1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
5 #include <sys/resource.h>
9 #include "disas/disas.h"
10 #include "qemu/path.h"
11 #include "qemu/queue.h"
12 #include "qemu/guest-random.h"
13 #include "qemu/units.h"
25 #define ELF_OSABI ELFOSABI_SYSV
27 /* from personality.h */
30 * Flags for bug emulation.
32 * These occupy the top three bytes.
35 ADDR_NO_RANDOMIZE
= 0x0040000, /* disable randomization of VA space */
36 FDPIC_FUNCPTRS
= 0x0080000, /* userspace function ptrs point to
37 descriptors (signal handling) */
38 MMAP_PAGE_ZERO
= 0x0100000,
39 ADDR_COMPAT_LAYOUT
= 0x0200000,
40 READ_IMPLIES_EXEC
= 0x0400000,
41 ADDR_LIMIT_32BIT
= 0x0800000,
42 SHORT_INODE
= 0x1000000,
43 WHOLE_SECONDS
= 0x2000000,
44 STICKY_TIMEOUTS
= 0x4000000,
45 ADDR_LIMIT_3GB
= 0x8000000,
51 * These go in the low byte. Avoid using the top bit, it will
52 * conflict with error returns.
56 PER_LINUX_32BIT
= 0x0000 | ADDR_LIMIT_32BIT
,
57 PER_LINUX_FDPIC
= 0x0000 | FDPIC_FUNCPTRS
,
58 PER_SVR4
= 0x0001 | STICKY_TIMEOUTS
| MMAP_PAGE_ZERO
,
59 PER_SVR3
= 0x0002 | STICKY_TIMEOUTS
| SHORT_INODE
,
60 PER_SCOSVR3
= 0x0003 | STICKY_TIMEOUTS
| WHOLE_SECONDS
| SHORT_INODE
,
61 PER_OSR5
= 0x0003 | STICKY_TIMEOUTS
| WHOLE_SECONDS
,
62 PER_WYSEV386
= 0x0004 | STICKY_TIMEOUTS
| SHORT_INODE
,
63 PER_ISCR4
= 0x0005 | STICKY_TIMEOUTS
,
65 PER_SUNOS
= 0x0006 | STICKY_TIMEOUTS
,
66 PER_XENIX
= 0x0007 | STICKY_TIMEOUTS
| SHORT_INODE
,
68 PER_LINUX32_3GB
= 0x0008 | ADDR_LIMIT_3GB
,
69 PER_IRIX32
= 0x0009 | STICKY_TIMEOUTS
,/* IRIX5 32-bit */
70 PER_IRIXN32
= 0x000a | STICKY_TIMEOUTS
,/* IRIX6 new 32-bit */
71 PER_IRIX64
= 0x000b | STICKY_TIMEOUTS
,/* IRIX6 64-bit */
73 PER_SOLARIS
= 0x000d | STICKY_TIMEOUTS
,
74 PER_UW7
= 0x000e | STICKY_TIMEOUTS
| MMAP_PAGE_ZERO
,
75 PER_OSF4
= 0x000f, /* OSF/1 v4 */
81 * Return the base personality without flags.
83 #define personality(pers) (pers & PER_MASK)
85 int info_is_fdpic(struct image_info
*info
)
87 return info
->personality
== PER_LINUX_FDPIC
;
90 /* this flag is uneffective under linux too, should be deleted */
92 #define MAP_DENYWRITE 0
95 /* should probably go in elf.h */
100 #ifdef TARGET_WORDS_BIGENDIAN
101 #define ELF_DATA ELFDATA2MSB
103 #define ELF_DATA ELFDATA2LSB
106 #ifdef TARGET_ABI_MIPSN32
107 typedef abi_ullong target_elf_greg_t
;
108 #define tswapreg(ptr) tswap64(ptr)
110 typedef abi_ulong target_elf_greg_t
;
111 #define tswapreg(ptr) tswapal(ptr)
115 typedef abi_ushort target_uid_t
;
116 typedef abi_ushort target_gid_t
;
118 typedef abi_uint target_uid_t
;
119 typedef abi_uint target_gid_t
;
121 typedef abi_int target_pid_t
;
125 #define ELF_PLATFORM get_elf_platform()
127 static const char *get_elf_platform(void)
129 static char elf_platform
[] = "i386";
130 int family
= object_property_get_int(OBJECT(thread_cpu
), "family", NULL
);
134 elf_platform
[1] = '0' + family
;
138 #define ELF_HWCAP get_elf_hwcap()
140 static uint32_t get_elf_hwcap(void)
142 X86CPU
*cpu
= X86_CPU(thread_cpu
);
144 return cpu
->env
.features
[FEAT_1_EDX
];
148 #define ELF_START_MMAP 0x2aaaaab000ULL
150 #define ELF_CLASS ELFCLASS64
151 #define ELF_ARCH EM_X86_64
153 static inline void init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
156 regs
->rsp
= infop
->start_stack
;
157 regs
->rip
= infop
->entry
;
161 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
164 * Note that ELF_NREG should be 29 as there should be place for
165 * TRAPNO and ERR "registers" as well but linux doesn't dump
168 * See linux kernel: arch/x86/include/asm/elf.h
170 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUX86State
*env
)
172 (*regs
)[0] = env
->regs
[15];
173 (*regs
)[1] = env
->regs
[14];
174 (*regs
)[2] = env
->regs
[13];
175 (*regs
)[3] = env
->regs
[12];
176 (*regs
)[4] = env
->regs
[R_EBP
];
177 (*regs
)[5] = env
->regs
[R_EBX
];
178 (*regs
)[6] = env
->regs
[11];
179 (*regs
)[7] = env
->regs
[10];
180 (*regs
)[8] = env
->regs
[9];
181 (*regs
)[9] = env
->regs
[8];
182 (*regs
)[10] = env
->regs
[R_EAX
];
183 (*regs
)[11] = env
->regs
[R_ECX
];
184 (*regs
)[12] = env
->regs
[R_EDX
];
185 (*regs
)[13] = env
->regs
[R_ESI
];
186 (*regs
)[14] = env
->regs
[R_EDI
];
187 (*regs
)[15] = env
->regs
[R_EAX
]; /* XXX */
188 (*regs
)[16] = env
->eip
;
189 (*regs
)[17] = env
->segs
[R_CS
].selector
& 0xffff;
190 (*regs
)[18] = env
->eflags
;
191 (*regs
)[19] = env
->regs
[R_ESP
];
192 (*regs
)[20] = env
->segs
[R_SS
].selector
& 0xffff;
193 (*regs
)[21] = env
->segs
[R_FS
].selector
& 0xffff;
194 (*regs
)[22] = env
->segs
[R_GS
].selector
& 0xffff;
195 (*regs
)[23] = env
->segs
[R_DS
].selector
& 0xffff;
196 (*regs
)[24] = env
->segs
[R_ES
].selector
& 0xffff;
197 (*regs
)[25] = env
->segs
[R_FS
].selector
& 0xffff;
198 (*regs
)[26] = env
->segs
[R_GS
].selector
& 0xffff;
203 #define ELF_START_MMAP 0x80000000
206 * This is used to ensure we don't load something for the wrong architecture.
208 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
211 * These are used to set parameters in the core dumps.
213 #define ELF_CLASS ELFCLASS32
214 #define ELF_ARCH EM_386
216 static inline void init_thread(struct target_pt_regs
*regs
,
217 struct image_info
*infop
)
219 regs
->esp
= infop
->start_stack
;
220 regs
->eip
= infop
->entry
;
222 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
223 starts %edx contains a pointer to a function which might be
224 registered using `atexit'. This provides a mean for the
225 dynamic linker to call DT_FINI functions for shared libraries
226 that have been loaded before the code runs.
228 A value of 0 tells we have no such handler. */
233 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
236 * Note that ELF_NREG should be 19 as there should be place for
237 * TRAPNO and ERR "registers" as well but linux doesn't dump
240 * See linux kernel: arch/x86/include/asm/elf.h
242 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUX86State
*env
)
244 (*regs
)[0] = env
->regs
[R_EBX
];
245 (*regs
)[1] = env
->regs
[R_ECX
];
246 (*regs
)[2] = env
->regs
[R_EDX
];
247 (*regs
)[3] = env
->regs
[R_ESI
];
248 (*regs
)[4] = env
->regs
[R_EDI
];
249 (*regs
)[5] = env
->regs
[R_EBP
];
250 (*regs
)[6] = env
->regs
[R_EAX
];
251 (*regs
)[7] = env
->segs
[R_DS
].selector
& 0xffff;
252 (*regs
)[8] = env
->segs
[R_ES
].selector
& 0xffff;
253 (*regs
)[9] = env
->segs
[R_FS
].selector
& 0xffff;
254 (*regs
)[10] = env
->segs
[R_GS
].selector
& 0xffff;
255 (*regs
)[11] = env
->regs
[R_EAX
]; /* XXX */
256 (*regs
)[12] = env
->eip
;
257 (*regs
)[13] = env
->segs
[R_CS
].selector
& 0xffff;
258 (*regs
)[14] = env
->eflags
;
259 (*regs
)[15] = env
->regs
[R_ESP
];
260 (*regs
)[16] = env
->segs
[R_SS
].selector
& 0xffff;
264 #define USE_ELF_CORE_DUMP
265 #define ELF_EXEC_PAGESIZE 4096
271 #ifndef TARGET_AARCH64
272 /* 32 bit ARM definitions */
274 #define ELF_START_MMAP 0x80000000
276 #define ELF_ARCH EM_ARM
277 #define ELF_CLASS ELFCLASS32
279 static inline void init_thread(struct target_pt_regs
*regs
,
280 struct image_info
*infop
)
282 abi_long stack
= infop
->start_stack
;
283 memset(regs
, 0, sizeof(*regs
));
285 regs
->uregs
[16] = ARM_CPU_MODE_USR
;
286 if (infop
->entry
& 1) {
287 regs
->uregs
[16] |= CPSR_T
;
289 regs
->uregs
[15] = infop
->entry
& 0xfffffffe;
290 regs
->uregs
[13] = infop
->start_stack
;
291 /* FIXME - what to for failure of get_user()? */
292 get_user_ual(regs
->uregs
[2], stack
+ 8); /* envp */
293 get_user_ual(regs
->uregs
[1], stack
+ 4); /* envp */
294 /* XXX: it seems that r0 is zeroed after ! */
296 /* For uClinux PIC binaries. */
297 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
298 regs
->uregs
[10] = infop
->start_data
;
300 /* Support ARM FDPIC. */
301 if (info_is_fdpic(infop
)) {
302 /* As described in the ABI document, r7 points to the loadmap info
303 * prepared by the kernel. If an interpreter is needed, r8 points
304 * to the interpreter loadmap and r9 points to the interpreter
305 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
306 * r9 points to the main program PT_DYNAMIC info.
308 regs
->uregs
[7] = infop
->loadmap_addr
;
309 if (infop
->interpreter_loadmap_addr
) {
310 /* Executable is dynamically loaded. */
311 regs
->uregs
[8] = infop
->interpreter_loadmap_addr
;
312 regs
->uregs
[9] = infop
->interpreter_pt_dynamic_addr
;
315 regs
->uregs
[9] = infop
->pt_dynamic_addr
;
321 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
323 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUARMState
*env
)
325 (*regs
)[0] = tswapreg(env
->regs
[0]);
326 (*regs
)[1] = tswapreg(env
->regs
[1]);
327 (*regs
)[2] = tswapreg(env
->regs
[2]);
328 (*regs
)[3] = tswapreg(env
->regs
[3]);
329 (*regs
)[4] = tswapreg(env
->regs
[4]);
330 (*regs
)[5] = tswapreg(env
->regs
[5]);
331 (*regs
)[6] = tswapreg(env
->regs
[6]);
332 (*regs
)[7] = tswapreg(env
->regs
[7]);
333 (*regs
)[8] = tswapreg(env
->regs
[8]);
334 (*regs
)[9] = tswapreg(env
->regs
[9]);
335 (*regs
)[10] = tswapreg(env
->regs
[10]);
336 (*regs
)[11] = tswapreg(env
->regs
[11]);
337 (*regs
)[12] = tswapreg(env
->regs
[12]);
338 (*regs
)[13] = tswapreg(env
->regs
[13]);
339 (*regs
)[14] = tswapreg(env
->regs
[14]);
340 (*regs
)[15] = tswapreg(env
->regs
[15]);
342 (*regs
)[16] = tswapreg(cpsr_read((CPUARMState
*)env
));
343 (*regs
)[17] = tswapreg(env
->regs
[0]); /* XXX */
346 #define USE_ELF_CORE_DUMP
347 #define ELF_EXEC_PAGESIZE 4096
351 ARM_HWCAP_ARM_SWP
= 1 << 0,
352 ARM_HWCAP_ARM_HALF
= 1 << 1,
353 ARM_HWCAP_ARM_THUMB
= 1 << 2,
354 ARM_HWCAP_ARM_26BIT
= 1 << 3,
355 ARM_HWCAP_ARM_FAST_MULT
= 1 << 4,
356 ARM_HWCAP_ARM_FPA
= 1 << 5,
357 ARM_HWCAP_ARM_VFP
= 1 << 6,
358 ARM_HWCAP_ARM_EDSP
= 1 << 7,
359 ARM_HWCAP_ARM_JAVA
= 1 << 8,
360 ARM_HWCAP_ARM_IWMMXT
= 1 << 9,
361 ARM_HWCAP_ARM_CRUNCH
= 1 << 10,
362 ARM_HWCAP_ARM_THUMBEE
= 1 << 11,
363 ARM_HWCAP_ARM_NEON
= 1 << 12,
364 ARM_HWCAP_ARM_VFPv3
= 1 << 13,
365 ARM_HWCAP_ARM_VFPv3D16
= 1 << 14,
366 ARM_HWCAP_ARM_TLS
= 1 << 15,
367 ARM_HWCAP_ARM_VFPv4
= 1 << 16,
368 ARM_HWCAP_ARM_IDIVA
= 1 << 17,
369 ARM_HWCAP_ARM_IDIVT
= 1 << 18,
370 ARM_HWCAP_ARM_VFPD32
= 1 << 19,
371 ARM_HWCAP_ARM_LPAE
= 1 << 20,
372 ARM_HWCAP_ARM_EVTSTRM
= 1 << 21,
376 ARM_HWCAP2_ARM_AES
= 1 << 0,
377 ARM_HWCAP2_ARM_PMULL
= 1 << 1,
378 ARM_HWCAP2_ARM_SHA1
= 1 << 2,
379 ARM_HWCAP2_ARM_SHA2
= 1 << 3,
380 ARM_HWCAP2_ARM_CRC32
= 1 << 4,
383 /* The commpage only exists for 32 bit kernels */
385 /* Return 1 if the proposed guest space is suitable for the guest.
386 * Return 0 if the proposed guest space isn't suitable, but another
387 * address space should be tried.
388 * Return -1 if there is no way the proposed guest space can be
389 * valid regardless of the base.
390 * The guest code may leave a page mapped and populate it if the
391 * address is suitable.
393 static int init_guest_commpage(unsigned long guest_base
,
394 unsigned long guest_size
)
396 unsigned long real_start
, test_page_addr
;
398 /* We need to check that we can force a fault on access to the
399 * commpage at 0xffff0fxx
401 test_page_addr
= guest_base
+ (0xffff0f00 & qemu_host_page_mask
);
403 /* If the commpage lies within the already allocated guest space,
404 * then there is no way we can allocate it.
406 * You may be thinking that that this check is redundant because
407 * we already validated the guest size against MAX_RESERVED_VA;
408 * but if qemu_host_page_mask is unusually large, then
409 * test_page_addr may be lower.
