target/arm: Move CPU state dumping routines to cpu.c
[qemu/ar7.git] / hw / net / allwinner_emac.c
blobeecda528008c8d885626d598fd35195bd138ead1
1 /*
2 * Emulation of Allwinner EMAC Fast Ethernet controller and
3 * Realtek RTL8201CP PHY
5 * Copyright (C) 2014 Beniamino Galvani <b.galvani@gmail.com>
7 * This model is based on reverse-engineering of Linux kernel driver.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
20 #include "qemu/osdep.h"
21 #include "hw/sysbus.h"
22 #include "net/net.h"
23 #include "qemu/fifo8.h"
24 #include "hw/net/allwinner_emac.h"
25 #include "qemu/log.h"
26 #include "qemu/module.h"
27 #include <zlib.h>
29 static uint8_t padding[60];
31 static void mii_set_link(RTL8201CPState *mii, bool link_ok)
33 if (link_ok) {
34 mii->bmsr |= MII_BMSR_LINK_ST | MII_BMSR_AN_COMP;
35 mii->anlpar |= MII_ANAR_TXFD | MII_ANAR_10FD | MII_ANAR_10 |
36 MII_ANAR_CSMACD;
37 } else {
38 mii->bmsr &= ~(MII_BMSR_LINK_ST | MII_BMSR_AN_COMP);
39 mii->anlpar = MII_ANAR_TX;
43 static void mii_reset(RTL8201CPState *mii, bool link_ok)
45 mii->bmcr = MII_BMCR_FD | MII_BMCR_AUTOEN | MII_BMCR_SPEED;
46 mii->bmsr = MII_BMSR_100TX_FD | MII_BMSR_100TX_HD | MII_BMSR_10T_FD |
47 MII_BMSR_10T_HD | MII_BMSR_MFPS | MII_BMSR_AUTONEG;
48 mii->anar = MII_ANAR_TXFD | MII_ANAR_TX | MII_ANAR_10FD | MII_ANAR_10 |
49 MII_ANAR_CSMACD;
50 mii->anlpar = MII_ANAR_TX;
52 mii_set_link(mii, link_ok);
55 static uint16_t RTL8201CP_mdio_read(AwEmacState *s, uint8_t addr, uint8_t reg)
57 RTL8201CPState *mii = &s->mii;
58 uint16_t ret = 0xffff;
60 if (addr == s->phy_addr) {
61 switch (reg) {
62 case MII_BMCR:
63 return mii->bmcr;
64 case MII_BMSR:
65 return mii->bmsr;
66 case MII_PHYID1:
67 return RTL8201CP_PHYID1;
68 case MII_PHYID2:
69 return RTL8201CP_PHYID2;
70 case MII_ANAR:
71 return mii->anar;
72 case MII_ANLPAR:
73 return mii->anlpar;
74 case MII_ANER:
75 case MII_NSR:
76 case MII_LBREMR:
77 case MII_REC:
78 case MII_SNRDR:
79 case MII_TEST:
80 qemu_log_mask(LOG_UNIMP,
81 "allwinner_emac: read from unimpl. mii reg 0x%x\n",
82 reg);
83 return 0;
84 default:
85 qemu_log_mask(LOG_GUEST_ERROR,
86 "allwinner_emac: read from invalid mii reg 0x%x\n",
87 reg);
88 return 0;
91 return ret;
94 static void RTL8201CP_mdio_write(AwEmacState *s, uint8_t addr, uint8_t reg,
95 uint16_t value)
97 RTL8201CPState *mii = &s->mii;
98 NetClientState *nc;
100 if (addr == s->phy_addr) {
101 switch (reg) {
102 case MII_BMCR:
103 if (value & MII_BMCR_RESET) {
104 nc = qemu_get_queue(s->nic);
105 mii_reset(mii, !nc->link_down);
106 } else {
107 mii->bmcr = value;
109 break;
110 case MII_ANAR:
111 mii->anar = value;
112 break;
113 case MII_BMSR:
114 case MII_PHYID1:
