tests/acceptance: verify s390x device detection
[qemu/ar7.git] / target / i386 / kvm.c
bloba2934dda027c66b634637986b58926468910ea67
1 /*
2 * QEMU KVM support
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include "qemu/osdep.h"
16 #include "qapi/qapi-events-run-state.h"
17 #include "qapi/error.h"
18 #include <sys/ioctl.h>
19 #include <sys/utsname.h>
21 #include <linux/kvm.h>
22 #include "standard-headers/asm-x86/kvm_para.h"
24 #include "cpu.h"
25 #include "sysemu/sysemu.h"
26 #include "sysemu/hw_accel.h"
27 #include "sysemu/kvm_int.h"
28 #include "sysemu/runstate.h"
29 #include "kvm_i386.h"
30 #include "hyperv.h"
31 #include "hyperv-proto.h"
33 #include "exec/gdbstub.h"
34 #include "qemu/host-utils.h"
35 #include "qemu/main-loop.h"
36 #include "qemu/config-file.h"
37 #include "qemu/error-report.h"
38 #include "hw/i386/x86.h"
39 #include "hw/i386/apic.h"
40 #include "hw/i386/apic_internal.h"
41 #include "hw/i386/apic-msidef.h"
42 #include "hw/i386/intel_iommu.h"
43 #include "hw/i386/x86-iommu.h"
44 #include "hw/i386/e820_memory_layout.h"
46 #include "hw/pci/pci.h"
47 #include "hw/pci/msi.h"
48 #include "hw/pci/msix.h"
49 #include "migration/blocker.h"
50 #include "exec/memattrs.h"
51 #include "trace.h"
53 //#define DEBUG_KVM
55 #ifdef DEBUG_KVM
56 #define DPRINTF(fmt, ...) \
57 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
58 #else
59 #define DPRINTF(fmt, ...) \
60 do { } while (0)
61 #endif
63 /* From arch/x86/kvm/lapic.h */
64 #define KVM_APIC_BUS_CYCLE_NS 1
65 #define KVM_APIC_BUS_FREQUENCY (1000000000ULL / KVM_APIC_BUS_CYCLE_NS)
67 #define MSR_KVM_WALL_CLOCK 0x11
68 #define MSR_KVM_SYSTEM_TIME 0x12
70 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
71 * 255 kvm_msr_entry structs */
72 #define MSR_BUF_SIZE 4096
74 static void kvm_init_msrs(X86CPU *cpu);
76 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
77 KVM_CAP_INFO(SET_TSS_ADDR),
78 KVM_CAP_INFO(EXT_CPUID),
79 KVM_CAP_INFO(MP_STATE),
80 KVM_CAP_LAST_INFO
83 static bool has_msr_star;
84 static bool has_msr_hsave_pa;
85 static bool has_msr_tsc_aux;
86 static bool has_msr_tsc_adjust;
87 static bool has_msr_tsc_deadline;
88 static bool has_msr_feature_control;
89 static bool has_msr_misc_enable;
90 static bool has_msr_smbase;
91 static bool has_msr_bndcfgs;
92 static int lm_capable_kernel;
93 static bool has_msr_hv_hypercall;
94 static bool has_msr_hv_crash;
95 static bool has_msr_hv_reset;
96 static bool has_msr_hv_vpindex;
97 static bool hv_vpindex_settable;
98 static bool has_msr_hv_runtime;
99 static bool has_msr_hv_synic;
100 static bool has_msr_hv_stimer;
101 static bool has_msr_hv_frequencies;
102 static bool has_msr_hv_reenlightenment;
103 static bool has_msr_xss;
104 static bool has_msr_umwait;
105 static bool has_msr_spec_ctrl;
106 static bool has_msr_tsx_ctrl;
107 static bool has_msr_virt_ssbd;
108 static bool has_msr_smi_count;
109 static bool has_msr_arch_capabs;
110 static bool has_msr_core_capabs;
111 static bool has_msr_vmx_vmfunc;
112 static bool has_msr_ucode_rev;
113 static bool has_msr_vmx_procbased_ctls2;
114 static bool has_msr_perf_capabs;
116 static uint32_t has_architectural_pmu_version;
117 static uint32_t num_architectural_pmu_gp_counters;
118 static uint32_t num_architectural_pmu_fixed_counters;
120 static int has_xsave;
121 static int has_xcrs;
122 static int has_pit_state2;
123 static int has_exception_payload;
125 static bool has_msr_mcg_ext_ctl;
127 static struct kvm_cpuid2 *cpuid_cache;
128 static struct kvm_msr_list *kvm_feature_msrs;
130 int kvm_has_pit_state2(void)
132 return has_pit_state2;
135 bool kvm_has_smm(void)
137 return kvm_check_extension(kvm_state, KVM_CAP_X86_SMM);
140 bool kvm_has_adjust_clock_stable(void)
142 int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
144 return (ret == KVM_CLOCK_TSC_STABLE);
147 bool kvm_has_adjust_clock(void)
149 return kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
152 bool kvm_has_exception_payload(void)
154 return has_exception_payload;
157 static bool kvm_x2apic_api_set_flags(uint64_t flags)
159 KVMState *s = KVM_STATE(current_accel());
161 return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags);
164 #define MEMORIZE(fn, _result) \
165 ({ \
166 static bool _memorized; \
168 if (_memorized) { \
169 return _result; \
171 _memorized = true; \
172 _result = fn; \
175 static bool has_x2apic_api;
177 bool kvm_has_x2apic_api(void)
179 return has_x2apic_api;
182 bool kvm_enable_x2apic(void)
184 return MEMORIZE(
185 kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS |
186 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK),
187 has_x2apic_api);
190 bool kvm_hv_vpindex_settable(void)
192 return hv_vpindex_settable;
195 static int kvm_get_tsc(CPUState *cs)
197 X86CPU *cpu = X86_CPU(cs);
198 CPUX86State *env = &cpu->env;
199 struct {
200 struct kvm_msrs info;
201 struct kvm_msr_entry entries[1];
202 } msr_data = {};
203 int ret;
205 if (env->tsc_valid) {
206 return 0;
209 memset(&msr_data, 0, sizeof(msr_data));
210 msr_data.info.nmsrs = 1;
211 msr_data.entries[0].index = MSR_IA32_TSC;
212 env->tsc_valid = !runstate_is_running();
214 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
215 if (ret < 0) {
216 return ret;
219 assert(ret == 1);
220 env->tsc = msr_data.entries[0].data;
221 return 0;
224 static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg)
226 kvm_get_tsc(cpu);
229 void kvm_synchronize_all_tsc(void)
231 CPUState *cpu;
233 if (kvm_enabled()) {
234 CPU_FOREACH(cpu) {
235 run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL);
240 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
242 struct kvm_cpuid2 *cpuid;
243 int r, size;
245 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
246 cpuid = g_malloc0(size);
247 cpuid->nent = max;
248 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
249 if (r == 0 && cpuid->nent >= max) {
250 r = -E2BIG;
252 if (r < 0) {
253 if (r == -E2BIG) {
254 g_free(cpuid);
255 return NULL;
256 } else {
257 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
258 strerror(-r));
259 exit(1);
262 return cpuid;
265 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
266 * for all entries.
268 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
270 struct kvm_cpuid2 *cpuid;
271 int max = 1;
273 if (cpuid_cache != NULL) {
274 return cpuid_cache;
276 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
277 max *= 2;
279 cpuid_cache = cpuid;
280 return cpuid;
283 static bool host_tsx_broken(void)
285 int family, model, stepping;\
286 char vendor[CPUID_VENDOR_SZ + 1];
288 host_vendor_fms(vendor, &family, &model, &stepping);
290 /* Check if we are running on a Haswell host known to have broken TSX */
291 return !strcmp(vendor, CPUID_VENDOR_INTEL) &&
292 (family == 6) &&
293 ((model == 63 && stepping < 4) ||
294 model == 60 || model == 69 || model == 70);
297 /* Returns the value for a specific register on the cpuid entry
299 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
301 uint32_t ret = 0;
302 switch (reg) {
303 case R_EAX:
304 ret = entry->eax;
305 break;
306 case R_EBX:
307 ret = entry->ebx;
308 break;
309 case R_ECX:
310 ret = entry->ecx;
311 break;
312 case R_EDX:
313 ret = entry->edx;
314 break;
316 return ret;
319 /* Find matching entry for function/index on kvm_cpuid2 struct
321 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
322 uint32_t function,
323 uint32_t index)
325 int i;
326 for (i = 0; i < cpuid->nent; ++i) {
327 if (cpuid->entries[i].function == function &&
328 cpuid->entries[i].index == index) {
329 return &cpuid->entries[i];
332 /* not found: */
333 return NULL;
336 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
337 uint32_t index, int reg)
339 struct kvm_cpuid2 *cpuid;
340 uint32_t ret = 0;
341 uint32_t cpuid_1_edx;
343 cpuid = get_supported_cpuid(s);
345 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
346 if (entry) {
347 ret = cpuid_entry_get_reg(entry, reg);
350 /* Fixups for the data returned by KVM, below */
352 if (function == 1 && reg == R_EDX) {
353 /* KVM before 2.6.30 misreports the following features */
354 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
355 } else if (function == 1 && reg == R_ECX) {
356 /* We can set the hypervisor flag, even if KVM does not return it on
357 * GET_SUPPORTED_CPUID
359 ret |= CPUID_EXT_HYPERVISOR;
360 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
361 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
362 * and the irqchip is in the kernel.
364 if (kvm_irqchip_in_kernel() &&
365 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
366 ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
369 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
370 * without the in-kernel irqchip
372 if (!kvm_irqchip_in_kernel()) {
373 ret &= ~CPUID_EXT_X2APIC;
376 if (enable_cpu_pm) {
377 int disable_exits = kvm_check_extension(s,
378 KVM_CAP_X86_DISABLE_EXITS);
380 if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) {
381 ret |= CPUID_EXT_MONITOR;
384 } else if (function == 6 && reg == R_EAX) {
385 ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */
386 } else if (function == 7 && index == 0 && reg == R_EBX) {
387 if (host_tsx_broken()) {
388 ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE);
390 } else if (function == 7 && index == 0 && reg == R_EDX) {
392 * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts.
393 * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is
394 * returned by KVM_GET_MSR_INDEX_LIST.
396 if (!has_msr_arch_capabs) {
397 ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES;
399 } else if (function == 0x80000001 && reg == R_ECX) {
401 * It's safe to enable TOPOEXT even if it's not returned by
402 * GET_SUPPORTED_CPUID. Unconditionally enabling TOPOEXT here allows
403 * us to keep CPU models including TOPOEXT runnable on older kernels.
405 ret |= CPUID_EXT3_TOPOEXT;
406 } else if (function == 0x80000001 && reg == R_EDX) {
407 /* On Intel, kvm returns cpuid according to the Intel spec,
408 * so add missing bits according to the AMD spec:
410 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
411 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
412 } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) {
413 /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
414 * be enabled without the in-kernel irqchip
416 if (!kvm_irqchip_in_kernel()) {
417 ret &= ~(1U << KVM_FEATURE_PV_UNHALT);
419 } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) {
420 ret |= 1U << KVM_HINTS_REALTIME;
423 return ret;
426 uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index)
428 struct {
429 struct kvm_msrs info;
430 struct kvm_msr_entry entries[1];
431 } msr_data = {};
432 uint64_t value;
433 uint32_t ret, can_be_one, must_be_one;
435 if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */
436 return 0;
439 /* Check if requested MSR is supported feature MSR */
440 int i;
441 for (i = 0; i < kvm_feature_msrs->nmsrs; i++)
442 if (kvm_feature_msrs->indices[i] == index) {
443 break;
445 if (i == kvm_feature_msrs->nmsrs) {
446 return 0; /* if the feature MSR is not supported, simply return 0 */
449 msr_data.info.nmsrs = 1;
450 msr_data.entries[0].index = index;
452 ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data);
453 if (ret != 1) {
454 error_report("KVM get MSR (index=0x%x) feature failed, %s",
455 index, strerror(-ret));
456 exit(1);
459 value = msr_data.entries[0].data;
460 switch (index) {
461 case MSR_IA32_VMX_PROCBASED_CTLS2:
462 if (!has_msr_vmx_procbased_ctls2) {
463 /* KVM forgot to add these bits for some time, do this ourselves. */
464 if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) &
465 CPUID_XSAVE_XSAVES) {
466 value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32;
468 if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) &
469 CPUID_EXT_RDRAND) {
470 value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32;
472 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
473 CPUID_7_0_EBX_INVPCID) {
474 value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32;
476 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
477 CPUID_7_0_EBX_RDSEED) {
478 value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32;
480 if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) &
481 CPUID_EXT2_RDTSCP) {
482 value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32;
485 /* fall through */
486 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
487 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
488 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
489 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
491 * Return true for bits that can be one, but do not have to be one.
492 * The SDM tells us which bits could have a "must be one" setting,
493 * so we can do the opposite transformation in make_vmx_msr_value.
495 must_be_one = (uint32_t)value;
496 can_be_one = (uint32_t)(value >> 32);
497 return can_be_one & ~must_be_one;
499 default:
500 return value;
504 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
505 int *max_banks)
507 int r;
509 r = kvm_check_extension(s, KVM_CAP_MCE);
510 if (r > 0) {
511 *max_banks = r;
512 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
514 return -ENOSYS;
517 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
519 CPUState *cs = CPU(cpu);
520 CPUX86State *env = &cpu->env;
521 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
522 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
523 uint64_t mcg_status = MCG_STATUS_MCIP;
524 int flags = 0;
526 if (code == BUS_MCEERR_AR) {
527 status |= MCI_STATUS_AR | 0x134;
528 mcg_status |= MCG_STATUS_EIPV;
529 } else {
530 status |= 0xc0;
531 mcg_status |= MCG_STATUS_RIPV;
534 flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0;
535 /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
536 * guest kernel back into env->mcg_ext_ctl.
538 cpu_synchronize_state(cs);
539 if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) {
540 mcg_status |= MCG_STATUS_LMCE;
541 flags = 0;
544 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
545 (MCM_ADDR_PHYS << 6) | 0xc, flags);
548 static void emit_hypervisor_memory_failure(MemoryFailureAction action, bool ar)
550 MemoryFailureFlags mff = {.action_required = ar, .recursive = false};
552 qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_HYPERVISOR, action,
553 &mff);
556 static void hardware_memory_error(void *host_addr)
558 emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_FATAL, true);
559 error_report("QEMU got Hardware memory error at addr %p", host_addr);
560 exit(1);
563 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
565 X86CPU *cpu = X86_CPU(c);
566 CPUX86State *env = &cpu->env;
567 ram_addr_t ram_addr;
568 hwaddr paddr;
570 /* If we get an action required MCE, it has been injected by KVM
571 * while the VM was running. An action optional MCE instead should
572 * be coming from the main thread, which qemu_init_sigbus identifies
573 * as the "early kill" thread.
575 assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
577 if ((env->mcg_cap & MCG_SER_P) && addr) {
578 ram_addr = qemu_ram_addr_from_host(addr);
579 if (ram_addr != RAM_ADDR_INVALID &&
580 kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
581 kvm_hwpoison_page_add(ram_addr);
582 kvm_mce_inject(cpu, paddr, code);
585 * Use different logging severity based on error type.
586 * If there is additional MCE reporting on the hypervisor, QEMU VA
587 * could be another source to identify the PA and MCE details.
589 if (code == BUS_MCEERR_AR) {
590 error_report("Guest MCE Memory Error at QEMU addr %p and "
591 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
592 addr, paddr, "BUS_MCEERR_AR");
593 } else {
594 warn_report("Guest MCE Memory Error at QEMU addr %p and "
595 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
596 addr, paddr, "BUS_MCEERR_AO");
599 return;
602 if (code == BUS_MCEERR_AO) {
603 warn_report("Hardware memory error at addr %p of type %s "
604 "for memory used by QEMU itself instead of guest system!",
605 addr, "BUS_MCEERR_AO");
609 if (code == BUS_MCEERR_AR) {
610 hardware_memory_error(addr);
613 /* Hope we are lucky for AO MCE, just notify a event */
614 emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, false);
617 static void kvm_reset_exception(CPUX86State *env)
619 env->exception_nr = -1;
620 env->exception_pending = 0;
621 env->exception_injected = 0;
622 env->exception_has_payload = false;
623 env->exception_payload = 0;
626 static void kvm_queue_exception(CPUX86State *env,
627 int32_t exception_nr,
628 uint8_t exception_has_payload,
629 uint64_t exception_payload)
631 assert(env->exception_nr == -1);
632 assert(!env->exception_pending);
633 assert(!env->exception_injected);
634 assert(!env->exception_has_payload);
636 env->exception_nr = exception_nr;
638 if (has_exception_payload) {
639 env->exception_pending = 1;
641 env->exception_has_payload = exception_has_payload;
642 env->exception_payload = exception_payload;
643 } else {
644 env->exception_injected = 1;
646 if (exception_nr == EXCP01_DB) {
647 assert(exception_has_payload);
648 env->dr[6] = exception_payload;
649 } else if (exception_nr == EXCP0E_PAGE) {
650 assert(exception_has_payload);
651 env->cr[2] = exception_payload;
652 } else {
653 assert(!exception_has_payload);
658 static int kvm_inject_mce_oldstyle(X86CPU *cpu)
660 CPUX86State *env = &cpu->env;
662 if (!kvm_has_vcpu_events() && env->exception_nr == EXCP12_MCHK) {
663 unsigned int bank, bank_num = env->mcg_cap & 0xff;
664 struct kvm_x86_mce mce;
666 kvm_reset_exception(env);
669 * There must be at least one bank in use if an MCE is pending.