411 if (test_page_addr
>= guest_base
412 && test_page_addr
< (guest_base
+ guest_size
)) {
416 /* Note it needs to be writeable to let us initialise it */
417 real_start
= (unsigned long)
418 mmap((void *)test_page_addr
, qemu_host_page_size
,
419 PROT_READ
| PROT_WRITE
,
420 MAP_ANONYMOUS
| MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
422 /* If we can't map it then try another address */
423 if (real_start
== -1ul) {
427 if (real_start
!= test_page_addr
) {
428 /* OS didn't put the page where we asked - unmap and reject */
429 munmap((void *)real_start
, qemu_host_page_size
);
433 /* Leave the page mapped
434 * Populate it (mmap should have left it all 0'd)
437 /* Kernel helper versions */
438 __put_user(5, (uint32_t *)g2h(0xffff0ffcul
));
440 /* Now it's populated make it RO */
441 if (mprotect((void *)test_page_addr
, qemu_host_page_size
, PROT_READ
)) {
442 perror("Protecting guest commpage");
446 return 1; /* All good */
449 #define ELF_HWCAP get_elf_hwcap()
450 #define ELF_HWCAP2 get_elf_hwcap2()
452 static uint32_t get_elf_hwcap(void)
454 ARMCPU
*cpu
= ARM_CPU(thread_cpu
);
457 hwcaps
|= ARM_HWCAP_ARM_SWP
;
458 hwcaps
|= ARM_HWCAP_ARM_HALF
;
459 hwcaps
|= ARM_HWCAP_ARM_THUMB
;
460 hwcaps
|= ARM_HWCAP_ARM_FAST_MULT
;
462 /* probe for the extra features */
463 #define GET_FEATURE(feat, hwcap) \
464 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
466 #define GET_FEATURE_ID(feat, hwcap) \
467 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
469 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
470 GET_FEATURE(ARM_FEATURE_V5
, ARM_HWCAP_ARM_EDSP
);
471 GET_FEATURE(ARM_FEATURE_VFP
, ARM_HWCAP_ARM_VFP
);
472 GET_FEATURE(ARM_FEATURE_IWMMXT
, ARM_HWCAP_ARM_IWMMXT
);
473 GET_FEATURE(ARM_FEATURE_THUMB2EE
, ARM_HWCAP_ARM_THUMBEE
);
474 GET_FEATURE(ARM_FEATURE_NEON
, ARM_HWCAP_ARM_NEON
);
475 GET_FEATURE(ARM_FEATURE_VFP3
, ARM_HWCAP_ARM_VFPv3
);
476 GET_FEATURE(ARM_FEATURE_V6K
, ARM_HWCAP_ARM_TLS
);
477 GET_FEATURE(ARM_FEATURE_VFP4
, ARM_HWCAP_ARM_VFPv4
);
478 GET_FEATURE_ID(aa32_arm_div
, ARM_HWCAP_ARM_IDIVA
);
479 GET_FEATURE_ID(aa32_thumb_div
, ARM_HWCAP_ARM_IDIVT
);
480 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
481 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
482 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
483 * to our VFP_FP16 feature bit.
485 GET_FEATURE(ARM_FEATURE_VFP3
, ARM_HWCAP_ARM_VFPD32
);
486 GET_FEATURE(ARM_FEATURE_LPAE
, ARM_HWCAP_ARM_LPAE
);
491 static uint32_t get_elf_hwcap2(void)
493 ARMCPU
*cpu
= ARM_CPU(thread_cpu
);
496 GET_FEATURE_ID(aa32_aes
, ARM_HWCAP2_ARM_AES
);
497 GET_FEATURE_ID(aa32_pmull
, ARM_HWCAP2_ARM_PMULL
);
498 GET_FEATURE_ID(aa32_sha1
, ARM_HWCAP2_ARM_SHA1
);
499 GET_FEATURE_ID(aa32_sha2
, ARM_HWCAP2_ARM_SHA2
);
500 GET_FEATURE_ID(aa32_crc32
, ARM_HWCAP2_ARM_CRC32
);
505 #undef GET_FEATURE_ID
507 #define ELF_PLATFORM get_elf_platform()
509 static const char *get_elf_platform(void)
511 CPUARMState
*env
= thread_cpu
->env_ptr
;
513 #ifdef TARGET_WORDS_BIGENDIAN
519 if (arm_feature(env
, ARM_FEATURE_V8
)) {
521 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
522 if (arm_feature(env
, ARM_FEATURE_M
)) {
527 } else if (arm_feature(env
, ARM_FEATURE_V6
)) {
529 } else if (arm_feature(env
, ARM_FEATURE_V5
)) {
539 /* 64 bit ARM definitions */
540 #define ELF_START_MMAP 0x80000000
542 #define ELF_ARCH EM_AARCH64
543 #define ELF_CLASS ELFCLASS64
544 #ifdef TARGET_WORDS_BIGENDIAN
545 # define ELF_PLATFORM "aarch64_be"
547 # define ELF_PLATFORM "aarch64"
550 static inline void init_thread(struct target_pt_regs
*regs
,
551 struct image_info
*infop
)
553 abi_long stack
= infop
->start_stack
;
554 memset(regs
, 0, sizeof(*regs
));
556 regs
->pc
= infop
->entry
& ~0x3ULL
;
561 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
563 static void elf_core_copy_regs(target_elf_gregset_t
*regs
,
564 const CPUARMState
*env
)
568 for (i
= 0; i
< 32; i
++) {
569 (*regs
)[i
] = tswapreg(env
->xregs
[i
]);
571 (*regs
)[32] = tswapreg(env
->pc
);
572 (*regs
)[33] = tswapreg(pstate_read((CPUARMState
*)env
));
575 #define USE_ELF_CORE_DUMP
576 #define ELF_EXEC_PAGESIZE 4096
579 ARM_HWCAP_A64_FP
= 1 << 0,
580 ARM_HWCAP_A64_ASIMD
= 1 << 1,
581 ARM_HWCAP_A64_EVTSTRM
= 1 << 2,
582 ARM_HWCAP_A64_AES
= 1 << 3,
583 ARM_HWCAP_A64_PMULL
= 1 << 4,
584 ARM_HWCAP_A64_SHA1
= 1 << 5,
585 ARM_HWCAP_A64_SHA2
= 1 << 6,
586 ARM_HWCAP_A64_CRC32
= 1 << 7,
587 ARM_HWCAP_A64_ATOMICS
= 1 << 8,
588 ARM_HWCAP_A64_FPHP
= 1 << 9,
589 ARM_HWCAP_A64_ASIMDHP
= 1 << 10,
590 ARM_HWCAP_A64_CPUID
= 1 << 11,
591 ARM_HWCAP_A64_ASIMDRDM
= 1 << 12,
592 ARM_HWCAP_A64_JSCVT
= 1 << 13,
593 ARM_HWCAP_A64_FCMA
= 1 << 14,
594 ARM_HWCAP_A64_LRCPC
= 1 << 15,
595 ARM_HWCAP_A64_DCPOP
= 1 << 16,
596 ARM_HWCAP_A64_SHA3
= 1 << 17,
597 ARM_HWCAP_A64_SM3
= 1 << 18,
598 ARM_HWCAP_A64_SM4
= 1 << 19,
599 ARM_HWCAP_A64_ASIMDDP
= 1 << 20,
600 ARM_HWCAP_A64_SHA512
= 1 << 21,
601 ARM_HWCAP_A64_SVE
= 1 << 22,
602 ARM_HWCAP_A64_ASIMDFHM
= 1 << 23,
603 ARM_HWCAP_A64_DIT
= 1 << 24,
604 ARM_HWCAP_A64_USCAT
= 1 << 25,
605 ARM_HWCAP_A64_ILRCPC
= 1 << 26,
606 ARM_HWCAP_A64_FLAGM
= 1 << 27,
607 ARM_HWCAP_A64_SSBS
= 1 << 28,
608 ARM_HWCAP_A64_SB
= 1 << 29,
609 ARM_HWCAP_A64_PACA
= 1 << 30,
610 ARM_HWCAP_A64_PACG
= 1UL << 31,
612 ARM_HWCAP2_A64_DCPODP
= 1 << 0,
613 ARM_HWCAP2_A64_SVE2
= 1 << 1,
614 ARM_HWCAP2_A64_SVEAES
= 1 << 2,
615 ARM_HWCAP2_A64_SVEPMULL
= 1 << 3,
616 ARM_HWCAP2_A64_SVEBITPERM
= 1 << 4,
617 ARM_HWCAP2_A64_SVESHA3
= 1 << 5,
618 ARM_HWCAP2_A64_SVESM4
= 1 << 6,
619 ARM_HWCAP2_A64_FLAGM2
= 1 << 7,
620 ARM_HWCAP2_A64_FRINT
= 1 << 8,
623 #define ELF_HWCAP get_elf_hwcap()
624 #define ELF_HWCAP2 get_elf_hwcap2()
626 #define GET_FEATURE_ID(feat, hwcap) \
627 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
629 static uint32_t get_elf_hwcap(void)
631 ARMCPU
*cpu
= ARM_CPU(thread_cpu
);
634 hwcaps
|= ARM_HWCAP_A64_FP
;
635 hwcaps
|= ARM_HWCAP_A64_ASIMD
;
636 hwcaps
|= ARM_HWCAP_A64_CPUID
;
638 /* probe for the extra features */
640 GET_FEATURE_ID(aa64_aes
, ARM_HWCAP_A64_AES
);
641 GET_FEATURE_ID(aa64_pmull
, ARM_HWCAP_A64_PMULL
);
642 GET_FEATURE_ID(aa64_sha1
, ARM_HWCAP_A64_SHA1
);
643 GET_FEATURE_ID(aa64_sha256
, ARM_HWCAP_A64_SHA2
);
644 GET_FEATURE_ID(aa64_sha512
, ARM_HWCAP_A64_SHA512
);
645 GET_FEATURE_ID(aa64_crc32
, ARM_HWCAP_A64_CRC32
);
646 GET_FEATURE_ID(aa64_sha3
, ARM_HWCAP_A64_SHA3
);
647 GET_FEATURE_ID(aa64_sm3
, ARM_HWCAP_A64_SM3
);
648 GET_FEATURE_ID(aa64_sm4
, ARM_HWCAP_A64_SM4
);
649 GET_FEATURE_ID(aa64_fp16
, ARM_HWCAP_A64_FPHP
| ARM_HWCAP_A64_ASIMDHP
);
650 GET_FEATURE_ID(aa64_atomics
, ARM_HWCAP_A64_ATOMICS
);
651 GET_FEATURE_ID(aa64_rdm
, ARM_HWCAP_A64_ASIMDRDM
);
652 GET_FEATURE_ID(aa64_dp
, ARM_HWCAP_A64_ASIMDDP
);
653 GET_FEATURE_ID(aa64_fcma
, ARM_HWCAP_A64_FCMA
);
654 GET_FEATURE_ID(aa64_sve
, ARM_HWCAP_A64_SVE
);
655 GET_FEATURE_ID(aa64_pauth
, ARM_HWCAP_A64_PACA
| ARM_HWCAP_A64_PACG
);
656 GET_FEATURE_ID(aa64_fhm
, ARM_HWCAP_A64_ASIMDFHM
);
657 GET_FEATURE_ID(aa64_jscvt
, ARM_HWCAP_A64_JSCVT
);
658 GET_FEATURE_ID(aa64_sb
, ARM_HWCAP_A64_SB
);
659 GET_FEATURE_ID(aa64_condm_4
, ARM_HWCAP_A64_FLAGM
);
660 GET_FEATURE_ID(aa64_dcpop
, ARM_HWCAP_A64_DCPOP
);
665 static uint32_t get_elf_hwcap2(void)
667 ARMCPU
*cpu
= ARM_CPU(thread_cpu
);
670 GET_FEATURE_ID(aa64_dcpodp
, ARM_HWCAP2_A64_DCPODP
);
671 GET_FEATURE_ID(aa64_condm_5
, ARM_HWCAP2_A64_FLAGM2
);
672 GET_FEATURE_ID(aa64_frint
, ARM_HWCAP2_A64_FRINT
);
677 #undef GET_FEATURE_ID
679 #endif /* not TARGET_AARCH64 */
680 #endif /* TARGET_ARM */
683 #ifdef TARGET_SPARC64
685 #define ELF_START_MMAP 0x80000000
686 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
687 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
689 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
691 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
694 #define ELF_CLASS ELFCLASS64
695 #define ELF_ARCH EM_SPARCV9
697 #define STACK_BIAS 2047
699 static inline void init_thread(struct target_pt_regs
*regs
,
700 struct image_info
*infop
)
705 regs
->pc
= infop
->entry
;
706 regs
->npc
= regs
->pc
+ 4;
709 regs
->u_regs
[14] = infop
->start_stack
- 16 * 4;
711 if (personality(infop
->personality
) == PER_LINUX32
)
712 regs
->u_regs
[14] = infop
->start_stack
- 16 * 4;
714 regs
->u_regs
[14] = infop
->start_stack
- 16 * 8 - STACK_BIAS
;
719 #define ELF_START_MMAP 0x80000000
720 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
721 | HWCAP_SPARC_MULDIV)
723 #define ELF_CLASS ELFCLASS32
724 #define ELF_ARCH EM_SPARC
726 static inline void init_thread(struct target_pt_regs
*regs
,
727 struct image_info
*infop
)
730 regs
->pc
= infop
->entry
;
731 regs
->npc
= regs
->pc
+ 4;
733 regs
->u_regs
[14] = infop
->start_stack
- 16 * 4;
741 #define ELF_MACHINE PPC_ELF_MACHINE
742 #define ELF_START_MMAP 0x80000000
744 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
746 #define elf_check_arch(x) ( (x) == EM_PPC64 )
748 #define ELF_CLASS ELFCLASS64
752 #define ELF_CLASS ELFCLASS32
756 #define ELF_ARCH EM_PPC
758 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
759 See arch/powerpc/include/asm/cputable.h. */
761 QEMU_PPC_FEATURE_32
= 0x80000000,
762 QEMU_PPC_FEATURE_64
= 0x40000000,
763 QEMU_PPC_FEATURE_601_INSTR
= 0x20000000,
764 QEMU_PPC_FEATURE_HAS_ALTIVEC
= 0x10000000,
765 QEMU_PPC_FEATURE_HAS_FPU
= 0x08000000,
766 QEMU_PPC_FEATURE_HAS_MMU
= 0x04000000,
767 QEMU_PPC_FEATURE_HAS_4xxMAC
= 0x02000000,
768 QEMU_PPC_FEATURE_UNIFIED_CACHE
= 0x01000000,
769 QEMU_PPC_FEATURE_HAS_SPE
= 0x00800000,
770 QEMU_PPC_FEATURE_HAS_EFP_SINGLE
= 0x00400000,
771 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE
= 0x00200000,
772 QEMU_PPC_FEATURE_NO_TB
= 0x00100000,
773 QEMU_PPC_FEATURE_POWER4
= 0x00080000,
774 QEMU_PPC_FEATURE_POWER5
= 0x00040000,
775 QEMU_PPC_FEATURE_POWER5_PLUS
= 0x00020000,
776 QEMU_PPC_FEATURE_CELL
= 0x00010000,
777 QEMU_PPC_FEATURE_BOOKE
= 0x00008000,
778 QEMU_PPC_FEATURE_SMT
= 0x00004000,
779 QEMU_PPC_FEATURE_ICACHE_SNOOP
= 0x00002000,
780 QEMU_PPC_FEATURE_ARCH_2_05
= 0x00001000,
781 QEMU_PPC_FEATURE_PA6T
= 0x00000800,
782 QEMU_PPC_FEATURE_HAS_DFP
= 0x00000400,
783 QEMU_PPC_FEATURE_POWER6_EXT
= 0x00000200,
784 QEMU_PPC_FEATURE_ARCH_2_06
= 0x00000100,
785 QEMU_PPC_FEATURE_HAS_VSX
= 0x00000080,
786 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT
= 0x00000040,
788 QEMU_PPC_FEATURE_TRUE_LE
= 0x00000002,
789 QEMU_PPC_FEATURE_PPC_LE
= 0x00000001,
791 /* Feature definitions in AT_HWCAP2. */
792 QEMU_PPC_FEATURE2_ARCH_2_07
= 0x80000000, /* ISA 2.07 */
793 QEMU_PPC_FEATURE2_HAS_HTM
= 0x40000000, /* Hardware Transactional Memory */
794 QEMU_PPC_FEATURE2_HAS_DSCR
= 0x20000000, /* Data Stream Control Register */
795 QEMU_PPC_FEATURE2_HAS_EBB
= 0x10000000, /* Event Base Branching */
796 QEMU_PPC_FEATURE2_HAS_ISEL
= 0x08000000, /* Integer Select */
797 QEMU_PPC_FEATURE2_HAS_TAR
= 0x04000000, /* Target Address Register */
798 QEMU_PPC_FEATURE2_VEC_CRYPTO
= 0x02000000,
799 QEMU_PPC_FEATURE2_HTM_NOSC
= 0x01000000,
800 QEMU_PPC_FEATURE2_ARCH_3_00
= 0x00800000, /* ISA 3.00 */
801 QEMU_PPC_FEATURE2_HAS_IEEE128
= 0x00400000, /* VSX IEEE Bin Float 128-bit */
802 QEMU_PPC_FEATURE2_DARN
= 0x00200000, /* darn random number insn */
803 QEMU_PPC_FEATURE2_SCV
= 0x00100000, /* scv syscall */
804 QEMU_PPC_FEATURE2_HTM_NO_SUSPEND
= 0x00080000, /* TM w/o suspended state */
807 #define ELF_HWCAP get_elf_hwcap()
809 static uint32_t get_elf_hwcap(void)
811 PowerPCCPU
*cpu
= POWERPC_CPU(thread_cpu
);
812 uint32_t features
= 0;
814 /* We don't have to be terribly complete here; the high points are
815 Altivec/FP/SPE support. Anything else is just a bonus. */
816 #define GET_FEATURE(flag, feature) \
817 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
818 #define GET_FEATURE2(flags, feature) \
820 if ((cpu->env.insns_flags2 & flags) == flags) { \
821 features |= feature; \
824 GET_FEATURE(PPC_64B
, QEMU_PPC_FEATURE_64
);
825 GET_FEATURE(PPC_FLOAT
, QEMU_PPC_FEATURE_HAS_FPU
);
826 GET_FEATURE(PPC_ALTIVEC
, QEMU_PPC_FEATURE_HAS_ALTIVEC
);
827 GET_FEATURE(PPC_SPE
, QEMU_PPC_FEATURE_HAS_SPE
);
828 GET_FEATURE(PPC_SPE_SINGLE
, QEMU_PPC_FEATURE_HAS_EFP_SINGLE
);
829 GET_FEATURE(PPC_SPE_DOUBLE
, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE
);
830 GET_FEATURE(PPC_BOOKE
, QEMU_PPC_FEATURE_BOOKE
);
831 GET_FEATURE(PPC_405_MAC
, QEMU_PPC_FEATURE_HAS_4xxMAC
);
832 GET_FEATURE2(PPC2_DFP
, QEMU_PPC_FEATURE_HAS_DFP
);
833 GET_FEATURE2(PPC2_VSX
, QEMU_PPC_FEATURE_HAS_VSX
);
834 GET_FEATURE2((PPC2_PERM_ISA206
| PPC2_DIVE_ISA206
| PPC2_ATOMIC_ISA206
|
835 PPC2_FP_CVT_ISA206
| PPC2_FP_TST_ISA206
),
836 QEMU_PPC_FEATURE_ARCH_2_06
);
843 #define ELF_HWCAP2 get_elf_hwcap2()
845 static uint32_t get_elf_hwcap2(void)
847 PowerPCCPU
*cpu
= POWERPC_CPU(thread_cpu
);
848 uint32_t features
= 0;
850 #define GET_FEATURE(flag, feature) \
851 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
852 #define GET_FEATURE2(flag, feature) \
853 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
855 GET_FEATURE(PPC_ISEL
, QEMU_PPC_FEATURE2_HAS_ISEL
);
856 GET_FEATURE2(PPC2_BCTAR_ISA207
, QEMU_PPC_FEATURE2_HAS_TAR
);
857 GET_FEATURE2((PPC2_BCTAR_ISA207
| PPC2_LSQ_ISA207
| PPC2_ALTIVEC_207
|
858 PPC2_ISA207S
), QEMU_PPC_FEATURE2_ARCH_2_07
|
859 QEMU_PPC_FEATURE2_VEC_CRYPTO
);
860 GET_FEATURE2(PPC2_ISA300
, QEMU_PPC_FEATURE2_ARCH_3_00
|
861 QEMU_PPC_FEATURE2_DARN
);
870 * The requirements here are:
871 * - keep the final alignment of sp (sp & 0xf)
872 * - make sure the 32-bit value at the first 16 byte aligned position of
873 * AUXV is greater than 16 for glibc compatibility.
