
2915 tcg_gen_and_vec(vece, t, t, b);
2916 tcg_gen_shrv_vec(vece, d, a, t);
2917 tcg_temp_free_vec(t);
2920 static void tcg_gen_shr_mod_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
2922 TCGv_i32 t = tcg_temp_new_i32();
2924 tcg_gen_andi_i32(t, b, 31);
2925 tcg_gen_shr_i32(d, a, t);
2926 tcg_temp_free_i32(t);
2929 static void tcg_gen_shr_mod_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
2931 TCGv_i64 t = tcg_temp_new_i64();
2933 tcg_gen_andi_i64(t, b, 63);
2934 tcg_gen_shr_i64(d, a, t);
2935 tcg_temp_free_i64(t);
2938 void tcg_gen_gvec_shrv(unsigned vece, uint32_t dofs, uint32_t aofs,
2939 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2941 static const TCGOpcode vecop_list[] = { INDEX_op_shrv_vec, 0 };
2942 static const GVecGen3 g[4] = {
2943 { .fniv = tcg_gen_shrv_mod_vec,
2944 .fno = gen_helper_gvec_shr8v,
2945 .opt_opc = vecop_list,
2946 .vece = MO_8 },
2947 { .fniv = tcg_gen_shrv_mod_vec,
2948 .fno = gen_helper_gvec_shr16v,
2949 .opt_opc = vecop_list,
2950 .vece = MO_16 },
2951 { .fni4 = tcg_gen_shr_mod_i32,
2952 .fniv = tcg_gen_shrv_mod_vec,
2953 .fno = gen_helper_gvec_shr32v,
2954 .opt_opc = vecop_list,
2955 .vece = MO_32 },
2956 { .fni8 = tcg_gen_shr_mod_i64,
2957 .fniv = tcg_gen_shrv_mod_vec,
2958 .fno = gen_helper_gvec_shr64v,
2959 .opt_opc = vecop_list,
2960 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2961 .vece = MO_64 },
2964 tcg_debug_assert(vece <= MO_64);
2965 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2969 * Similarly for arithmetic right shifts.
2972 static void tcg_gen_sarv_mod_vec(unsigned vece, TCGv_vec d,
2973 TCGv_vec a, TCGv_vec b)
2975 TCGv_vec t = tcg_temp_new_vec_matching(d);
2977 tcg_gen_dupi_vec(vece, t, (8 << vece) - 1);
2978 tcg_gen_and_vec(vece, t, t, b);
2979 tcg_gen_sarv_vec(vece, d, a, t);
2980 tcg_temp_free_vec(t);
2983 static void tcg_gen_sar_mod_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
2985 TCGv_i32 t = tcg_temp_new_i32();
2987 tcg_gen_andi_i32(t, b, 31);
2988 tcg_gen_sar_i32(d, a, t);
2989 tcg_temp_free_i32(t);
2992 static void tcg_gen_sar_mod_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
2994 TCGv_i64 t = tcg_temp_new_i64();
2996 tcg_gen_andi_i64(t, b, 63);
2997 tcg_gen_sar_i64(d, a, t);
2998 tcg_temp_free_i64(t);
3001 void tcg_gen_gvec_sarv(unsigned vece, uint32_t dofs, uint32_t aofs,
3002 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
3004 static const TCGOpcode vecop_list[] = { INDEX_op_sarv_vec, 0 };
3005 static const GVecGen3 g[4] = {
3006 { .fniv = tcg_gen_sarv_mod_vec,
3007 .fno = gen_helper_gvec_sar8v,
3008 .opt_opc = vecop_list,
3009 .vece = MO_8 },
3010 { .fniv = tcg_gen_sarv_mod_vec,
3011 .fno = gen_helper_gvec_sar16v,
3012 .opt_opc = vecop_list,
3013 .vece = MO_16 },
3014 { .fni4 = tcg_gen_sar_mod_i32,
3015 .fniv = tcg_gen_sarv_mod_vec,
3016 .fno = gen_helper_gvec_sar32v,
3017 .opt_opc = vecop_list,
3018 .vece = MO_32 },
3019 { .fni8 = tcg_gen_sar_mod_i64,
3020 .fniv = tcg_gen_sarv_mod_vec,
3021 .fno = gen_helper_gvec_sar64v,
3022 .opt_opc = vecop_list,
3023 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
3024 .vece = MO_64 },
3027 tcg_debug_assert(vece <= MO_64);
3028 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
3031 /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