670 * Find it and use its values for the event injection.
672 for (bank = 0; bank < bank_num; bank++) {
673 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
674 break;
677 assert(bank < bank_num);
679 mce.bank = bank;
680 mce.status = env->mce_banks[bank * 4 + 1];
681 mce.mcg_status = env->mcg_status;
682 mce.addr = env->mce_banks[bank * 4 + 2];
683 mce.misc = env->mce_banks[bank * 4 + 3];
685 return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
687 return 0;
690 static void cpu_update_state(void *opaque, int running, RunState state)
692 CPUX86State *env = opaque;
694 if (running) {
695 env->tsc_valid = false;
699 unsigned long kvm_arch_vcpu_id(CPUState *cs)
701 X86CPU *cpu = X86_CPU(cs);
702 return cpu->apic_id;
705 #ifndef KVM_CPUID_SIGNATURE_NEXT
706 #define KVM_CPUID_SIGNATURE_NEXT 0x40000100
707 #endif
709 static bool hyperv_enabled(X86CPU *cpu)
711 CPUState *cs = CPU(cpu);
712 return kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0 &&
713 ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_NOTIFY) ||
714 cpu->hyperv_features || cpu->hyperv_passthrough);
718 * Check whether target_freq is within conservative
719 * ntp correctable bounds (250ppm) of freq
721 static inline bool freq_within_bounds(int freq, int target_freq)
723 int max_freq = freq + (freq * 250 / 1000000);
724 int min_freq = freq - (freq * 250 / 1000000);
726 if (target_freq >= min_freq && target_freq <= max_freq) {
727 return true;
730 return false;
733 static int kvm_arch_set_tsc_khz(CPUState *cs)
735 X86CPU *cpu = X86_CPU(cs);
736 CPUX86State *env = &cpu->env;
737 int r, cur_freq;
738 bool set_ioctl = false;
740 if (!env->tsc_khz) {
741 return 0;
744 cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
745 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : -ENOTSUP;
748 * If TSC scaling is supported, attempt to set TSC frequency.
750 if (kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL)) {
751 set_ioctl = true;
755 * If desired TSC frequency is within bounds of NTP correction,
756 * attempt to set TSC frequency.
758 if (cur_freq != -ENOTSUP && freq_within_bounds(cur_freq, env->tsc_khz)) {
759 set_ioctl = true;
762 r = set_ioctl ?
763 kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) :
764 -ENOTSUP;
766 if (r < 0) {
767 /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
768 * TSC frequency doesn't match the one we want.
770 cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
771 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
772 -ENOTSUP;
773 if (cur_freq <= 0 || cur_freq != env->tsc_khz) {
774 warn_report("TSC frequency mismatch between "
775 "VM (%" PRId64 " kHz) and host (%d kHz), "
776 "and TSC scaling unavailable",
777 env->tsc_khz, cur_freq);
778 return r;
782 return 0;
785 static bool tsc_is_stable_and_known(CPUX86State *env)
787 if (!env->tsc_khz) {
788 return false;
790 return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC)
791 || env->user_tsc_khz;
794 static struct {
795 const char *desc;
796 struct {
797 uint32_t fw;
798 uint32_t bits;
799 } flags[2];
800 uint64_t dependencies;
801 } kvm_hyperv_properties[] = {
802 [HYPERV_FEAT_RELAXED] = {
803 .desc = "relaxed timing (hv-relaxed)",
804 .flags = {
805 {.fw = FEAT_HYPERV_EAX,
806 .bits = HV_HYPERCALL_AVAILABLE},
807 {.fw = FEAT_HV_RECOMM_EAX,
808 .bits = HV_RELAXED_TIMING_RECOMMENDED}
811 [HYPERV_FEAT_VAPIC] = {
812 .desc = "virtual APIC (hv-vapic)",
813 .flags = {
814 {.fw = FEAT_HYPERV_EAX,
815 .bits = HV_HYPERCALL_AVAILABLE | HV_APIC_ACCESS_AVAILABLE},
816 {.fw = FEAT_HV_RECOMM_EAX,
817 .bits = HV_APIC_ACCESS_RECOMMENDED}
820 [HYPERV_FEAT_TIME] = {
821 .desc = "clocksources (hv-time)",
822 .flags = {
823 {.fw = FEAT_HYPERV_EAX,
824 .bits = HV_HYPERCALL_AVAILABLE | HV_TIME_REF_COUNT_AVAILABLE |
825 HV_REFERENCE_TSC_AVAILABLE}
828 [HYPERV_FEAT_CRASH] = {
829 .desc = "crash MSRs (hv-crash)",
830 .flags = {
831 {.fw = FEAT_HYPERV_EDX,
832 .bits = HV_GUEST_CRASH_MSR_AVAILABLE}
835 [HYPERV_FEAT_RESET] = {
836 .desc = "reset MSR (hv-reset)",
837 .flags = {
838 {.fw = FEAT_HYPERV_EAX,
839 .bits = HV_RESET_AVAILABLE}
842 [HYPERV_FEAT_VPINDEX] = {
843 .desc = "VP_INDEX MSR (hv-vpindex)",
844 .flags = {
845 {.fw = FEAT_HYPERV_EAX,
846 .bits = HV_VP_INDEX_AVAILABLE}
849 [HYPERV_FEAT_RUNTIME] = {
850 .desc = "VP_RUNTIME MSR (hv-runtime)",
851 .flags = {
852 {.fw = FEAT_HYPERV_EAX,
853 .bits = HV_VP_RUNTIME_AVAILABLE}
856 [HYPERV_FEAT_SYNIC] = {
857 .desc = "synthetic interrupt controller (hv-synic)",
858 .flags = {
859 {.fw = FEAT_HYPERV_EAX,
860 .bits = HV_SYNIC_AVAILABLE}
863 [HYPERV_FEAT_STIMER] = {
864 .desc = "synthetic timers (hv-stimer)",
865 .flags = {
866 {.fw = FEAT_HYPERV_EAX,
867 .bits = HV_SYNTIMERS_AVAILABLE}
869 .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME)
871 [HYPERV_FEAT_FREQUENCIES] = {
872 .desc = "frequency MSRs (hv-frequencies)",
873 .flags = {
874 {.fw = FEAT_HYPERV_EAX,
875 .bits = HV_ACCESS_FREQUENCY_MSRS},
876 {.fw = FEAT_HYPERV_EDX,
877 .bits = HV_FREQUENCY_MSRS_AVAILABLE}
880 [HYPERV_FEAT_REENLIGHTENMENT] = {
881 .desc = "reenlightenment MSRs (hv-reenlightenment)",
882 .flags = {
883 {.fw = FEAT_HYPERV_EAX,
884 .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL}
887 [HYPERV_FEAT_TLBFLUSH] = {
888 .desc = "paravirtualized TLB flush (hv-tlbflush)",
889 .flags = {
890 {.fw = FEAT_HV_RECOMM_EAX,
891 .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED |
892 HV_EX_PROCESSOR_MASKS_RECOMMENDED}
894 .dependencies = BIT(HYPERV_FEAT_VPINDEX)
896 [HYPERV_FEAT_EVMCS] = {
897 .desc = "enlightened VMCS (hv-evmcs)",
898 .flags = {
899 {.fw = FEAT_HV_RECOMM_EAX,
900 .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED}
902 .dependencies = BIT(HYPERV_FEAT_VAPIC)
904 [HYPERV_FEAT_IPI] = {
905 .desc = "paravirtualized IPI (hv-ipi)",
906 .flags = {
907 {.fw = FEAT_HV_RECOMM_EAX,
908 .bits = HV_CLUSTER_IPI_RECOMMENDED |
909 HV_EX_PROCESSOR_MASKS_RECOMMENDED}
911 .dependencies = BIT(HYPERV_FEAT_VPINDEX)
913 [HYPERV_FEAT_STIMER_DIRECT] = {
914 .desc = "direct mode synthetic timers (hv-stimer-direct)",
915 .flags = {
916 {.fw = FEAT_HYPERV_EDX,
917 .bits = HV_STIMER_DIRECT_MODE_AVAILABLE}
919 .dependencies = BIT(HYPERV_FEAT_STIMER)
923 static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max)
925 struct kvm_cpuid2 *cpuid;
926 int r, size;
928 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
929 cpuid = g_malloc0(size);
930 cpuid->nent = max;
932 r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
933 if (r == 0 && cpuid->nent >= max) {
934 r = -E2BIG;
936 if (r < 0) {
937 if (r == -E2BIG) {
938 g_free(cpuid);
939 return NULL;
940 } else {
941 fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n",
942 strerror(-r));
943 exit(1);
946 return cpuid;
950 * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough
951 * for all entries.
953 static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs)
955 struct kvm_cpuid2 *cpuid;
956 int max = 7; /* 0x40000000..0x40000005, 0x4000000A */
959 * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with
960 * -E2BIG, however, it doesn't report back the right size. Keep increasing
961 * it and re-trying until we succeed.
963 while ((cpuid = try_get_hv_cpuid(cs, max)) == NULL) {
964 max++;
966 return cpuid;
970 * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature
971 * leaves from KVM_CAP_HYPERV* and present MSRs data.
973 static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs)
975 X86CPU *cpu = X86_CPU(cs);
976 struct kvm_cpuid2 *cpuid;
977 struct kvm_cpuid_entry2 *entry_feat, *entry_recomm;
979 /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */
980 cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries));
981 cpuid->nent = 2;
983 /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */
984 entry_feat = &cpuid->entries[0];
985 entry_feat->function = HV_CPUID_FEATURES;
987 entry_recomm = &cpuid->entries[1];
988 entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO;
989 entry_recomm->ebx = cpu->hyperv_spinlock_attempts;
991 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) {
992 entry_feat->eax |= HV_HYPERCALL_AVAILABLE;
993 entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE;
994 entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
995 entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED;
996 entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED;
999 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) {
1000 entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE;
1001 entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE;
1004 if (has_msr_hv_frequencies) {
1005 entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS;
1006 entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE;
1009 if (has_msr_hv_crash) {
1010 entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE;
1013 if (has_msr_hv_reenlightenment) {
1014 entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL;
1017 if (has_msr_hv_reset) {
1018 entry_feat->eax |= HV_RESET_AVAILABLE;
1021 if (has_msr_hv_vpindex) {
1022 entry_feat->eax |= HV_VP_INDEX_AVAILABLE;
1025 if (has_msr_hv_runtime) {
1026 entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE;
1029 if (has_msr_hv_synic) {
1030 unsigned int cap = cpu->hyperv_synic_kvm_only ?
1031 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1033 if (kvm_check_extension(cs->kvm_state, cap) > 0) {
1034 entry_feat->eax |= HV_SYNIC_AVAILABLE;
1038 if (has_msr_hv_stimer) {
1039 entry_feat->eax |= HV_SYNTIMERS_AVAILABLE;
1042 if (kvm_check_extension(cs->kvm_state,
1043 KVM_CAP_HYPERV_TLBFLUSH) > 0) {
1044 entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED;
1045 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1048 if (kvm_check_extension(cs->kvm_state,
1049 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1050 entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1053 if (kvm_check_extension(cs->kvm_state,
1054 KVM_CAP_HYPERV_SEND_IPI) > 0) {
1055 entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED;
1056 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1059 return cpuid;
1062 static int hv_cpuid_get_fw(struct kvm_cpuid2 *cpuid, int fw, uint32_t *r)
1064 struct kvm_cpuid_entry2 *entry;
1065 uint32_t func;
1066 int reg;
1068 switch (fw) {
1069 case FEAT_HYPERV_EAX:
1070 reg = R_EAX;
1071 func = HV_CPUID_FEATURES;
1072 break;
1073 case FEAT_HYPERV_EDX:
1074 reg = R_EDX;
1075 func = HV_CPUID_FEATURES;
1076 break;
1077 case FEAT_HV_RECOMM_EAX:
1078 reg = R_EAX;
1079 func = HV_CPUID_ENLIGHTMENT_INFO;
1080 break;
1081 default:
1082 return -EINVAL;
1085 entry = cpuid_find_entry(cpuid, func, 0);
1086 if (!entry) {
1087 return -ENOENT;
1090 switch (reg) {
1091 case R_EAX:
1092 *r = entry->eax;
1093 break;
1094 case R_EDX:
1095 *r = entry->edx;
1096 break;
1097 default:
1098 return -EINVAL;
1101 return 0;
1104 static int hv_cpuid_check_and_set(CPUState *cs, struct kvm_cpuid2 *cpuid,
1105 int feature)
1107 X86CPU *cpu = X86_CPU(cs);
1108 CPUX86State *env = &cpu->env;
1109 uint32_t r, fw, bits;
1110 uint64_t deps;
1111 int i, dep_feat;
1113 if (!hyperv_feat_enabled(cpu, feature) && !cpu->hyperv_passthrough) {
1114 return 0;
1117 deps = kvm_hyperv_properties[feature].dependencies;
1118 while (deps) {
1119 dep_feat = ctz64(deps);
1120 if (!(hyperv_feat_enabled(cpu, dep_feat))) {
1121 fprintf(stderr,
1122 "Hyper-V %s requires Hyper-V %s\n",
1123 kvm_hyperv_properties[feature].desc,
1124 kvm_hyperv_properties[dep_feat].desc);
1125 return 1;
1127 deps &= ~(1ull << dep_feat);
1130 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) {
1131 fw = kvm_hyperv_properties[feature].flags[i].fw;
1132 bits = kvm_hyperv_properties[feature].flags[i].bits;
1134 if (!fw) {
1135 continue;
1138 if (hv_cpuid_get_fw(cpuid, fw, &r) || (r & bits) != bits) {
1139 if (hyperv_feat_enabled(cpu, feature)) {
1140 fprintf(stderr,
1141 "Hyper-V %s is not supported by kernel\n",
1142 kvm_hyperv_properties[feature].desc);
1143 return 1;
1144 } else {
1145 return 0;
1149 env->features[fw] |= bits;
1152 if (cpu->hyperv_passthrough) {
1153 cpu->hyperv_features |= BIT(feature);
1156 return 0;
1160 * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent in
1161 * case of success, errno < 0 in case of failure and 0 when no Hyper-V
1162 * extentions are enabled.