874 * AT_IGNOREPPC is used for that.
875 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
876 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
878 #define DLINFO_ARCH_ITEMS 5
879 #define ARCH_DLINFO \
881 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
883 * Handle glibc compatibility: these magic entries must \
884 * be at the lowest addresses in the final auxv. \
886 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
887 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
888 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
889 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
890 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
893 static inline void init_thread(struct target_pt_regs
*_regs
, struct image_info
*infop
)
895 _regs
->gpr
[1] = infop
->start_stack
;
896 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
897 if (get_ppc64_abi(infop
) < 2) {
899 get_user_u64(val
, infop
->entry
+ 8);
900 _regs
->gpr
[2] = val
+ infop
->load_bias
;
901 get_user_u64(val
, infop
->entry
);
902 infop
->entry
= val
+ infop
->load_bias
;
904 _regs
->gpr
[12] = infop
->entry
; /* r12 set to global entry address */
907 _regs
->nip
= infop
->entry
;
910 /* See linux kernel: arch/powerpc/include/asm/elf.h. */
912 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
914 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUPPCState
*env
)
917 target_ulong ccr
= 0;
919 for (i
= 0; i
< ARRAY_SIZE(env
->gpr
); i
++) {
920 (*regs
)[i
] = tswapreg(env
->gpr
[i
]);
923 (*regs
)[32] = tswapreg(env
->nip
);
924 (*regs
)[33] = tswapreg(env
->msr
);
925 (*regs
)[35] = tswapreg(env
->ctr
);
926 (*regs
)[36] = tswapreg(env
->lr
);
927 (*regs
)[37] = tswapreg(env
->xer
);
929 for (i
= 0; i
< ARRAY_SIZE(env
->crf
); i
++) {
930 ccr
|= env
->crf
[i
] << (32 - ((i
+ 1) * 4));
932 (*regs
)[38] = tswapreg(ccr
);
935 #define USE_ELF_CORE_DUMP
936 #define ELF_EXEC_PAGESIZE 4096
942 #define ELF_START_MMAP 0x80000000
945 #define ELF_CLASS ELFCLASS64
947 #define ELF_CLASS ELFCLASS32
949 #define ELF_ARCH EM_MIPS
951 #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS)
953 static inline void init_thread(struct target_pt_regs
*regs
,
954 struct image_info
*infop
)
956 regs
->cp0_status
= 2 << CP0St_KSU
;
957 regs
->cp0_epc
= infop
->entry
;
958 regs
->regs
[29] = infop
->start_stack
;
961 /* See linux kernel: arch/mips/include/asm/elf.h. */
963 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
965 /* See linux kernel: arch/mips/include/asm/reg.h. */
972 TARGET_EF_R26
= TARGET_EF_R0
+ 26,
973 TARGET_EF_R27
= TARGET_EF_R0
+ 27,
974 TARGET_EF_LO
= TARGET_EF_R0
+ 32,
975 TARGET_EF_HI
= TARGET_EF_R0
+ 33,
976 TARGET_EF_CP0_EPC
= TARGET_EF_R0
+ 34,
977 TARGET_EF_CP0_BADVADDR
= TARGET_EF_R0
+ 35,
978 TARGET_EF_CP0_STATUS
= TARGET_EF_R0
+ 36,
979 TARGET_EF_CP0_CAUSE
= TARGET_EF_R0
+ 37
982 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
983 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUMIPSState
*env
)
987 for (i
= 0; i
< TARGET_EF_R0
; i
++) {
990 (*regs
)[TARGET_EF_R0
] = 0;
992 for (i
= 1; i
< ARRAY_SIZE(env
->active_tc
.gpr
); i
++) {
993 (*regs
)[TARGET_EF_R0
+ i
] = tswapreg(env
->active_tc
.gpr
[i
]);
996 (*regs
)[TARGET_EF_R26
] = 0;
997 (*regs
)[TARGET_EF_R27
] = 0;
998 (*regs
)[TARGET_EF_LO
] = tswapreg(env
->active_tc
.LO
[0]);
999 (*regs
)[TARGET_EF_HI
] = tswapreg(env
->active_tc
.HI
[0]);
1000 (*regs
)[TARGET_EF_CP0_EPC
] = tswapreg(env
->active_tc
.PC
);
1001 (*regs
)[TARGET_EF_CP0_BADVADDR
] = tswapreg(env
->CP0_BadVAddr
);
1002 (*regs
)[TARGET_EF_CP0_STATUS
] = tswapreg(env
->CP0_Status
);
1003 (*regs
)[TARGET_EF_CP0_CAUSE
] = tswapreg(env
->CP0_Cause
);
1006 #define USE_ELF_CORE_DUMP
1007 #define ELF_EXEC_PAGESIZE 4096
1009 /* See arch/mips/include/uapi/asm/hwcap.h. */
1011 HWCAP_MIPS_R6
= (1 << 0),
1012 HWCAP_MIPS_MSA
= (1 << 1),
1015 #define ELF_HWCAP get_elf_hwcap()
1017 static uint32_t get_elf_hwcap(void)
1019 MIPSCPU
*cpu
= MIPS_CPU(thread_cpu
);
1020 uint32_t hwcaps
= 0;
1022 #define GET_FEATURE(flag, hwcap) \
1023 do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0)
1025 GET_FEATURE(ISA_MIPS32R6
| ISA_MIPS64R6
, HWCAP_MIPS_R6
);
1026 GET_FEATURE(ASE_MSA
, HWCAP_MIPS_MSA
);
1033 #endif /* TARGET_MIPS */
1035 #ifdef TARGET_MICROBLAZE
1037 #define ELF_START_MMAP 0x80000000
1039 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1041 #define ELF_CLASS ELFCLASS32
1042 #define ELF_ARCH EM_MICROBLAZE
1044 static inline void init_thread(struct target_pt_regs
*regs
,
1045 struct image_info
*infop
)
1047 regs
->pc
= infop
->entry
;
1048 regs
->r1
= infop
->start_stack
;
1052 #define ELF_EXEC_PAGESIZE 4096
1054 #define USE_ELF_CORE_DUMP
1056 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1058 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1059 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUMBState
*env
)
1063 for (i
= 0; i
< 32; i
++) {
1064 (*regs
)[pos
++] = tswapreg(env
->regs
[i
]);
1067 for (i
= 0; i
< 6; i
++) {
1068 (*regs
)[pos
++] = tswapreg(env
->sregs
[i
]);
1072 #endif /* TARGET_MICROBLAZE */
1076 #define ELF_START_MMAP 0x80000000
1078 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1080 #define ELF_CLASS ELFCLASS32
1081 #define ELF_ARCH EM_ALTERA_NIOS2
1083 static void init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
1085 regs
->ea
= infop
->entry
;
1086 regs
->sp
= infop
->start_stack
;
1087 regs
->estatus
= 0x3;
1090 #define ELF_EXEC_PAGESIZE 4096
1092 #define USE_ELF_CORE_DUMP
1094 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1096 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1097 static void elf_core_copy_regs(target_elf_gregset_t
*regs
,
1098 const CPUNios2State
*env
)
1103 for (i
= 1; i
< 8; i
++) /* r0-r7 */
1104 (*regs
)[i
] = tswapreg(env
->regs
[i
+ 7]);
1106 for (i
= 8; i
< 16; i
++) /* r8-r15 */
1107 (*regs
)[i
] = tswapreg(env
->regs
[i
- 8]);
1109 for (i
= 16; i
< 24; i
++) /* r16-r23 */
1110 (*regs
)[i
] = tswapreg(env
->regs
[i
+ 7]);
1111 (*regs
)[24] = -1; /* R_ET */
1112 (*regs
)[25] = -1; /* R_BT */
1113 (*regs
)[26] = tswapreg(env
->regs
[R_GP
]);
1114 (*regs
)[27] = tswapreg(env
->regs
[R_SP
]);
1115 (*regs
)[28] = tswapreg(env
->regs
[R_FP
]);
1116 (*regs
)[29] = tswapreg(env
->regs
[R_EA
]);
1117 (*regs
)[30] = -1; /* R_SSTATUS */
1118 (*regs
)[31] = tswapreg(env
->regs
[R_RA
]);
1120 (*regs
)[32] = tswapreg(env
->regs
[R_PC
]);
1122 (*regs
)[33] = -1; /* R_STATUS */
1123 (*regs
)[34] = tswapreg(env
->regs
[CR_ESTATUS
]);
1125 for (i
= 35; i
< 49; i
++) /* ... */
1129 #endif /* TARGET_NIOS2 */
1131 #ifdef TARGET_OPENRISC
1133 #define ELF_START_MMAP 0x08000000
1135 #define ELF_ARCH EM_OPENRISC
1136 #define ELF_CLASS ELFCLASS32
1137 #define ELF_DATA ELFDATA2MSB
1139 static inline void init_thread(struct target_pt_regs
*regs
,
1140 struct image_info
*infop
)
1142 regs
->pc
= infop
->entry
;
1143 regs
->gpr
[1] = infop
->start_stack
;
1146 #define USE_ELF_CORE_DUMP
1147 #define ELF_EXEC_PAGESIZE 8192
1149 /* See linux kernel arch/openrisc/include/asm/elf.h. */
1150 #define ELF_NREG 34 /* gprs and pc, sr */
1151 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1153 static void elf_core_copy_regs(target_elf_gregset_t
*regs
,
1154 const CPUOpenRISCState
*env
)
1158 for (i
= 0; i
< 32; i
++) {
1159 (*regs
)[i
] = tswapreg(cpu_get_gpr(env
, i
));
1161 (*regs
)[32] = tswapreg(env
->pc
);
1162 (*regs
)[33] = tswapreg(cpu_get_sr(env
));
1165 #define ELF_PLATFORM NULL
1167 #endif /* TARGET_OPENRISC */
1171 #define ELF_START_MMAP 0x80000000
1173 #define ELF_CLASS ELFCLASS32
1174 #define ELF_ARCH EM_SH
1176 static inline void init_thread(struct target_pt_regs
*regs
,
1177 struct image_info
*infop
)
1179 /* Check other registers XXXXX */
1180 regs
->pc
= infop
->entry
;
1181 regs
->regs
[15] = infop
->start_stack
;
1184 /* See linux kernel: arch/sh/include/asm/elf.h. */
1186 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1188 /* See linux kernel: arch/sh/include/asm/ptrace.h. */
1193 TARGET_REG_GBR
= 19,
1194 TARGET_REG_MACH
= 20,
1195 TARGET_REG_MACL
= 21,
1196 TARGET_REG_SYSCALL
= 22
1199 static inline void elf_core_copy_regs(target_elf_gregset_t
*regs
,
1200 const CPUSH4State
*env
)
1204 for (i
= 0; i
< 16; i
++) {
1205 (*regs
)[i
] = tswapreg(env
->gregs
[i
]);
1208 (*regs
)[TARGET_REG_PC
] = tswapreg(env
->pc
);
1209 (*regs
)[TARGET_REG_PR
] = tswapreg(env
->pr
);
1210 (*regs
)[TARGET_REG_SR
] = tswapreg(env
->sr
);
1211 (*regs
)[TARGET_REG_GBR
] = tswapreg(env
->gbr
);
1212 (*regs
)[TARGET_REG_MACH
] = tswapreg(env
->mach
);
1213 (*regs
)[TARGET_REG_MACL
] = tswapreg(env
->macl
);
1214 (*regs
)[TARGET_REG_SYSCALL
] = 0; /* FIXME */
1217 #define USE_ELF_CORE_DUMP
1218 #define ELF_EXEC_PAGESIZE 4096
1221 SH_CPU_HAS_FPU
= 0x0001, /* Hardware FPU support */
1222 SH_CPU_HAS_P2_FLUSH_BUG
= 0x0002, /* Need to flush the cache in P2 area */
1223 SH_CPU_HAS_MMU_PAGE_ASSOC
= 0x0004, /* SH3: TLB way selection bit support */
1224 SH_CPU_HAS_DSP
= 0x0008, /* SH-DSP: DSP support */
1225 SH_CPU_HAS_PERF_COUNTER
= 0x0010, /* Hardware performance counters */
1226 SH_CPU_HAS_PTEA
= 0x0020, /* PTEA register */
1227 SH_CPU_HAS_LLSC
= 0x0040, /* movli.l/movco.l */
1228 SH_CPU_HAS_L2_CACHE
= 0x0080, /* Secondary cache / URAM */
1229 SH_CPU_HAS_OP32
= 0x0100, /* 32-bit instruction support */
1230 SH_CPU_HAS_PTEAEX
= 0x0200, /* PTE ASID Extension support */
1233 #define ELF_HWCAP get_elf_hwcap()
1235 static uint32_t get_elf_hwcap(void)
1237 SuperHCPU
*cpu
= SUPERH_CPU(thread_cpu
);
1240 hwcap
|= SH_CPU_HAS_FPU
;
1242 if (cpu
->env
.features
& SH_FEATURE_SH4A
) {
1243 hwcap
|= SH_CPU_HAS_LLSC
;
1253 #define ELF_START_MMAP 0x80000000
1255 #define ELF_CLASS ELFCLASS32
1256 #define ELF_ARCH EM_CRIS
1258 static inline void init_thread(struct target_pt_regs
*regs
,
1259 struct image_info
*infop
)
1261 regs
->erp
= infop
->entry
;
1264 #define ELF_EXEC_PAGESIZE 8192
1270 #define ELF_START_MMAP 0x80000000
1272 #define ELF_CLASS ELFCLASS32
1273 #define ELF_ARCH EM_68K
1275 /* ??? Does this need to do anything?