115 case MII_PHYID2:
116 case MII_ANLPAR:
117 case MII_ANER:
118 qemu_log_mask(LOG_GUEST_ERROR,
119 "allwinner_emac: write to read-only mii reg 0x%x\n",
120 reg);
121 break;
122 case MII_NSR:
123 case MII_LBREMR:
124 case MII_REC:
125 case MII_SNRDR:
126 case MII_TEST:
127 qemu_log_mask(LOG_UNIMP,
128 "allwinner_emac: write to unimpl. mii reg 0x%x\n",
129 reg);
130 break;
131 default:
132 qemu_log_mask(LOG_GUEST_ERROR,
133 "allwinner_emac: write to invalid mii reg 0x%x\n",
134 reg);
139 static void aw_emac_update_irq(AwEmacState *s)
141 qemu_set_irq(s->irq, (s->int_sta & s->int_ctl) != 0);
144 static void aw_emac_tx_reset(AwEmacState *s, int chan)
146 fifo8_reset(&s->tx_fifo[chan]);
147 s->tx_length[chan] = 0;
150 static void aw_emac_rx_reset(AwEmacState *s)
152 fifo8_reset(&s->rx_fifo);
153 s->rx_num_packets = 0;
154 s->rx_packet_size = 0;
155 s->rx_packet_pos = 0;
158 static void fifo8_push_word(Fifo8 *fifo, uint32_t val)
160 fifo8_push(fifo, val);
161 fifo8_push(fifo, val >> 8);
162 fifo8_push(fifo, val >> 16);
163 fifo8_push(fifo, val >> 24);
166 static uint32_t fifo8_pop_word(Fifo8 *fifo)
168 uint32_t ret;
170 ret = fifo8_pop(fifo);
171 ret |= fifo8_pop(fifo) << 8;
172 ret |= fifo8_pop(fifo) << 16;
173 ret |= fifo8_pop(fifo) << 24;
175 return ret;
178 static int aw_emac_can_receive(NetClientState *nc)
180 AwEmacState *s = qemu_get_nic_opaque(nc);
183 * To avoid packet drops, allow reception only when there is space
184 * for a full frame: 1522 + 8 (rx headers) + 2 (padding).
186 return (s->ctl & EMAC_CTL_RX_EN) && (fifo8_num_free(&s->rx_fifo) >= 1532);
189 static ssize_t aw_emac_receive(NetClientState *nc, const uint8_t *buf,
190 size_t size)
192 AwEmacState *s = qemu_get_nic_opaque(nc);
193 Fifo8 *fifo = &s->rx_fifo;
194 size_t padded_size, total_size;
195 uint32_t crc;
197 padded_size = size > 60 ? size : 60;
198 total_size = QEMU_ALIGN_UP(RX_HDR_SIZE + padded_size + CRC_SIZE, 4);
200 if (!(s->ctl & EMAC_CTL_RX_EN) || (fifo8_num_free(fifo) < total_size)) {
201 return -1;
204 fifo8_push_word(fifo, EMAC_UNDOCUMENTED_MAGIC);
205 fifo8_push_word(fifo, EMAC_RX_HEADER(padded_size + CRC_SIZE,
206 EMAC_RX_IO_DATA_STATUS_OK));
207 fifo8_push_all(fifo, buf, size);
208 crc = crc32(~0, buf, size);
210 if (padded_size != size) {
211 fifo8_push_all(fifo, padding, padded_size - size);
212 crc = crc32(crc, padding, padded_size - size);
215 fifo8_push_word(fifo, crc);
216 fifo8_push_all(fifo, padding, QEMU_ALIGN_UP(padded_size, 4) - padded_size);
217 s->rx_num_packets++;
219 s->int_sta |= EMAC_INT_RX;
220 aw_emac_update_irq(s);
222 return size;
225 static void aw_emac_reset(DeviceState *dev)
227 AwEmacState *s = AW_EMAC(dev);
