xilinx_spips: Make interrupts clear on read
[qemu/ar7.git] / kvm-all.c
blob8e7bbf8698f6bcaa5ae945ef86e7b51effde06fe
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu/atomic.h"
25 #include "qemu/option.h"
26 #include "qemu/config-file.h"
27 #include "sysemu/sysemu.h"
28 #include "hw/hw.h"
29 #include "hw/pci/msi.h"
30 #include "exec/gdbstub.h"
31 #include "sysemu/kvm.h"
32 #include "qemu/bswap.h"
33 #include "exec/memory.h"
34 #include "exec/address-spaces.h"
35 #include "qemu/event_notifier.h"
36 #include "trace.h"
38 /* This check must be after config-host.h is included */
39 #ifdef CONFIG_EVENTFD
40 #include <sys/eventfd.h>
41 #endif
43 #ifdef CONFIG_VALGRIND_H
44 #include <valgrind/memcheck.h>
45 #endif
47 /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
48 #define PAGE_SIZE TARGET_PAGE_SIZE
50 //#define DEBUG_KVM
52 #ifdef DEBUG_KVM
53 #define DPRINTF(fmt, ...) \
54 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
55 #else
56 #define DPRINTF(fmt, ...) \
57 do { } while (0)
58 #endif
60 #define KVM_MSI_HASHTAB_SIZE 256
62 typedef struct KVMSlot
64 hwaddr start_addr;
65 ram_addr_t memory_size;
66 void *ram;
67 int slot;
68 int flags;
69 } KVMSlot;
71 typedef struct kvm_dirty_log KVMDirtyLog;
73 struct KVMState
75 KVMSlot slots[32];
76 int fd;
77 int vmfd;
78 int coalesced_mmio;
79 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
80 bool coalesced_flush_in_progress;
81 int broken_set_mem_region;
82 int migration_log;
83 int vcpu_events;
84 int robust_singlestep;
85 int debugregs;
86 #ifdef KVM_CAP_SET_GUEST_DEBUG
87 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
88 #endif
89 int pit_state2;
90 int xsave, xcrs;
91 int many_ioeventfds;
92 int intx_set_mask;
93 /* The man page (and posix) say ioctl numbers are signed int, but
94 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
95 * unsigned, and treating them as signed here can break things */
96 unsigned irq_set_ioctl;
97 #ifdef KVM_CAP_IRQ_ROUTING
98 struct kvm_irq_routing *irq_routes;
99 int nr_allocated_irq_routes;
100 uint32_t *used_gsi_bitmap;
101 unsigned int gsi_count;
102 QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
103 bool direct_msi;
104 #endif
107 KVMState *kvm_state;
108 bool kvm_kernel_irqchip;
109 bool kvm_async_interrupts_allowed;
110 bool kvm_irqfds_allowed;
111 bool kvm_msi_via_irqfd_allowed;
112 bool kvm_gsi_routing_allowed;
113 bool kvm_allowed;
114 bool kvm_readonly_mem_allowed;
116 static const KVMCapabilityInfo kvm_required_capabilites[] = {
117 KVM_CAP_INFO(USER_MEMORY),
118 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
119 KVM_CAP_LAST_INFO
122 static KVMSlot *kvm_alloc_slot(KVMState *s)
124 int i;
126 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
127 if (s->slots[i].memory_size == 0) {
128 return &s->slots[i];
132 fprintf(stderr, "%s: no free slot available\n", __func__);
133 abort();
136 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
137 hwaddr start_addr,
138 hwaddr end_addr)
140 int i;
142 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
143 KVMSlot *mem = &s->slots[i];
145 if (start_addr == mem->start_addr &&
146 end_addr == mem->start_addr + mem->memory_size) {
147 return mem;
151 return NULL;
155 * Find overlapping slot with lowest start address
157 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
158 hwaddr start_addr,
159 hwaddr end_addr)
161 KVMSlot *found = NULL;
162 int i;
164 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
165 KVMSlot *mem = &s->slots[i];
167 if (mem->memory_size == 0 ||
168 (found && found->start_addr < mem->start_addr)) {
169 continue;
172 if (end_addr > mem->start_addr &&
173 start_addr < mem->start_addr + mem->memory_size) {
174 found = mem;
178 return found;
181 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
182 hwaddr *phys_addr)
184 int i;
186 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
187 KVMSlot *mem = &s->slots[i];
189 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
190 *phys_addr = mem->start_addr + (ram - mem->ram);
191 return 1;
195 return 0;
198 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
200 struct kvm_userspace_memory_region mem;
202 mem.slot = slot->slot;
203 mem.guest_phys_addr = slot->start_addr;
204 mem.userspace_addr = (unsigned long)slot->ram;
205 mem.flags = slot->flags;
206 if (s->migration_log) {
207 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
209 if (mem.flags & KVM_MEM_READONLY) {
210 /* Set the slot size to 0 before setting the slot to the desired
211 * value. This is needed based on KVM commit 75d61fbc. */
212 mem.memory_size = 0;
213 kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
215 mem.memory_size = slot->memory_size;
216 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
219 static void kvm_reset_vcpu(void *opaque)
221 CPUState *cpu = opaque;
223 kvm_arch_reset_vcpu(cpu);
226 int kvm_init_vcpu(CPUState *cpu)
228 KVMState *s = kvm_state;
229 long mmap_size;
230 int ret;
232 DPRINTF("kvm_init_vcpu\n");
234 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)kvm_arch_vcpu_id(cpu));
235 if (ret < 0) {
236 DPRINTF("kvm_create_vcpu failed\n");
237 goto err;
240 cpu->kvm_fd = ret;
241 cpu->kvm_state = s;
242 cpu->kvm_vcpu_dirty = true;
244 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
245 if (mmap_size < 0) {
246 ret = mmap_size;
247 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
248 goto err;
251 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
252 cpu->kvm_fd, 0);
253 if (cpu->kvm_run == MAP_FAILED) {
254 ret = -errno;
255 DPRINTF("mmap'ing vcpu state failed\n");
256 goto err;
259 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
260 s->coalesced_mmio_ring =
261 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
264 ret = kvm_arch_init_vcpu(cpu);
265 if (ret == 0) {
266 qemu_register_reset(kvm_reset_vcpu, cpu);
267 kvm_arch_reset_vcpu(cpu);
269 err:
270 return ret;
274 * dirty pages logging control
277 static int kvm_mem_flags(KVMState *s, bool log_dirty, bool readonly)
279 int flags = 0;
280 flags = log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
281 if (readonly && kvm_readonly_mem_allowed) {
282 flags |= KVM_MEM_READONLY;
284 return flags;
287 static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
289 KVMState *s = kvm_state;
290 int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
291 int old_flags;
293 old_flags = mem->flags;
295 flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty, false);
296 mem->flags = flags;
298 /* If nothing changed effectively, no need to issue ioctl */
299 if (s->migration_log) {
300 flags |= KVM_MEM_LOG_DIRTY_PAGES;
303 if (flags == old_flags) {
304 return 0;