1276 #define ELF_PLAT_INIT(_r) */
1278 static inline void init_thread(struct target_pt_regs
*regs
,
1279 struct image_info
*infop
)
1281 regs
->usp
= infop
->start_stack
;
1283 regs
->pc
= infop
->entry
;
1286 /* See linux kernel: arch/m68k/include/asm/elf.h. */
1288 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1290 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUM68KState
*env
)
1292 (*regs
)[0] = tswapreg(env
->dregs
[1]);
1293 (*regs
)[1] = tswapreg(env
->dregs
[2]);
1294 (*regs
)[2] = tswapreg(env
->dregs
[3]);
1295 (*regs
)[3] = tswapreg(env
->dregs
[4]);
1296 (*regs
)[4] = tswapreg(env
->dregs
[5]);
1297 (*regs
)[5] = tswapreg(env
->dregs
[6]);
1298 (*regs
)[6] = tswapreg(env
->dregs
[7]);
1299 (*regs
)[7] = tswapreg(env
->aregs
[0]);
1300 (*regs
)[8] = tswapreg(env
->aregs
[1]);
1301 (*regs
)[9] = tswapreg(env
->aregs
[2]);
1302 (*regs
)[10] = tswapreg(env
->aregs
[3]);
1303 (*regs
)[11] = tswapreg(env
->aregs
[4]);
1304 (*regs
)[12] = tswapreg(env
->aregs
[5]);
1305 (*regs
)[13] = tswapreg(env
->aregs
[6]);
1306 (*regs
)[14] = tswapreg(env
->dregs
[0]);
1307 (*regs
)[15] = tswapreg(env
->aregs
[7]);
1308 (*regs
)[16] = tswapreg(env
->dregs
[0]); /* FIXME: orig_d0 */
1309 (*regs
)[17] = tswapreg(env
->sr
);
1310 (*regs
)[18] = tswapreg(env
->pc
);
1311 (*regs
)[19] = 0; /* FIXME: regs->format | regs->vector */
1314 #define USE_ELF_CORE_DUMP
1315 #define ELF_EXEC_PAGESIZE 8192
1321 #define ELF_START_MMAP (0x30000000000ULL)
1323 #define ELF_CLASS ELFCLASS64
1324 #define ELF_ARCH EM_ALPHA
1326 static inline void init_thread(struct target_pt_regs
*regs
,
1327 struct image_info
*infop
)
1329 regs
->pc
= infop
->entry
;
1331 regs
->usp
= infop
->start_stack
;
1334 #define ELF_EXEC_PAGESIZE 8192
1336 #endif /* TARGET_ALPHA */
1340 #define ELF_START_MMAP (0x20000000000ULL)
1342 #define ELF_CLASS ELFCLASS64
1343 #define ELF_DATA ELFDATA2MSB
1344 #define ELF_ARCH EM_S390
1348 #define ELF_HWCAP get_elf_hwcap()
1350 #define GET_FEATURE(_feat, _hwcap) \
1351 do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1353 static uint32_t get_elf_hwcap(void)
1356 * Let's assume we always have esan3 and zarch.
1357 * 31-bit processes can use 64-bit registers (high gprs).
1359 uint32_t hwcap
= HWCAP_S390_ESAN3
| HWCAP_S390_ZARCH
| HWCAP_S390_HIGH_GPRS
;
1361 GET_FEATURE(S390_FEAT_STFLE
, HWCAP_S390_STFLE
);
1362 GET_FEATURE(S390_FEAT_MSA
, HWCAP_S390_MSA
);
1363 GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT
, HWCAP_S390_LDISP
);
1364 GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE
, HWCAP_S390_EIMM
);
1365 if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3
) &&
1366 s390_has_feat(S390_FEAT_ETF3_ENH
)) {
1367 hwcap
|= HWCAP_S390_ETF3EH
;
1369 GET_FEATURE(S390_FEAT_VECTOR
, HWCAP_S390_VXRS
);
1374 static inline void init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
1376 regs
->psw
.addr
= infop
->entry
;
1377 regs
->psw
.mask
= PSW_MASK_64
| PSW_MASK_32
;
1378 regs
->gprs
[15] = infop
->start_stack
;
1381 #endif /* TARGET_S390X */
1383 #ifdef TARGET_TILEGX
1385 /* 42 bits real used address, a half for user mode */
1386 #define ELF_START_MMAP (0x00000020000000000ULL)
1388 #define elf_check_arch(x) ((x) == EM_TILEGX)
1390 #define ELF_CLASS ELFCLASS64
1391 #define ELF_DATA ELFDATA2LSB
1392 #define ELF_ARCH EM_TILEGX
1394 static inline void init_thread(struct target_pt_regs
*regs
,
1395 struct image_info
*infop
)
1397 regs
->pc
= infop
->entry
;
1398 regs
->sp
= infop
->start_stack
;
1402 #define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */
1404 #endif /* TARGET_TILEGX */
1408 #define ELF_START_MMAP 0x80000000
1409 #define ELF_ARCH EM_RISCV
1411 #ifdef TARGET_RISCV32
1412 #define ELF_CLASS ELFCLASS32
1414 #define ELF_CLASS ELFCLASS64
1417 static inline void init_thread(struct target_pt_regs
*regs
,
1418 struct image_info
*infop
)
1420 regs
->sepc
= infop
->entry
;
1421 regs
->sp
= infop
->start_stack
;
1424 #define ELF_EXEC_PAGESIZE 4096
1426 #endif /* TARGET_RISCV */
1430 #define ELF_START_MMAP 0x80000000
1431 #define ELF_CLASS ELFCLASS32
1432 #define ELF_ARCH EM_PARISC
1433 #define ELF_PLATFORM "PARISC"
1434 #define STACK_GROWS_DOWN 0
1435 #define STACK_ALIGNMENT 64
1437 static inline void init_thread(struct target_pt_regs
*regs
,
1438 struct image_info
*infop
)
1440 regs
->iaoq
[0] = infop
->entry
;
1441 regs
->iaoq
[1] = infop
->entry
+ 4;
1443 regs
->gr
[24] = infop
->arg_start
;
1444 regs
->gr
[25] = (infop
->arg_end
- infop
->arg_start
) / sizeof(abi_ulong
);
1445 /* The top-of-stack contains a linkage buffer. */
1446 regs
->gr
[30] = infop
->start_stack
+ 64;
1447 regs
->gr
[31] = infop
->entry
;
1450 #endif /* TARGET_HPPA */
1452 #ifdef TARGET_XTENSA
1454 #define ELF_START_MMAP 0x20000000
1456 #define ELF_CLASS ELFCLASS32
1457 #define ELF_ARCH EM_XTENSA
1459 static inline void init_thread(struct target_pt_regs
*regs
,
1460 struct image_info
*infop
)
1462 regs
->windowbase
= 0;
1463 regs
->windowstart
= 1;
1464 regs
->areg
[1] = infop
->start_stack
;
1465 regs
->pc
= infop
->entry
;
1468 /* See linux kernel: arch/xtensa/include/asm/elf.h. */
1469 #define ELF_NREG 128
1470 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1479 TARGET_REG_WINDOWSTART
,
1480 TARGET_REG_WINDOWBASE
,
1481 TARGET_REG_THREADPTR
,
1482 TARGET_REG_AR0
= 64,
1485 static void elf_core_copy_regs(target_elf_gregset_t
*regs
,
1486 const CPUXtensaState
*env
)
1490 (*regs
)[TARGET_REG_PC
] = tswapreg(env
->pc
);
1491 (*regs
)[TARGET_REG_PS
] = tswapreg(env
->sregs
[PS
] & ~PS_EXCM
);
1492 (*regs
)[TARGET_REG_LBEG
] = tswapreg(env
->sregs
[LBEG
]);
1493 (*regs
)[TARGET_REG_LEND
] = tswapreg(env
->sregs
[LEND
]);
1494 (*regs
)[TARGET_REG_LCOUNT
] = tswapreg(env
->sregs
[LCOUNT
]);
1495 (*regs
)[TARGET_REG_SAR
] = tswapreg(env
->sregs
[SAR
]);
1496 (*regs
)[TARGET_REG_WINDOWSTART
] = tswapreg(env
->sregs
[WINDOW_START
]);
1497 (*regs
)[TARGET_REG_WINDOWBASE
] = tswapreg(env
->sregs
[WINDOW_BASE
]);
1498 (*regs
)[TARGET_REG_THREADPTR
] = tswapreg(env
->uregs
[THREADPTR
]);
1499 xtensa_sync_phys_from_window((CPUXtensaState
*)env
);
1500 for (i
= 0; i
< env
->config
->nareg
; ++i
) {
1501 (*regs
)[TARGET_REG_AR0
+ i
] = tswapreg(env
->phys_regs
[i
]);
1505 #define USE_ELF_CORE_DUMP
1506 #define ELF_EXEC_PAGESIZE 4096
1508 #endif /* TARGET_XTENSA */
1510 #ifndef ELF_PLATFORM
1511 #define ELF_PLATFORM (NULL)
1515 #define ELF_MACHINE ELF_ARCH
1518 #ifndef elf_check_arch
1519 #define elf_check_arch(x) ((x) == ELF_ARCH)
1526 #ifndef STACK_GROWS_DOWN
1527 #define STACK_GROWS_DOWN 1
1530 #ifndef STACK_ALIGNMENT
1531 #define STACK_ALIGNMENT 16
1536 #define ELF_CLASS ELFCLASS32
1538 #define bswaptls(ptr) bswap32s(ptr)
1545 unsigned int a_info
; /* Use macros N_MAGIC, etc for access */
1546 unsigned int a_text
; /* length of text, in bytes */
1547 unsigned int a_data
; /* length of data, in bytes */
1548 unsigned int a_bss
; /* length of uninitialized data area, in bytes */
1549 unsigned int a_syms
; /* length of symbol table data in file, in bytes */
1550 unsigned int a_entry
; /* start address */
1551 unsigned int a_trsize
; /* length of relocation info for text, in bytes */
1552 unsigned int a_drsize
; /* length of relocation info for data, in bytes */
1556 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1562 /* Necessary parameters */
1563 #define TARGET_ELF_EXEC_PAGESIZE \
1564 (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1565 TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1566 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
1567 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1568 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1569 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1571 #define DLINFO_ITEMS 15
1573 static inline void memcpy_fromfs(void * to
, const void * from
, unsigned long n
)
1575 memcpy(to
, from
, n
);
1579 static void bswap_ehdr(struct elfhdr
*ehdr
)
1581 bswap16s(&ehdr
->e_type
); /* Object file type */
1582 bswap16s(&ehdr
->e_machine
); /* Architecture */
1583 bswap32s(&ehdr
->e_version
); /* Object file version */
1584 bswaptls(&ehdr
->e_entry
); /* Entry point virtual address */
1585 bswaptls(&ehdr
->e_phoff
); /* Program header table file offset */
1586 bswaptls(&ehdr
->e_shoff
); /* Section header table file offset */
1587 bswap32s(&ehdr
->e_flags
); /* Processor-specific flags */
1588 bswap16s(&ehdr
->e_ehsize
); /* ELF header size in bytes */
1589 bswap16s(&ehdr
->e_phentsize
); /* Program header table entry size */
1590 bswap16s(&ehdr
->e_phnum
); /* Program header table entry count */
1591 bswap16s(&ehdr
->e_shentsize
); /* Section header table entry size */
1592 bswap16s(&ehdr
->e_shnum
); /* Section header table entry count */
1593 bswap16s(&ehdr
->e_shstrndx
); /* Section header string table index */
1596 static void bswap_phdr(struct elf_phdr
*phdr
, int phnum
)
1599 for (i
= 0; i
< phnum
; ++i
, ++phdr
) {
1600 bswap32s(&phdr
->p_type
); /* Segment type */
1601 bswap32s(&phdr
->p_flags
); /* Segment flags */
1602 bswaptls(&phdr
->p_offset
); /* Segment file offset */
1603 bswaptls(&phdr
->p_vaddr
); /* Segment virtual address */
1604 bswaptls(&phdr
->p_paddr
); /* Segment physical address */
1605 bswaptls(&phdr
->p_filesz
); /* Segment size in file */
1606 bswaptls(&phdr
->p_memsz
); /* Segment size in memory */
1607 bswaptls(&phdr
->p_align
); /* Segment alignment */
1611 static void bswap_shdr(struct elf_shdr
*shdr
, int shnum
)
1614 for (i
= 0; i
< shnum
; ++i
, ++shdr
) {
1615 bswap32s(&shdr
->sh_name
);
1616 bswap32s(&shdr
->sh_type
);
1617 bswaptls(&shdr
->sh_flags
);
1618 bswaptls(&shdr
->sh_addr
);
1619 bswaptls(&shdr
->sh_offset
);
1620 bswaptls(&shdr
->sh_size
);
1621 bswap32s(&shdr
->sh_link
);
1622 bswap32s(&shdr
->sh_info
);
1623 bswaptls(&shdr
->sh_addralign
);
1624 bswaptls(&shdr
->sh_entsize
);
1628 static void bswap_sym(struct elf_sym
*sym
)
1630 bswap32s(&sym
->st_name
);
1631 bswaptls(&sym
->st_value
);
1632 bswaptls(&sym
->st_size
);
1633 bswap16s(&sym
->st_shndx
);
1637 static void bswap_mips_abiflags(Mips_elf_abiflags_v0
*abiflags
)
1639 bswap16s(&abiflags
->version
);
1640 bswap32s(&abiflags
->ases
);
1641 bswap32s(&abiflags
->isa_ext
);
1642 bswap32s(&abiflags
->flags1
);
1643 bswap32s(&abiflags
->flags2
);
1647 static inline void bswap_ehdr(struct elfhdr
*ehdr
) { }
1648 static inline void bswap_phdr(struct elf_phdr
*phdr
, int phnum
) { }
1649 static inline void bswap_shdr(struct elf_shdr
*shdr
, int shnum
) { }
1650 static inline void bswap_sym(struct elf_sym
*sym
) { }
1652 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0
*abiflags
) { }
1656 #ifdef USE_ELF_CORE_DUMP
1657 static int elf_core_dump(int, const CPUArchState
*);
1658 #endif /* USE_ELF_CORE_DUMP */
1659 static void load_symbols(struct elfhdr
*hdr
, int fd
, abi_ulong load_bias
);
1661 /* Verify the portions of EHDR within E_IDENT for the target.
1662 This can be performed before bswapping the entire header. */
1663 static bool elf_check_ident(struct elfhdr
*ehdr
)
1665 return (ehdr
->e_ident
[EI_MAG0
] == ELFMAG0
1666 && ehdr
->e_ident
[EI_MAG1
] == ELFMAG1
1667 && ehdr
->e_ident
[EI_MAG2
] == ELFMAG2
1668 && ehdr
->e_ident
[EI_MAG3
] == ELFMAG3
1669 && ehdr
->e_ident
[EI_CLASS
] == ELF_CLASS
1670 && ehdr
->e_ident
[EI_DATA
] == ELF_DATA
1671 && ehdr
->e_ident
[EI_VERSION
] == EV_CURRENT
);
1674 /* Verify the portions of EHDR outside of E_IDENT for the target.
1675 This has to wait until after bswapping the header. */
1676 static bool elf_check_ehdr(struct elfhdr
*ehdr
)
1678 return (elf_check_arch(ehdr
->e_machine
)
1679 && ehdr
->e_ehsize
== sizeof(struct elfhdr
)
1680 && ehdr
->e_phentsize
== sizeof(struct elf_phdr
)
1681 && (ehdr
->e_type
== ET_EXEC
|| ehdr
->e_type
== ET_DYN
));
1685 * 'copy_elf_strings()' copies argument/envelope strings from user
1686 * memory to free pages in kernel mem. These are in a format ready
1687 * to be put directly into the top of new user memory.
1690 static abi_ulong
copy_elf_strings(int argc
, char **argv
, char *scratch
,
1691 abi_ulong p
, abi_ulong stack_limit
)
1698 return 0; /* bullet-proofing */
1701 if (STACK_GROWS_DOWN
) {
1702 int offset
= ((p
- 1) % TARGET_PAGE_SIZE
) + 1;
1703 for (i
= argc
- 1; i
>= 0; --i
) {
1706 fprintf(stderr
, "VFS: argc is wrong");
1709 len
= strlen(tmp
) + 1;
1712 if (len
> (p
- stack_limit
)) {
1716 int bytes_to_copy
= (len
> offset
) ? offset
: len
;
1717 tmp
-= bytes_to_copy
;
1719 offset
-= bytes_to_copy
;
1720 len
-= bytes_to_copy
;
1722 memcpy_fromfs(scratch
+ offset
, tmp
, bytes_to_copy
);
1725 memcpy_to_target(p
, scratch
, top
- p
);
1727 offset
= TARGET_PAGE_SIZE
;
1732 memcpy_to_target(p
, scratch
+ offset
, top
- p
);
1735 int remaining
= TARGET_PAGE_SIZE
- (p
% TARGET_PAGE_SIZE
);
1736 for (i
= 0; i
< argc
; ++i
) {
1739 fprintf(stderr
, "VFS: argc is wrong");
1742 len
= strlen(tmp
) + 1;
1743 if (len
> (stack_limit
- p
)) {
1747 int bytes_to_copy
= (len
> remaining
) ? remaining
: len
;
1749 memcpy_fromfs(scratch
+ (p
- top
), tmp
, bytes_to_copy
);
1751 tmp
+= bytes_to_copy
;
1752 remaining
-= bytes_to_copy
;
1754 len
-= bytes_to_copy
;
1756 if (remaining
== 0) {
1757 memcpy_to_target(top
, scratch
, p
- top
);
1759 remaining
= TARGET_PAGE_SIZE
;
1764 memcpy_to_target(top
, scratch
, p
- top
);
1771 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1772 * argument/environment space. Newer kernels (>2.6.33) allow more,
1773 * dependent on stack size, but guarantee at least 32 pages for
1774 * backwards compatibility.