228 NetClientState *nc = qemu_get_queue(s->nic);
230 s->ctl = 0;
231 s->tx_mode = 0;
232 s->int_ctl = 0;
233 s->int_sta = 0;
234 s->tx_channel = 0;
235 s->phy_target = 0;
237 aw_emac_tx_reset(s, 0);
238 aw_emac_tx_reset(s, 1);
239 aw_emac_rx_reset(s);
241 mii_reset(&s->mii, !nc->link_down);
244 static uint64_t aw_emac_read(void *opaque, hwaddr offset, unsigned size)
246 AwEmacState *s = opaque;
247 Fifo8 *fifo = &s->rx_fifo;
248 NetClientState *nc;
249 uint64_t ret;
251 switch (offset) {
252 case EMAC_CTL_REG:
253 return s->ctl;
254 case EMAC_TX_MODE_REG:
255 return s->tx_mode;
256 case EMAC_TX_INS_REG:
257 return s->tx_channel;
258 case EMAC_RX_CTL_REG:
259 return s->rx_ctl;
260 case EMAC_RX_IO_DATA_REG:
261 if (!s->rx_num_packets) {
262 qemu_log_mask(LOG_GUEST_ERROR,
263 "Read IO data register when no packet available");
264 return 0;
267 ret = fifo8_pop_word(fifo);
269 switch (s->rx_packet_pos) {
270 case 0: /* Word is magic header */
271 s->rx_packet_pos += 4;
272 break;
273 case 4: /* Word is rx info header */
274 s->rx_packet_pos += 4;
275 s->rx_packet_size = QEMU_ALIGN_UP(extract32(ret, 0, 16), 4);
276 break;
277 default: /* Word is packet data */
278 s->rx_packet_pos += 4;
279 s->rx_packet_size -= 4;
281 if (!s->rx_packet_size) {
282 s->rx_packet_pos = 0;
283 s->rx_num_packets--;
284 nc = qemu_get_queue(s->nic);
285 if (aw_emac_can_receive(nc)) {
286 qemu_flush_queued_packets(nc);
290 return ret;
291 case EMAC_RX_FBC_REG:
292 return s->rx_num_packets;
293 case EMAC_INT_CTL_REG:
294 return s->int_ctl;
295 case EMAC_INT_STA_REG:
296 return s->int_sta;
297 case EMAC_MAC_MRDD_REG:
298 return RTL8201CP_mdio_read(s,
299 extract32(s->phy_target, PHY_ADDR_SHIFT, 8),
300 extract32(s->phy_target, PHY_REG_SHIFT, 8));
301 default:
302 qemu_log_mask(LOG_UNIMP,
303 "allwinner_emac: read access to unknown register 0x"
304 TARGET_FMT_plx "\n", offset);
305 ret = 0;
308 return ret;
311 static void aw_emac_write(void *opaque, hwaddr offset, uint64_t value,
312 unsigned size)
314 AwEmacState *s = opaque;
315 Fifo8 *fifo;
316 NetClientState *nc = qemu_get_queue(s->nic);
317 int chan;
319 switch (offset) {
320 case EMAC_CTL_REG:
321 if (value & EMAC_CTL_RESET) {
322 aw_emac_reset(DEVICE(s));
323 value &= ~EMAC_CTL_RESET;
325 s->ctl = value;
326 if (aw_emac_can_receive(nc)) {
327 qemu_flush_queued_packets(nc);
329 break;
330 case EMAC_TX_MODE_REG:
331 s->tx_mode = value;
332 break;
333 case EMAC_TX_CTL0_REG:
334 case EMAC_TX_CTL1_REG:
335 chan = (offset == EMAC_TX_CTL0_REG ? 0 : 1);
336 if ((value & 1) && (s->ctl & EMAC_CTL_TX_EN)) {
337 uint32_t len, ret;
338 const uint8_t *data;
340 fifo = &s->tx_fifo[chan];