1164 static int hyperv_handle_properties(CPUState *cs,
1165 struct kvm_cpuid_entry2 *cpuid_ent)
1167 X86CPU *cpu = X86_CPU(cs);
1168 CPUX86State *env = &cpu->env;
1169 struct kvm_cpuid2 *cpuid;
1170 struct kvm_cpuid_entry2 *c;
1171 uint32_t signature[3];
1172 uint32_t cpuid_i = 0;
1173 int r;
1175 if (!hyperv_enabled(cpu))
1176 return 0;
1178 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ||
1179 cpu->hyperv_passthrough) {
1180 uint16_t evmcs_version;
1182 r = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0,
1183 (uintptr_t)&evmcs_version);
1185 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) && r) {
1186 fprintf(stderr, "Hyper-V %s is not supported by kernel\n",
1187 kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc);
1188 return -ENOSYS;
1191 if (!r) {
1192 env->features[FEAT_HV_RECOMM_EAX] |=
1193 HV_ENLIGHTENED_VMCS_RECOMMENDED;
1194 env->features[FEAT_HV_NESTED_EAX] = evmcs_version;
1198 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_CPUID) > 0) {
1199 cpuid = get_supported_hv_cpuid(cs);
1200 } else {
1201 cpuid = get_supported_hv_cpuid_legacy(cs);
1204 if (cpu->hyperv_passthrough) {
1205 memcpy(cpuid_ent, &cpuid->entries[0],
1206 cpuid->nent * sizeof(cpuid->entries[0]));
1208 c = cpuid_find_entry(cpuid, HV_CPUID_FEATURES, 0);
1209 if (c) {
1210 env->features[FEAT_HYPERV_EAX] = c->eax;
1211 env->features[FEAT_HYPERV_EBX] = c->ebx;
1212 env->features[FEAT_HYPERV_EDX] = c->edx;
1214 c = cpuid_find_entry(cpuid, HV_CPUID_ENLIGHTMENT_INFO, 0);
1215 if (c) {
1216 env->features[FEAT_HV_RECOMM_EAX] = c->eax;
1218 /* hv-spinlocks may have been overriden */
1219 if (cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_NOTIFY) {
1220 c->ebx = cpu->hyperv_spinlock_attempts;
1223 c = cpuid_find_entry(cpuid, HV_CPUID_NESTED_FEATURES, 0);
1224 if (c) {
1225 env->features[FEAT_HV_NESTED_EAX] = c->eax;
1229 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_ON) {
1230 env->features[FEAT_HV_RECOMM_EAX] |= HV_NO_NONARCH_CORESHARING;
1231 } else if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO) {
1232 c = cpuid_find_entry(cpuid, HV_CPUID_ENLIGHTMENT_INFO, 0);
1233 if (c) {
1234 env->features[FEAT_HV_RECOMM_EAX] |=
1235 c->eax & HV_NO_NONARCH_CORESHARING;
1239 /* Features */
1240 r = hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RELAXED);
1241 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_VAPIC);
1242 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_TIME);
1243 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_CRASH);
1244 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RESET);
1245 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_VPINDEX);
1246 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RUNTIME);
1247 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_SYNIC);
1248 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_STIMER);
1249 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_FREQUENCIES);
1250 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_REENLIGHTENMENT);
1251 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_TLBFLUSH);
1252 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_EVMCS);
1253 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_IPI);
1254 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_STIMER_DIRECT);
1256 /* Additional dependencies not covered by kvm_hyperv_properties[] */
1257 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1258 !cpu->hyperv_synic_kvm_only &&
1259 !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) {
1260 fprintf(stderr, "Hyper-V %s requires Hyper-V %s\n",
1261 kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc,
1262 kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc);
1263 r |= 1;
1266 /* Not exposed by KVM but needed to make CPU hotplug in Windows work */
1267 env->features[FEAT_HYPERV_EDX] |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1269 if (r) {
1270 r = -ENOSYS;
1271 goto free;
1274 if (cpu->hyperv_passthrough) {
1275 /* We already copied all feature words from KVM as is */
1276 r = cpuid->nent;
1277 goto free;
1280 c = &cpuid_ent[cpuid_i++];
1281 c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
1282 if (!cpu->hyperv_vendor_id) {
1283 memcpy(signature, "Microsoft Hv", 12);
1284 } else {
1285 size_t len = strlen(cpu->hyperv_vendor_id);
1287 if (len > 12) {
1288 error_report("hv-vendor-id truncated to 12 characters");
1289 len = 12;
1291 memset(signature, 0, 12);
1292 memcpy(signature, cpu->hyperv_vendor_id, len);
1294 c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ?
1295 HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS;
1296 c->ebx = signature[0];
1297 c->ecx = signature[1];
1298 c->edx = signature[2];
1300 c = &cpuid_ent[cpuid_i++];
1301 c->function = HV_CPUID_INTERFACE;
1302 memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
1303 c->eax = signature[0];
1304 c->ebx = 0;
1305 c->ecx = 0;
1306 c->edx = 0;
1308 c = &cpuid_ent[cpuid_i++];
1309 c->function = HV_CPUID_VERSION;
1310 c->eax = 0x00001bbc;
1311 c->ebx = 0x00060001;
1313 c = &cpuid_ent[cpuid_i++];
1314 c->function = HV_CPUID_FEATURES;
1315 c->eax = env->features[FEAT_HYPERV_EAX];
1316 c->ebx = env->features[FEAT_HYPERV_EBX];
1317 c->edx = env->features[FEAT_HYPERV_EDX];
1319 c = &cpuid_ent[cpuid_i++];
1320 c->function = HV_CPUID_ENLIGHTMENT_INFO;
1321 c->eax = env->features[FEAT_HV_RECOMM_EAX];
1322 c->ebx = cpu->hyperv_spinlock_attempts;
1324 c = &cpuid_ent[cpuid_i++];
1325 c->function = HV_CPUID_IMPLEMENT_LIMITS;
1326 c->eax = cpu->hv_max_vps;
1327 c->ebx = 0x40;
1329 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1330 __u32 function;
1332 /* Create zeroed 0x40000006..0x40000009 leaves */
1333 for (function = HV_CPUID_IMPLEMENT_LIMITS + 1;
1334 function < HV_CPUID_NESTED_FEATURES; function++) {
1335 c = &cpuid_ent[cpuid_i++];
1336 c->function = function;
1339 c = &cpuid_ent[cpuid_i++];
1340 c->function = HV_CPUID_NESTED_FEATURES;
1341 c->eax = env->features[FEAT_HV_NESTED_EAX];
1343 r = cpuid_i;
1345 free:
1346 g_free(cpuid);
1348 return r;
1351 static Error *hv_passthrough_mig_blocker;
1352 static Error *hv_no_nonarch_cs_mig_blocker;
1354 static int hyperv_init_vcpu(X86CPU *cpu)
1356 CPUState *cs = CPU(cpu);
1357 Error *local_err = NULL;
1358 int ret;
1360 if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) {
1361 error_setg(&hv_passthrough_mig_blocker,
1362 "'hv-passthrough' CPU flag prevents migration, use explicit"
1363 " set of hv-* flags instead");
1364 ret = migrate_add_blocker(hv_passthrough_mig_blocker, &local_err);
1365 if (local_err) {
1366 error_report_err(local_err);
1367 error_free(hv_passthrough_mig_blocker);
1368 return ret;
1372 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO &&
1373 hv_no_nonarch_cs_mig_blocker == NULL) {
1374 error_setg(&hv_no_nonarch_cs_mig_blocker,
1375 "'hv-no-nonarch-coresharing=auto' CPU flag prevents migration"
1376 " use explicit 'hv-no-nonarch-coresharing=on' instead (but"
1377 " make sure SMT is disabled and/or that vCPUs are properly"
1378 " pinned)");
1379 ret = migrate_add_blocker(hv_no_nonarch_cs_mig_blocker, &local_err);
1380 if (local_err) {
1381 error_report_err(local_err);
1382 error_free(hv_no_nonarch_cs_mig_blocker);
1383 return ret;
1387 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) {
1389 * the kernel doesn't support setting vp_index; assert that its value
1390 * is in sync
1392 struct {
1393 struct kvm_msrs info;
1394 struct kvm_msr_entry entries[1];
1395 } msr_data = {
1396 .info.nmsrs = 1,
1397 .entries[0].index = HV_X64_MSR_VP_INDEX,
1400 ret = kvm_vcpu_ioctl(cs, KVM_GET_MSRS, &msr_data);
1401 if (ret < 0) {
1402 return ret;
1404 assert(ret == 1);
1406 if (msr_data.entries[0].data != hyperv_vp_index(CPU(cpu))) {
1407 error_report("kernel's vp_index != QEMU's vp_index");
1408 return -ENXIO;
1412 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
1413 uint32_t synic_cap = cpu->hyperv_synic_kvm_only ?
1414 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1415 ret = kvm_vcpu_enable_cap(cs, synic_cap, 0);
1416 if (ret < 0) {
1417 error_report("failed to turn on HyperV SynIC in KVM: %s",
1418 strerror(-ret));
1419 return ret;
1422 if (!cpu->hyperv_synic_kvm_only) {
1423 ret = hyperv_x86_synic_add(cpu);
1424 if (ret < 0) {
1425 error_report("failed to create HyperV SynIC: %s",
1426 strerror(-ret));
1427 return ret;
1432 return 0;
1435 static Error *invtsc_mig_blocker;
1437 #define KVM_MAX_CPUID_ENTRIES 100
1439 int kvm_arch_init_vcpu(CPUState *cs)
1441 struct {
1442 struct kvm_cpuid2 cpuid;
1443 struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
1444 } cpuid_data;
1446 * The kernel defines these structs with padding fields so there
1447 * should be no extra padding in our cpuid_data struct.
1449 QEMU_BUILD_BUG_ON(sizeof(cpuid_data) !=
1450 sizeof(struct kvm_cpuid2) +
1451 sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES);
1453 X86CPU *cpu = X86_CPU(cs);
1454 CPUX86State *env = &cpu->env;
1455 uint32_t limit, i, j, cpuid_i;
1456 uint32_t unused;
1457 struct kvm_cpuid_entry2 *c;
1458 uint32_t signature[3];
1459 int kvm_base = KVM_CPUID_SIGNATURE;
1460 int max_nested_state_len;
1461 int r;
1462 Error *local_err = NULL;
1464 memset(&cpuid_data, 0, sizeof(cpuid_data));
1466 cpuid_i = 0;
1468 r = kvm_arch_set_tsc_khz(cs);
1469 if (r < 0) {
1470 return r;
1473 /* vcpu's TSC frequency is either specified by user, or following
1474 * the value used by KVM if the former is not present. In the
1475 * latter case, we query it from KVM and record in env->tsc_khz,
1476 * so that vcpu's TSC frequency can be migrated later via this field.
1478 if (!env->tsc_khz) {
1479 r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
1480 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
1481 -ENOTSUP;
1482 if (r > 0) {
1483 env->tsc_khz = r;
1487 env->apic_bus_freq = KVM_APIC_BUS_FREQUENCY;
1489 /* Paravirtualization CPUIDs */
1490 r = hyperv_handle_properties(cs, cpuid_data.entries);
1491 if (r < 0) {
1492 return r;
1493 } else if (r > 0) {
1494 cpuid_i = r;
1495 kvm_base = KVM_CPUID_SIGNATURE_NEXT;
1496 has_msr_hv_hypercall = true;
1499 if (cpu->expose_kvm) {
1500 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
1501 c = &cpuid_data.entries[cpuid_i++];
1502 c->function = KVM_CPUID_SIGNATURE | kvm_base;
1503 c->eax = KVM_CPUID_FEATURES | kvm_base;
1504 c->ebx = signature[0];
1505 c->ecx = signature[1];
1506 c->edx = signature[2];
1508 c = &cpuid_data.entries[cpuid_i++];
1509 c->function = KVM_CPUID_FEATURES | kvm_base;
1510 c->eax = env->features[FEAT_KVM];
1511 c->edx = env->features[FEAT_KVM_HINTS];
1514 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
1516 for (i = 0; i <= limit; i++) {
1517 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1518 fprintf(stderr, "unsupported level value: 0x%x\n", limit);
1519 abort();
1521 c = &cpuid_data.entries[cpuid_i++];
1523 switch (i) {
1524 case 2: {
1525 /* Keep reading function 2 till all the input is received */
1526 int times;
1528 c->function = i;
1529 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
1530 KVM_CPUID_FLAG_STATE_READ_NEXT;
1531 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1532 times = c->eax & 0xff;
1534 for (j = 1; j < times; ++j) {
1535 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1536 fprintf(stderr, "cpuid_data is full, no space for "
1537 "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
1538 abort();
1540 c = &cpuid_data.entries[cpuid_i++];
1541 c->function = i;
1542 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
1543 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1545 break;
1547 case 0x1f:
1548 if (env->nr_dies < 2) {
1549 break;
1551 /* fallthrough */
1552 case 4:
1553 case 0xb:
1554 case 0xd:
1555 for (j = 0; ; j++) {
1556 if (i == 0xd && j == 64) {
1557 break;
1560 if (i == 0x1f && j == 64) {
1561 break;
1564 c->function = i;
1565 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1566 c->index = j;
1567 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1569 if (i == 4 && c->eax == 0) {
1570 break;
1572 if (i == 0xb && !(c->ecx & 0xff00)) {
1573 break;
1575 if (i == 0x1f && !(c->ecx & 0xff00)) {
1576 break;
1578 if (i == 0xd && c->eax == 0) {
1579 continue;
1581 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1582 fprintf(stderr, "cpuid_data is full, no space for "
1583 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1584 abort();
1586 c = &cpuid_data.entries[cpuid_i++];
1588 break;
1589 case 0x7:
1590 case 0x14: {
1591 uint32_t times;
1593 c->function = i;
1594 c->index = 0;
1595 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1596 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1597 times = c->eax;
1599 for (j = 1; j <= times; ++j) {
1600 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1601 fprintf(stderr, "cpuid_data is full, no space for "
1602 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1603 abort();
1605 c = &cpuid_data.entries[cpuid_i++];
1606 c->function = i;
1607 c->index = j;
1608 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1609 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1611 break;
1613 default:
1614 c->function = i;
1615 c->flags = 0;
1616 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1617 if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
1619 * KVM already returns all zeroes if a CPUID entry is missing,
1620 * so we can omit it and avoid hitting KVM's 80-entry limit.
1622 cpuid_i--;
1624 break;
1628 if (limit >= 0x0a) {
1629 uint32_t eax, edx;
1631 cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx);
1633 has_architectural_pmu_version = eax & 0xff;
1634 if (has_architectural_pmu_version > 0) {
1635 num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8;
1637 /* Shouldn't be more than 32, since that's the number of bits
1638 * available in EBX to tell us _which_ counters are available.
1639 * Play it safe.
1641 if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) {
1642 num_architectural_pmu_gp_counters = MAX_GP_COUNTERS;
1645 if (has_architectural_pmu_version > 1) {
1646 num_architectural_pmu_fixed_counters = edx & 0x1f;
1648 if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) {
1649 num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS;
1655 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
1657 for (i = 0x80000000; i <= limit; i++) {
1658 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1659 fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
1660 abort();
1662 c = &cpuid_data.entries[cpuid_i++];
1664 switch (i) {
1665 case 0x8000001d:
1666 /* Query for all AMD cache information leaves */
1667 for (j = 0; ; j++) {
1668 c->function = i;
1669 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1670 c->index = j;
1671 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1673 if (c->eax == 0) {
1674 break;
1676 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1677 fprintf(stderr, "cpuid_data is full, no space for "
1678 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1679 abort();
1681 c = &cpuid_data.entries[cpuid_i++];
1683 break;
1684 default:
1685 c->function = i;
1686 c->flags = 0;
1687 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1688 if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
1690 * KVM already returns all zeroes if a CPUID entry is missing,
1691 * so we can omit it and avoid hitting KVM's 80-entry limit.