307 return kvm_set_user_memory_region(s, mem);
310 static int kvm_dirty_pages_log_change(hwaddr phys_addr,
311 ram_addr_t size, bool log_dirty)
313 KVMState *s = kvm_state;
314 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
316 if (mem == NULL) {
317 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
318 TARGET_FMT_plx "\n", __func__, phys_addr,
319 (hwaddr)(phys_addr + size - 1));
320 return -EINVAL;
322 return kvm_slot_dirty_pages_log_change(mem, log_dirty);
325 static void kvm_log_start(MemoryListener *listener,
326 MemoryRegionSection *section)
328 int r;
330 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
331 section->size, true);
332 if (r < 0) {
333 abort();
337 static void kvm_log_stop(MemoryListener *listener,
338 MemoryRegionSection *section)
340 int r;
342 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
343 section->size, false);
344 if (r < 0) {
345 abort();
349 static int kvm_set_migration_log(int enable)
351 KVMState *s = kvm_state;
352 KVMSlot *mem;
353 int i, err;
355 s->migration_log = enable;
357 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
358 mem = &s->slots[i];
360 if (!mem->memory_size) {
361 continue;
363 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
364 continue;
366 err = kvm_set_user_memory_region(s, mem);
367 if (err) {
368 return err;
371 return 0;
374 /* get kvm's dirty pages bitmap and update qemu's */
375 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
376 unsigned long *bitmap)
378 unsigned int i, j;
379 unsigned long page_number, c;
380 hwaddr addr, addr1;
381 unsigned int len = ((section->size / getpagesize()) + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
382 unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE;
385 * bitmap-traveling is faster than memory-traveling (for addr...)
386 * especially when most of the memory is not dirty.
388 for (i = 0; i < len; i++) {
389 if (bitmap[i] != 0) {
390 c = leul_to_cpu(bitmap[i]);
391 do {
392 j = ffsl(c) - 1;
393 c &= ~(1ul << j);
394 page_number = (i * HOST_LONG_BITS + j) * hpratio;
395 addr1 = page_number * TARGET_PAGE_SIZE;
396 addr = section->offset_within_region + addr1;
397 memory_region_set_dirty(section->mr, addr,
398 TARGET_PAGE_SIZE * hpratio);
399 } while (c != 0);
402 return 0;
405 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
408 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
409 * This function updates qemu's dirty bitmap using
410 * memory_region_set_dirty(). This means all bits are set
411 * to dirty.
413 * @start_add: start of logged region.
414 * @end_addr: end of logged region.
416 static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
418 KVMState *s = kvm_state;
419 unsigned long size, allocated_size = 0;
420 KVMDirtyLog d;
421 KVMSlot *mem;
422 int ret = 0;
423 hwaddr start_addr = section->offset_within_address_space;
424 hwaddr end_addr = start_addr + section->size;
426 d.dirty_bitmap = NULL;
427 while (start_addr < end_addr) {
428 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
429 if (mem == NULL) {
430 break;
433 /* XXX bad kernel interface alert
434 * For dirty bitmap, kernel allocates array of size aligned to
435 * bits-per-long. But for case when the kernel is 64bits and
436 * the userspace is 32bits, userspace can't align to the same
437 * bits-per-long, since sizeof(long) is different between kernel
438 * and user space. This way, userspace will provide buffer which
439 * may be 4 bytes less than the kernel will use, resulting in
440 * userspace memory corruption (which is not detectable by valgrind
441 * too, in most cases).
442 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
443 * a hope that sizeof(long) wont become >8 any time soon.
445 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
446 /*HOST_LONG_BITS*/ 64) / 8;
447 if (!d.dirty_bitmap) {
448 d.dirty_bitmap = g_malloc(size);
449 } else if (size > allocated_size) {
450 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
452 allocated_size = size;
453 memset(d.dirty_bitmap, 0, allocated_size);
455 d.slot = mem->slot;
457 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
458 DPRINTF("ioctl failed %d\n", errno);
459 ret = -1;
460 break;
463 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
464 start_addr = mem->start_addr + mem->memory_size;
466 g_free(d.dirty_bitmap);
468 return ret;
471 static void kvm_coalesce_mmio_region(MemoryListener *listener,
472 MemoryRegionSection *secion,
473 hwaddr start, hwaddr size)
475 KVMState *s = kvm_state;
477 if (s->coalesced_mmio) {
478 struct kvm_coalesced_mmio_zone zone;
480 zone.addr = start;
481 zone.size = size;
482 zone.pad = 0;
484 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
488 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
489 MemoryRegionSection *secion,
490 hwaddr start, hwaddr size)
492 KVMState *s = kvm_state;
494 if (s->coalesced_mmio) {
495 struct kvm_coalesced_mmio_zone zone;
497 zone.addr = start;
498 zone.size = size;
499 zone.pad = 0;
501 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
505 int kvm_check_extension(KVMState *s, unsigned int extension)
507 int ret;
509 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
510 if (ret < 0) {
511 ret = 0;
514 return ret;
517 static int kvm_set_ioeventfd_mmio(int fd, uint32_t addr, uint32_t val,
518 bool assign, uint32_t size, bool datamatch)
520 int ret;
521 struct kvm_ioeventfd iofd;
523 iofd.datamatch = datamatch ? val : 0;
524 iofd.addr = addr;
525 iofd.len = size;
526 iofd.flags = 0;
527 iofd.fd = fd;
529 if (!kvm_enabled()) {
530 return -ENOSYS;
533 if (datamatch) {
534 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
536 if (!assign) {
537 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
540 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
542 if (ret < 0) {
543 return -errno;
546 return 0;
549 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
550 bool assign, uint32_t size, bool datamatch)
552 struct kvm_ioeventfd kick = {
553 .datamatch = datamatch ? val : 0,
554 .addr = addr,
555 .flags = KVM_IOEVENTFD_FLAG_PIO,
556 .len = size,
557 .fd = fd,
559 int r;
560 if (!kvm_enabled()) {
561 return -ENOSYS;
563 if (datamatch) {
564 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
566 if (!assign) {
567 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
569 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
570 if (r < 0) {
571 return r;
573 return 0;
577 static int kvm_check_many_ioeventfds(void)
579 /* Userspace can use ioeventfd for io notification. This requires a host
580 * that supports eventfd(2) and an I/O thread; since eventfd does not
581 * support SIGIO it cannot interrupt the vcpu.