341 len = s->tx_length[chan];
343 if (len > fifo8_num_used(fifo)) {
344 len = fifo8_num_used(fifo);
345 qemu_log_mask(LOG_GUEST_ERROR,
346 "allwinner_emac: TX length > fifo data length\n");
348 if (len > 0) {
349 data = fifo8_pop_buf(fifo, len, &ret);
350 qemu_send_packet(nc, data, ret);
351 aw_emac_tx_reset(s, chan);
352 /* Raise TX interrupt */
353 s->int_sta |= EMAC_INT_TX_CHAN(chan);
354 aw_emac_update_irq(s);
357 break;
358 case EMAC_TX_INS_REG:
359 s->tx_channel = value < NUM_TX_FIFOS ? value : 0;
360 break;
361 case EMAC_TX_PL0_REG:
362 case EMAC_TX_PL1_REG:
363 chan = (offset == EMAC_TX_PL0_REG ? 0 : 1);
364 if (value > TX_FIFO_SIZE) {
365 qemu_log_mask(LOG_GUEST_ERROR,
366 "allwinner_emac: invalid TX frame length %d\n",
367 (int)value);
368 value = TX_FIFO_SIZE;
370 s->tx_length[chan] = value;
371 break;
372 case EMAC_TX_IO_DATA_REG:
373 fifo = &s->tx_fifo[s->tx_channel];
374 if (fifo8_num_free(fifo) < 4) {
375 qemu_log_mask(LOG_GUEST_ERROR,
376 "allwinner_emac: TX data overruns fifo\n");
377 break;
379 fifo8_push_word(fifo, value);
380 break;
381 case EMAC_RX_CTL_REG:
382 s->rx_ctl = value;
383 break;
384 case EMAC_RX_FBC_REG:
385 if (value == 0) {
386 aw_emac_rx_reset(s);
388 break;
389 case EMAC_INT_CTL_REG:
390 s->int_ctl = value;
391 aw_emac_update_irq(s);
392 break;
393 case EMAC_INT_STA_REG:
394 s->int_sta &= ~value;
395 aw_emac_update_irq(s);
396 break;
397 case EMAC_MAC_MADR_REG:
398 s->phy_target = value;
399 break;
400 case EMAC_MAC_MWTD_REG:
401 RTL8201CP_mdio_write(s, extract32(s->phy_target, PHY_ADDR_SHIFT, 8),
402 extract32(s->phy_target, PHY_REG_SHIFT, 8), value);
403 break;
404 default:
405 qemu_log_mask(LOG_UNIMP,
406 "allwinner_emac: write access to unknown register 0x"
407 TARGET_FMT_plx "\n", offset);
411 static void aw_emac_set_link(NetClientState *nc)
413 AwEmacState *s = qemu_get_nic_opaque(nc);
415 mii_set_link(&s->mii, !nc->link_down);
418 static const MemoryRegionOps aw_emac_mem_ops = {
419 .read = aw_emac_read,
420 .write = aw_emac_write,
421 .endianness = DEVICE_NATIVE_ENDIAN,
422 .valid = {
423 .min_access_size = 4,
424 .max_access_size = 4,
428 static NetClientInfo net_aw_emac_info = {
429 .type = NET_CLIENT_DRIVER_NIC,
430 .size = sizeof(NICState),
431 .can_receive = aw_emac_can_receive,
432 .receive = aw_emac_receive,
433 .link_status_changed = aw_emac_set_link,
436 static void aw_emac_init(Object *obj)
438 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
439 AwEmacState *s = AW_EMAC(obj);
441 memory_region_init_io(&s->iomem, OBJECT(s), &aw_emac_mem_ops, s,
442 "aw_emac", 0x1000);
443 sysbus_init_mmio(sbd, &s->iomem);
444 sysbus_init_irq(sbd, &s->irq);