1693 cpuid_i--;
1695 break;
1699 /* Call Centaur's CPUID instructions they are supported. */
1700 if (env->cpuid_xlevel2 > 0) {
1701 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
1703 for (i = 0xC0000000; i <= limit; i++) {
1704 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1705 fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
1706 abort();
1708 c = &cpuid_data.entries[cpuid_i++];
1710 c->function = i;
1711 c->flags = 0;
1712 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1716 cpuid_data.cpuid.nent = cpuid_i;
1718 if (((env->cpuid_version >> 8)&0xF) >= 6
1719 && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
1720 (CPUID_MCE | CPUID_MCA)
1721 && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
1722 uint64_t mcg_cap, unsupported_caps;
1723 int banks;
1724 int ret;
1726 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
1727 if (ret < 0) {
1728 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
1729 return ret;
1732 if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) {
1733 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
1734 (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks);
1735 return -ENOTSUP;
1738 unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK);
1739 if (unsupported_caps) {
1740 if (unsupported_caps & MCG_LMCE_P) {
1741 error_report("kvm: LMCE not supported");
1742 return -ENOTSUP;
1744 warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64,
1745 unsupported_caps);
1748 env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK;
1749 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap);
1750 if (ret < 0) {
1751 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
1752 return ret;
1756 cpu->vmsentry = qemu_add_vm_change_state_handler(cpu_update_state, env);
1758 c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
1759 if (c) {
1760 has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
1761 !!(c->ecx & CPUID_EXT_SMX);
1764 if (env->mcg_cap & MCG_LMCE_P) {
1765 has_msr_mcg_ext_ctl = has_msr_feature_control = true;
1768 if (!env->user_tsc_khz) {
1769 if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) &&
1770 invtsc_mig_blocker == NULL) {
1771 error_setg(&invtsc_mig_blocker,
1772 "State blocked by non-migratable CPU device"
1773 " (invtsc flag)");
1774 r = migrate_add_blocker(invtsc_mig_blocker, &local_err);
1775 if (local_err) {
1776 error_report_err(local_err);
1777 error_free(invtsc_mig_blocker);
1778 return r;
1783 if (cpu->vmware_cpuid_freq
1784 /* Guests depend on 0x40000000 to detect this feature, so only expose
1785 * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */
1786 && cpu->expose_kvm
1787 && kvm_base == KVM_CPUID_SIGNATURE
1788 /* TSC clock must be stable and known for this feature. */
1789 && tsc_is_stable_and_known(env)) {
1791 c = &cpuid_data.entries[cpuid_i++];
1792 c->function = KVM_CPUID_SIGNATURE | 0x10;
1793 c->eax = env->tsc_khz;
1794 c->ebx = env->apic_bus_freq / 1000; /* Hz to KHz */
1795 c->ecx = c->edx = 0;
1797 c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0);
1798 c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10);
1801 cpuid_data.cpuid.nent = cpuid_i;
1803 cpuid_data.cpuid.padding = 0;
1804 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
1805 if (r) {
1806 goto fail;
1809 if (has_xsave) {
1810 env->xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
1811 memset(env->xsave_buf, 0, sizeof(struct kvm_xsave));
1814 max_nested_state_len = kvm_max_nested_state_length();
1815 if (max_nested_state_len > 0) {
1816 assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data));
1818 if (cpu_has_vmx(env) || cpu_has_svm(env)) {
1819 struct kvm_vmx_nested_state_hdr *vmx_hdr;
1821 env->nested_state = g_malloc0(max_nested_state_len);
1822 env->nested_state->size = max_nested_state_len;
1824 if (cpu_has_vmx(env)) {
1825 env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX;
1826 vmx_hdr = &env->nested_state->hdr.vmx;
1827 vmx_hdr->vmxon_pa = -1ull;
1828 vmx_hdr->vmcs12_pa = -1ull;
1829 } else {
1830 env->nested_state->format = KVM_STATE_NESTED_FORMAT_SVM;
1835 cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE);
1837 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) {
1838 has_msr_tsc_aux = false;
1841 kvm_init_msrs(cpu);
1843 r = hyperv_init_vcpu(cpu);
1844 if (r) {
1845 goto fail;
1848 return 0;
1850 fail:
1851 migrate_del_blocker(invtsc_mig_blocker);
1853 return r;
1856 int kvm_arch_destroy_vcpu(CPUState *cs)
1858 X86CPU *cpu = X86_CPU(cs);
1859 CPUX86State *env = &cpu->env;
1861 if (cpu->kvm_msr_buf) {
1862 g_free(cpu->kvm_msr_buf);
1863 cpu->kvm_msr_buf = NULL;
1866 if (env->nested_state) {
1867 g_free(env->nested_state);
1868 env->nested_state = NULL;
1871 qemu_del_vm_change_state_handler(cpu->vmsentry);
1873 return 0;
1876 void kvm_arch_reset_vcpu(X86CPU *cpu)
1878 CPUX86State *env = &cpu->env;
1880 env->xcr0 = 1;
1881 if (kvm_irqchip_in_kernel()) {
1882 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
1883 KVM_MP_STATE_UNINITIALIZED;
1884 } else {
1885 env->mp_state = KVM_MP_STATE_RUNNABLE;
1888 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
1889 int i;
1890 for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) {
1891 env->msr_hv_synic_sint[i] = HV_SINT_MASKED;
1894 hyperv_x86_synic_reset(cpu);
1896 /* enabled by default */
1897 env->poll_control_msr = 1;
1900 void kvm_arch_do_init_vcpu(X86CPU *cpu)
1902 CPUX86State *env = &cpu->env;
1904 /* APs get directly into wait-for-SIPI state. */
1905 if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
1906 env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
1910 static int kvm_get_supported_feature_msrs(KVMState *s)
1912 int ret = 0;
1914 if (kvm_feature_msrs != NULL) {
1915 return 0;
1918 if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) {
1919 return 0;
1922 struct kvm_msr_list msr_list;
1924 msr_list.nmsrs = 0;
1925 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list);
1926 if (ret < 0 && ret != -E2BIG) {
1927 error_report("Fetch KVM feature MSR list failed: %s",
1928 strerror(-ret));
1929 return ret;
1932 assert(msr_list.nmsrs > 0);
1933 kvm_feature_msrs = (struct kvm_msr_list *) \
1934 g_malloc0(sizeof(msr_list) +
1935 msr_list.nmsrs * sizeof(msr_list.indices[0]));
1937 kvm_feature_msrs->nmsrs = msr_list.nmsrs;
1938 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs);
1940 if (ret < 0) {
1941 error_report("Fetch KVM feature MSR list failed: %s",
1942 strerror(-ret));
1943 g_free(kvm_feature_msrs);
1944 kvm_feature_msrs = NULL;
1945 return ret;
1948 return 0;
1951 static int kvm_get_supported_msrs(KVMState *s)
1953 int ret = 0;
1954 struct kvm_msr_list msr_list, *kvm_msr_list;
1957 * Obtain MSR list from KVM. These are the MSRs that we must
1958 * save/restore.
1960 msr_list.nmsrs = 0;
1961 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
1962 if (ret < 0 && ret != -E2BIG) {
1963 return ret;
1966 * Old kernel modules had a bug and could write beyond the provided
1967 * memory. Allocate at least a safe amount of 1K.
1969 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
1970 msr_list.nmsrs *
1971 sizeof(msr_list.indices[0])));
1973 kvm_msr_list->nmsrs = msr_list.nmsrs;
1974 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
1975 if (ret >= 0) {
1976 int i;
1978 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
1979 switch (kvm_msr_list->indices[i]) {
1980 case MSR_STAR:
1981 has_msr_star = true;
1982 break;
1983 case MSR_VM_HSAVE_PA:
1984 has_msr_hsave_pa = true;
1985 break;
1986 case MSR_TSC_AUX:
1987 has_msr_tsc_aux = true;
1988 break;
1989 case MSR_TSC_ADJUST:
1990 has_msr_tsc_adjust = true;
1991 break;
1992 case MSR_IA32_TSCDEADLINE:
1993 has_msr_tsc_deadline = true;
1994 break;
1995 case MSR_IA32_SMBASE:
1996 has_msr_smbase = true;
1997 break;
1998 case MSR_SMI_COUNT:
1999 has_msr_smi_count = true;
2000 break;
2001 case MSR_IA32_MISC_ENABLE:
2002 has_msr_misc_enable = true;
2003 break;
2004 case MSR_IA32_BNDCFGS:
2005 has_msr_bndcfgs = true;
2006 break;
2007 case MSR_IA32_XSS:
2008 has_msr_xss = true;
2009 break;
2010 case MSR_IA32_UMWAIT_CONTROL:
2011 has_msr_umwait = true;
2012 break;
2013 case HV_X64_MSR_CRASH_CTL:
2014 has_msr_hv_crash = true;
2015 break;
2016 case HV_X64_MSR_RESET:
2017 has_msr_hv_reset = true;
2018 break;
2019 case HV_X64_MSR_VP_INDEX:
2020 has_msr_hv_vpindex = true;
2021 break;
2022 case HV_X64_MSR_VP_RUNTIME:
2023 has_msr_hv_runtime = true;
2024 break;
2025 case HV_X64_MSR_SCONTROL:
2026 has_msr_hv_synic = true;
2027 break;
2028 case HV_X64_MSR_STIMER0_CONFIG:
2029 has_msr_hv_stimer = true;
2030 break;
2031 case HV_X64_MSR_TSC_FREQUENCY:
2032 has_msr_hv_frequencies = true;
2033 break;
2034 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2035 has_msr_hv_reenlightenment = true;
2036 break;
2037 case MSR_IA32_SPEC_CTRL:
2038 has_msr_spec_ctrl = true;
2039 break;
2040 case MSR_IA32_TSX_CTRL:
2041 has_msr_tsx_ctrl = true;
2042 break;
2043 case MSR_VIRT_SSBD:
2044 has_msr_virt_ssbd = true;
2045 break;
2046 case MSR_IA32_ARCH_CAPABILITIES:
2047 has_msr_arch_capabs = true;
2048 break;
2049 case MSR_IA32_CORE_CAPABILITY:
2050 has_msr_core_capabs = true;
2051 break;
2052 case MSR_IA32_PERF_CAPABILITIES:
2053 has_msr_perf_capabs = true;
2054 break;
2055 case MSR_IA32_VMX_VMFUNC:
2056 has_msr_vmx_vmfunc = true;
2057 break;
2058 case MSR_IA32_UCODE_REV:
2059 has_msr_ucode_rev = true;
2060 break;
2061 case MSR_IA32_VMX_PROCBASED_CTLS2:
2062 has_msr_vmx_procbased_ctls2 = true;
2063 break;
2068 g_free(kvm_msr_list);
2070 return ret;
2073 static Notifier smram_machine_done;
2074 static KVMMemoryListener smram_listener;
2075 static AddressSpace smram_address_space;
2076 static MemoryRegion smram_as_root;
2077 static MemoryRegion smram_as_mem;
2079 static void register_smram_listener(Notifier *n, void *unused)
2081 MemoryRegion *smram =
2082 (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
2084 /* Outer container... */
2085 memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
2086 memory_region_set_enabled(&smram_as_root, true);
2088 /* ... with two regions inside: normal system memory with low
2089 * priority, and...
2091 memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
2092 get_system_memory(), 0, ~0ull);
2093 memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
2094 memory_region_set_enabled(&smram_as_mem, true);
2096 if (smram) {
2097 /* ... SMRAM with higher priority */
2098 memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
2099 memory_region_set_enabled(smram, true);
2102 address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
2103 kvm_memory_listener_register(kvm_state, &smram_listener,
2104 &smram_address_space, 1);
2107 int kvm_arch_init(MachineState *ms, KVMState *s)
2109 uint64_t identity_base = 0xfffbc000;
2110 uint64_t shadow_mem;
2111 int ret;
2112 struct utsname utsname;
2114 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2115 error_report("kvm: KVM_CAP_IRQ_ROUTING not supported by KVM");
2116 return -ENOTSUP;
2119 has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
2120 has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
2121 has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
2123 hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX);
2125 has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD);
2126 if (has_exception_payload) {
2127 ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true);
2128 if (ret < 0) {
2129 error_report("kvm: Failed to enable exception payload cap: %s",
2130 strerror(-ret));
2131 return ret;
2135 ret = kvm_get_supported_msrs(s);
2136 if (ret < 0) {
2137 return ret;
2140 kvm_get_supported_feature_msrs(s);
2142 uname(&utsname);
2143 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
2146 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
2147 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
2148 * Since these must be part of guest physical memory, we need to allocate
2149 * them, both by setting their start addresses in the kernel and by
2150 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
2152 * Older KVM versions may not support setting the identity map base. In
2153 * that case we need to stick with the default, i.e. a 256K maximum BIOS
2154 * size.
2156 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
2157 /* Allows up to 16M BIOSes. */
2158 identity_base = 0xfeffc000;
2160 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
2161 if (ret < 0) {
2162 return ret;
2166 /* Set TSS base one page after EPT identity map. */
2167 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
2168 if (ret < 0) {
2169 return ret;
2172 /* Tell fw_cfg to notify the BIOS to reserve the range. */
2173 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
2174 if (ret < 0) {
2175 fprintf(stderr, "e820_add_entry() table is full\n");
2176 return ret;
2179 shadow_mem = object_property_get_int(OBJECT(s), "kvm-shadow-mem", &error_abort);
2180 if (shadow_mem != -1) {
2181 shadow_mem /= 4096;
2182 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
2183 if (ret < 0) {
2184 return ret;
2188 if (kvm_check_extension(s, KVM_CAP_X86_SMM) &&
2189 object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE) &&
2190 x86_machine_is_smm_enabled(X86_MACHINE(ms))) {
2191 smram_machine_done.notify = register_smram_listener;
2192 qemu_add_machine_init_done_notifier(&smram_machine_done);
2195 if (enable_cpu_pm) {
2196 int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS);
2197 int ret;
2199 /* Work around for kernel header with a typo. TODO: fix header and drop. */
2200 #if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT)
2201 #define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL
2202 #endif
2203 if (disable_exits) {
2204 disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT |
2205 KVM_X86_DISABLE_EXITS_HLT |
2206 KVM_X86_DISABLE_EXITS_PAUSE |
2207 KVM_X86_DISABLE_EXITS_CSTATE);
2210 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0,
2211 disable_exits);
2212 if (ret < 0) {
2213 error_report("kvm: guest stopping CPU not supported: %s",
2214 strerror(-ret));
2218 return 0;
2221 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2223 lhs->selector = rhs->selector;
2224 lhs->base = rhs->base;
2225 lhs->limit = rhs->limit;
2226 lhs->type = 3;
2227 lhs->present = 1;
2228 lhs->dpl = 3;
2229 lhs->db = 0;
2230 lhs->s = 1;
2231 lhs->l = 0;
2232 lhs->g = 0;
2233 lhs->avl = 0;
2234 lhs->unusable = 0;
2237 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2239 unsigned flags = rhs->flags;
2240 lhs->selector = rhs->selector;
2241 lhs->base = rhs->base;
2242 lhs->limit = rhs->limit;
2243 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
2244 lhs->present = (flags & DESC_P_MASK) != 0;
2245 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
2246 lhs->db = (flags >> DESC_B_SHIFT) & 1;
2247 lhs->s = (flags & DESC_S_MASK) != 0;
2248 lhs->l = (flags >> DESC_L_SHIFT) & 1;
2249 lhs->g = (flags & DESC_G_MASK) != 0;
2250 lhs->avl = (flags & DESC_AVL_MASK) != 0;
2251 lhs->unusable = !lhs->present;
2252 lhs->padding = 0;
2255 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
2257 lhs->selector = rhs->selector;
2258 lhs->base = rhs->base;
2259 lhs->limit = rhs->limit;
2260 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
2261 ((rhs->present && !rhs->unusable) * DESC_P_MASK) |
2262 (rhs->dpl << DESC_DPL_SHIFT) |
2263 (rhs->db << DESC_B_SHIFT) |
2264 (rhs->s * DESC_S_MASK) |
2265 (rhs->l << DESC_L_SHIFT) |
2266 (rhs->g * DESC_G_MASK) |
2267 (rhs->avl * DESC_AVL_MASK);
2270 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
2272 if (set) {
2273 *kvm_reg = *qemu_reg;
2274 } else {
2275 *qemu_reg = *kvm_reg;
2279 static int kvm_getput_regs(X86CPU *cpu, int set)
2281 CPUX86State *env = &cpu->env;
2282 struct kvm_regs regs;
2283 int ret = 0;
2285 if (!set) {