583 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
584 * can avoid creating too many ioeventfds.
586 #if defined(CONFIG_EVENTFD)
587 int ioeventfds[7];
588 int i, ret = 0;
589 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
590 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
591 if (ioeventfds[i] < 0) {
592 break;
594 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
595 if (ret < 0) {
596 close(ioeventfds[i]);
597 break;
601 /* Decide whether many devices are supported or not */
602 ret = i == ARRAY_SIZE(ioeventfds);
604 while (i-- > 0) {
605 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
606 close(ioeventfds[i]);
608 return ret;
609 #else
610 return 0;
611 #endif
614 static const KVMCapabilityInfo *
615 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
617 while (list->name) {
618 if (!kvm_check_extension(s, list->value)) {
619 return list;
621 list++;
623 return NULL;
626 static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
628 KVMState *s = kvm_state;
629 KVMSlot *mem, old;
630 int err;
631 MemoryRegion *mr = section->mr;
632 bool log_dirty = memory_region_is_logging(mr);
633 bool writeable = !mr->readonly && !mr->rom_device;
634 bool readonly_flag = mr->readonly || memory_region_is_romd(mr);
635 hwaddr start_addr = section->offset_within_address_space;
636 ram_addr_t size = section->size;
637 void *ram = NULL;
638 unsigned delta;
640 /* kvm works in page size chunks, but the function may be called
641 with sub-page size and unaligned start address. */
642 delta = TARGET_PAGE_ALIGN(size) - size;
643 if (delta > size) {
644 return;
646 start_addr += delta;
647 size -= delta;
648 size &= TARGET_PAGE_MASK;
649 if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
650 return;
653 if (!memory_region_is_ram(mr)) {
654 if (writeable || !kvm_readonly_mem_allowed) {
655 return;
656 } else if (!mr->romd_mode) {
657 /* If the memory device is not in romd_mode, then we actually want
658 * to remove the kvm memory slot so all accesses will trap. */
659 add = false;
663 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
665 while (1) {
666 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
667 if (!mem) {
668 break;
671 if (add && start_addr >= mem->start_addr &&
672 (start_addr + size <= mem->start_addr + mem->memory_size) &&
673 (ram - start_addr == mem->ram - mem->start_addr)) {
674 /* The new slot fits into the existing one and comes with
675 * identical parameters - update flags and done. */
676 kvm_slot_dirty_pages_log_change(mem, log_dirty);
677 return;
680 old = *mem;
682 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
683 kvm_physical_sync_dirty_bitmap(section);
686 /* unregister the overlapping slot */
687 mem->memory_size = 0;
688 err = kvm_set_user_memory_region(s, mem);
689 if (err) {
690 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
691 __func__, strerror(-err));
692 abort();
695 /* Workaround for older KVM versions: we can't join slots, even not by
696 * unregistering the previous ones and then registering the larger
697 * slot. We have to maintain the existing fragmentation. Sigh.
699 * This workaround assumes that the new slot starts at the same
700 * address as the first existing one. If not or if some overlapping
701 * slot comes around later, we will fail (not seen in practice so far)
702 * - and actually require a recent KVM version. */
703 if (s->broken_set_mem_region &&
704 old.start_addr == start_addr && old.memory_size < size && add) {
705 mem = kvm_alloc_slot(s);
706 mem->memory_size = old.memory_size;
707 mem->start_addr = old.start_addr;
708 mem->ram = old.ram;
709 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
711 err = kvm_set_user_memory_region(s, mem);
712 if (err) {
713 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
714 strerror(-err));
715 abort();
718 start_addr += old.memory_size;
719 ram += old.memory_size;
720 size -= old.memory_size;
721 continue;
724 /* register prefix slot */
725 if (old.start_addr < start_addr) {
726 mem = kvm_alloc_slot(s);
727 mem->memory_size = start_addr - old.start_addr;
728 mem->start_addr = old.start_addr;
729 mem->ram = old.ram;
730 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
732 err = kvm_set_user_memory_region(s, mem);
733 if (err) {
734 fprintf(stderr, "%s: error registering prefix slot: %s\n",
735 __func__, strerror(-err));
736 #ifdef TARGET_PPC
737 fprintf(stderr, "%s: This is probably because your kernel's " \
738 "PAGE_SIZE is too big. Please try to use 4k " \
739 "PAGE_SIZE!\n", __func__);
740 #endif
741 abort();
745 /* register suffix slot */
746 if (old.start_addr + old.memory_size > start_addr + size) {
747 ram_addr_t size_delta;
749 mem = kvm_alloc_slot(s);
750 mem->start_addr = start_addr + size;
751 size_delta = mem->start_addr - old.start_addr;
752 mem->memory_size = old.memory_size - size_delta;
753 mem->ram = old.ram + size_delta;
754 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
756 err = kvm_set_user_memory_region(s, mem);
757 if (err) {
758 fprintf(stderr, "%s: error registering suffix slot: %s\n",
759 __func__, strerror(-err));
760 abort();
765 /* in case the KVM bug workaround already "consumed" the new slot */
766 if (!size) {
767 return;
769 if (!add) {
770 return;
772 mem = kvm_alloc_slot(s);
773 mem->memory_size = size;
774 mem->start_addr = start_addr;
775 mem->ram = ram;
776 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
778 err = kvm_set_user_memory_region(s, mem);
779 if (err) {
780 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
781 strerror(-err));
782 abort();
786 static void kvm_region_add(MemoryListener *listener,
787 MemoryRegionSection *section)
789 kvm_set_phys_mem(section, true);
792 static void kvm_region_del(MemoryListener *listener,
793 MemoryRegionSection *section)
795 kvm_set_phys_mem(section, false);