3032 static void expand_cmp_i32(uint32_t dofs, uint32_t aofs, uint32_t bofs,
3033 uint32_t oprsz, TCGCond cond)
3035 TCGv_i32 t0 = tcg_temp_new_i32();
3036 TCGv_i32 t1 = tcg_temp_new_i32();
3037 uint32_t i;
3039 for (i = 0; i < oprsz; i += 4) {
3040 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
3041 tcg_gen_ld_i32(t1, cpu_env, bofs + i);
3042 tcg_gen_setcond_i32(cond, t0, t0, t1);
3043 tcg_gen_neg_i32(t0, t0);
3044 tcg_gen_st_i32(t0, cpu_env, dofs + i);
3046 tcg_temp_free_i32(t1);
3047 tcg_temp_free_i32(t0);
3050 static void expand_cmp_i64(uint32_t dofs, uint32_t aofs, uint32_t bofs,
3051 uint32_t oprsz, TCGCond cond)
3053 TCGv_i64 t0 = tcg_temp_new_i64();
3054 TCGv_i64 t1 = tcg_temp_new_i64();
3055 uint32_t i;
3057 for (i = 0; i < oprsz; i += 8) {
3058 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
3059 tcg_gen_ld_i64(t1, cpu_env, bofs + i);
3060 tcg_gen_setcond_i64(cond, t0, t0, t1);
3061 tcg_gen_neg_i64(t0, t0);
3062 tcg_gen_st_i64(t0, cpu_env, dofs + i);
3064 tcg_temp_free_i64(t1);
3065 tcg_temp_free_i64(t0);
3068 static void expand_cmp_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
3069 uint32_t bofs, uint32_t oprsz, uint32_t tysz,
3070 TCGType type, TCGCond cond)
3072 TCGv_vec t0 = tcg_temp_new_vec(type);
3073 TCGv_vec t1 = tcg_temp_new_vec(type);
3074 uint32_t i;
3076 for (i = 0; i < oprsz; i += tysz) {
3077 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
3078 tcg_gen_ld_vec(t1, cpu_env, bofs + i);
3079 tcg_gen_cmp_vec(cond, vece, t0, t0, t1);
3080 tcg_gen_st_vec(t0, cpu_env, dofs + i);
3082 tcg_temp_free_vec(t1);
3083 tcg_temp_free_vec(t0);
3086 void tcg_gen_gvec_cmp(TCGCond cond, unsigned vece, uint32_t dofs,
3087 uint32_t aofs, uint32_t bofs,
3088 uint32_t oprsz, uint32_t maxsz)
3090 static const TCGOpcode cmp_list[] = { INDEX_op_cmp_vec, 0 };
3091 static gen_helper_gvec_3 * const eq_fn[4] = {
3092 gen_helper_gvec_eq8, gen_helper_gvec_eq16,
3093 gen_helper_gvec_eq32, gen_helper_gvec_eq64
3095 static gen_helper_gvec_3 * const ne_fn[4] = {
3096 gen_helper_gvec_ne8, gen_helper_gvec_ne16,
3097 gen_helper_gvec_ne32, gen_helper_gvec_ne64
3099 static gen_helper_gvec_3 * const lt_fn[4] = {
3100 gen_helper_gvec_lt8, gen_helper_gvec_lt16,
3101 gen_helper_gvec_lt32, gen_helper_gvec_lt64
3103 static gen_helper_gvec_3 * const le_fn[4] = {
3104 gen_helper_gvec_le8, gen_helper_gvec_le16,
3105 gen_helper_gvec_le32, gen_helper_gvec_le64
3107 static gen_helper_gvec_3 * const ltu_fn[4] = {
3108 gen_helper_gvec_ltu8, gen_helper_gvec_ltu16,
3109 gen_helper_gvec_ltu32, gen_helper_gvec_ltu64
3111 static gen_helper_gvec_3 * const leu_fn[4] = {
3112 gen_helper_gvec_leu8, gen_helper_gvec_leu16,
3113 gen_helper_gvec_leu32, gen_helper_gvec_leu64
3115 static gen_helper_gvec_3 * const * const fns[16] = {
3116 [TCG_COND_EQ] = eq_fn,
3117 [TCG_COND_NE] = ne_fn,
3118 [TCG_COND_LT] = lt_fn,
3119 [TCG_COND_LE] = le_fn,
3120 [TCG_COND_LTU] = ltu_fn,
3121 [TCG_COND_LEU] = leu_fn,
3124 const TCGOpcode *hold_list;
3125 TCGType type;
3126 uint32_t some;
3128 check_size_align(oprsz, maxsz, dofs | aofs | bofs);
3129 check_overlap_3(dofs, aofs, bofs, maxsz);
3131 if (cond == TCG_COND_NEVER || cond == TCG_COND_ALWAYS) {
3132 do_dup(MO_8, dofs, oprsz, maxsz,
3133 NULL, NULL, -(cond == TCG_COND_ALWAYS));
3134 return;
3138 * Implement inline with a vector type, if possible.