1776 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1778 static abi_ulong
setup_arg_pages(struct linux_binprm
*bprm
,
1779 struct image_info
*info
)
1781 abi_ulong size
, error
, guard
;
1783 size
= guest_stack_size
;
1784 if (size
< STACK_LOWER_LIMIT
) {
1785 size
= STACK_LOWER_LIMIT
;
1787 guard
= TARGET_PAGE_SIZE
;
1788 if (guard
< qemu_real_host_page_size
) {
1789 guard
= qemu_real_host_page_size
;
1792 error
= target_mmap(0, size
+ guard
, PROT_READ
| PROT_WRITE
,
1793 MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
1795 perror("mmap stack");
1799 /* We reserve one extra page at the top of the stack as guard. */
1800 if (STACK_GROWS_DOWN
) {
1801 target_mprotect(error
, guard
, PROT_NONE
);
1802 info
->stack_limit
= error
+ guard
;
1803 return info
->stack_limit
+ size
- sizeof(void *);
1805 target_mprotect(error
+ size
, guard
, PROT_NONE
);
1806 info
->stack_limit
= error
+ size
;
1811 /* Map and zero the bss. We need to explicitly zero any fractional pages
1812 after the data section (i.e. bss). */
1813 static void zero_bss(abi_ulong elf_bss
, abi_ulong last_bss
, int prot
)
1815 uintptr_t host_start
, host_map_start
, host_end
;
1817 last_bss
= TARGET_PAGE_ALIGN(last_bss
);
1819 /* ??? There is confusion between qemu_real_host_page_size and
1820 qemu_host_page_size here and elsewhere in target_mmap, which
1821 may lead to the end of the data section mapping from the file
1822 not being mapped. At least there was an explicit test and
1823 comment for that here, suggesting that "the file size must
1824 be known". The comment probably pre-dates the introduction
1825 of the fstat system call in target_mmap which does in fact
1826 find out the size. What isn't clear is if the workaround
1827 here is still actually needed. For now, continue with it,
1828 but merge it with the "normal" mmap that would allocate the bss. */
1830 host_start
= (uintptr_t) g2h(elf_bss
);
1831 host_end
= (uintptr_t) g2h(last_bss
);
1832 host_map_start
= REAL_HOST_PAGE_ALIGN(host_start
);
1834 if (host_map_start
< host_end
) {
1835 void *p
= mmap((void *)host_map_start
, host_end
- host_map_start
,
1836 prot
, MAP_FIXED
| MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
1837 if (p
== MAP_FAILED
) {
1838 perror("cannot mmap brk");
1843 /* Ensure that the bss page(s) are valid */
1844 if ((page_get_flags(last_bss
-1) & prot
) != prot
) {
1845 page_set_flags(elf_bss
& TARGET_PAGE_MASK
, last_bss
, prot
| PAGE_VALID
);
1848 if (host_start
< host_map_start
) {
1849 memset((void *)host_start
, 0, host_map_start
- host_start
);
1854 static int elf_is_fdpic(struct elfhdr
*exec
)
1856 return exec
->e_ident
[EI_OSABI
] == ELFOSABI_ARM_FDPIC
;
1859 /* Default implementation, always false. */
1860 static int elf_is_fdpic(struct elfhdr
*exec
)
1866 static abi_ulong
loader_build_fdpic_loadmap(struct image_info
*info
, abi_ulong sp
)
1869 struct elf32_fdpic_loadseg
*loadsegs
= info
->loadsegs
;
1871 /* elf32_fdpic_loadseg */
1875 put_user_u32(loadsegs
[n
].addr
, sp
+0);
1876 put_user_u32(loadsegs
[n
].p_vaddr
, sp
+4);
1877 put_user_u32(loadsegs
[n
].p_memsz
, sp
+8);
1880 /* elf32_fdpic_loadmap */
1882 put_user_u16(0, sp
+0); /* version */
1883 put_user_u16(info
->nsegs
, sp
+2); /* nsegs */
1885 info
->personality
= PER_LINUX_FDPIC
;
1886 info
->loadmap_addr
= sp
;
1891 static abi_ulong
create_elf_tables(abi_ulong p
, int argc
, int envc
,
1892 struct elfhdr
*exec
,
1893 struct image_info
*info
,
1894 struct image_info
*interp_info
)
1897 abi_ulong u_argc
, u_argv
, u_envp
, u_auxv
;
1900 abi_ulong u_rand_bytes
;
1901 uint8_t k_rand_bytes
[16];
1902 abi_ulong u_platform
;
1903 const char *k_platform
;
1904 const int n
= sizeof(elf_addr_t
);
1908 /* Needs to be before we load the env/argc/... */
1909 if (elf_is_fdpic(exec
)) {
1910 /* Need 4 byte alignment for these structs */
1912 sp
= loader_build_fdpic_loadmap(info
, sp
);
1913 info
->other_info
= interp_info
;
1915 interp_info
->other_info
= info
;
1916 sp
= loader_build_fdpic_loadmap(interp_info
, sp
);
1917 info
->interpreter_loadmap_addr
= interp_info
->loadmap_addr
;
1918 info
->interpreter_pt_dynamic_addr
= interp_info
->pt_dynamic_addr
;
1920 info
->interpreter_loadmap_addr
= 0;
1921 info
->interpreter_pt_dynamic_addr
= 0;
1926 k_platform
= ELF_PLATFORM
;
1928 size_t len
= strlen(k_platform
) + 1;
1929 if (STACK_GROWS_DOWN
) {
1930 sp
-= (len
+ n
- 1) & ~(n
- 1);
1932 /* FIXME - check return value of memcpy_to_target() for failure */
1933 memcpy_to_target(sp
, k_platform
, len
);
1935 memcpy_to_target(sp
, k_platform
, len
);
1941 /* Provide 16 byte alignment for the PRNG, and basic alignment for
1942 * the argv and envp pointers.
1944 if (STACK_GROWS_DOWN
) {
1945 sp
= QEMU_ALIGN_DOWN(sp
, 16);
1947 sp
= QEMU_ALIGN_UP(sp
, 16);
1951 * Generate 16 random bytes for userspace PRNG seeding.
1953 qemu_guest_getrandom_nofail(k_rand_bytes
, sizeof(k_rand_bytes
));
1954 if (STACK_GROWS_DOWN
) {
1957 /* FIXME - check return value of memcpy_to_target() for failure */
1958 memcpy_to_target(sp
, k_rand_bytes
, 16);
1960 memcpy_to_target(sp
, k_rand_bytes
, 16);
1965 size
= (DLINFO_ITEMS
+ 1) * 2;
1968 #ifdef DLINFO_ARCH_ITEMS
1969 size
+= DLINFO_ARCH_ITEMS
* 2;
1974 info
->auxv_len
= size
* n
;
1976 size
+= envc
+ argc
+ 2;
1977 size
+= 1; /* argc itself */
1980 /* Allocate space and finalize stack alignment for entry now. */
1981 if (STACK_GROWS_DOWN
) {
1982 u_argc
= QEMU_ALIGN_DOWN(sp
- size
, STACK_ALIGNMENT
);
1986 sp
= QEMU_ALIGN_UP(sp
+ size
, STACK_ALIGNMENT
);
1989 u_argv
= u_argc
+ n
;
1990 u_envp
= u_argv
+ (argc
+ 1) * n
;
1991 u_auxv
= u_envp
+ (envc
+ 1) * n
;
1992 info
->saved_auxv
= u_auxv
;
1993 info
->arg_start
= u_argv
;
1994 info
->arg_end
= u_argv
+ argc
* n
;
1996 /* This is correct because Linux defines
1997 * elf_addr_t as Elf32_Off / Elf64_Off
1999 #define NEW_AUX_ENT(id, val) do { \
2000 put_user_ual(id, u_auxv); u_auxv += n; \
2001 put_user_ual(val, u_auxv); u_auxv += n; \
2006 * ARCH_DLINFO must come first so platform specific code can enforce
2007 * special alignment requirements on the AUXV if necessary (eg. PPC).
2011 /* There must be exactly DLINFO_ITEMS entries here, or the assert
2012 * on info->auxv_len will trigger.
2014 NEW_AUX_ENT(AT_PHDR
, (abi_ulong
)(info
->load_addr
+ exec
->e_phoff
));
2015 NEW_AUX_ENT(AT_PHENT
, (abi_ulong
)(sizeof (struct elf_phdr
)));
2016 NEW_AUX_ENT(AT_PHNUM
, (abi_ulong
)(exec
->e_phnum
));
2017 if ((info
->alignment
& ~qemu_host_page_mask
) != 0) {
2018 /* Target doesn't support host page size alignment */
2019 NEW_AUX_ENT(AT_PAGESZ
, (abi_ulong
)(TARGET_PAGE_SIZE
));
2021 NEW_AUX_ENT(AT_PAGESZ
, (abi_ulong
)(MAX(TARGET_PAGE_SIZE
,
2022 qemu_host_page_size
)));
2024 NEW_AUX_ENT(AT_BASE
, (abi_ulong
)(interp_info
? interp_info
->load_addr
: 0));
2025 NEW_AUX_ENT(AT_FLAGS
, (abi_ulong
)0);
2026 NEW_AUX_ENT(AT_ENTRY
, info
->entry
);
2027 NEW_AUX_ENT(AT_UID
, (abi_ulong
) getuid());
2028 NEW_AUX_ENT(AT_EUID
, (abi_ulong
) geteuid());
2029 NEW_AUX_ENT(AT_GID
, (abi_ulong
) getgid());
2030 NEW_AUX_ENT(AT_EGID
, (abi_ulong
) getegid());
2031 NEW_AUX_ENT(AT_HWCAP
, (abi_ulong
) ELF_HWCAP
);
2032 NEW_AUX_ENT(AT_CLKTCK
, (abi_ulong
) sysconf(_SC_CLK_TCK
));
2033 NEW_AUX_ENT(AT_RANDOM
, (abi_ulong
) u_rand_bytes
);
2034 NEW_AUX_ENT(AT_SECURE
, (abi_ulong
) qemu_getauxval(AT_SECURE
));
2037 NEW_AUX_ENT(AT_HWCAP2
, (abi_ulong
) ELF_HWCAP2
);
2041 NEW_AUX_ENT(AT_PLATFORM
, u_platform
);
2043 NEW_AUX_ENT (AT_NULL
, 0);
2046 /* Check that our initial calculation of the auxv length matches how much
2047 * we actually put into it.
2049 assert(info
->auxv_len
== u_auxv
- info
->saved_auxv
);
2051 put_user_ual(argc
, u_argc
);
2053 p
= info
->arg_strings
;
2054 for (i
= 0; i
< argc
; ++i
) {
2055 put_user_ual(p
, u_argv
);
2057 p
+= target_strlen(p
) + 1;
2059 put_user_ual(0, u_argv
);
2061 p
= info
->env_strings
;
2062 for (i
= 0; i
< envc
; ++i
) {
2063 put_user_ual(p
, u_envp
);
2065 p
+= target_strlen(p
) + 1;
2067 put_user_ual(0, u_envp
);
2072 unsigned long init_guest_space(unsigned long host_start
,
2073 unsigned long host_size
,
2074 unsigned long guest_start
,
2077 /* In order to use host shmat, we must be able to honor SHMLBA. */
2078 unsigned long align
= MAX(SHMLBA
, qemu_host_page_size
);
2079 unsigned long current_start
, aligned_start
;
2082 assert(host_start
|| host_size
);
2084 /* If just a starting address is given, then just verify that
2086 if (host_start
&& !host_size
) {
2087 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
2088 if (init_guest_commpage(host_start
, host_size
) != 1) {
2089 return (unsigned long)-1;
2095 /* Setup the initial flags and start address. */
2096 current_start
= host_start
& -align
;
2097 flags
= MAP_ANONYMOUS
| MAP_PRIVATE
| MAP_NORESERVE
;
2102 /* Otherwise, a non-zero size region of memory needs to be mapped
2105 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
2106 /* On 32-bit ARM, we need to map not just the usable memory, but
2107 * also the commpage. Try to find a suitable place by allocating
2108 * a big chunk for all of it. If host_start, then the naive
2109 * strategy probably does good enough.
2112 unsigned long guest_full_size
, host_full_size
, real_start
;
2115 (0xffff0f00 & qemu_host_page_mask
) + qemu_host_page_size
;
2116 host_full_size
= guest_full_size
- guest_start
;
2117 real_start
= (unsigned long)
2118 mmap(NULL
, host_full_size
, PROT_NONE
, flags
, -1, 0);
2119 if (real_start
== (unsigned long)-1) {
2120 if (host_size
< host_full_size
- qemu_host_page_size
) {
2121 /* We failed to map a continous segment, but we're
2122 * allowed to have a gap between the usable memory and
2123 * the commpage where other things can be mapped.
2124 * This sparseness gives us more flexibility to find
2129 return (unsigned long)-1;
2131 munmap((void *)real_start
, host_full_size
);
2132 if (real_start
& (align
- 1)) {
2133 /* The same thing again, but with extra
2134 * so that we can shift around alignment.
2136 unsigned long real_size
= host_full_size
+ qemu_host_page_size
;
2137 real_start
= (unsigned long)
2138 mmap(NULL
, real_size
, PROT_NONE
, flags
, -1, 0);
2139 if (real_start
== (unsigned long)-1) {
2140 if (host_size
< host_full_size
- qemu_host_page_size
) {
2143 return (unsigned long)-1;
2145 munmap((void *)real_start
, real_size
);
2146 real_start
= ROUND_UP(real_start
, align
);
2148 current_start
= real_start
;
2154 unsigned long real_start
, real_size
, aligned_size
;
2155 aligned_size
= real_size
= host_size
;
2157 /* Do not use mmap_find_vma here because that is limited to the
2158 * guest address space. We are going to make the
2159 * guest address space fit whatever we're given.
2161 real_start
= (unsigned long)
2162 mmap((void *)current_start
, host_size
, PROT_NONE
, flags
, -1, 0);
2163 if (real_start
== (unsigned long)-1) {
2164 return (unsigned long)-1;
2167 /* Check to see if the address is valid. */
2168 if (host_start
&& real_start
!= current_start
) {
2172 /* Ensure the address is properly aligned. */
2173 if (real_start
& (align
- 1)) {
2174 /* Ideally, we adjust like
2176 * pages: [ ][ ][ ][ ][ ]
2182 * But if there is something else mapped right after it,
2183 * then obviously it won't have room to grow, and the
2184 * kernel will put the new larger real someplace else with
2185 * unknown alignment (if we made it to here, then
2186 * fixed=false). Which is why we grow real by a full page
2187 * size, instead of by part of one; so that even if we get
2188 * moved, we can still guarantee alignment. But this does
2189 * mean that there is a padding of < 1 page both before
2190 * and after the aligned range; the "after" could could
2191 * cause problems for ARM emulation where it could butt in
2192 * to where we need to put the commpage.
2194 munmap((void *)real_start
, host_size
);
2195 real_size
= aligned_size
+ align
;
2196 real_start
= (unsigned long)
2197 mmap((void *)real_start
, real_size
, PROT_NONE
, flags
, -1, 0);
2198 if (real_start
== (unsigned long)-1) {
2199 return (unsigned long)-1;
2201 aligned_start
= ROUND_UP(real_start
, align
);
2203 aligned_start
= real_start
;
2206 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
2207 /* On 32-bit ARM, we need to also be able to map the commpage. */
2208 int valid
= init_guest_commpage(aligned_start
- guest_start
,
2209 aligned_size
+ guest_start
);
2211 munmap((void *)real_start
, real_size
);
2212 return (unsigned long)-1;
2213 } else if (valid
== 0) {
2218 /* If nothing has said `return -1` or `goto try_again` yet,
2219 * then the address we have is good.
2224 /* That address didn't work. Unmap and try a different one.
2225 * The address the host picked because is typically right at
2226 * the top of the host address space and leaves the guest with
2227 * no usable address space. Resort to a linear search. We
2228 * already compensated for mmap_min_addr, so this should not
2229 * happen often. Probably means we got unlucky and host
2230 * address space randomization put a shared library somewhere
2233 * This is probably a good strategy if host_start, but is
2234 * probably a bad strategy if not, which means we got here
2235 * because of trouble with ARM commpage setup.
2237 munmap((void *)real_start
, real_size
);
2238 current_start
+= align
;
2239 if (host_start
== current_start
) {
2240 /* Theoretically possible if host doesn't have any suitably
2241 * aligned areas. Normally the first mmap will fail.
2243 return (unsigned long)-1;
2247 qemu_log_mask(CPU_LOG_PAGE
, "Reserved 0x%lx bytes of guest address space\n", host_size
);
2249 return aligned_start
;
2252 static void probe_guest_base(const char *image_name
,
2253 abi_ulong loaddr
, abi_ulong hiaddr
)
2255 /* Probe for a suitable guest base address, if the user has not set
2256 * it explicitly, and set guest_base appropriately.