447 static void aw_emac_realize(DeviceState *dev, Error **errp)
449 AwEmacState *s = AW_EMAC(dev);
451 qemu_macaddr_default_if_unset(&s->conf.macaddr);
452 s->nic = qemu_new_nic(&net_aw_emac_info, &s->conf,
453 object_get_typename(OBJECT(dev)), dev->id, s);
454 qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
456 fifo8_create(&s->rx_fifo, RX_FIFO_SIZE);
457 fifo8_create(&s->tx_fifo[0], TX_FIFO_SIZE);
458 fifo8_create(&s->tx_fifo[1], TX_FIFO_SIZE);
461 static Property aw_emac_properties[] = {
462 DEFINE_NIC_PROPERTIES(AwEmacState, conf),
463 DEFINE_PROP_UINT8("phy-addr", AwEmacState, phy_addr, 0),
464 DEFINE_PROP_END_OF_LIST(),
467 static const VMStateDescription vmstate_mii = {
468 .name = "rtl8201cp",
469 .version_id = 1,
470 .minimum_version_id = 1,
471 .fields = (VMStateField[]) {
472 VMSTATE_UINT16(bmcr, RTL8201CPState),
473 VMSTATE_UINT16(bmsr, RTL8201CPState),
474 VMSTATE_UINT16(anar, RTL8201CPState),
475 VMSTATE_UINT16(anlpar, RTL8201CPState),
476 VMSTATE_END_OF_LIST()
480 static int aw_emac_post_load(void *opaque, int version_id)
482 AwEmacState *s = opaque;
484 aw_emac_set_link(qemu_get_queue(s->nic));
486 return 0;
489 static const VMStateDescription vmstate_aw_emac = {
490 .name = "allwinner_emac",
491 .version_id = 1,
492 .minimum_version_id = 1,
493 .post_load = aw_emac_post_load,
494 .fields = (VMStateField[]) {
495 VMSTATE_STRUCT(mii, AwEmacState, 1, vmstate_mii, RTL8201CPState),
496 VMSTATE_UINT32(ctl, AwEmacState),
497 VMSTATE_UINT32(tx_mode, AwEmacState),
498 VMSTATE_UINT32(rx_ctl, AwEmacState),
499 VMSTATE_UINT32(int_ctl, AwEmacState),
500 VMSTATE_UINT32(int_sta, AwEmacState),
501 VMSTATE_UINT32(phy_target, AwEmacState),
502 VMSTATE_FIFO8(rx_fifo, AwEmacState),
503 VMSTATE_UINT32(rx_num_packets, AwEmacState),
504 VMSTATE_UINT32(rx_packet_size, AwEmacState),
505 VMSTATE_UINT32(rx_packet_pos, AwEmacState),
506 VMSTATE_STRUCT_ARRAY(tx_fifo, AwEmacState, NUM_TX_FIFOS, 1,
507 vmstate_fifo8, Fifo8),
508 VMSTATE_UINT32_ARRAY(tx_length, AwEmacState, NUM_TX_FIFOS),
509 VMSTATE_UINT32(tx_channel, AwEmacState),
510 VMSTATE_END_OF_LIST()
514 static void aw_emac_class_init(ObjectClass *klass, void *data)
516 DeviceClass *dc = DEVICE_CLASS(klass);
518 dc->realize = aw_emac_realize;
519 dc->props = aw_emac_properties;
520 dc->reset = aw_emac_reset;
521 dc->vmsd = &vmstate_aw_emac;
524 static const TypeInfo aw_emac_info = {
525 .name = TYPE_AW_EMAC,
526 .parent = TYPE_SYS_BUS_DEVICE,
527 .instance_size = sizeof(AwEmacState),
528 .instance_init = aw_emac_init,
529 .class_init = aw_emac_class_init,
532 static void aw_emac_register_types(void)
534 type_register_static(&aw_emac_info);
537 type_init(aw_emac_register_types)