3139 * Prefer integer when 64-bit host and 64-bit comparison.
3141 hold_list = tcg_swap_vecop_list(cmp_list);
3142 type = choose_vector_type(cmp_list, vece, oprsz,
3143 TCG_TARGET_REG_BITS == 64 && vece == MO_64);
3144 switch (type) {
3145 case TCG_TYPE_V256:
3146 /* Recall that ARM SVE allows vector sizes that are not a
3147 * power of 2, but always a multiple of 16. The intent is
3148 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
3150 some = QEMU_ALIGN_DOWN(oprsz, 32);
3151 expand_cmp_vec(vece, dofs, aofs, bofs, some, 32, TCG_TYPE_V256, cond);
3152 if (some == oprsz) {
3153 break;
3155 dofs += some;
3156 aofs += some;
3157 bofs += some;
3158 oprsz -= some;
3159 maxsz -= some;
3160 /* fallthru */
3161 case TCG_TYPE_V128:
3162 expand_cmp_vec(vece, dofs, aofs, bofs, oprsz, 16, TCG_TYPE_V128, cond);
3163 break;
3164 case TCG_TYPE_V64:
3165 expand_cmp_vec(vece, dofs, aofs, bofs, oprsz, 8, TCG_TYPE_V64, cond);
3166 break;
3168 case 0:
3169 if (vece == MO_64 && check_size_impl(oprsz, 8)) {
3170 expand_cmp_i64(dofs, aofs, bofs, oprsz, cond);
3171 } else if (vece == MO_32 && check_size_impl(oprsz, 4)) {
3172 expand_cmp_i32(dofs, aofs, bofs, oprsz, cond);
3173 } else {
3174 gen_helper_gvec_3 * const *fn = fns[cond];
3176 if (fn == NULL) {
3177 uint32_t tmp;
3178 tmp = aofs, aofs = bofs, bofs = tmp;
3179 cond = tcg_swap_cond(cond);
3180 fn = fns[cond];
3181 assert(fn != NULL);
3183 tcg_gen_gvec_3_ool(dofs, aofs, bofs, oprsz, maxsz, 0, fn[vece]);
3184 oprsz = maxsz;
3186 break;
3188 default:
3189 g_assert_not_reached();
3191 tcg_swap_vecop_list(hold_list);
3193 if (oprsz < maxsz) {
3194 expand_clr(dofs + oprsz, maxsz - oprsz);
3198 static void tcg_gen_bitsel_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b, TCGv_i64 c)
3200 TCGv_i64 t = tcg_temp_new_i64();
3202 tcg_gen_and_i64(t, b, a);
3203 tcg_gen_andc_i64(d, c, a);
3204 tcg_gen_or_i64(d, d, t);
3205 tcg_temp_free_i64(t);
3208 void tcg_gen_gvec_bitsel(unsigned vece, uint32_t dofs, uint32_t aofs,
3209 uint32_t bofs, uint32_t cofs,
3210 uint32_t oprsz, uint32_t maxsz)
3212 static const GVecGen4 g = {
3213 .fni8 = tcg_gen_bitsel_i64,
3214 .fniv = tcg_gen_bitsel_vec,
3215 .fno = gen_helper_gvec_bitsel,
3218 tcg_gen_gvec_4(dofs, aofs, bofs, cofs, oprsz, maxsz, &g);