2257 * In case of error we will print a suitable message and exit.
2260 if (!have_guest_base
&& !reserved_va
) {
2261 unsigned long host_start
, real_start
, host_size
;
2263 /* Round addresses to page boundaries. */
2264 loaddr
&= qemu_host_page_mask
;
2265 hiaddr
= HOST_PAGE_ALIGN(hiaddr
);
2267 if (loaddr
< mmap_min_addr
) {
2268 host_start
= HOST_PAGE_ALIGN(mmap_min_addr
);
2270 host_start
= loaddr
;
2271 if (host_start
!= loaddr
) {
2272 errmsg
= "Address overflow loading ELF binary";
2276 host_size
= hiaddr
- loaddr
;
2278 /* Setup the initial guest memory space with ranges gleaned from
2279 * the ELF image that is being loaded.
2281 real_start
= init_guest_space(host_start
, host_size
, loaddr
, false);
2282 if (real_start
== (unsigned long)-1) {
2283 errmsg
= "Unable to find space for application";
2286 guest_base
= real_start
- loaddr
;
2288 qemu_log_mask(CPU_LOG_PAGE
, "Relocating guest address space from 0x"
2289 TARGET_ABI_FMT_lx
" to 0x%lx\n",
2290 loaddr
, real_start
);
2295 fprintf(stderr
, "%s: %s\n", image_name
, errmsg
);
2300 /* Load an ELF image into the address space.
2302 IMAGE_NAME is the filename of the image, to use in error messages.
2303 IMAGE_FD is the open file descriptor for the image.
2305 BPRM_BUF is a copy of the beginning of the file; this of course
2306 contains the elf file header at offset 0. It is assumed that this
2307 buffer is sufficiently aligned to present no problems to the host
2308 in accessing data at aligned offsets within the buffer.
2310 On return: INFO values will be filled in, as necessary or available. */
2312 static void load_elf_image(const char *image_name
, int image_fd
,
2313 struct image_info
*info
, char **pinterp_name
,
2314 char bprm_buf
[BPRM_BUF_SIZE
])
2316 struct elfhdr
*ehdr
= (struct elfhdr
*)bprm_buf
;
2317 struct elf_phdr
*phdr
;
2318 abi_ulong load_addr
, load_bias
, loaddr
, hiaddr
, error
;
2322 /* First of all, some simple consistency checks */
2323 errmsg
= "Invalid ELF image for this architecture";
2324 if (!elf_check_ident(ehdr
)) {
2328 if (!elf_check_ehdr(ehdr
)) {
2332 i
= ehdr
->e_phnum
* sizeof(struct elf_phdr
);
2333 if (ehdr
->e_phoff
+ i
<= BPRM_BUF_SIZE
) {
2334 phdr
= (struct elf_phdr
*)(bprm_buf
+ ehdr
->e_phoff
);
2336 phdr
= (struct elf_phdr
*) alloca(i
);
2337 retval
= pread(image_fd
, phdr
, i
, ehdr
->e_phoff
);
2342 bswap_phdr(phdr
, ehdr
->e_phnum
);
2345 info
->pt_dynamic_addr
= 0;
2349 /* Find the maximum size of the image and allocate an appropriate
2350 amount of memory to handle that. */
2351 loaddr
= -1, hiaddr
= 0;
2352 info
->alignment
= 0;
2353 for (i
= 0; i
< ehdr
->e_phnum
; ++i
) {
2354 if (phdr
[i
].p_type
== PT_LOAD
) {
2355 abi_ulong a
= phdr
[i
].p_vaddr
- phdr
[i
].p_offset
;
2359 a
= phdr
[i
].p_vaddr
+ phdr
[i
].p_memsz
;
2364 info
->alignment
|= phdr
[i
].p_align
;
2368 if (pinterp_name
!= NULL
) {
2370 * This is the main executable.
2372 * Reserve extra space for brk.
2373 * We hold on to this space while placing the interpreter
2374 * and the stack, lest they be placed immediately after
2375 * the data segment and block allocation from the brk.
2377 * 16MB is chosen as "large enough" without being so large
2378 * as to allow the result to not fit with a 32-bit guest on
2381 info
->reserve_brk
= 16 * MiB
;
2382 hiaddr
+= info
->reserve_brk
;
2384 if (ehdr
->e_type
== ET_EXEC
) {
2386 * Make sure that the low address does not conflict with
2387 * MMAP_MIN_ADDR or the QEMU application itself.
2389 probe_guest_base(image_name
, loaddr
, hiaddr
);
2394 * Reserve address space for all of this.
2396 * In the case of ET_EXEC, we supply MAP_FIXED so that we get
2397 * exactly the address range that is required.
2399 * Otherwise this is ET_DYN, and we are searching for a location
2400 * that can hold the memory space required. If the image is
2401 * pre-linked, LOADDR will be non-zero, and the kernel should
2402 * honor that address if it happens to be free.
2404 * In both cases, we will overwrite pages in this range with mappings
2405 * from the executable.
2407 load_addr
= target_mmap(loaddr
, hiaddr
- loaddr
, PROT_NONE
,
2408 MAP_PRIVATE
| MAP_ANON
| MAP_NORESERVE
|
2409 (ehdr
->e_type
== ET_EXEC
? MAP_FIXED
: 0),
2411 if (load_addr
== -1) {
2414 load_bias
= load_addr
- loaddr
;
2416 if (elf_is_fdpic(ehdr
)) {
2417 struct elf32_fdpic_loadseg
*loadsegs
= info
->loadsegs
=
2418 g_malloc(sizeof(*loadsegs
) * info
->nsegs
);
2420 for (i
= 0; i
< ehdr
->e_phnum
; ++i
) {
2421 switch (phdr
[i
].p_type
) {
2423 info
->pt_dynamic_addr
= phdr
[i
].p_vaddr
+ load_bias
;
2426 loadsegs
->addr
= phdr
[i
].p_vaddr
+ load_bias
;
2427 loadsegs
->p_vaddr
= phdr
[i
].p_vaddr
;
2428 loadsegs
->p_memsz
= phdr
[i
].p_memsz
;
2435 info
->load_bias
= load_bias
;
2436 info
->code_offset
= load_bias
;
2437 info
->data_offset
= load_bias
;
2438 info
->load_addr
= load_addr
;
2439 info
->entry
= ehdr
->e_entry
+ load_bias
;
2440 info
->start_code
= -1;
2442 info
->start_data
= -1;
2445 info
->elf_flags
= ehdr
->e_flags
;
2447 for (i
= 0; i
< ehdr
->e_phnum
; i
++) {
2448 struct elf_phdr
*eppnt
= phdr
+ i
;
2449 if (eppnt
->p_type
== PT_LOAD
) {
2450 abi_ulong vaddr
, vaddr_po
, vaddr_ps
, vaddr_ef
, vaddr_em
, vaddr_len
;
2453 if (eppnt
->p_flags
& PF_R
) elf_prot
= PROT_READ
;
2454 if (eppnt
->p_flags
& PF_W
) elf_prot
|= PROT_WRITE
;
2455 if (eppnt
->p_flags
& PF_X
) elf_prot
|= PROT_EXEC
;
2457 vaddr
= load_bias
+ eppnt
->p_vaddr
;
2458 vaddr_po
= TARGET_ELF_PAGEOFFSET(vaddr
);
2459 vaddr_ps
= TARGET_ELF_PAGESTART(vaddr
);
2460 vaddr_len
= TARGET_ELF_PAGELENGTH(eppnt
->p_filesz
+ vaddr_po
);
2463 * Some segments may be completely empty without any backing file
2464 * segment, in that case just let zero_bss allocate an empty buffer
2467 if (eppnt
->p_filesz
!= 0) {
2468 error
= target_mmap(vaddr_ps
, vaddr_len
, elf_prot
,
2469 MAP_PRIVATE
| MAP_FIXED
,
2470 image_fd
, eppnt
->p_offset
- vaddr_po
);
2477 vaddr_ef
= vaddr
+ eppnt
->p_filesz
;
2478 vaddr_em
= vaddr
+ eppnt
->p_memsz
;
2480 /* If the load segment requests extra zeros (e.g. bss), map it. */
2481 if (vaddr_ef
< vaddr_em
) {
2482 zero_bss(vaddr_ef
, vaddr_em
, elf_prot
);
2485 /* Find the full program boundaries. */
2486 if (elf_prot
& PROT_EXEC
) {
2487 if (vaddr
< info
->start_code
) {
2488 info
->start_code
= vaddr
;
2490 if (vaddr_ef
> info
->end_code
) {
2491 info
->end_code
= vaddr_ef
;
2494 if (elf_prot
& PROT_WRITE
) {
2495 if (vaddr
< info
->start_data
) {
2496 info
->start_data
= vaddr
;
2498 if (vaddr_ef
> info
->end_data
) {
2499 info
->end_data
= vaddr_ef
;
2501 if (vaddr_em
> info
->brk
) {
2502 info
->brk
= vaddr_em
;
2505 } else if (eppnt
->p_type
== PT_INTERP
&& pinterp_name
) {
2508 if (*pinterp_name
) {
2509 errmsg
= "Multiple PT_INTERP entries";
2512 interp_name
= malloc(eppnt
->p_filesz
);
2517 if (eppnt
->p_offset
+ eppnt
->p_filesz
<= BPRM_BUF_SIZE
) {
2518 memcpy(interp_name
, bprm_buf
+ eppnt
->p_offset
,
2521 retval
= pread(image_fd
, interp_name
, eppnt
->p_filesz
,
2523 if (retval
!= eppnt
->p_filesz
) {
2527 if (interp_name
[eppnt
->p_filesz
- 1] != 0) {
2528 errmsg
= "Invalid PT_INTERP entry";
2531 *pinterp_name
= interp_name
;
2533 } else if (eppnt
->p_type
== PT_MIPS_ABIFLAGS
) {
2534 Mips_elf_abiflags_v0 abiflags
;
2535 if (eppnt
->p_filesz
< sizeof(Mips_elf_abiflags_v0
)) {
2536 errmsg
= "Invalid PT_MIPS_ABIFLAGS entry";
2539 if (eppnt
->p_offset
+ eppnt
->p_filesz
<= BPRM_BUF_SIZE
) {
2540 memcpy(&abiflags
, bprm_buf
+ eppnt
->p_offset
,
2541 sizeof(Mips_elf_abiflags_v0
));
2543 retval
= pread(image_fd
, &abiflags
, sizeof(Mips_elf_abiflags_v0
),
2545 if (retval
!= sizeof(Mips_elf_abiflags_v0
)) {
2549 bswap_mips_abiflags(&abiflags
);
2550 info
->fp_abi
= abiflags
.fp_abi
;
2555 if (info
->end_data
== 0) {
2556 info
->start_data
= info
->end_code
;
2557 info
->end_data
= info
->end_code
;
2558 info
->brk
= info
->end_code
;
2561 if (qemu_log_enabled()) {
2562 load_symbols(ehdr
, image_fd
, load_bias
);
2572 errmsg
= "Incomplete read of file header";
2576 errmsg
= strerror(errno
);
2578 fprintf(stderr
, "%s: %s\n", image_name
, errmsg
);
2582 static void load_elf_interp(const char *filename
, struct image_info
*info
,
2583 char bprm_buf
[BPRM_BUF_SIZE
])
2587 fd
= open(path(filename
), O_RDONLY
);
2592 retval
= read(fd
, bprm_buf
, BPRM_BUF_SIZE
);
2596 if (retval
< BPRM_BUF_SIZE
) {
2597 memset(bprm_buf
+ retval
, 0, BPRM_BUF_SIZE
- retval
);
2600 load_elf_image(filename
, fd
, info
, NULL
, bprm_buf
);
2604 fprintf(stderr
, "%s: %s\n", filename
, strerror(errno
));
2608 static int symfind(const void *s0
, const void *s1
)
2610 target_ulong addr
= *(target_ulong
*)s0
;
2611 struct elf_sym
*sym
= (struct elf_sym
*)s1
;
2613 if (addr
< sym
->st_value
) {
2615 } else if (addr
>= sym
->st_value
+ sym
->st_size
) {
2621 static const char *lookup_symbolxx(struct syminfo
*s
, target_ulong orig_addr
)
2623 #if ELF_CLASS == ELFCLASS32
2624 struct elf_sym
*syms
= s
->disas_symtab
.elf32
;
2626 struct elf_sym
*syms
= s
->disas_symtab
.elf64
;
2630 struct elf_sym
*sym
;
2632 sym
= bsearch(&orig_addr
, syms
, s
->disas_num_syms
, sizeof(*syms
), symfind
);
2634 return s
->disas_strtab
+ sym
->st_name
;
2640 /* FIXME: This should use elf_ops.h */
2641 static int symcmp(const void *s0
, const void *s1
)
2643 struct elf_sym
*sym0
= (struct elf_sym
*)s0
;
2644 struct elf_sym
*sym1
= (struct elf_sym
*)s1
;
2645 return (sym0
->st_value
< sym1
->st_value
)
2647 : ((sym0
->st_value
> sym1
->st_value
) ? 1 : 0);
2650 /* Best attempt to load symbols from this ELF object. */
2651 static void load_symbols(struct elfhdr
*hdr
, int fd
, abi_ulong load_bias
)
2653 int i
, shnum
, nsyms
, sym_idx
= 0, str_idx
= 0;
2655 struct elf_shdr
*shdr
;
2656 char *strings
= NULL
;
2657 struct syminfo
*s
= NULL
;
2658 struct elf_sym
*new_syms
, *syms
= NULL
;
2660 shnum
= hdr
->e_shnum
;
2661 i
= shnum
* sizeof(struct elf_shdr
);
2662 shdr
= (struct elf_shdr
*)alloca(i
);
2663 if (pread(fd
, shdr
, i
, hdr
->e_shoff
) != i
) {
2667 bswap_shdr(shdr
, shnum
);
2668 for (i
= 0; i
< shnum
; ++i
) {
2669 if (shdr
[i
].sh_type
== SHT_SYMTAB
) {
2671 str_idx
= shdr
[i
].sh_link
;
2676 /* There will be no symbol table if the file was stripped. */
2680 /* Now know where the strtab and symtab are. Snarf them. */
2681 s
= g_try_new(struct syminfo
, 1);
2686 segsz
= shdr
[str_idx
].sh_size
;
2687 s
->disas_strtab
= strings
= g_try_malloc(segsz
);
2689 pread(fd
, strings
, segsz
, shdr
[str_idx
].sh_offset
) != segsz
) {
2693 segsz
= shdr
[sym_idx
].sh_size
;
2694 syms
= g_try_malloc(segsz
);
2695 if (!syms
|| pread(fd
, syms
, segsz
, shdr
[sym_idx
].sh_offset
) != segsz
) {
2699 if (segsz
/ sizeof(struct elf_sym
) > INT_MAX
) {
2700 /* Implausibly large symbol table: give up rather than ploughing
2701 * on with the number of symbols calculation overflowing
2705 nsyms
= segsz
/ sizeof(struct elf_sym
);
2706 for (i
= 0; i
< nsyms
; ) {
2707 bswap_sym(syms
+ i
);
2708 /* Throw away entries which we do not need. */
2709 if (syms
[i
].st_shndx
== SHN_UNDEF
2710 || syms
[i
].st_shndx
>= SHN_LORESERVE
2711 || ELF_ST_TYPE(syms
[i
].st_info
) != STT_FUNC
) {
2713 syms
[i
] = syms
[nsyms
];
2716 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
2717 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
2718 syms
[i
].st_value
&= ~(target_ulong
)1;
2720 syms
[i
].st_value
+= load_bias
;
2725 /* No "useful" symbol. */
2730 /* Attempt to free the storage associated with the local symbols
2731 that we threw away. Whether or not this has any effect on the
2732 memory allocation depends on the malloc implementation and how
2733 many symbols we managed to discard. */
2734 new_syms
= g_try_renew(struct elf_sym
, syms
, nsyms
);
2735 if (new_syms
== NULL
) {
2740 qsort(syms
, nsyms
, sizeof(*syms
), symcmp
);
2742 s
->disas_num_syms
= nsyms
;
2743 #if ELF_CLASS == ELFCLASS32
2744 s
->disas_symtab
.elf32
= syms
;
2746 s
->disas_symtab
.elf64
= syms
;
2748 s
->lookup_symbol
= lookup_symbolxx
;
2760 uint32_t get_elf_eflags(int fd
)
2766 /* Read ELF header */
2767 offset
= lseek(fd
, 0, SEEK_SET
);
2768 if (offset
== (off_t
) -1) {
2771 ret
= read(fd
, &ehdr
, sizeof(ehdr
));
2772 if (ret
< sizeof(ehdr
)) {
2775 offset
= lseek(fd
, offset
, SEEK_SET
);
2776 if (offset
== (off_t
) -1) {
2780 /* Check ELF signature */
2781 if (!elf_check_ident(&ehdr
)) {
2787 if (!elf_check_ehdr(&ehdr
)) {
2791 /* return architecture id */
2792 return ehdr
.e_flags
;
2795 int load_elf_binary(struct linux_binprm
*bprm
, struct image_info
*info
)
2797 struct image_info interp_info
;
2798 struct elfhdr elf_ex
;
2799 char *elf_interpreter
= NULL
;
2802 memset(&interp_info
, 0, sizeof(interp_info
));
2804 interp_info
.fp_abi
= MIPS_ABI_FP_UNKNOWN
;
2807 info
->start_mmap
= (abi_ulong
)ELF_START_MMAP
;
2809 load_elf_image(bprm
->filename
, bprm
->fd
, info
,
2810 &elf_interpreter
, bprm
->buf
);
2812 /* ??? We need a copy of the elf header for passing to create_elf_tables.