798 static void kvm_log_sync(MemoryListener *listener,
799 MemoryRegionSection *section)
801 int r;
803 r = kvm_physical_sync_dirty_bitmap(section);
804 if (r < 0) {
805 abort();
809 static void kvm_log_global_start(struct MemoryListener *listener)
811 int r;
813 r = kvm_set_migration_log(1);
814 assert(r >= 0);
817 static void kvm_log_global_stop(struct MemoryListener *listener)
819 int r;
821 r = kvm_set_migration_log(0);
822 assert(r >= 0);
825 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
826 MemoryRegionSection *section,
827 bool match_data, uint64_t data,
828 EventNotifier *e)
830 int fd = event_notifier_get_fd(e);
831 int r;
833 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
834 data, true, section->size, match_data);
835 if (r < 0) {
836 abort();
840 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
841 MemoryRegionSection *section,
842 bool match_data, uint64_t data,
843 EventNotifier *e)
845 int fd = event_notifier_get_fd(e);
846 int r;
848 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
849 data, false, section->size, match_data);
850 if (r < 0) {
851 abort();
855 static void kvm_io_ioeventfd_add(MemoryListener *listener,
856 MemoryRegionSection *section,
857 bool match_data, uint64_t data,
858 EventNotifier *e)
860 int fd = event_notifier_get_fd(e);
861 int r;
863 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
864 data, true, section->size, match_data);
865 if (r < 0) {
866 abort();
870 static void kvm_io_ioeventfd_del(MemoryListener *listener,
871 MemoryRegionSection *section,
872 bool match_data, uint64_t data,
873 EventNotifier *e)
876 int fd = event_notifier_get_fd(e);
877 int r;
879 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
880 data, false, section->size, match_data);
881 if (r < 0) {
882 abort();
886 static MemoryListener kvm_memory_listener = {
887 .region_add = kvm_region_add,
888 .region_del = kvm_region_del,
889 .log_start = kvm_log_start,
890 .log_stop = kvm_log_stop,
891 .log_sync = kvm_log_sync,
892 .log_global_start = kvm_log_global_start,
893 .log_global_stop = kvm_log_global_stop,
894 .eventfd_add = kvm_mem_ioeventfd_add,
895 .eventfd_del = kvm_mem_ioeventfd_del,
896 .coalesced_mmio_add = kvm_coalesce_mmio_region,
897 .coalesced_mmio_del = kvm_uncoalesce_mmio_region,
898 .priority = 10,
901 static MemoryListener kvm_io_listener = {
902 .eventfd_add = kvm_io_ioeventfd_add,
903 .eventfd_del = kvm_io_ioeventfd_del,
904 .priority = 10,
907 static void kvm_handle_interrupt(CPUState *cpu, int mask)
909 cpu->interrupt_request |= mask;
911 if (!qemu_cpu_is_self(cpu)) {
912 qemu_cpu_kick(cpu);
916 int kvm_set_irq(KVMState *s, int irq, int level)
918 struct kvm_irq_level event;
919 int ret;
921 assert(kvm_async_interrupts_enabled());
923 event.level = level;
924 event.irq = irq;
925 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
926 if (ret < 0) {
927 perror("kvm_set_irq");
928 abort();
931 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
934 #ifdef KVM_CAP_IRQ_ROUTING
935 typedef struct KVMMSIRoute {
936 struct kvm_irq_routing_entry kroute;
937 QTAILQ_ENTRY(KVMMSIRoute) entry;
938 } KVMMSIRoute;
940 static void set_gsi(KVMState *s, unsigned int gsi)
942 s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
945 static void clear_gsi(KVMState *s, unsigned int gsi)
947 s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32));
950 static void kvm_init_irq_routing(KVMState *s)
952 int gsi_count, i;
954 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING);
955 if (gsi_count > 0) {
956 unsigned int gsi_bits, i;
958 /* Round up so we can search ints using ffs */
959 gsi_bits = ALIGN(gsi_count, 32);
960 s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
961 s->gsi_count = gsi_count;
963 /* Mark any over-allocated bits as already in use */
964 for (i = gsi_count; i < gsi_bits; i++) {
965 set_gsi(s, i);
969 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
970 s->nr_allocated_irq_routes = 0;
972 if (!s->direct_msi) {
973 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
974 QTAILQ_INIT(&s->msi_hashtab[i]);
978 kvm_arch_init_irq_routing(s);
981 static void kvm_irqchip_commit_routes(KVMState *s)
983 int ret;
985 s->irq_routes->flags = 0;
986 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
987 assert(ret == 0);
990 static void kvm_add_routing_entry(KVMState *s,
991 struct kvm_irq_routing_entry *entry)
993 struct kvm_irq_routing_entry *new;
994 int n, size;
996 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
997 n = s->nr_allocated_irq_routes * 2;
998 if (n < 64) {
999 n = 64;
1001 size = sizeof(struct kvm_irq_routing);
1002 size += n * sizeof(*new);
1003 s->irq_routes = g_realloc(s->irq_routes, size);
1004 s->nr_allocated_irq_routes = n;
1006 n = s->irq_routes->nr++;
1007 new = &s->irq_routes->entries[n];
1008 memset(new, 0, sizeof(*new));
1009 new->gsi = entry->gsi;
1010 new->type = entry->type;
1011 new->flags = entry->flags;
1012 new->u = entry->u;
1014 set_gsi(s, entry->gsi);
1016 kvm_irqchip_commit_routes(s);
1019 static int kvm_update_routing_entry(KVMState *s,
1020 struct kvm_irq_routing_entry *new_entry)
1022 struct kvm_irq_routing_entry *entry;
1023 int n;
1025 for (n = 0; n < s->irq_routes->nr; n++) {
1026 entry = &s->irq_routes->entries[n];
1027 if (entry->gsi != new_entry->gsi) {
1028 continue;
1031 entry->type = new_entry->type;
1032 entry->flags = new_entry->flags;
1033 entry->u = new_entry->u;
1035 kvm_irqchip_commit_routes(s);
1037 return 0;
1040 return -ESRCH;
1043 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1045 struct kvm_irq_routing_entry e;
1047 assert(pin < s->gsi_count);
1049 e.gsi = irq;
1050 e.type = KVM_IRQ_ROUTING_IRQCHIP;
1051 e.flags = 0;
1052 e.u.irqchip.irqchip = irqchip;
1053 e.u.irqchip.pin = pin;
1054 kvm_add_routing_entry(s, &e);
1057 void kvm_irqchip_release_virq(KVMState *s, int virq)