2286 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
2287 if (ret < 0) {
2288 return ret;
2292 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
2293 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
2294 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
2295 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
2296 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
2297 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
2298 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
2299 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
2300 #ifdef TARGET_X86_64
2301 kvm_getput_reg(&regs.r8, &env->regs[8], set);
2302 kvm_getput_reg(&regs.r9, &env->regs[9], set);
2303 kvm_getput_reg(&regs.r10, &env->regs[10], set);
2304 kvm_getput_reg(&regs.r11, &env->regs[11], set);
2305 kvm_getput_reg(&regs.r12, &env->regs[12], set);
2306 kvm_getput_reg(&regs.r13, &env->regs[13], set);
2307 kvm_getput_reg(&regs.r14, &env->regs[14], set);
2308 kvm_getput_reg(&regs.r15, &env->regs[15], set);
2309 #endif
2311 kvm_getput_reg(&regs.rflags, &env->eflags, set);
2312 kvm_getput_reg(&regs.rip, &env->eip, set);
2314 if (set) {
2315 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
2318 return ret;
2321 static int kvm_put_fpu(X86CPU *cpu)
2323 CPUX86State *env = &cpu->env;
2324 struct kvm_fpu fpu;
2325 int i;
2327 memset(&fpu, 0, sizeof fpu);
2328 fpu.fsw = env->fpus & ~(7 << 11);
2329 fpu.fsw |= (env->fpstt & 7) << 11;
2330 fpu.fcw = env->fpuc;
2331 fpu.last_opcode = env->fpop;
2332 fpu.last_ip = env->fpip;
2333 fpu.last_dp = env->fpdp;
2334 for (i = 0; i < 8; ++i) {
2335 fpu.ftwx |= (!env->fptags[i]) << i;
2337 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
2338 for (i = 0; i < CPU_NB_REGS; i++) {
2339 stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0));
2340 stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1));
2342 fpu.mxcsr = env->mxcsr;
2344 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
2347 #define XSAVE_FCW_FSW 0
2348 #define XSAVE_FTW_FOP 1
2349 #define XSAVE_CWD_RIP 2
2350 #define XSAVE_CWD_RDP 4
2351 #define XSAVE_MXCSR 6
2352 #define XSAVE_ST_SPACE 8
2353 #define XSAVE_XMM_SPACE 40
2354 #define XSAVE_XSTATE_BV 128
2355 #define XSAVE_YMMH_SPACE 144
2356 #define XSAVE_BNDREGS 240
2357 #define XSAVE_BNDCSR 256
2358 #define XSAVE_OPMASK 272
2359 #define XSAVE_ZMM_Hi256 288
2360 #define XSAVE_Hi16_ZMM 416
2361 #define XSAVE_PKRU 672
2363 #define XSAVE_BYTE_OFFSET(word_offset) \
2364 ((word_offset) * sizeof_field(struct kvm_xsave, region[0]))
2366 #define ASSERT_OFFSET(word_offset, field) \
2367 QEMU_BUILD_BUG_ON(XSAVE_BYTE_OFFSET(word_offset) != \
2368 offsetof(X86XSaveArea, field))
2370 ASSERT_OFFSET(XSAVE_FCW_FSW, legacy.fcw);
2371 ASSERT_OFFSET(XSAVE_FTW_FOP, legacy.ftw);
2372 ASSERT_OFFSET(XSAVE_CWD_RIP, legacy.fpip);
2373 ASSERT_OFFSET(XSAVE_CWD_RDP, legacy.fpdp);
2374 ASSERT_OFFSET(XSAVE_MXCSR, legacy.mxcsr);
2375 ASSERT_OFFSET(XSAVE_ST_SPACE, legacy.fpregs);
2376 ASSERT_OFFSET(XSAVE_XMM_SPACE, legacy.xmm_regs);
2377 ASSERT_OFFSET(XSAVE_XSTATE_BV, header.xstate_bv);
2378 ASSERT_OFFSET(XSAVE_YMMH_SPACE, avx_state);
2379 ASSERT_OFFSET(XSAVE_BNDREGS, bndreg_state);
2380 ASSERT_OFFSET(XSAVE_BNDCSR, bndcsr_state);
2381 ASSERT_OFFSET(XSAVE_OPMASK, opmask_state);
2382 ASSERT_OFFSET(XSAVE_ZMM_Hi256, zmm_hi256_state);
2383 ASSERT_OFFSET(XSAVE_Hi16_ZMM, hi16_zmm_state);
2384 ASSERT_OFFSET(XSAVE_PKRU, pkru_state);
2386 static int kvm_put_xsave(X86CPU *cpu)
2388 CPUX86State *env = &cpu->env;
2389 X86XSaveArea *xsave = env->xsave_buf;
2391 if (!has_xsave) {
2392 return kvm_put_fpu(cpu);
2394 x86_cpu_xsave_all_areas(cpu, xsave);
2396 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
2399 static int kvm_put_xcrs(X86CPU *cpu)
2401 CPUX86State *env = &cpu->env;
2402 struct kvm_xcrs xcrs = {};
2404 if (!has_xcrs) {
2405 return 0;
2408 xcrs.nr_xcrs = 1;
2409 xcrs.flags = 0;
2410 xcrs.xcrs[0].xcr = 0;
2411 xcrs.xcrs[0].value = env->xcr0;
2412 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
2415 static int kvm_put_sregs(X86CPU *cpu)
2417 CPUX86State *env = &cpu->env;
2418 struct kvm_sregs sregs;
2420 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
2421 if (env->interrupt_injected >= 0) {
2422 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
2423 (uint64_t)1 << (env->interrupt_injected % 64);
2426 if ((env->eflags & VM_MASK)) {
2427 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
2428 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
2429 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
2430 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
2431 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
2432 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
2433 } else {
2434 set_seg(&sregs.cs, &env->segs[R_CS]);
2435 set_seg(&sregs.ds, &env->segs[R_DS]);
2436 set_seg(&sregs.es, &env->segs[R_ES]);
2437 set_seg(&sregs.fs, &env->segs[R_FS]);
2438 set_seg(&sregs.gs, &env->segs[R_GS]);
2439 set_seg(&sregs.ss, &env->segs[R_SS]);
2442 set_seg(&sregs.tr, &env->tr);
2443 set_seg(&sregs.ldt, &env->ldt);
2445 sregs.idt.limit = env->idt.limit;
2446 sregs.idt.base = env->idt.base;
2447 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
2448 sregs.gdt.limit = env->gdt.limit;
2449 sregs.gdt.base = env->gdt.base;
2450 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
2452 sregs.cr0 = env->cr[0];
2453 sregs.cr2 = env->cr[2];
2454 sregs.cr3 = env->cr[3];
2455 sregs.cr4 = env->cr[4];
2457 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
2458 sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
2460 sregs.efer = env->efer;
2462 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
2465 static void kvm_msr_buf_reset(X86CPU *cpu)
2467 memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE);
2470 static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value)
2472 struct kvm_msrs *msrs = cpu->kvm_msr_buf;
2473 void *limit = ((void *)msrs) + MSR_BUF_SIZE;
2474 struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs];
2476 assert((void *)(entry + 1) <= limit);
2478 entry->index = index;
2479 entry->reserved = 0;
2480 entry->data = value;
2481 msrs->nmsrs++;
2484 static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value)
2486 kvm_msr_buf_reset(cpu);
2487 kvm_msr_entry_add(cpu, index, value);
2489 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
2492 void kvm_put_apicbase(X86CPU *cpu, uint64_t value)
2494 int ret;
2496 ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value);
2497 assert(ret == 1);
2500 static int kvm_put_tscdeadline_msr(X86CPU *cpu)
2502 CPUX86State *env = &cpu->env;
2503 int ret;
2505 if (!has_msr_tsc_deadline) {
2506 return 0;
2509 ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline);
2510 if (ret < 0) {
2511 return ret;
2514 assert(ret == 1);
2515 return 0;
2519 * Provide a separate write service for the feature control MSR in order to
2520 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
2521 * before writing any other state because forcibly leaving nested mode
2522 * invalidates the VCPU state.
2524 static int kvm_put_msr_feature_control(X86CPU *cpu)
2526 int ret;
2528 if (!has_msr_feature_control) {
2529 return 0;
2532 ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL,
2533 cpu->env.msr_ia32_feature_control);
2534 if (ret < 0) {
2535 return ret;
2538 assert(ret == 1);
2539 return 0;
2542 static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features)
2544 uint32_t default1, can_be_one, can_be_zero;
2545 uint32_t must_be_one;
2547 switch (index) {
2548 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2549 default1 = 0x00000016;
2550 break;
2551 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2552 default1 = 0x0401e172;
2553 break;
2554 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2555 default1 = 0x000011ff;
2556 break;
2557 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2558 default1 = 0x00036dff;
2559 break;
2560 case MSR_IA32_VMX_PROCBASED_CTLS2:
2561 default1 = 0;
2562 break;
2563 default:
2564 abort();
2567 /* If a feature bit is set, the control can be either set or clear.
2568 * Otherwise the value is limited to either 0 or 1 by default1.
2570 can_be_one = features | default1;
2571 can_be_zero = features | ~default1;
2572 must_be_one = ~can_be_zero;
2575 * Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one).
2576 * Bit 32:63 -> 1 if the control bit can be one.
2578 return must_be_one | (((uint64_t)can_be_one) << 32);
2581 #define VMCS12_MAX_FIELD_INDEX (0x17)
2583 static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f)
2585 uint64_t kvm_vmx_basic =
2586 kvm_arch_get_supported_msr_feature(kvm_state,
2587 MSR_IA32_VMX_BASIC);
2589 if (!kvm_vmx_basic) {
2590 /* If the kernel doesn't support VMX feature (kvm_intel.nested=0),
2591 * then kvm_vmx_basic will be 0 and KVM_SET_MSR will fail.
2593 return;
2596 uint64_t kvm_vmx_misc =
2597 kvm_arch_get_supported_msr_feature(kvm_state,
2598 MSR_IA32_VMX_MISC);
2599 uint64_t kvm_vmx_ept_vpid =
2600 kvm_arch_get_supported_msr_feature(kvm_state,
2601 MSR_IA32_VMX_EPT_VPID_CAP);
2604 * If the guest is 64-bit, a value of 1 is allowed for the host address
2605 * space size vmexit control.
2607 uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM
2608 ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0;
2611 * Bits 0-30, 32-44 and 50-53 come from the host. KVM should
2612 * not change them for backwards compatibility.
2614 uint64_t fixed_vmx_basic = kvm_vmx_basic &
2615 (MSR_VMX_BASIC_VMCS_REVISION_MASK |
2616 MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK |
2617 MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK);
2620 * Same for bits 0-4 and 25-27. Bits 16-24 (CR3 target count) can
2621 * change in the future but are always zero for now, clear them to be
2622 * future proof. Bits 32-63 in theory could change, though KVM does
2623 * not support dual-monitor treatment and probably never will; mask
2624 * them out as well.
2626 uint64_t fixed_vmx_misc = kvm_vmx_misc &
2627 (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK |
2628 MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK);
2631 * EPT memory types should not change either, so we do not bother
2632 * adding features for them.
2634 uint64_t fixed_vmx_ept_mask =
2635 (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ?
2636 MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0);
2637 uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask;
2639 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
2640 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
2641 f[FEAT_VMX_PROCBASED_CTLS]));
2642 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
2643 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS,
2644 f[FEAT_VMX_PINBASED_CTLS]));
2645 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS,
2646 make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS,
2647 f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit);
2648 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
2649 make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS,
2650 f[FEAT_VMX_ENTRY_CTLS]));
2651 kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2,
2652 make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2,
2653 f[FEAT_VMX_SECONDARY_CTLS]));
2654 kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP,
2655 f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid);
2656 kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC,
2657 f[FEAT_VMX_BASIC] | fixed_vmx_basic);
2658 kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC,
2659 f[FEAT_VMX_MISC] | fixed_vmx_misc);
2660 if (has_msr_vmx_vmfunc) {
2661 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]);
2665 * Just to be safe, write these with constant values. The CRn_FIXED1
2666 * MSRs are generated by KVM based on the vCPU's CPUID.
2668 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0,
2669 CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK);
2670 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0,
2671 CR4_VMXE_MASK);
2672 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM,
2673 VMCS12_MAX_FIELD_INDEX << 1);
2676 static void kvm_msr_entry_add_perf(X86CPU *cpu, FeatureWordArray f)
2678 uint64_t kvm_perf_cap =
2679 kvm_arch_get_supported_msr_feature(kvm_state,
2680 MSR_IA32_PERF_CAPABILITIES);
2682 if (kvm_perf_cap) {
2683 kvm_msr_entry_add(cpu, MSR_IA32_PERF_CAPABILITIES,
2684 kvm_perf_cap & f[FEAT_PERF_CAPABILITIES]);
2688 static int kvm_buf_set_msrs(X86CPU *cpu)
2690 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
2691 if (ret < 0) {
2692 return ret;
2695 if (ret < cpu->kvm_msr_buf->nmsrs) {
2696 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
2697 error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64,
2698 (uint32_t)e->index, (uint64_t)e->data);
2701 assert(ret == cpu->kvm_msr_buf->nmsrs);
2702 return 0;
2705 static void kvm_init_msrs(X86CPU *cpu)
2707 CPUX86State *env = &cpu->env;
2709 kvm_msr_buf_reset(cpu);
2710 if (has_msr_arch_capabs) {
2711 kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES,
2712 env->features[FEAT_ARCH_CAPABILITIES]);
2715 if (has_msr_core_capabs) {
2716 kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY,
2717 env->features[FEAT_CORE_CAPABILITY]);
2720 if (has_msr_perf_capabs && cpu->enable_pmu) {
2721 kvm_msr_entry_add_perf(cpu, env->features);
2724 if (has_msr_ucode_rev) {
2725 kvm_msr_entry_add(cpu, MSR_IA32_UCODE_REV, cpu->ucode_rev);
2729 * Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but
2730 * all kernels with MSR features should have them.
2732 if (kvm_feature_msrs && cpu_has_vmx(env)) {
2733 kvm_msr_entry_add_vmx(cpu, env->features);
2736 assert(kvm_buf_set_msrs(cpu) == 0);
2739 static int kvm_put_msrs(X86CPU *cpu, int level)
2741 CPUX86State *env = &cpu->env;
2742 int i;
2744 kvm_msr_buf_reset(cpu);
2746 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs);
2747 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
2748 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
2749 kvm_msr_entry_add(cpu, MSR_PAT, env->pat);
2750 if (has_msr_star) {
2751 kvm_msr_entry_add(cpu, MSR_STAR, env->star);
2753 if (has_msr_hsave_pa) {
2754 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave);
2756 if (has_msr_tsc_aux) {
2757 kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux);
2759 if (has_msr_tsc_adjust) {
2760 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust);
2762 if (has_msr_misc_enable) {
2763 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE,
2764 env->msr_ia32_misc_enable);
2766 if (has_msr_smbase) {
2767 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase);
2769 if (has_msr_smi_count) {
2770 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count);
2772 if (has_msr_bndcfgs) {
2773 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs);
2775 if (has_msr_xss) {
2776 kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss);
2778 if (has_msr_umwait) {
2779 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, env->umwait);
2781 if (has_msr_spec_ctrl) {
2782 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl);
2784 if (has_msr_tsx_ctrl) {
2785 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, env->tsx_ctrl);
2787 if (has_msr_virt_ssbd) {
2788 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd);
2791 #ifdef TARGET_X86_64
2792 if (lm_capable_kernel) {
2793 kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar);
2794 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase);
2795 kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask);
2796 kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar);
2798 #endif
2801 * The following MSRs have side effects on the guest or are too heavy
2802 * for normal writeback. Limit them to reset or full state updates.