2813 If we do nothing, we'll have overwritten this when we re-use bprm->buf
2814 when we load the interpreter. */
2815 elf_ex
= *(struct elfhdr
*)bprm
->buf
;
2817 /* Do this so that we can load the interpreter, if need be. We will
2818 change some of these later */
2819 bprm
->p
= setup_arg_pages(bprm
, info
);
2821 scratch
= g_new0(char, TARGET_PAGE_SIZE
);
2822 if (STACK_GROWS_DOWN
) {
2823 bprm
->p
= copy_elf_strings(1, &bprm
->filename
, scratch
,
2824 bprm
->p
, info
->stack_limit
);
2825 info
->file_string
= bprm
->p
;
2826 bprm
->p
= copy_elf_strings(bprm
->envc
, bprm
->envp
, scratch
,
2827 bprm
->p
, info
->stack_limit
);
2828 info
->env_strings
= bprm
->p
;
2829 bprm
->p
= copy_elf_strings(bprm
->argc
, bprm
->argv
, scratch
,
2830 bprm
->p
, info
->stack_limit
);
2831 info
->arg_strings
= bprm
->p
;
2833 info
->arg_strings
= bprm
->p
;
2834 bprm
->p
= copy_elf_strings(bprm
->argc
, bprm
->argv
, scratch
,
2835 bprm
->p
, info
->stack_limit
);
2836 info
->env_strings
= bprm
->p
;
2837 bprm
->p
= copy_elf_strings(bprm
->envc
, bprm
->envp
, scratch
,
2838 bprm
->p
, info
->stack_limit
);
2839 info
->file_string
= bprm
->p
;
2840 bprm
->p
= copy_elf_strings(1, &bprm
->filename
, scratch
,
2841 bprm
->p
, info
->stack_limit
);
2847 fprintf(stderr
, "%s: %s\n", bprm
->filename
, strerror(E2BIG
));
2851 if (elf_interpreter
) {
2852 load_elf_interp(elf_interpreter
, &interp_info
, bprm
->buf
);
2854 /* If the program interpreter is one of these two, then assume
2855 an iBCS2 image. Otherwise assume a native linux image. */
2857 if (strcmp(elf_interpreter
, "/usr/lib/libc.so.1") == 0
2858 || strcmp(elf_interpreter
, "/usr/lib/ld.so.1") == 0) {
2859 info
->personality
= PER_SVR4
;
2861 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
2862 and some applications "depend" upon this behavior. Since
2863 we do not have the power to recompile these, we emulate
2864 the SVr4 behavior. Sigh. */
2865 target_mmap(0, qemu_host_page_size
, PROT_READ
| PROT_EXEC
,
2866 MAP_FIXED
| MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
2869 info
->interp_fp_abi
= interp_info
.fp_abi
;
2873 bprm
->p
= create_elf_tables(bprm
->p
, bprm
->argc
, bprm
->envc
, &elf_ex
,
2874 info
, (elf_interpreter
? &interp_info
: NULL
));
2875 info
->start_stack
= bprm
->p
;
2877 /* If we have an interpreter, set that as the program's entry point.
2878 Copy the load_bias as well, to help PPC64 interpret the entry
2879 point as a function descriptor. Do this after creating elf tables
2880 so that we copy the original program entry point into the AUXV. */
2881 if (elf_interpreter
) {
2882 info
->load_bias
= interp_info
.load_bias
;
2883 info
->entry
= interp_info
.entry
;
2884 free(elf_interpreter
);
2887 #ifdef USE_ELF_CORE_DUMP
2888 bprm
->core_dump
= &elf_core_dump
;
2892 * If we reserved extra space for brk, release it now.
2893 * The implementation of do_brk in syscalls.c expects to be able
2894 * to mmap pages in this space.
2896 if (info
->reserve_brk
) {
2897 abi_ulong start_brk
= HOST_PAGE_ALIGN(info
->brk
);
2898 abi_ulong end_brk
= HOST_PAGE_ALIGN(info
->brk
+ info
->reserve_brk
);
2899 target_munmap(start_brk
, end_brk
- start_brk
);
2905 #ifdef USE_ELF_CORE_DUMP
2907 * Definitions to generate Intel SVR4-like core files.
2908 * These mostly have the same names as the SVR4 types with "target_elf_"
2909 * tacked on the front to prevent clashes with linux definitions,
2910 * and the typedef forms have been avoided. This is mostly like
2911 * the SVR4 structure, but more Linuxy, with things that Linux does
2912 * not support and which gdb doesn't really use excluded.
2914 * Fields we don't dump (their contents is zero) in linux-user qemu
2915 * are marked with XXX.
2917 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2919 * Porting ELF coredump for target is (quite) simple process. First you
2920 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2921 * the target resides):
2923 * #define USE_ELF_CORE_DUMP
2925 * Next you define type of register set used for dumping. ELF specification
2926 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2928 * typedef <target_regtype> target_elf_greg_t;
2929 * #define ELF_NREG <number of registers>
2930 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2932 * Last step is to implement target specific function that copies registers
2933 * from given cpu into just specified register set. Prototype is:
2935 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2936 * const CPUArchState *env);
2939 * regs - copy register values into here (allocated and zeroed by caller)
2940 * env - copy registers from here
2942 * Example for ARM target is provided in this file.
2945 /* An ELF note in memory */
2949 size_t namesz_rounded
;
2952 size_t datasz_rounded
;
2957 struct target_elf_siginfo
{
2958 abi_int si_signo
; /* signal number */
2959 abi_int si_code
; /* extra code */
2960 abi_int si_errno
; /* errno */
2963 struct target_elf_prstatus
{
2964 struct target_elf_siginfo pr_info
; /* Info associated with signal */
2965 abi_short pr_cursig
; /* Current signal */
2966 abi_ulong pr_sigpend
; /* XXX */
2967 abi_ulong pr_sighold
; /* XXX */
2968 target_pid_t pr_pid
;
2969 target_pid_t pr_ppid
;
2970 target_pid_t pr_pgrp
;
2971 target_pid_t pr_sid
;
2972 struct target_timeval pr_utime
; /* XXX User time */
2973 struct target_timeval pr_stime
; /* XXX System time */
2974 struct target_timeval pr_cutime
; /* XXX Cumulative user time */
2975 struct target_timeval pr_cstime
; /* XXX Cumulative system time */
2976 target_elf_gregset_t pr_reg
; /* GP registers */
2977 abi_int pr_fpvalid
; /* XXX */
2980 #define ELF_PRARGSZ (80) /* Number of chars for args */
2982 struct target_elf_prpsinfo
{
2983 char pr_state
; /* numeric process state */
2984 char pr_sname
; /* char for pr_state */
2985 char pr_zomb
; /* zombie */
2986 char pr_nice
; /* nice val */
2987 abi_ulong pr_flag
; /* flags */
2988 target_uid_t pr_uid
;
2989 target_gid_t pr_gid
;
2990 target_pid_t pr_pid
, pr_ppid
, pr_pgrp
, pr_sid
;
2992 char pr_fname
[16] QEMU_NONSTRING
; /* filename of executable */
2993 char pr_psargs
[ELF_PRARGSZ
]; /* initial part of arg list */
2996 /* Here is the structure in which status of each thread is captured. */
2997 struct elf_thread_status
{
2998 QTAILQ_ENTRY(elf_thread_status
) ets_link
;
2999 struct target_elf_prstatus prstatus
; /* NT_PRSTATUS */
3001 elf_fpregset_t fpu
; /* NT_PRFPREG */
3002 struct task_struct
*thread
;
3003 elf_fpxregset_t xfpu
; /* ELF_CORE_XFPREG_TYPE */
3005 struct memelfnote notes
[1];
3009 struct elf_note_info
{
3010 struct memelfnote
*notes
;
3011 struct target_elf_prstatus
*prstatus
; /* NT_PRSTATUS */
3012 struct target_elf_prpsinfo
*psinfo
; /* NT_PRPSINFO */
3014 QTAILQ_HEAD(, elf_thread_status
) thread_list
;
3017 * Current version of ELF coredump doesn't support
3018 * dumping fp regs etc.
3020 elf_fpregset_t
*fpu
;
3021 elf_fpxregset_t
*xfpu
;
3022 int thread_status_size
;
3028 struct vm_area_struct
{
3029 target_ulong vma_start
; /* start vaddr of memory region */
3030 target_ulong vma_end
; /* end vaddr of memory region */
3031 abi_ulong vma_flags
; /* protection etc. flags for the region */
3032 QTAILQ_ENTRY(vm_area_struct
) vma_link
;
3036 QTAILQ_HEAD(, vm_area_struct
) mm_mmap
;
3037 int mm_count
; /* number of mappings */
3040 static struct mm_struct
*vma_init(void);
3041 static void vma_delete(struct mm_struct
*);
3042 static int vma_add_mapping(struct mm_struct
*, target_ulong
,
3043 target_ulong
, abi_ulong
);
3044 static int vma_get_mapping_count(const struct mm_struct
*);
3045 static struct vm_area_struct
*vma_first(const struct mm_struct
*);
3046 static struct vm_area_struct
*vma_next(struct vm_area_struct
*);
3047 static abi_ulong
vma_dump_size(const struct vm_area_struct
*);
3048 static int vma_walker(void *priv
, target_ulong start
, target_ulong end
,
3049 unsigned long flags
);
3051 static void fill_elf_header(struct elfhdr
*, int, uint16_t, uint32_t);
3052 static void fill_note(struct memelfnote
*, const char *, int,
3053 unsigned int, void *);
3054 static void fill_prstatus(struct target_elf_prstatus
*, const TaskState
*, int);
3055 static int fill_psinfo(struct target_elf_prpsinfo
*, const TaskState
*);
3056 static void fill_auxv_note(struct memelfnote
*, const TaskState
*);
3057 static void fill_elf_note_phdr(struct elf_phdr
*, int, off_t
);
3058 static size_t note_size(const struct memelfnote
*);
3059 static void free_note_info(struct elf_note_info
*);
3060 static int fill_note_info(struct elf_note_info
*, long, const CPUArchState
*);
3061 static void fill_thread_info(struct elf_note_info
*, const CPUArchState
*);
3062 static int core_dump_filename(const TaskState
*, char *, size_t);
3064 static int dump_write(int, const void *, size_t);
3065 static int write_note(struct memelfnote
*, int);
3066 static int write_note_info(struct elf_note_info
*, int);
3069 static void bswap_prstatus(struct target_elf_prstatus
*prstatus
)
3071 prstatus
->pr_info
.si_signo
= tswap32(prstatus
->pr_info
.si_signo
);
3072 prstatus
->pr_info
.si_code
= tswap32(prstatus
->pr_info
.si_code
);
3073 prstatus
->pr_info
.si_errno
= tswap32(prstatus
->pr_info
.si_errno
);
3074 prstatus
->pr_cursig
= tswap16(prstatus
->pr_cursig
);
3075 prstatus
->pr_sigpend
= tswapal(prstatus
->pr_sigpend
);
3076 prstatus
->pr_sighold
= tswapal(prstatus
->pr_sighold
);
3077 prstatus
->pr_pid
= tswap32(prstatus
->pr_pid
);
3078 prstatus
->pr_ppid
= tswap32(prstatus
->pr_ppid
);
3079 prstatus
->pr_pgrp
= tswap32(prstatus
->pr_pgrp
);
3080 prstatus
->pr_sid
= tswap32(prstatus
->pr_sid
);
3081 /* cpu times are not filled, so we skip them */
3082 /* regs should be in correct format already */
3083 prstatus
->pr_fpvalid
= tswap32(prstatus
->pr_fpvalid
);
3086 static void bswap_psinfo(struct target_elf_prpsinfo
*psinfo
)
3088 psinfo
->pr_flag
= tswapal(psinfo
->pr_flag
);
3089 psinfo
->pr_uid
= tswap16(psinfo
->pr_uid
);
3090 psinfo
->pr_gid
= tswap16(psinfo
->pr_gid
);
3091 psinfo
->pr_pid
= tswap32(psinfo
->pr_pid
);
3092 psinfo
->pr_ppid
= tswap32(psinfo
->pr_ppid
);
3093 psinfo
->pr_pgrp
= tswap32(psinfo
->pr_pgrp
);
3094 psinfo
->pr_sid
= tswap32(psinfo
->pr_sid
);
3097 static void bswap_note(struct elf_note
*en
)
3099 bswap32s(&en
->n_namesz
);
3100 bswap32s(&en
->n_descsz
);
3101 bswap32s(&en
->n_type
);
3104 static inline void bswap_prstatus(struct target_elf_prstatus
*p
) { }
3105 static inline void bswap_psinfo(struct target_elf_prpsinfo
*p
) {}
3106 static inline void bswap_note(struct elf_note
*en
) { }
3107 #endif /* BSWAP_NEEDED */
3110 * Minimal support for linux memory regions. These are needed
3111 * when we are finding out what memory exactly belongs to
3112 * emulated process. No locks needed here, as long as
3113 * thread that received the signal is stopped.
3116 static struct mm_struct
*vma_init(void)
3118 struct mm_struct
*mm
;
3120 if ((mm
= g_malloc(sizeof (*mm
))) == NULL
)
3124 QTAILQ_INIT(&mm
->mm_mmap
);
3129 static void vma_delete(struct mm_struct
*mm
)
3131 struct vm_area_struct
*vma
;
3133 while ((vma
= vma_first(mm
)) != NULL
) {
3134 QTAILQ_REMOVE(&mm
->mm_mmap
, vma
, vma_link
);
3140 static int vma_add_mapping(struct mm_struct
*mm
, target_ulong start
,
3141 target_ulong end
, abi_ulong flags
)
3143 struct vm_area_struct
*vma
;
3145 if ((vma
= g_malloc0(sizeof (*vma
))) == NULL
)
3148 vma
->vma_start
= start
;
3150 vma
->vma_flags
= flags
;
3152 QTAILQ_INSERT_TAIL(&mm
->mm_mmap
, vma
, vma_link
);
3158 static struct vm_area_struct
*vma_first(const struct mm_struct
*mm
)
3160 return (QTAILQ_FIRST(&mm
->mm_mmap
));
3163 static struct vm_area_struct
*vma_next(struct vm_area_struct
*vma
)
3165 return (QTAILQ_NEXT(vma
, vma_link
));
3168 static int vma_get_mapping_count(const struct mm_struct
*mm
)
3170 return (mm
->mm_count
);
3174 * Calculate file (dump) size of given memory region.
3176 static abi_ulong
vma_dump_size(const struct vm_area_struct
*vma
)
3178 /* if we cannot even read the first page, skip it */
3179 if (!access_ok(VERIFY_READ
, vma
->vma_start
, TARGET_PAGE_SIZE
))
3183 * Usually we don't dump executable pages as they contain
3184 * non-writable code that debugger can read directly from
3185 * target library etc. However, thread stacks are marked
3186 * also executable so we read in first page of given region
3187 * and check whether it contains elf header. If there is
3188 * no elf header, we dump it.