1059 struct kvm_irq_routing_entry *e;
1060 int i;
1062 for (i = 0; i < s->irq_routes->nr; i++) {
1063 e = &s->irq_routes->entries[i];
1064 if (e->gsi == virq) {
1065 s->irq_routes->nr--;
1066 *e = s->irq_routes->entries[s->irq_routes->nr];
1069 clear_gsi(s, virq);
1072 static unsigned int kvm_hash_msi(uint32_t data)
1074 /* This is optimized for IA32 MSI layout. However, no other arch shall
1075 * repeat the mistake of not providing a direct MSI injection API. */
1076 return data & 0xff;
1079 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1081 KVMMSIRoute *route, *next;
1082 unsigned int hash;
1084 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1085 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1086 kvm_irqchip_release_virq(s, route->kroute.gsi);
1087 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1088 g_free(route);
1093 static int kvm_irqchip_get_virq(KVMState *s)
1095 uint32_t *word = s->used_gsi_bitmap;
1096 int max_words = ALIGN(s->gsi_count, 32) / 32;
1097 int i, bit;
1098 bool retry = true;
1100 again:
1101 /* Return the lowest unused GSI in the bitmap */
1102 for (i = 0; i < max_words; i++) {
1103 bit = ffs(~word[i]);
1104 if (!bit) {
1105 continue;
1108 return bit - 1 + i * 32;
1110 if (!s->direct_msi && retry) {
1111 retry = false;
1112 kvm_flush_dynamic_msi_routes(s);
1113 goto again;
1115 return -ENOSPC;
1119 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1121 unsigned int hash = kvm_hash_msi(msg.data);
1122 KVMMSIRoute *route;
1124 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1125 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1126 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1127 route->kroute.u.msi.data == msg.data) {
1128 return route;
1131 return NULL;
1134 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1136 struct kvm_msi msi;
1137 KVMMSIRoute *route;
1139 if (s->direct_msi) {
1140 msi.address_lo = (uint32_t)msg.address;
1141 msi.address_hi = msg.address >> 32;
1142 msi.data = msg.data;
1143 msi.flags = 0;
1144 memset(msi.pad, 0, sizeof(msi.pad));
1146 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1149 route = kvm_lookup_msi_route(s, msg);
1150 if (!route) {
1151 int virq;
1153 virq = kvm_irqchip_get_virq(s);
1154 if (virq < 0) {
1155 return virq;
1158 route = g_malloc(sizeof(KVMMSIRoute));
1159 route->kroute.gsi = virq;
1160 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1161 route->kroute.flags = 0;
1162 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1163 route->kroute.u.msi.address_hi = msg.address >> 32;
1164 route->kroute.u.msi.data = msg.data;
1166 kvm_add_routing_entry(s, &route->kroute);
1168 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1169 entry);
1172 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1174 return kvm_set_irq(s, route->kroute.gsi, 1);
1177 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1179 struct kvm_irq_routing_entry kroute;
1180 int virq;
1182 if (!kvm_gsi_routing_enabled()) {
1183 return -ENOSYS;
1186 virq = kvm_irqchip_get_virq(s);
1187 if (virq < 0) {
1188 return virq;
1191 kroute.gsi = virq;
1192 kroute.type = KVM_IRQ_ROUTING_MSI;
1193 kroute.flags = 0;
1194 kroute.u.msi.address_lo = (uint32_t)msg.address;
1195 kroute.u.msi.address_hi = msg.address >> 32;
1196 kroute.u.msi.data = msg.data;
1198 kvm_add_routing_entry(s, &kroute);
1200 return virq;
1203 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1205 struct kvm_irq_routing_entry kroute;
1207 if (!kvm_irqchip_in_kernel()) {
1208 return -ENOSYS;
1211 kroute.gsi = virq;
1212 kroute.type = KVM_IRQ_ROUTING_MSI;
1213 kroute.flags = 0;
1214 kroute.u.msi.address_lo = (uint32_t)msg.address;
1215 kroute.u.msi.address_hi = msg.address >> 32;
1216 kroute.u.msi.data = msg.data;
1218 return kvm_update_routing_entry(s, &kroute);
1221 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1223 struct kvm_irqfd irqfd = {
1224 .fd = fd,
1225 .gsi = virq,
1226 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1229 if (!kvm_irqfds_enabled()) {
1230 return -ENOSYS;
1233 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1236 #else /* !KVM_CAP_IRQ_ROUTING */
1238 static void kvm_init_irq_routing(KVMState *s)
1242 void kvm_irqchip_release_virq(KVMState *s, int virq)
1246 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1248 abort();
1251 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1253 return -ENOSYS;
1256 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1258 abort();
1261 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1263 return -ENOSYS;
1265 #endif /* !KVM_CAP_IRQ_ROUTING */
1267 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, int virq)
1269 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), virq, true);
1272 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, int virq)
1274 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), virq, false);
1277 static int kvm_irqchip_create(KVMState *s)
1279 QemuOptsList *list = qemu_find_opts("machine");
1280 int ret;
1282 if (QTAILQ_EMPTY(&list->head) ||
1283 !qemu_opt_get_bool(QTAILQ_FIRST(&list->head),
1284 "kernel_irqchip", true) ||
1285 !kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1286 return 0;
1289 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1290 if (ret < 0) {
1291 fprintf(stderr, "Create kernel irqchip failed\n");
1292 return ret;
1295 kvm_kernel_irqchip = true;
1296 /* If we have an in-kernel IRQ chip then we must have asynchronous
1297 * interrupt delivery (though the reverse is not necessarily true)
1299 kvm_async_interrupts_allowed = true;
1301 kvm_init_irq_routing(s);
1303 return 0;
1306 static int kvm_max_vcpus(KVMState *s)
1308 int ret;
1310 /* Find number of supported CPUs using the recommended
1311 * procedure from the kernel API documentation to cope with
1312 * older kernels that may be missing capabilities.