2804 if (level >= KVM_PUT_RESET_STATE) {
2805 kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc);
2806 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr);
2807 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
2808 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) {
2809 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, env->async_pf_int_msr);
2811 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
2812 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
2814 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
2815 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr);
2817 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
2818 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr);
2821 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
2822 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr);
2825 if (has_architectural_pmu_version > 0) {
2826 if (has_architectural_pmu_version > 1) {
2827 /* Stop the counter. */
2828 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
2829 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
2832 /* Set the counter values. */
2833 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
2834 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i,
2835 env->msr_fixed_counters[i]);
2837 for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
2838 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i,
2839 env->msr_gp_counters[i]);
2840 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i,
2841 env->msr_gp_evtsel[i]);
2843 if (has_architectural_pmu_version > 1) {
2844 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS,
2845 env->msr_global_status);
2846 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
2847 env->msr_global_ovf_ctrl);
2849 /* Now start the PMU. */
2850 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL,
2851 env->msr_fixed_ctr_ctrl);
2852 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL,
2853 env->msr_global_ctrl);
2857 * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add,
2858 * only sync them to KVM on the first cpu
2860 if (current_cpu == first_cpu) {
2861 if (has_msr_hv_hypercall) {
2862 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID,
2863 env->msr_hv_guest_os_id);
2864 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL,
2865 env->msr_hv_hypercall);
2867 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
2868 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC,
2869 env->msr_hv_tsc);
2871 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
2872 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL,
2873 env->msr_hv_reenlightenment_control);
2874 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL,
2875 env->msr_hv_tsc_emulation_control);
2876 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS,
2877 env->msr_hv_tsc_emulation_status);
2880 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
2881 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE,
2882 env->msr_hv_vapic);
2884 if (has_msr_hv_crash) {
2885 int j;
2887 for (j = 0; j < HV_CRASH_PARAMS; j++)
2888 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j,
2889 env->msr_hv_crash_params[j]);
2891 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY);
2893 if (has_msr_hv_runtime) {
2894 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime);
2896 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)
2897 && hv_vpindex_settable) {
2898 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX,
2899 hyperv_vp_index(CPU(cpu)));
2901 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
2902 int j;
2904 kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION);
2906 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL,
2907 env->msr_hv_synic_control);
2908 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP,
2909 env->msr_hv_synic_evt_page);
2910 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP,
2911 env->msr_hv_synic_msg_page);
2913 for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) {
2914 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j,
2915 env->msr_hv_synic_sint[j]);
2918 if (has_msr_hv_stimer) {
2919 int j;
2921 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) {
2922 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2,
2923 env->msr_hv_stimer_config[j]);
2926 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) {
2927 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2,
2928 env->msr_hv_stimer_count[j]);
2931 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
2932 uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits);
2934 kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype);
2935 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
2936 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
2937 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
2938 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
2939 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
2940 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
2941 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
2942 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
2943 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
2944 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
2945 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
2946 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
2947 /* The CPU GPs if we write to a bit above the physical limit of
2948 * the host CPU (and KVM emulates that)
2950 uint64_t mask = env->mtrr_var[i].mask;
2951 mask &= phys_mask;
2953 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i),
2954 env->mtrr_var[i].base);
2955 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask);
2958 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
2959 int addr_num = kvm_arch_get_supported_cpuid(kvm_state,
2960 0x14, 1, R_EAX) & 0x7;
2962 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL,
2963 env->msr_rtit_ctrl);
2964 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS,
2965 env->msr_rtit_status);
2966 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE,
2967 env->msr_rtit_output_base);
2968 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK,
2969 env->msr_rtit_output_mask);
2970 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH,
2971 env->msr_rtit_cr3_match);
2972 for (i = 0; i < addr_num; i++) {
2973 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i,
2974 env->msr_rtit_addrs[i]);
2978 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
2979 * kvm_put_msr_feature_control. */
2982 if (env->mcg_cap) {
2983 int i;
2985 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status);
2986 kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl);
2987 if (has_msr_mcg_ext_ctl) {
2988 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl);
2990 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
2991 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]);
2995 return kvm_buf_set_msrs(cpu);
2999 static int kvm_get_fpu(X86CPU *cpu)
3001 CPUX86State *env = &cpu->env;
3002 struct kvm_fpu fpu;
3003 int i, ret;
3005 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
3006 if (ret < 0) {
3007 return ret;
3010 env->fpstt = (fpu.fsw >> 11) & 7;
3011 env->fpus = fpu.fsw;
3012 env->fpuc = fpu.fcw;
3013 env->fpop = fpu.last_opcode;
3014 env->fpip = fpu.last_ip;
3015 env->fpdp = fpu.last_dp;
3016 for (i = 0; i < 8; ++i) {
3017 env->fptags[i] = !((fpu.ftwx >> i) & 1);
3019 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
3020 for (i = 0; i < CPU_NB_REGS; i++) {
3021 env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]);
3022 env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]);
3024 env->mxcsr = fpu.mxcsr;
3026 return 0;
3029 static int kvm_get_xsave(X86CPU *cpu)
3031 CPUX86State *env = &cpu->env;
3032 X86XSaveArea *xsave = env->xsave_buf;
3033 int ret;
3035 if (!has_xsave) {
3036 return kvm_get_fpu(cpu);
3039 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave);
3040 if (ret < 0) {
3041 return ret;
3043 x86_cpu_xrstor_all_areas(cpu, xsave);
3045 return 0;
3048 static int kvm_get_xcrs(X86CPU *cpu)
3050 CPUX86State *env = &cpu->env;
3051 int i, ret;
3052 struct kvm_xcrs xcrs;
3054 if (!has_xcrs) {
3055 return 0;
3058 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
3059 if (ret < 0) {
3060 return ret;
3063 for (i = 0; i < xcrs.nr_xcrs; i++) {
3064 /* Only support xcr0 now */
3065 if (xcrs.xcrs[i].xcr == 0) {
3066 env->xcr0 = xcrs.xcrs[i].value;
3067 break;
3070 return 0;
3073 static int kvm_get_sregs(X86CPU *cpu)
3075 CPUX86State *env = &cpu->env;
3076 struct kvm_sregs sregs;
3077 int bit, i, ret;
3079 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
3080 if (ret < 0) {
3081 return ret;
3084 /* There can only be one pending IRQ set in the bitmap at a time, so try
3085 to find it and save its number instead (-1 for none). */
3086 env->interrupt_injected = -1;
3087 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
3088 if (sregs.interrupt_bitmap[i]) {
3089 bit = ctz64(sregs.interrupt_bitmap[i]);
3090 env->interrupt_injected = i * 64 + bit;
3091 break;
3095 get_seg(&env->segs[R_CS], &sregs.cs);
3096 get_seg(&env->segs[R_DS], &sregs.ds);
3097 get_seg(&env->segs[R_ES], &sregs.es);
3098 get_seg(&env->segs[R_FS], &sregs.fs);
3099 get_seg(&env->segs[R_GS], &sregs.gs);
3100 get_seg(&env->segs[R_SS], &sregs.ss);
3102 get_seg(&env->tr, &sregs.tr);
3103 get_seg(&env->ldt, &sregs.ldt);
3105 env->idt.limit = sregs.idt.limit;
3106 env->idt.base = sregs.idt.base;
3107 env->gdt.limit = sregs.gdt.limit;
3108 env->gdt.base = sregs.gdt.base;
3110 env->cr[0] = sregs.cr0;
3111 env->cr[2] = sregs.cr2;
3112 env->cr[3] = sregs.cr3;
3113 env->cr[4] = sregs.cr4;
3115 env->efer = sregs.efer;
3117 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
3118 x86_update_hflags(env);
3120 return 0;
3123 static int kvm_get_msrs(X86CPU *cpu)
3125 CPUX86State *env = &cpu->env;
3126 struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries;
3127 int ret, i;
3128 uint64_t mtrr_top_bits;
3130 kvm_msr_buf_reset(cpu);
3132 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0);
3133 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0);
3134 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0);
3135 kvm_msr_entry_add(cpu, MSR_PAT, 0);
3136 if (has_msr_star) {
3137 kvm_msr_entry_add(cpu, MSR_STAR, 0);
3139 if (has_msr_hsave_pa) {
3140 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0);
3142 if (has_msr_tsc_aux) {
3143 kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0);
3145 if (has_msr_tsc_adjust) {
3146 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0);
3148 if (has_msr_tsc_deadline) {
3149 kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0);
3151 if (has_msr_misc_enable) {
3152 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0);
3154 if (has_msr_smbase) {
3155 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0);
3157 if (has_msr_smi_count) {
3158 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0);
3160 if (has_msr_feature_control) {
3161 kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0);
3163 if (has_msr_bndcfgs) {
3164 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0);
3166 if (has_msr_xss) {
3167 kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0);
3169 if (has_msr_umwait) {
3170 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, 0);
3172 if (has_msr_spec_ctrl) {
3173 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0);
3175 if (has_msr_tsx_ctrl) {
3176 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, 0);
3178 if (has_msr_virt_ssbd) {
3179 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0);
3181 if (!env->tsc_valid) {
3182 kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0);
3183 env->tsc_valid = !runstate_is_running();
3186 #ifdef TARGET_X86_64
3187 if (lm_capable_kernel) {
3188 kvm_msr_entry_add(cpu, MSR_CSTAR, 0);
3189 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0);
3190 kvm_msr_entry_add(cpu, MSR_FMASK, 0);
3191 kvm_msr_entry_add(cpu, MSR_LSTAR, 0);
3193 #endif
3194 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0);
3195 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0);
3196 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) {
3197 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, 0);
3199 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
3200 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0);
3202 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
3203 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0);
3205 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
3206 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0);
3208 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
3209 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1);
3211 if (has_architectural_pmu_version > 0) {
3212 if (has_architectural_pmu_version > 1) {
3213 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
3214 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
3215 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0);
3216 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0);
3218 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
3219 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0);
3221 for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
3222 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0);
3223 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0);
3227 if (env->mcg_cap) {
3228 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0);
3229 kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0);
3230 if (has_msr_mcg_ext_ctl) {
3231 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0);
3233 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
3234 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0);
3238 if (has_msr_hv_hypercall) {
3239 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0);
3240 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0);
3242 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
3243 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0);
3245 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
3246 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0);
3248 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
3249 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0);
3250 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0);
3251 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0);
3253 if (has_msr_hv_crash) {
3254 int j;
3256 for (j = 0; j < HV_CRASH_PARAMS; j++) {
3257 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0);
3260 if (has_msr_hv_runtime) {
3261 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0);
3263 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
3264 uint32_t msr;
3266 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0);
3267 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0);
3268 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0);
3269 for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) {
3270 kvm_msr_entry_add(cpu, msr, 0);
3273 if (has_msr_hv_stimer) {
3274 uint32_t msr;
3276 for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT;
3277 msr++) {
3278 kvm_msr_entry_add(cpu, msr, 0);
3281 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
3282 kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0);
3283 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0);
3284 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0);
3285 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0);
3286 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0);
3287 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0);
3288 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0);
3289 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0);
3290 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0);
3291 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0);
3292 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0);
3293 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0);
3294 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
3295 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0);
3296 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0);
3300 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
3301 int addr_num =
3302 kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7;
3304 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0);
3305 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0);
3306 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0);
3307 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0);
3308 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0);
3309 for (i = 0; i < addr_num; i++) {
3310 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0);
3314 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf);
3315 if (ret < 0) {
3316 return ret;
3319 if (ret < cpu->kvm_msr_buf->nmsrs) {
3320 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
3321 error_report("error: failed to get MSR 0x%" PRIx32,
3322 (uint32_t)e->index);
3325 assert(ret == cpu->kvm_msr_buf->nmsrs);
3327 * MTRR masks: Each mask consists of 5 parts
3328 * a 10..0: must be zero
3329 * b 11 : valid bit
3330 * c n-1.12: actual mask bits
3331 * d 51..n: reserved must be zero
3332 * e 63.52: reserved must be zero
3334 * 'n' is the number of physical bits supported by the CPU and is
3335 * apparently always <= 52. We know our 'n' but don't know what
3336 * the destinations 'n' is; it might be smaller, in which case
3337 * it masks (c) on loading. It might be larger, in which case
3338 * we fill 'd' so that d..c is consistent irrespetive of the 'n'
3339 * we're migrating to.
3342 if (cpu->fill_mtrr_mask) {
3343 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52);
3344 assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS);
3345 mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits);
3346 } else {
3347 mtrr_top_bits = 0;
3350 for (i = 0; i < ret; i++) {
3351 uint32_t index = msrs[i].index;
3352 switch (index) {
3353 case MSR_IA32_SYSENTER_CS:
3354 env->sysenter_cs = msrs[i].data;
3355 break;
3356 case MSR_IA32_SYSENTER_ESP:
3357 env->sysenter_esp = msrs[i].data;
3358 break;
3359 case MSR_IA32_SYSENTER_EIP:
3360 env->sysenter_eip = msrs[i].data;
3361 break;
3362 case MSR_PAT:
3363 env->pat = msrs[i].data;
3364 break;
3365 case MSR_STAR:
3366 env->star = msrs[i].data;
3367 break;
3368 #ifdef TARGET_X86_64
3369 case MSR_CSTAR:
3370 env->cstar = msrs[i].data;
3371 break;
3372 case MSR_KERNELGSBASE:
3373 env->kernelgsbase = msrs[i].data;
3374 break;
3375 case MSR_FMASK:
3376 env->fmask = msrs[i].data;
3377 break;
3378 case MSR_LSTAR:
3379 env->lstar = msrs[i].data;
3380 break;
3381 #endif
3382 case MSR_IA32_TSC:
3383 env->tsc = msrs[i].data;
3384 break;
3385 case MSR_TSC_AUX:
3386 env->tsc_aux = msrs[i].data;
3387 break;
3388 case MSR_TSC_ADJUST:
3389 env->tsc_adjust = msrs[i].data;
3390 break;
3391 case MSR_IA32_TSCDEADLINE:
3392 env->tsc_deadline = msrs[i].data;
3393 break;
3394 case MSR_VM_HSAVE_PA:
3395 env->vm_hsave = msrs[i].data;
3396 break;
3397 case MSR_KVM_SYSTEM_TIME:
3398 env->system_time_msr = msrs[i].data;
3399 break;
3400 case MSR_KVM_WALL_CLOCK:
3401 env->wall_clock_msr = msrs[i].data;
3402 break;
3403 case MSR_MCG_STATUS:
3404 env->mcg_status = msrs[i].data;
3405 break;
3406 case MSR_MCG_CTL:
3407 env->mcg_ctl = msrs[i].data;
3408 break;
3409 case MSR_MCG_EXT_CTL:
3410 env->mcg_ext_ctl = msrs[i].data;
3411 break;
3412 case MSR_IA32_MISC_ENABLE:
3413 env->msr_ia32_misc_enable = msrs[i].data;
3414 break;
3415 case MSR_IA32_SMBASE:
3416 env->smbase = msrs[i].data;
3417 break;
3418 case MSR_SMI_COUNT:
3419 env->msr_smi_count = msrs[i].data;
3420 break;
3421 case MSR_IA32_FEATURE_CONTROL:
3422 env->msr_ia32_feature_control = msrs[i].data;
3423 break;
3424 case MSR_IA32_BNDCFGS:
3425 env->msr_bndcfgs = msrs[i].data;
3426 break;
3427 case MSR_IA32_XSS:
3428 env->xss = msrs[i].data;
3429 break;
3430 case MSR_IA32_UMWAIT_CONTROL:
3431 env->umwait = msrs[i].data;
3432 break;
3433 default:
3434 if (msrs[i].index >= MSR_MC0_CTL &&
3435 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
3436 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
3438 break;
3439 case MSR_KVM_ASYNC_PF_EN:
3440 env->async_pf_en_msr = msrs[i].data;
3441 break;
3442 case MSR_KVM_ASYNC_PF_INT:
3443 env->async_pf_int_msr = msrs[i].data;
3444 break;
3445 case MSR_KVM_PV_EOI_EN:
3446 env->pv_eoi_en_msr = msrs[i].data;
3447 break;
3448 case MSR_KVM_STEAL_TIME:
3449 env->steal_time_msr = msrs[i].data;
3450 break;
3451 case MSR_KVM_POLL_CONTROL: {
3452 env->poll_control_msr = msrs[i].data;
3453 break;
3455 case MSR_CORE_PERF_FIXED_CTR_CTRL:
3456 env->msr_fixed_ctr_ctrl = msrs[i].data;
3457 break;
3458 case MSR_CORE_PERF_GLOBAL_CTRL:
3459 env->msr_global_ctrl = msrs[i].data;
3460 break;
3461 case MSR_CORE_PERF_GLOBAL_STATUS:
3462 env->msr_global_status = msrs[i].data;
3463 break;
3464 case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
3465 env->msr_global_ovf_ctrl = msrs[i].data;
3466 break;
3467 case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
3468 env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
3469 break;
3470 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
3471 env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
3472 break;
3473 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
3474 env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
3475 break;
3476 case HV_X64_MSR_HYPERCALL:
3477 env->msr_hv_hypercall = msrs[i].data;
3478 break;
3479 case HV_X64_MSR_GUEST_OS_ID:
3480 env->msr_hv_guest_os_id = msrs[i].data;
3481 break;
3482 case HV_X64_MSR_APIC_ASSIST_PAGE:
3483 env->msr_hv_vapic = msrs[i].data;
3484 break;
3485 case HV_X64_MSR_REFERENCE_TSC:
3486 env->msr_hv_tsc = msrs[i].data;
3487 break;
3488 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3489 env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data;
3490 break;
3491 case HV_X64_MSR_VP_RUNTIME:
3492 env->msr_hv_runtime = msrs[i].data;
3493 break;
3494 case HV_X64_MSR_SCONTROL:
3495 env->msr_hv_synic_control = msrs[i].data;
3496 break;
3497 case HV_X64_MSR_SIEFP:
3498 env->msr_hv_synic_evt_page = msrs[i].data;
3499 break;
3500 case HV_X64_MSR_SIMP:
3501 env->msr_hv_synic_msg_page = msrs[i].data;
3502 break;
3503 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
3504 env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data;
3505 break;
3506 case HV_X64_MSR_STIMER0_CONFIG:
3507 case HV_X64_MSR_STIMER1_CONFIG:
3508 case HV_X64_MSR_STIMER2_CONFIG:
3509 case HV_X64_MSR_STIMER3_CONFIG:
3510 env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] =
3511 msrs[i].data;
3512 break;
3513 case HV_X64_MSR_STIMER0_COUNT:
3514 case HV_X64_MSR_STIMER1_COUNT:
3515 case HV_X64_MSR_STIMER2_COUNT:
3516 case HV_X64_MSR_STIMER3_COUNT:
3517 env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] =
3518 msrs[i].data;
3519 break;
3520 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3521 env->msr_hv_reenlightenment_control = msrs[i].data;
3522 break;
3523 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3524 env->msr_hv_tsc_emulation_control = msrs[i].data;
3525 break;
3526 case HV_X64_MSR_TSC_EMULATION_STATUS:
3527 env->msr_hv_tsc_emulation_status = msrs[i].data;
3528 break;
3529 case MSR_MTRRdefType:
3530 env->mtrr_deftype = msrs[i].data;
3531 break;
3532 case MSR_MTRRfix64K_00000:
3533 env->mtrr_fixed[0] = msrs[i].data;
3534 break;
3535 case MSR_MTRRfix16K_80000:
3536 env->mtrr_fixed[1] = msrs[i].data;
3537 break;
3538 case MSR_MTRRfix16K_A0000:
3539 env->mtrr_fixed[2] = msrs[i].data;
3540 break;
3541 case MSR_MTRRfix4K_C0000:
3542 env->mtrr_fixed[3] = msrs[i].data;
3543 break;
3544 case MSR_MTRRfix4K_C8000:
3545 env->mtrr_fixed[4] = msrs[i].data;
3546 break;
3547 case MSR_MTRRfix4K_D0000:
3548 env->mtrr_fixed[5] = msrs[i].data;
3549 break;
3550 case MSR_MTRRfix4K_D8000:
3551 env->mtrr_fixed[6] = msrs[i].data;
3552 break;
3553 case MSR_MTRRfix4K_E0000:
3554 env->mtrr_fixed[7] = msrs[i].data;
3555 break;
3556 case MSR_MTRRfix4K_E8000:
3557 env->mtrr_fixed[8] = msrs[i].data;
3558 break;
3559 case MSR_MTRRfix4K_F0000:
3560 env->mtrr_fixed[9] = msrs[i].data;
3561 break;
3562 case MSR_MTRRfix4K_F8000:
3563 env->mtrr_fixed[10] = msrs[i].data;
3564 break;
3565 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
3566 if (index & 1) {
3567 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data |
3568 mtrr_top_bits;
3569 } else {
3570 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
3572 break;
3573 case MSR_IA32_SPEC_CTRL:
3574 env->spec_ctrl = msrs[i].data;
3575 break;
3576 case MSR_IA32_TSX_CTRL:
3577 env->tsx_ctrl = msrs[i].data;
3578 break;
3579 case MSR_VIRT_SSBD:
3580 env->virt_ssbd = msrs[i].data;
3581 break;
3582 case MSR_IA32_RTIT_CTL:
3583 env->msr_rtit_ctrl = msrs[i].data;
3584 break;
3585 case MSR_IA32_RTIT_STATUS:
3586 env->msr_rtit_status = msrs[i].data;
3587 break;
3588 case MSR_IA32_RTIT_OUTPUT_BASE:
3589 env->msr_rtit_output_base = msrs[i].data;
3590 break;
3591 case MSR_IA32_RTIT_OUTPUT_MASK:
3592 env->msr_rtit_output_mask = msrs[i].data;
3593 break;
3594 case MSR_IA32_RTIT_CR3_MATCH:
3595 env->msr_rtit_cr3_match = msrs[i].data;
3596 break;
3597 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
3598 env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data;
3599 break;
3603 return 0;
3606 static int kvm_put_mp_state(X86CPU *cpu)
3608 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
3610 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
3613 static int kvm_get_mp_state(X86CPU *cpu)
3615 CPUState *cs = CPU(cpu);
3616 CPUX86State *env = &cpu->env;
3617 struct kvm_mp_state mp_state;
3618 int ret;
3620 ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
3621 if (ret < 0) {
3622 return ret;
3624 env->mp_state = mp_state.mp_state;
3625 if (kvm_irqchip_in_kernel()) {
3626 cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
3628 return 0;
3631 static int kvm_get_apic(X86CPU *cpu)
3633 DeviceState *apic = cpu->apic_state;
3634 struct kvm_lapic_state kapic;
3635 int ret;
3637 if (apic && kvm_irqchip_in_kernel()) {
3638 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
3639 if (ret < 0) {
3640 return ret;
3643 kvm_get_apic_state(apic, &kapic);
3645 return 0;
3648 static int kvm_put_vcpu_events(X86CPU *cpu, int level)
3650 CPUState *cs = CPU(cpu);
3651 CPUX86State *env = &cpu->env;
3652 struct kvm_vcpu_events events = {};
3654 if (!kvm_has_vcpu_events()) {
3655 return 0;
3658 events.flags = 0;
3660 if (has_exception_payload) {
3661 events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3662 events.exception.pending = env->exception_pending;
3663 events.exception_has_payload = env->exception_has_payload;
3664 events.exception_payload = env->exception_payload;
3666 events.exception.nr = env->exception_nr;
3667 events.exception.injected = env->exception_injected;
3668 events.exception.has_error_code = env->has_error_code;
3669 events.exception.error_code = env->error_code;
3671 events.interrupt.injected = (env->interrupt_injected >= 0);
3672 events.interrupt.nr = env->interrupt_injected;
3673 events.interrupt.soft = env->soft_interrupt;
3675 events.nmi.injected = env->nmi_injected;
3676 events.nmi.pending = env->nmi_pending;
3677 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
3679 events.sipi_vector = env->sipi_vector;
3681 if (has_msr_smbase) {
3682 events.smi.smm = !!(env->hflags & HF_SMM_MASK);
3683 events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
3684 if (kvm_irqchip_in_kernel()) {
3685 /* As soon as these are moved to the kernel, remove them
3686 * from cs->interrupt_request.