3190 if (vma
->vma_flags
& PROT_EXEC
) {
3191 char page
[TARGET_PAGE_SIZE
];
3193 copy_from_user(page
, vma
->vma_start
, sizeof (page
));
3194 if ((page
[EI_MAG0
] == ELFMAG0
) &&
3195 (page
[EI_MAG1
] == ELFMAG1
) &&
3196 (page
[EI_MAG2
] == ELFMAG2
) &&
3197 (page
[EI_MAG3
] == ELFMAG3
)) {
3199 * Mappings are possibly from ELF binary. Don't dump
3206 return (vma
->vma_end
- vma
->vma_start
);
3209 static int vma_walker(void *priv
, target_ulong start
, target_ulong end
,
3210 unsigned long flags
)
3212 struct mm_struct
*mm
= (struct mm_struct
*)priv
;
3214 vma_add_mapping(mm
, start
, end
, flags
);
3218 static void fill_note(struct memelfnote
*note
, const char *name
, int type
,
3219 unsigned int sz
, void *data
)
3221 unsigned int namesz
;
3223 namesz
= strlen(name
) + 1;
3225 note
->namesz
= namesz
;
3226 note
->namesz_rounded
= roundup(namesz
, sizeof (int32_t));
3229 note
->datasz_rounded
= roundup(sz
, sizeof (int32_t));
3234 * We calculate rounded up note size here as specified by
3237 note
->notesz
= sizeof (struct elf_note
) +
3238 note
->namesz_rounded
+ note
->datasz_rounded
;
3241 static void fill_elf_header(struct elfhdr
*elf
, int segs
, uint16_t machine
,
3244 (void) memset(elf
, 0, sizeof(*elf
));
3246 (void) memcpy(elf
->e_ident
, ELFMAG
, SELFMAG
);
3247 elf
->e_ident
[EI_CLASS
] = ELF_CLASS
;
3248 elf
->e_ident
[EI_DATA
] = ELF_DATA
;
3249 elf
->e_ident
[EI_VERSION
] = EV_CURRENT
;
3250 elf
->e_ident
[EI_OSABI
] = ELF_OSABI
;
3252 elf
->e_type
= ET_CORE
;
3253 elf
->e_machine
= machine
;
3254 elf
->e_version
= EV_CURRENT
;
3255 elf
->e_phoff
= sizeof(struct elfhdr
);
3256 elf
->e_flags
= flags
;
3257 elf
->e_ehsize
= sizeof(struct elfhdr
);
3258 elf
->e_phentsize
= sizeof(struct elf_phdr
);
3259 elf
->e_phnum
= segs
;
3264 static void fill_elf_note_phdr(struct elf_phdr
*phdr
, int sz
, off_t offset
)
3266 phdr
->p_type
= PT_NOTE
;
3267 phdr
->p_offset
= offset
;
3270 phdr
->p_filesz
= sz
;
3275 bswap_phdr(phdr
, 1);
3278 static size_t note_size(const struct memelfnote
*note
)
3280 return (note
->notesz
);
3283 static void fill_prstatus(struct target_elf_prstatus
*prstatus
,
3284 const TaskState
*ts
, int signr
)
3286 (void) memset(prstatus
, 0, sizeof (*prstatus
));
3287 prstatus
->pr_info
.si_signo
= prstatus
->pr_cursig
= signr
;
3288 prstatus
->pr_pid
= ts
->ts_tid
;
3289 prstatus
->pr_ppid
= getppid();
3290 prstatus
->pr_pgrp
= getpgrp();
3291 prstatus
->pr_sid
= getsid(0);
3293 bswap_prstatus(prstatus
);
3296 static int fill_psinfo(struct target_elf_prpsinfo
*psinfo
, const TaskState
*ts
)
3298 char *base_filename
;
3299 unsigned int i
, len
;
3301 (void) memset(psinfo
, 0, sizeof (*psinfo
));
3303 len
= ts
->info
->arg_end
- ts
->info
->arg_start
;
3304 if (len
>= ELF_PRARGSZ
)
3305 len
= ELF_PRARGSZ
- 1;
3306 if (copy_from_user(&psinfo
->pr_psargs
, ts
->info
->arg_start
, len
))
3308 for (i
= 0; i
< len
; i
++)
3309 if (psinfo
->pr_psargs
[i
] == 0)
3310 psinfo
->pr_psargs
[i
] = ' ';
3311 psinfo
->pr_psargs
[len
] = 0;
3313 psinfo
->pr_pid
= getpid();
3314 psinfo
->pr_ppid
= getppid();
3315 psinfo
->pr_pgrp
= getpgrp();
3316 psinfo
->pr_sid
= getsid(0);
3317 psinfo
->pr_uid
= getuid();
3318 psinfo
->pr_gid
= getgid();
3320 base_filename
= g_path_get_basename(ts
->bprm
->filename
);
3322 * Using strncpy here is fine: at max-length,
3323 * this field is not NUL-terminated.
3325 (void) strncpy(psinfo
->pr_fname
, base_filename
,
3326 sizeof(psinfo
->pr_fname
));
3328 g_free(base_filename
);
3329 bswap_psinfo(psinfo
);
3333 static void fill_auxv_note(struct memelfnote
*note
, const TaskState
*ts
)
3335 elf_addr_t auxv
= (elf_addr_t
)ts
->info
->saved_auxv
;
3336 elf_addr_t orig_auxv
= auxv
;
3338 int len
= ts
->info
->auxv_len
;
3341 * Auxiliary vector is stored in target process stack. It contains
3342 * {type, value} pairs that we need to dump into note. This is not
3343 * strictly necessary but we do it here for sake of completeness.
3346 /* read in whole auxv vector and copy it to memelfnote */
3347 ptr
= lock_user(VERIFY_READ
, orig_auxv
, len
, 0);
3349 fill_note(note
, "CORE", NT_AUXV
, len
, ptr
);
3350 unlock_user(ptr
, auxv
, len
);
3355 * Constructs name of coredump file. We have following convention
3357 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3359 * Returns 0 in case of success, -1 otherwise (errno is set).
3361 static int core_dump_filename(const TaskState
*ts
, char *buf
,
3365 char *base_filename
= NULL
;
3369 assert(bufsize
>= PATH_MAX
);
3371 if (gettimeofday(&tv
, NULL
) < 0) {
3372 (void) fprintf(stderr
, "unable to get current timestamp: %s",
3377 base_filename
= g_path_get_basename(ts
->bprm
->filename
);
3378 (void) strftime(timestamp
, sizeof (timestamp
), "%Y%m%d-%H%M%S",
3379 localtime_r(&tv
.tv_sec
, &tm
));
3380 (void) snprintf(buf
, bufsize
, "qemu_%s_%s_%d.core",
3381 base_filename
, timestamp
, (int)getpid());
3382 g_free(base_filename
);
3387 static int dump_write(int fd
, const void *ptr
, size_t size
)
3389 const char *bufp
= (const char *)ptr
;
3390 ssize_t bytes_written
, bytes_left
;
3391 struct rlimit dumpsize
;
3395 getrlimit(RLIMIT_CORE
, &dumpsize
);
3396 if ((pos
= lseek(fd
, 0, SEEK_CUR
))==-1) {
3397 if (errno
== ESPIPE
) { /* not a seekable stream */
3403 if (dumpsize
.rlim_cur
<= pos
) {
3405 } else if (dumpsize
.rlim_cur
== RLIM_INFINITY
) {
3408 size_t limit_left
=dumpsize
.rlim_cur
- pos
;
3409 bytes_left
= limit_left
>= size
? size
: limit_left
;
3414 * In normal conditions, single write(2) should do but
3415 * in case of socket etc. this mechanism is more portable.
3418 bytes_written
= write(fd
, bufp
, bytes_left
);
3419 if (bytes_written
< 0) {
3423 } else if (bytes_written
== 0) { /* eof */
3426 bufp
+= bytes_written
;
3427 bytes_left
-= bytes_written
;
3428 } while (bytes_left
> 0);
3433 static int write_note(struct memelfnote
*men
, int fd
)
3437 en
.n_namesz
= men
->namesz
;
3438 en
.n_type
= men
->type
;
3439 en
.n_descsz
= men
->datasz
;
3443 if (dump_write(fd
, &en
, sizeof(en
)) != 0)
3445 if (dump_write(fd
, men
->name
, men
->namesz_rounded
) != 0)
3447 if (dump_write(fd
, men
->data
, men
->datasz_rounded
) != 0)
3453 static void fill_thread_info(struct elf_note_info
*info
, const CPUArchState
*env
)
3455 CPUState
*cpu
= env_cpu((CPUArchState
*)env
);
3456 TaskState
*ts
= (TaskState
*)cpu
->opaque
;
3457 struct elf_thread_status
*ets
;
3459 ets
= g_malloc0(sizeof (*ets
));
3460 ets
->num_notes
= 1; /* only prstatus is dumped */
3461 fill_prstatus(&ets
->prstatus
, ts
, 0);
3462 elf_core_copy_regs(&ets
->prstatus
.pr_reg
, env
);
3463 fill_note(&ets
->notes
[0], "CORE", NT_PRSTATUS
, sizeof (ets
->prstatus
),
3466 QTAILQ_INSERT_TAIL(&info
->thread_list
, ets
, ets_link
);
3468 info
->notes_size
+= note_size(&ets
->notes
[0]);
3471 static void init_note_info(struct elf_note_info
*info
)
3473 /* Initialize the elf_note_info structure so that it is at
3474 * least safe to call free_note_info() on it. Must be
3475 * called before calling fill_note_info().
3477 memset(info
, 0, sizeof (*info
));
3478 QTAILQ_INIT(&info
->thread_list
);
3481 static int fill_note_info(struct elf_note_info
*info
,
3482 long signr
, const CPUArchState
*env
)
3485 CPUState
*cpu
= env_cpu((CPUArchState
*)env
);
3486 TaskState
*ts
= (TaskState
*)cpu
->opaque
;
3489 info
->notes
= g_new0(struct memelfnote
, NUMNOTES
);
3490 if (info
->notes
== NULL
)
3492 info
->prstatus
= g_malloc0(sizeof (*info
->prstatus
));
3493 if (info
->prstatus
== NULL
)
3495 info
->psinfo
= g_malloc0(sizeof (*info
->psinfo
));
3496 if (info
->prstatus
== NULL
)
3500 * First fill in status (and registers) of current thread
3501 * including process info & aux vector.
3503 fill_prstatus(info
->prstatus
, ts
, signr
);
3504 elf_core_copy_regs(&info
->prstatus
->pr_reg
, env
);
3505 fill_note(&info
->notes
[0], "CORE", NT_PRSTATUS
,
3506 sizeof (*info
->prstatus
), info
->prstatus
);
3507 fill_psinfo(info
->psinfo
, ts
);
3508 fill_note(&info
->notes
[1], "CORE", NT_PRPSINFO
,
3509 sizeof (*info
->psinfo
), info
->psinfo
);
3510 fill_auxv_note(&info
->notes
[2], ts
);
3513 info
->notes_size
= 0;
3514 for (i
= 0; i
< info
->numnote
; i
++)
3515 info
->notes_size
+= note_size(&info
->notes
[i
]);
3517 /* read and fill status of all threads */
3520 if (cpu
== thread_cpu
) {
3523 fill_thread_info(info
, (CPUArchState
*)cpu
->env_ptr
);
3530 static void free_note_info(struct elf_note_info
*info
)
3532 struct elf_thread_status
*ets
;
3534 while (!QTAILQ_EMPTY(&info
->thread_list
)) {
3535 ets
= QTAILQ_FIRST(&info
->thread_list
);
3536 QTAILQ_REMOVE(&info
->thread_list
, ets
, ets_link
);
3540 g_free(info
->prstatus
);
3541 g_free(info
->psinfo
);
3542 g_free(info
->notes
);
3545 static int write_note_info(struct elf_note_info
*info
, int fd
)
3547 struct elf_thread_status
*ets
;
3550 /* write prstatus, psinfo and auxv for current thread */
3551 for (i
= 0; i
< info
->numnote
; i
++)
3552 if ((error
= write_note(&info
->notes
[i
], fd
)) != 0)
3555 /* write prstatus for each thread */
3556 QTAILQ_FOREACH(ets
, &info
->thread_list
, ets_link
) {
3557 if ((error
= write_note(&ets
->notes
[0], fd
)) != 0)
3565 * Write out ELF coredump.
3567 * See documentation of ELF object file format in:
3568 * http://www.caldera.com/developers/devspecs/gabi41.pdf
3570 * Coredump format in linux is following:
3572 * 0 +----------------------+ \
3573 * | ELF header | ET_CORE |
3574 * +----------------------+ |
3575 * | ELF program headers | |--- headers
3576 * | - NOTE section | |
3577 * | - PT_LOAD sections | |
3578 * +----------------------+ /
3583 * +----------------------+ <-- aligned to target page
3584 * | Process memory dump |
3589 * +----------------------+
3591 * NT_PRSTATUS -> struct elf_prstatus (per thread)
3592 * NT_PRSINFO -> struct elf_prpsinfo
3593 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3595 * Format follows System V format as close as possible. Current
3596 * version limitations are as follows:
3597 * - no floating point registers are dumped
3599 * Function returns 0 in case of success, negative errno otherwise.
3601 * TODO: make this work also during runtime: it should be
3602 * possible to force coredump from running process and then
3603 * continue processing. For example qemu could set up SIGUSR2
3604 * handler (provided that target process haven't registered
3605 * handler for that) that does the dump when signal is received.
3607 static int elf_core_dump(int signr
, const CPUArchState
*env
)
3609 const CPUState
*cpu
= env_cpu((CPUArchState
*)env
);
3610 const TaskState
*ts
= (const TaskState
*)cpu
->opaque
;
3611 struct vm_area_struct
*vma
= NULL
;
3612 char corefile
[PATH_MAX
];
3613 struct elf_note_info info
;
3615 struct elf_phdr phdr
;
3616 struct rlimit dumpsize
;
3617 struct mm_struct
*mm
= NULL
;
3618 off_t offset
= 0, data_offset
= 0;
3622 init_note_info(&info
);
3625 getrlimit(RLIMIT_CORE
, &dumpsize
);
3626 if (dumpsize
.rlim_cur
== 0)
3629 if (core_dump_filename(ts
, corefile
, sizeof (corefile
)) < 0)
3632 if ((fd
= open(corefile
, O_WRONLY
| O_CREAT
,
3633 S_IRUSR
|S_IWUSR
|S_IRGRP
|S_IROTH
)) < 0)
3637 * Walk through target process memory mappings and
3638 * set up structure containing this information. After
3639 * this point vma_xxx functions can be used.
3641 if ((mm
= vma_init()) == NULL
)
3644 walk_memory_regions(mm
, vma_walker
);
3645 segs
= vma_get_mapping_count(mm
);
3648 * Construct valid coredump ELF header. We also
3649 * add one more segment for notes.
3651 fill_elf_header(&elf
, segs
+ 1, ELF_MACHINE
, 0);
3652 if (dump_write(fd
, &elf
, sizeof (elf
)) != 0)
3655 /* fill in the in-memory version of notes */
3656 if (fill_note_info(&info
, signr
, env
) < 0)
3659 offset
+= sizeof (elf
); /* elf header */
3660 offset
+= (segs
+ 1) * sizeof (struct elf_phdr
); /* program headers */
3662 /* write out notes program header */
3663 fill_elf_note_phdr(&phdr
, info
.notes_size
, offset
);
3665 offset
+= info
.notes_size
;
3666 if (dump_write(fd
, &phdr
, sizeof (phdr
)) != 0)
3670 * ELF specification wants data to start at page boundary so
3673 data_offset
= offset
= roundup(offset
, ELF_EXEC_PAGESIZE
);
3676 * Write program headers for memory regions mapped in
3677 * the target process.
3679 for (vma
= vma_first(mm
); vma
!= NULL
; vma
= vma_next(vma
)) {
3680 (void) memset(&phdr
, 0, sizeof (phdr
));
3682 phdr
.p_type
= PT_LOAD
;
3683 phdr
.p_offset
= offset
;
3684 phdr
.p_vaddr
= vma
->vma_start
;
3686 phdr
.p_filesz
= vma_dump_size(vma
);
3687 offset
+= phdr
.p_filesz
;
3688 phdr
.p_memsz
= vma
->vma_end
- vma
->vma_start
;
3689 phdr
.p_flags
= vma
->vma_flags
& PROT_READ
? PF_R
: 0;
3690 if (vma
->vma_flags
& PROT_WRITE
)
3691 phdr
.p_flags
|= PF_W
;
3692 if (vma
->vma_flags
& PROT_EXEC
)
3693 phdr
.p_flags
|= PF_X
;
3694 phdr
.p_align
= ELF_EXEC_PAGESIZE
;
3696 bswap_phdr(&phdr
, 1);
3697 if (dump_write(fd
, &phdr
, sizeof(phdr
)) != 0) {
3703 * Next we write notes just after program headers. No
3704 * alignment needed here.
3706 if (write_note_info(&info
, fd
) < 0)
3709 /* align data to page boundary */
3710 if (lseek(fd
, data_offset
, SEEK_SET
) != data_offset
)
3714 * Finally we can dump process memory into corefile as well.
3716 for (vma
= vma_first(mm
); vma
!= NULL
; vma
= vma_next(vma
)) {
3720 end
= vma
->vma_start
+ vma_dump_size(vma
);
3722 for (addr
= vma
->vma_start
; addr
< end
;
3723 addr
+= TARGET_PAGE_SIZE
) {
3724 char page
[TARGET_PAGE_SIZE
];
3728 * Read in page from target process memory and
3729 * write it to coredump file.
3731 error
= copy_from_user(page
, addr
, sizeof (page
));
3733 (void) fprintf(stderr
, "unable to dump " TARGET_ABI_FMT_lx
"\n",
3738 if (dump_write(fd
, page
, TARGET_PAGE_SIZE
) < 0)
3744 free_note_info(&info
);
3753 #endif /* USE_ELF_CORE_DUMP */
3755 void do_init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
3757 init_thread(regs
, infop
);