1314 ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1315 if (ret) {
1316 return ret;
1318 ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS);
1319 if (ret) {
1320 return ret;
1323 return 4;
1326 int kvm_init(void)
1328 static const char upgrade_note[] =
1329 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1330 "(see http://sourceforge.net/projects/kvm).\n";
1331 KVMState *s;
1332 const KVMCapabilityInfo *missing_cap;
1333 int ret;
1334 int i;
1335 int max_vcpus;
1337 s = g_malloc0(sizeof(KVMState));
1340 * On systems where the kernel can support different base page
1341 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1342 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1343 * page size for the system though.
1345 assert(TARGET_PAGE_SIZE <= getpagesize());
1347 #ifdef KVM_CAP_SET_GUEST_DEBUG
1348 QTAILQ_INIT(&s->kvm_sw_breakpoints);
1349 #endif
1350 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
1351 s->slots[i].slot = i;
1353 s->vmfd = -1;
1354 s->fd = qemu_open("/dev/kvm", O_RDWR);
1355 if (s->fd == -1) {
1356 fprintf(stderr, "Could not access KVM kernel module: %m\n");
1357 ret = -errno;
1358 goto err;
1361 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1362 if (ret < KVM_API_VERSION) {
1363 if (ret > 0) {
1364 ret = -EINVAL;
1366 fprintf(stderr, "kvm version too old\n");
1367 goto err;
1370 if (ret > KVM_API_VERSION) {
1371 ret = -EINVAL;
1372 fprintf(stderr, "kvm version not supported\n");
1373 goto err;
1376 max_vcpus = kvm_max_vcpus(s);
1377 if (smp_cpus > max_vcpus) {
1378 ret = -EINVAL;
1379 fprintf(stderr, "Number of SMP cpus requested (%d) exceeds max cpus "
1380 "supported by KVM (%d)\n", smp_cpus, max_vcpus);
1381 goto err;
1384 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
1385 if (s->vmfd < 0) {
1386 #ifdef TARGET_S390X
1387 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
1388 "your host kernel command line\n");
1389 #endif
1390 ret = s->vmfd;
1391 goto err;
1394 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1395 if (!missing_cap) {
1396 missing_cap =
1397 kvm_check_extension_list(s, kvm_arch_required_capabilities);
1399 if (missing_cap) {
1400 ret = -EINVAL;
1401 fprintf(stderr, "kvm does not support %s\n%s",
1402 missing_cap->name, upgrade_note);
1403 goto err;
1406 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1408 s->broken_set_mem_region = 1;
1409 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
1410 if (ret > 0) {
1411 s->broken_set_mem_region = 0;
1414 #ifdef KVM_CAP_VCPU_EVENTS
1415 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1416 #endif
1418 s->robust_singlestep =
1419 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1421 #ifdef KVM_CAP_DEBUGREGS
1422 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1423 #endif
1425 #ifdef KVM_CAP_XSAVE
1426 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1427 #endif
1429 #ifdef KVM_CAP_XCRS
1430 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1431 #endif
1433 #ifdef KVM_CAP_PIT_STATE2
1434 s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1435 #endif
1437 #ifdef KVM_CAP_IRQ_ROUTING
1438 s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1439 #endif
1441 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
1443 s->irq_set_ioctl = KVM_IRQ_LINE;
1444 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1445 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
1448 #ifdef KVM_CAP_READONLY_MEM
1449 kvm_readonly_mem_allowed =
1450 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
1451 #endif
1453 ret = kvm_arch_init(s);
1454 if (ret < 0) {
1455 goto err;
1458 ret = kvm_irqchip_create(s);
1459 if (ret < 0) {
1460 goto err;
1463 kvm_state = s;
1464 memory_listener_register(&kvm_memory_listener, &address_space_memory);
1465 memory_listener_register(&kvm_io_listener, &address_space_io);
1467 s->many_ioeventfds = kvm_check_many_ioeventfds();
1469 cpu_interrupt_handler = kvm_handle_interrupt;
1471 return 0;
1473 err:
1474 if (s->vmfd >= 0) {
1475 close(s->vmfd);
1477 if (s->fd != -1) {
1478 close(s->fd);
1480 g_free(s);
1482 return ret;
1485 static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
1486 uint32_t count)
1488 int i;
1489 uint8_t *ptr = data;
1491 for (i = 0; i < count; i++) {
1492 if (direction == KVM_EXIT_IO_IN) {
1493 switch (size) {
1494 case 1:
1495 stb_p(ptr, cpu_inb(port));
1496 break;
1497 case 2:
1498 stw_p(ptr, cpu_inw(port));
1499 break;
1500 case 4:
1501 stl_p(ptr, cpu_inl(port));
1502 break;
1504 } else {
1505 switch (size) {
1506 case 1:
1507 cpu_outb(port, ldub_p(ptr));
1508 break;
1509 case 2:
1510 cpu_outw(port, lduw_p(ptr));
1511 break;
1512 case 4:
1513 cpu_outl(port, ldl_p(ptr));
1514 break;
1518 ptr += size;
1522 static int kvm_handle_internal_error(CPUArchState *env, struct kvm_run *run)
1524 CPUState *cpu = ENV_GET_CPU(env);
1526 fprintf(stderr, "KVM internal error.");
1527 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1528 int i;
1530 fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
1531 for (i = 0; i < run->internal.ndata; ++i) {
1532 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1533 i, (uint64_t)run->internal.data[i]);
1535 } else {
1536 fprintf(stderr, "\n");
1538 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1539 fprintf(stderr, "emulation failure\n");
1540 if (!kvm_arch_stop_on_emulation_error(cpu)) {
1541 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1542 return EXCP_INTERRUPT;
1545 /* FIXME: Should trigger a qmp message to let management know
1546 * something went wrong.