3688 events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
3689 events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
3690 cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
3691 } else {
3692 /* Keep these in cs->interrupt_request. */
3693 events.smi.pending = 0;
3694 events.smi.latched_init = 0;
3696 /* Stop SMI delivery on old machine types to avoid a reboot
3697 * on an inward migration of an old VM.
3699 if (!cpu->kvm_no_smi_migration) {
3700 events.flags |= KVM_VCPUEVENT_VALID_SMM;
3704 if (level >= KVM_PUT_RESET_STATE) {
3705 events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING;
3706 if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
3707 events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR;
3711 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
3714 static int kvm_get_vcpu_events(X86CPU *cpu)
3716 CPUX86State *env = &cpu->env;
3717 struct kvm_vcpu_events events;
3718 int ret;
3720 if (!kvm_has_vcpu_events()) {
3721 return 0;
3724 memset(&events, 0, sizeof(events));
3725 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
3726 if (ret < 0) {
3727 return ret;
3730 if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
3731 env->exception_pending = events.exception.pending;
3732 env->exception_has_payload = events.exception_has_payload;
3733 env->exception_payload = events.exception_payload;
3734 } else {
3735 env->exception_pending = 0;
3736 env->exception_has_payload = false;
3738 env->exception_injected = events.exception.injected;
3739 env->exception_nr =
3740 (env->exception_pending || env->exception_injected) ?
3741 events.exception.nr : -1;
3742 env->has_error_code = events.exception.has_error_code;
3743 env->error_code = events.exception.error_code;
3745 env->interrupt_injected =
3746 events.interrupt.injected ? events.interrupt.nr : -1;
3747 env->soft_interrupt = events.interrupt.soft;
3749 env->nmi_injected = events.nmi.injected;
3750 env->nmi_pending = events.nmi.pending;
3751 if (events.nmi.masked) {
3752 env->hflags2 |= HF2_NMI_MASK;
3753 } else {
3754 env->hflags2 &= ~HF2_NMI_MASK;
3757 if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
3758 if (events.smi.smm) {
3759 env->hflags |= HF_SMM_MASK;
3760 } else {
3761 env->hflags &= ~HF_SMM_MASK;
3763 if (events.smi.pending) {
3764 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
3765 } else {
3766 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
3768 if (events.smi.smm_inside_nmi) {
3769 env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
3770 } else {
3771 env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
3773 if (events.smi.latched_init) {
3774 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
3775 } else {
3776 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
3780 env->sipi_vector = events.sipi_vector;
3782 return 0;
3785 static int kvm_guest_debug_workarounds(X86CPU *cpu)
3787 CPUState *cs = CPU(cpu);
3788 CPUX86State *env = &cpu->env;
3789 int ret = 0;
3790 unsigned long reinject_trap = 0;
3792 if (!kvm_has_vcpu_events()) {
3793 if (env->exception_nr == EXCP01_DB) {
3794 reinject_trap = KVM_GUESTDBG_INJECT_DB;
3795 } else if (env->exception_injected == EXCP03_INT3) {
3796 reinject_trap = KVM_GUESTDBG_INJECT_BP;
3798 kvm_reset_exception(env);
3802 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
3803 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
3804 * by updating the debug state once again if single-stepping is on.
3805 * Another reason to call kvm_update_guest_debug here is a pending debug
3806 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
3807 * reinject them via SET_GUEST_DEBUG.
3809 if (reinject_trap ||
3810 (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) {
3811 ret = kvm_update_guest_debug(cs, reinject_trap);
3813 return ret;
3816 static int kvm_put_debugregs(X86CPU *cpu)
3818 CPUX86State *env = &cpu->env;
3819 struct kvm_debugregs dbgregs;
3820 int i;
3822 if (!kvm_has_debugregs()) {
3823 return 0;
3826 memset(&dbgregs, 0, sizeof(dbgregs));
3827 for (i = 0; i < 4; i++) {
3828 dbgregs.db[i] = env->dr[i];
3830 dbgregs.dr6 = env->dr[6];
3831 dbgregs.dr7 = env->dr[7];
3832 dbgregs.flags = 0;
3834 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
3837 static int kvm_get_debugregs(X86CPU *cpu)
3839 CPUX86State *env = &cpu->env;
3840 struct kvm_debugregs dbgregs;
3841 int i, ret;
3843 if (!kvm_has_debugregs()) {
3844 return 0;
3847 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
3848 if (ret < 0) {
3849 return ret;
3851 for (i = 0; i < 4; i++) {
3852 env->dr[i] = dbgregs.db[i];
3854 env->dr[4] = env->dr[6] = dbgregs.dr6;
3855 env->dr[5] = env->dr[7] = dbgregs.dr7;
3857 return 0;
3860 static int kvm_put_nested_state(X86CPU *cpu)
3862 CPUX86State *env = &cpu->env;
3863 int max_nested_state_len = kvm_max_nested_state_length();
3865 if (!env->nested_state) {
3866 return 0;
3870 * Copy flags that are affected by reset from env->hflags and env->hflags2.
3872 if (env->hflags & HF_GUEST_MASK) {
3873 env->nested_state->flags |= KVM_STATE_NESTED_GUEST_MODE;
3874 } else {
3875 env->nested_state->flags &= ~KVM_STATE_NESTED_GUEST_MODE;
3878 /* Don't set KVM_STATE_NESTED_GIF_SET on VMX as it is illegal */
3879 if (cpu_has_svm(env) && (env->hflags2 & HF2_GIF_MASK)) {
3880 env->nested_state->flags |= KVM_STATE_NESTED_GIF_SET;
3881 } else {
3882 env->nested_state->flags &= ~KVM_STATE_NESTED_GIF_SET;
3885 assert(env->nested_state->size <= max_nested_state_len);
3886 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state);
3889 static int kvm_get_nested_state(X86CPU *cpu)
3891 CPUX86State *env = &cpu->env;
3892 int max_nested_state_len = kvm_max_nested_state_length();
3893 int ret;
3895 if (!env->nested_state) {
3896 return 0;
3900 * It is possible that migration restored a smaller size into
3901 * nested_state->hdr.size than what our kernel support.
3902 * We preserve migration origin nested_state->hdr.size for
3903 * call to KVM_SET_NESTED_STATE but wish that our next call
3904 * to KVM_GET_NESTED_STATE will use max size our kernel support.
3906 env->nested_state->size = max_nested_state_len;
3908 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state);
3909 if (ret < 0) {
3910 return ret;
3914 * Copy flags that are affected by reset to env->hflags and env->hflags2.
3916 if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) {
3917 env->hflags |= HF_GUEST_MASK;
3918 } else {
3919 env->hflags &= ~HF_GUEST_MASK;
3922 /* Keep HF2_GIF_MASK set on !SVM as x86_cpu_pending_interrupt() needs it */
3923 if (cpu_has_svm(env)) {
3924 if (env->nested_state->flags & KVM_STATE_NESTED_GIF_SET) {
3925 env->hflags2 |= HF2_GIF_MASK;
3926 } else {
3927 env->hflags2 &= ~HF2_GIF_MASK;
3931 return ret;
3934 int kvm_arch_put_registers(CPUState *cpu, int level)
3936 X86CPU *x86_cpu = X86_CPU(cpu);
3937 int ret;
3939 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
3941 /* must be before kvm_put_nested_state so that EFER.SVME is set */
3942 ret = kvm_put_sregs(x86_cpu);
3943 if (ret < 0) {
3944 return ret;
3947 if (level >= KVM_PUT_RESET_STATE) {
3948 ret = kvm_put_nested_state(x86_cpu);
3949 if (ret < 0) {
3950 return ret;
3953 ret = kvm_put_msr_feature_control(x86_cpu);
3954 if (ret < 0) {
3955 return ret;
3959 if (level == KVM_PUT_FULL_STATE) {
3960 /* We don't check for kvm_arch_set_tsc_khz() errors here,
3961 * because TSC frequency mismatch shouldn't abort migration,
3962 * unless the user explicitly asked for a more strict TSC
3963 * setting (e.g. using an explicit "tsc-freq" option).
3965 kvm_arch_set_tsc_khz(cpu);
3968 ret = kvm_getput_regs(x86_cpu, 1);
3969 if (ret < 0) {
3970 return ret;
3972 ret = kvm_put_xsave(x86_cpu);
3973 if (ret < 0) {
3974 return ret;
3976 ret = kvm_put_xcrs(x86_cpu);
3977 if (ret < 0) {
3978 return ret;
3980 /* must be before kvm_put_msrs */
3981 ret = kvm_inject_mce_oldstyle(x86_cpu);
3982 if (ret < 0) {
3983 return ret;
3985 ret = kvm_put_msrs(x86_cpu, level);
3986 if (ret < 0) {
3987 return ret;
3989 ret = kvm_put_vcpu_events(x86_cpu, level);
3990 if (ret < 0) {
3991 return ret;
3993 if (level >= KVM_PUT_RESET_STATE) {
3994 ret = kvm_put_mp_state(x86_cpu);
3995 if (ret < 0) {
3996 return ret;
4000 ret = kvm_put_tscdeadline_msr(x86_cpu);
4001 if (ret < 0) {
4002 return ret;
4004 ret = kvm_put_debugregs(x86_cpu);
4005 if (ret < 0) {
4006 return ret;
4008 /* must be last */
4009 ret = kvm_guest_debug_workarounds(x86_cpu);
4010 if (ret < 0) {
4011 return ret;
4013 return 0;
4016 int kvm_arch_get_registers(CPUState *cs)
4018 X86CPU *cpu = X86_CPU(cs);
4019 int ret;
4021 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
4023 ret = kvm_get_vcpu_events(cpu);
4024 if (ret < 0) {
4025 goto out;
4028 * KVM_GET_MPSTATE can modify CS and RIP, call it before
4029 * KVM_GET_REGS and KVM_GET_SREGS.
4031 ret = kvm_get_mp_state(cpu);
4032 if (ret < 0) {
4033 goto out;
4035 ret = kvm_getput_regs(cpu, 0);
4036 if (ret < 0) {
4037 goto out;
4039 ret = kvm_get_xsave(cpu);
4040 if (ret < 0) {
4041 goto out;
4043 ret = kvm_get_xcrs(cpu);
4044 if (ret < 0) {
4045 goto out;
4047 ret = kvm_get_sregs(cpu);
4048 if (ret < 0) {
4049 goto out;
4051 ret = kvm_get_msrs(cpu);
4052 if (ret < 0) {
4053 goto out;
4055 ret = kvm_get_apic(cpu);
4056 if (ret < 0) {
4057 goto out;
4059 ret = kvm_get_debugregs(cpu);
4060 if (ret < 0) {
4061 goto out;
4063 ret = kvm_get_nested_state(cpu);
4064 if (ret < 0) {
4065 goto out;
4067 ret = 0;
4068 out:
4069 cpu_sync_bndcs_hflags(&cpu->env);
4070 return ret;
4073 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
4075 X86CPU *x86_cpu = X86_CPU(cpu);
4076 CPUX86State *env = &x86_cpu->env;
4077 int ret;
4079 /* Inject NMI */
4080 if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
4081 if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
4082 qemu_mutex_lock_iothread();
4083 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
4084 qemu_mutex_unlock_iothread();
4085 DPRINTF("injected NMI\n");
4086 ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
4087 if (ret < 0) {
4088 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
4089 strerror(-ret));
4092 if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
4093 qemu_mutex_lock_iothread();
4094 cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
4095 qemu_mutex_unlock_iothread();
4096 DPRINTF("injected SMI\n");
4097 ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
4098 if (ret < 0) {
4099 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
4100 strerror(-ret));
4105 if (!kvm_pic_in_kernel()) {
4106 qemu_mutex_lock_iothread();
4109 /* Force the VCPU out of its inner loop to process any INIT requests
4110 * or (for userspace APIC, but it is cheap to combine the checks here)
4111 * pending TPR access reports.