1548 return -1;
1551 void kvm_flush_coalesced_mmio_buffer(void)
1553 KVMState *s = kvm_state;
1555 if (s->coalesced_flush_in_progress) {
1556 return;
1559 s->coalesced_flush_in_progress = true;
1561 if (s->coalesced_mmio_ring) {
1562 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1563 while (ring->first != ring->last) {
1564 struct kvm_coalesced_mmio *ent;
1566 ent = &ring->coalesced_mmio[ring->first];
1568 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1569 smp_wmb();
1570 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1574 s->coalesced_flush_in_progress = false;
1577 static void do_kvm_cpu_synchronize_state(void *arg)
1579 CPUState *cpu = arg;
1581 if (!cpu->kvm_vcpu_dirty) {
1582 kvm_arch_get_registers(cpu);
1583 cpu->kvm_vcpu_dirty = true;
1587 void kvm_cpu_synchronize_state(CPUArchState *env)
1589 CPUState *cpu = ENV_GET_CPU(env);
1591 if (!cpu->kvm_vcpu_dirty) {
1592 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, cpu);
1596 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
1598 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
1599 cpu->kvm_vcpu_dirty = false;
1602 void kvm_cpu_synchronize_post_init(CPUState *cpu)
1604 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
1605 cpu->kvm_vcpu_dirty = false;
1608 int kvm_cpu_exec(CPUArchState *env)
1610 CPUState *cpu = ENV_GET_CPU(env);
1611 struct kvm_run *run = cpu->kvm_run;
1612 int ret, run_ret;
1614 DPRINTF("kvm_cpu_exec()\n");
1616 if (kvm_arch_process_async_events(cpu)) {
1617 cpu->exit_request = 0;
1618 return EXCP_HLT;
1621 do {
1622 if (cpu->kvm_vcpu_dirty) {
1623 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
1624 cpu->kvm_vcpu_dirty = false;
1627 kvm_arch_pre_run(cpu, run);
1628 if (cpu->exit_request) {
1629 DPRINTF("interrupt exit requested\n");
1631 * KVM requires us to reenter the kernel after IO exits to complete
1632 * instruction emulation. This self-signal will ensure that we
1633 * leave ASAP again.
1635 qemu_cpu_kick_self();
1637 qemu_mutex_unlock_iothread();
1639 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
1641 qemu_mutex_lock_iothread();
1642 kvm_arch_post_run(cpu, run);
1644 if (run_ret < 0) {
1645 if (run_ret == -EINTR || run_ret == -EAGAIN) {
1646 DPRINTF("io window exit\n");
1647 ret = EXCP_INTERRUPT;
1648 break;
1650 fprintf(stderr, "error: kvm run failed %s\n",
1651 strerror(-run_ret));
1652 abort();
1655 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
1656 switch (run->exit_reason) {
1657 case KVM_EXIT_IO:
1658 DPRINTF("handle_io\n");
1659 kvm_handle_io(run->io.port,
1660 (uint8_t *)run + run->io.data_offset,
1661 run->io.direction,
1662 run->io.size,
1663 run->io.count);
1664 ret = 0;
1665 break;
1666 case KVM_EXIT_MMIO:
1667 DPRINTF("handle_mmio\n");
1668 cpu_physical_memory_rw(run->mmio.phys_addr,
1669 run->mmio.data,
1670 run->mmio.len,
1671 run->mmio.is_write);
1672 ret = 0;
1673 break;
1674 case KVM_EXIT_IRQ_WINDOW_OPEN:
1675 DPRINTF("irq_window_open\n");
1676 ret = EXCP_INTERRUPT;
1677 break;
1678 case KVM_EXIT_SHUTDOWN:
1679 DPRINTF("shutdown\n");
1680 qemu_system_reset_request();
1681 ret = EXCP_INTERRUPT;
1682 break;
1683 case KVM_EXIT_UNKNOWN:
1684 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1685 (uint64_t)run->hw.hardware_exit_reason);
1686 ret = -1;
1687 break;
1688 case KVM_EXIT_INTERNAL_ERROR:
1689 ret = kvm_handle_internal_error(env, run);
1690 break;
1691 default:
1692 DPRINTF("kvm_arch_handle_exit\n");
1693 ret = kvm_arch_handle_exit(cpu, run);
1694 break;
1696 } while (ret == 0);
1698 if (ret < 0) {
1699 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1700 vm_stop(RUN_STATE_INTERNAL_ERROR);
1703 cpu->exit_request = 0;
1704 return ret;
1707 int kvm_ioctl(KVMState *s, int type, ...)
1709 int ret;
1710 void *arg;
1711 va_list ap;
1713 va_start(ap, type);
1714 arg = va_arg(ap, void *);
1715 va_end(ap);
1717 trace_kvm_ioctl(type, arg);
1718 ret = ioctl(s->fd, type, arg);
1719 if (ret == -1) {
1720 ret = -errno;
1722 return ret;
1725 int kvm_vm_ioctl(KVMState *s, int type, ...)
1727 int ret;
1728 void *arg;
1729 va_list ap;
1731 va_start(ap, type);
1732 arg = va_arg(ap, void *);
1733 va_end(ap);
1735 trace_kvm_vm_ioctl(type, arg);
1736 ret = ioctl(s->vmfd, type, arg);
1737 if (ret == -1) {
1738 ret = -errno;
1740 return ret;
1743 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
1745 int ret;
1746 void *arg;
1747 va_list ap;
1749 va_start(ap, type);
1750 arg = va_arg(ap, void *);
1751 va_end(ap);
1753 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
1754 ret = ioctl(cpu->kvm_fd, type, arg);
1755 if (ret == -1) {
1756 ret = -errno;
1758 return ret;
1761 int kvm_has_sync_mmu(void)
1763 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1766 int kvm_has_vcpu_events(void)
1768 return kvm_state->vcpu_events;
1771 int kvm_has_robust_singlestep(void)
1773 return kvm_state->robust_singlestep;
1776 int kvm_has_debugregs(void)
1778 return kvm_state->debugregs;
1781 int kvm_has_xsave(void)
1783 return kvm_state->xsave;
1786 int kvm_has_xcrs(void)
1788 return kvm_state->xcrs;
1791 int kvm_has_pit_state2(void)
1793 return kvm_state->pit_state2;
1796 int kvm_has_many_ioeventfds(void)
1798 if (!kvm_enabled()) {
1799 return 0;
1801 return kvm_state->many_ioeventfds;
1804 int kvm_has_gsi_routing(void)
1806 #ifdef KVM_CAP_IRQ_ROUTING
1807 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
1808 #else
1809 return false;
1810 #endif
1813 int kvm_has_intx_set_mask(void)
1815 return kvm_state->intx_set_mask;
1818 void *kvm_ram_alloc(ram_addr_t size)
1820 #ifdef TARGET_S390X
1821 void *mem;
1823 mem = kvm_arch_ram_alloc(size);
1824 if (mem) {
1825 return mem;
1827 #endif
1828 return qemu_anon_ram_alloc(size);
1831 void kvm_setup_guest_memory(void *start, size_t size)
1833 #ifdef CONFIG_VALGRIND_H
1834 VALGRIND_MAKE_MEM_DEFINED(start, size);
1835 #endif
1836 if (!kvm_has_sync_mmu()) {
1837 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1839 if (ret) {
1840 perror("qemu_madvise");
1841 fprintf(stderr,
1842 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1843 exit(1);
1848 #ifdef KVM_CAP_SET_GUEST_DEBUG
1849 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
1850 target_ulong pc)
1852 struct kvm_sw_breakpoint *bp;
1854 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
1855 if (bp->pc == pc) {
1856 return bp;
1859 return NULL;
1862 int kvm_sw_breakpoints_active(CPUState *cpu)
1864 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
1867 struct kvm_set_guest_debug_data {
1868 struct kvm_guest_debug dbg;
1869 CPUState *cpu;
1870 int err;
1873 static void kvm_invoke_set_guest_debug(void *data)
1875 struct kvm_set_guest_debug_data *dbg_data = data;
1877 dbg_data->err = kvm_vcpu_ioctl(dbg_data->cpu, KVM_SET_GUEST_DEBUG,
1878 &dbg_data->dbg);
1881 int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
1883 CPUState *cpu = ENV_GET_CPU(env);
1884 struct kvm_set_guest_debug_data data;
1886 data.dbg.control = reinject_trap;
1888 if (env->singlestep_enabled) {
1889 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1891 kvm_arch_update_guest_debug(cpu, &data.dbg);
1892 data.cpu = cpu;
1894 run_on_cpu(cpu, kvm_invoke_set_guest_debug, &data);
1895 return data.err;
1898 int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
1899 target_ulong len, int type)
1901 CPUState *current_cpu = ENV_GET_CPU(current_env);
1902 struct kvm_sw_breakpoint *bp;
1903 CPUArchState *env;
1904 int err;
1906 if (type == GDB_BREAKPOINT_SW) {
1907 bp = kvm_find_sw_breakpoint(current_cpu, addr);
1908 if (bp) {
1909 bp->use_count++;
1910 return 0;
1913 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
1914 if (!bp) {
1915 return -ENOMEM;
1918 bp->pc = addr;
1919 bp->use_count = 1;
1920 err = kvm_arch_insert_sw_breakpoint(current_cpu, bp);
1921 if (err) {
1922 g_free(bp);
1923 return err;
1926 QTAILQ_INSERT_HEAD(&current_cpu->kvm_state->kvm_sw_breakpoints,
1927 bp, entry);
1928 } else {
1929 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1930 if (err) {
1931 return err;
1935 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1936 err = kvm_update_guest_debug(env, 0);
1937 if (err) {
1938 return err;
1941 return 0;
1944 int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
1945 target_ulong len, int type)
1947 CPUState *current_cpu = ENV_GET_CPU(current_env);
1948 struct kvm_sw_breakpoint *bp;
1949 CPUArchState *env;
1950 int err;
1952 if (type == GDB_BREAKPOINT_SW) {
1953 bp = kvm_find_sw_breakpoint(current_cpu, addr);
1954 if (!bp) {
1955 return -ENOENT;
1958 if (bp->use_count > 1) {
1959 bp->use_count--;
1960 return 0;
1963 err = kvm_arch_remove_sw_breakpoint(current_cpu, bp);
1964 if (err) {
1965 return err;
1968 QTAILQ_REMOVE(&current_cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
1969 g_free(bp);
1970 } else {
1971 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1972 if (err) {
1973 return err;
1977 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1978 err = kvm_update_guest_debug(env, 0);
1979 if (err) {
1980 return err;
1983 return 0;
1986 void kvm_remove_all_breakpoints(CPUArchState *current_env)
1988 CPUState *current_cpu = ENV_GET_CPU(current_env);
1989 struct kvm_sw_breakpoint *bp, *next;
1990 KVMState *s = current_cpu->kvm_state;
1991 CPUArchState *env;
1992 CPUState *cpu;
1994 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1995 if (kvm_arch_remove_sw_breakpoint(current_cpu, bp) != 0) {
1996 /* Try harder to find a CPU that currently sees the breakpoint. */
1997 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1998 cpu = ENV_GET_CPU(env);
1999 if (kvm_arch_remove_sw_breakpoint(cpu, bp) == 0) {
2000 break;
2004 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
2005 g_free(bp);
2007 kvm_arch_remove_all_hw_breakpoints();
2009 for (env = first_cpu; env != NULL; env = env->next_cpu) {
2010 kvm_update_guest_debug(env, 0);
2014 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2016 int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
2018 return -EINVAL;
2021 int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
2022 target_ulong len, int type)
2024 return -EINVAL;
2027 int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
2028 target_ulong len, int type)
2030 return -EINVAL;
2033 void kvm_remove_all_breakpoints(CPUArchState *current_env)
2036 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2038 int kvm_set_signal_mask(CPUArchState *env, const sigset_t *sigset)
2040 CPUState *cpu = ENV_GET_CPU(env);
2041 struct kvm_signal_mask *sigmask;
2042 int r;
2044 if (!sigset) {
2045 return kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, NULL);
2048 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2050 sigmask->len = 8;
2051 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2052 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2053 g_free(sigmask);
2055 return r;
2057 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2059 return kvm_arch_on_sigbus_vcpu(cpu, code, addr);
2062 int kvm_on_sigbus(int code, void *addr)
2064 return kvm_arch_on_sigbus(code, addr);