4113 if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
4114 if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
4115 !(env->hflags & HF_SMM_MASK)) {
4116 cpu->exit_request = 1;
4118 if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
4119 cpu->exit_request = 1;
4123 if (!kvm_pic_in_kernel()) {
4124 /* Try to inject an interrupt if the guest can accept it */
4125 if (run->ready_for_interrupt_injection &&
4126 (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
4127 (env->eflags & IF_MASK)) {
4128 int irq;
4130 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
4131 irq = cpu_get_pic_interrupt(env);
4132 if (irq >= 0) {
4133 struct kvm_interrupt intr;
4135 intr.irq = irq;
4136 DPRINTF("injected interrupt %d\n", irq);
4137 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
4138 if (ret < 0) {
4139 fprintf(stderr,
4140 "KVM: injection failed, interrupt lost (%s)\n",
4141 strerror(-ret));
4146 /* If we have an interrupt but the guest is not ready to receive an
4147 * interrupt, request an interrupt window exit. This will
4148 * cause a return to userspace as soon as the guest is ready to
4149 * receive interrupts. */
4150 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
4151 run->request_interrupt_window = 1;
4152 } else {
4153 run->request_interrupt_window = 0;
4156 DPRINTF("setting tpr\n");
4157 run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
4159 qemu_mutex_unlock_iothread();
4163 MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
4165 X86CPU *x86_cpu = X86_CPU(cpu);
4166 CPUX86State *env = &x86_cpu->env;
4168 if (run->flags & KVM_RUN_X86_SMM) {
4169 env->hflags |= HF_SMM_MASK;
4170 } else {
4171 env->hflags &= ~HF_SMM_MASK;
4173 if (run->if_flag) {
4174 env->eflags |= IF_MASK;
4175 } else {
4176 env->eflags &= ~IF_MASK;
4179 /* We need to protect the apic state against concurrent accesses from
4180 * different threads in case the userspace irqchip is used. */
4181 if (!kvm_irqchip_in_kernel()) {
4182 qemu_mutex_lock_iothread();
4184 cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
4185 cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
4186 if (!kvm_irqchip_in_kernel()) {
4187 qemu_mutex_unlock_iothread();
4189 return cpu_get_mem_attrs(env);
4192 int kvm_arch_process_async_events(CPUState *cs)
4194 X86CPU *cpu = X86_CPU(cs);
4195 CPUX86State *env = &cpu->env;
4197 if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
4198 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
4199 assert(env->mcg_cap);
4201 cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
4203 kvm_cpu_synchronize_state(cs);
4205 if (env->exception_nr == EXCP08_DBLE) {
4206 /* this means triple fault */
4207 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
4208 cs->exit_request = 1;
4209 return 0;
4211 kvm_queue_exception(env, EXCP12_MCHK, 0, 0);
4212 env->has_error_code = 0;
4214 cs->halted = 0;
4215 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
4216 env->mp_state = KVM_MP_STATE_RUNNABLE;
4220 if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
4221 !(env->hflags & HF_SMM_MASK)) {
4222 kvm_cpu_synchronize_state(cs);
4223 do_cpu_init(cpu);
4226 if (kvm_irqchip_in_kernel()) {
4227 return 0;
4230 if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
4231 cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
4232 apic_poll_irq(cpu->apic_state);
4234 if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
4235 (env->eflags & IF_MASK)) ||
4236 (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
4237 cs->halted = 0;
4239 if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
4240 kvm_cpu_synchronize_state(cs);
4241 do_cpu_sipi(cpu);
4243 if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
4244 cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
4245 kvm_cpu_synchronize_state(cs);
4246 apic_handle_tpr_access_report(cpu->apic_state, env->eip,
4247 env->tpr_access_type);
4250 return cs->halted;
4253 static int kvm_handle_halt(X86CPU *cpu)
4255 CPUState *cs = CPU(cpu);
4256 CPUX86State *env = &cpu->env;
4258 if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
4259 (env->eflags & IF_MASK)) &&
4260 !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
4261 cs->halted = 1;
4262 return EXCP_HLT;
4265 return 0;
4268 static int kvm_handle_tpr_access(X86CPU *cpu)
4270 CPUState *cs = CPU(cpu);
4271 struct kvm_run *run = cs->kvm_run;
4273 apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
4274 run->tpr_access.is_write ? TPR_ACCESS_WRITE
4275 : TPR_ACCESS_READ);
4276 return 1;
4279 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
4281 static const uint8_t int3 = 0xcc;
4283 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
4284 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
4285 return -EINVAL;
4287 return 0;
4290 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
4292 uint8_t int3;
4294 if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
4295 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
4296 return -EINVAL;
4298 return 0;
4301 static struct {
4302 target_ulong addr;
4303 int len;
4304 int type;
4305 } hw_breakpoint[4];
4307 static int nb_hw_breakpoint;
4309 static int find_hw_breakpoint(target_ulong addr, int len, int type)
4311 int n;
4313 for (n = 0; n < nb_hw_breakpoint; n++) {
4314 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
4315 (hw_breakpoint[n].len == len || len == -1)) {
4316 return n;
4319 return -1;
4322 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
4323 target_ulong len, int type)
4325 switch (type) {
4326 case GDB_BREAKPOINT_HW:
4327 len = 1;
4328 break;
4329 case GDB_WATCHPOINT_WRITE:
4330 case GDB_WATCHPOINT_ACCESS:
4331 switch (len) {
4332 case 1:
4333 break;
4334 case 2:
4335 case 4:
4336 case 8:
4337 if (addr & (len - 1)) {
4338 return -EINVAL;
4340 break;
4341 default:
4342 return -EINVAL;
4344 break;
4345 default:
4346 return -ENOSYS;
4349 if (nb_hw_breakpoint == 4) {
4350 return -ENOBUFS;
4352 if (find_hw_breakpoint(addr, len, type) >= 0) {
4353 return -EEXIST;
4355 hw_breakpoint[nb_hw_breakpoint].addr = addr;
4356 hw_breakpoint[nb_hw_breakpoint].len = len;
4357 hw_breakpoint[nb_hw_breakpoint].type = type;
4358 nb_hw_breakpoint++;
4360 return 0;
4363 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
4364 target_ulong len, int type)
4366 int n;
4368 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
4369 if (n < 0) {
4370 return -ENOENT;
4372 nb_hw_breakpoint--;
4373 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
4375 return 0;
4378 void kvm_arch_remove_all_hw_breakpoints(void)
4380 nb_hw_breakpoint = 0;
4383 static CPUWatchpoint hw_watchpoint;
4385 static int kvm_handle_debug(X86CPU *cpu,
4386 struct kvm_debug_exit_arch *arch_info)
4388 CPUState *cs = CPU(cpu);
4389 CPUX86State *env = &cpu->env;
4390 int ret = 0;
4391 int n;
4393 if (arch_info->exception == EXCP01_DB) {
4394 if (arch_info->dr6 & DR6_BS) {
4395 if (cs->singlestep_enabled) {
4396 ret = EXCP_DEBUG;
4398 } else {
4399 for (n = 0; n < 4; n++) {
4400 if (arch_info->dr6 & (1 << n)) {
4401 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
4402 case 0x0:
4403 ret = EXCP_DEBUG;
4404 break;
4405 case 0x1:
4406 ret = EXCP_DEBUG;
4407 cs->watchpoint_hit = &hw_watchpoint;
4408 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
4409 hw_watchpoint.flags = BP_MEM_WRITE;
4410 break;
4411 case 0x3:
4412 ret = EXCP_DEBUG;
4413 cs->watchpoint_hit = &hw_watchpoint;
4414 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
4415 hw_watchpoint.flags = BP_MEM_ACCESS;
4416 break;
4421 } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
4422 ret = EXCP_DEBUG;
4424 if (ret == 0) {
4425 cpu_synchronize_state(cs);
4426 assert(env->exception_nr == -1);
4428 /* pass to guest */
4429 kvm_queue_exception(env, arch_info->exception,
4430 arch_info->exception == EXCP01_DB,
4431 arch_info->dr6);
4432 env->has_error_code = 0;
4435 return ret;
4438 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
4440 const uint8_t type_code[] = {
4441 [GDB_BREAKPOINT_HW] = 0x0,
4442 [GDB_WATCHPOINT_WRITE] = 0x1,
4443 [GDB_WATCHPOINT_ACCESS] = 0x3
4445 const uint8_t len_code[] = {
4446 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
4448 int n;
4450 if (kvm_sw_breakpoints_active(cpu)) {
4451 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
4453 if (nb_hw_breakpoint > 0) {
4454 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
4455 dbg->arch.debugreg[7] = 0x0600;
4456 for (n = 0; n < nb_hw_breakpoint; n++) {
4457 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
4458 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
4459 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
4460 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
4465 static bool host_supports_vmx(void)
4467 uint32_t ecx, unused;
4469 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
4470 return ecx & CPUID_EXT_VMX;
4473 #define VMX_INVALID_GUEST_STATE 0x80000021
4475 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
4477 X86CPU *cpu = X86_CPU(cs);
4478 uint64_t code;
4479 int ret;
4481 switch (run->exit_reason) {
4482 case KVM_EXIT_HLT:
4483 DPRINTF("handle_hlt\n");
4484 qemu_mutex_lock_iothread();
4485 ret = kvm_handle_halt(cpu);
4486 qemu_mutex_unlock_iothread();
4487 break;
4488 case KVM_EXIT_SET_TPR:
4489 ret = 0;
4490 break;
4491 case KVM_EXIT_TPR_ACCESS:
4492 qemu_mutex_lock_iothread();
4493 ret = kvm_handle_tpr_access(cpu);
4494 qemu_mutex_unlock_iothread();
4495 break;
4496 case KVM_EXIT_FAIL_ENTRY:
4497 code = run->fail_entry.hardware_entry_failure_reason;
4498 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
4499 code);
4500 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
4501 fprintf(stderr,
4502 "\nIf you're running a guest on an Intel machine without "
4503 "unrestricted mode\n"
4504 "support, the failure can be most likely due to the guest "
4505 "entering an invalid\n"
4506 "state for Intel VT. For example, the guest maybe running "
4507 "in big real mode\n"
4508 "which is not supported on less recent Intel processors."
4509 "\n\n");
4511 ret = -1;
4512 break;
4513 case KVM_EXIT_EXCEPTION:
4514 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
4515 run->ex.exception, run->ex.error_code);
4516 ret = -1;
4517 break;
4518 case KVM_EXIT_DEBUG:
4519 DPRINTF("kvm_exit_debug\n");
4520 qemu_mutex_lock_iothread();
4521 ret = kvm_handle_debug(cpu, &run->debug.arch);
4522 qemu_mutex_unlock_iothread();
4523 break;
4524 case KVM_EXIT_HYPERV:
4525 ret = kvm_hv_handle_exit(cpu, &run->hyperv);
4526 break;
4527 case KVM_EXIT_IOAPIC_EOI:
4528 ioapic_eoi_broadcast(run->eoi.vector);
4529 ret = 0;
4530 break;
4531 default:
4532 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
4533 ret = -1;
4534 break;
4537 return ret;
4540 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
4542 X86CPU *cpu = X86_CPU(cs);
4543 CPUX86State *env = &cpu->env;
4545 kvm_cpu_synchronize_state(cs);
4546 return !(env->cr[0] & CR0_PE_MASK) ||
4547 ((env->segs[R_CS].selector & 3) != 3);
4550 void kvm_arch_init_irq_routing(KVMState *s)
4552 /* We know at this point that we're using the in-kernel
4553 * irqchip, so we can use irqfds, and on x86 we know
4554 * we can use msi via irqfd and GSI routing.
4556 kvm_msi_via_irqfd_allowed = true;
4557 kvm_gsi_routing_allowed = true;
4559 if (kvm_irqchip_is_split()) {
4560 int i;
4562 /* If the ioapic is in QEMU and the lapics are in KVM, reserve
4563 MSI routes for signaling interrupts to the local apics. */
4564 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
4565 if (kvm_irqchip_add_msi_route(s, 0, NULL) < 0) {
4566 error_report("Could not enable split IRQ mode.");
4567 exit(1);
4573 int kvm_arch_irqchip_create(KVMState *s)
4575 int ret;
4576 if (kvm_kernel_irqchip_split()) {
4577 ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24);
4578 if (ret) {
4579 error_report("Could not enable split irqchip mode: %s",
4580 strerror(-ret));
4581 exit(1);
4582 } else {
4583 DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
4584 kvm_split_irqchip = true;
4585 return 1;
4587 } else {
4588 return 0;
4592 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
4593 uint64_t address, uint32_t data, PCIDevice *dev)
4595 X86IOMMUState *iommu = x86_iommu_get_default();
4597 if (iommu) {
4598 int ret;
4599 MSIMessage src, dst;
4600 X86IOMMUClass *class = X86_IOMMU_DEVICE_GET_CLASS(iommu);
4602 if (!class->int_remap) {
4603 return 0;
4606 src.address = route->u.msi.address_hi;
4607 src.address <<= VTD_MSI_ADDR_HI_SHIFT;
4608 src.address |= route->u.msi.address_lo;
4609 src.data = route->u.msi.data;
4611 ret = class->int_remap(iommu, &src, &dst, dev ? \
4612 pci_requester_id(dev) : \
4613 X86_IOMMU_SID_INVALID);
4614 if (ret) {
4615 trace_kvm_x86_fixup_msi_error(route->gsi);
4616 return 1;
4619 route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT;
4620 route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK;
4621 route->u.msi.data = dst.data;
4624 return 0;
4627 typedef struct MSIRouteEntry MSIRouteEntry;
4629 struct MSIRouteEntry {
4630 PCIDevice *dev; /* Device pointer */
4631 int vector; /* MSI/MSIX vector index */
4632 int virq; /* Virtual IRQ index */
4633 QLIST_ENTRY(MSIRouteEntry) list;
4636 /* List of used GSI routes */
4637 static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \
4638 QLIST_HEAD_INITIALIZER(msi_route_list);
4640 static void kvm_update_msi_routes_all(void *private, bool global,
4641 uint32_t index, uint32_t mask)
4643 int cnt = 0, vector;
4644 MSIRouteEntry *entry;
4645 MSIMessage msg;
4646 PCIDevice *dev;
4648 /* TODO: explicit route update */
4649 QLIST_FOREACH(entry, &msi_route_list, list) {
4650 cnt++;
4651 vector = entry->vector;
4652 dev = entry->dev;
4653 if (msix_enabled(dev) && !msix_is_masked(dev, vector)) {
4654 msg = msix_get_message(dev, vector);
4655 } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) {
4656 msg = msi_get_message(dev, vector);
4657 } else {
4659 * Either MSI/MSIX is disabled for the device, or the
4660 * specific message was masked out. Skip this one.
4662 continue;
4664 kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev);
4666 kvm_irqchip_commit_routes(kvm_state);
4667 trace_kvm_x86_update_msi_routes(cnt);
4670 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
4671 int vector, PCIDevice *dev)
4673 static bool notify_list_inited = false;
4674 MSIRouteEntry *entry;
4676 if (!dev) {
4677 /* These are (possibly) IOAPIC routes only used for split
4678 * kernel irqchip mode, while what we are housekeeping are
4679 * PCI devices only. */
4680 return 0;
4683 entry = g_new0(MSIRouteEntry, 1);
4684 entry->dev = dev;
4685 entry->vector = vector;
4686 entry->virq = route->gsi;
4687 QLIST_INSERT_HEAD(&msi_route_list, entry, list);
4689 trace_kvm_x86_add_msi_route(route->gsi);
4691 if (!notify_list_inited) {
4692 /* For the first time we do add route, add ourselves into
4693 * IOMMU's IEC notify list if needed. */
4694 X86IOMMUState *iommu = x86_iommu_get_default();
4695 if (iommu) {
4696 x86_iommu_iec_register_notifier(iommu,
4697 kvm_update_msi_routes_all,
4698 NULL);
4700 notify_list_inited = true;
4702 return 0;
4705 int kvm_arch_release_virq_post(int virq)
4707 MSIRouteEntry *entry, *next;
4708 QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) {
4709 if (entry->virq == virq) {
4710 trace_kvm_x86_remove_msi_route(virq);
4711 QLIST_REMOVE(entry, list);
4712 g_free(entry);
4713 break;
4716 return 0;
4719 int kvm_arch_msi_data_to_gsi(uint32_t data)
4721 abort();
4724 bool kvm_has_waitpkg(void)
4726 return has_msr_umwait;